diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3436 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6968 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 139 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8035 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 21551 |
5 files changed, 20105 insertions, 20024 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 4b2d1519..52405adb 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1962894 . 3538630437) +(1965419 . 3539125283) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3975 . T) (-3973 . T) (-3972 . T) ((-3980 "*") . T) (-3971 . T) (-3976 . T) (-3970 . T)) +((-3986 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3982 . T) (-3987 . T) (-3981 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3078) +(-32 R -3088) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-945 (-480))))) +((|HasCategory| |#1| (QUOTE (-950 (-483))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -3978))) +((|HasAttribute| |#1| (QUOTE -3989))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3078 UP UPUP -2600) +(-40 -3088 UP UPUP -2610) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3971 |has| (-345 |#2|) (-309)) (-3976 |has| (-345 |#2|) (-309)) (-3970 |has| (-345 |#2|) (-309)) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-345 |#2|) (QUOTE (-116))) (|HasCategory| (-345 |#2|) (QUOTE (-118))) (|HasCategory| (-345 |#2|) (QUOTE (-296))) (OR (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-315))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-187))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-296))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081)))))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-806 (-1081)))))) (|HasCategory| (-345 |#2|) (QUOTE (-577 (-480)))) (OR (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-345 (-480)))))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-315))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-187))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081)))))) -(-41 R -3078) +((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088)))))) (|HasCategory| (-347 |#2|) (QUOTE (-580 (-483)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) +(-41 R -3088) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-255)))) +((|HasCategory| |#1| (QUOTE (-257)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3975 |has| |#1| (-491)) (-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) +((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3978 . T) (-3979 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-751)))) (-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-751))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-751))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-751))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))))) +((-3989 . T) (-3990 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309)))) +((|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| $ (QUOTE (-956))) (|HasCategory| $ (QUOTE (-945 (-480))))) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3975 . T)) +((-3986 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3078) +(-54 |Base| R -3088) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,28 +158,28 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-309)))) +((|HasCategory| |#1| (QUOTE (-311)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-3978 . T) ((-3980 "*") . T) (-3979 . T) (-3975 . T) (-3973 . T) (-3972 . T) (-3971 . T) (-3976 . T) (-3970 . T) (-3969 . T) (-3968 . T) (-3967 . T) (-3966 . T) (-3974 . T) (-3977 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3965 . T)) +((-3989 . T) ((-3991 "*") . T) (-3990 . T) (-3986 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3987 . T) (-3981 . T) (-3980 . T) (-3979 . T) (-3978 . T) (-3977 . T) (-3985 . T) (-3988 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3976 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3975 . T)) +((-3986 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -222,4515 +222,4543 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3980 "*")))) +((|HasAttribute| |#1| (QUOTE (-3991 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-3979 . T)) +((-3990 . T)) NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-480) (QUOTE (-816))) (|HasCategory| (-480) (QUOTE (-945 (-1081)))) (|HasCategory| (-480) (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-118))) (|HasCategory| (-480) (QUOTE (-550 (-469)))) (|HasCategory| (-480) (QUOTE (-928))) (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751))) (OR (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751)))) (|HasCategory| (-480) (QUOTE (-945 (-480)))) (|HasCategory| (-480) (QUOTE (-1057))) (|HasCategory| (-480) (QUOTE (-791 (-325)))) (|HasCategory| (-480) (QUOTE (-791 (-480)))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-480) (QUOTE (-187))) (|HasCategory| (-480) (QUOTE (-806 (-1081)))) (|HasCategory| (-480) (QUOTE (-188))) (|HasCategory| (-480) (QUOTE (-804 (-1081)))) (|HasCategory| (-480) (QUOTE (-449 (-1081) (-480)))) (|HasCategory| (-480) (QUOTE (-257 (-480)))) (|HasCategory| (-480) (QUOTE (-239 (-480) (-480)))) (|HasCategory| (-480) (QUOTE (-255))) (|HasCategory| (-480) (QUOTE (-479))) (|HasCategory| (-480) (QUOTE (-577 (-480)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (|HasCategory| (-480) (QUOTE (-116))))) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-79) +(-79 T$) +((|constructor| (NIL "This domain implements binary operations.")) (|binaryOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{binaryOperation f} constructs a binary operation value out of any homogeneous mapping of arity 2."))) +NIL +NIL +(-80 T$) +((|constructor| (NIL "This is the category of all domains that implement binary operations."))) +NIL +NIL +(-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| (-83) (QUOTE (-257 (-83)))) (|HasCategory| (-83) (QUOTE (-1007)))) (|HasCategory| (-83) (QUOTE (-550 (-469)))) (|HasCategory| (-83) (QUOTE (-751))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| (-83) (QUOTE (-1007))) (|HasCategory| (-83) (QUOTE (-549 (-767)))) (|HasCategory| (-83) (QUOTE (-72)))) -(-80 R S) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-553 (-472)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72)))) +(-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-81 S) +(-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-82) +(-84) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-83) +(-85) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-84) +(-86) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Maybe| (|Mapping| (|InputForm|) (|List| (|InputForm|)))) $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \\spad{nothing} otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Maybe| (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \\spad{nothing} otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-85 A) +(-87 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-86 -3078 UP) +(-88 -3088 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-87 |p|) +(-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-88 |p|) +(-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-87 |#1|) (QUOTE (-816))) (|HasCategory| (-87 |#1|) (QUOTE (-945 (-1081)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-118))) (|HasCategory| (-87 |#1|) (QUOTE (-550 (-469)))) (|HasCategory| (-87 |#1|) (QUOTE (-928))) (|HasCategory| (-87 |#1|) (QUOTE (-735))) (|HasCategory| (-87 |#1|) (QUOTE (-751))) (OR (|HasCategory| (-87 |#1|) (QUOTE (-735))) (|HasCategory| (-87 |#1|) (QUOTE (-751)))) (|HasCategory| (-87 |#1|) (QUOTE (-945 (-480)))) (|HasCategory| (-87 |#1|) (QUOTE (-1057))) (|HasCategory| (-87 |#1|) (QUOTE (-791 (-325)))) (|HasCategory| (-87 |#1|) (QUOTE (-791 (-480)))) (|HasCategory| (-87 |#1|) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-87 |#1|) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-87 |#1|) (QUOTE (-577 (-480)))) (|HasCategory| (-87 |#1|) (QUOTE (-187))) (|HasCategory| (-87 |#1|) (QUOTE (-806 (-1081)))) (|HasCategory| (-87 |#1|) (QUOTE (-188))) (|HasCategory| (-87 |#1|) (QUOTE (-804 (-1081)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -449) (QUOTE (-1081)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -257) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -239) (|%list| (QUOTE -87) (|devaluate| |#1|)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (QUOTE (-255))) (|HasCategory| (-87 |#1|) (QUOTE (-479))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-816)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))))) -(-89 A S) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-472)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-1064))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-327)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1088)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-257))) (|HasCategory| (-89 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +(-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -3979))) -(-90 S) +((|HasAttribute| |#1| (QUOTE -3990))) +(-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-91 UP) +(-93 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} pp. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-92 S) +(-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-93 S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL -(-94) +(-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-95 A S) +(-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-96 S) +(-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-97 S) +(-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-98 S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-99) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL -(-100) +(-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| (-99) (QUOTE (-257 (-99)))) (|HasCategory| (-99) (QUOTE (-751)))) (-12 (|HasCategory| (-99) (QUOTE (-257 (-99)))) (|HasCategory| (-99) (QUOTE (-1007))))) (|HasCategory| (-99) (QUOTE (-549 (-767)))) (|HasCategory| (-99) (QUOTE (-550 (-469)))) (OR (|HasCategory| (-99) (QUOTE (-751))) (|HasCategory| (-99) (QUOTE (-1007)))) (|HasCategory| (-99) (QUOTE (-751))) (OR (|HasCategory| (-99) (QUOTE (-72))) (|HasCategory| (-99) (QUOTE (-751))) (|HasCategory| (-99) (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| (-99) (QUOTE (-1007))) (|HasCategory| (-99) (QUOTE (-72))) (-12 (|HasCategory| (-99) (QUOTE (-257 (-99)))) (|HasCategory| (-99) (QUOTE (-1007))))) -(-101) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1012))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-472)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1012))))) +(-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL -(-102) +(-104) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-103) +(-105) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-104) +(-106) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in `c'."))) NIL NIL -(-105) +(-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3980 "*") . T)) +(((-3991 "*") . T)) NIL -(-106 |minix| -2607 R) +(-108 |minix| -2617 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-107 |minix| -2607 S T$) +(-109 |minix| -2617 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-108) +(-110) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-109) +(-111) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax `c'.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-110) +(-112) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-111) +(-113) ((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category `c'.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category `c'.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category `c',{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object `c'."))) NIL NIL -(-112) +(-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3978 . T) (-3968 . T) (-3979 . T)) -((OR (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-315)))) (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-1007))))) (|HasCategory| (-115) (QUOTE (-550 (-469)))) (|HasCategory| (-115) (QUOTE (-315))) (|HasCategory| (-115) (QUOTE (-751))) (|HasCategory| (-115) (QUOTE (-1007))) (|HasCategory| (-115) (QUOTE (-549 (-767)))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-1007))))) -(-113 R Q A) +((-3989 . T) (-3979 . T) (-3990 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-317)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-553 (-472)))) (|HasCategory| (-117) (QUOTE (-317))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) +(-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-114) +(-116) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-115) +(-117) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} designate the escape character.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-116) +(-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3975 . T)) +((-3986 . T)) NIL -(-117 R) +(-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) NIL NIL -(-118) +(-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3975 . T)) +((-3986 . T)) NIL -(-119 -3078 UP UPUP) +(-121 -3088 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL -(-120 R CR) +(-122 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod fj (\\spad{j} \\= \\spad{i}) or equivalently g/prod fj = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-121 A S) +(-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasAttribute| |#1| (QUOTE -3978))) -(-122 S) +((|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasAttribute| |#1| (QUOTE -3989))) +(-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-123 |n| K Q) +(-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3973 . T) (-3972 . T) (-3975 . T)) +((-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-124) +(-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-125) +(-127) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-126 UP |Par|) +(-128 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-127) +(-129) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-128) +(-130) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-129 R -3078) +(-131 R -3088) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-130 I) +(-132 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-131) +(-133) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-132) +(-134) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-133) +(-135) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-134) +(-136) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-135 R UP UPUP) +(-137 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-136 S R) +(-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-309))) (|HasAttribute| |#2| (QUOTE -3974)) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-491)))) -(-137 R) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3985)) (|HasAttribute| |#2| (QUOTE -3988)) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-494)))) +(-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3971 OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3974 |has| |#1| (-6 -3974)) (-3977 |has| |#1| (-6 -3977)) (-1365 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3985 |has| |#1| (-6 -3985)) (-3988 |has| |#1| (-6 -3988)) (-1373 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-138 RR PR) +(-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-139) +(-141) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-140 R) +(-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3971 OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3974 |has| |#1| (-6 -3974)) (-3977 |has| |#1| (-6 -3977)) (-1365 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-296))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-315))) (OR (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-296)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081))))) (|HasCategory| |#1| (QUOTE (-806 (-1081))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-309)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-816))))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -239) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-967))) (-12 (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-309)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-187)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-188))) (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasAttribute| |#1| (QUOTE -3974)) (|HasAttribute| |#1| (QUOTE -3977)) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-309)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-296)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-141 R S) +((-3982 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3985 |has| |#1| (-6 -3985)) (-3988 |has| |#1| (-6 -3988)) (-1373 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-972))) (-12 (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#1| (QUOTE -3988)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-142 R S CS) +(-144 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-143) +(-145) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-144) +(-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-145) +(-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-146 R) +(-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3980 "*") . T) (-3971 . T) (-3976 . T) (-3970 . T) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") . T) (-3982 . T) (-3987 . T) (-3981 . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-147) +(-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-148 R) +(-150 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-149 R |PolR| E) +(-151 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-150 R S CS) +(-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-852 |#2|) (|%list| (QUOTE -791) (|devaluate| |#1|)))) -(-151 R) +((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|)))) +(-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-152) +(-154) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-153 R UP) +(-155 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-154 S ST) +(-156 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-155) +(-157) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-156 C) +(-158 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-157 S) +(-159 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-158) +(-160) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-159) +(-161) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-160 R -3078) +(-162 R -3088) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-161 R) +(-163 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-162) +(-164) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-163) +(-165) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-164 N T$) +(-166 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-165 S) +(-167 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-166 |vars|) +(-168 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-167 -3078 UP UPUP R) +(-169 -3088 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-168 -3078 FP) +(-170 -3088 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-169) +(-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-480) (QUOTE (-816))) (|HasCategory| (-480) (QUOTE (-945 (-1081)))) (|HasCategory| (-480) (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-118))) (|HasCategory| (-480) (QUOTE (-550 (-469)))) (|HasCategory| (-480) (QUOTE (-928))) (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751))) (OR (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751)))) (|HasCategory| (-480) (QUOTE (-945 (-480)))) (|HasCategory| (-480) (QUOTE (-1057))) (|HasCategory| (-480) (QUOTE (-791 (-325)))) (|HasCategory| (-480) (QUOTE (-791 (-480)))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-480) (QUOTE (-187))) (|HasCategory| (-480) (QUOTE (-806 (-1081)))) (|HasCategory| (-480) (QUOTE (-188))) (|HasCategory| (-480) (QUOTE (-804 (-1081)))) (|HasCategory| (-480) (QUOTE (-449 (-1081) (-480)))) (|HasCategory| (-480) (QUOTE (-257 (-480)))) (|HasCategory| (-480) (QUOTE (-239 (-480) (-480)))) (|HasCategory| (-480) (QUOTE (-255))) (|HasCategory| (-480) (QUOTE (-479))) (|HasCategory| (-480) (QUOTE (-577 (-480)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (|HasCategory| (-480) (QUOTE (-116))))) -(-170) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118))))) +(-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-171 R -3078) +(-173 R -3088) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-172 R) +(-174 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-173 R1 R2) +(-175 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-174 S) +(-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-175 |CoefRing| |listIndVar|) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3975 . T)) +((-3986 . T)) NIL -(-176 R -3078) +(-178 R -3088) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-177) +(-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3753 . T) (-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-178) +(-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-179 R) +(-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-491))) (|HasAttribute| |#1| (QUOTE (-3980 "*"))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-72)))) -(-180 A S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72)))) +(-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-181 S) +(-183 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-3979 . T)) +((-3990 . T)) NIL -(-182 R) +(-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3975 . T)) +((-3986 . T)) NIL -(-183 S T$) +(-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-184 T$) +(-186 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-185 R) +(-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-186 S) +(-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-187) +(-189) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-188) +(-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3975 . T)) +((-3986 . T)) NIL -(-189) +(-191) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) NIL NIL -(-190 A S) +(-192 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -3978))) -(-191 S) +((|HasAttribute| |#1| (QUOTE -3989))) +(-193 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-3979 . T)) +((-3990 . T)) NIL -(-192) +(-194) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-193 S -2607 R) +(-195 S -2617 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-751))) (|HasAttribute| |#3| (QUOTE -3975)) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (QUOTE (-1007)))) -(-194 -2607 R) +((|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3986)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012)))) +(-196 -2617 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-3972 |has| |#2| (-956)) (-3973 |has| |#2| (-956)) (-3975 |has| |#2| (-6 -3975)) (-3978 . T)) +((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T)) NIL -(-195 -2607 R) +(-197 -2617 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3972 |has| |#2| (-956)) (-3973 |has| |#2| (-956)) (-3975 |has| |#2| (-6 -3975)) (-3978 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-309))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (OR (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751)))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-315))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasAttribute| |#2| (QUOTE -3975)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) -(-196 -2607 A B) +((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) +(-198 -2617 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-197) +(-199) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-198 S) +(-200 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-199) +(-201) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3971 . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-200 S) +(-202 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-201 S) +(-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-202 M) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-203 R) +(-205 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-204 |vl| R) +(-206 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3980 "*") |has| |#2| (-144)) (-3971 |has| |#2| (-491)) (-3976 |has| |#2| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-491)))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-469))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-205) +(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-207) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL NIL -(-206) +(-208) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-207) +(-209) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-208 |n| R M S) +(-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3975 OR (-2548 (|has| |#4| (-956)) (|has| |#4| (-188))) (|has| |#4| (-6 -3975)) (-2548 (|has| |#4| (-956)) (|has| |#4| (-804 (-1081))))) (-3972 |has| |#4| (-956)) (-3973 |has| |#4| (-956)) (-3978 . T)) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-660))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-751))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-956))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-309))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-956)))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-309)))) (|HasCategory| |#4| (QUOTE (-956))) (|HasCategory| |#4| (QUOTE (-660))) (|HasCategory| |#4| (QUOTE (-712))) (OR (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (QUOTE (-751)))) (|HasCategory| |#4| (QUOTE (-751))) (|HasCategory| |#4| (QUOTE (-315))) (OR (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-577 (-480)))) (|HasCategory| |#4| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#4| (QUOTE (-577 (-480)))) (|HasCategory| |#4| (QUOTE (-956))))) (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-956)))) (|HasCategory| |#4| (QUOTE (-188))) (OR (|HasCategory| |#4| (QUOTE (-188))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-806 (-1081)))) (|HasCategory| |#4| (QUOTE (-956)))) (|HasCategory| |#4| (QUOTE (-804 (-1081))))) (|HasCategory| |#4| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-660))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-751))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#4| (QUOTE (-956)))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#4| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-751))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-480)))) (|HasCategory| |#4| (QUOTE (-1007)))) (-12 (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-660))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (|HasCategory| |#4| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-751))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-480)))) (|HasCategory| |#4| (QUOTE (-1007)))) (-12 (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-660))) (|HasCategory| |#4| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-480)))) (|HasCategory| |#4| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#4| (QUOTE (-577 (-480)))) (|HasCategory| |#4| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-956)))) (-12 (|HasCategory| |#4| (QUOTE (-806 (-1081)))) (|HasCategory| |#4| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-956)))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-956))))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-480)))) (|HasCategory| |#4| (QUOTE (-1007)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-945 (-480)))) (|HasCategory| |#4| (QUOTE (-1007)))) (|HasCategory| |#4| (QUOTE (-956)))) (-12 (|HasCategory| |#4| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#4| (QUOTE (-1007)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-804 (-1081)))) (|HasCategory| |#4| (QUOTE (-956)))) (|HasAttribute| |#4| (QUOTE -3975)) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-956))))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-956)))) (-12 (|HasCategory| |#4| (QUOTE (-806 (-1081)))) (|HasCategory| |#4| (QUOTE (-956)))) (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-102))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|))))) -(-209 |n| R S) +((-3986 OR (-2558 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3986)) (-2558 (|has| |#4| (-961)) (|has| |#4| (-809 (-1088))))) (-3983 |has| |#4| (-961)) (-3984 |has| |#4| (-961)) (-3989 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-311))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-317))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1088))))) (|HasCategory| |#4| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3986)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) +(-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3975 OR (-2548 (|has| |#3| (-956)) (|has| |#3| (-188))) (|has| |#3| (-6 -3975)) (-2548 (|has| |#3| (-956)) (|has| |#3| (-804 (-1081))))) (-3972 |has| |#3| (-956)) (-3973 |has| |#3| (-956)) (-3978 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-309))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-309)))) (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-712))) (OR (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-751)))) (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-315))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-956))))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-806 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-804 (-1081))))) (|HasCategory| |#3| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-806 (-1081)))) (|HasCategory| |#3| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-956))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-1007)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasAttribute| |#3| (QUOTE -3975)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-956))))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-806 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-549 (-767)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|))))) -(-210 A R S V E) +((-3986 OR (-2558 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3986)) (-2558 (|has| |#3| (-961)) (|has| |#3| (-809 (-1088))))) (-3983 |has| |#3| (-961)) (-3984 |has| |#3| (-961)) (-3989 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3986)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) +(-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-188)))) -(-211 R S V E) +((|HasCategory| |#2| (QUOTE (-190)))) +(-213 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-212 S) +(-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-213 |Ex|) +(-215 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-214) +(-216) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-215 R |Ex|) +(-217 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-216) +(-218) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-217 R) +(-219 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-218) +(-220) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-219) +(-221) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-220) +(-222) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-221 S) +(-223 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-222 S R) +(-224 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-187)))) -(-223 R) +((|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-189)))) +(-225 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-224 R S V) +(-226 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#3| (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#3| (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#3| (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#3| (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#3| (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-225 A S) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#3| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#3| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#3| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-227 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-226 S) +(-228 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-227) +(-229) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-228 R -3078) +(-230 R -3088) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-229 R -3078) +(-231 R -3088) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-230 |Coef| UTS ULS) +(-232 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-309)))) -(-231 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-311)))) +(-233 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-309)))) -(-232) +((|HasCategory| |#1| (QUOTE (-311)))) +(-234) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-233) +(-235) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-234 A S) +(-236 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007)))) -(-235 S) +((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012)))) +(-237 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-3979 . T)) +((-3990 . T)) NIL -(-236 S) +(-238 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-237) +(-239) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-238 |Coef| UTS) +(-240 |Coef| UTS) ((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}"))) NIL NIL -(-239 S T$) +(-241 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-240 S |Dom| |Im|) +(-242 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -3979))) -(-241 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -3990))) +(-243 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-242 S R |Mod| -2025 -3501 |exactQuo|) +(-244 S R |Mod| -2033 -3512 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-243) +(-245) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3971 . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-244) +(-246) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-245 R) +(-247 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-246 S) +(-248 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3975 OR (|has| |#1| (-956)) (|has| |#1| (-408))) (-3972 |has| |#1| (-956)) (-3973 |has| |#1| (-956))) -((|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-660)))) (|HasCategory| |#1| (QUOTE (-408))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1007)))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-251))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-408)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-660)))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-660)))) -(-247 S R) +((-3986 OR (|has| |#1| (-961)) (|has| |#1| (-410))) (-3983 |has| |#1| (-961)) (-3984 |has| |#1| (-961))) +((|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-410))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-253))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-663)))) +(-249 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-248 |Key| |Entry|) +(-250 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-249) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-251) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-250 S) +(-252 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) -(-251) +((|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) +(-253) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-252 -3078 S) +(-254 -3088 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-253 E -3078) +(-255 E -3088) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-254 S) +(-256 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-255) +(-257) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-256 S R) +(-258 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-257 R) +(-259 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-258 -3078) +(-260 -3088) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-259) +(-261) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-260) +(-262) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-261 R FE |var| |cen|) +(-263 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-945 (-1081)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-550 (-469)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-735))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-751))) (OR (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-735))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-751)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-945 (-480)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-1057))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-791 (-325)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-791 (-480)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-577 (-480)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-187))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-806 (-1081)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-188))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-804 (-1081)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -449) (QUOTE (-1081)) (|%list| (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -257) (|%list| (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -239) (|%list| (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-255))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-479))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-816)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-116))))) -(-262 R) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-472)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-1064))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-327)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -259) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-257))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +(-264 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3975 OR (-12 (|has| |#1| (-491)) (OR (|has| |#1| (-956)) (|has| |#1| (-408)))) (|has| |#1| (-956)) (|has| |#1| (-408))) (-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) ((-3980 "*") |has| |#1| (-491)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-491)) (-3970 |has| |#1| (-491))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-956))))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-956)))) (-12 (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#1| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-945 (-480)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| $ (QUOTE (-956))) (|HasCategory| $ (QUOTE (-945 (-480))))) -(-263 R S) +((-3986 OR (-12 (|has| |#1| (-494)) (OR (|has| |#1| (-961)) (|has| |#1| (-410)))) (|has| |#1| (-961)) (|has| |#1| (-410))) (-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) ((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-494)) (-3981 |has| |#1| (-494))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483))))) +(-265 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-264 R FE) +(-266 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-265 R -3078) +(-267 R -3088) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-266) +(-268) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-267 FE |var| |cen|) +(-269 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|)))) (|HasCategory| (-345 (-480)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-268 M) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-270 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-269 E OV R P) +(-271 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-270 S) +(-272 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| (-480) (QUOTE (-711)))) -(-271 S E) +((-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-716)))) +(-273 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-272 S) +(-274 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-689) (QUOTE (-711)))) -(-273 S R E) +((|HasCategory| (-694) (QUOTE (-716)))) +(-275 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144)))) -(-274 R E) +((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146)))) +(-276 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-275 S) +(-277 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-276 S -3078) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-278 S -3088) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-315)))) -(-277 -3078) +((|HasCategory| |#2| (QUOTE (-317)))) +(-279 -3088) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-278 E) +(-280 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-279) +(-281) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-280 -3078 UP UPUP R) +(-282 -3088 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-281 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-283 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-282 S -3078 UP UPUP R) +(-284 S -3088 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-283 -3078 UP UPUP R) +(-285 -3088 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-284 S R) +(-286 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -239) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-285 R) +((|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-287 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-286 |p| |n|) +(-288 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| (-812 |#1|) (QUOTE (-116))) (|HasCategory| (-812 |#1|) (QUOTE (-315)))) (|HasCategory| (-812 |#1|) (QUOTE (-118))) (|HasCategory| (-812 |#1|) (QUOTE (-315))) (|HasCategory| (-812 |#1|) (QUOTE (-116)))) -(-287 S -3078 UP UPUP) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +(-289 S -3088 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-309)))) -(-288 -3078 UP UPUP) +((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-311)))) +(-290 -3088 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3971 |has| (-345 |#2|) (-309)) (-3976 |has| (-345 |#2|) (-309)) (-3970 |has| (-345 |#2|) (-309)) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-289 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-291 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-290 |p| |extdeg|) +(-292 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| (-812 |#1|) (QUOTE (-116))) (|HasCategory| (-812 |#1|) (QUOTE (-315)))) (|HasCategory| (-812 |#1|) (QUOTE (-118))) (|HasCategory| (-812 |#1|) (QUOTE (-315))) (|HasCategory| (-812 |#1|) (QUOTE (-116)))) -(-291 GF |defpol|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +(-293 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-292 GF |extdeg|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-294 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-293 GF) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-295 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-294 F1 GF F2) +(-296 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-295 S) +(-297 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-296) +(-298) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-297 R UP -3078) +(-299 R UP -3088) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-298 |p| |extdeg|) +(-300 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| (-812 |#1|) (QUOTE (-116))) (|HasCategory| (-812 |#1|) (QUOTE (-315)))) (|HasCategory| (-812 |#1|) (QUOTE (-118))) (|HasCategory| (-812 |#1|) (QUOTE (-315))) (|HasCategory| (-812 |#1|) (QUOTE (-116)))) -(-299 GF |uni|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +(-301 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-300 GF |extdeg|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-302 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-301 GF |defpol|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-303 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-302 GF) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-304 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-303 -3078 GF) +(-305 -3088 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-304 -3078 FP FPP) +(-306 -3088 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-305 GF |n|) +(-307 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-116)))) -(-306 R |ls|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) +(-308 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL -(-307 S) +(-309 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3975 . T)) +((-3986 . T)) NIL -(-308 S) +(-310 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-309) +(-311) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-310 S) +(-312 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-311 |Name| S) +(-313 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-312 S R) +(-314 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-491)))) -(-313 R) +((|HasCategory| |#2| (QUOTE (-494)))) +(-315 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3975 |has| |#1| (-491)) (-3973 . T) (-3972 . T)) +((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T)) NIL -(-314 S) +(-316 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-315) +(-317) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-316 S R UP) +(-318 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-309)))) -(-317 R UP) +((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-311)))) +(-319 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-318 A S) +(-320 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3979)) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007)))) -(-319 S) +((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012)))) +(-321 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3978 . T)) +((-3989 . T)) NIL -(-320 S A R B) +(-322 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-321 |VarSet| R) +(-323 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3973 . T) (-3972 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T)) NIL -(-322 S V) +(-324 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-323 S R) +(-325 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-577 (-480))))) -(-324 R) +((|HasCategory| |#2| (QUOTE (-580 (-483))))) +(-326 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-325) +(-327) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3961 . T) (-3969 . T) (-3753 . T) (-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3972 . T) (-3980 . T) (-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-326 |Par|) +(-328 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-327 |Par|) +(-329 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-328 R S) +(-330 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-329 R S) +((-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-331 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-144)))) -(-330 R |Basis|) +((-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-146)))) +(-332 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-331 S) +(-333 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-332 S) +(-334 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-751)))) -(-333) +((|HasCategory| |#1| (QUOTE (-756)))) +(-335) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-334) +(-336) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-335 |n| |class| R) +(-337 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-336 -3078 UP UPUP R) +(-338 -3088 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-337 -3078 UP) +(-339 -3088 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-338 R) +(-340 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-339 S) +(-341 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-340) +(-342) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-341 S) +(-343 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3961)) (|HasAttribute| |#1| (QUOTE -3969))) -(-342) +((|HasAttribute| |#1| (QUOTE -3972)) (|HasAttribute| |#1| (QUOTE -3980))) +(-344) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3753 . T) (-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-343 R) +(-345 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-449 (-1081) $))) (|HasCategory| |#1| (QUOTE (-257 $))) (|HasCategory| |#1| (QUOTE (-239 $ $))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-1125))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -239) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-387)))) -(-344 R S) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-452 (-1088) $))) (|HasCategory| |#1| (QUOTE (-259 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-1132))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-389)))) +(-346 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-345 S) +(-347 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3965 -12 (|has| |#1| (-6 -3976)) (|has| |#1| (-387)) (|has| |#1| (-6 -3965))) (-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-945 (-1081)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-751)))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -239) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-479))) (-12 (|HasAttribute| |#1| (QUOTE -3965)) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387)))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-346 A B) +((-3976 -12 (|has| |#1| (-6 -3987)) (|has| |#1| (-389)) (|has| |#1| (-6 -3976))) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1088)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-482))) (-12 (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-348 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-347 S R UP) +(-349 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-348 R UP) +(-350 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-349 A S) +(-351 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) -(-350 S) +((|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) +(-352 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-351 R -3078 UP A) +(-353 R -3088 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3975 . T)) +((-3986 . T)) NIL -(-352 R1 F1 U1 A1 R2 F2 U2 A2) +(-354 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-353 R -3078 UP A |ibasis|) +(-355 R -3088 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -945) (|devaluate| |#2|)))) -(-354 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|)))) +(-356 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-355 S R) +(-357 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-309)))) -(-356 R) +((|HasCategory| |#2| (QUOTE (-311)))) +(-358 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3975 |has| |#1| (-491)) (-3973 . T) (-3972 . T)) +((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T)) NIL -(-357 R) +(-359 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-358 S R) +(-360 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-408))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-550 (-469))))) -(-359 R) +((|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) +(-361 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3975 OR (|has| |#1| (-956)) (|has| |#1| (-408))) (-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) ((-3980 "*") |has| |#1| (-491)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-491)) (-3970 |has| |#1| (-491))) +((-3986 OR (|has| |#1| (-961)) (|has| |#1| (-410))) (-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) ((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-494)) (-3981 |has| |#1| (-494))) NIL -(-360 R A S B) +(-362 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-361 R FE |x| |cen|) +(-363 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-362 R FE |Expon| UPS TRAN |x|) +(-364 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-363 A S) +(-365 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-315)))) -(-364 S) +((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317)))) +(-366 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3978 . T) (-3968 . T) (-3979 . T)) +((-3989 . T) (-3979 . T) (-3990 . T)) NIL -(-365 S A R B) +(-367 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-366 R -3078) +(-368 R -3088) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-367 R E) +(-369 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3965 -12 (|has| |#1| (-6 -3965)) (|has| |#2| (-6 -3965))) (-3972 . T) (-3973 . T) (-3975 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3965)) (|HasAttribute| |#2| (QUOTE -3965)))) -(-368 R -3078) +((-3976 -12 (|has| |#1| (-6 -3976)) (|has| |#2| (-6 -3976))) (-3983 . T) (-3984 . T) (-3986 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#2| (QUOTE -3976)))) +(-370 R -3088) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-369 R -3078) +(-371 R -3088) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-370 R -3078) +(-372 R -3088) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-371 R -3078) +(-373 R -3088) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-372) +(-374) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-373 R -3078 UP) +(-375 R -3088 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-945 (-48))))) -(-374) +((|HasCategory| |#2| (QUOTE (-950 (-48))))) +(-376) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-375 |f|) +(-377 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-376) +(-378) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-377 UP) +(-379 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-378 R UP -3078) +(-380 R UP -3088) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-379 R UP) +(-381 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-380 R) +(-382 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-342)))) -(-381) +((|HasCategory| |#1| (QUOTE (-344)))) +(-383) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-382 |Dom| |Expon| |VarSet| |Dpol|) +(-384 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-309)))) -(-383 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-311)))) +(-385 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-384 |Dom| |Expon| |VarSet| |Dpol|) +(-386 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-385 |Dom| |Expon| |VarSet| |Dpol|) +(-387 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-386 S) +(-388 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-387) +(-389) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-388 R |n| |ls| |gamma|) +(-390 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3975 |has| (-345 (-852 |#1|)) (-491)) (-3973 . T) (-3972 . T)) -((|HasCategory| (-345 (-852 |#1|)) (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| (-345 (-852 |#1|)) (QUOTE (-491)))) -(-389 |vl| R E) +((-3986 |has| (-347 (-857 |#1|)) (-494)) (-3984 . T) (-3983 . T)) +((|HasCategory| (-347 (-857 |#1|)) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-347 (-857 |#1|)) (QUOTE (-494)))) +(-391 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3980 "*") |has| |#2| (-144)) (-3971 |has| |#2| (-491)) (-3976 |has| |#2| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-491)))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-469))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-390 R BP) +(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-392 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-391 OV E S R P) +(-393 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-392 E OV R P) +(-394 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-393 R) +(-395 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-394 R FE) +(-396 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-395 RP TP) +(-397 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-396 |vl| R IS E |ff| P) +(-398 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-397 E V R P Q) +(-399 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-398 R E |VarSet| P) +(-400 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-399 S R E) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-401 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-400 R E) +(-402 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-401) +(-403) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-402) +(-404) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-403) +(-405) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-404 S R E) +(-406 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-405 R E) +(-407 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-406 |lv| -3078 R) +(-408 |lv| -3088 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-407 S) +(-409 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-408) +(-410) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3975 . T)) +((-3986 . T)) NIL -(-409 |Coef| |var| |cen|) +(-411 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|)))) (|HasCategory| (-345 (-480)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-410 |Key| |Entry| |Tbl| |dent|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-412 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) -(-411 R E V P) +((-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) +(-413 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-412) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-414) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-413) +(-415) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-414 |Key| |Entry| |hashfn|) +(-416 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-415) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-417) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-416 |vl| R) +(-418 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3980 "*") |has| |#2| (-144)) (-3971 |has| |#2| (-491)) (-3976 |has| |#2| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-491)))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-469))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-417 -2607 S) +(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-419 -2617 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3972 |has| |#2| (-956)) (-3973 |has| |#2| (-956)) (-3975 |has| |#2| (-6 -3975)) (-3978 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-309))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (OR (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751)))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-315))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasAttribute| |#2| (QUOTE -3975)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) -(-418) +((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) +(-420) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-419 S) +(-421 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-420 -3078 UP UPUP R) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-422 -3088 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-421 BP) +(-423 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-422) +(-424) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-480) (QUOTE (-816))) (|HasCategory| (-480) (QUOTE (-945 (-1081)))) (|HasCategory| (-480) (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-118))) (|HasCategory| (-480) (QUOTE (-550 (-469)))) (|HasCategory| (-480) (QUOTE (-928))) (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751))) (OR (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751)))) (|HasCategory| (-480) (QUOTE (-945 (-480)))) (|HasCategory| (-480) (QUOTE (-1057))) (|HasCategory| (-480) (QUOTE (-791 (-325)))) (|HasCategory| (-480) (QUOTE (-791 (-480)))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-480) (QUOTE (-187))) (|HasCategory| (-480) (QUOTE (-806 (-1081)))) (|HasCategory| (-480) (QUOTE (-188))) (|HasCategory| (-480) (QUOTE (-804 (-1081)))) (|HasCategory| (-480) (QUOTE (-449 (-1081) (-480)))) (|HasCategory| (-480) (QUOTE (-257 (-480)))) (|HasCategory| (-480) (QUOTE (-239 (-480) (-480)))) (|HasCategory| (-480) (QUOTE (-255))) (|HasCategory| (-480) (QUOTE (-479))) (|HasCategory| (-480) (QUOTE (-577 (-480)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (|HasCategory| (-480) (QUOTE (-116))))) -(-423 A S) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118))))) +(-425 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#1| (QUOTE -3979)) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) -(-424 S) +((|HasAttribute| |#1| (QUOTE -3989)) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) +(-426 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-425 S) +(-427 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-426) +(-428) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-427 S) +(-429 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-428) +(-430) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-429 -3078 UP |AlExt| |AlPol|) +(-431 -3088 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-430) +(-432) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| $ (QUOTE (-956))) (|HasCategory| $ (QUOTE (-945 (-480))))) -(-431 S |mn|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483))))) +(-433 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-432 R |mnRow| |mnCol|) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-434 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-433 K R UP) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-435 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-434 R UP -3078) +(-436 R UP -3088) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-435 |mn|) +(-437 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| (-83) (QUOTE (-257 (-83)))) (|HasCategory| (-83) (QUOTE (-1007)))) (|HasCategory| (-83) (QUOTE (-550 (-469)))) (|HasCategory| (-83) (QUOTE (-751))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| (-83) (QUOTE (-1007))) (|HasCategory| (-83) (QUOTE (-549 (-767)))) (|HasCategory| (-83) (QUOTE (-72)))) -(-436 K R UP L) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-553 (-472)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72)))) +(-438 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-437) +(-439) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-438 R Q A B) +(-440 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-439 -3078 |Expon| |VarSet| |DPoly|) +(-441 -3088 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-550 (-1081))))) -(-440 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-553 (-1088))))) +(-442 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-441) +(-443 T$) +((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3052 (|f| |x| |x|) |x|))) . T)) +NIL +(-444) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-442 A S) +(-445 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-443 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-446 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-444 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-447 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-445 A S) +(-448 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-446 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-449 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-447 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-450 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) -(-448 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) +(-451 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-449 A B) +(-452 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-450 S E |un|) +(-453 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-711)))) -(-451 S |mn|) +((|HasCategory| |#2| (QUOTE (-716)))) +(-454 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-452) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-455) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-453 |p| |n|) +(-456 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((OR (|HasCategory| (-513 |#1|) (QUOTE (-116))) (|HasCategory| (-513 |#1|) (QUOTE (-315)))) (|HasCategory| (-513 |#1|) (QUOTE (-118))) (|HasCategory| (-513 |#1|) (QUOTE (-315))) (|HasCategory| (-513 |#1|) (QUOTE (-116)))) -(-454 R |mnRow| |mnCol| |Row| |Col|) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((OR (|HasCategory| (-516 |#1|) (QUOTE (-118))) (|HasCategory| (-516 |#1|) (QUOTE (-317)))) (|HasCategory| (-516 |#1|) (QUOTE (-120))) (|HasCategory| (-516 |#1|) (QUOTE (-317))) (|HasCategory| (-516 |#1|) (QUOTE (-118)))) +(-457 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-455 R |Row| |Col| M) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-458 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -3979))) -(-456 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3990))) +(-459 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -3979))) -(-457 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -3990))) +(-460 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-491))) (|HasAttribute| |#1| (QUOTE (-3980 "*"))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-72)))) -(-458) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72)))) +(-461) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-459) +(-462) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-460 S) +(-463 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-461) +(-464) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-462 GF) +(-465 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-463) +(-466) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-464 R) +(-467 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-465 |Varset|) +(-468 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| (-689) (QUOTE (-1007))))) -(-466 K -3078 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-694) (QUOTE (-1012))))) +(-469 K -3088 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-467) +(-470) NIL NIL NIL -(-468) +(-471) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-469) +(-472) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-470 R) +(-473 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-471 |Coef| UTS) +(-474 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-472 K -3078 |Par|) +(-475 K -3088 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-473 R BP |pMod| |nextMod|) +(-476 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-474 OV E R P) +(-477 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-475 K UP |Coef| UTS) +(-478 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-476 |Coef| UTS) +(-479 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-477 R UP) +(-480 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-478 S) +(-481 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-479) +(-482) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3976 . T) (-3977 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-480) +(-483) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3966 . T) (-3970 . T) (-3965 . T) (-3976 . T) (-3977 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-481) +(-484) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-482) +(-485) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-483) +(-486) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-484) +(-487) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-485 |Key| |Entry| |addDom|) +(-488 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-486 R -3078) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-489 R -3088) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-487 R0 -3078 UP UPUP R) +(-490 R0 -3088 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-488) +(-491) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-489 R) +(-492 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3753 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3764 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-490 S) +(-493 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-491) +(-494) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-492 R -3078) +(-495 R -3088) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-493 I) +(-496 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-494 R -3078 L) +(-497 R -3088 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -597) (|devaluate| |#2|)))) -(-495) +((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) +(-498) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-496 -3078 UP UPUP R) +(-499 -3088 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-497 -3078 UP) +(-500 -3088 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-498 R -3078 L) +(-501 R -3088 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -597) (|devaluate| |#2|)))) -(-499 R -3078) +((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) +(-502 R -3088) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-566))))) -(-500 -3078 UP) +((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-569))))) +(-503 -3088 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-501 S) +(-504 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-502 -3078) +(-505 -3088) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-503 R) +(-506 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3753 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3764 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-504) +(-507) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-505 R -3078) +(-508 R -3088) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-945 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-491)))) -(-506 -3078 UP) +((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-494)))) +(-509 -3088 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-507 R -3078) +(-510 R -3088) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-508) +(-511) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-509) +(-512) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-510) +(-513) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-511) +(-514) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-512 |p| |unBalanced?|) +(-515 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-513 |p|) +(-516 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-315)))) -(-514) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317)))) +(-517) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-515 -3078) +(-518 -3088) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-945 (-1081))))) -(-516 E -3078) +((-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-950 (-1088))))) +(-519 E -3088) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-517 R -3078) +(-520 R -3088) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-518) +(-521) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-519 I) +(-522 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-520 GF) +(-523 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-521 R) +(-524 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-118)))) -(-522) +((|HasCategory| |#1| (QUOTE (-120)))) +(-525) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-523 R E V P TS) +(-526 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-524) +(-527) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-525 E V R P) +(-528 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-526 |Coef|) +(-529 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))) (|HasCategory| (-480) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480)))))) -(-527 |Coef|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (|HasCategory| (-483) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483)))))) +(-530 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3980 "*") |has| |#1| (-491)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-491)))) -(-528) +(((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-494)))) +(-531) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-529 A B) +(-532 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-530 A B C) +(-533 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-531 R -3078 FG) +(-534 R -3088 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-532 S) +(-535 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-533 R |mn|) +(-536 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#1| (QUOTE (-956))) (-12 (|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-534 S |Index| |Entry|) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-537 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -3979)) (|HasCategory| |#2| (QUOTE (-751))) (|HasAttribute| |#1| (QUOTE -3978)) (|HasCategory| |#3| (QUOTE (-1007)))) -(-535 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-756))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#3| (QUOTE (-1012)))) +(-538 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-536) +(-539) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-537 R A) +(-540 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3975 OR (-2548 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) (-3973 . T) (-3972 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|)))) -(-538) +((-3986 OR (-2558 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) (-3984 . T) (-3983 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) +(-541) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-539) +(-542) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-540) +(-543) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-541) +(-544) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-542) +(-545) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-543) +(-546) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-544 |Entry|) +(-547 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (QUOTE (|:| -3843 (-1064))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| (-1064) (QUOTE (-751))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-545 S |Key| |Entry|) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3854 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-548 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-546 |Key| |Entry|) +(-549 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-3979 . T)) +((-3990 . T)) NIL -(-547 S) +(-550 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#1| (QUOTE (-550 (-795 (-480)))))) -(-548 R S) +((|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483)))))) +(-551 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-549 S) +(-552 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-550 S) +(-553 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-551 -3078 UP) +(-554 -3088 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-552 S) +(-555 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-553) +(-556) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-554 S) +(-557 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-555 A R S) +(-558 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-750)))) -(-556 S R) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-755)))) +(-559 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-557 R) +(-560 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3975 . T)) +((-3986 . T)) NIL -(-558 R -3078) +(-561 R -3088) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-559 R UP) +(-562 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3973 . T) (-3972 . T) ((-3980 "*") . T) (-3971 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) -(-560 R E V P TS ST) +((-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3982 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) +(-563 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-561 OV E Z P) +(-564 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-562) +(-565) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-563 |VarSet| R |Order|) +(-566 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3975 . T)) +((-3986 . T)) NIL -(-564 R |ls|) +(-567 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-565 R -3078) +(-568 R -3088) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-566) +(-569) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-567 |lv| -3078) +(-570 |lv| -3088) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-568) +(-571) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-1007)))) (OR (|HasCategory| (-51) (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-1007)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-549 (-767)))) (|HasCategory| (-51) (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-550 (-469)))) (-12 (|HasCategory| (-51) (QUOTE (-257 (-51)))) (|HasCategory| (-51) (QUOTE (-1007)))) (|HasCategory| (-1064) (QUOTE (-751))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1007))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (QUOTE (-1007)))) -(-569 R A) +((-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-553 (-472)))) (-12 (|HasCategory| (-51) (QUOTE (-259 (-51)))) (|HasCategory| (-51) (QUOTE (-1012)))) (|HasCategory| (-1071) (QUOTE (-756))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) +(-572 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3975 OR (-2548 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) (-3973 . T) (-3972 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#2| (|%list| (QUOTE -356) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -313) (|devaluate| |#1|)))) -(-570 S R) +((-3986 OR (-2558 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) (-3984 . T) (-3983 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) +(-573 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-309)))) -(-571 R) +((|HasCategory| |#2| (QUOTE (-311)))) +(-574 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3973 . T) (-3972 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T)) NIL -(-572 R FE) +(-575 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-573 R) +(-576 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-574 |vars|) +(-577 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-575 S R) +(-578 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2546 (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-309)))) -(-576 K B) +((-2556 (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-311)))) +(-579 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3973 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| (-574 |#2|) (QUOTE (-1007))))) -(-577 R) +((-3984 . T) (-3983 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-577 |#2|) (QUOTE (-1012))))) +(-580 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-578 K B) +(-581 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-579 S) +(-582 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-580 S) +(-583 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-581 A B) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-584 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-582 A B) +(-585 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-583 A B C) +(-586 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-584 T$) +(-587 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-585 S) +(-588 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-586 S) +(-589 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-587 R) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-590 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-588 S E |un|) +(-591 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-589 A S) +(-592 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -3979))) -(-590 S) +((|HasAttribute| |#1| (QUOTE -3990))) +(-593 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-591 M R S) +(-594 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-709)))) -(-592 R -3078 L) +((-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-714)))) +(-595 R -3088 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-593 A -2478) +(-596 A -2488) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-309)))) -(-594 A) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) +(-597 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-309)))) -(-595 A M) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) +(-598 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-309)))) -(-596 S A) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) +(-599 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-309)))) -(-597 A) +((|HasCategory| |#2| (QUOTE (-311)))) +(-600 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-598 -3078 UP) +(-601 -3088 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-599 A L) +(-602 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-600 S) +(-603 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-601) +(-604) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-602 R) +(-605 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-603 |VarSet| R) +(-606 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3973 . T) (-3972 . T)) -((|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-144)))) -(-604 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T)) +((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-146)))) +(-607 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-605 S) +(-608 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-606 -3078 |Row| |Col| M) +(-609 -3088 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-607 -3078) +(-610 -3088) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-608 R E OV P) +(-611 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-609 |n| R) +(-612 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3975 . T) (-3978 . T) (-3972 . T) (-3973 . T)) -((|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3980 #1="*"))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-491))) (OR (|HasAttribute| |#2| (QUOTE (-3980 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) -(-610) +((-3986 . T) (-3989 . T) (-3983 . T) (-3984 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3991 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-494))) (OR (|HasAttribute| |#2| (QUOTE (-3991 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-613) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-611 |VarSet|) +(-614 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-612 A S) +(-615 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-613 S) +(-616 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-614) +(-617) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-615 |VarSet|) +(-618 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-616 A) +(-619 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-617 A C) +(-620 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-618 A B C) +(-621 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-619) +(-622) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-620 A) +(-623 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-621 A C) +(-624 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-622 A B C) +(-625 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-623 S R |Row| |Col|) +(-626 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-3980 "*"))) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-491)))) -(-624 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3991 "*"))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-494)))) +(-627 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-625 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-626 R |Row| |Col| M) +(-629 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-491)))) -(-627 R) +((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494)))) +(-630 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3978 . T) (-3979 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-255))) (|HasCategory| |#1| (QUOTE (-491))) (|HasAttribute| |#1| (QUOTE (-3980 "*"))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-628 R) +((-3989 . T) (-3990 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-631 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-629 T$) +(-632 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-630 R Q) +(-633 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-631 S) +(-634 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-3979 . T)) +((-3990 . T)) NIL -(-632 U) +(-635 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-633) +(-636) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-634 OV E -3078 PG) +(-637 OV E -3088 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-635 R) +(-638 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-636 S D1 D2 I) +(-639 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-637 S) +(-640 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-638 S) +(-641 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-639 S T$) +(-642 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-640 S -2655 I) +(-643 S -2665 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-641 E OV R P) +(-644 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-642 R) +(-645 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-643 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-646 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-644) +(-647) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-645 R |Mod| -2025 -3501 |exactQuo|) +(-648 R |Mod| -2033 -3512 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-646 R P) +(-649 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3974 |has| |#1| (-309)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-988) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-988) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-988) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-647 IS E |ff|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-650 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-648 R M) +(-651 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) -(-649 R |Mod| -2025 -3501 |exactQuo|) +((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-652 R |Mod| -2033 -3512 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3975 . T)) +((-3986 . T)) NIL -(-650 S R) +(-653 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-651 R) +(-654 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-652 -3078) +(-655 -3088) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3975 . T)) +((-3986 . T)) NIL -(-653 S) +(-656 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-654) +(-657) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-655 S) +(-658 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-656) +(-659) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-657 S R UP) +(-660 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315)))) -(-658 R UP) +((|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317)))) +(-661 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3971 |has| |#1| (-309)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 |has| |#1| (-311)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-659 S) +(-662 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-660) +(-663) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-661 -3078 UP) +(-664 T$) +((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +NIL +(-665 T$) +((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +NIL +(-666 -3088 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-662 |VarSet| E1 E2 R S PR PS) +(-667 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-663 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-664 E OV R PPR) +(-669 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-665 |vl| R) +(-670 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3980 "*") |has| |#2| (-144)) (-3971 |has| |#2| (-491)) (-3976 |has| |#2| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-491)))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| (-768 |#1|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| (-768 |#1|) (QUOTE (-550 (-469))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-666 E OV R PRF) +(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-671 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-667 E OV R P) +(-672 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-668 R S M) +(-673 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-669 R M) +(-674 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) (-3975 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-751)))) -(-670 S) +((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756)))) +(-675 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3978 . T) (-3968 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-671 S) +((-3989 . T) (-3979 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-676 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3968 . T) (-3979 . T)) +((-3979 . T) (-3990 . T)) NIL -(-672) +(-677) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-673 S) +(-678 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-674 |Coef| |Var|) +(-679 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3973 . T) (-3972 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-675 OV E R P) +(-680 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-676 E OV R P) +(-681 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-677 S R) +(-682 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-678 R) +(-683 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-679 S) +(-684 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-680) +(-685) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-681 S) +(-686 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-682) +(-687) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-683 |Par|) +(-688 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-684 -3078) +(-689 -3088) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-685 P -3078) +(-690 P -3088) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-686 T$) +(-691 T$) NIL NIL NIL -(-687 UP -3078) +(-692 UP -3088) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-688 R) +(-693 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-689) +(-694) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3980 "*") . T)) +(((-3991 "*") . T)) NIL -(-690 R -3078) +(-695 R -3088) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-691) +(-696) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-692 S) +(-697 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-693 R |PolR| E |PolE|) +(-698 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-694 R E V P TS) +(-699 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-695 -3078 |ExtF| |SUEx| |ExtP| |n|) +(-700 -3088 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-696 BP E OV R P) +(-701 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-697 |Par|) +(-702 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-698 R |VarSet|) +(-703 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#2| (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-550 (-1081))))) (|HasCategory| |#2| (QUOTE (-550 (-1081)))) (|HasCategory| |#1| (QUOTE (-309))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-1081))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-480)))) (|HasCategory| |#2| (QUOTE (-550 (-1081)))) (-2546 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-1081)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-550 (-1081)))) (-2546 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) (-2546 (|HasCategory| |#1| (QUOTE (-38 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-480)))) (|HasCategory| |#2| (QUOTE (-550 (-1081)))) (-2546 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) (-2546 (|HasCategory| |#1| (QUOTE (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-1081)))) (-2546 (|HasCategory| |#1| (QUOTE (-899 (-480))))))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-699 R) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-2556 (|HasCategory| |#1| (QUOTE (-482))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-904 (-483))))))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-704 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3974 |has| |#1| (-309)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-988) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-988) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-988) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-700 R S) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-705 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-701 R) +(-706 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) -(-702 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) +(-707 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-703 S) +(-708 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-751)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-144)))) -(-704) +((-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146)))) +(-709) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-705) +(-710) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-706) +(-711) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-707 |Curve|) +(-712 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-708 S) +(-713 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-709) +(-714) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-710 S) +(-715 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-711) +(-716) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-712) +(-717) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-713) +(-718) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-714 S R) +(-719 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-315)))) -(-715 R) +((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317)))) +(-720 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-716) +(-721) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-717 R) +(-722 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -239) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-904 |#1|) (QUOTE (-945 (-345 (-480)))))) (OR (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| (-904 |#1|) (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-904 |#1|) (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-904 |#1|) (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) -(-718 OR R OS S) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-347 (-483)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) +(-723 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-719 R -3078 L) +(-724 R -3088 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-720 R -3078) +(-725 R -3088) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-721 R -3078) +(-726 R -3088) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-722 -3078 UP UPUP R) +(-727 -3088 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-723 -3078 UP L LQ) +(-728 -3088 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-724 -3078 UP L LQ) +(-729 -3088 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-725 -3078 UP) +(-730 -3088 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-726 -3078 L UP A LO) +(-731 -3088 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-727 -3078 UP) +(-732 -3088 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-728 -3078 LO) +(-733 -3088 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-729 -3078 LODO) +(-734 -3088 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-730 -2607 S |f|) +(-735 -2617 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3972 |has| |#2| (-956)) (-3973 |has| |#2| (-956)) (-3975 |has| |#2| (-6 -3975)) (-3978 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-309))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (OR (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751)))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-315))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-1007)))) (|HasAttribute| |#2| (QUOTE -3975)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-956)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-956)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) -(-731 R) +((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) +(-736 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-733 (-1081)) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-733 (-1081)) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-733 (-1081)) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-733 (-1081)) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-733 (-1081)) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-732 |Kernels| R |var|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-738 (-1088)) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-738 (-1088)) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-737 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3980 "*") |has| |#2| (-309)) (-3971 |has| |#2| (-309)) (-3976 |has| |#2| (-309)) (-3970 |has| |#2| (-309)) (-3975 . T) (-3973 . T) (-3972 . T)) -((|HasCategory| |#2| (QUOTE (-309)))) -(-733 S) +(((-3991 "*") |has| |#2| (-311)) (-3982 |has| |#2| (-311)) (-3987 |has| |#2| (-311)) (-3981 |has| |#2| (-311)) (-3986 . T) (-3984 . T) (-3983 . T)) +((|HasCategory| |#2| (QUOTE (-311)))) +(-738 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-734 S) +(-739 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-751)))) -(-735) +((|HasCategory| |#1| (QUOTE (-756)))) +(-740) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-736 P R) +(-741 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-188)))) -(-737 S) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) +(-742 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3978 . T) (-3968 . T) (-3979 . T)) +((-3989 . T) (-3979 . T) (-3990 . T)) NIL -(-738 R) +(-743 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3975 |has| |#1| (-750))) -((|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-750)))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-479)))) -(-739 R S) +((-3986 |has| |#1| (-755))) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-482)))) +(-744 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-740 R) +(-745 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) -(-741 A S) +((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-746 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-742 S) +(-747 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-743) +(-748) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-744) +(-749) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-745 R) +(-750 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3975 |has| |#1| (-750))) -((|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-750)))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-479)))) -(-746 R S) +((-3986 |has| |#1| (-755))) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-482)))) +(-751 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-747) +(-752) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-748 -2607 S) +(-753 -2617 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-749) +(-754) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-750) +(-755) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3975 . T)) +((-3986 . T)) NIL -(-751) +(-756) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-752 T$ |f|) +(-757 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-549 (-767))))) -(-753 S) +((|HasCategory| |#1| (QUOTE (-552 (-772))))) +(-758 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-754) +(-759) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-755 S R) +(-760 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144)))) -(-756 R) +((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146)))) +(-761 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-757 R C) +(-762 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) -(-758 R |sigma| -3229) +((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) +(-763 R |sigma| -3239) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-309)))) -(-759 |x| R |sigma| -3229) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) +(-764 |x| R |sigma| -3239) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-309)))) -(-760 R) +((-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-311)))) +(-765 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) -(-761) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) +(-766) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-762) +(-767) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-763) +(-768) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-764 S) +(-769 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-765) +(-770) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-766) +(-771) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-767) +(-772) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-768 |VariableList|) +(-773 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-769) +(-774) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-770 R |vl| |wl| |wtlevel|) +(-775 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309)))) -(-771 R PS UP) +((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) +(-776 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-772 R |x| |pt|) +(-777 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-773 |p|) +(-778 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-774 |p|) +(-779 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-775 |p|) +(-780 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-773 |#1|) (QUOTE (-816))) (|HasCategory| (-773 |#1|) (QUOTE (-945 (-1081)))) (|HasCategory| (-773 |#1|) (QUOTE (-116))) (|HasCategory| (-773 |#1|) (QUOTE (-118))) (|HasCategory| (-773 |#1|) (QUOTE (-550 (-469)))) (|HasCategory| (-773 |#1|) (QUOTE (-928))) (|HasCategory| (-773 |#1|) (QUOTE (-735))) (|HasCategory| (-773 |#1|) (QUOTE (-751))) (OR (|HasCategory| (-773 |#1|) (QUOTE (-735))) (|HasCategory| (-773 |#1|) (QUOTE (-751)))) (|HasCategory| (-773 |#1|) (QUOTE (-945 (-480)))) (|HasCategory| (-773 |#1|) (QUOTE (-1057))) (|HasCategory| (-773 |#1|) (QUOTE (-791 (-325)))) (|HasCategory| (-773 |#1|) (QUOTE (-791 (-480)))) (|HasCategory| (-773 |#1|) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-773 |#1|) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-773 |#1|) (QUOTE (-577 (-480)))) (|HasCategory| (-773 |#1|) (QUOTE (-187))) (|HasCategory| (-773 |#1|) (QUOTE (-806 (-1081)))) (|HasCategory| (-773 |#1|) (QUOTE (-188))) (|HasCategory| (-773 |#1|) (QUOTE (-804 (-1081)))) (|HasCategory| (-773 |#1|) (|%list| (QUOTE -449) (QUOTE (-1081)) (|%list| (QUOTE -773) (|devaluate| |#1|)))) (|HasCategory| (-773 |#1|) (|%list| (QUOTE -257) (|%list| (QUOTE -773) (|devaluate| |#1|)))) (|HasCategory| (-773 |#1|) (|%list| (QUOTE -239) (|%list| (QUOTE -773) (|devaluate| |#1|)) (|%list| (QUOTE -773) (|devaluate| |#1|)))) (|HasCategory| (-773 |#1|) (QUOTE (-255))) (|HasCategory| (-773 |#1|) (QUOTE (-479))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-773 |#1|) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-773 |#1|) (QUOTE (-816)))) (|HasCategory| (-773 |#1|) (QUOTE (-116))))) -(-776 |p| PADIC) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1088)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-472)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-1064))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-327)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1088)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1088)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-257))) (|HasCategory| (-778 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))))) +(-781 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-945 (-1081)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-751))) (OR (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-751)))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -239) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-479))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-777 S T$) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-482))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-782 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-1007))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767)))))) -(-778) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))) +(-783) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-779) +(-784) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-780) +(-785) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-781 CF1 CF2) +(-786 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-782 |ComponentFunction|) +(-787 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-783 CF1 CF2) +(-788 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-784 |ComponentFunction|) +(-789 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-785) +(-790) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-786 CF1 CF2) +(-791 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-787 |ComponentFunction|) +(-792 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-788) +(-793) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-789 R) +(-794 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-790 R S L) +(-795 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-791 S) +(-796 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-792 |Base| |Subject| |Pat|) +(-797 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2546 (|HasCategory| |#2| (QUOTE (-945 (-1081))))) (-2546 (|HasCategory| |#2| (QUOTE (-956))))) (-12 (|HasCategory| |#2| (QUOTE (-956))) (-2546 (|HasCategory| |#2| (QUOTE (-945 (-1081)))))) (|HasCategory| |#2| (QUOTE (-945 (-1081))))) -(-793 R S) +((-12 (-2556 (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-2556 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2556 (|HasCategory| |#2| (QUOTE (-950 (-1088)))))) (|HasCategory| |#2| (QUOTE (-950 (-1088))))) +(-798 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-794 R A B) +(-799 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-795 R) +(-800 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-796 R -2655) +(-801 R -2665) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-797 R S) +(-802 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-798 |VarSet|) +(-803 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-799 UP R) +(-804 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-800 A T$ S) +(-805 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-801 T$ S) +(-806 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-802 UP -3078) +(-807 UP -3088) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-803 R S) +(-808 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-804 S) +(-809 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3975 . T)) +((-3986 . T)) NIL -(-805 A S) +(-810 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-806 S) +(-811 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-807 S) +(-812 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-808 S) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-813 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-751)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-751)))) -(-809 |n| R) +((-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-756)))) +(-814 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-810 S) +(-815 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3975 . T)) +((-3986 . T)) NIL -(-811 S) +(-816 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-812 |p|) +(-817 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-315)))) -(-813 R E |VarSet| S) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317)))) +(-818 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-814 R S) +(-819 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-815 S) +(-820 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-116)))) -(-816) +((|HasCategory| |#1| (QUOTE (-118)))) +(-821) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-817 R0 -3078 UP UPUP R) +(-822 R0 -3088 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-818 UP UPUP R) +(-823 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-819 UP UPUP) +(-824 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-820 R) +(-825 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-821 R) +(-826 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-822 E OV R P) +(-827 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-823) +(-828) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-824 -3078) +(-829 -3088) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-825) +(-830) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3980 "*") . T)) +(((-3991 "*") . T)) NIL -(-826 R) +(-831 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-827) +(-832) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-828 |xx| -3078) +(-833 |xx| -3088) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-829 -3078 P) +(-834 -3088 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-830 R |Var| |Expon| GR) +(-835 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-831) +(-836) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-832 S) +(-837 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-833) +(-838) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-834) +(-839) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-835) +(-840) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-836 R -3078) +(-841 R -3088) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-837 S A B) +(-842 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-838 S R -3078) +(-843 S R -3088) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-839 I) +(-844 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-840 S E) +(-845 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-841 S R L) +(-846 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-842 S E V R P) +(-847 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -791) (|devaluate| |#1|)))) -(-843 -2655) +((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|)))) +(-848 -2665) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-844 R -3078 -2655) +(-849 R -3088 -2665) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-845 S R Q) +(-850 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 S) +(-851 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-847 S R P) +(-852 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-848) +(-853) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-849 R) +(-854 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#1| (QUOTE (-956))) (-12 (|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-850 |lv| R) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-855 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-851 |TheField| |ThePols|) +(-856 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-750)))) -(-852 R) +((|HasCategory| |#1| (QUOTE (-755)))) +(-857 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-1081) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-1081) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-1081) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-1081) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-1081) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-853 R S) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-1088) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-1088) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-1088) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-1088) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-1088) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-858 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-854 |x| R) +(-859 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-855 S R E |VarSet|) +(-860 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-816))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-791 (-325)))) (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| |#4| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| |#4| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#4| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-550 (-469))))) -(-856 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| |#4| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) +(-861 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-857 E V R P -3078) +(-862 E V R P -3088) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-858 E |Vars| R P S) +(-863 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-859 E V R P -3078) +(-864 E V R P -3088) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-387)))) -(-860) +((|HasCategory| |#3| (QUOTE (-389)))) +(-865) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-861) +(-866) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-862 R E) +(-867 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3976))) -(-863 R L) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3987))) +(-868 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-864 S) +(-869 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-865 A B) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-870 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-866) +(-871) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-867 -3078) +(-872 -3088) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-868 I) +(-873 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-869) +(-874) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-870 A B) +(-875 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3975 -12 (|has| |#2| (-408)) (|has| |#1| (-408)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-751))))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#2| (QUOTE (-408)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#2| (QUOTE (-408)))) (-12 (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-660))))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-315)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-408))) (|HasCategory| |#2| (QUOTE (-408)))) (-12 (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-660))))) (-12 (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-660)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-751))))) -(-871) +((-3986 -12 (|has| |#2| (-410)) (|has| |#1| (-410)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) +(-876) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-872 T$) +(-877 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-873 T$) +(-878 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-874 S T$) +(-879 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-875) +(-880) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-876 S) +(-881 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-877 R |polR|) +(-882 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-387)))) -(-878) +((|HasCategory| |#1| (QUOTE (-389)))) +(-883) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-879) +(-884) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-880 S |Coef| |Expon| |Var|) +(-885 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-881 |Coef| |Expon| |Var|) +(-886 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-882) +(-887) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-883 S R E |VarSet| P) +(-888 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-491)))) -(-884 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-494)))) +(-889 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3978 . T)) +((-3989 . T)) NIL -(-885 R E V P) +(-890 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-255)))) (|HasCategory| |#1| (QUOTE (-387)))) -(-886 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-389)))) +(-891 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-887 |VarSet| E RC P) +(-892 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-888 R) +(-893 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-889 R1 R2) +(-894 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-890 R) +(-895 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-891 K) +(-896 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-892 R E OV PPR) +(-897 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-893 K R UP -3078) +(-898 K R UP -3088) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-894 R |Var| |Expon| |Dpoly|) +(-899 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-255))))) -(-895 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257))))) +(-900 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-896 R E V P TS) +(-901 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-897) +(-902) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-898 A S) +(-903 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-945 (-1081)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-1057)))) -(-899 S) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-950 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1064)))) +(-904 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-900 A B R S) +(-905 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-901 |n| K) +(-906 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-902) +(-907) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-903 S) +(-908 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-904 R) +(-909 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3971 |has| |#1| (-243)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-243))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-243))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -239) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-479)))) -(-905 S R) +((-3982 |has| |#1| (-245)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482)))) +(-910 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-243)))) -(-906 R) +((|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-245)))) +(-911 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3971 |has| |#1| (-243)) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 |has| |#1| (-245)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-907 QR R QS S) +(-912 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-908 S) +(-913 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-909 S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-914 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-910) +(-915) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-911 -3078 UP UPUP |radicnd| |n|) +(-916 -3088 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3971 |has| (-345 |#2|) (-309)) (-3976 |has| (-345 |#2|) (-309)) (-3970 |has| (-345 |#2|) (-309)) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-345 |#2|) (QUOTE (-116))) (|HasCategory| (-345 |#2|) (QUOTE (-118))) (|HasCategory| (-345 |#2|) (QUOTE (-296))) (OR (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-315))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-187))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (|HasCategory| (-345 |#2|) (QUOTE (-296)))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-296))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081)))))) (OR (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-806 (-1081)))))) (|HasCategory| (-345 |#2|) (QUOTE (-577 (-480)))) (OR (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-345 (-480)))))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-345 |#2|) (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-315))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-187))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-188))) (|HasCategory| (-345 |#2|) (QUOTE (-309)))) (-12 (|HasCategory| (-345 |#2|) (QUOTE (-309))) (|HasCategory| (-345 |#2|) (QUOTE (-804 (-1081)))))) -(-912 |bb|) +((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088)))))) (|HasCategory| (-347 |#2|) (QUOTE (-580 (-483)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) +(-917 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-480) (QUOTE (-816))) (|HasCategory| (-480) (QUOTE (-945 (-1081)))) (|HasCategory| (-480) (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-118))) (|HasCategory| (-480) (QUOTE (-550 (-469)))) (|HasCategory| (-480) (QUOTE (-928))) (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751))) (OR (|HasCategory| (-480) (QUOTE (-735))) (|HasCategory| (-480) (QUOTE (-751)))) (|HasCategory| (-480) (QUOTE (-945 (-480)))) (|HasCategory| (-480) (QUOTE (-1057))) (|HasCategory| (-480) (QUOTE (-791 (-325)))) (|HasCategory| (-480) (QUOTE (-791 (-480)))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-480) (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-480) (QUOTE (-187))) (|HasCategory| (-480) (QUOTE (-806 (-1081)))) (|HasCategory| (-480) (QUOTE (-188))) (|HasCategory| (-480) (QUOTE (-804 (-1081)))) (|HasCategory| (-480) (QUOTE (-449 (-1081) (-480)))) (|HasCategory| (-480) (QUOTE (-257 (-480)))) (|HasCategory| (-480) (QUOTE (-239 (-480) (-480)))) (|HasCategory| (-480) (QUOTE (-255))) (|HasCategory| (-480) (QUOTE (-479))) (|HasCategory| (-480) (QUOTE (-577 (-480)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-480) (QUOTE (-816)))) (|HasCategory| (-480) (QUOTE (-116))))) -(-913) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118))))) +(-918) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-914) +(-919) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-915 RP) +(-920 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-916 S) +(-921 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-917 A S) +(-922 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -3979)) (|HasCategory| |#2| (QUOTE (-1007)))) -(-918 S) +((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-1012)))) +(-923 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-919 S) +(-924 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-920) +(-925) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3971 . T) (-3976 . T) (-3970 . T) (-3973 . T) (-3972 . T) ((-3980 "*") . T) (-3975 . T)) +((-3982 . T) (-3987 . T) (-3981 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3986 . T)) NIL -(-921 R -3078) +(-926 R -3088) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-922 R -3078) +(-927 R -3088) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-923 -3078 UP) +(-928 -3088 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-924 -3078 UP) +(-929 -3088 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-925 S) +(-930 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-926 F1 UP UPUP R F2) +(-931 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-927) +(-932) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-928) +(-933) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-929 |Pol|) +(-934 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-930 |Pol|) +(-935 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-931) +(-936) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-932 |TheField|) +(-937 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3971 . T) (-3976 . T) (-3970 . T) (-3973 . T) (-3972 . T) ((-3980 "*") . T) (-3975 . T)) -((OR (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| (-345 (-480)) (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| (-345 (-480)) (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-345 (-480)) (QUOTE (-945 (-480))))) -(-933 -3078 L) +((-3982 . T) (-3987 . T) (-3981 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3986 . T)) +((OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-483))))) +(-938 -3088 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-934 S) +(-939 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-935 R E V P) +(-940 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-936) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-941) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-937 R) +(-942 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3980 "*")))) -(-938 R) +((|HasAttribute| |#1| (QUOTE (-3991 "*")))) +(-943 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-255)))) -(-939 S) +((-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257)))) +(-944 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-940 S) +(-945 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-941 S) +(-946 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-942 -3078 |Expon| |VarSet| |FPol| |LFPol|) +(-947 -3088 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-943) +(-948) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-944 A S) +(-949 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-945 S) +(-950 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-946 Q R) +(-951 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-947 R) +(-952 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-948) +(-953) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-949 UP) +(-954 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-950 R) +(-955 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-951 T$) +(-956 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-952 T$) +(-957 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-953 R |ls|) +(-958 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| (-698 |#1| (-768 |#2|)) (QUOTE (-1007))) (|HasCategory| (-698 |#1| (-768 |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -698) (|devaluate| |#1|) (|%list| (QUOTE -768) (|devaluate| |#2|)))))) (|HasCategory| (-698 |#1| (-768 |#2|)) (QUOTE (-550 (-469)))) (|HasCategory| (-698 |#1| (-768 |#2|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| (-768 |#2|) (QUOTE (-315))) (|HasCategory| (-698 |#1| (-768 |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-698 |#1| (-768 |#2|)) (QUOTE (-72)))) -(-954) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1012))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-472)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-773 |#2|) (QUOTE (-317))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72)))) +(-959) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-955 S) +(-960 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-956) +(-961) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3975 . T)) +((-3986 . T)) NIL -(-957 |xx| -3078) +(-962 |xx| -3088) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-958 S) +(-963 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-959 S |m| |n| R |Row| |Col|) +(-964 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-255))) (|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-491))) (|HasCategory| |#4| (QUOTE (-144)))) -(-960 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-257))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-146)))) +(-965 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-3978 . T) (-3973 . T) (-3972 . T)) +((-3989 . T) (-3984 . T) (-3983 . T)) NIL -(-961 |m| |n| R) +(-966 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3978 . T) (-3973 . T) (-3972 . T)) -((|HasCategory| |#3| (QUOTE (-144))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-309)))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (QUOTE (-255))) (|HasCategory| |#3| (QUOTE (-491))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-549 (-767))))) -(-962 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3989 . T) (-3984 . T) (-3983 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (QUOTE (-257))) (|HasCategory| |#3| (QUOTE (-494))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772))))) +(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-963 R) +(-968 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-964) +(-969) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-965 S T$) +(-970 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1007)))) -(-966 S) +((|HasCategory| |#1| (QUOTE (-1012)))) +(-971 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-967) +(-972) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-968 |TheField| |ThePolDom|) +(-973 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-969) +(-974) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3966 . T) (-3970 . T) (-3965 . T) (-3976 . T) (-3977 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-970 S R E V) +(-975 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-38 (-480)))) (|HasCategory| |#2| (QUOTE (-899 (-480)))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#4| (QUOTE (-550 (-1081))))) -(-971 R E V) +((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-904 (-483)))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-553 (-1088))))) +(-976 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-972) +(-977) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-973 S |TheField| |ThePols|) +(-978 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-974 |TheField| |ThePols|) +(-979 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-975 R E V P TS) +(-980 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-976 S R E V P) +(-981 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-977 R E V P) +(-982 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-978 R E V P TS) +(-983 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-979) +(-984) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-980) +(-985) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-981 |Base| R -3078) +(-986 |Base| R -3088) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-982 |f|) +(-987 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-983 |Base| R -3078) +(-988 |Base| R -3088) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-984 R |ls|) +(-989 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-985 R UP M) +(-990 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3971 |has| |#1| (-309)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-296))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-315))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-296)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-296)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-296)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-309)))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-309)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))))) -(-986 UP SAE UPA) +((-3982 |has| |#1| (-311)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))))) +(-991 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-987 UP SAE UPA) +(-992 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-988) +(-993) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-989) +(-994) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-990 S) +(-995 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-991) +(-996) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-992 R) +(-997 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-993 R) +(-998 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-994 (-1081)) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-994 (-1081)) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-994 (-1081)) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-994 (-1081)) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-994 (-1081)) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-994 S) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-999 (-1088)) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-999 (-1088)) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-999 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-995 S) +(-1000 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1007)))) -(-996 R S) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) +(-1001 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-750)))) -(-997) +((|HasCategory| |#1| (QUOTE (-755)))) +(-1002) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-998 S) +(-1003 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-995 |#1|) (QUOTE (-1007)))) -(-999 R S) +((|HasCategory| (-1000 |#1|) (QUOTE (-1012)))) +(-1004 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1000 S) +(-1005 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1001 S L) +(-1006 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1002) +(-1007) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1003 S) +(-1008 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3978 . T) (-3968 . T) (-3979 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-1004 A S) +((-3989 . T) (-3979 . T) (-3990 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-1009 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1005 S) +(-1010 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3968 . T)) +((-3979 . T)) NIL -(-1006 S) +(-1011 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1007) +(-1012) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1008 |m| |n|) +(-1013 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1009) +(-1014) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1010 |Str| |Sym| |Int| |Flt| |Expr|) +(-1015 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1011 |Str| |Sym| |Int| |Flt| |Expr|) +(-1016 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1012 R E V P TS) +(-1017 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1013 R E V P TS) +(-1018 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1014 R E V P) +(-1019 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-1015) +(-1020) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1016 S) +(-1021 T$) +((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +NIL +(-1022 T$) +((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +NIL +(-1023 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1017) +(-1024) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1018 |dimtot| |dim1| S) +(-1025 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3972 |has| |#3| (-956)) (-3973 |has| |#3| (-956)) (-3975 |has| |#3| (-6 -3975)) (-3978 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-549 (-767)))) (|HasCategory| |#3| (QUOTE (-309))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-309)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-712))) (OR (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-751)))) (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-315))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-956))))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (QUOTE (-1007)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956))) (|HasCategory| |#3| (QUOTE (-1007)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-956))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-806 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-804 (-1081))))) (|HasCategory| |#3| (QUOTE (-1007))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-345 (-480)))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-1007))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-751))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (-12 (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-660))) (|HasCategory| |#3| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-956))))) (|HasCategory| (-480) (QUOTE (-751))) (-12 (|HasCategory| |#3| (QUOTE (-577 (-480)))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-806 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-480)))) (|HasCategory| |#3| (QUOTE (-1007)))) (-12 (|HasCategory| |#3| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#3| (QUOTE (-1007)))) (|HasAttribute| |#3| (QUOTE -3975)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-956)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1081)))) (|HasCategory| |#3| (QUOTE (-956)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1007))) (|HasCategory| |#3| (|%list| (QUOTE -257) (|devaluate| |#3|))))) -(-1019 R |x|) +((-3983 |has| |#3| (-961)) (-3984 |has| |#3| (-961)) (-3986 |has| |#3| (-6 -3986)) (-3989 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasAttribute| |#3| (QUOTE -3986)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) +(-1026 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-387)))) -(-1020) +((|HasCategory| |#1| (QUOTE (-389)))) +(-1027) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1021) +(-1028) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1022 R -3078) +(-1029 R -3088) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1023 R) +(-1030 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1024) +(-1031) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1025) +(-1032) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3966 . T) (-3970 . T) (-3965 . T) (-3976 . T) (-3977 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1026 S) +(-1033 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3978 . T) (-3979 . T)) +((-3989 . T) (-3990 . T)) NIL -(-1027 S |ndim| R |Row| |Col|) +(-1034 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-309))) (|HasAttribute| |#3| (QUOTE (-3980 "*"))) (|HasCategory| |#3| (QUOTE (-144)))) -(-1028 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-311))) (|HasAttribute| |#3| (QUOTE (-3991 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1035 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3978 . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3989 . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1029 R |Row| |Col| M) +(-1036 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1030 R |VarSet|) +(-1037 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| |#2| (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| |#2| (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1031 |Coef| |Var| SMP) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1038 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-309)))) -(-1032 R E V P) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311)))) +(-1039 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-1033 UP -3078) +(-1040 UP -3088) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1034 R) +(-1041 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1035 R) +(-1042 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1036 R) +(-1043 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1037 S A) +(-1044 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-751)))) -(-1038 R) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1045 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1039 R) +(-1046 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1040) +(-1047) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1041) +(-1048) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1042) +(-1049) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1043) +(-1050) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1044) +(-1051) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1045 V C) +(-1052 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1046 V C) +(-1053 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-1045 |#1| |#2|) (|%list| (QUOTE -257) (|%list| (QUOTE -1045) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-1007)))) (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-1007))) (OR (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-1007)))) (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-549 (-767)))) (|HasCategory| (-1045 |#1| |#2|) (QUOTE (-72)))) -(-1047 |ndim| R) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-1052 |#1| |#2|) (|%list| (QUOTE -259) (|%list| (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012))) (OR (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72)))) +(-1054 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3975 . T) (-3967 |has| |#2| (-6 (-3980 "*"))) (-3978 . T) (-3972 . T) (-3973 . T)) -((|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3980 #1="*"))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| |#2| (QUOTE (-255))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-309))) (OR (|HasAttribute| |#2| (QUOTE (-3980 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) -(-1048 S) +((-3986 . T) (-3978 |has| |#2| (-6 (-3991 "*"))) (-3989 . T) (-3983 . T) (-3984 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3991 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasAttribute| |#2| (QUOTE (-3991 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1055 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1049) +(-1056) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-1050 R E V P TS) +(-1057 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1051 R E V P) +(-1058 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1052) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1059) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1053 S) +(-1060 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1054 A S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1061 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1055 S) +(-1062 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1056 |Key| |Ent| |dent|) +(-1063 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) -(-1057) +((-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) +(-1064) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1058) +(-1065) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1059 |Coef|) +(-1066 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1060 S) +(-1067 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-3979 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1061 S) +((-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1068 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1062 A B) +(-1069 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1063 A B C) +(-1070 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1064) +(-1071) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-751)))) (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-1007))))) (|HasCategory| (-115) (QUOTE (-549 (-767)))) (|HasCategory| (-115) (QUOTE (-550 (-469)))) (OR (|HasCategory| (-115) (QUOTE (-751))) (|HasCategory| (-115) (QUOTE (-1007)))) (|HasCategory| (-115) (QUOTE (-751))) (OR (|HasCategory| (-115) (QUOTE (-72))) (|HasCategory| (-115) (QUOTE (-751))) (|HasCategory| (-115) (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| (-115) (QUOTE (-1007))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-257 (-115)))) (|HasCategory| (-115) (QUOTE (-1007))))) -(-1065 |Entry|) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-472)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) +(-1072 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (QUOTE (|:| -3843 (-1064))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007)))) (OR (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-1007))) (|HasCategory| (-1064) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-1066 A) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3854 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-1073 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) -(-1067 |Coef|) +((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) +(-1074 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1068 |Coef|) +(-1075 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1069 R UP) +(-1076 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-255)))) -(-1070 |n| R) +((|HasCategory| |#1| (QUOTE (-257)))) +(-1077 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1071 S1 S2) +(-1078 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1072) +(-1079) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1073 |Coef| |var| |cen|) +(-1080 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3980 "*") OR (-2548 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-735))) (|has| |#1| (-144)) (-2548 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-816)))) (-3971 OR (-2548 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-735))) (|has| |#1| (-491)) (-2548 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-816)))) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|))))) (|HasCategory| (-480) (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-309))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-945 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-550 (-469))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-928)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-735)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-751))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (|%list| (QUOTE -239) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (|%list| (QUOTE -257) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (|%list| (QUOTE -449) (QUOTE (-1081)) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-791 (-325))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-255)))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-751)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1074 R -3078) +(((-3991 "*") OR (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-821)))) (-3982 OR (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-740))) (|has| |#1| (-494)) (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1081 R -3088) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1075 R) +(-1082 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1076 R) +(-1083 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3974 |has| |#1| (-309)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-325)))) (|HasCategory| (-988) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#1| (QUOTE (-791 (-480)))) (|HasCategory| (-988) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-550 (-469)))) (|HasCategory| (-988) (QUOTE (-550 (-469))))) (|HasCategory| |#1| (QUOTE (-577 (-480)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-816)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (|HasCategory| |#1| (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-806 (-1081)))) (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1077 R S) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1084 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1078 E OV R P) +(-1085 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1079 |Coef| |var| |cen|) +(-1086 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|)))) (|HasCategory| (-345 (-480)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-1080 |Coef| |var| |cen|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-1087 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-689)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-689)) (|devaluate| |#1|)))) (|HasCategory| (-689) (QUOTE (-1017))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-689))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-689))))) (|HasCategory| |#1| (QUOTE (-309))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-1081) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-1088) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1082 R) +(-1089 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1083 R) +(-1090 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-6 -3976)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#1| (QUOTE (-945 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-945 (-480)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-387))) (-12 (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| (-879) (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3976))) -(-1084) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3987))) +(-1091) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1085) +(-1092) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1086) +(-1093) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1087 N) +(-1094 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1088 N) +(-1095 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1089) +(-1096) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1090 R) +(-1097 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1091) +(-1098) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1092 S) +(-1099 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1093 |Key| |Entry|) +(-1100 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3978 . T) (-3979 . T)) -((-12 (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -257) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3843) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007)))) (OR (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| |#2| (QUOTE (-549 (-767))))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-550 (-469)))) (-12 (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#2| (QUOTE (-1007))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-767)))) (|HasCategory| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-1094 S) +((-3989 . T) (-3990 . T)) +((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-1101 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1095 S) +(-1102 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1096 R) +(-1103 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1097 S |Key| |Entry|) +(-1104 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1098 |Key| |Entry|) +(-1105 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-3979 . T)) +((-3990 . T)) NIL -(-1099 |Key| |Entry|) +(-1106 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1100) +(-1107) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1101 S) +(-1108 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1102) +(-1109) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1103 R) +(-1110 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1104) +(-1111) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1105 S) +(-1112 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1106) +(-1113) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1107 S) +(-1114 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1007))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1108 S) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1115 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1109) +(-1116) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1110 R -3078) +(-1117 R -3088) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1111 R |Row| |Col| M) +(-1118 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1112 R -3078) +(-1119 R -3088) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -550) (|%list| (QUOTE -795) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -791) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -550) (|%list| (QUOTE -795) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -791) (|devaluate| |#1|))))) -(-1113 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|))))) +(-1120 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-309)))) -(-1114 S R E V P) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311)))) +(-1121 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-315)))) -(-1115 R E V P) +((|HasCategory| |#4| (QUOTE (-317)))) +(-1122 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-1116 |Curve|) +(-1123 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1117) +(-1124) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1118 S) +(-1125 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-549 (-767))))) -(-1119 -3078) +((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) +(-1126 -3088) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1120) +(-1127) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1121) +(-1128) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1122 S) +(-1129 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-751)))) -(-1123) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1130) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1124 S) +(-1131 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1125) +(-1132) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1126) +(-1133) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1127) +(-1134) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1128) +(-1135) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1129) +(-1136) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1130 |Coef| |var| |cen|) +(-1137 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3980 "*") OR (-2548 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-735))) (|has| |#1| (-144)) (-2548 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-816)))) (-3971 OR (-2548 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-735))) (|has| |#1| (-491)) (-2548 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-816)))) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|))))) (|HasCategory| (-480) (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-309))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-945 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-550 (-469))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-928)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-735)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-751))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-945 (-480))))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (|%list| (QUOTE -239) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (|%list| (QUOTE -257) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (|%list| (QUOTE -449) (QUOTE (-1081)) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-791 (-325))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-255)))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-735)))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-735)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-751)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1131 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3991 "*") OR (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-821)))) (-3982 OR (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-740))) (|has| |#1| (-494)) (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1138 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1132 |Coef|) +(-1139 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1133 S |Coef| UTS) +(-1140 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-309)))) -(-1134 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-311)))) +(-1141 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1135 |Coef| UTS) +(-1142 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-116))))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-804 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-188))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-187))))) (|HasCategory| (-480) (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-309))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-550 (-469))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-928)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-735)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-751))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-945 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -239) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -257) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (|%list| (QUOTE -449) (QUOTE (-1081)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-577 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-791 (-325))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-480))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-751)))) (|HasCategory| |#2| (QUOTE (-816))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-255)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-116))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-187))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-480)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-806 (-1081))))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-116)))))) -(-1136 ZP) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-120))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1143 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1137 S) +(-1144 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1007)))) -(-1138 R S) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) +(-1145 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-750)))) -(-1139 |x| R) +((|HasCategory| |#1| (QUOTE (-755)))) +(-1146 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3980 "*") |has| |#2| (-144)) (-3971 |has| |#2| (-491)) (-3974 |has| |#2| (-309)) (-3976 |has| |#2| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-491)))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-325)))) (|HasCategory| (-988) (QUOTE (-791 (-325))))) (-12 (|HasCategory| |#2| (QUOTE (-791 (-480)))) (|HasCategory| (-988) (QUOTE (-791 (-480))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-325))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-325)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-795 (-480))))) (|HasCategory| (-988) (QUOTE (-550 (-795 (-480)))))) (-12 (|HasCategory| |#2| (QUOTE (-550 (-469)))) (|HasCategory| (-988) (QUOTE (-550 (-469))))) (|HasCategory| |#2| (QUOTE (-577 (-480)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-480)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480)))))) (|HasCategory| |#2| (QUOTE (-945 (-345 (-480))))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-816)))) (OR (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-806 (-1081)))) (|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-387))) (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-1140 |x| R |y| S) +(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3985 |has| |#2| (-311)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1147 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1141 R Q UP) +(-1148 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1142 R UP) +(-1149 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1143 R UP) +(-1150 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1144 R U) +(-1151 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1145 S R) +(-1152 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-387))) (|HasCategory| |#2| (QUOTE (-491))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1057)))) -(-1146 R) +((|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1064)))) +(-1153 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3974 |has| |#1| (-309)) (-3976 |has| |#1| (-6 -3976)) (-3973 . T) (-3972 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-1147 R PR S PS) +(-1154 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1148 S |Coef| |Expon|) +(-1155 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-804 (-1081)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1017))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#2|) (QUOTE (-1081)))))) -(-1149 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1024))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#2|) (QUOTE (-1088)))))) +(-1156 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1150 RC P) +(-1157 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1151 |Coef| |var| |cen|) +(-1158 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|)))) (|HasCategory| (-345 (-480)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-1152 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-1159 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1153 |Coef|) +(-1160 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1154 S |Coef| ULS) +(-1161 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1155 |Coef| ULS) +(-1162 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1156 |Coef| ULS) +(-1163 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3976 |has| |#1| (-309)) (-3970 |has| |#1| (-309)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480))) (|devaluate| |#1|)))) (|HasCategory| (-345 (-480)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-309))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (OR (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-491)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -345) (QUOTE (-480)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-345 (-480)))))) -(-1157 R FE |var| |cen|) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) +(-1164 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3980 "*") |has| (-1151 |#2| |#3| |#4|) (-144)) (-3971 |has| (-1151 |#2| |#3| |#4|) (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-38 (-345 (-480))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-144))) (OR (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-38 (-345 (-480))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-945 (-345 (-480)))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-945 (-345 (-480))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-945 (-480)))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-309))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-387))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-491)))) -(-1158 A S) +(((-3991 "*") |has| (-1158 |#2| |#3| |#4|) (-146)) (-3982 |has| (-1158 |#2| |#3| |#4|) (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-483)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-389))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-494)))) +(-1165 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -3979))) -(-1159 S) +((|HasAttribute| |#1| (QUOTE -3990))) +(-1166 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1160 |Coef| |var| |cen|) +(-1167 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-491))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-491)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-804 (-1081)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-689)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-689)) (|devaluate| |#1|)))) (|HasCategory| (-689) (QUOTE (-1017))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-689))))) (|HasSignature| |#1| (|%list| (QUOTE -3929) (|%list| (|devaluate| |#1|) (QUOTE (-1081)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-689))))) (|HasCategory| |#1| (QUOTE (-309))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#1| (QUOTE (-29 (-480)))) (|HasCategory| |#1| (QUOTE (-866))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-345 (-480))))) (|HasSignature| |#1| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1081))))) (|HasSignature| |#1| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#1|))))))) -(-1161 |Coef1| |Coef2| UTS1 UTS2) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(-1168 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1162 S |Coef|) +(-1169 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-480)))) (|HasCategory| |#2| (QUOTE (-866))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasSignature| |#2| (|%list| (QUOTE -3067) (|%list| (|%list| (QUOTE -580) (QUOTE (-1081))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3795) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1081))))) (|HasCategory| |#2| (QUOTE (-38 (-345 (-480))))) (|HasCategory| |#2| (QUOTE (-309)))) -(-1163 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-483)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1088))))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311)))) +(-1170 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3980 "*") |has| |#1| (-144)) (-3971 |has| |#1| (-491)) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1164 |Coef| UTS) +(-1171 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1165 -3078 UP L UTS) +(-1172 -3088 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-491)))) -(-1166) +((|HasCategory| |#1| (QUOTE (-494)))) +(-1173) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1167 |sym|) +(-1174 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1168 S R) +(-1175 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-660))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1169 R) +((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1176 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3979 . T) (-3978 . T)) +((-3990 . T) (-3989 . T)) NIL -(-1170 R) +(-1177 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3979 . T) (-3978 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-767)))) (|HasCategory| |#1| (QUOTE (-550 (-469)))) (OR (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| |#1| (QUOTE (-751))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007)))) (|HasCategory| (-480) (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-660))) (|HasCategory| |#1| (QUOTE (-956))) (-12 (|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-956)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (|%list| (QUOTE -257) (|devaluate| |#1|))))) -(-1171 A B) +((-3990 . T) (-3989 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +(-1178 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1172) +(-1179) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1173) +(-1180) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1174) +(-1181) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1175) +(-1182) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1176) +(-1183) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1177 A S) +(-1184 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1178 S) +(-1185 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3973 . T) (-3972 . T)) +((-3984 . T) (-3983 . T)) NIL -(-1179 R) +(-1186 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1180 K R UP -3078) +(-1187 K R UP -3088) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1181) +(-1188) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1182) +(-1189) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1183 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1190 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3973 |has| |#1| (-144)) (-3972 |has| |#1| (-144)) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309)))) -(-1184 R E V P) +((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) +(-1191 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3979 . T) (-3978 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#4| (|%list| (QUOTE -257) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-550 (-469)))) (|HasCategory| |#4| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-491))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-549 (-767)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1185 R) +((-3990 . T) (-3989 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1192 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3972 . T) (-3973 . T) (-3975 . T)) +((-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1186 |vl| R) +(-1193 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3975 . T) (-3971 |has| |#2| (-6 -3971)) (-3973 . T) (-3972 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3971))) -(-1187 R |VarSet| XPOLY) +((-3986 . T) (-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3982))) +(-1194 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1188 S -3078) +(-1195 S -3088) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118)))) -(-1189 -3078) +((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) +(-1196 -3088) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3970 . T) (-3976 . T) (-3971 . T) ((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL -(-1190 |vl| R) +(-1197 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3971 |has| |#2| (-6 -3971)) (-3973 . T) (-3972 . T) (-3975 . T)) +((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-1191 |VarSet| R) +(-1198 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3971 |has| |#2| (-6 -3971)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-651 (-345 (-480))))) (|HasAttribute| |#2| (QUOTE -3971))) -(-1192 R) +((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-347 (-483))))) (|HasAttribute| |#2| (QUOTE -3982))) +(-1199 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3971 |has| |#1| (-6 -3971)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasAttribute| |#1| (QUOTE -3971))) -(-1193 |vl| R) +((-3982 |has| |#1| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3982))) +(-1200 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3971 |has| |#2| (-6 -3971)) (-3973 . T) (-3972 . T) (-3975 . T)) +((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T)) NIL -(-1194 R E) +(-1201 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3975 . T) (-3976 |has| |#1| (-6 -3976)) (-3971 |has| |#1| (-6 -3971)) (-3973 . T) (-3972 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-309))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#1| (QUOTE -3971))) -(-1195 |VarSet| R) +((-3986 . T) (-3987 |has| |#1| (-6 -3987)) (-3982 |has| |#1| (-6 -3982)) (-3984 . T) (-3983 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3986)) (|HasAttribute| |#1| (QUOTE -3987)) (|HasAttribute| |#1| (QUOTE -3982))) +(-1202 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3971 |has| |#2| (-6 -3971)) (-3973 . T) (-3972 . T) (-3975 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3971))) -(-1196) +((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3982))) +(-1203) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1197 A) +(-1204 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1198 R |ls| |ls2|) +(-1205 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1199 R) +(-1206 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1200 |p|) +(-1207 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3980 "*") . T) (-3972 . T) (-3973 . T) (-3975 . T)) +(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T)) NIL NIL NIL @@ -4748,4 +4776,4 @@ NIL NIL NIL NIL -((-3 NIL 1962874 1962879 1962884 1962889) (-2 NIL 1962854 1962859 1962864 1962869) (-1 NIL 1962834 1962839 1962844 1962849) (0 NIL 1962814 1962819 1962824 1962829) (-1200 "ZMOD.spad" 1962623 1962636 1962752 1962809) (-1199 "ZLINDEP.spad" 1961721 1961732 1962613 1962618) (-1198 "ZDSOLVE.spad" 1951681 1951703 1961711 1961716) (-1197 "YSTREAM.spad" 1951176 1951187 1951671 1951676) (-1196 "YDIAGRAM.spad" 1950810 1950819 1951166 1951171) (-1195 "XRPOLY.spad" 1950030 1950050 1950666 1950735) (-1194 "XPR.spad" 1947825 1947838 1949748 1949847) (-1193 "XPOLYC.spad" 1947144 1947160 1947751 1947820) (-1192 "XPOLY.spad" 1946699 1946710 1947000 1947069) (-1191 "XPBWPOLY.spad" 1945170 1945190 1946505 1946574) (-1190 "XFALG.spad" 1942218 1942234 1945096 1945165) (-1189 "XF.spad" 1940681 1940696 1942120 1942213) (-1188 "XF.spad" 1939124 1939141 1940565 1940570) (-1187 "XEXPPKG.spad" 1938383 1938409 1939114 1939119) (-1186 "XDPOLY.spad" 1937997 1938013 1938239 1938308) (-1185 "XALG.spad" 1937665 1937676 1937953 1937992) (-1184 "WUTSET.spad" 1933668 1933685 1937299 1937326) (-1183 "WP.spad" 1932875 1932919 1933526 1933593) (-1182 "WHILEAST.spad" 1932673 1932682 1932865 1932870) (-1181 "WHEREAST.spad" 1932344 1932353 1932663 1932668) (-1180 "WFFINTBS.spad" 1930007 1930029 1932334 1932339) (-1179 "WEIER.spad" 1928229 1928240 1929997 1930002) (-1178 "VSPACE.spad" 1927902 1927913 1928197 1928224) (-1177 "VSPACE.spad" 1927595 1927608 1927892 1927897) (-1176 "VOID.spad" 1927272 1927281 1927585 1927590) (-1175 "VIEWDEF.spad" 1922473 1922482 1927262 1927267) (-1174 "VIEW3D.spad" 1906434 1906443 1922463 1922468) (-1173 "VIEW2D.spad" 1894333 1894342 1906424 1906429) (-1172 "VIEW.spad" 1892053 1892062 1894323 1894328) (-1171 "VECTOR2.spad" 1890692 1890705 1892043 1892048) (-1170 "VECTOR.spad" 1889411 1889422 1889662 1889689) (-1169 "VECTCAT.spad" 1887323 1887334 1889379 1889406) (-1168 "VECTCAT.spad" 1885044 1885057 1887102 1887107) (-1167 "VARIABLE.spad" 1884824 1884839 1885034 1885039) (-1166 "UTYPE.spad" 1884468 1884477 1884814 1884819) (-1165 "UTSODETL.spad" 1883763 1883787 1884424 1884429) (-1164 "UTSODE.spad" 1881979 1881999 1883753 1883758) (-1163 "UTSCAT.spad" 1879458 1879474 1881877 1881974) (-1162 "UTSCAT.spad" 1876605 1876623 1879026 1879031) (-1161 "UTS2.spad" 1876200 1876235 1876595 1876600) (-1160 "UTS.spad" 1871212 1871240 1874732 1874829) (-1159 "URAGG.spad" 1865933 1865944 1871202 1871207) (-1158 "URAGG.spad" 1860618 1860631 1865889 1865894) (-1157 "UPXSSING.spad" 1858386 1858412 1859822 1859955) (-1156 "UPXSCONS.spad" 1856204 1856224 1856577 1856726) (-1155 "UPXSCCA.spad" 1854775 1854795 1856050 1856199) (-1154 "UPXSCCA.spad" 1853488 1853510 1854765 1854770) (-1153 "UPXSCAT.spad" 1852077 1852093 1853334 1853483) (-1152 "UPXS2.spad" 1851620 1851673 1852067 1852072) (-1151 "UPXS.spad" 1848975 1849003 1849811 1849960) (-1150 "UPSQFREE.spad" 1847390 1847404 1848965 1848970) (-1149 "UPSCAT.spad" 1845185 1845209 1847288 1847385) (-1148 "UPSCAT.spad" 1842681 1842707 1844786 1844791) (-1147 "UPOLYC2.spad" 1842152 1842171 1842671 1842676) (-1146 "UPOLYC.spad" 1837232 1837243 1841994 1842147) (-1145 "UPOLYC.spad" 1832230 1832243 1836994 1836999) (-1144 "UPMP.spad" 1831162 1831175 1832220 1832225) (-1143 "UPDIVP.spad" 1830727 1830741 1831152 1831157) (-1142 "UPDECOMP.spad" 1828988 1829002 1830717 1830722) (-1141 "UPCDEN.spad" 1828205 1828221 1828978 1828983) (-1140 "UP2.spad" 1827569 1827590 1828195 1828200) (-1139 "UP.spad" 1825039 1825054 1825426 1825579) (-1138 "UNISEG2.spad" 1824536 1824549 1824995 1825000) (-1137 "UNISEG.spad" 1823889 1823900 1824455 1824460) (-1136 "UNIFACT.spad" 1822992 1823004 1823879 1823884) (-1135 "ULSCONS.spad" 1817035 1817055 1817405 1817554) (-1134 "ULSCCAT.spad" 1814772 1814792 1816881 1817030) (-1133 "ULSCCAT.spad" 1812617 1812639 1814728 1814733) (-1132 "ULSCAT.spad" 1810857 1810873 1812463 1812612) (-1131 "ULS2.spad" 1810371 1810424 1810847 1810852) (-1130 "ULS.spad" 1802637 1802665 1803582 1804005) (-1129 "UINT8.spad" 1802514 1802523 1802627 1802632) (-1128 "UINT64.spad" 1802390 1802399 1802504 1802509) (-1127 "UINT32.spad" 1802266 1802275 1802380 1802385) (-1126 "UINT16.spad" 1802142 1802151 1802256 1802261) (-1125 "UFD.spad" 1801207 1801216 1802068 1802137) (-1124 "UFD.spad" 1800334 1800345 1801197 1801202) (-1123 "UDVO.spad" 1799215 1799224 1800324 1800329) (-1122 "UDPO.spad" 1796796 1796807 1799171 1799176) (-1121 "TYPEAST.spad" 1796715 1796724 1796786 1796791) (-1120 "TYPE.spad" 1796647 1796656 1796705 1796710) (-1119 "TWOFACT.spad" 1795299 1795314 1796637 1796642) (-1118 "TUPLE.spad" 1794806 1794817 1795211 1795216) (-1117 "TUBETOOL.spad" 1791673 1791682 1794796 1794801) (-1116 "TUBE.spad" 1790320 1790337 1791663 1791668) (-1115 "TSETCAT.spad" 1778391 1778408 1790288 1790315) (-1114 "TSETCAT.spad" 1766448 1766467 1778347 1778352) (-1113 "TS.spad" 1765076 1765092 1766042 1766139) (-1112 "TRMANIP.spad" 1759440 1759457 1764764 1764769) (-1111 "TRIMAT.spad" 1758403 1758428 1759430 1759435) (-1110 "TRIGMNIP.spad" 1756930 1756947 1758393 1758398) (-1109 "TRIGCAT.spad" 1756442 1756451 1756920 1756925) (-1108 "TRIGCAT.spad" 1755952 1755963 1756432 1756437) (-1107 "TREE.spad" 1754592 1754603 1755624 1755651) (-1106 "TRANFUN.spad" 1754431 1754440 1754582 1754587) (-1105 "TRANFUN.spad" 1754268 1754279 1754421 1754426) (-1104 "TOPSP.spad" 1753942 1753951 1754258 1754263) (-1103 "TOOLSIGN.spad" 1753605 1753616 1753932 1753937) (-1102 "TEXTFILE.spad" 1752166 1752175 1753595 1753600) (-1101 "TEX1.spad" 1751722 1751733 1752156 1752161) (-1100 "TEX.spad" 1748916 1748925 1751712 1751717) (-1099 "TBCMPPK.spad" 1747017 1747040 1748906 1748911) (-1098 "TBAGG.spad" 1746075 1746098 1746997 1747012) (-1097 "TBAGG.spad" 1745141 1745166 1746065 1746070) (-1096 "TANEXP.spad" 1744549 1744560 1745131 1745136) (-1095 "TALGOP.spad" 1744273 1744284 1744539 1744544) (-1094 "TABLEAU.spad" 1743754 1743765 1744263 1744268) (-1093 "TABLE.spad" 1742029 1742052 1742299 1742326) (-1092 "TABLBUMP.spad" 1738808 1738819 1742019 1742024) (-1091 "SYSTEM.spad" 1738036 1738045 1738798 1738803) (-1090 "SYSSOLP.spad" 1735519 1735530 1738026 1738031) (-1089 "SYSPTR.spad" 1735418 1735427 1735509 1735514) (-1088 "SYSNNI.spad" 1734641 1734652 1735408 1735413) (-1087 "SYSINT.spad" 1734045 1734056 1734631 1734636) (-1086 "SYNTAX.spad" 1730379 1730388 1734035 1734040) (-1085 "SYMTAB.spad" 1728447 1728456 1730369 1730374) (-1084 "SYMS.spad" 1724476 1724485 1728437 1728442) (-1083 "SYMPOLY.spad" 1723609 1723620 1723691 1723818) (-1082 "SYMFUNC.spad" 1723110 1723121 1723599 1723604) (-1081 "SYMBOL.spad" 1720605 1720614 1723100 1723105) (-1080 "SUTS.spad" 1717718 1717746 1719137 1719234) (-1079 "SUPXS.spad" 1715060 1715088 1715909 1716058) (-1078 "SUPFRACF.spad" 1714165 1714183 1715050 1715055) (-1077 "SUP2.spad" 1713557 1713570 1714155 1714160) (-1076 "SUP.spad" 1710641 1710652 1711414 1711567) (-1075 "SUMRF.spad" 1709615 1709626 1710631 1710636) (-1074 "SUMFS.spad" 1709244 1709261 1709605 1709610) (-1073 "SULS.spad" 1701497 1701525 1702455 1702878) (-1072 "syntax.spad" 1701266 1701275 1701487 1701492) (-1071 "SUCH.spad" 1700956 1700971 1701256 1701261) (-1070 "SUBSPACE.spad" 1693087 1693102 1700946 1700951) (-1069 "SUBRESP.spad" 1692257 1692271 1693043 1693048) (-1068 "STTFNC.spad" 1688725 1688741 1692247 1692252) (-1067 "STTF.spad" 1684824 1684840 1688715 1688720) (-1066 "STTAYLOR.spad" 1677501 1677512 1684731 1684736) (-1065 "STRTBL.spad" 1675888 1675905 1676037 1676064) (-1064 "STRING.spad" 1674756 1674765 1675141 1675168) (-1063 "STREAM3.spad" 1674329 1674344 1674746 1674751) (-1062 "STREAM2.spad" 1673457 1673470 1674319 1674324) (-1061 "STREAM1.spad" 1673163 1673174 1673447 1673452) (-1060 "STREAM.spad" 1670159 1670170 1672766 1672781) (-1059 "STINPROD.spad" 1669095 1669111 1670149 1670154) (-1058 "STEPAST.spad" 1668329 1668338 1669085 1669090) (-1057 "STEP.spad" 1667646 1667655 1668319 1668324) (-1056 "STBL.spad" 1666036 1666064 1666203 1666218) (-1055 "STAGG.spad" 1664735 1664746 1666026 1666031) (-1054 "STAGG.spad" 1663432 1663445 1664725 1664730) (-1053 "STACK.spad" 1662854 1662865 1663104 1663131) (-1052 "SRING.spad" 1662614 1662623 1662844 1662849) (-1051 "SREGSET.spad" 1660346 1660363 1662248 1662275) (-1050 "SRDCMPK.spad" 1658923 1658943 1660336 1660341) (-1049 "SRAGG.spad" 1654106 1654115 1658891 1658918) (-1048 "SRAGG.spad" 1649309 1649320 1654096 1654101) (-1047 "SQMATRIX.spad" 1646986 1647004 1647902 1647989) (-1046 "SPLTREE.spad" 1641728 1641741 1646524 1646551) (-1045 "SPLNODE.spad" 1638348 1638361 1641718 1641723) (-1044 "SPFCAT.spad" 1637157 1637166 1638338 1638343) (-1043 "SPECOUT.spad" 1635709 1635718 1637147 1637152) (-1042 "SPADXPT.spad" 1627800 1627809 1635699 1635704) (-1041 "spad-parser.spad" 1627265 1627274 1627790 1627795) (-1040 "SPADAST.spad" 1626966 1626975 1627255 1627260) (-1039 "SPACEC.spad" 1611181 1611192 1626956 1626961) (-1038 "SPACE3.spad" 1610957 1610968 1611171 1611176) (-1037 "SORTPAK.spad" 1610506 1610519 1610913 1610918) (-1036 "SOLVETRA.spad" 1608269 1608280 1610496 1610501) (-1035 "SOLVESER.spad" 1606725 1606736 1608259 1608264) (-1034 "SOLVERAD.spad" 1602751 1602762 1606715 1606720) (-1033 "SOLVEFOR.spad" 1601213 1601231 1602741 1602746) (-1032 "SNTSCAT.spad" 1600813 1600830 1601181 1601208) (-1031 "SMTS.spad" 1599130 1599156 1600407 1600504) (-1030 "SMP.spad" 1596938 1596958 1597328 1597455) (-1029 "SMITH.spad" 1595783 1595808 1596928 1596933) (-1028 "SMATCAT.spad" 1593901 1593931 1595727 1595778) (-1027 "SMATCAT.spad" 1591951 1591983 1593779 1593784) (-1026 "SKAGG.spad" 1590920 1590931 1591919 1591946) (-1025 "SINT.spad" 1590219 1590228 1590786 1590915) (-1024 "SIMPAN.spad" 1589947 1589956 1590209 1590214) (-1023 "SIGNRF.spad" 1589072 1589083 1589937 1589942) (-1022 "SIGNEF.spad" 1588358 1588375 1589062 1589067) (-1021 "syntax.spad" 1587775 1587784 1588348 1588353) (-1020 "SIG.spad" 1587137 1587146 1587765 1587770) (-1019 "SHP.spad" 1585081 1585096 1587093 1587098) (-1018 "SHDP.spad" 1574574 1574601 1575091 1575188) (-1017 "SGROUP.spad" 1574182 1574191 1574564 1574569) (-1016 "SGROUP.spad" 1573788 1573799 1574172 1574177) (-1015 "SGCF.spad" 1566927 1566936 1573778 1573783) (-1014 "SFRTCAT.spad" 1565873 1565890 1566895 1566922) (-1013 "SFRGCD.spad" 1564936 1564956 1565863 1565868) (-1012 "SFQCMPK.spad" 1559749 1559769 1564926 1564931) (-1011 "SEXOF.spad" 1559592 1559632 1559739 1559744) (-1010 "SEXCAT.spad" 1557420 1557460 1559582 1559587) (-1009 "SEX.spad" 1557312 1557321 1557410 1557415) (-1008 "SETMN.spad" 1555772 1555789 1557302 1557307) (-1007 "SETCAT.spad" 1555257 1555266 1555762 1555767) (-1006 "SETCAT.spad" 1554740 1554751 1555247 1555252) (-1005 "SETAGG.spad" 1551289 1551300 1554720 1554735) (-1004 "SETAGG.spad" 1547846 1547859 1551279 1551284) (-1003 "SET.spad" 1546155 1546166 1547252 1547291) (-1002 "syntax.spad" 1545858 1545867 1546145 1546150) (-1001 "SEGXCAT.spad" 1545014 1545027 1545848 1545853) (-1000 "SEGCAT.spad" 1543939 1543950 1545004 1545009) (-999 "SEGBIND2.spad" 1543638 1543650 1543929 1543934) (-998 "SEGBIND.spad" 1543398 1543408 1543586 1543591) (-997 "SEGAST.spad" 1543129 1543137 1543388 1543393) (-996 "SEG2.spad" 1542565 1542577 1543085 1543090) (-995 "SEG.spad" 1542379 1542389 1542484 1542489) (-994 "SDVAR.spad" 1541656 1541666 1542369 1542374) (-993 "SDPOL.spad" 1539354 1539364 1539644 1539771) (-992 "SCPKG.spad" 1537444 1537454 1539344 1539349) (-991 "SCOPE.spad" 1536622 1536630 1537434 1537439) (-990 "SCACHE.spad" 1535319 1535329 1536612 1536617) (-989 "SASTCAT.spad" 1535229 1535237 1535309 1535314) (-988 "SAOS.spad" 1535102 1535110 1535219 1535224) (-987 "SAERFFC.spad" 1534816 1534835 1535092 1535097) (-986 "SAEFACT.spad" 1534518 1534537 1534806 1534811) (-985 "SAE.spad" 1532169 1532184 1532779 1532914) (-984 "RURPK.spad" 1529829 1529844 1532159 1532164) (-983 "RULESET.spad" 1529283 1529306 1529819 1529824) (-982 "RULECOLD.spad" 1529136 1529148 1529273 1529278) (-981 "RULE.spad" 1527385 1527408 1529126 1529131) (-980 "RTVALUE.spad" 1527121 1527129 1527375 1527380) (-979 "syntax.spad" 1526839 1526847 1527111 1527116) (-978 "RSETGCD.spad" 1523282 1523301 1526829 1526834) (-977 "RSETCAT.spad" 1513251 1513267 1523250 1523277) (-976 "RSETCAT.spad" 1503240 1503258 1513241 1513246) (-975 "RSDCMPK.spad" 1501741 1501760 1503230 1503235) (-974 "RRCC.spad" 1500126 1500155 1501731 1501736) (-973 "RRCC.spad" 1498509 1498540 1500116 1500121) (-972 "RPTAST.spad" 1498212 1498220 1498499 1498504) (-971 "RPOLCAT.spad" 1477717 1477731 1498080 1498207) (-970 "RPOLCAT.spad" 1457015 1457031 1477380 1477385) (-969 "ROMAN.spad" 1456344 1456352 1456881 1457010) (-968 "ROIRC.spad" 1455425 1455456 1456334 1456339) (-967 "RNS.spad" 1454402 1454410 1455327 1455420) (-966 "RNS.spad" 1453465 1453475 1454392 1454397) (-965 "RNGBIND.spad" 1452626 1452639 1453420 1453425) (-964 "RNG.spad" 1452362 1452370 1452616 1452621) (-963 "RMODULE.spad" 1452144 1452154 1452352 1452357) (-962 "RMCAT2.spad" 1451565 1451621 1452134 1452139) (-961 "RMATRIX.spad" 1450375 1450393 1450717 1450756) (-960 "RMATCAT.spad" 1445955 1445985 1450331 1450370) (-959 "RMATCAT.spad" 1441425 1441457 1445803 1445808) (-958 "RLINSET.spad" 1441130 1441140 1441415 1441420) (-957 "RINTERP.spad" 1441019 1441038 1441120 1441125) (-956 "RING.spad" 1440490 1440498 1440999 1441014) (-955 "RING.spad" 1439969 1439979 1440480 1440485) (-954 "RIDIST.spad" 1439362 1439370 1439959 1439964) (-953 "RGCHAIN.spad" 1437917 1437932 1438810 1438837) (-952 "RGBCSPC.spad" 1437707 1437718 1437907 1437912) (-951 "RGBCMDL.spad" 1437270 1437281 1437697 1437702) (-950 "RFFACTOR.spad" 1436733 1436743 1437260 1437265) (-949 "RFFACT.spad" 1436469 1436480 1436723 1436728) (-948 "RFDIST.spad" 1435466 1435474 1436459 1436464) (-947 "RF.spad" 1433141 1433151 1435456 1435461) (-946 "RETSOL.spad" 1432561 1432573 1433131 1433136) (-945 "RETRACT.spad" 1431990 1432000 1432551 1432556) (-944 "RETRACT.spad" 1431417 1431429 1431980 1431985) (-943 "RETAST.spad" 1431230 1431238 1431407 1431412) (-942 "RESRING.spad" 1430578 1430624 1431168 1431225) (-941 "RESLATC.spad" 1429903 1429913 1430568 1430573) (-940 "REPSQ.spad" 1429635 1429645 1429893 1429898) (-939 "REPDB.spad" 1429343 1429353 1429625 1429630) (-938 "REP2.spad" 1419058 1419068 1429185 1429190) (-937 "REP1.spad" 1413279 1413289 1419008 1419013) (-936 "REP.spad" 1410834 1410842 1413269 1413274) (-935 "REGSET.spad" 1408660 1408676 1410468 1410495) (-934 "REF.spad" 1408179 1408189 1408650 1408655) (-933 "REDORDER.spad" 1407386 1407402 1408169 1408174) (-932 "RECLOS.spad" 1406283 1406302 1406986 1407079) (-931 "REALSOLV.spad" 1405424 1405432 1406273 1406278) (-930 "REAL0Q.spad" 1402723 1402737 1405414 1405419) (-929 "REAL0.spad" 1399568 1399582 1402713 1402718) (-928 "REAL.spad" 1399441 1399449 1399558 1399563) (-927 "RDUCEAST.spad" 1399163 1399171 1399431 1399436) (-926 "RDIV.spad" 1398819 1398843 1399153 1399158) (-925 "RDIST.spad" 1398387 1398397 1398809 1398814) (-924 "RDETRS.spad" 1397252 1397269 1398377 1398382) (-923 "RDETR.spad" 1395392 1395409 1397242 1397247) (-922 "RDEEFS.spad" 1394492 1394508 1395382 1395387) (-921 "RDEEF.spad" 1393503 1393519 1394482 1394487) (-920 "RCFIELD.spad" 1390722 1390730 1393405 1393498) (-919 "RCFIELD.spad" 1388027 1388037 1390712 1390717) (-918 "RCAGG.spad" 1385964 1385974 1388017 1388022) (-917 "RCAGG.spad" 1383828 1383840 1385883 1385888) (-916 "RATRET.spad" 1383189 1383199 1383818 1383823) (-915 "RATFACT.spad" 1382882 1382893 1383179 1383184) (-914 "RANDSRC.spad" 1382202 1382210 1382872 1382877) (-913 "RADUTIL.spad" 1381959 1381967 1382192 1382197) (-912 "RADIX.spad" 1379004 1379017 1380549 1380642) (-911 "RADFF.spad" 1376921 1376957 1377039 1377195) (-910 "RADCAT.spad" 1376517 1376525 1376911 1376916) (-909 "RADCAT.spad" 1376111 1376121 1376507 1376512) (-908 "QUEUE.spad" 1375525 1375535 1375783 1375810) (-907 "QUATCT2.spad" 1375146 1375164 1375515 1375520) (-906 "QUATCAT.spad" 1373317 1373327 1375076 1375141) (-905 "QUATCAT.spad" 1371253 1371265 1373014 1373019) (-904 "QUAT.spad" 1369860 1369870 1370202 1370267) (-903 "QUAGG.spad" 1368694 1368704 1369828 1369855) (-902 "QQUTAST.spad" 1368463 1368471 1368684 1368689) (-901 "QFORM.spad" 1368082 1368096 1368453 1368458) (-900 "QFCAT2.spad" 1367775 1367791 1368072 1368077) (-899 "QFCAT.spad" 1366478 1366488 1367677 1367770) (-898 "QFCAT.spad" 1364814 1364826 1366015 1366020) (-897 "QEQUAT.spad" 1364373 1364381 1364804 1364809) (-896 "QCMPACK.spad" 1359288 1359307 1364363 1364368) (-895 "QALGSET2.spad" 1357284 1357302 1359278 1359283) (-894 "QALGSET.spad" 1353389 1353421 1357198 1357203) (-893 "PWFFINTB.spad" 1350805 1350826 1353379 1353384) (-892 "PUSHVAR.spad" 1350144 1350163 1350795 1350800) (-891 "PTRANFN.spad" 1346280 1346290 1350134 1350139) (-890 "PTPACK.spad" 1343368 1343378 1346270 1346275) (-889 "PTFUNC2.spad" 1343191 1343205 1343358 1343363) (-888 "PTCAT.spad" 1342446 1342456 1343159 1343186) (-887 "PSQFR.spad" 1341761 1341785 1342436 1342441) (-886 "PSEUDLIN.spad" 1340647 1340657 1341751 1341756) (-885 "PSETPK.spad" 1327352 1327368 1340525 1340530) (-884 "PSETCAT.spad" 1321752 1321775 1327332 1327347) (-883 "PSETCAT.spad" 1316126 1316151 1321708 1321713) (-882 "PSCURVE.spad" 1315125 1315133 1316116 1316121) (-881 "PSCAT.spad" 1313908 1313937 1315023 1315120) (-880 "PSCAT.spad" 1312781 1312812 1313898 1313903) (-879 "PRTITION.spad" 1311479 1311487 1312771 1312776) (-878 "PRTDAST.spad" 1311198 1311206 1311469 1311474) (-877 "PRS.spad" 1300816 1300833 1311154 1311159) (-876 "PRQAGG.spad" 1300251 1300261 1300784 1300811) (-875 "PROPLOG.spad" 1299855 1299863 1300241 1300246) (-874 "PROPFUN2.spad" 1299478 1299491 1299845 1299850) (-873 "PROPFUN1.spad" 1298884 1298895 1299468 1299473) (-872 "PROPFRML.spad" 1297452 1297463 1298874 1298879) (-871 "PROPERTY.spad" 1296948 1296956 1297442 1297447) (-870 "PRODUCT.spad" 1294645 1294657 1294929 1294984) (-869 "PRINT.spad" 1294397 1294405 1294635 1294640) (-868 "PRIMES.spad" 1292658 1292668 1294387 1294392) (-867 "PRIMELT.spad" 1290779 1290793 1292648 1292653) (-866 "PRIMCAT.spad" 1290422 1290430 1290769 1290774) (-865 "PRIMARR2.spad" 1289189 1289201 1290412 1290417) (-864 "PRIMARR.spad" 1288244 1288254 1288414 1288441) (-863 "PREASSOC.spad" 1287626 1287638 1288234 1288239) (-862 "PR.spad" 1286144 1286156 1286843 1286970) (-861 "PPCURVE.spad" 1285281 1285289 1286134 1286139) (-860 "PORTNUM.spad" 1285072 1285080 1285271 1285276) (-859 "POLYROOT.spad" 1283921 1283943 1285028 1285033) (-858 "POLYLIFT.spad" 1283186 1283209 1283911 1283916) (-857 "POLYCATQ.spad" 1281312 1281334 1283176 1283181) (-856 "POLYCAT.spad" 1274814 1274835 1281180 1281307) (-855 "POLYCAT.spad" 1267836 1267859 1274204 1274209) (-854 "POLY2UP.spad" 1267288 1267302 1267826 1267831) (-853 "POLY2.spad" 1266885 1266897 1267278 1267283) (-852 "POLY.spad" 1264553 1264563 1265068 1265195) (-851 "POLUTIL.spad" 1263518 1263547 1264509 1264514) (-850 "POLTOPOL.spad" 1262266 1262281 1263508 1263513) (-849 "POINT.spad" 1261149 1261159 1261236 1261263) (-848 "PNTHEORY.spad" 1257851 1257859 1261139 1261144) (-847 "PMTOOLS.spad" 1256626 1256640 1257841 1257846) (-846 "PMSYM.spad" 1256175 1256185 1256616 1256621) (-845 "PMQFCAT.spad" 1255766 1255780 1256165 1256170) (-844 "PMPREDFS.spad" 1255228 1255250 1255756 1255761) (-843 "PMPRED.spad" 1254715 1254729 1255218 1255223) (-842 "PMPLCAT.spad" 1253792 1253810 1254644 1254649) (-841 "PMLSAGG.spad" 1253377 1253391 1253782 1253787) (-840 "PMKERNEL.spad" 1252956 1252968 1253367 1253372) (-839 "PMINS.spad" 1252536 1252546 1252946 1252951) (-838 "PMFS.spad" 1252113 1252131 1252526 1252531) (-837 "PMDOWN.spad" 1251403 1251417 1252103 1252108) (-836 "PMASSFS.spad" 1250378 1250394 1251393 1251398) (-835 "PMASS.spad" 1249396 1249404 1250368 1250373) (-834 "PLOTTOOL.spad" 1249176 1249184 1249386 1249391) (-833 "PLOT3D.spad" 1245640 1245648 1249166 1249171) (-832 "PLOT1.spad" 1244813 1244823 1245630 1245635) (-831 "PLOT.spad" 1239736 1239744 1244803 1244808) (-830 "PLEQN.spad" 1227138 1227165 1239726 1239731) (-829 "PINTERPA.spad" 1226922 1226938 1227128 1227133) (-828 "PINTERP.spad" 1226544 1226563 1226912 1226917) (-827 "PID.spad" 1225518 1225526 1226470 1226539) (-826 "PICOERCE.spad" 1225175 1225185 1225508 1225513) (-825 "PI.spad" 1224792 1224800 1225149 1225170) (-824 "PGROEB.spad" 1223401 1223415 1224782 1224787) (-823 "PGE.spad" 1215074 1215082 1223391 1223396) (-822 "PGCD.spad" 1214028 1214045 1215064 1215069) (-821 "PFRPAC.spad" 1213177 1213187 1214018 1214023) (-820 "PFR.spad" 1209880 1209890 1213079 1213172) (-819 "PFOTOOLS.spad" 1209138 1209154 1209870 1209875) (-818 "PFOQ.spad" 1208508 1208526 1209128 1209133) (-817 "PFO.spad" 1207927 1207954 1208498 1208503) (-816 "PFECAT.spad" 1205637 1205645 1207853 1207922) (-815 "PFECAT.spad" 1203375 1203385 1205593 1205598) (-814 "PFBRU.spad" 1201263 1201275 1203365 1203370) (-813 "PFBR.spad" 1198823 1198846 1201253 1201258) (-812 "PF.spad" 1198397 1198409 1198628 1198721) (-811 "PERMGRP.spad" 1193167 1193177 1198387 1198392) (-810 "PERMCAT.spad" 1191828 1191838 1193147 1193162) (-809 "PERMAN.spad" 1190384 1190398 1191818 1191823) (-808 "PERM.spad" 1186194 1186204 1190217 1190232) (-807 "PENDTREE.spad" 1185608 1185618 1185888 1185893) (-806 "PDSPC.spad" 1184421 1184431 1185598 1185603) (-805 "PDSPC.spad" 1183232 1183244 1184411 1184416) (-804 "PDRING.spad" 1183074 1183084 1183212 1183227) (-803 "PDMOD.spad" 1182890 1182902 1183042 1183069) (-802 "PDECOMP.spad" 1182360 1182377 1182880 1182885) (-801 "PDDOM.spad" 1181798 1181811 1182350 1182355) (-800 "PDDOM.spad" 1181234 1181249 1181788 1181793) (-799 "PCOMP.spad" 1181087 1181100 1181224 1181229) (-798 "PBWLB.spad" 1179685 1179702 1181077 1181082) (-797 "PATTERN2.spad" 1179423 1179435 1179675 1179680) (-796 "PATTERN1.spad" 1177767 1177783 1179413 1179418) (-795 "PATTERN.spad" 1172342 1172352 1177757 1177762) (-794 "PATRES2.spad" 1172014 1172028 1172332 1172337) (-793 "PATRES.spad" 1169597 1169609 1172004 1172009) (-792 "PATMATCH.spad" 1167838 1167869 1169349 1169354) (-791 "PATMAB.spad" 1167267 1167277 1167828 1167833) (-790 "PATLRES.spad" 1166353 1166367 1167257 1167262) (-789 "PATAB.spad" 1166117 1166127 1166343 1166348) (-788 "PARTPERM.spad" 1164173 1164181 1166107 1166112) (-787 "PARSURF.spad" 1163607 1163635 1164163 1164168) (-786 "PARSU2.spad" 1163404 1163420 1163597 1163602) (-785 "script-parser.spad" 1162924 1162932 1163394 1163399) (-784 "PARSCURV.spad" 1162358 1162386 1162914 1162919) (-783 "PARSC2.spad" 1162149 1162165 1162348 1162353) (-782 "PARPCURV.spad" 1161611 1161639 1162139 1162144) (-781 "PARPC2.spad" 1161402 1161418 1161601 1161606) (-780 "PARAMAST.spad" 1160530 1160538 1161392 1161397) (-779 "PAN2EXPR.spad" 1159942 1159950 1160520 1160525) (-778 "PALETTE.spad" 1159056 1159064 1159932 1159937) (-777 "PAIR.spad" 1158130 1158143 1158699 1158704) (-776 "PADICRC.spad" 1155535 1155553 1156698 1156791) (-775 "PADICRAT.spad" 1153595 1153607 1153808 1153901) (-774 "PADICCT.spad" 1152144 1152156 1153521 1153590) (-773 "PADIC.spad" 1151847 1151859 1152070 1152139) (-772 "PADEPAC.spad" 1150536 1150555 1151837 1151842) (-771 "PADE.spad" 1149288 1149304 1150526 1150531) (-770 "OWP.spad" 1148536 1148566 1149146 1149213) (-769 "OVERSET.spad" 1148109 1148117 1148526 1148531) (-768 "OVAR.spad" 1147890 1147913 1148099 1148104) (-767 "OUTFORM.spad" 1137298 1137306 1147880 1147885) (-766 "OUTBFILE.spad" 1136732 1136740 1137288 1137293) (-765 "OUTBCON.spad" 1135802 1135810 1136722 1136727) (-764 "OUTBCON.spad" 1134870 1134880 1135792 1135797) (-763 "OUT.spad" 1133988 1133996 1134860 1134865) (-762 "OSI.spad" 1133463 1133471 1133978 1133983) (-761 "OSGROUP.spad" 1133381 1133389 1133453 1133458) (-760 "ORTHPOL.spad" 1131892 1131902 1133324 1133329) (-759 "OREUP.spad" 1131386 1131414 1131613 1131652) (-758 "ORESUP.spad" 1130728 1130752 1131107 1131146) (-757 "OREPCTO.spad" 1128617 1128629 1130648 1130653) (-756 "OREPCAT.spad" 1122804 1122814 1128573 1128612) (-755 "OREPCAT.spad" 1116881 1116893 1122652 1122657) (-754 "ORDTYPE.spad" 1116118 1116126 1116871 1116876) (-753 "ORDTYPE.spad" 1115353 1115363 1116108 1116113) (-752 "ORDSTRCT.spad" 1115139 1115154 1115302 1115307) (-751 "ORDSET.spad" 1114839 1114847 1115129 1115134) (-750 "ORDRING.spad" 1114656 1114664 1114819 1114834) (-749 "ORDMON.spad" 1114511 1114519 1114646 1114651) (-748 "ORDFUNS.spad" 1113643 1113659 1114501 1114506) (-747 "ORDFIN.spad" 1113463 1113471 1113633 1113638) (-746 "ORDCOMP2.spad" 1112756 1112768 1113453 1113458) (-745 "ORDCOMP.spad" 1111282 1111292 1112364 1112393) (-744 "OPSIG.spad" 1110944 1110952 1111272 1111277) (-743 "OPQUERY.spad" 1110525 1110533 1110934 1110939) (-742 "OPERCAT.spad" 1109991 1110001 1110515 1110520) (-741 "OPERCAT.spad" 1109455 1109467 1109981 1109986) (-740 "OP.spad" 1109197 1109207 1109277 1109344) (-739 "ONECOMP2.spad" 1108621 1108633 1109187 1109192) (-738 "ONECOMP.spad" 1107427 1107437 1108229 1108258) (-737 "OMSAGG.spad" 1107215 1107225 1107383 1107422) (-736 "OMLO.spad" 1106648 1106660 1107101 1107140) (-735 "OINTDOM.spad" 1106411 1106419 1106574 1106643) (-734 "OFMONOID.spad" 1104550 1104560 1106367 1106372) (-733 "ODVAR.spad" 1103811 1103821 1104540 1104545) (-732 "ODR.spad" 1103455 1103481 1103623 1103772) (-731 "ODPOL.spad" 1101103 1101113 1101443 1101570) (-730 "ODP.spad" 1090740 1090760 1091113 1091210) (-729 "ODETOOLS.spad" 1089389 1089408 1090730 1090735) (-728 "ODESYS.spad" 1087083 1087100 1089379 1089384) (-727 "ODERTRIC.spad" 1083116 1083133 1087040 1087045) (-726 "ODERED.spad" 1082515 1082539 1083106 1083111) (-725 "ODERAT.spad" 1080148 1080165 1082505 1082510) (-724 "ODEPRRIC.spad" 1077241 1077263 1080138 1080143) (-723 "ODEPRIM.spad" 1074639 1074661 1077231 1077236) (-722 "ODEPAL.spad" 1074025 1074049 1074629 1074634) (-721 "ODEINT.spad" 1073460 1073476 1074015 1074020) (-720 "ODEEF.spad" 1068955 1068971 1073450 1073455) (-719 "ODECONST.spad" 1068500 1068518 1068945 1068950) (-718 "OCTCT2.spad" 1068141 1068159 1068490 1068495) (-717 "OCT.spad" 1066456 1066466 1067170 1067209) (-716 "OCAMON.spad" 1066304 1066312 1066446 1066451) (-715 "OC.spad" 1064100 1064110 1066260 1066299) (-714 "OC.spad" 1061635 1061647 1063797 1063802) (-713 "OASGP.spad" 1061450 1061458 1061625 1061630) (-712 "OAMONS.spad" 1060972 1060980 1061440 1061445) (-711 "OAMON.spad" 1060730 1060738 1060962 1060967) (-710 "OAMON.spad" 1060486 1060496 1060720 1060725) (-709 "OAGROUP.spad" 1060024 1060032 1060476 1060481) (-708 "OAGROUP.spad" 1059560 1059570 1060014 1060019) (-707 "NUMTUBE.spad" 1059151 1059167 1059550 1059555) (-706 "NUMQUAD.spad" 1047127 1047135 1059141 1059146) (-705 "NUMODE.spad" 1038479 1038487 1047117 1047122) (-704 "NUMFMT.spad" 1037319 1037327 1038469 1038474) (-703 "NUMERIC.spad" 1029434 1029444 1037125 1037130) (-702 "NTSCAT.spad" 1027942 1027958 1029402 1029429) (-701 "NTPOLFN.spad" 1027519 1027529 1027885 1027890) (-700 "NSUP2.spad" 1026911 1026923 1027509 1027514) (-699 "NSUP.spad" 1020348 1020358 1024768 1024921) (-698 "NSMP.spad" 1017260 1017279 1017552 1017679) (-697 "NREP.spad" 1015662 1015676 1017250 1017255) (-696 "NPCOEF.spad" 1014908 1014928 1015652 1015657) (-695 "NORMRETR.spad" 1014506 1014545 1014898 1014903) (-694 "NORMPK.spad" 1012448 1012467 1014496 1014501) (-693 "NORMMA.spad" 1012136 1012162 1012438 1012443) (-692 "NONE1.spad" 1011812 1011822 1012126 1012131) (-691 "NONE.spad" 1011553 1011561 1011802 1011807) (-690 "NODE1.spad" 1011040 1011056 1011543 1011548) (-689 "NNI.spad" 1009935 1009943 1011014 1011035) (-688 "NLINSOL.spad" 1008561 1008571 1009925 1009930) (-687 "NFINTBAS.spad" 1006121 1006138 1008551 1008556) (-686 "NETCLT.spad" 1006095 1006106 1006111 1006116) (-685 "NCODIV.spad" 1004319 1004335 1006085 1006090) (-684 "NCNTFRAC.spad" 1003961 1003975 1004309 1004314) (-683 "NCEP.spad" 1002127 1002141 1003951 1003956) (-682 "NASRING.spad" 1001731 1001739 1002117 1002122) (-681 "NASRING.spad" 1001333 1001343 1001721 1001726) (-680 "NARNG.spad" 1000733 1000741 1001323 1001328) (-679 "NARNG.spad" 1000131 1000141 1000723 1000728) (-678 "NAALG.spad" 999696 999706 1000099 1000126) (-677 "NAALG.spad" 999281 999293 999686 999691) (-676 "MULTSQFR.spad" 996239 996256 999271 999276) (-675 "MULTFACT.spad" 995622 995639 996229 996234) (-674 "MTSCAT.spad" 993716 993737 995520 995617) (-673 "MTHING.spad" 993375 993385 993706 993711) (-672 "MSYSCMD.spad" 992809 992817 993365 993370) (-671 "MSETAGG.spad" 992654 992664 992777 992804) (-670 "MSET.spad" 990600 990610 992348 992387) (-669 "MRING.spad" 987577 987589 990308 990375) (-668 "MRF2.spad" 987139 987153 987567 987572) (-667 "MRATFAC.spad" 986685 986702 987129 987134) (-666 "MPRFF.spad" 984725 984744 986675 986680) (-665 "MPOLY.spad" 982529 982544 982888 983015) (-664 "MPCPF.spad" 981793 981812 982519 982524) (-663 "MPC3.spad" 981610 981650 981783 981788) (-662 "MPC2.spad" 981263 981296 981600 981605) (-661 "MONOTOOL.spad" 979614 979631 981253 981258) (-660 "MONOID.spad" 978935 978943 979604 979609) (-659 "MONOID.spad" 978254 978264 978925 978930) (-658 "MONOGEN.spad" 977002 977015 978114 978249) (-657 "MONOGEN.spad" 975772 975787 976886 976891) (-656 "MONADWU.spad" 973852 973860 975762 975767) (-655 "MONADWU.spad" 971930 971940 973842 973847) (-654 "MONAD.spad" 971090 971098 971920 971925) (-653 "MONAD.spad" 970248 970258 971080 971085) (-652 "MOEBIUS.spad" 968984 968998 970228 970243) (-651 "MODULE.spad" 968854 968864 968952 968979) (-650 "MODULE.spad" 968744 968756 968844 968849) (-649 "MODRING.spad" 968079 968118 968724 968739) (-648 "MODOP.spad" 966736 966748 967901 967968) (-647 "MODMONOM.spad" 966467 966485 966726 966731) (-646 "MODMON.spad" 963537 963549 964252 964405) (-645 "MODFIELD.spad" 962899 962938 963439 963532) (-644 "MMLFORM.spad" 961759 961767 962889 962894) (-643 "MMAP.spad" 961501 961535 961749 961754) (-642 "MLO.spad" 959960 959970 961457 961496) (-641 "MLIFT.spad" 958572 958589 959950 959955) (-640 "MKUCFUNC.spad" 958107 958125 958562 958567) (-639 "MKRECORD.spad" 957695 957708 958097 958102) (-638 "MKFUNC.spad" 957102 957112 957685 957690) (-637 "MKFLCFN.spad" 956070 956080 957092 957097) (-636 "MKBCFUNC.spad" 955565 955583 956060 956065) (-635 "MHROWRED.spad" 954076 954086 955555 955560) (-634 "MFINFACT.spad" 953476 953498 954066 954071) (-633 "MESH.spad" 951271 951279 953466 953471) (-632 "MDDFACT.spad" 949490 949500 951261 951266) (-631 "MDAGG.spad" 948781 948791 949470 949485) (-630 "MCDEN.spad" 947991 948003 948771 948776) (-629 "MAYBE.spad" 947291 947302 947981 947986) (-628 "MATSTOR.spad" 944607 944617 947281 947286) (-627 "MATRIX.spad" 943386 943396 943870 943897) (-626 "MATLIN.spad" 940754 940778 943270 943275) (-625 "MATCAT2.spad" 940036 940084 940744 940749) (-624 "MATCAT.spad" 931598 931620 940004 940031) (-623 "MATCAT.spad" 923032 923056 931440 931445) (-622 "MAPPKG3.spad" 921947 921961 923022 923027) (-621 "MAPPKG2.spad" 921285 921297 921937 921942) (-620 "MAPPKG1.spad" 920113 920123 921275 921280) (-619 "MAPPAST.spad" 919452 919460 920103 920108) (-618 "MAPHACK3.spad" 919264 919278 919442 919447) (-617 "MAPHACK2.spad" 919033 919045 919254 919259) (-616 "MAPHACK1.spad" 918677 918687 919023 919028) (-615 "MAGMA.spad" 916483 916500 918667 918672) (-614 "MACROAST.spad" 916078 916086 916473 916478) (-613 "LZSTAGG.spad" 913332 913342 916068 916073) (-612 "LZSTAGG.spad" 910584 910596 913322 913327) (-611 "LWORD.spad" 907329 907346 910574 910579) (-610 "LSTAST.spad" 907113 907121 907319 907324) (-609 "LSQM.spad" 905391 905405 905785 905836) (-608 "LSPP.spad" 904926 904943 905381 905386) (-607 "LSMP1.spad" 902769 902783 904916 904921) (-606 "LSMP.spad" 901626 901654 902759 902764) (-605 "LSAGG.spad" 901295 901305 901594 901621) (-604 "LSAGG.spad" 900984 900996 901285 901290) (-603 "LPOLY.spad" 899946 899965 900840 900909) (-602 "LPEFRAC.spad" 899217 899227 899936 899941) (-601 "LOGIC.spad" 898819 898827 899207 899212) (-600 "LOGIC.spad" 898419 898429 898809 898814) (-599 "LODOOPS.spad" 897349 897361 898409 898414) (-598 "LODOF.spad" 896395 896412 897306 897311) (-597 "LODOCAT.spad" 895061 895071 896351 896390) (-596 "LODOCAT.spad" 893725 893737 895017 895022) (-595 "LODO2.spad" 893039 893051 893446 893485) (-594 "LODO1.spad" 892480 892490 892760 892799) (-593 "LODO.spad" 891905 891921 892201 892240) (-592 "LODEEF.spad" 890707 890725 891895 891900) (-591 "LO.spad" 890108 890122 890641 890668) (-590 "LNAGG.spad" 886295 886305 890098 890103) (-589 "LNAGG.spad" 882446 882458 886251 886256) (-588 "LMOPS.spad" 879214 879231 882436 882441) (-587 "LMODULE.spad" 878998 879008 879204 879209) (-586 "LMDICT.spad" 878379 878389 878627 878654) (-585 "LLINSET.spad" 878086 878096 878369 878374) (-584 "LITERAL.spad" 877992 878003 878076 878081) (-583 "LIST3.spad" 877303 877317 877982 877987) (-582 "LIST2MAP.spad" 874230 874242 877293 877298) (-581 "LIST2.spad" 872932 872944 874220 874225) (-580 "LIST.spad" 870814 870824 872157 872184) (-579 "LINSET.spad" 870593 870603 870804 870809) (-578 "LINFORM.spad" 870056 870068 870561 870588) (-577 "LINEXP.spad" 868799 868809 870046 870051) (-576 "LINELT.spad" 868170 868182 868682 868709) (-575 "LINDEP.spad" 867019 867031 868082 868087) (-574 "LINBASIS.spad" 866655 866670 867009 867014) (-573 "LIMITRF.spad" 864602 864612 866645 866650) (-572 "LIMITPS.spad" 863512 863525 864592 864597) (-571 "LIECAT.spad" 862996 863006 863438 863507) (-570 "LIECAT.spad" 862508 862520 862952 862957) (-569 "LIE.spad" 860512 860524 861786 861928) (-568 "LIB.spad" 858683 858691 859129 859144) (-567 "LGROBP.spad" 856036 856055 858673 858678) (-566 "LFCAT.spad" 855095 855103 856026 856031) (-565 "LF.spad" 854050 854066 855085 855090) (-564 "LEXTRIPK.spad" 849673 849688 854040 854045) (-563 "LEXP.spad" 847692 847719 849653 849668) (-562 "LETAST.spad" 847391 847399 847682 847687) (-561 "LEADCDET.spad" 845797 845814 847381 847386) (-560 "LAZM3PK.spad" 844541 844563 845787 845792) (-559 "LAUPOL.spad" 843208 843221 844108 844177) (-558 "LAPLACE.spad" 842791 842807 843198 843203) (-557 "LALG.spad" 842567 842577 842771 842786) (-556 "LALG.spad" 842351 842363 842557 842562) (-555 "LA.spad" 841791 841805 842273 842312) (-554 "KVTFROM.spad" 841534 841544 841781 841786) (-553 "KTVLOGIC.spad" 841078 841086 841524 841529) (-552 "KRCFROM.spad" 840824 840834 841068 841073) (-551 "KOVACIC.spad" 839555 839572 840814 840819) (-550 "KONVERT.spad" 839277 839287 839545 839550) (-549 "KOERCE.spad" 839014 839024 839267 839272) (-548 "KERNEL2.spad" 838717 838729 839004 839009) (-547 "KERNEL.spad" 837437 837447 838566 838571) (-546 "KDAGG.spad" 836546 836568 837417 837432) (-545 "KDAGG.spad" 835663 835687 836536 836541) (-544 "KAFILE.spad" 834553 834569 834788 834815) (-543 "JVMOP.spad" 834466 834474 834543 834548) (-542 "JVMMDACC.spad" 833520 833528 834456 834461) (-541 "JVMFDACC.spad" 832836 832844 833510 833515) (-540 "JVMCSTTG.spad" 831565 831573 832826 832831) (-539 "JVMCFACC.spad" 831011 831019 831555 831560) (-538 "JVMBCODE.spad" 830922 830930 831001 831006) (-537 "JORDAN.spad" 828739 828751 830200 830342) (-536 "JOINAST.spad" 828441 828449 828729 828734) (-535 "IXAGG.spad" 826574 826598 828431 828436) (-534 "IXAGG.spad" 824562 824588 826421 826426) (-533 "IVECTOR.spad" 823377 823392 823532 823559) (-532 "ITUPLE.spad" 822553 822563 823367 823372) (-531 "ITRIGMNP.spad" 821400 821419 822543 822548) (-530 "ITFUN3.spad" 820906 820920 821390 821395) (-529 "ITFUN2.spad" 820650 820662 820896 820901) (-528 "ITFORM.spad" 820005 820013 820640 820645) (-527 "ITAYLOR.spad" 817999 818014 819869 819966) (-526 "ISUPS.spad" 810448 810463 816985 817082) (-525 "ISUMP.spad" 809949 809965 810438 810443) (-524 "ISAST.spad" 809668 809676 809939 809944) (-523 "IRURPK.spad" 808385 808404 809658 809663) (-522 "IRSN.spad" 806389 806397 808375 808380) (-521 "IRRF2F.spad" 804882 804892 806345 806350) (-520 "IRREDFFX.spad" 804483 804494 804872 804877) (-519 "IROOT.spad" 802822 802832 804473 804478) (-518 "IRFORM.spad" 802146 802154 802812 802817) (-517 "IR2F.spad" 801360 801376 802136 802141) (-516 "IR2.spad" 800388 800404 801350 801355) (-515 "IR.spad" 798224 798238 800270 800297) (-514 "IPRNTPK.spad" 797984 797992 798214 798219) (-513 "IPF.spad" 797549 797561 797789 797882) (-512 "IPADIC.spad" 797318 797344 797475 797544) (-511 "IP4ADDR.spad" 796875 796883 797308 797313) (-510 "IOMODE.spad" 796397 796405 796865 796870) (-509 "IOBFILE.spad" 795782 795790 796387 796392) (-508 "IOBCON.spad" 795647 795655 795772 795777) (-507 "INVLAPLA.spad" 795296 795312 795637 795642) (-506 "INTTR.spad" 788690 788707 795286 795291) (-505 "INTTOOLS.spad" 786498 786514 788317 788322) (-504 "INTSLPE.spad" 785826 785834 786488 786493) (-503 "INTRVL.spad" 785392 785402 785740 785821) (-502 "INTRF.spad" 783824 783838 785382 785387) (-501 "INTRET.spad" 783256 783266 783814 783819) (-500 "INTRAT.spad" 781991 782008 783246 783251) (-499 "INTPM.spad" 780454 780470 781712 781717) (-498 "INTPAF.spad" 778330 778348 780383 780388) (-497 "INTHERTR.spad" 777604 777621 778320 778325) (-496 "INTHERAL.spad" 777274 777298 777594 777599) (-495 "INTHEORY.spad" 773713 773721 777264 777269) (-494 "INTG0.spad" 767477 767495 773642 773647) (-493 "INTFACT.spad" 766544 766554 767467 767472) (-492 "INTEF.spad" 764955 764971 766534 766539) (-491 "INTDOM.spad" 763578 763586 764881 764950) (-490 "INTDOM.spad" 762263 762273 763568 763573) (-489 "INTCAT.spad" 760530 760540 762177 762258) (-488 "INTBIT.spad" 760037 760045 760520 760525) (-487 "INTALG.spad" 759225 759252 760027 760032) (-486 "INTAF.spad" 758725 758741 759215 759220) (-485 "INTABL.spad" 757107 757138 757270 757297) (-484 "INT8.spad" 756987 756995 757097 757102) (-483 "INT64.spad" 756866 756874 756977 756982) (-482 "INT32.spad" 756745 756753 756856 756861) (-481 "INT16.spad" 756624 756632 756735 756740) (-480 "INT.spad" 756150 756158 756490 756619) (-479 "INS.spad" 753653 753661 756052 756145) (-478 "INS.spad" 751242 751252 753643 753648) (-477 "INPSIGN.spad" 750712 750725 751232 751237) (-476 "INPRODPF.spad" 749808 749827 750702 750707) (-475 "INPRODFF.spad" 748896 748920 749798 749803) (-474 "INNMFACT.spad" 747871 747888 748886 748891) (-473 "INMODGCD.spad" 747375 747405 747861 747866) (-472 "INFSP.spad" 745672 745694 747365 747370) (-471 "INFPROD0.spad" 744752 744771 745662 745667) (-470 "INFORM1.spad" 744377 744387 744742 744747) (-469 "INFORM.spad" 741588 741596 744367 744372) (-468 "INFINITY.spad" 741140 741148 741578 741583) (-467 "INETCLTS.spad" 741117 741125 741130 741135) (-466 "INEP.spad" 739663 739685 741107 741112) (-465 "INDE.spad" 739312 739329 739573 739578) (-464 "INCRMAPS.spad" 738749 738759 739302 739307) (-463 "INBFILE.spad" 737845 737853 738739 738744) (-462 "INBFF.spad" 733695 733706 737835 737840) (-461 "INBCON.spad" 731961 731969 733685 733690) (-460 "INBCON.spad" 730225 730235 731951 731956) (-459 "INAST.spad" 729886 729894 730215 730220) (-458 "IMPTAST.spad" 729594 729602 729876 729881) (-457 "IMATRIX.spad" 728604 728630 729116 729143) (-456 "IMATQF.spad" 727698 727742 728560 728565) (-455 "IMATLIN.spad" 726319 726343 727654 727659) (-454 "IIARRAY2.spad" 725788 725826 725991 726018) (-453 "IFF.spad" 725201 725217 725472 725565) (-452 "IFAST.spad" 724815 724823 725191 725196) (-451 "IFARRAY.spad" 722342 722357 724040 724067) (-450 "IFAMON.spad" 722204 722221 722298 722303) (-449 "IEVALAB.spad" 721617 721629 722194 722199) (-448 "IEVALAB.spad" 721028 721042 721607 721612) (-447 "IDPOAMS.spad" 720706 720718 720940 720945) (-446 "IDPOAM.spad" 720348 720360 720618 720623) (-445 "IDPO.spad" 720083 720095 720260 720265) (-444 "IDPC.spad" 718812 718824 720073 720078) (-443 "IDPAM.spad" 718479 718491 718724 718729) (-442 "IDPAG.spad" 718148 718160 718391 718396) (-441 "IDENT.spad" 717800 717808 718138 718143) (-440 "IDECOMP.spad" 715039 715057 717790 717795) (-439 "IDEAL.spad" 710001 710040 714987 714992) (-438 "ICDEN.spad" 709214 709230 709991 709996) (-437 "ICARD.spad" 708607 708615 709204 709209) (-436 "IBPTOOLS.spad" 707214 707231 708597 708602) (-435 "IBITS.spad" 706727 706740 706860 706887) (-434 "IBATOOL.spad" 703712 703731 706717 706722) (-433 "IBACHIN.spad" 702219 702234 703702 703707) (-432 "IARRAY2.spad" 701280 701306 701891 701918) (-431 "IARRAY1.spad" 700359 700374 700505 700532) (-430 "IAN.spad" 698741 698749 700190 700283) (-429 "IALGFACT.spad" 698352 698385 698731 698736) (-428 "HYPCAT.spad" 697776 697784 698342 698347) (-427 "HYPCAT.spad" 697198 697208 697766 697771) (-426 "HOSTNAME.spad" 697014 697022 697188 697193) (-425 "HOMOTOP.spad" 696757 696767 697004 697009) (-424 "HOAGG.spad" 694039 694049 696747 696752) (-423 "HOAGG.spad" 691071 691083 693781 693786) (-422 "HEXADEC.spad" 689296 689304 689661 689754) (-421 "HEUGCD.spad" 688387 688398 689286 689291) (-420 "HELLFDIV.spad" 687993 688017 688377 688382) (-419 "HEAP.spad" 687450 687460 687665 687692) (-418 "HEADAST.spad" 686991 686999 687440 687445) (-417 "HDP.spad" 676624 676640 677001 677098) (-416 "HDMP.spad" 674171 674186 674787 674914) (-415 "HB.spad" 672446 672454 674161 674166) (-414 "HASHTBL.spad" 670780 670811 670991 671018) (-413 "HASAST.spad" 670496 670504 670770 670775) (-412 "HACKPI.spad" 669987 669995 670398 670491) (-411 "GTSET.spad" 668914 668930 669621 669648) (-410 "GSTBL.spad" 667297 667332 667471 667486) (-409 "GSERIES.spad" 664669 664696 665488 665637) (-408 "GROUP.spad" 663942 663950 664649 664664) (-407 "GROUP.spad" 663223 663233 663932 663937) (-406 "GROEBSOL.spad" 661717 661738 663213 663218) (-405 "GRMOD.spad" 660298 660310 661707 661712) (-404 "GRMOD.spad" 658877 658891 660288 660293) (-403 "GRIMAGE.spad" 651790 651798 658867 658872) (-402 "GRDEF.spad" 650169 650177 651780 651785) (-401 "GRAY.spad" 648640 648648 650159 650164) (-400 "GRALG.spad" 647735 647747 648630 648635) (-399 "GRALG.spad" 646828 646842 647725 647730) (-398 "GPOLSET.spad" 646286 646309 646498 646525) (-397 "GOSPER.spad" 645563 645581 646276 646281) (-396 "GMODPOL.spad" 644711 644738 645531 645558) (-395 "GHENSEL.spad" 643794 643808 644701 644706) (-394 "GENUPS.spad" 640087 640100 643784 643789) (-393 "GENUFACT.spad" 639664 639674 640077 640082) (-392 "GENPGCD.spad" 639266 639283 639654 639659) (-391 "GENMFACT.spad" 638718 638737 639256 639261) (-390 "GENEEZ.spad" 636677 636690 638708 638713) (-389 "GDMP.spad" 634066 634083 634840 634967) (-388 "GCNAALG.spad" 627989 628016 633860 633927) (-387 "GCDDOM.spad" 627181 627189 627915 627984) (-386 "GCDDOM.spad" 626435 626445 627171 627176) (-385 "GBINTERN.spad" 622455 622493 626425 626430) (-384 "GBF.spad" 618238 618276 622445 622450) (-383 "GBEUCLID.spad" 616120 616158 618228 618233) (-382 "GB.spad" 613646 613684 616076 616081) (-381 "GAUSSFAC.spad" 612959 612967 613636 613641) (-380 "GALUTIL.spad" 611285 611295 612915 612920) (-379 "GALPOLYU.spad" 609739 609752 611275 611280) (-378 "GALFACTU.spad" 607952 607971 609729 609734) (-377 "GALFACT.spad" 598165 598176 607942 607947) (-376 "FUNDESC.spad" 597843 597851 598155 598160) (-375 "FUNCTION.spad" 597692 597704 597833 597838) (-374 "FT.spad" 595992 596000 597682 597687) (-373 "FSUPFACT.spad" 594906 594925 595942 595947) (-372 "FST.spad" 592992 593000 594896 594901) (-371 "FSRED.spad" 592472 592488 592982 592987) (-370 "FSPRMELT.spad" 591338 591354 592429 592434) (-369 "FSPECF.spad" 589429 589445 591328 591333) (-368 "FSINT.spad" 589089 589105 589419 589424) (-367 "FSERIES.spad" 588280 588292 588909 589008) (-366 "FSCINT.spad" 587597 587613 588270 588275) (-365 "FSAGG2.spad" 586332 586348 587587 587592) (-364 "FSAGG.spad" 585449 585459 586288 586327) (-363 "FSAGG.spad" 584528 584540 585369 585374) (-362 "FS2UPS.spad" 579043 579077 584518 584523) (-361 "FS2EXPXP.spad" 578184 578207 579033 579038) (-360 "FS2.spad" 577839 577855 578174 578179) (-359 "FS.spad" 572111 572121 577618 577834) (-358 "FS.spad" 566185 566197 571694 571699) (-357 "FRUTIL.spad" 565139 565149 566175 566180) (-356 "FRNAALG.spad" 560416 560426 565081 565134) (-355 "FRNAALG.spad" 555705 555717 560372 560377) (-354 "FRNAAF2.spad" 555153 555171 555695 555700) (-353 "FRMOD.spad" 554561 554591 555082 555087) (-352 "FRIDEAL2.spad" 554165 554197 554551 554556) (-351 "FRIDEAL.spad" 553390 553411 554145 554160) (-350 "FRETRCT.spad" 552909 552919 553380 553385) (-349 "FRETRCT.spad" 552335 552347 552808 552813) (-348 "FRAMALG.spad" 550715 550728 552291 552330) (-347 "FRAMALG.spad" 549127 549142 550705 550710) (-346 "FRAC2.spad" 548732 548744 549117 549122) (-345 "FRAC.spad" 546719 546729 547106 547279) (-344 "FR2.spad" 546055 546067 546709 546714) (-343 "FR.spad" 539843 539853 545116 545185) (-342 "FPS.spad" 536682 536690 539733 539838) (-341 "FPS.spad" 533549 533559 536602 536607) (-340 "FPC.spad" 532595 532603 533451 533544) (-339 "FPC.spad" 531727 531737 532585 532590) (-338 "FPATMAB.spad" 531489 531499 531717 531722) (-337 "FPARFRAC.spad" 530331 530348 531479 531484) (-336 "FORDER.spad" 530022 530046 530321 530326) (-335 "FNLA.spad" 529446 529468 529990 530017) (-334 "FNCAT.spad" 528041 528049 529436 529441) (-333 "FNAME.spad" 527933 527941 528031 528036) (-332 "FMONOID.spad" 527614 527624 527889 527894) (-331 "FMONCAT.spad" 524783 524793 527604 527609) (-330 "FMCAT.spad" 522459 522477 524751 524778) (-329 "FM1.spad" 521824 521836 522393 522420) (-328 "FM.spad" 521439 521451 521678 521705) (-327 "FLOATRP.spad" 519182 519196 521429 521434) (-326 "FLOATCP.spad" 516621 516635 519172 519177) (-325 "FLOAT.spad" 509935 509943 516487 516616) (-324 "FLINEXP.spad" 509657 509667 509925 509930) (-323 "FLINEXP.spad" 509336 509348 509606 509611) (-322 "FLASORT.spad" 508662 508674 509326 509331) (-321 "FLALG.spad" 506332 506351 508588 508657) (-320 "FLAGG2.spad" 505049 505065 506322 506327) (-319 "FLAGG.spad" 502115 502125 505029 505044) (-318 "FLAGG.spad" 499082 499094 501998 502003) (-317 "FINRALG.spad" 497167 497180 499038 499077) (-316 "FINRALG.spad" 495178 495193 497051 497056) (-315 "FINITE.spad" 494330 494338 495168 495173) (-314 "FINITE.spad" 493480 493490 494320 494325) (-313 "FINAALG.spad" 482665 482675 493422 493475) (-312 "FINAALG.spad" 471862 471874 482621 482626) (-311 "FILECAT.spad" 470396 470413 471852 471857) (-310 "FILE.spad" 469979 469989 470386 470391) (-309 "FIELD.spad" 469385 469393 469881 469974) (-308 "FIELD.spad" 468877 468887 469375 469380) (-307 "FGROUP.spad" 467540 467550 468857 468872) (-306 "FGLMICPK.spad" 466335 466350 467530 467535) (-305 "FFX.spad" 465721 465736 466054 466147) (-304 "FFSLPE.spad" 465232 465253 465711 465716) (-303 "FFPOLY2.spad" 464292 464309 465222 465227) (-302 "FFPOLY.spad" 455634 455645 464282 464287) (-301 "FFP.spad" 455042 455062 455353 455446) (-300 "FFNBX.spad" 453565 453585 454761 454854) (-299 "FFNBP.spad" 452089 452106 453284 453377) (-298 "FFNB.spad" 450557 450578 451773 451866) (-297 "FFINTBAS.spad" 448071 448090 450547 450552) (-296 "FFIELDC.spad" 445656 445664 447973 448066) (-295 "FFIELDC.spad" 443327 443337 445646 445651) (-294 "FFHOM.spad" 442099 442116 443317 443322) (-293 "FFF.spad" 439542 439553 442089 442094) (-292 "FFCGX.spad" 438400 438420 439261 439354) (-291 "FFCGP.spad" 437300 437320 438119 438212) (-290 "FFCG.spad" 436095 436116 436984 437077) (-289 "FFCAT2.spad" 435842 435882 436085 436090) (-288 "FFCAT.spad" 429007 429029 435681 435837) (-287 "FFCAT.spad" 422251 422275 428927 428932) (-286 "FF.spad" 421702 421718 421935 422028) (-285 "FEVALAB.spad" 421410 421420 421692 421697) (-284 "FEVALAB.spad" 420894 420906 421178 421183) (-283 "FDIVCAT.spad" 418990 419014 420884 420889) (-282 "FDIVCAT.spad" 417084 417110 418980 418985) (-281 "FDIV2.spad" 416740 416780 417074 417079) (-280 "FDIV.spad" 416198 416222 416730 416735) (-279 "FCTRDATA.spad" 415206 415214 416188 416193) (-278 "FCOMP.spad" 414585 414595 415196 415201) (-277 "FAXF.spad" 407620 407634 414487 414580) (-276 "FAXF.spad" 400707 400723 407576 407581) (-275 "FARRAY.spad" 398899 398909 399932 399959) (-274 "FAMR.spad" 397043 397055 398797 398894) (-273 "FAMR.spad" 395171 395185 396927 396932) (-272 "FAMONOID.spad" 394855 394865 395125 395130) (-271 "FAMONC.spad" 393175 393187 394845 394850) (-270 "FAGROUP.spad" 392815 392825 393071 393098) (-269 "FACUTIL.spad" 391027 391044 392805 392810) (-268 "FACTFUNC.spad" 390229 390239 391017 391022) (-267 "EXPUPXS.spad" 387121 387144 388420 388569) (-266 "EXPRTUBE.spad" 384409 384417 387111 387116) (-265 "EXPRODE.spad" 381577 381593 384399 384404) (-264 "EXPR2UPS.spad" 377699 377712 381567 381572) (-263 "EXPR2.spad" 377404 377416 377689 377694) (-262 "EXPR.spad" 373049 373059 373763 374050) (-261 "EXPEXPAN.spad" 369994 370019 370626 370719) (-260 "EXITAST.spad" 369730 369738 369984 369989) (-259 "EXIT.spad" 369401 369409 369720 369725) (-258 "EVALCYC.spad" 368861 368875 369391 369396) (-257 "EVALAB.spad" 368441 368451 368851 368856) (-256 "EVALAB.spad" 368019 368031 368431 368436) (-255 "EUCDOM.spad" 365609 365617 367945 368014) (-254 "EUCDOM.spad" 363261 363271 365599 365604) (-253 "ES2.spad" 362774 362790 363251 363256) (-252 "ES1.spad" 362344 362360 362764 362769) (-251 "ES.spad" 355215 355223 362334 362339) (-250 "ES.spad" 348007 348017 355128 355133) (-249 "ERROR.spad" 345334 345342 347997 348002) (-248 "EQTBL.spad" 343670 343692 343879 343906) (-247 "EQ2.spad" 343388 343400 343660 343665) (-246 "EQ.spad" 338294 338304 341089 341195) (-245 "EP.spad" 334620 334630 338284 338289) (-244 "ENV.spad" 333298 333306 334610 334615) (-243 "ENTIRER.spad" 332966 332974 333242 333293) (-242 "EMR.spad" 332254 332295 332892 332961) (-241 "ELTAGG.spad" 330508 330527 332244 332249) (-240 "ELTAGG.spad" 328726 328747 330464 330469) (-239 "ELTAB.spad" 328201 328214 328716 328721) (-238 "ELFUTS.spad" 327636 327655 328191 328196) (-237 "ELEMFUN.spad" 327325 327333 327626 327631) (-236 "ELEMFUN.spad" 327012 327022 327315 327320) (-235 "ELAGG.spad" 324983 324993 326992 327007) (-234 "ELAGG.spad" 322891 322903 324902 324907) (-233 "ELABOR.spad" 322237 322245 322881 322886) (-232 "ELABEXPR.spad" 321169 321177 322227 322232) (-231 "EFUPXS.spad" 317945 317975 321125 321130) (-230 "EFULS.spad" 314781 314804 317901 317906) (-229 "EFSTRUC.spad" 312796 312812 314771 314776) (-228 "EF.spad" 307572 307588 312786 312791) (-227 "EAB.spad" 305872 305880 307562 307567) (-226 "DVARCAT.spad" 302878 302888 305862 305867) (-225 "DVARCAT.spad" 299882 299894 302868 302873) (-224 "DSMP.spad" 297615 297629 297920 298047) (-223 "DSEXT.spad" 296917 296927 297605 297610) (-222 "DSEXT.spad" 296139 296151 296829 296834) (-221 "DROPT1.spad" 295804 295814 296129 296134) (-220 "DROPT0.spad" 290669 290677 295794 295799) (-219 "DROPT.spad" 284628 284636 290659 290664) (-218 "DRAWPT.spad" 282801 282809 284618 284623) (-217 "DRAWHACK.spad" 282109 282119 282791 282796) (-216 "DRAWCX.spad" 279587 279595 282099 282104) (-215 "DRAWCURV.spad" 279134 279149 279577 279582) (-214 "DRAWCFUN.spad" 268666 268674 279124 279129) (-213 "DRAW.spad" 261542 261555 268656 268661) (-212 "DQAGG.spad" 259720 259730 261510 261537) (-211 "DPOLCAT.spad" 255077 255093 259588 259715) (-210 "DPOLCAT.spad" 250520 250538 255033 255038) (-209 "DPMO.spad" 243223 243239 243361 243567) (-208 "DPMM.spad" 235939 235957 236064 236270) (-207 "DOMTMPLT.spad" 235710 235718 235929 235934) (-206 "DOMCTOR.spad" 235465 235473 235700 235705) (-205 "DOMAIN.spad" 234576 234584 235455 235460) (-204 "DMP.spad" 232169 232184 232739 232866) (-203 "DMEXT.spad" 232036 232046 232137 232164) (-202 "DLP.spad" 231396 231406 232026 232031) (-201 "DLIST.spad" 230017 230027 230621 230648) (-200 "DLAGG.spad" 228434 228444 230007 230012) (-199 "DIVRING.spad" 227976 227984 228378 228429) (-198 "DIVRING.spad" 227562 227572 227966 227971) (-197 "DISPLAY.spad" 225752 225760 227552 227557) (-196 "DIRPROD2.spad" 224570 224588 225742 225747) (-195 "DIRPROD.spad" 213940 213956 214580 214677) (-194 "DIRPCAT.spad" 213135 213151 213838 213935) (-193 "DIRPCAT.spad" 211956 211974 212661 212666) (-192 "DIOSP.spad" 210781 210789 211946 211951) (-191 "DIOPS.spad" 209777 209787 210761 210776) (-190 "DIOPS.spad" 208747 208759 209733 209738) (-189 "catdef.spad" 208605 208613 208737 208742) (-188 "DIFRING.spad" 208443 208451 208585 208600) (-187 "DIFFSPC.spad" 208022 208030 208433 208438) (-186 "DIFFSPC.spad" 207599 207609 208012 208017) (-185 "DIFFMOD.spad" 207088 207098 207567 207594) (-184 "DIFFDOM.spad" 206253 206264 207078 207083) (-183 "DIFFDOM.spad" 205416 205429 206243 206248) (-182 "DIFEXT.spad" 205235 205245 205396 205411) (-181 "DIAGG.spad" 204865 204875 205215 205230) (-180 "DIAGG.spad" 204503 204515 204855 204860) (-179 "DHMATRIX.spad" 202880 202890 204025 204052) (-178 "DFSFUN.spad" 196520 196528 202870 202875) (-177 "DFLOAT.spad" 193127 193135 196410 196515) (-176 "DFINTTLS.spad" 191358 191374 193117 193122) (-175 "DERHAM.spad" 189272 189304 191338 191353) (-174 "DEQUEUE.spad" 188661 188671 188944 188971) (-173 "DEGRED.spad" 188278 188292 188651 188656) (-172 "DEFINTRF.spad" 185860 185870 188268 188273) (-171 "DEFINTEF.spad" 184398 184414 185850 185855) (-170 "DEFAST.spad" 183782 183790 184388 184393) (-169 "DECIMAL.spad" 182011 182019 182372 182465) (-168 "DDFACT.spad" 179832 179849 182001 182006) (-167 "DBLRESP.spad" 179432 179456 179822 179827) (-166 "DBASIS.spad" 179058 179073 179422 179427) (-165 "DBASE.spad" 177722 177732 179048 179053) (-164 "DATAARY.spad" 177208 177221 177712 177717) (-163 "CYCLOTOM.spad" 176714 176722 177198 177203) (-162 "CYCLES.spad" 173506 173514 176704 176709) (-161 "CVMP.spad" 172923 172933 173496 173501) (-160 "CTRIGMNP.spad" 171423 171439 172913 172918) (-159 "CTORKIND.spad" 171026 171034 171413 171418) (-158 "CTORCAT.spad" 170267 170275 171016 171021) (-157 "CTORCAT.spad" 169506 169516 170257 170262) (-156 "CTORCALL.spad" 169095 169105 169496 169501) (-155 "CTOR.spad" 168786 168794 169085 169090) (-154 "CSTTOOLS.spad" 168031 168044 168776 168781) (-153 "CRFP.spad" 161803 161816 168021 168026) (-152 "CRCEAST.spad" 161523 161531 161793 161798) (-151 "CRAPACK.spad" 160590 160600 161513 161518) (-150 "CPMATCH.spad" 160091 160106 160512 160517) (-149 "CPIMA.spad" 159796 159815 160081 160086) (-148 "COORDSYS.spad" 154805 154815 159786 159791) (-147 "CONTOUR.spad" 154232 154240 154795 154800) (-146 "CONTFRAC.spad" 149982 149992 154134 154227) (-145 "CONDUIT.spad" 149740 149748 149972 149977) (-144 "COMRING.spad" 149414 149422 149678 149735) (-143 "COMPPROP.spad" 148932 148940 149404 149409) (-142 "COMPLPAT.spad" 148699 148714 148922 148927) (-141 "COMPLEX2.spad" 148414 148426 148689 148694) (-140 "COMPLEX.spad" 144120 144130 144364 144622) (-139 "COMPILER.spad" 143669 143677 144110 144115) (-138 "COMPFACT.spad" 143271 143285 143659 143664) (-137 "COMPCAT.spad" 141346 141356 143008 143266) (-136 "COMPCAT.spad" 139162 139174 140826 140831) (-135 "COMMUPC.spad" 138910 138928 139152 139157) (-134 "COMMONOP.spad" 138443 138451 138900 138905) (-133 "COMMAAST.spad" 138206 138214 138433 138438) (-132 "COMM.spad" 138017 138025 138196 138201) (-131 "COMBOPC.spad" 136940 136948 138007 138012) (-130 "COMBINAT.spad" 135707 135717 136930 136935) (-129 "COMBF.spad" 133129 133145 135697 135702) (-128 "COLOR.spad" 131966 131974 133119 133124) (-127 "COLONAST.spad" 131632 131640 131956 131961) (-126 "CMPLXRT.spad" 131343 131360 131622 131627) (-125 "CLLCTAST.spad" 131005 131013 131333 131338) (-124 "CLIP.spad" 127113 127121 130995 131000) (-123 "CLIF.spad" 125768 125784 127069 127108) (-122 "CLAGG.spad" 122305 122315 125758 125763) (-121 "CLAGG.spad" 118726 118738 122181 122186) (-120 "CINTSLPE.spad" 118081 118094 118716 118721) (-119 "CHVAR.spad" 116219 116241 118071 118076) (-118 "CHARZ.spad" 116134 116142 116199 116214) (-117 "CHARPOL.spad" 115660 115670 116124 116129) (-116 "CHARNZ.spad" 115422 115430 115640 115655) (-115 "CHAR.spad" 112790 112798 115412 115417) (-114 "CFCAT.spad" 112118 112126 112780 112785) (-113 "CDEN.spad" 111338 111352 112108 112113) (-112 "CCLASS.spad" 109518 109526 110780 110819) (-111 "CATEGORY.spad" 108592 108600 109508 109513) (-110 "CATCTOR.spad" 108483 108491 108582 108587) (-109 "CATAST.spad" 108109 108117 108473 108478) (-108 "CASEAST.spad" 107823 107831 108099 108104) (-107 "CARTEN2.spad" 107213 107240 107813 107818) (-106 "CARTEN.spad" 102965 102989 107203 107208) (-105 "CARD.spad" 100260 100268 102939 102960) (-104 "CAPSLAST.spad" 100042 100050 100250 100255) (-103 "CACHSET.spad" 99666 99674 100032 100037) (-102 "CABMON.spad" 99221 99229 99656 99661) (-101 "BYTEORD.spad" 98896 98904 99211 99216) (-100 "BYTEBUF.spad" 96882 96890 98168 98195) (-99 "BYTE.spad" 96358 96365 96872 96877) (-98 "BTREE.spad" 95497 95506 96030 96057) (-97 "BTOURN.spad" 94568 94577 95169 95196) (-96 "BTCAT.spad" 93961 93970 94536 94563) (-95 "BTCAT.spad" 93374 93385 93951 93956) (-94 "BTAGG.spad" 92841 92848 93342 93369) (-93 "BTAGG.spad" 92328 92337 92831 92836) (-92 "BSTREE.spad" 91135 91144 92000 92027) (-91 "BRILL.spad" 89341 89351 91125 91130) (-90 "BRAGG.spad" 88298 88307 89331 89336) (-89 "BRAGG.spad" 87219 87230 88254 88259) (-88 "BPADICRT.spad" 85279 85290 85525 85618) (-87 "BPADIC.spad" 84952 84963 85205 85274) (-86 "BOUNDZRO.spad" 84609 84625 84942 84947) (-85 "BOP1.spad" 82068 82077 84599 84604) (-84 "BOP.spad" 77211 77218 82058 82063) (-83 "BOOLEAN.spad" 76760 76767 77201 77206) (-82 "BOOLE.spad" 76411 76418 76750 76755) (-81 "BOOLE.spad" 76060 76069 76401 76406) (-80 "BMODULE.spad" 75773 75784 76028 76055) (-79 "BITS.spad" 75205 75212 75419 75446) (-78 "BINDING.spad" 74627 74634 75195 75200) (-77 "BINARY.spad" 72862 72869 73217 73310) (-76 "BGAGG.spad" 72068 72077 72842 72857) (-75 "BGAGG.spad" 71282 71293 72058 72063) (-74 "BEZOUT.spad" 70423 70449 71232 71237) (-73 "BBTREE.spad" 67366 67375 70095 70122) (-72 "BASTYPE.spad" 66866 66873 67356 67361) (-71 "BASTYPE.spad" 66364 66373 66856 66861) (-70 "BALFACT.spad" 65824 65836 66354 66359) (-69 "AUTOMOR.spad" 65275 65284 65804 65819) (-68 "ATTREG.spad" 61998 62005 65027 65270) (-67 "ATTRAST.spad" 61715 61722 61988 61993) (-66 "ATRIG.spad" 61185 61192 61705 61710) (-65 "ATRIG.spad" 60653 60662 61175 61180) (-64 "ASTCAT.spad" 60557 60564 60643 60648) (-63 "ASTCAT.spad" 60459 60468 60547 60552) (-62 "ASTACK.spad" 59863 59872 60131 60158) (-61 "ASSOCEQ.spad" 58697 58708 59819 59824) (-60 "ARRAY2.spad" 58130 58139 58369 58396) (-59 "ARRAY12.spad" 56843 56854 58120 58125) (-58 "ARRAY1.spad" 55722 55731 56068 56095) (-57 "ARR2CAT.spad" 51504 51525 55690 55717) (-56 "ARR2CAT.spad" 47306 47329 51494 51499) (-55 "ARITY.spad" 46678 46685 47296 47301) (-54 "APPRULE.spad" 45962 45984 46668 46673) (-53 "APPLYORE.spad" 45581 45594 45952 45957) (-52 "ANY1.spad" 44652 44661 45571 45576) (-51 "ANY.spad" 43503 43510 44642 44647) (-50 "ANTISYM.spad" 41948 41964 43483 43498) (-49 "ANON.spad" 41657 41664 41938 41943) (-48 "AN.spad" 40125 40132 41488 41581) (-47 "AMR.spad" 38310 38321 40023 40120) (-46 "AMR.spad" 36358 36371 38073 38078) (-45 "ALIST.spad" 33596 33617 33946 33973) (-44 "ALGSC.spad" 32731 32757 33468 33521) (-43 "ALGPKG.spad" 28514 28525 32687 32692) (-42 "ALGMFACT.spad" 27707 27721 28504 28509) (-41 "ALGMANIP.spad" 25208 25223 27551 27556) (-40 "ALGFF.spad" 23026 23053 23243 23399) (-39 "ALGFACT.spad" 22145 22155 23016 23021) (-38 "ALGEBRA.spad" 21978 21987 22101 22140) (-37 "ALGEBRA.spad" 21843 21854 21968 21973) (-36 "ALAGG.spad" 21355 21376 21811 21838) (-35 "AHYP.spad" 20736 20743 21345 21350) (-34 "AGG.spad" 19445 19452 20726 20731) (-33 "AGG.spad" 18118 18127 19401 19406) (-32 "AF.spad" 16563 16578 18067 18072) (-31 "ADDAST.spad" 16249 16256 16553 16558) (-30 "ACPLOT.spad" 14840 14847 16239 16244) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1965399 1965404 1965409 1965414) (-2 NIL 1965379 1965384 1965389 1965394) (-1 NIL 1965359 1965364 1965369 1965374) (0 NIL 1965339 1965344 1965349 1965354) (-1207 "ZMOD.spad" 1965148 1965161 1965277 1965334) (-1206 "ZLINDEP.spad" 1964246 1964257 1965138 1965143) (-1205 "ZDSOLVE.spad" 1954206 1954228 1964236 1964241) (-1204 "YSTREAM.spad" 1953701 1953712 1954196 1954201) (-1203 "YDIAGRAM.spad" 1953335 1953344 1953691 1953696) (-1202 "XRPOLY.spad" 1952555 1952575 1953191 1953260) (-1201 "XPR.spad" 1950350 1950363 1952273 1952372) (-1200 "XPOLYC.spad" 1949669 1949685 1950276 1950345) (-1199 "XPOLY.spad" 1949224 1949235 1949525 1949594) (-1198 "XPBWPOLY.spad" 1947695 1947715 1949030 1949099) (-1197 "XFALG.spad" 1944743 1944759 1947621 1947690) (-1196 "XF.spad" 1943206 1943221 1944645 1944738) (-1195 "XF.spad" 1941649 1941666 1943090 1943095) (-1194 "XEXPPKG.spad" 1940908 1940934 1941639 1941644) (-1193 "XDPOLY.spad" 1940522 1940538 1940764 1940833) (-1192 "XALG.spad" 1940190 1940201 1940478 1940517) (-1191 "WUTSET.spad" 1936193 1936210 1939824 1939851) (-1190 "WP.spad" 1935400 1935444 1936051 1936118) (-1189 "WHILEAST.spad" 1935198 1935207 1935390 1935395) (-1188 "WHEREAST.spad" 1934869 1934878 1935188 1935193) (-1187 "WFFINTBS.spad" 1932532 1932554 1934859 1934864) (-1186 "WEIER.spad" 1930754 1930765 1932522 1932527) (-1185 "VSPACE.spad" 1930427 1930438 1930722 1930749) (-1184 "VSPACE.spad" 1930120 1930133 1930417 1930422) (-1183 "VOID.spad" 1929797 1929806 1930110 1930115) (-1182 "VIEWDEF.spad" 1924998 1925007 1929787 1929792) (-1181 "VIEW3D.spad" 1908959 1908968 1924988 1924993) (-1180 "VIEW2D.spad" 1896858 1896867 1908949 1908954) (-1179 "VIEW.spad" 1894578 1894587 1896848 1896853) (-1178 "VECTOR2.spad" 1893217 1893230 1894568 1894573) (-1177 "VECTOR.spad" 1891936 1891947 1892187 1892214) (-1176 "VECTCAT.spad" 1889848 1889859 1891904 1891931) (-1175 "VECTCAT.spad" 1887569 1887582 1889627 1889632) (-1174 "VARIABLE.spad" 1887349 1887364 1887559 1887564) (-1173 "UTYPE.spad" 1886993 1887002 1887339 1887344) (-1172 "UTSODETL.spad" 1886288 1886312 1886949 1886954) (-1171 "UTSODE.spad" 1884504 1884524 1886278 1886283) (-1170 "UTSCAT.spad" 1881983 1881999 1884402 1884499) (-1169 "UTSCAT.spad" 1879130 1879148 1881551 1881556) (-1168 "UTS2.spad" 1878725 1878760 1879120 1879125) (-1167 "UTS.spad" 1873737 1873765 1877257 1877354) (-1166 "URAGG.spad" 1868458 1868469 1873727 1873732) (-1165 "URAGG.spad" 1863143 1863156 1868414 1868419) (-1164 "UPXSSING.spad" 1860911 1860937 1862347 1862480) (-1163 "UPXSCONS.spad" 1858729 1858749 1859102 1859251) (-1162 "UPXSCCA.spad" 1857300 1857320 1858575 1858724) (-1161 "UPXSCCA.spad" 1856013 1856035 1857290 1857295) (-1160 "UPXSCAT.spad" 1854602 1854618 1855859 1856008) (-1159 "UPXS2.spad" 1854145 1854198 1854592 1854597) (-1158 "UPXS.spad" 1851500 1851528 1852336 1852485) (-1157 "UPSQFREE.spad" 1849915 1849929 1851490 1851495) (-1156 "UPSCAT.spad" 1847710 1847734 1849813 1849910) (-1155 "UPSCAT.spad" 1845206 1845232 1847311 1847316) (-1154 "UPOLYC2.spad" 1844677 1844696 1845196 1845201) (-1153 "UPOLYC.spad" 1839757 1839768 1844519 1844672) (-1152 "UPOLYC.spad" 1834755 1834768 1839519 1839524) (-1151 "UPMP.spad" 1833687 1833700 1834745 1834750) (-1150 "UPDIVP.spad" 1833252 1833266 1833677 1833682) (-1149 "UPDECOMP.spad" 1831513 1831527 1833242 1833247) (-1148 "UPCDEN.spad" 1830730 1830746 1831503 1831508) (-1147 "UP2.spad" 1830094 1830115 1830720 1830725) (-1146 "UP.spad" 1827564 1827579 1827951 1828104) (-1145 "UNISEG2.spad" 1827061 1827074 1827520 1827525) (-1144 "UNISEG.spad" 1826414 1826425 1826980 1826985) (-1143 "UNIFACT.spad" 1825517 1825529 1826404 1826409) (-1142 "ULSCONS.spad" 1819560 1819580 1819930 1820079) (-1141 "ULSCCAT.spad" 1817297 1817317 1819406 1819555) (-1140 "ULSCCAT.spad" 1815142 1815164 1817253 1817258) (-1139 "ULSCAT.spad" 1813382 1813398 1814988 1815137) (-1138 "ULS2.spad" 1812896 1812949 1813372 1813377) (-1137 "ULS.spad" 1805162 1805190 1806107 1806530) (-1136 "UINT8.spad" 1805039 1805048 1805152 1805157) (-1135 "UINT64.spad" 1804915 1804924 1805029 1805034) (-1134 "UINT32.spad" 1804791 1804800 1804905 1804910) (-1133 "UINT16.spad" 1804667 1804676 1804781 1804786) (-1132 "UFD.spad" 1803732 1803741 1804593 1804662) (-1131 "UFD.spad" 1802859 1802870 1803722 1803727) (-1130 "UDVO.spad" 1801740 1801749 1802849 1802854) (-1129 "UDPO.spad" 1799321 1799332 1801696 1801701) (-1128 "TYPEAST.spad" 1799240 1799249 1799311 1799316) (-1127 "TYPE.spad" 1799172 1799181 1799230 1799235) (-1126 "TWOFACT.spad" 1797824 1797839 1799162 1799167) (-1125 "TUPLE.spad" 1797331 1797342 1797736 1797741) (-1124 "TUBETOOL.spad" 1794198 1794207 1797321 1797326) (-1123 "TUBE.spad" 1792845 1792862 1794188 1794193) (-1122 "TSETCAT.spad" 1780916 1780933 1792813 1792840) (-1121 "TSETCAT.spad" 1768973 1768992 1780872 1780877) (-1120 "TS.spad" 1767601 1767617 1768567 1768664) (-1119 "TRMANIP.spad" 1761965 1761982 1767289 1767294) (-1118 "TRIMAT.spad" 1760928 1760953 1761955 1761960) (-1117 "TRIGMNIP.spad" 1759455 1759472 1760918 1760923) (-1116 "TRIGCAT.spad" 1758967 1758976 1759445 1759450) (-1115 "TRIGCAT.spad" 1758477 1758488 1758957 1758962) (-1114 "TREE.spad" 1757117 1757128 1758149 1758176) (-1113 "TRANFUN.spad" 1756956 1756965 1757107 1757112) (-1112 "TRANFUN.spad" 1756793 1756804 1756946 1756951) (-1111 "TOPSP.spad" 1756467 1756476 1756783 1756788) (-1110 "TOOLSIGN.spad" 1756130 1756141 1756457 1756462) (-1109 "TEXTFILE.spad" 1754691 1754700 1756120 1756125) (-1108 "TEX1.spad" 1754247 1754258 1754681 1754686) (-1107 "TEX.spad" 1751441 1751450 1754237 1754242) (-1106 "TBCMPPK.spad" 1749542 1749565 1751431 1751436) (-1105 "TBAGG.spad" 1748600 1748623 1749522 1749537) (-1104 "TBAGG.spad" 1747666 1747691 1748590 1748595) (-1103 "TANEXP.spad" 1747074 1747085 1747656 1747661) (-1102 "TALGOP.spad" 1746798 1746809 1747064 1747069) (-1101 "TABLEAU.spad" 1746279 1746290 1746788 1746793) (-1100 "TABLE.spad" 1744554 1744577 1744824 1744851) (-1099 "TABLBUMP.spad" 1741333 1741344 1744544 1744549) (-1098 "SYSTEM.spad" 1740561 1740570 1741323 1741328) (-1097 "SYSSOLP.spad" 1738044 1738055 1740551 1740556) (-1096 "SYSPTR.spad" 1737943 1737952 1738034 1738039) (-1095 "SYSNNI.spad" 1737166 1737177 1737933 1737938) (-1094 "SYSINT.spad" 1736570 1736581 1737156 1737161) (-1093 "SYNTAX.spad" 1732904 1732913 1736560 1736565) (-1092 "SYMTAB.spad" 1730972 1730981 1732894 1732899) (-1091 "SYMS.spad" 1727001 1727010 1730962 1730967) (-1090 "SYMPOLY.spad" 1726134 1726145 1726216 1726343) (-1089 "SYMFUNC.spad" 1725635 1725646 1726124 1726129) (-1088 "SYMBOL.spad" 1723130 1723139 1725625 1725630) (-1087 "SUTS.spad" 1720243 1720271 1721662 1721759) (-1086 "SUPXS.spad" 1717585 1717613 1718434 1718583) (-1085 "SUPFRACF.spad" 1716690 1716708 1717575 1717580) (-1084 "SUP2.spad" 1716082 1716095 1716680 1716685) (-1083 "SUP.spad" 1713166 1713177 1713939 1714092) (-1082 "SUMRF.spad" 1712140 1712151 1713156 1713161) (-1081 "SUMFS.spad" 1711769 1711786 1712130 1712135) (-1080 "SULS.spad" 1704022 1704050 1704980 1705403) (-1079 "syntax.spad" 1703791 1703800 1704012 1704017) (-1078 "SUCH.spad" 1703481 1703496 1703781 1703786) (-1077 "SUBSPACE.spad" 1695612 1695627 1703471 1703476) (-1076 "SUBRESP.spad" 1694782 1694796 1695568 1695573) (-1075 "STTFNC.spad" 1691250 1691266 1694772 1694777) (-1074 "STTF.spad" 1687349 1687365 1691240 1691245) (-1073 "STTAYLOR.spad" 1680026 1680037 1687256 1687261) (-1072 "STRTBL.spad" 1678413 1678430 1678562 1678589) (-1071 "STRING.spad" 1677281 1677290 1677666 1677693) (-1070 "STREAM3.spad" 1676854 1676869 1677271 1677276) (-1069 "STREAM2.spad" 1675982 1675995 1676844 1676849) (-1068 "STREAM1.spad" 1675688 1675699 1675972 1675977) (-1067 "STREAM.spad" 1672684 1672695 1675291 1675306) (-1066 "STINPROD.spad" 1671620 1671636 1672674 1672679) (-1065 "STEPAST.spad" 1670854 1670863 1671610 1671615) (-1064 "STEP.spad" 1670171 1670180 1670844 1670849) (-1063 "STBL.spad" 1668561 1668589 1668728 1668743) (-1062 "STAGG.spad" 1667260 1667271 1668551 1668556) (-1061 "STAGG.spad" 1665957 1665970 1667250 1667255) (-1060 "STACK.spad" 1665379 1665390 1665629 1665656) (-1059 "SRING.spad" 1665139 1665148 1665369 1665374) (-1058 "SREGSET.spad" 1662871 1662888 1664773 1664800) (-1057 "SRDCMPK.spad" 1661448 1661468 1662861 1662866) (-1056 "SRAGG.spad" 1656631 1656640 1661416 1661443) (-1055 "SRAGG.spad" 1651834 1651845 1656621 1656626) (-1054 "SQMATRIX.spad" 1649511 1649529 1650427 1650514) (-1053 "SPLTREE.spad" 1644253 1644266 1649049 1649076) (-1052 "SPLNODE.spad" 1640873 1640886 1644243 1644248) (-1051 "SPFCAT.spad" 1639682 1639691 1640863 1640868) (-1050 "SPECOUT.spad" 1638234 1638243 1639672 1639677) (-1049 "SPADXPT.spad" 1630325 1630334 1638224 1638229) (-1048 "spad-parser.spad" 1629790 1629799 1630315 1630320) (-1047 "SPADAST.spad" 1629491 1629500 1629780 1629785) (-1046 "SPACEC.spad" 1613706 1613717 1629481 1629486) (-1045 "SPACE3.spad" 1613482 1613493 1613696 1613701) (-1044 "SORTPAK.spad" 1613031 1613044 1613438 1613443) (-1043 "SOLVETRA.spad" 1610794 1610805 1613021 1613026) (-1042 "SOLVESER.spad" 1609250 1609261 1610784 1610789) (-1041 "SOLVERAD.spad" 1605276 1605287 1609240 1609245) (-1040 "SOLVEFOR.spad" 1603738 1603756 1605266 1605271) (-1039 "SNTSCAT.spad" 1603338 1603355 1603706 1603733) (-1038 "SMTS.spad" 1601655 1601681 1602932 1603029) (-1037 "SMP.spad" 1599463 1599483 1599853 1599980) (-1036 "SMITH.spad" 1598308 1598333 1599453 1599458) (-1035 "SMATCAT.spad" 1596426 1596456 1598252 1598303) (-1034 "SMATCAT.spad" 1594476 1594508 1596304 1596309) (-1033 "SKAGG.spad" 1593445 1593456 1594444 1594471) (-1032 "SINT.spad" 1592744 1592753 1593311 1593440) (-1031 "SIMPAN.spad" 1592472 1592481 1592734 1592739) (-1030 "SIGNRF.spad" 1591597 1591608 1592462 1592467) (-1029 "SIGNEF.spad" 1590883 1590900 1591587 1591592) (-1028 "syntax.spad" 1590300 1590309 1590873 1590878) (-1027 "SIG.spad" 1589662 1589671 1590290 1590295) (-1026 "SHP.spad" 1587606 1587621 1589618 1589623) (-1025 "SHDP.spad" 1577099 1577126 1577616 1577713) (-1024 "SGROUP.spad" 1576707 1576716 1577089 1577094) (-1023 "SGROUP.spad" 1576313 1576324 1576697 1576702) (-1022 "catdef.spad" 1576023 1576035 1576134 1576308) (-1021 "catdef.spad" 1575579 1575591 1575844 1576018) (-1020 "SGCF.spad" 1568718 1568727 1575569 1575574) (-1019 "SFRTCAT.spad" 1567664 1567681 1568686 1568713) (-1018 "SFRGCD.spad" 1566727 1566747 1567654 1567659) (-1017 "SFQCMPK.spad" 1561540 1561560 1566717 1566722) (-1016 "SEXOF.spad" 1561383 1561423 1561530 1561535) (-1015 "SEXCAT.spad" 1559211 1559251 1561373 1561378) (-1014 "SEX.spad" 1559103 1559112 1559201 1559206) (-1013 "SETMN.spad" 1557563 1557580 1559093 1559098) (-1012 "SETCAT.spad" 1557048 1557057 1557553 1557558) (-1011 "SETCAT.spad" 1556531 1556542 1557038 1557043) (-1010 "SETAGG.spad" 1553080 1553091 1556511 1556526) (-1009 "SETAGG.spad" 1549637 1549650 1553070 1553075) (-1008 "SET.spad" 1547946 1547957 1549043 1549082) (-1007 "syntax.spad" 1547649 1547658 1547936 1547941) (-1006 "SEGXCAT.spad" 1546805 1546818 1547639 1547644) (-1005 "SEGCAT.spad" 1545730 1545741 1546795 1546800) (-1004 "SEGBIND2.spad" 1545428 1545441 1545720 1545725) (-1003 "SEGBIND.spad" 1545186 1545197 1545375 1545380) (-1002 "SEGAST.spad" 1544916 1544925 1545176 1545181) (-1001 "SEG2.spad" 1544351 1544364 1544872 1544877) (-1000 "SEG.spad" 1544164 1544175 1544270 1544275) (-999 "SDVAR.spad" 1543441 1543451 1544154 1544159) (-998 "SDPOL.spad" 1541139 1541149 1541429 1541556) (-997 "SCPKG.spad" 1539229 1539239 1541129 1541134) (-996 "SCOPE.spad" 1538407 1538415 1539219 1539224) (-995 "SCACHE.spad" 1537104 1537114 1538397 1538402) (-994 "SASTCAT.spad" 1537014 1537022 1537094 1537099) (-993 "SAOS.spad" 1536887 1536895 1537004 1537009) (-992 "SAERFFC.spad" 1536601 1536620 1536877 1536882) (-991 "SAEFACT.spad" 1536303 1536322 1536591 1536596) (-990 "SAE.spad" 1533954 1533969 1534564 1534699) (-989 "RURPK.spad" 1531614 1531629 1533944 1533949) (-988 "RULESET.spad" 1531068 1531091 1531604 1531609) (-987 "RULECOLD.spad" 1530921 1530933 1531058 1531063) (-986 "RULE.spad" 1529170 1529193 1530911 1530916) (-985 "RTVALUE.spad" 1528906 1528914 1529160 1529165) (-984 "syntax.spad" 1528624 1528632 1528896 1528901) (-983 "RSETGCD.spad" 1525067 1525086 1528614 1528619) (-982 "RSETCAT.spad" 1515036 1515052 1525035 1525062) (-981 "RSETCAT.spad" 1505025 1505043 1515026 1515031) (-980 "RSDCMPK.spad" 1503526 1503545 1505015 1505020) (-979 "RRCC.spad" 1501911 1501940 1503516 1503521) (-978 "RRCC.spad" 1500294 1500325 1501901 1501906) (-977 "RPTAST.spad" 1499997 1500005 1500284 1500289) (-976 "RPOLCAT.spad" 1479502 1479516 1499865 1499992) (-975 "RPOLCAT.spad" 1458800 1458816 1479165 1479170) (-974 "ROMAN.spad" 1458129 1458137 1458666 1458795) (-973 "ROIRC.spad" 1457210 1457241 1458119 1458124) (-972 "RNS.spad" 1456187 1456195 1457112 1457205) (-971 "RNS.spad" 1455250 1455260 1456177 1456182) (-970 "RNGBIND.spad" 1454411 1454424 1455205 1455210) (-969 "RNG.spad" 1454147 1454155 1454401 1454406) (-968 "RMODULE.spad" 1453929 1453939 1454137 1454142) (-967 "RMCAT2.spad" 1453350 1453406 1453919 1453924) (-966 "RMATRIX.spad" 1452160 1452178 1452502 1452541) (-965 "RMATCAT.spad" 1447740 1447770 1452116 1452155) (-964 "RMATCAT.spad" 1443210 1443242 1447588 1447593) (-963 "RLINSET.spad" 1442915 1442925 1443200 1443205) (-962 "RINTERP.spad" 1442804 1442823 1442905 1442910) (-961 "RING.spad" 1442275 1442283 1442784 1442799) (-960 "RING.spad" 1441754 1441764 1442265 1442270) (-959 "RIDIST.spad" 1441147 1441155 1441744 1441749) (-958 "RGCHAIN.spad" 1439702 1439717 1440595 1440622) (-957 "RGBCSPC.spad" 1439492 1439503 1439692 1439697) (-956 "RGBCMDL.spad" 1439055 1439066 1439482 1439487) (-955 "RFFACTOR.spad" 1438518 1438528 1439045 1439050) (-954 "RFFACT.spad" 1438254 1438265 1438508 1438513) (-953 "RFDIST.spad" 1437251 1437259 1438244 1438249) (-952 "RF.spad" 1434926 1434936 1437241 1437246) (-951 "RETSOL.spad" 1434346 1434358 1434916 1434921) (-950 "RETRACT.spad" 1433775 1433785 1434336 1434341) (-949 "RETRACT.spad" 1433202 1433214 1433765 1433770) (-948 "RETAST.spad" 1433015 1433023 1433192 1433197) (-947 "RESRING.spad" 1432363 1432409 1432953 1433010) (-946 "RESLATC.spad" 1431688 1431698 1432353 1432358) (-945 "REPSQ.spad" 1431420 1431430 1431678 1431683) (-944 "REPDB.spad" 1431128 1431138 1431410 1431415) (-943 "REP2.spad" 1420843 1420853 1430970 1430975) (-942 "REP1.spad" 1415064 1415074 1420793 1420798) (-941 "REP.spad" 1412619 1412627 1415054 1415059) (-940 "REGSET.spad" 1410445 1410461 1412253 1412280) (-939 "REF.spad" 1409964 1409974 1410435 1410440) (-938 "REDORDER.spad" 1409171 1409187 1409954 1409959) (-937 "RECLOS.spad" 1408068 1408087 1408771 1408864) (-936 "REALSOLV.spad" 1407209 1407217 1408058 1408063) (-935 "REAL0Q.spad" 1404508 1404522 1407199 1407204) (-934 "REAL0.spad" 1401353 1401367 1404498 1404503) (-933 "REAL.spad" 1401226 1401234 1401343 1401348) (-932 "RDUCEAST.spad" 1400948 1400956 1401216 1401221) (-931 "RDIV.spad" 1400604 1400628 1400938 1400943) (-930 "RDIST.spad" 1400172 1400182 1400594 1400599) (-929 "RDETRS.spad" 1399037 1399054 1400162 1400167) (-928 "RDETR.spad" 1397177 1397194 1399027 1399032) (-927 "RDEEFS.spad" 1396277 1396293 1397167 1397172) (-926 "RDEEF.spad" 1395288 1395304 1396267 1396272) (-925 "RCFIELD.spad" 1392507 1392515 1395190 1395283) (-924 "RCFIELD.spad" 1389812 1389822 1392497 1392502) (-923 "RCAGG.spad" 1387749 1387759 1389802 1389807) (-922 "RCAGG.spad" 1385613 1385625 1387668 1387673) (-921 "RATRET.spad" 1384974 1384984 1385603 1385608) (-920 "RATFACT.spad" 1384667 1384678 1384964 1384969) (-919 "RANDSRC.spad" 1383987 1383995 1384657 1384662) (-918 "RADUTIL.spad" 1383744 1383752 1383977 1383982) (-917 "RADIX.spad" 1380789 1380802 1382334 1382427) (-916 "RADFF.spad" 1378706 1378742 1378824 1378980) (-915 "RADCAT.spad" 1378302 1378310 1378696 1378701) (-914 "RADCAT.spad" 1377896 1377906 1378292 1378297) (-913 "QUEUE.spad" 1377310 1377320 1377568 1377595) (-912 "QUATCT2.spad" 1376931 1376949 1377300 1377305) (-911 "QUATCAT.spad" 1375102 1375112 1376861 1376926) (-910 "QUATCAT.spad" 1373038 1373050 1374799 1374804) (-909 "QUAT.spad" 1371645 1371655 1371987 1372052) (-908 "QUAGG.spad" 1370479 1370489 1371613 1371640) (-907 "QQUTAST.spad" 1370248 1370256 1370469 1370474) (-906 "QFORM.spad" 1369867 1369881 1370238 1370243) (-905 "QFCAT2.spad" 1369560 1369576 1369857 1369862) (-904 "QFCAT.spad" 1368263 1368273 1369462 1369555) (-903 "QFCAT.spad" 1366599 1366611 1367800 1367805) (-902 "QEQUAT.spad" 1366158 1366166 1366589 1366594) (-901 "QCMPACK.spad" 1361073 1361092 1366148 1366153) (-900 "QALGSET2.spad" 1359069 1359087 1361063 1361068) (-899 "QALGSET.spad" 1355174 1355206 1358983 1358988) (-898 "PWFFINTB.spad" 1352590 1352611 1355164 1355169) (-897 "PUSHVAR.spad" 1351929 1351948 1352580 1352585) (-896 "PTRANFN.spad" 1348065 1348075 1351919 1351924) (-895 "PTPACK.spad" 1345153 1345163 1348055 1348060) (-894 "PTFUNC2.spad" 1344976 1344990 1345143 1345148) (-893 "PTCAT.spad" 1344231 1344241 1344944 1344971) (-892 "PSQFR.spad" 1343546 1343570 1344221 1344226) (-891 "PSEUDLIN.spad" 1342432 1342442 1343536 1343541) (-890 "PSETPK.spad" 1329137 1329153 1342310 1342315) (-889 "PSETCAT.spad" 1323537 1323560 1329117 1329132) (-888 "PSETCAT.spad" 1317911 1317936 1323493 1323498) (-887 "PSCURVE.spad" 1316910 1316918 1317901 1317906) (-886 "PSCAT.spad" 1315693 1315722 1316808 1316905) (-885 "PSCAT.spad" 1314566 1314597 1315683 1315688) (-884 "PRTITION.spad" 1313264 1313272 1314556 1314561) (-883 "PRTDAST.spad" 1312983 1312991 1313254 1313259) (-882 "PRS.spad" 1302601 1302618 1312939 1312944) (-881 "PRQAGG.spad" 1302036 1302046 1302569 1302596) (-880 "PROPLOG.spad" 1301640 1301648 1302026 1302031) (-879 "PROPFUN2.spad" 1301263 1301276 1301630 1301635) (-878 "PROPFUN1.spad" 1300669 1300680 1301253 1301258) (-877 "PROPFRML.spad" 1299237 1299248 1300659 1300664) (-876 "PROPERTY.spad" 1298733 1298741 1299227 1299232) (-875 "PRODUCT.spad" 1296430 1296442 1296714 1296769) (-874 "PRINT.spad" 1296182 1296190 1296420 1296425) (-873 "PRIMES.spad" 1294443 1294453 1296172 1296177) (-872 "PRIMELT.spad" 1292564 1292578 1294433 1294438) (-871 "PRIMCAT.spad" 1292207 1292215 1292554 1292559) (-870 "PRIMARR2.spad" 1290974 1290986 1292197 1292202) (-869 "PRIMARR.spad" 1290029 1290039 1290199 1290226) (-868 "PREASSOC.spad" 1289411 1289423 1290019 1290024) (-867 "PR.spad" 1287929 1287941 1288628 1288755) (-866 "PPCURVE.spad" 1287066 1287074 1287919 1287924) (-865 "PORTNUM.spad" 1286857 1286865 1287056 1287061) (-864 "POLYROOT.spad" 1285706 1285728 1286813 1286818) (-863 "POLYLIFT.spad" 1284971 1284994 1285696 1285701) (-862 "POLYCATQ.spad" 1283097 1283119 1284961 1284966) (-861 "POLYCAT.spad" 1276599 1276620 1282965 1283092) (-860 "POLYCAT.spad" 1269621 1269644 1275989 1275994) (-859 "POLY2UP.spad" 1269073 1269087 1269611 1269616) (-858 "POLY2.spad" 1268670 1268682 1269063 1269068) (-857 "POLY.spad" 1266338 1266348 1266853 1266980) (-856 "POLUTIL.spad" 1265303 1265332 1266294 1266299) (-855 "POLTOPOL.spad" 1264051 1264066 1265293 1265298) (-854 "POINT.spad" 1262934 1262944 1263021 1263048) (-853 "PNTHEORY.spad" 1259636 1259644 1262924 1262929) (-852 "PMTOOLS.spad" 1258411 1258425 1259626 1259631) (-851 "PMSYM.spad" 1257960 1257970 1258401 1258406) (-850 "PMQFCAT.spad" 1257551 1257565 1257950 1257955) (-849 "PMPREDFS.spad" 1257013 1257035 1257541 1257546) (-848 "PMPRED.spad" 1256500 1256514 1257003 1257008) (-847 "PMPLCAT.spad" 1255577 1255595 1256429 1256434) (-846 "PMLSAGG.spad" 1255162 1255176 1255567 1255572) (-845 "PMKERNEL.spad" 1254741 1254753 1255152 1255157) (-844 "PMINS.spad" 1254321 1254331 1254731 1254736) (-843 "PMFS.spad" 1253898 1253916 1254311 1254316) (-842 "PMDOWN.spad" 1253188 1253202 1253888 1253893) (-841 "PMASSFS.spad" 1252163 1252179 1253178 1253183) (-840 "PMASS.spad" 1251181 1251189 1252153 1252158) (-839 "PLOTTOOL.spad" 1250961 1250969 1251171 1251176) (-838 "PLOT3D.spad" 1247425 1247433 1250951 1250956) (-837 "PLOT1.spad" 1246598 1246608 1247415 1247420) (-836 "PLOT.spad" 1241521 1241529 1246588 1246593) (-835 "PLEQN.spad" 1228923 1228950 1241511 1241516) (-834 "PINTERPA.spad" 1228707 1228723 1228913 1228918) (-833 "PINTERP.spad" 1228329 1228348 1228697 1228702) (-832 "PID.spad" 1227303 1227311 1228255 1228324) (-831 "PICOERCE.spad" 1226960 1226970 1227293 1227298) (-830 "PI.spad" 1226577 1226585 1226934 1226955) (-829 "PGROEB.spad" 1225186 1225200 1226567 1226572) (-828 "PGE.spad" 1216859 1216867 1225176 1225181) (-827 "PGCD.spad" 1215813 1215830 1216849 1216854) (-826 "PFRPAC.spad" 1214962 1214972 1215803 1215808) (-825 "PFR.spad" 1211665 1211675 1214864 1214957) (-824 "PFOTOOLS.spad" 1210923 1210939 1211655 1211660) (-823 "PFOQ.spad" 1210293 1210311 1210913 1210918) (-822 "PFO.spad" 1209712 1209739 1210283 1210288) (-821 "PFECAT.spad" 1207422 1207430 1209638 1209707) (-820 "PFECAT.spad" 1205160 1205170 1207378 1207383) (-819 "PFBRU.spad" 1203048 1203060 1205150 1205155) (-818 "PFBR.spad" 1200608 1200631 1203038 1203043) (-817 "PF.spad" 1200182 1200194 1200413 1200506) (-816 "PERMGRP.spad" 1194952 1194962 1200172 1200177) (-815 "PERMCAT.spad" 1193613 1193623 1194932 1194947) (-814 "PERMAN.spad" 1192169 1192183 1193603 1193608) (-813 "PERM.spad" 1187979 1187989 1192002 1192017) (-812 "PENDTREE.spad" 1187393 1187403 1187673 1187678) (-811 "PDSPC.spad" 1186206 1186216 1187383 1187388) (-810 "PDSPC.spad" 1185017 1185029 1186196 1186201) (-809 "PDRING.spad" 1184859 1184869 1184997 1185012) (-808 "PDMOD.spad" 1184675 1184687 1184827 1184854) (-807 "PDECOMP.spad" 1184145 1184162 1184665 1184670) (-806 "PDDOM.spad" 1183583 1183596 1184135 1184140) (-805 "PDDOM.spad" 1183019 1183034 1183573 1183578) (-804 "PCOMP.spad" 1182872 1182885 1183009 1183014) (-803 "PBWLB.spad" 1181470 1181487 1182862 1182867) (-802 "PATTERN2.spad" 1181208 1181220 1181460 1181465) (-801 "PATTERN1.spad" 1179552 1179568 1181198 1181203) (-800 "PATTERN.spad" 1174127 1174137 1179542 1179547) (-799 "PATRES2.spad" 1173799 1173813 1174117 1174122) (-798 "PATRES.spad" 1171382 1171394 1173789 1173794) (-797 "PATMATCH.spad" 1169623 1169654 1171134 1171139) (-796 "PATMAB.spad" 1169052 1169062 1169613 1169618) (-795 "PATLRES.spad" 1168138 1168152 1169042 1169047) (-794 "PATAB.spad" 1167902 1167912 1168128 1168133) (-793 "PARTPERM.spad" 1165958 1165966 1167892 1167897) (-792 "PARSURF.spad" 1165392 1165420 1165948 1165953) (-791 "PARSU2.spad" 1165189 1165205 1165382 1165387) (-790 "script-parser.spad" 1164709 1164717 1165179 1165184) (-789 "PARSCURV.spad" 1164143 1164171 1164699 1164704) (-788 "PARSC2.spad" 1163934 1163950 1164133 1164138) (-787 "PARPCURV.spad" 1163396 1163424 1163924 1163929) (-786 "PARPC2.spad" 1163187 1163203 1163386 1163391) (-785 "PARAMAST.spad" 1162315 1162323 1163177 1163182) (-784 "PAN2EXPR.spad" 1161727 1161735 1162305 1162310) (-783 "PALETTE.spad" 1160841 1160849 1161717 1161722) (-782 "PAIR.spad" 1159915 1159928 1160484 1160489) (-781 "PADICRC.spad" 1157320 1157338 1158483 1158576) (-780 "PADICRAT.spad" 1155380 1155392 1155593 1155686) (-779 "PADICCT.spad" 1153929 1153941 1155306 1155375) (-778 "PADIC.spad" 1153632 1153644 1153855 1153924) (-777 "PADEPAC.spad" 1152321 1152340 1153622 1153627) (-776 "PADE.spad" 1151073 1151089 1152311 1152316) (-775 "OWP.spad" 1150321 1150351 1150931 1150998) (-774 "OVERSET.spad" 1149894 1149902 1150311 1150316) (-773 "OVAR.spad" 1149675 1149698 1149884 1149889) (-772 "OUTFORM.spad" 1139083 1139091 1149665 1149670) (-771 "OUTBFILE.spad" 1138517 1138525 1139073 1139078) (-770 "OUTBCON.spad" 1137587 1137595 1138507 1138512) (-769 "OUTBCON.spad" 1136655 1136665 1137577 1137582) (-768 "OUT.spad" 1135773 1135781 1136645 1136650) (-767 "OSI.spad" 1135248 1135256 1135763 1135768) (-766 "OSGROUP.spad" 1135166 1135174 1135238 1135243) (-765 "ORTHPOL.spad" 1133677 1133687 1135109 1135114) (-764 "OREUP.spad" 1133171 1133199 1133398 1133437) (-763 "ORESUP.spad" 1132513 1132537 1132892 1132931) (-762 "OREPCTO.spad" 1130402 1130414 1132433 1132438) (-761 "OREPCAT.spad" 1124589 1124599 1130358 1130397) (-760 "OREPCAT.spad" 1118666 1118678 1124437 1124442) (-759 "ORDTYPE.spad" 1117903 1117911 1118656 1118661) (-758 "ORDTYPE.spad" 1117138 1117148 1117893 1117898) (-757 "ORDSTRCT.spad" 1116924 1116939 1117087 1117092) (-756 "ORDSET.spad" 1116624 1116632 1116914 1116919) (-755 "ORDRING.spad" 1116441 1116449 1116604 1116619) (-754 "ORDMON.spad" 1116296 1116304 1116431 1116436) (-753 "ORDFUNS.spad" 1115428 1115444 1116286 1116291) (-752 "ORDFIN.spad" 1115248 1115256 1115418 1115423) (-751 "ORDCOMP2.spad" 1114541 1114553 1115238 1115243) (-750 "ORDCOMP.spad" 1113067 1113077 1114149 1114178) (-749 "OPSIG.spad" 1112729 1112737 1113057 1113062) (-748 "OPQUERY.spad" 1112310 1112318 1112719 1112724) (-747 "OPERCAT.spad" 1111776 1111786 1112300 1112305) (-746 "OPERCAT.spad" 1111240 1111252 1111766 1111771) (-745 "OP.spad" 1110982 1110992 1111062 1111129) (-744 "ONECOMP2.spad" 1110406 1110418 1110972 1110977) (-743 "ONECOMP.spad" 1109212 1109222 1110014 1110043) (-742 "OMSAGG.spad" 1109000 1109010 1109168 1109207) (-741 "OMLO.spad" 1108433 1108445 1108886 1108925) (-740 "OINTDOM.spad" 1108196 1108204 1108359 1108428) (-739 "OFMONOID.spad" 1106335 1106345 1108152 1108157) (-738 "ODVAR.spad" 1105596 1105606 1106325 1106330) (-737 "ODR.spad" 1105240 1105266 1105408 1105557) (-736 "ODPOL.spad" 1102888 1102898 1103228 1103355) (-735 "ODP.spad" 1092525 1092545 1092898 1092995) (-734 "ODETOOLS.spad" 1091174 1091193 1092515 1092520) (-733 "ODESYS.spad" 1088868 1088885 1091164 1091169) (-732 "ODERTRIC.spad" 1084901 1084918 1088825 1088830) (-731 "ODERED.spad" 1084300 1084324 1084891 1084896) (-730 "ODERAT.spad" 1081933 1081950 1084290 1084295) (-729 "ODEPRRIC.spad" 1079026 1079048 1081923 1081928) (-728 "ODEPRIM.spad" 1076424 1076446 1079016 1079021) (-727 "ODEPAL.spad" 1075810 1075834 1076414 1076419) (-726 "ODEINT.spad" 1075245 1075261 1075800 1075805) (-725 "ODEEF.spad" 1070740 1070756 1075235 1075240) (-724 "ODECONST.spad" 1070285 1070303 1070730 1070735) (-723 "OCTCT2.spad" 1069926 1069944 1070275 1070280) (-722 "OCT.spad" 1068241 1068251 1068955 1068994) (-721 "OCAMON.spad" 1068089 1068097 1068231 1068236) (-720 "OC.spad" 1065885 1065895 1068045 1068084) (-719 "OC.spad" 1063420 1063432 1065582 1065587) (-718 "OASGP.spad" 1063235 1063243 1063410 1063415) (-717 "OAMONS.spad" 1062757 1062765 1063225 1063230) (-716 "OAMON.spad" 1062515 1062523 1062747 1062752) (-715 "OAMON.spad" 1062271 1062281 1062505 1062510) (-714 "OAGROUP.spad" 1061809 1061817 1062261 1062266) (-713 "OAGROUP.spad" 1061345 1061355 1061799 1061804) (-712 "NUMTUBE.spad" 1060936 1060952 1061335 1061340) (-711 "NUMQUAD.spad" 1048912 1048920 1060926 1060931) (-710 "NUMODE.spad" 1040264 1040272 1048902 1048907) (-709 "NUMFMT.spad" 1039104 1039112 1040254 1040259) (-708 "NUMERIC.spad" 1031219 1031229 1038910 1038915) (-707 "NTSCAT.spad" 1029727 1029743 1031187 1031214) (-706 "NTPOLFN.spad" 1029304 1029314 1029670 1029675) (-705 "NSUP2.spad" 1028696 1028708 1029294 1029299) (-704 "NSUP.spad" 1022133 1022143 1026553 1026706) (-703 "NSMP.spad" 1019045 1019064 1019337 1019464) (-702 "NREP.spad" 1017447 1017461 1019035 1019040) (-701 "NPCOEF.spad" 1016693 1016713 1017437 1017442) (-700 "NORMRETR.spad" 1016291 1016330 1016683 1016688) (-699 "NORMPK.spad" 1014233 1014252 1016281 1016286) (-698 "NORMMA.spad" 1013921 1013947 1014223 1014228) (-697 "NONE1.spad" 1013597 1013607 1013911 1013916) (-696 "NONE.spad" 1013338 1013346 1013587 1013592) (-695 "NODE1.spad" 1012825 1012841 1013328 1013333) (-694 "NNI.spad" 1011720 1011728 1012799 1012820) (-693 "NLINSOL.spad" 1010346 1010356 1011710 1011715) (-692 "NFINTBAS.spad" 1007906 1007923 1010336 1010341) (-691 "NETCLT.spad" 1007880 1007891 1007896 1007901) (-690 "NCODIV.spad" 1006104 1006120 1007870 1007875) (-689 "NCNTFRAC.spad" 1005746 1005760 1006094 1006099) (-688 "NCEP.spad" 1003912 1003926 1005736 1005741) (-687 "NASRING.spad" 1003516 1003524 1003902 1003907) (-686 "NASRING.spad" 1003118 1003128 1003506 1003511) (-685 "NARNG.spad" 1002518 1002526 1003108 1003113) (-684 "NARNG.spad" 1001916 1001926 1002508 1002513) (-683 "NAALG.spad" 1001481 1001491 1001884 1001911) (-682 "NAALG.spad" 1001066 1001078 1001471 1001476) (-681 "MULTSQFR.spad" 998024 998041 1001056 1001061) (-680 "MULTFACT.spad" 997407 997424 998014 998019) (-679 "MTSCAT.spad" 995501 995522 997305 997402) (-678 "MTHING.spad" 995160 995170 995491 995496) (-677 "MSYSCMD.spad" 994594 994602 995150 995155) (-676 "MSETAGG.spad" 994439 994449 994562 994589) (-675 "MSET.spad" 992385 992395 994133 994172) (-674 "MRING.spad" 989362 989374 992093 992160) (-673 "MRF2.spad" 988924 988938 989352 989357) (-672 "MRATFAC.spad" 988470 988487 988914 988919) (-671 "MPRFF.spad" 986510 986529 988460 988465) (-670 "MPOLY.spad" 984314 984329 984673 984800) (-669 "MPCPF.spad" 983578 983597 984304 984309) (-668 "MPC3.spad" 983395 983435 983568 983573) (-667 "MPC2.spad" 983048 983081 983385 983390) (-666 "MONOTOOL.spad" 981399 981416 983038 983043) (-665 "catdef.spad" 980832 980843 981053 981394) (-664 "catdef.spad" 980230 980241 980486 980827) (-663 "MONOID.spad" 979551 979559 980220 980225) (-662 "MONOID.spad" 978870 978880 979541 979546) (-661 "MONOGEN.spad" 977618 977631 978730 978865) (-660 "MONOGEN.spad" 976388 976403 977502 977507) (-659 "MONADWU.spad" 974468 974476 976378 976383) (-658 "MONADWU.spad" 972546 972556 974458 974463) (-657 "MONAD.spad" 971706 971714 972536 972541) (-656 "MONAD.spad" 970864 970874 971696 971701) (-655 "MOEBIUS.spad" 969600 969614 970844 970859) (-654 "MODULE.spad" 969470 969480 969568 969595) (-653 "MODULE.spad" 969360 969372 969460 969465) (-652 "MODRING.spad" 968695 968734 969340 969355) (-651 "MODOP.spad" 967352 967364 968517 968584) (-650 "MODMONOM.spad" 967083 967101 967342 967347) (-649 "MODMON.spad" 964153 964165 964868 965021) (-648 "MODFIELD.spad" 963515 963554 964055 964148) (-647 "MMLFORM.spad" 962375 962383 963505 963510) (-646 "MMAP.spad" 962117 962151 962365 962370) (-645 "MLO.spad" 960576 960586 962073 962112) (-644 "MLIFT.spad" 959188 959205 960566 960571) (-643 "MKUCFUNC.spad" 958723 958741 959178 959183) (-642 "MKRECORD.spad" 958311 958324 958713 958718) (-641 "MKFUNC.spad" 957718 957728 958301 958306) (-640 "MKFLCFN.spad" 956686 956696 957708 957713) (-639 "MKBCFUNC.spad" 956181 956199 956676 956681) (-638 "MHROWRED.spad" 954692 954702 956171 956176) (-637 "MFINFACT.spad" 954092 954114 954682 954687) (-636 "MESH.spad" 951887 951895 954082 954087) (-635 "MDDFACT.spad" 950106 950116 951877 951882) (-634 "MDAGG.spad" 949397 949407 950086 950101) (-633 "MCDEN.spad" 948607 948619 949387 949392) (-632 "MAYBE.spad" 947907 947918 948597 948602) (-631 "MATSTOR.spad" 945223 945233 947897 947902) (-630 "MATRIX.spad" 944002 944012 944486 944513) (-629 "MATLIN.spad" 941370 941394 943886 943891) (-628 "MATCAT2.spad" 940652 940700 941360 941365) (-627 "MATCAT.spad" 932214 932236 940620 940647) (-626 "MATCAT.spad" 923648 923672 932056 932061) (-625 "MAPPKG3.spad" 922563 922577 923638 923643) (-624 "MAPPKG2.spad" 921901 921913 922553 922558) (-623 "MAPPKG1.spad" 920729 920739 921891 921896) (-622 "MAPPAST.spad" 920068 920076 920719 920724) (-621 "MAPHACK3.spad" 919880 919894 920058 920063) (-620 "MAPHACK2.spad" 919649 919661 919870 919875) (-619 "MAPHACK1.spad" 919293 919303 919639 919644) (-618 "MAGMA.spad" 917099 917116 919283 919288) (-617 "MACROAST.spad" 916694 916702 917089 917094) (-616 "LZSTAGG.spad" 913948 913958 916684 916689) (-615 "LZSTAGG.spad" 911200 911212 913938 913943) (-614 "LWORD.spad" 907945 907962 911190 911195) (-613 "LSTAST.spad" 907729 907737 907935 907940) (-612 "LSQM.spad" 906007 906021 906401 906452) (-611 "LSPP.spad" 905542 905559 905997 906002) (-610 "LSMP1.spad" 903385 903399 905532 905537) (-609 "LSMP.spad" 902242 902270 903375 903380) (-608 "LSAGG.spad" 901911 901921 902210 902237) (-607 "LSAGG.spad" 901600 901612 901901 901906) (-606 "LPOLY.spad" 900562 900581 901456 901525) (-605 "LPEFRAC.spad" 899833 899843 900552 900557) (-604 "LOGIC.spad" 899435 899443 899823 899828) (-603 "LOGIC.spad" 899035 899045 899425 899430) (-602 "LODOOPS.spad" 897965 897977 899025 899030) (-601 "LODOF.spad" 897011 897028 897922 897927) (-600 "LODOCAT.spad" 895677 895687 896967 897006) (-599 "LODOCAT.spad" 894341 894353 895633 895638) (-598 "LODO2.spad" 893655 893667 894062 894101) (-597 "LODO1.spad" 893096 893106 893376 893415) (-596 "LODO.spad" 892521 892537 892817 892856) (-595 "LODEEF.spad" 891323 891341 892511 892516) (-594 "LO.spad" 890724 890738 891257 891284) (-593 "LNAGG.spad" 886911 886921 890714 890719) (-592 "LNAGG.spad" 883062 883074 886867 886872) (-591 "LMOPS.spad" 879830 879847 883052 883057) (-590 "LMODULE.spad" 879614 879624 879820 879825) (-589 "LMDICT.spad" 878995 879005 879243 879270) (-588 "LLINSET.spad" 878702 878712 878985 878990) (-587 "LITERAL.spad" 878608 878619 878692 878697) (-586 "LIST3.spad" 877919 877933 878598 878603) (-585 "LIST2MAP.spad" 874846 874858 877909 877914) (-584 "LIST2.spad" 873548 873560 874836 874841) (-583 "LIST.spad" 871430 871440 872773 872800) (-582 "LINSET.spad" 871209 871219 871420 871425) (-581 "LINFORM.spad" 870672 870684 871177 871204) (-580 "LINEXP.spad" 869415 869425 870662 870667) (-579 "LINELT.spad" 868786 868798 869298 869325) (-578 "LINDEP.spad" 867635 867647 868698 868703) (-577 "LINBASIS.spad" 867271 867286 867625 867630) (-576 "LIMITRF.spad" 865218 865228 867261 867266) (-575 "LIMITPS.spad" 864128 864141 865208 865213) (-574 "LIECAT.spad" 863612 863622 864054 864123) (-573 "LIECAT.spad" 863124 863136 863568 863573) (-572 "LIE.spad" 861128 861140 862402 862544) (-571 "LIB.spad" 859299 859307 859745 859760) (-570 "LGROBP.spad" 856652 856671 859289 859294) (-569 "LFCAT.spad" 855711 855719 856642 856647) (-568 "LF.spad" 854666 854682 855701 855706) (-567 "LEXTRIPK.spad" 850289 850304 854656 854661) (-566 "LEXP.spad" 848308 848335 850269 850284) (-565 "LETAST.spad" 848007 848015 848298 848303) (-564 "LEADCDET.spad" 846413 846430 847997 848002) (-563 "LAZM3PK.spad" 845157 845179 846403 846408) (-562 "LAUPOL.spad" 843824 843837 844724 844793) (-561 "LAPLACE.spad" 843407 843423 843814 843819) (-560 "LALG.spad" 843183 843193 843387 843402) (-559 "LALG.spad" 842967 842979 843173 843178) (-558 "LA.spad" 842407 842421 842889 842928) (-557 "KVTFROM.spad" 842150 842160 842397 842402) (-556 "KTVLOGIC.spad" 841694 841702 842140 842145) (-555 "KRCFROM.spad" 841440 841450 841684 841689) (-554 "KOVACIC.spad" 840171 840188 841430 841435) (-553 "KONVERT.spad" 839893 839903 840161 840166) (-552 "KOERCE.spad" 839630 839640 839883 839888) (-551 "KERNEL2.spad" 839333 839345 839620 839625) (-550 "KERNEL.spad" 838053 838063 839182 839187) (-549 "KDAGG.spad" 837162 837184 838033 838048) (-548 "KDAGG.spad" 836279 836303 837152 837157) (-547 "KAFILE.spad" 835169 835185 835404 835431) (-546 "JVMOP.spad" 835082 835090 835159 835164) (-545 "JVMMDACC.spad" 834136 834144 835072 835077) (-544 "JVMFDACC.spad" 833452 833460 834126 834131) (-543 "JVMCSTTG.spad" 832181 832189 833442 833447) (-542 "JVMCFACC.spad" 831627 831635 832171 832176) (-541 "JVMBCODE.spad" 831538 831546 831617 831622) (-540 "JORDAN.spad" 829355 829367 830816 830958) (-539 "JOINAST.spad" 829057 829065 829345 829350) (-538 "IXAGG.spad" 827190 827214 829047 829052) (-537 "IXAGG.spad" 825178 825204 827037 827042) (-536 "IVECTOR.spad" 823993 824008 824148 824175) (-535 "ITUPLE.spad" 823169 823179 823983 823988) (-534 "ITRIGMNP.spad" 822016 822035 823159 823164) (-533 "ITFUN3.spad" 821522 821536 822006 822011) (-532 "ITFUN2.spad" 821266 821278 821512 821517) (-531 "ITFORM.spad" 820621 820629 821256 821261) (-530 "ITAYLOR.spad" 818615 818630 820485 820582) (-529 "ISUPS.spad" 811064 811079 817601 817698) (-528 "ISUMP.spad" 810565 810581 811054 811059) (-527 "ISAST.spad" 810284 810292 810555 810560) (-526 "IRURPK.spad" 809001 809020 810274 810279) (-525 "IRSN.spad" 807005 807013 808991 808996) (-524 "IRRF2F.spad" 805498 805508 806961 806966) (-523 "IRREDFFX.spad" 805099 805110 805488 805493) (-522 "IROOT.spad" 803438 803448 805089 805094) (-521 "IRFORM.spad" 802762 802770 803428 803433) (-520 "IR2F.spad" 801976 801992 802752 802757) (-519 "IR2.spad" 801004 801020 801966 801971) (-518 "IR.spad" 798840 798854 800886 800913) (-517 "IPRNTPK.spad" 798600 798608 798830 798835) (-516 "IPF.spad" 798165 798177 798405 798498) (-515 "IPADIC.spad" 797934 797960 798091 798160) (-514 "IP4ADDR.spad" 797491 797499 797924 797929) (-513 "IOMODE.spad" 797013 797021 797481 797486) (-512 "IOBFILE.spad" 796398 796406 797003 797008) (-511 "IOBCON.spad" 796263 796271 796388 796393) (-510 "INVLAPLA.spad" 795912 795928 796253 796258) (-509 "INTTR.spad" 789306 789323 795902 795907) (-508 "INTTOOLS.spad" 787114 787130 788933 788938) (-507 "INTSLPE.spad" 786442 786450 787104 787109) (-506 "INTRVL.spad" 786008 786018 786356 786437) (-505 "INTRF.spad" 784440 784454 785998 786003) (-504 "INTRET.spad" 783872 783882 784430 784435) (-503 "INTRAT.spad" 782607 782624 783862 783867) (-502 "INTPM.spad" 781070 781086 782328 782333) (-501 "INTPAF.spad" 778946 778964 780999 781004) (-500 "INTHERTR.spad" 778220 778237 778936 778941) (-499 "INTHERAL.spad" 777890 777914 778210 778215) (-498 "INTHEORY.spad" 774329 774337 777880 777885) (-497 "INTG0.spad" 768093 768111 774258 774263) (-496 "INTFACT.spad" 767160 767170 768083 768088) (-495 "INTEF.spad" 765571 765587 767150 767155) (-494 "INTDOM.spad" 764194 764202 765497 765566) (-493 "INTDOM.spad" 762879 762889 764184 764189) (-492 "INTCAT.spad" 761146 761156 762793 762874) (-491 "INTBIT.spad" 760653 760661 761136 761141) (-490 "INTALG.spad" 759841 759868 760643 760648) (-489 "INTAF.spad" 759341 759357 759831 759836) (-488 "INTABL.spad" 757723 757754 757886 757913) (-487 "INT8.spad" 757603 757611 757713 757718) (-486 "INT64.spad" 757482 757490 757593 757598) (-485 "INT32.spad" 757361 757369 757472 757477) (-484 "INT16.spad" 757240 757248 757351 757356) (-483 "INT.spad" 756766 756774 757106 757235) (-482 "INS.spad" 754269 754277 756668 756761) (-481 "INS.spad" 751858 751868 754259 754264) (-480 "INPSIGN.spad" 751328 751341 751848 751853) (-479 "INPRODPF.spad" 750424 750443 751318 751323) (-478 "INPRODFF.spad" 749512 749536 750414 750419) (-477 "INNMFACT.spad" 748487 748504 749502 749507) (-476 "INMODGCD.spad" 747991 748021 748477 748482) (-475 "INFSP.spad" 746288 746310 747981 747986) (-474 "INFPROD0.spad" 745368 745387 746278 746283) (-473 "INFORM1.spad" 744993 745003 745358 745363) (-472 "INFORM.spad" 742204 742212 744983 744988) (-471 "INFINITY.spad" 741756 741764 742194 742199) (-470 "INETCLTS.spad" 741733 741741 741746 741751) (-469 "INEP.spad" 740279 740301 741723 741728) (-468 "INDE.spad" 739928 739945 740189 740194) (-467 "INCRMAPS.spad" 739365 739375 739918 739923) (-466 "INBFILE.spad" 738461 738469 739355 739360) (-465 "INBFF.spad" 734311 734322 738451 738456) (-464 "INBCON.spad" 732577 732585 734301 734306) (-463 "INBCON.spad" 730841 730851 732567 732572) (-462 "INAST.spad" 730502 730510 730831 730836) (-461 "IMPTAST.spad" 730210 730218 730492 730497) (-460 "IMATRIX.spad" 729220 729246 729732 729759) (-459 "IMATQF.spad" 728314 728358 729176 729181) (-458 "IMATLIN.spad" 726935 726959 728270 728275) (-457 "IIARRAY2.spad" 726404 726442 726607 726634) (-456 "IFF.spad" 725817 725833 726088 726181) (-455 "IFAST.spad" 725431 725439 725807 725812) (-454 "IFARRAY.spad" 722958 722973 724656 724683) (-453 "IFAMON.spad" 722820 722837 722914 722919) (-452 "IEVALAB.spad" 722233 722245 722810 722815) (-451 "IEVALAB.spad" 721644 721658 722223 722228) (-450 "IDPOAMS.spad" 721322 721334 721556 721561) (-449 "IDPOAM.spad" 720964 720976 721234 721239) (-448 "IDPO.spad" 720699 720711 720876 720881) (-447 "IDPC.spad" 719428 719440 720689 720694) (-446 "IDPAM.spad" 719095 719107 719340 719345) (-445 "IDPAG.spad" 718764 718776 719007 719012) (-444 "IDENT.spad" 718416 718424 718754 718759) (-443 "catdef.spad" 718187 718198 718299 718411) (-442 "IDECOMP.spad" 715426 715444 718177 718182) (-441 "IDEAL.spad" 710388 710427 715374 715379) (-440 "ICDEN.spad" 709601 709617 710378 710383) (-439 "ICARD.spad" 708994 709002 709591 709596) (-438 "IBPTOOLS.spad" 707601 707618 708984 708989) (-437 "IBITS.spad" 707114 707127 707247 707274) (-436 "IBATOOL.spad" 704099 704118 707104 707109) (-435 "IBACHIN.spad" 702606 702621 704089 704094) (-434 "IARRAY2.spad" 701667 701693 702278 702305) (-433 "IARRAY1.spad" 700746 700761 700892 700919) (-432 "IAN.spad" 699128 699136 700577 700670) (-431 "IALGFACT.spad" 698739 698772 699118 699123) (-430 "HYPCAT.spad" 698163 698171 698729 698734) (-429 "HYPCAT.spad" 697585 697595 698153 698158) (-428 "HOSTNAME.spad" 697401 697409 697575 697580) (-427 "HOMOTOP.spad" 697144 697154 697391 697396) (-426 "HOAGG.spad" 694426 694436 697134 697139) (-425 "HOAGG.spad" 691458 691470 694168 694173) (-424 "HEXADEC.spad" 689683 689691 690048 690141) (-423 "HEUGCD.spad" 688774 688785 689673 689678) (-422 "HELLFDIV.spad" 688380 688404 688764 688769) (-421 "HEAP.spad" 687837 687847 688052 688079) (-420 "HEADAST.spad" 687378 687386 687827 687832) (-419 "HDP.spad" 677011 677027 677388 677485) (-418 "HDMP.spad" 674558 674573 675174 675301) (-417 "HB.spad" 672833 672841 674548 674553) (-416 "HASHTBL.spad" 671167 671198 671378 671405) (-415 "HASAST.spad" 670883 670891 671157 671162) (-414 "HACKPI.spad" 670374 670382 670785 670878) (-413 "GTSET.spad" 669301 669317 670008 670035) (-412 "GSTBL.spad" 667684 667719 667858 667873) (-411 "GSERIES.spad" 665056 665083 665875 666024) (-410 "GROUP.spad" 664329 664337 665036 665051) (-409 "GROUP.spad" 663610 663620 664319 664324) (-408 "GROEBSOL.spad" 662104 662125 663600 663605) (-407 "GRMOD.spad" 660685 660697 662094 662099) (-406 "GRMOD.spad" 659264 659278 660675 660680) (-405 "GRIMAGE.spad" 652177 652185 659254 659259) (-404 "GRDEF.spad" 650556 650564 652167 652172) (-403 "GRAY.spad" 649027 649035 650546 650551) (-402 "GRALG.spad" 648122 648134 649017 649022) (-401 "GRALG.spad" 647215 647229 648112 648117) (-400 "GPOLSET.spad" 646673 646696 646885 646912) (-399 "GOSPER.spad" 645950 645968 646663 646668) (-398 "GMODPOL.spad" 645098 645125 645918 645945) (-397 "GHENSEL.spad" 644181 644195 645088 645093) (-396 "GENUPS.spad" 640474 640487 644171 644176) (-395 "GENUFACT.spad" 640051 640061 640464 640469) (-394 "GENPGCD.spad" 639653 639670 640041 640046) (-393 "GENMFACT.spad" 639105 639124 639643 639648) (-392 "GENEEZ.spad" 637064 637077 639095 639100) (-391 "GDMP.spad" 634453 634470 635227 635354) (-390 "GCNAALG.spad" 628376 628403 634247 634314) (-389 "GCDDOM.spad" 627568 627576 628302 628371) (-388 "GCDDOM.spad" 626822 626832 627558 627563) (-387 "GBINTERN.spad" 622842 622880 626812 626817) (-386 "GBF.spad" 618625 618663 622832 622837) (-385 "GBEUCLID.spad" 616507 616545 618615 618620) (-384 "GB.spad" 614033 614071 616463 616468) (-383 "GAUSSFAC.spad" 613346 613354 614023 614028) (-382 "GALUTIL.spad" 611672 611682 613302 613307) (-381 "GALPOLYU.spad" 610126 610139 611662 611667) (-380 "GALFACTU.spad" 608339 608358 610116 610121) (-379 "GALFACT.spad" 598552 598563 608329 608334) (-378 "FUNDESC.spad" 598230 598238 598542 598547) (-377 "FUNCTION.spad" 598079 598091 598220 598225) (-376 "FT.spad" 596379 596387 598069 598074) (-375 "FSUPFACT.spad" 595293 595312 596329 596334) (-374 "FST.spad" 593379 593387 595283 595288) (-373 "FSRED.spad" 592859 592875 593369 593374) (-372 "FSPRMELT.spad" 591725 591741 592816 592821) (-371 "FSPECF.spad" 589816 589832 591715 591720) (-370 "FSINT.spad" 589476 589492 589806 589811) (-369 "FSERIES.spad" 588667 588679 589296 589395) (-368 "FSCINT.spad" 587984 588000 588657 588662) (-367 "FSAGG2.spad" 586719 586735 587974 587979) (-366 "FSAGG.spad" 585836 585846 586675 586714) (-365 "FSAGG.spad" 584915 584927 585756 585761) (-364 "FS2UPS.spad" 579430 579464 584905 584910) (-363 "FS2EXPXP.spad" 578571 578594 579420 579425) (-362 "FS2.spad" 578226 578242 578561 578566) (-361 "FS.spad" 572498 572508 578005 578221) (-360 "FS.spad" 566572 566584 572081 572086) (-359 "FRUTIL.spad" 565526 565536 566562 566567) (-358 "FRNAALG.spad" 560803 560813 565468 565521) (-357 "FRNAALG.spad" 556092 556104 560759 560764) (-356 "FRNAAF2.spad" 555540 555558 556082 556087) (-355 "FRMOD.spad" 554948 554978 555469 555474) (-354 "FRIDEAL2.spad" 554552 554584 554938 554943) (-353 "FRIDEAL.spad" 553777 553798 554532 554547) (-352 "FRETRCT.spad" 553296 553306 553767 553772) (-351 "FRETRCT.spad" 552722 552734 553195 553200) (-350 "FRAMALG.spad" 551102 551115 552678 552717) (-349 "FRAMALG.spad" 549514 549529 551092 551097) (-348 "FRAC2.spad" 549119 549131 549504 549509) (-347 "FRAC.spad" 547106 547116 547493 547666) (-346 "FR2.spad" 546442 546454 547096 547101) (-345 "FR.spad" 540230 540240 545503 545572) (-344 "FPS.spad" 537069 537077 540120 540225) (-343 "FPS.spad" 533936 533946 536989 536994) (-342 "FPC.spad" 532982 532990 533838 533931) (-341 "FPC.spad" 532114 532124 532972 532977) (-340 "FPATMAB.spad" 531876 531886 532104 532109) (-339 "FPARFRAC.spad" 530718 530735 531866 531871) (-338 "FORDER.spad" 530409 530433 530708 530713) (-337 "FNLA.spad" 529833 529855 530377 530404) (-336 "FNCAT.spad" 528428 528436 529823 529828) (-335 "FNAME.spad" 528320 528328 528418 528423) (-334 "FMONOID.spad" 528001 528011 528276 528281) (-333 "FMONCAT.spad" 525170 525180 527991 527996) (-332 "FMCAT.spad" 522846 522864 525138 525165) (-331 "FM1.spad" 522211 522223 522780 522807) (-330 "FM.spad" 521826 521838 522065 522092) (-329 "FLOATRP.spad" 519569 519583 521816 521821) (-328 "FLOATCP.spad" 517008 517022 519559 519564) (-327 "FLOAT.spad" 510322 510330 516874 517003) (-326 "FLINEXP.spad" 510044 510054 510312 510317) (-325 "FLINEXP.spad" 509723 509735 509993 509998) (-324 "FLASORT.spad" 509049 509061 509713 509718) (-323 "FLALG.spad" 506719 506738 508975 509044) (-322 "FLAGG2.spad" 505436 505452 506709 506714) (-321 "FLAGG.spad" 502502 502512 505416 505431) (-320 "FLAGG.spad" 499469 499481 502385 502390) (-319 "FINRALG.spad" 497554 497567 499425 499464) (-318 "FINRALG.spad" 495565 495580 497438 497443) (-317 "FINITE.spad" 494717 494725 495555 495560) (-316 "FINITE.spad" 493867 493877 494707 494712) (-315 "FINAALG.spad" 483052 483062 493809 493862) (-314 "FINAALG.spad" 472249 472261 483008 483013) (-313 "FILECAT.spad" 470783 470800 472239 472244) (-312 "FILE.spad" 470366 470376 470773 470778) (-311 "FIELD.spad" 469772 469780 470268 470361) (-310 "FIELD.spad" 469264 469274 469762 469767) (-309 "FGROUP.spad" 467927 467937 469244 469259) (-308 "FGLMICPK.spad" 466722 466737 467917 467922) (-307 "FFX.spad" 466108 466123 466441 466534) (-306 "FFSLPE.spad" 465619 465640 466098 466103) (-305 "FFPOLY2.spad" 464679 464696 465609 465614) (-304 "FFPOLY.spad" 456021 456032 464669 464674) (-303 "FFP.spad" 455429 455449 455740 455833) (-302 "FFNBX.spad" 453952 453972 455148 455241) (-301 "FFNBP.spad" 452476 452493 453671 453764) (-300 "FFNB.spad" 450944 450965 452160 452253) (-299 "FFINTBAS.spad" 448458 448477 450934 450939) (-298 "FFIELDC.spad" 446043 446051 448360 448453) (-297 "FFIELDC.spad" 443714 443724 446033 446038) (-296 "FFHOM.spad" 442486 442503 443704 443709) (-295 "FFF.spad" 439929 439940 442476 442481) (-294 "FFCGX.spad" 438787 438807 439648 439741) (-293 "FFCGP.spad" 437687 437707 438506 438599) (-292 "FFCG.spad" 436482 436503 437371 437464) (-291 "FFCAT2.spad" 436229 436269 436472 436477) (-290 "FFCAT.spad" 429394 429416 436068 436224) (-289 "FFCAT.spad" 422638 422662 429314 429319) (-288 "FF.spad" 422089 422105 422322 422415) (-287 "FEVALAB.spad" 421797 421807 422079 422084) (-286 "FEVALAB.spad" 421281 421293 421565 421570) (-285 "FDIVCAT.spad" 419377 419401 421271 421276) (-284 "FDIVCAT.spad" 417471 417497 419367 419372) (-283 "FDIV2.spad" 417127 417167 417461 417466) (-282 "FDIV.spad" 416585 416609 417117 417122) (-281 "FCTRDATA.spad" 415593 415601 416575 416580) (-280 "FCOMP.spad" 414972 414982 415583 415588) (-279 "FAXF.spad" 408007 408021 414874 414967) (-278 "FAXF.spad" 401094 401110 407963 407968) (-277 "FARRAY.spad" 399286 399296 400319 400346) (-276 "FAMR.spad" 397430 397442 399184 399281) (-275 "FAMR.spad" 395558 395572 397314 397319) (-274 "FAMONOID.spad" 395242 395252 395512 395517) (-273 "FAMONC.spad" 393562 393574 395232 395237) (-272 "FAGROUP.spad" 393202 393212 393458 393485) (-271 "FACUTIL.spad" 391414 391431 393192 393197) (-270 "FACTFUNC.spad" 390616 390626 391404 391409) (-269 "EXPUPXS.spad" 387508 387531 388807 388956) (-268 "EXPRTUBE.spad" 384796 384804 387498 387503) (-267 "EXPRODE.spad" 381964 381980 384786 384791) (-266 "EXPR2UPS.spad" 378086 378099 381954 381959) (-265 "EXPR2.spad" 377791 377803 378076 378081) (-264 "EXPR.spad" 373436 373446 374150 374437) (-263 "EXPEXPAN.spad" 370381 370406 371013 371106) (-262 "EXITAST.spad" 370117 370125 370371 370376) (-261 "EXIT.spad" 369788 369796 370107 370112) (-260 "EVALCYC.spad" 369248 369262 369778 369783) (-259 "EVALAB.spad" 368828 368838 369238 369243) (-258 "EVALAB.spad" 368406 368418 368818 368823) (-257 "EUCDOM.spad" 365996 366004 368332 368401) (-256 "EUCDOM.spad" 363648 363658 365986 365991) (-255 "ES2.spad" 363161 363177 363638 363643) (-254 "ES1.spad" 362731 362747 363151 363156) (-253 "ES.spad" 355602 355610 362721 362726) (-252 "ES.spad" 348394 348404 355515 355520) (-251 "ERROR.spad" 345721 345729 348384 348389) (-250 "EQTBL.spad" 344057 344079 344266 344293) (-249 "EQ2.spad" 343775 343787 344047 344052) (-248 "EQ.spad" 338681 338691 341476 341582) (-247 "EP.spad" 335007 335017 338671 338676) (-246 "ENV.spad" 333685 333693 334997 335002) (-245 "ENTIRER.spad" 333353 333361 333629 333680) (-244 "EMR.spad" 332641 332682 333279 333348) (-243 "ELTAGG.spad" 330895 330914 332631 332636) (-242 "ELTAGG.spad" 329113 329134 330851 330856) (-241 "ELTAB.spad" 328588 328601 329103 329108) (-240 "ELFUTS.spad" 328023 328042 328578 328583) (-239 "ELEMFUN.spad" 327712 327720 328013 328018) (-238 "ELEMFUN.spad" 327399 327409 327702 327707) (-237 "ELAGG.spad" 325370 325380 327379 327394) (-236 "ELAGG.spad" 323278 323290 325289 325294) (-235 "ELABOR.spad" 322624 322632 323268 323273) (-234 "ELABEXPR.spad" 321556 321564 322614 322619) (-233 "EFUPXS.spad" 318332 318362 321512 321517) (-232 "EFULS.spad" 315168 315191 318288 318293) (-231 "EFSTRUC.spad" 313183 313199 315158 315163) (-230 "EF.spad" 307959 307975 313173 313178) (-229 "EAB.spad" 306259 306267 307949 307954) (-228 "DVARCAT.spad" 303265 303275 306249 306254) (-227 "DVARCAT.spad" 300269 300281 303255 303260) (-226 "DSMP.spad" 298002 298016 298307 298434) (-225 "DSEXT.spad" 297304 297314 297992 297997) (-224 "DSEXT.spad" 296526 296538 297216 297221) (-223 "DROPT1.spad" 296191 296201 296516 296521) (-222 "DROPT0.spad" 291056 291064 296181 296186) (-221 "DROPT.spad" 285015 285023 291046 291051) (-220 "DRAWPT.spad" 283188 283196 285005 285010) (-219 "DRAWHACK.spad" 282496 282506 283178 283183) (-218 "DRAWCX.spad" 279974 279982 282486 282491) (-217 "DRAWCURV.spad" 279521 279536 279964 279969) (-216 "DRAWCFUN.spad" 269053 269061 279511 279516) (-215 "DRAW.spad" 261929 261942 269043 269048) (-214 "DQAGG.spad" 260107 260117 261897 261924) (-213 "DPOLCAT.spad" 255464 255480 259975 260102) (-212 "DPOLCAT.spad" 250907 250925 255420 255425) (-211 "DPMO.spad" 243610 243626 243748 243954) (-210 "DPMM.spad" 236326 236344 236451 236657) (-209 "DOMTMPLT.spad" 236097 236105 236316 236321) (-208 "DOMCTOR.spad" 235852 235860 236087 236092) (-207 "DOMAIN.spad" 234963 234971 235842 235847) (-206 "DMP.spad" 232556 232571 233126 233253) (-205 "DMEXT.spad" 232423 232433 232524 232551) (-204 "DLP.spad" 231783 231793 232413 232418) (-203 "DLIST.spad" 230404 230414 231008 231035) (-202 "DLAGG.spad" 228821 228831 230394 230399) (-201 "DIVRING.spad" 228363 228371 228765 228816) (-200 "DIVRING.spad" 227949 227959 228353 228358) (-199 "DISPLAY.spad" 226139 226147 227939 227944) (-198 "DIRPROD2.spad" 224957 224975 226129 226134) (-197 "DIRPROD.spad" 214327 214343 214967 215064) (-196 "DIRPCAT.spad" 213522 213538 214225 214322) (-195 "DIRPCAT.spad" 212343 212361 213048 213053) (-194 "DIOSP.spad" 211168 211176 212333 212338) (-193 "DIOPS.spad" 210164 210174 211148 211163) (-192 "DIOPS.spad" 209134 209146 210120 210125) (-191 "catdef.spad" 208992 209000 209124 209129) (-190 "DIFRING.spad" 208830 208838 208972 208987) (-189 "DIFFSPC.spad" 208409 208417 208820 208825) (-188 "DIFFSPC.spad" 207986 207996 208399 208404) (-187 "DIFFMOD.spad" 207475 207485 207954 207981) (-186 "DIFFDOM.spad" 206640 206651 207465 207470) (-185 "DIFFDOM.spad" 205803 205816 206630 206635) (-184 "DIFEXT.spad" 205622 205632 205783 205798) (-183 "DIAGG.spad" 205252 205262 205602 205617) (-182 "DIAGG.spad" 204890 204902 205242 205247) (-181 "DHMATRIX.spad" 203267 203277 204412 204439) (-180 "DFSFUN.spad" 196907 196915 203257 203262) (-179 "DFLOAT.spad" 193514 193522 196797 196902) (-178 "DFINTTLS.spad" 191745 191761 193504 193509) (-177 "DERHAM.spad" 189659 189691 191725 191740) (-176 "DEQUEUE.spad" 189048 189058 189331 189358) (-175 "DEGRED.spad" 188665 188679 189038 189043) (-174 "DEFINTRF.spad" 186247 186257 188655 188660) (-173 "DEFINTEF.spad" 184785 184801 186237 186242) (-172 "DEFAST.spad" 184169 184177 184775 184780) (-171 "DECIMAL.spad" 182398 182406 182759 182852) (-170 "DDFACT.spad" 180219 180236 182388 182393) (-169 "DBLRESP.spad" 179819 179843 180209 180214) (-168 "DBASIS.spad" 179445 179460 179809 179814) (-167 "DBASE.spad" 178109 178119 179435 179440) (-166 "DATAARY.spad" 177595 177608 178099 178104) (-165 "CYCLOTOM.spad" 177101 177109 177585 177590) (-164 "CYCLES.spad" 173893 173901 177091 177096) (-163 "CVMP.spad" 173310 173320 173883 173888) (-162 "CTRIGMNP.spad" 171810 171826 173300 173305) (-161 "CTORKIND.spad" 171413 171421 171800 171805) (-160 "CTORCAT.spad" 170654 170662 171403 171408) (-159 "CTORCAT.spad" 169893 169903 170644 170649) (-158 "CTORCALL.spad" 169482 169492 169883 169888) (-157 "CTOR.spad" 169173 169181 169472 169477) (-156 "CSTTOOLS.spad" 168418 168431 169163 169168) (-155 "CRFP.spad" 162190 162203 168408 168413) (-154 "CRCEAST.spad" 161910 161918 162180 162185) (-153 "CRAPACK.spad" 160977 160987 161900 161905) (-152 "CPMATCH.spad" 160478 160493 160899 160904) (-151 "CPIMA.spad" 160183 160202 160468 160473) (-150 "COORDSYS.spad" 155192 155202 160173 160178) (-149 "CONTOUR.spad" 154619 154627 155182 155187) (-148 "CONTFRAC.spad" 150369 150379 154521 154614) (-147 "CONDUIT.spad" 150127 150135 150359 150364) (-146 "COMRING.spad" 149801 149809 150065 150122) (-145 "COMPPROP.spad" 149319 149327 149791 149796) (-144 "COMPLPAT.spad" 149086 149101 149309 149314) (-143 "COMPLEX2.spad" 148801 148813 149076 149081) (-142 "COMPLEX.spad" 144507 144517 144751 145009) (-141 "COMPILER.spad" 144056 144064 144497 144502) (-140 "COMPFACT.spad" 143658 143672 144046 144051) (-139 "COMPCAT.spad" 141733 141743 143395 143653) (-138 "COMPCAT.spad" 139549 139561 141213 141218) (-137 "COMMUPC.spad" 139297 139315 139539 139544) (-136 "COMMONOP.spad" 138830 138838 139287 139292) (-135 "COMMAAST.spad" 138593 138601 138820 138825) (-134 "COMM.spad" 138404 138412 138583 138588) (-133 "COMBOPC.spad" 137327 137335 138394 138399) (-132 "COMBINAT.spad" 136094 136104 137317 137322) (-131 "COMBF.spad" 133516 133532 136084 136089) (-130 "COLOR.spad" 132353 132361 133506 133511) (-129 "COLONAST.spad" 132019 132027 132343 132348) (-128 "CMPLXRT.spad" 131730 131747 132009 132014) (-127 "CLLCTAST.spad" 131392 131400 131720 131725) (-126 "CLIP.spad" 127500 127508 131382 131387) (-125 "CLIF.spad" 126155 126171 127456 127495) (-124 "CLAGG.spad" 122692 122702 126145 126150) (-123 "CLAGG.spad" 119113 119125 122568 122573) (-122 "CINTSLPE.spad" 118468 118481 119103 119108) (-121 "CHVAR.spad" 116606 116628 118458 118463) (-120 "CHARZ.spad" 116521 116529 116586 116601) (-119 "CHARPOL.spad" 116047 116057 116511 116516) (-118 "CHARNZ.spad" 115809 115817 116027 116042) (-117 "CHAR.spad" 113177 113185 115799 115804) (-116 "CFCAT.spad" 112505 112513 113167 113172) (-115 "CDEN.spad" 111725 111739 112495 112500) (-114 "CCLASS.spad" 109905 109913 111167 111206) (-113 "CATEGORY.spad" 108979 108987 109895 109900) (-112 "CATCTOR.spad" 108870 108878 108969 108974) (-111 "CATAST.spad" 108496 108504 108860 108865) (-110 "CASEAST.spad" 108210 108218 108486 108491) (-109 "CARTEN2.spad" 107600 107627 108200 108205) (-108 "CARTEN.spad" 103352 103376 107590 107595) (-107 "CARD.spad" 100647 100655 103326 103347) (-106 "CAPSLAST.spad" 100429 100437 100637 100642) (-105 "CACHSET.spad" 100053 100061 100419 100424) (-104 "CABMON.spad" 99608 99616 100043 100048) (-103 "BYTEORD.spad" 99283 99291 99598 99603) (-102 "BYTEBUF.spad" 97250 97258 98536 98563) (-101 "BYTE.spad" 96725 96733 97240 97245) (-100 "BTREE.spad" 95863 95873 96397 96424) (-99 "BTOURN.spad" 94934 94943 95535 95562) (-98 "BTCAT.spad" 94327 94336 94902 94929) (-97 "BTCAT.spad" 93740 93751 94317 94322) (-96 "BTAGG.spad" 93207 93214 93708 93735) (-95 "BTAGG.spad" 92694 92703 93197 93202) (-94 "BSTREE.spad" 91501 91510 92366 92393) (-93 "BRILL.spad" 89707 89717 91491 91496) (-92 "BRAGG.spad" 88664 88673 89697 89702) (-91 "BRAGG.spad" 87585 87596 88620 88625) (-90 "BPADICRT.spad" 85645 85656 85891 85984) (-89 "BPADIC.spad" 85318 85329 85571 85640) (-88 "BOUNDZRO.spad" 84975 84991 85308 85313) (-87 "BOP1.spad" 82434 82443 84965 84970) (-86 "BOP.spad" 77577 77584 82424 82429) (-85 "BOOLEAN.spad" 77126 77133 77567 77572) (-84 "BOOLE.spad" 76777 76784 77116 77121) (-83 "BOOLE.spad" 76426 76435 76767 76772) (-82 "BMODULE.spad" 76139 76150 76394 76421) (-81 "BITS.spad" 75571 75578 75785 75812) (-80 "catdef.spad" 75454 75464 75561 75566) (-79 "catdef.spad" 75205 75215 75444 75449) (-78 "BINDING.spad" 74627 74634 75195 75200) (-77 "BINARY.spad" 72862 72869 73217 73310) (-76 "BGAGG.spad" 72068 72077 72842 72857) (-75 "BGAGG.spad" 71282 71293 72058 72063) (-74 "BEZOUT.spad" 70423 70449 71232 71237) (-73 "BBTREE.spad" 67366 67375 70095 70122) (-72 "BASTYPE.spad" 66866 66873 67356 67361) (-71 "BASTYPE.spad" 66364 66373 66856 66861) (-70 "BALFACT.spad" 65824 65836 66354 66359) (-69 "AUTOMOR.spad" 65275 65284 65804 65819) (-68 "ATTREG.spad" 61998 62005 65027 65270) (-67 "ATTRAST.spad" 61715 61722 61988 61993) (-66 "ATRIG.spad" 61185 61192 61705 61710) (-65 "ATRIG.spad" 60653 60662 61175 61180) (-64 "ASTCAT.spad" 60557 60564 60643 60648) (-63 "ASTCAT.spad" 60459 60468 60547 60552) (-62 "ASTACK.spad" 59863 59872 60131 60158) (-61 "ASSOCEQ.spad" 58697 58708 59819 59824) (-60 "ARRAY2.spad" 58130 58139 58369 58396) (-59 "ARRAY12.spad" 56843 56854 58120 58125) (-58 "ARRAY1.spad" 55722 55731 56068 56095) (-57 "ARR2CAT.spad" 51504 51525 55690 55717) (-56 "ARR2CAT.spad" 47306 47329 51494 51499) (-55 "ARITY.spad" 46678 46685 47296 47301) (-54 "APPRULE.spad" 45962 45984 46668 46673) (-53 "APPLYORE.spad" 45581 45594 45952 45957) (-52 "ANY1.spad" 44652 44661 45571 45576) (-51 "ANY.spad" 43503 43510 44642 44647) (-50 "ANTISYM.spad" 41948 41964 43483 43498) (-49 "ANON.spad" 41657 41664 41938 41943) (-48 "AN.spad" 40125 40132 41488 41581) (-47 "AMR.spad" 38310 38321 40023 40120) (-46 "AMR.spad" 36358 36371 38073 38078) (-45 "ALIST.spad" 33596 33617 33946 33973) (-44 "ALGSC.spad" 32731 32757 33468 33521) (-43 "ALGPKG.spad" 28514 28525 32687 32692) (-42 "ALGMFACT.spad" 27707 27721 28504 28509) (-41 "ALGMANIP.spad" 25208 25223 27551 27556) (-40 "ALGFF.spad" 23026 23053 23243 23399) (-39 "ALGFACT.spad" 22145 22155 23016 23021) (-38 "ALGEBRA.spad" 21978 21987 22101 22140) (-37 "ALGEBRA.spad" 21843 21854 21968 21973) (-36 "ALAGG.spad" 21355 21376 21811 21838) (-35 "AHYP.spad" 20736 20743 21345 21350) (-34 "AGG.spad" 19445 19452 20726 20731) (-33 "AGG.spad" 18118 18127 19401 19406) (-32 "AF.spad" 16563 16578 18067 18072) (-31 "ADDAST.spad" 16249 16256 16553 16558) (-30 "ACPLOT.spad" 14840 14847 16239 16244) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index b4dec405..6163ed50 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,286 +1,289 @@ -(199012 . 3538630440) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-345 |#2|) |#3|) . T)) -((((-345 (-480))) |has| (-345 |#2|) (-945 (-345 (-480)))) (((-480)) |has| (-345 |#2|) (-945 (-480))) (((-345 |#2|)) . T)) -((((-345 |#2|)) . T)) -((((-480)) |has| (-345 |#2|) (-577 (-480))) (((-345 |#2|)) . T)) -((((-345 |#2|)) . T)) -((((-345 |#2|) |#3|) . T)) -(|has| (-345 |#2|) (-118)) -((((-345 |#2|) |#3|) . T)) -(|has| (-345 |#2|) (-116)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -(|has| (-345 |#2|) (-188)) -((($) OR (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-187)))) -(OR (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-187))) -((((-345 |#2|)) . T)) -((($ (-1081)) OR (|has| (-345 |#2|) (-804 (-1081))) (|has| (-345 |#2|) (-806 (-1081))))) -((((-1081)) OR (|has| (-345 |#2|) (-804 (-1081))) (|has| (-345 |#2|) (-806 (-1081))))) -((((-1081)) |has| (-345 |#2|) (-804 (-1081)))) -((((-345 |#2|)) . T)) +(199259 . 3539125287) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-347 |#2|) |#3|) . T)) +((((-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) (((-483)) |has| (-347 |#2|) (-950 (-483))) (((-347 |#2|)) . T)) +((((-347 |#2|)) . T)) +((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T)) +((((-347 |#2|)) . T)) +((((-347 |#2|) |#3|) . T)) +(|has| (-347 |#2|) (-120)) +((((-347 |#2|) |#3|) . T)) +(|has| (-347 |#2|) (-118)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +(|has| (-347 |#2|) (-190)) +((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))) +(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))) +((((-347 |#2|)) . T)) +((($ (-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088))))) +((((-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088))))) +((((-1088)) |has| (-347 |#2|) (-809 (-1088)))) +((((-347 |#2|)) . T)) (((|#3|) . T)) -((((-345 |#2|) (-345 |#2|)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-480)) |has| (-345 |#2|) (-577 (-480))) (((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) +((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) (((|#1| |#2| |#3|) . T)) -((((-480) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1047 |#2| |#1|)) . T) ((|#1|) . T)) -((((-767)) . T)) -((((-1047 |#2| |#1|)) . T) ((|#1|) . T) (((-480)) . T)) +((((-1054 |#2| |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-1054 |#2| |#1|)) . T) ((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-767)) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-772)) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) (((-1137 (-480)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -((((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) (((-1144 (-483)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-140 (-325))) . T) (((-177)) . T) (((-325)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-547 $) $) . T)) -((((-345 (-480))) . T) (((-480)) . T) (((-547 $)) . T)) -((((-1030 (-480) (-547 $))) . T) (($) . T) (((-480)) . T) (((-345 (-480))) . T) (((-547 $)) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-550 $) $) . T)) +((((-347 (-483))) . T) (((-483)) . T) (((-550 $)) . T)) +((((-1037 (-483) (-550 $))) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T) (((-550 $)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-480)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) -((((-767)) . T)) -((((-689)) . T)) -((((-689)) . T)) -((((-767)) . T)) +((((-772)) . T)) +((((-694)) . T)) +((((-694)) . T)) +((((-772)) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) (((|#1|) . T)) (((|#1|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) (((|#1| |#1|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-912 2)) . T) (((-345 (-480))) . T) (((-767)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((($) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480) (-480)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T)) -((((-767)) . T)) -((((-83)) . T)) -((((-83)) . T)) -((((-480) (-83)) . T)) -((((-480) (-83)) . T)) -((((-480) (-83)) . T) (((-1137 (-480)) $) . T)) -((((-469)) . T)) -((((-83)) . T)) -((((-767)) . T)) -((((-83)) . T)) -((((-83)) . T)) -((((-469)) . T)) -((((-767)) . T)) -((((-1081)) . T)) -((((-767)) . T)) -((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-917 2)) . T) (((-347 (-483))) . T) (((-772)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((($) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1| |#1| |#1|) . T)) +(((|#1|) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-483) (-85)) . T)) +((((-483) (-85)) . T)) +((((-483) (-85)) . T) (((-1144 (-483)) $) . T)) +((((-472)) . T)) +((((-85)) . T)) +((((-772)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-472)) . T)) +((((-772)) . T)) +((((-1088)) . T)) +((((-772)) . T)) +((($) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-87 |#1|)) . T)) -((((-87 |#1|)) . T)) -((((-87 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-87 |#1|)) . T) (((-345 (-480))) . T)) -((((-87 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-87 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-87 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-87 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-87 |#1|) (-87 |#1|)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-87 |#1|)) . T)) -((((-1081) (-87 |#1|)) |has| (-87 |#1|) (-449 (-1081) (-87 |#1|))) (((-87 |#1|) (-87 |#1|)) |has| (-87 |#1|) (-257 (-87 |#1|)))) -((((-87 |#1|)) |has| (-87 |#1|) (-257 (-87 |#1|)))) -((((-87 |#1|) $) |has| (-87 |#1|) (-239 (-87 |#1|) (-87 |#1|)))) -((((-87 |#1|)) . T)) -((($) . T) (((-87 |#1|)) . T) (((-345 (-480))) . T)) -((((-87 |#1|)) . T)) -((((-87 |#1|)) . T)) -((((-87 |#1|)) . T)) -((((-480)) . T) (((-87 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-87 |#1|)) . T)) -((((-87 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-99)) . T)) -((((-99)) . T)) -((((-1064)) . T) (((-864 (-99))) . T) (((-767)) . T)) -((((-99)) . T)) -((((-480) (-99)) . T)) -((((-1137 (-480)) $) . T) (((-480) (-99)) . T)) -((((-480) (-99)) . T)) -((((-99)) . T)) -((((-99)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-689)) . T)) -((((-689)) . T)) -((((-767)) . T)) -((((-480) |#3|) . T)) -((((-480) (-689)) . T) ((|#3| (-689)) . T)) -((((-767)) . T)) +((((-483)) . T) (($) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-89 |#1|)) . T) (((-347 (-483))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-89 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-89 |#1|)) . T)) +((((-1088) (-89 |#1|)) |has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|)))) +((((-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|)))) +((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) +((((-89 |#1|)) . T)) +((($) . T) (((-89 |#1|)) . T) (((-347 (-483))) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-483)) . T) (((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-101)) . T)) +((((-101)) . T)) +((((-1071)) . T) (((-869 (-101))) . T) (((-772)) . T)) +((((-101)) . T)) +((((-483) (-101)) . T)) +((((-1144 (-483)) $) . T) (((-483) (-101)) . T)) +((((-483) (-101)) . T)) +((((-101)) . T)) +((((-101)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-694)) . T)) +((((-694)) . T)) +((((-772)) . T)) +((((-483) |#3|) . T)) +((((-483) (-694)) . T) ((|#3| (-694)) . T)) +((((-772)) . T)) (((|#3|) . T)) -((((-580 $)) . T) (((-580 |#3|)) . T) (((-1047 |#2| |#3|)) . T) (((-195 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-689)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-441)) . T)) -((((-155)) . T) (((-767)) . T)) -((((-767)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-580 (-115))) . T) (((-1064)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-583 $)) . T) (((-583 |#3|)) . T) (((-1054 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-694)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-444)) . T)) +((((-157)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-583 (-117))) . T) (((-1071)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -288,1342 +291,1342 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-480)) . T)) +(((|#2|) . T) (((-483)) . T)) (((|#2|) . T) (($) . T)) -((((-767)) . T)) -(((|#2|) . T) (($) . T) (((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-296))) -((((-767)) . T)) -(|has| |#1| (-118)) -(((|#1|) . T)) -((((-1081)) |has| |#1| (-804 (-1081)))) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -(((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-296))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-296)))) -(OR (|has| |#1| (-188)) (|has| |#1| (-296))) -(OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) -(OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) -(OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(((|#1|) . T)) -((((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((|#1| |#1|) |has| |#1| (-257 |#1|))) -(((|#1|) |has| |#1| (-257 |#1|))) -(((|#1| $) |has| |#1| (-239 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T)) -((((-480)) |has| |#1| (-791 (-480))) (((-325)) |has| |#1| (-791 (-325)))) -(((|#1|) . T)) -((((-480)) . T) (($) OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-945 (-345 (-480))))) ((|#1|) . T)) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-1076 |#1|)) . T)) -(((|#1| (-1076 |#1|)) . T)) -((($) OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-255)) (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -(((|#1| (-1076 |#1|)) . T)) -(|has| |#1| (-296)) -(|has| |#1| (-296)) -(|has| |#1| (-296)) -(OR (|has| |#1| (-315)) (|has| |#1| (-296))) -(((|#1|) . T)) -((((-140 (-177))) |has| |#1| (-928)) (((-140 (-325))) |has| |#1| (-928)) (((-469)) |has| |#1| (-550 (-469))) (((-1076 |#1|)) . T) (((-795 (-480))) |has| |#1| (-550 (-795 (-480)))) (((-795 (-325))) |has| |#1| (-550 (-795 (-325))))) -(-12 (|has| |#1| (-255)) (|has| |#1| (-816))) -(-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(((|#1|) . T)) -((((-767)) . T)) -((((-345 (-480))) . T) (($) . T) (((-345 |#1|)) . T) ((|#1|) . T)) -((((-345 (-480))) . T) (($) . T) (((-345 |#1|)) . T) ((|#1|) . T)) -((((-767)) . T)) -((($) . T) (((-345 (-480))) . T) (((-345 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-345 (-480))) . T) (((-345 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T) (((-345 |#1|) (-345 |#1|)) . T) ((|#1| |#1|) . T)) -((((-345 (-480))) . T) (((-345 |#1|)) . T) ((|#1|) . T) (((-480)) . T) (($) . T)) -((((-345 (-480))) . T) (((-345 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T) (((-345 |#1|)) . T) ((|#1|) . T) (((-480)) . T)) -((((-345 (-480))) . T) (($) . T) (((-345 |#1|)) . T) ((|#1|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-441)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-580 |#1|)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-912 10)) . T) (((-345 (-480))) . T) (((-767)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((($) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480) (-480)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-262 |#1|)) . T)) -((((-767)) . T)) -((((-262 |#1|)) . T) (((-480)) . T) (($) . T)) -((((-262 |#1|)) . T) (($) . T)) -((((-262 |#1|)) . T) (((-480)) . T)) -((((-262 |#1|)) . T)) -((($) . T)) -((((-480)) . T) (((-345 (-480))) . T)) -((((-325)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-469)) . T) (((-177)) . T) (((-325)) . T) (((-795 (-325))) . T)) -((((-767)) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(((|#1| (-1170 |#1|) (-1170 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -(((|#1| (-1170 |#1|) (-1170 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -((((-767)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-549 (-767))) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) (((-1170 |#2|)) . T)) -(((|#2|) |has| |#2| (-956))) -((((-1081)) -12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956)))) -((((-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -((($ (-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -(((|#2|) |has| |#2| (-956))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956))))) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -((((-480)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956))) (($) |has| |#2| (-956))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-956))) -(|has| |#2| (-315)) -(((|#2|) |has| |#2| (-956))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) (($) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-1007))) -((((-480)) OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ((|#2|) |has| |#2| (-1007)) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -(((|#2|) |has| |#2| (-1007)) (((-480)) -12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -((((-480) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2|) . T)) -((((-480) |#2|) . T)) -((((-480) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(((|#2|) |has| |#2| (-309))) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-298))) +((((-772)) . T)) +(|has| |#1| (-120)) +(((|#1|) . T)) +((((-1088)) |has| |#1| (-809 (-1088)))) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298)))) +(OR (|has| |#1| (-190)) (|has| |#1| (-298))) +(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) +(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) +(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(((|#1|) . T)) +((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) +(((|#1|) |has| |#1| (-259 |#1|))) +(((|#1| $) |has| |#1| (-241 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T)) +((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327)))) +(((|#1|) . T)) +((((-483)) . T) (($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T)) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-1083 |#1|)) . T)) +(((|#1| (-1083 |#1|)) . T)) +((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +(((|#1| (-1083 |#1|)) . T)) +(|has| |#1| (-298)) +(|has| |#1| (-298)) +(|has| |#1| (-298)) +(OR (|has| |#1| (-317)) (|has| |#1| (-298))) +(((|#1|) . T)) +((((-142 (-179))) |has| |#1| (-933)) (((-142 (-327))) |has| |#1| (-933)) (((-472)) |has| |#1| (-553 (-472))) (((-1083 |#1|)) . T) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327))))) +(-12 (|has| |#1| (-257)) (|has| |#1| (-821))) +(-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) +(|has| |#1| (-1113)) +(|has| |#1| (-1113)) +(|has| |#1| (-1113)) +(|has| |#1| (-1113)) +(|has| |#1| (-1113)) +(|has| |#1| (-1113)) +(((|#1|) . T)) +((((-772)) . T)) +((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) +((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T) (((-347 |#1|) (-347 |#1|)) . T) ((|#1| |#1|) . T)) +((((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-483)) . T) (($) . T)) +((((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-483)) . T)) +((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-444)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-583 |#1|)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-917 10)) . T) (((-347 (-483))) . T) (((-772)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((($) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-264 |#1|)) . T)) +((((-772)) . T)) +((((-264 |#1|)) . T) (((-483)) . T) (($) . T)) +((((-264 |#1|)) . T) (($) . T)) +((((-264 |#1|)) . T) (((-483)) . T)) +((((-264 |#1|)) . T)) +((($) . T)) +((((-483)) . T) (((-347 (-483))) . T)) +((((-327)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-472)) . T) (((-179)) . T) (((-327)) . T) (((-800 (-327))) . T)) +((((-772)) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) +((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-317)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1012))) +((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +((((-483) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) . T)) +((((-483) |#2|) . T)) +((((-483) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(((|#2|) |has| |#2| (-311))) (((|#1| |#2|) . T)) -((((-580 |#1|)) . T)) -((((-580 |#1|)) . T)) +((((-583 |#1|)) . T)) +((((-583 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-580 |#1|)) . T) (((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-469)) |has| |#2| (-550 (-469))) (((-795 (-325))) |has| |#2| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#2| (-550 (-795 (-480))))) +((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483))))) ((($) . T)) -(((|#2| (-195 (-3940 |#1|) (-689))) . T)) +(((|#2| (-197 (-3951 |#1|) (-694))) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T)) -(|has| |#2| (-116)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(((|#2| (-195 (-3940 |#1|) (-689))) . T)) -(((|#2|) . T)) -((($) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-816))) -((($ $) . T) (((-768 |#1|) $) . T) (((-768 |#1|) |#2|) . T)) -((((-768 |#1|)) . T)) -((($ (-768 |#1|)) . T)) -((((-768 |#1|)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-345 (-480))) |has| |#2| (-945 (-345 (-480)))) (((-480)) |has| |#2| (-945 (-480))) ((|#2|) . T) (((-768 |#1|)) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ((|#2|) . T) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) (((-768 |#1|)) . T)) -(((|#2| (-195 (-3940 |#1|) (-689)) (-768 |#1|)) . T)) -((((-767)) . T)) -((((-441)) . T)) -((((-155)) . T) (((-767)) . T)) -((((-689) (-1086)) . T)) -((((-767)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-956)))) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-660)) (|has| |#4| (-956)))) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-956)))) -((((-767)) . T) (((-1170 |#4|)) . T)) -(((|#4|) |has| |#4| (-956))) -((((-1081)) -12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956)))) -((((-1081)) OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956))))) -((($ (-1081)) OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956))))) -(((|#4|) |has| |#4| (-956))) -(OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956)))) -((($) OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956))))) -(|has| |#4| (-956)) -(|has| |#4| (-956)) -(|has| |#4| (-956)) -(|has| |#4| (-956)) -(|has| |#4| (-956)) -(((|#3|) . T) ((|#2|) . T) (((-480)) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-660)) (|has| |#4| (-956))) (($) |has| |#4| (-956))) -(-12 (|has| |#4| (-188)) (|has| |#4| (-956))) -(|has| |#4| (-315)) -(((|#4|) |has| |#4| (-956))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-956))) (($) |has| |#4| (-956)) (((-480)) -12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956)))) -(((|#4|) |has| |#4| (-956)) (((-480)) -12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956)))) -(((|#4|) |has| |#4| (-1007))) -((((-480)) OR (-12 (|has| |#4| (-945 (-480))) (|has| |#4| (-1007))) (|has| |#4| (-956))) ((|#4|) |has| |#4| (-1007)) (((-345 (-480))) -12 (|has| |#4| (-945 (-345 (-480)))) (|has| |#4| (-1007)))) -(((|#4|) |has| |#4| (-1007)) (((-480)) -12 (|has| |#4| (-945 (-480))) (|has| |#4| (-1007))) (((-345 (-480))) -12 (|has| |#4| (-945 (-345 (-480)))) (|has| |#4| (-1007)))) -((((-480) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +(|has| |#2| (-120)) +(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(((|#2| (-197 (-3951 |#1|) (-694))) . T)) +(((|#2|) . T)) +((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-197 (-3951 |#1|) (-694)) (-773 |#1|)) . T)) +((((-772)) . T)) +((((-444)) . T)) +((((-157)) . T) (((-772)) . T)) +((((-694) (-1093)) . T)) +((((-772)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663)) (|has| |#4| (-961)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961)))) +((((-772)) . T) (((-1177 |#4|)) . T)) +(((|#4|) |has| |#4| (-961))) +((((-1088)) -12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961)))) +((((-1088)) OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961))))) +((($ (-1088)) OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961))))) +(((|#4|) |has| |#4| (-961))) +(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) +((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(((|#3|) . T) ((|#2|) . T) (((-483)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-961))) +(|has| |#4| (-317)) +(((|#4|) |has| |#4| (-961))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-483)) -12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961)))) +(((|#4|) |has| |#4| (-961)) (((-483)) -12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961)))) +(((|#4|) |has| |#4| (-1012))) +((((-483)) OR (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1012)) (((-347 (-483))) -12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012)))) +(((|#4|) |has| |#4| (-1012)) (((-483)) -12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (((-347 (-483))) -12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012)))) +((((-483) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-480) |#4|) . T)) -((((-480) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)) (|has| |#4| (-660)))) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-309)))) -(|has| |#4| (-712)) -(|has| |#4| (-712)) -(OR (|has| |#4| (-712)) (|has| |#4| (-751))) -(OR (|has| |#4| (-712)) (|has| |#4| (-751))) -(|has| |#4| (-712)) -(|has| |#4| (-712)) -(((|#4|) |has| |#4| (-309))) +((((-483) |#4|) . T)) +((((-483) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)))) +(|has| |#4| (-717)) +(|has| |#4| (-717)) +(OR (|has| |#4| (-717)) (|has| |#4| (-756))) +(OR (|has| |#4| (-717)) (|has| |#4| (-756))) +(|has| |#4| (-717)) +(|has| |#4| (-717)) +(((|#4|) |has| |#4| (-311))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)) (|has| |#3| (-956)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956)))) -((((-767)) . T) (((-1170 |#3|)) . T)) -(((|#3|) |has| |#3| (-956))) -((((-1081)) -12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956)))) -((((-1081)) OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))))) -((($ (-1081)) OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))))) -(((|#3|) |has| |#3| (-956))) -(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) -((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956))))) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(((|#2|) . T) (((-480)) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)) (|has| |#3| (-956))) (($) |has| |#3| (-956))) -(-12 (|has| |#3| (-188)) (|has| |#3| (-956))) -(|has| |#3| (-315)) -(((|#3|) |has| |#3| (-956))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956))) (($) |has| |#3| (-956)) (((-480)) -12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956)))) -(((|#3|) |has| |#3| (-956)) (((-480)) -12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956)))) -(((|#3|) |has| |#3| (-1007))) -((((-480)) OR (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (|has| |#3| (-956))) ((|#3|) |has| |#3| (-1007)) (((-345 (-480))) -12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007)))) -(((|#3|) |has| |#3| (-1007)) (((-480)) -12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (((-345 (-480))) -12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007)))) -((((-480) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) -(((|#3| |#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961)))) +((((-772)) . T) (((-1177 |#3|)) . T)) +(((|#3|) |has| |#3| (-961))) +((((-1088)) -12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961)))) +((((-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))))) +((($ (-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))))) +(((|#3|) |has| |#3| (-961))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(((|#2|) . T) (((-483)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(|has| |#3| (-317)) +(((|#3|) |has| |#3| (-961))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-1012))) +((((-483)) OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1012)) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012)))) +(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012)))) +((((-483) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) +(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) (((|#3|) . T)) -((((-480) |#3|) . T)) -((((-480) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)))) -(|has| |#3| (-712)) -(|has| |#3| (-712)) -(OR (|has| |#3| (-712)) (|has| |#3| (-751))) -(OR (|has| |#3| (-712)) (|has| |#3| (-751))) -(|has| |#3| (-712)) -(|has| |#3| (-712)) -(((|#3|) |has| |#3| (-309))) +((((-483) |#3|) . T)) +((((-483) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(((|#3|) |has| |#3| (-311))) (((|#1| |#3|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-767)) . T)) -(|has| |#1| (-188)) -((($) . T)) -(((|#1| (-465 |#3|) |#3|) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#3| (-791 (-480)))) (((-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#3| (-791 (-325))))) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) ((|#3|) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ |#3|) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) ((|#3|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-188)) ((|#2| |#1|) |has| |#1| (-188)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-465 |#3|)) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-772)) . T)) +(|has| |#1| (-190)) +((($) . T)) +(((|#1| (-468 |#3|) |#3|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) (((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327))))) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) ((|#3|) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ |#3|) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-468 |#3|)) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -(((|#1| (-465 |#3|)) . T)) -((((-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#3| (-550 (-795 (-480))))) (((-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#3| (-550 (-795 (-325))))) (((-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#3| (-550 (-469))))) -((((-1030 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#2|) . T)) -((((-1030 |#1| |#2|)) . T) (((-480)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-465 |#3|)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +(((|#1| (-468 |#3|)) . T)) +((((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) (((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472))))) +((((-1037 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#2|) . T)) +((((-1037 |#1| |#2|)) . T) (((-483)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-468 |#3|)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-480)) . T)) -((($) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-309))) -((((-1081)) |has| |#1| (-804 (-1081)))) -((($ (-1081)) |has| |#1| (-804 (-1081)))) -((((-1081)) |has| |#1| (-804 (-1081)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-956)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-956)))) -(((|#1| |#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-956)))) -((((-480)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-956))) (($) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)))) -(OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(|has| |#1| (-408)) -(OR (|has| |#1| (-408)) (|has| |#1| (-660)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-408)) (|has| |#1| (-660)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)) (|has| |#1| (-1017))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-956))) (($) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) (((-480)) OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-408)) (|has| |#1| (-660)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)) (|has| |#1| (-1017)) (|has| |#1| (-1007))) -((((-83)) |has| |#1| (-1007)) (((-767)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-408)) (|has| |#1| (-660)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)) (|has| |#1| (-1017)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-408)) (|has| |#1| (-660)) (|has| |#1| (-804 (-1081))) (|has| |#1| (-956)) (|has| |#1| (-1017)) (|has| |#1| (-1007))) -((((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|))) +((($) . T) (((-483)) . T)) +((($) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-311))) +((((-1088)) |has| |#1| (-809 (-1088)))) +((($ (-1088)) |has| |#1| (-809 (-1088)))) +((((-1088)) |has| |#1| (-809 (-1088)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961)))) +(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961)))) +((((-483)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))) +(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(|has| |#1| (-410)) +(OR (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012))) +((((-85)) |has| |#1| (-1012)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012))) +((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|))) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -(|has| (-1157 |#1| |#2| |#3| |#4|) (-116)) -(|has| (-1157 |#1| |#2| |#3| |#4|) (-118)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T) (((-345 (-480))) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1081) (-1157 |#1| |#2| |#3| |#4|)) |has| (-1157 |#1| |#2| |#3| |#4|) (-449 (-1081) (-1157 |#1| |#2| |#3| |#4|))) (((-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) |has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|)))) -((((-1157 |#1| |#2| |#3| |#4|)) |has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|)))) -((((-1157 |#1| |#2| |#3| |#4|) $) |has| (-1157 |#1| |#2| |#3| |#4|) (-239 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)))) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T) (((-345 (-480))) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#2| |#3| |#4|)) . T) (((-480)) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-1151 |#2| |#3| |#4|)) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(((|#1|) |has| |#1| (-491))) -(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -((((-767)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-408)) (|has| |#1| (-491)) (|has| |#1| (-956)) (|has| |#1| (-1017))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-408)) (|has| |#1| (-491)) (|has| |#1| (-956)) (|has| |#1| (-1017))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) -(|has| |#1| (-116)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +(|has| (-1164 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1164 |#1| |#2| |#3| |#4|) (-120)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1088) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) (((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|)))) +((((-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|)))) +((((-1164 |#1| |#2| |#3| |#4|) $) |has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)))) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1158 |#2| |#3| |#4|)) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-1158 |#2| |#3| |#4|)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(((|#1|) |has| |#1| (-494))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +((((-772)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-494)) (|has| |#1| (-961)) (|has| |#1| (-1024))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-494)) (|has| |#1| (-961)) (|has| |#1| (-1024))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) (|has| |#1| (-118)) -((((-547 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491)) (((-345 (-480))) |has| |#1| (-491))) -((((-480)) OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) (($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-956))) (((-345 (-480))) |has| |#1| (-491))) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491)) (((-345 (-480))) |has| |#1| (-491))) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491)) (((-345 (-480))) |has| |#1| (-491))) -(|has| |#1| (-491)) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-491)) (($) |has| |#1| (-491))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-491)) (($) |has| |#1| (-491))) -(((|#1| |#1|) |has| |#1| (-144)) (((-345 (-480)) (-345 (-480))) |has| |#1| (-491)) (($ $) |has| |#1| (-491))) -(|has| |#1| (-491)) -(((|#1|) |has| |#1| (-956))) -((($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-956))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-956))) (((-345 (-480))) |has| |#1| (-491)) (((-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) -(((|#1|) |has| |#1| (-956)) (((-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) -(((|#1|) . T)) -((((-480)) |has| |#1| (-791 (-480))) (((-325)) |has| |#1| (-791 (-325)))) -(((|#1|) . T)) -(|has| |#1| (-408)) -((((-1081)) |has| |#1| (-956))) -((($ (-1081)) |has| |#1| (-956))) -((((-1081)) |has| |#1| (-956))) -(((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469))) (((-795 (-480))) |has| |#1| (-550 (-795 (-480)))) (((-795 (-325))) |has| |#1| (-550 (-795 (-325))))) -((((-48)) -12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) (((-547 $)) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) OR (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-345 (-852 |#1|))) |has| |#1| (-491)) (((-852 |#1|)) |has| |#1| (-956)) (((-1081)) . T)) -((((-48)) -12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) (((-480)) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-491)) (|has| |#1| (-945 (-480))) (|has| |#1| (-956))) ((|#1|) . T) (((-547 $)) . T) (($) |has| |#1| (-491)) (((-345 (-480))) OR (|has| |#1| (-491)) (|has| |#1| (-945 (-345 (-480))))) (((-345 (-852 |#1|))) |has| |#1| (-491)) (((-852 |#1|)) |has| |#1| (-956)) (((-1081)) . T)) -(((|#1|) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -((((-767)) . T)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-345 (-480))) . T)) -(((|#1| (-345 (-480))) . T)) +(|has| |#1| (-120)) +((((-550 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494))) +((((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-347 (-483))) |has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494))) +(|has| |#1| (-494)) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494))) +(((|#1| |#1|) |has| |#1| (-146)) (((-347 (-483)) (-347 (-483))) |has| |#1| (-494)) (($ $) |has| |#1| (-494))) +(|has| |#1| (-494)) +(((|#1|) |has| |#1| (-961))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-347 (-483))) |has| |#1| (-494)) (((-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) +(((|#1|) |has| |#1| (-961)) (((-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) +(((|#1|) . T)) +((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327)))) +(((|#1|) . T)) +(|has| |#1| (-410)) +((((-1088)) |has| |#1| (-961))) +((($ (-1088)) |has| |#1| (-961))) +((((-1088)) |has| |#1| (-961))) +(((|#1|) . T)) +((((-472)) |has| |#1| (-553 (-472))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327))))) +((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (((-550 $)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-347 (-857 |#1|))) |has| |#1| (-494)) (((-857 |#1|)) |has| |#1| (-961)) (((-1088)) . T)) +((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (((-483)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-950 (-483))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-494)) (((-347 (-483))) OR (|has| |#1| (-494)) (|has| |#1| (-950 (-347 (-483))))) (((-347 (-857 |#1|))) |has| |#1| (-494)) (((-857 |#1|)) |has| |#1| (-961)) (((-1088)) . T)) +(((|#1|) . T)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +((((-772)) . T)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-347 (-483))) . T)) +(((|#1| (-347 (-483))) . T)) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1|) . T)) -((((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -(((|#1| (-345 (-480)) (-988)) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-345 (-480)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-480)) . T)) -((((-480) (-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-767)) . T)) -((((-480)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-689)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-480)) . T)) -((((-767)) . T)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T)) +((((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-347 (-483)) (-993)) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-347 (-483)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-483)) . T)) +((((-483) (-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-772)) . T)) +((((-483)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-483)) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|) (-812 |#1|)) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| $ (-118)) -((($) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|) (-812 |#1|)) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| $ (-118)) -((($) . T)) -((((-812 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-812 |#1|) (-812 |#1|)) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-812 |#1|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| $ (-118)) -((($) . T)) -((((-812 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(OR (|has| |#1| (-116)) (|has| |#1| (-315))) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| |#1| (-118)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -(|has| |#1| (-315)) -((($) |has| |#1| (-315))) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-333) |#1|) . T)) -((((-177)) . T)) -((($) . T)) -((((-480)) . T) (((-345 (-480))) . T)) -((((-325)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-469)) . T) (((-1064)) . T) (((-177)) . T) (((-325)) . T) (((-795 (-325))) . T)) -((((-177)) . T) (((-767)) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| $ (-120)) +((($) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| $ (-120)) +((($) . T)) +((((-817 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| $ (-120)) +((($) . T)) +((((-817 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(OR (|has| |#1| (-118)) (|has| |#1| (-317))) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +(|has| |#1| (-317)) +((($) |has| |#1| (-317))) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-335) |#1|) . T)) +((((-179)) . T)) +((($) . T)) +((((-483)) . T) (((-347 (-483))) . T)) +((((-327)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-472)) . T) (((-1071)) . T) (((-179)) . T) (((-327)) . T) (((-800 (-327))) . T)) +((((-179)) . T) (((-772)) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -((((-480)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-483)) . T) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +((((-772)) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1064)) . T)) -((((-1064)) . T)) -((((-1064)) . T) (((-767)) . T)) +((((-1071)) . T)) +((((-1071)) . T)) +((((-1071)) . T) (((-772)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-767)) . T)) -(((|#3|) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#3|) . T) (((-483)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-345 |#2|)) . T)) +((((-347 |#2|)) . T)) ((($) . T)) -((((-767)) . T)) -(|has| |#1| (-1125)) -((((-469)) |has| |#1| (-550 (-469))) (((-177)) |has| |#1| (-928)) (((-325)) |has| |#1| (-928))) -(|has| |#1| (-928)) -(OR (|has| |#1| (-387)) (|has| |#1| (-1125))) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) +((((-772)) . T)) +(|has| |#1| (-1132)) +((((-472)) |has| |#1| (-553 (-472))) (((-179)) |has| |#1| (-933)) (((-327)) |has| |#1| (-933))) +(|has| |#1| (-933)) +(OR (|has| |#1| (-389)) (|has| |#1| (-1132))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) (((|#1|) . T)) -((($ $) |has| |#1| (-239 $ $)) ((|#1| $) |has| |#1| (-239 |#1| |#1|))) -((($) |has| |#1| (-257 $)) ((|#1|) |has| |#1| (-257 |#1|))) -((((-1081) $) |has| |#1| (-449 (-1081) $)) (($ $) |has| |#1| (-257 $)) ((|#1| |#1|) |has| |#1| (-257 |#1|)) (((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|))) +((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) +((($) |has| |#1| (-259 $)) ((|#1|) |has| |#1| (-259 |#1|))) +((((-1088) $) |has| |#1| (-452 (-1088) $)) (($ $) |has| |#1| (-259 $)) ((|#1| |#1|) |has| |#1| (-259 |#1|)) (((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|))) (((|#1|) . T)) -(|has| |#1| (-188)) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +(|has| |#1| (-190)) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -((((-1081)) |has| |#1| (-804 (-1081)))) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +((((-1088)) |has| |#1| (-809 (-1088)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#1|) . T) (((-480)) . T) (($) . T)) -((((-767)) . T)) -(|has| |#1| (-116)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T) (($) . T)) +((((-772)) . T)) (|has| |#1| (-118)) -(((|#1|) . T)) -((((-1081)) |has| |#1| (-804 (-1081)))) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -(((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -(|has| |#1| (-188)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) ((|#1|) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((|#1| |#1|) |has| |#1| (-257 |#1|))) -(((|#1|) |has| |#1| (-257 |#1|))) -(((|#1| $) |has| |#1| (-239 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-345 (-480))) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T)) -((((-480)) |has| |#1| (-791 (-480))) (((-325)) |has| |#1| (-791 (-325)))) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(OR (|has| |#1| (-735)) (|has| |#1| (-751))) -(OR (|has| |#1| (-735)) (|has| |#1| (-751))) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(((|#1|) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-928)) -((((-469)) |has| |#1| (-550 (-469))) (((-795 (-480))) |has| |#1| (-550 (-795 (-480)))) (((-795 (-325))) |has| |#1| (-550 (-795 (-325)))) (((-325)) |has| |#1| (-928)) (((-177)) |has| |#1| (-928))) -((((-480)) . T) ((|#1|) . T) (($) . T) (((-345 (-480))) . T) (((-1081)) |has| |#1| (-945 (-1081)))) -((((-345 (-480))) |has| |#1| (-945 (-480))) (((-480)) |has| |#1| (-945 (-480))) (((-1081)) |has| |#1| (-945 (-1081))) ((|#1|) . T)) -(|has| |#1| (-1057)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) +(|has| |#1| (-120)) +(((|#1|) . T)) +((((-1088)) |has| |#1| (-809 (-1088)))) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +(|has| |#1| (-190)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) +(((|#1|) |has| |#1| (-259 |#1|))) +(((|#1| $) |has| |#1| (-241 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-347 (-483))) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T)) +((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327)))) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(OR (|has| |#1| (-740)) (|has| |#1| (-756))) +(OR (|has| |#1| (-740)) (|has| |#1| (-756))) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(((|#1|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-933)) +((((-472)) |has| |#1| (-553 (-472))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-327)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933))) +((((-483)) . T) ((|#1|) . T) (($) . T) (((-347 (-483))) . T) (((-1088)) |has| |#1| (-950 (-1088)))) +((((-347 (-483))) |has| |#1| (-950 (-483))) (((-483)) |has| |#1| (-950 (-483))) (((-1088)) |has| |#1| (-950 (-1088))) ((|#1|) . T)) +(|has| |#1| (-1064)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-480)) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-480) (-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-1047 |#2| (-345 (-852 |#1|)))) . T) (((-345 (-852 |#1|))) . T)) -((((-767)) . T)) -((((-1047 |#2| (-345 (-852 |#1|)))) . T) (((-345 (-852 |#1|))) . T) (((-480)) . T)) -((((-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|)) (-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-345 (-852 |#1|))) . T)) -((((-469)) |has| |#2| (-550 (-469))) (((-795 (-325))) |has| |#2| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#2| (-550 (-795 (-480))))) +(((|#1|) . T) (((-483)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-483) (-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-1054 |#2| (-347 (-857 |#1|)))) . T) (((-347 (-857 |#1|))) . T)) +((((-772)) . T)) +((((-1054 |#2| (-347 (-857 |#1|)))) . T) (((-347 (-857 |#1|))) . T) (((-483)) . T)) +((((-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|)) (-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-347 (-857 |#1|))) . T)) +((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T)) -(|has| |#2| (-116)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) +(|has| |#2| (-120)) +(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-816))) -((($ $) . T) (((-768 |#1|) $) . T) (((-768 |#1|) |#2|) . T)) -((((-768 |#1|)) . T)) -((($ (-768 |#1|)) . T)) -((((-768 |#1|)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-345 (-480))) |has| |#2| (-945 (-345 (-480)))) (((-480)) |has| |#2| (-945 (-480))) ((|#2|) . T) (((-768 |#1|)) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ((|#2|) . T) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) (((-768 |#1|)) . T)) -(((|#2| |#3| (-768 |#1|)) . T)) +((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| |#3| (-773 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-767)) . T)) -(((|#2|) . T) (((-480)) . T) ((|#6|) . T)) +((((-772)) . T)) +(((|#2|) . T) (((-483)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-580 |#4|)) . T) (((-767)) . T)) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +((((-583 |#4|)) . T) (((-772)) . T)) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-469)) |has| |#4| (-550 (-469)))) +((((-472)) |has| |#4| (-553 (-472)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-767)) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -((((-767)) . T)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-345 (-480))) . T)) -(((|#1| (-345 (-480))) . T)) +((((-772)) . T)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +((((-772)) . T)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-347 (-483))) . T)) +(((|#1| (-347 (-483))) . T)) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1|) . T)) -((((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#1|) |has| |#1| (-144))) -(((|#1| (-345 (-480)) (-988)) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((($ (-1167 |#2|)) . T) (($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-345 (-480)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T)) +((((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-347 (-483)) (-993)) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-347 (-483)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-469)) |has| |#4| (-550 (-469)))) +((((-472)) |has| |#4| (-553 (-472)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-767)) . T) (((-580 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-469)) . T) (((-345 (-1076 (-480)))) . T) (((-177)) . T) (((-325)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((((-325)) . T) (((-177)) . T) (((-767)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) +((((-472)) . T) (((-347 (-1083 (-483)))) . T) (((-179)) . T) (((-327)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((((-327)) . T) (((-179)) . T) (((-772)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-469)) |has| |#2| (-550 (-469))) (((-795 (-325))) |has| |#2| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#2| (-550 (-795 (-480))))) +((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483))))) ((($) . T)) -(((|#2| (-417 (-3940 |#1|) (-689))) . T)) +(((|#2| (-419 (-3951 |#1|) (-694))) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T)) -(|has| |#2| (-116)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(((|#2| (-417 (-3940 |#1|) (-689))) . T)) -(((|#2|) . T)) -((($) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-816))) -((($ $) . T) (((-768 |#1|) $) . T) (((-768 |#1|) |#2|) . T)) -((((-768 |#1|)) . T)) -((($ (-768 |#1|)) . T)) -((((-768 |#1|)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-345 (-480))) |has| |#2| (-945 (-345 (-480)))) (((-480)) |has| |#2| (-945 (-480))) ((|#2|) . T) (((-768 |#1|)) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ((|#2|) . T) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) (((-768 |#1|)) . T)) -(((|#2| (-417 (-3940 |#1|) (-689)) (-768 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -((((-767)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-549 (-767))) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) (((-1170 |#2|)) . T)) -(((|#2|) |has| |#2| (-956))) -((((-1081)) -12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956)))) -((((-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -((($ (-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -(((|#2|) |has| |#2| (-956))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956))))) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -((((-480)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956))) (($) |has| |#2| (-956))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-956))) -(|has| |#2| (-315)) -(((|#2|) |has| |#2| (-956))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) (($) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-1007))) -((((-480)) OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ((|#2|) |has| |#2| (-1007)) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -(((|#2|) |has| |#2| (-1007)) (((-480)) -12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -((((-480) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2|) . T)) -((((-480) |#2|) . T)) -((((-480) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(((|#2|) |has| |#2| (-309))) +(|has| |#2| (-120)) +(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(((|#2| (-419 (-3951 |#1|) (-694))) . T)) +(((|#2|) . T)) +((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-419 (-3951 |#1|) (-694)) (-773 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) +((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-317)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1012))) +((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +((((-483) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) . T)) +((((-483) |#2|) . T)) +((((-483) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(((|#2|) |has| |#2| (-311))) (((|#1| |#2|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) (((|#1|) . T)) (((|#1|) . T)) -((((-480)) . T)) -((((-767)) . T)) +((((-483)) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-912 16)) . T) (((-345 (-480))) . T) (((-767)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((($) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480) (-480)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T)) -((((-1064)) . T) (((-767)) . T)) -((($) . T)) -((((-140 (-325))) . T) (((-177)) . T) (((-325)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-547 $) $) . T)) -((((-345 (-480))) . T) (((-480)) . T) (((-547 $)) . T)) -((((-1030 (-480) (-547 $))) . T) (($) . T) (((-480)) . T) (((-345 (-480))) . T) (((-547 $)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1| (-431 |#1| |#3|) (-431 |#1| |#2|)) . T)) -((((-83)) . T)) -((((-83)) . T)) -((((-480) (-83)) . T)) -((((-480) (-83)) . T)) -((((-480) (-83)) . T) (((-1137 (-480)) $) . T)) -((((-469)) . T)) -((((-83)) . T)) -((((-767)) . T)) -((((-83)) . T)) -((((-83)) . T)) -((((-1064)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-917 16)) . T) (((-347 (-483))) . T) (((-772)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((($) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T)) +((((-1071)) . T) (((-772)) . T)) +((($) . T)) +((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-550 $) $) . T)) +((((-347 (-483))) . T) (((-483)) . T) (((-550 $)) . T)) +((((-1037 (-483) (-550 $))) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T) (((-550 $)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-483) (-85)) . T)) +((((-483) (-85)) . T)) +((((-483) (-85)) . T) (((-1144 (-483)) $) . T)) +((((-472)) . T)) +((((-85)) . T)) +((((-772)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-1071)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -((((-480)) . T)) +((((-772)) . T)) +((((-483)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -(-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) -((((-767)) -12 (|has| |#1| (-1007)) (|has| |#2| (-1007)))) +((((-772)) . T)) +(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) +((((-772)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-513 |#1|)) . T)) -((((-513 |#1|)) . T)) -((((-513 |#1|)) . T)) -((((-513 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-513 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-513 |#1|) (-513 |#1|)) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-513 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-513 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-513 |#1|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-513 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-513 |#1|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) -(|has| $ (-118)) -((($) . T)) -((((-513 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-516 |#1|)) . T)) +((((-516 |#1|)) . T)) +((((-516 |#1|)) . T)) +((((-516 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-516 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-516 |#1|) (-516 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-516 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| $ (-120)) +((($) . T)) +((((-516 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) (((|#1| |#4| |#5|) . T)) -(((|#1| (-533 |#1| |#3|) (-533 |#1| |#2|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -(((|#1| (-533 |#1| |#3|) (-533 |#1| |#2|)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((((-689) |#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-511)) . T)) -((((-1009)) . T)) -((((-580 $)) . T) (((-1064)) . T) (((-1081)) . T) (((-480)) . T) (((-177)) . T) (((-767)) . T)) -((((-480) $) . T) (((-580 (-480)) $) . T)) -((((-767)) . T)) -((((-1064) (-1081) (-480) (-177) (-767)) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +(((|#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +(((|#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((((-694) |#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-514)) . T)) +((((-1014)) . T)) +((((-583 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-772)) . T)) +((((-483) $) . T) (((-583 (-483)) $) . T)) +((((-772)) . T)) +((((-1071) (-1088) (-483) (-179) (-772)) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1631,1279 +1634,1284 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -((((-480)) . T)) -((($) . T) (((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-480)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-480)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-483)) . T) (($) . T)) +((((-483)) . T)) +((($) . T) (((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-483)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-767)) . T)) -((((-480)) . T) (($) . T)) +((((-772)) . T)) +((((-483)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -((((-480)) . T)) +((((-483)) . T) (($) . T)) +((((-483)) . T)) (((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) ((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) +((((-483)) . T) (($) . T)) (((|#1|) . T)) -((((-480)) . T)) +((((-483)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-118)) +(|has| $ (-120)) ((($) . T)) -((((-767)) . T)) +((((-772)) . T)) ((($) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T)) -((((-345 (-480))) . T)) -((((-767)) . T)) -((((-480)) . T) (((-345 (-480))) . T)) -((((-345 (-480))) . T)) -((((-345 (-480))) . T)) -((((-345 (-480))) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T) (((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(|has| |#1| (-15 * (|#1| (-480) |#1|))) -((((-767)) . T)) -((($) |has| |#1| (-15 * (|#1| (-480) |#1|)))) -(|has| |#1| (-15 * (|#1| (-480) |#1|))) -((($ $) . T) (((-480) |#1|) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -((($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -(((|#1| (-480) (-988)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -(|has| |#1| (-116)) +((((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T)) +((((-347 (-483))) . T)) +((((-772)) . T)) +((((-483)) . T) (((-347 (-483))) . T)) +((((-347 (-483))) . T)) +((((-347 (-483))) . T)) +((((-347 (-483))) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T) (((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(|has| |#1| (-15 * (|#1| (-483) |#1|))) +((((-772)) . T)) +((($) |has| |#1| (-15 * (|#1| (-483) |#1|)))) +(|has| |#1| (-15 * (|#1| (-483) |#1|))) +((($ $) . T) (((-483) |#1|) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +(((|#1| (-483) (-993)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -((((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -(((|#1| (-480)) . T)) -(((|#1| (-480)) . T)) -((($) |has| |#1| (-491))) -((($) |has| |#1| (-491))) -((($) |has| |#1| (-491))) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -((($) |has| |#1| (-491)) ((|#1|) . T)) -((($) |has| |#1| (-491)) ((|#1|) . T)) -((($ $) |has| |#1| (-491)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-491)) (((-480)) . T)) +(|has| |#1| (-120)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +(((|#1| (-483)) . T)) +(((|#1| (-483)) . T)) +((($) |has| |#1| (-494))) +((($) |has| |#1| (-494))) +((($) |has| |#1| (-494))) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +((($) |has| |#1| (-494)) ((|#1|) . T)) +((($) |has| |#1| (-494)) ((|#1|) . T)) +((($ $) |has| |#1| (-494)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-494)) (((-483)) . T)) (((|#1|) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (($) . T) (((-480)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T) (((-767)) . T)) -((((-767)) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-483)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T) (((-772)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-480) |#1|) . T)) -((((-480) |#1|) . T)) -((((-480) |#1|) . T) (((-1137 (-480)) $) . T)) -((((-469)) |has| |#1| (-550 (-469)))) +((((-483) |#1|) . T)) +((((-483) |#1|) . T)) +((((-483) |#1|) . T) (((-1144 (-483)) $) . T)) +((((-472)) |has| |#1| (-553 (-472)))) (((|#1|) . T)) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) -((((-1086)) . T)) -((((-1121)) . T) (((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-480) |#1|) |has| |#2| (-356 |#1|))) -(((|#1|) OR (|has| |#2| (-313 |#1|)) (|has| |#2| (-356 |#1|)))) -(((|#1|) |has| |#2| (-356 |#1|))) +((((-1093)) . T)) +((((-1128)) . T) (((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-483) |#1|) |has| |#2| (-358 |#1|))) +(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|)))) +(((|#1|) |has| |#2| (-358 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-767)) . T)) -(((|#1|) . T) (((-480)) . T)) +(((|#2|) . T) (((-772)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-99)) . T)) -((((-99)) . T)) -((((-99)) . T) (((-767)) . T)) -((((-767)) . T)) -((((-99)) . T) (((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-99)) . T) (((-538)) . T)) -((((-99)) . T) (((-538)) . T)) -((((-99)) . T) (((-538)) . T) (((-767)) . T)) -((((-1064) |#1|) . T)) -((((-1064) |#1|) . T)) -((((-1064) |#1|) . T)) -((((-1064) |#1|) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-1064) |#1|) . T)) -((((-767)) . T)) -((((-333) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-469)) |has| |#1| (-550 (-469))) (((-795 (-325))) |has| |#1| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#1| (-550 (-795 (-480))))) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-767)) . T)) +((((-101)) . T)) +((((-101)) . T)) +((((-101)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-101)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-101)) . T) (((-541)) . T)) +((((-101)) . T) (((-541)) . T)) +((((-101)) . T) (((-541)) . T) (((-772)) . T)) +((((-1071) |#1|) . T)) +((((-1071) |#1|) . T)) +((((-1071) |#1|) . T)) +((((-1071) |#1|) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-1071) |#1|) . T)) +((((-772)) . T)) +((((-335) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-472)) |has| |#1| (-553 (-472))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483))))) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-772)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-480)) . T) (($) . T)) +(((|#2|) . T) (((-483)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-480)) . T)) +(((|#2|) . T) (((-483)) . T)) (((|#2|) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-116)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) (|has| |#1| (-118)) -(((|#2|) . T) (((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) +(|has| |#1| (-120)) +(((|#2|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) (((|#1|) . T)) -((((-345 |#2|)) . T)) +((((-347 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-188)) -(((|#2|) . T) (((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#1|) . T) (($) . T) (((-480)) . T)) +(|has| |#2| (-190)) +(((|#2|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (($) . T) (((-483)) . T)) ((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) -((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) -(OR (|has| |#2| (-188)) (|has| |#2| (-187))) +((((-772)) . T)) +((($) . T) (((-483)) . T)) +((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) +(OR (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -((((-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -((((-1081)) |has| |#2| (-804 (-1081)))) +((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +((((-1088)) |has| |#2| (-809 (-1088)))) (((|#2|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((((-1064) (-51)) . T)) -((((-767)) . T)) -((((-1081) (-51)) . T) (((-1064) (-51)) . T)) -((((-1064) (-51)) . T)) -((((-1064) (-51)) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))))) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))))) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) . T)) -((((-1064) (-51)) . T)) -((((-480) |#1|) |has| |#2| (-356 |#1|))) -(((|#1|) OR (|has| |#2| (-313 |#1|)) (|has| |#2| (-356 |#1|)))) -(((|#1|) |has| |#2| (-356 |#1|))) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((((-1071) (-51)) . T)) +((((-772)) . T)) +((((-1088) (-51)) . T) (((-1071) (-51)) . T)) +((((-1071) (-51)) . T)) +((((-1071) (-51)) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T)) +((((-1071) (-51)) . T)) +((((-483) |#1|) |has| |#2| (-358 |#1|))) +(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|)))) +(((|#1|) |has| |#2| (-358 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-767)) . T)) -(((|#1|) . T) (((-480)) . T)) +(((|#2|) . T) (((-772)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-768 |#1|)) . T)) -((((-767)) . T)) -(((|#1| (-574 |#2|)) . T)) -((((-574 |#2|)) . T)) +((((-773 |#1|)) . T)) +((((-772)) . T)) +(((|#1| (-577 |#2|)) . T)) +((((-577 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-576 |#1| |#2|) |#1|) . T)) +((((-579 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1086)) . T)) -(((|#1|) . T) (((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) +((((-1093)) . T)) +(((|#1|) . T) (((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) +((((-472)) |has| |#1| (-553 (-472)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(|has| |#1| (-709)) -(|has| |#1| (-709)) -(|has| |#1| (-709)) -(|has| |#1| (-709)) -(|has| |#1| (-709)) -(|has| |#1| (-709)) +((((-772)) . T)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((((-480)) . T) ((|#2|) . T)) +((((-772)) . T)) +((((-483)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -((((-767)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#1|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -((((-767)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#1|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -((((-767)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((|#1|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-611 |#1|)) . T)) -((((-611 |#1|)) . T)) -(((|#2| (-611 |#1|)) . T)) +((((-614 |#1|)) . T)) +((((-614 |#1|)) . T)) +(((|#2| (-614 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((((-480)) . T) ((|#2|) . T)) +((((-772)) . T)) +((((-483)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-480) |#2|) . T)) +((((-483) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3980 "*")))) +(((|#2|) |has| |#2| (-6 (-3991 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-627 |#2|)) . T) (((-767)) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1081)) |has| |#2| (-804 (-1081)))) -((((-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -(((|#2|) . T)) -(OR (|has| |#2| (-188)) (|has| |#2| (-187))) -((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) -(|has| |#2| (-188)) -(((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T)) -((((-480)) . T) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#2|) . T) (((-480)) |has| |#2| (-945 (-480))) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#1| |#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2|) . T)) -(((|#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-1121)) . T) (((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -(((|#1| (-1170 |#1|) (-1170 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -(((|#1| (-1170 |#1|) (-1170 |#1|)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(|has| |#1| (-315)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-767)) . T)) -((((-345 $) (-345 $)) |has| |#1| (-491)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(|has| |#1| (-309)) -(((|#1| (-689) (-988)) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (((-988)) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ (-988)) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) (((-988)) . T)) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-689)) . T)) +((((-630 |#2|)) . T) (((-772)) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-1088)) |has| |#2| (-809 (-1088)))) +((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +(((|#2|) . T)) +(OR (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) +(((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T)) +((((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) . T)) +(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-1128)) . T) (((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(|has| |#1| (-317)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-772)) . T)) +((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-311)) +(((|#1| (-694) (-993)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T)) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -(((|#2|) . T) (((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) (((-988)) . T) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480)))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -((((-988)) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-689)) . T)) -((((-988) |#1|) . T) (((-988) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1057)) -(((|#1|) . T)) -((((-2 (|:| -2388 |#1|) (|:| -2389 |#2|))) . T)) -((((-2 (|:| -2388 |#1|) (|:| -2389 |#2|))) . T)) -((((-2 (|:| -2388 |#1|) (|:| -2389 |#2|))) . T) (((-767)) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1| |#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(|has| |#1| (-116)) +(((|#2|) . T) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483)))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-694)) . T)) +((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1064)) +(((|#1|) . T)) +((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T)) +((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T)) +((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T) (((-772)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#2| |#2|) . T)) -((((-84)) . T) ((|#1|) . T)) -((((-84)) . T) ((|#1|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-480)) . T)) -((((-480)) . T)) -((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) -((((-767)) . T)) -((((-469)) |has| |#2| (-550 (-469))) (((-795 (-325))) |has| |#2| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#2| (-550 (-795 (-480))))) -((($) . T)) -(((|#2| (-465 (-768 |#1|))) . T)) -(((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T)) -(|has| |#2| (-116)) +((((-86)) . T) ((|#1|) . T)) +((((-86)) . T) ((|#1|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +((((-483)) . T)) +((($) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1| |#1| |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483))))) +((($) . T)) +(((|#2| (-468 (-773 |#1|))) . T)) +(((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -((((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816)))) -(((|#2| (-465 (-768 |#1|))) . T)) -(((|#2|) . T)) -((($) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480)))) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(OR (|has| |#2| (-387)) (|has| |#2| (-816))) -((($ $) . T) (((-768 |#1|) $) . T) (((-768 |#1|) |#2|) . T)) -((((-768 |#1|)) . T)) -((($ (-768 |#1|)) . T)) -((((-768 |#1|)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-345 (-480))) |has| |#2| (-945 (-345 (-480)))) (((-480)) |has| |#2| (-945 (-480))) ((|#2|) . T) (((-768 |#1|)) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ((|#2|) . T) (($) OR (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) (((-768 |#1|)) . T)) -(((|#2| (-465 (-768 |#1|)) (-768 |#1|)) . T)) -(-12 (|has| |#1| (-315)) (|has| |#2| (-315))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1| |#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(|has| |#1| (-116)) +(|has| |#2| (-120)) +(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))) +(((|#2| (-468 (-773 |#1|))) . T)) +(((|#2|) . T)) +((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(OR (|has| |#2| (-389)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-468 (-773 |#1|)) (-773 |#1|)) . T)) +(-12 (|has| |#1| (-317)) (|has| |#2| (-317))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-480)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) +((((-772)) . T)) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) (((|#1|) . T)) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) +((((-472)) |has| |#1| (-553 (-472)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#1| (-465 |#2|) |#2|) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#2| (-791 (-480)))) (((-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#2| (-791 (-325))))) +((((-772)) . T)) +((((-772)) . T)) +(((|#1| (-468 |#2|) |#2|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) (((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-465 |#2|)) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) +(((|#1| (-468 |#2|)) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-1030 |#1| |#2|)) . T) (((-852 |#1|)) |has| |#2| (-550 (-1081))) (((-767)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (($) . T)) -((((-1030 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-480)) . T)) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -((((-1030 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-465 |#2|)) . T)) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-1037 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1088))) (((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T)) +((((-1037 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T)) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +((((-1037 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-468 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-852 |#1|)) |has| |#2| (-550 (-1081))) (((-1064)) -12 (|has| |#1| (-945 (-480))) (|has| |#2| (-550 (-1081)))) (((-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) (((-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) (((-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#2| (-550 (-469))))) -(((|#1| (-465 |#2|) |#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-1076 |#1|)) . T) (((-767)) . T)) -((((-345 $) (-345 $)) |has| |#1| (-491)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(|has| |#1| (-309)) -(((|#1| (-689) (-988)) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (((-988)) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ (-988)) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) (((-988)) . T)) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-689)) . T)) +((((-857 |#1|)) |has| |#2| (-553 (-1088))) (((-1071)) -12 (|has| |#1| (-950 (-483))) (|has| |#2| (-553 (-1088)))) (((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) (((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472))))) +(((|#1| (-468 |#2|) |#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-1083 |#1|)) . T) (((-772)) . T)) +((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-311)) +(((|#1| (-694) (-993)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T)) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((((-1076 |#1|)) . T) (((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) (((-988)) . T) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480)))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) +((((-1083 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483)))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) (((|#1|) . T)) -((((-1076 |#1|)) . T) (((-988)) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-689)) . T)) -((((-988) |#1|) . T) (((-988) $) . T) (($ $) . T)) +((((-1083 |#1|)) . T) (((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-694)) . T)) +((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1057)) +(|has| |#1| (-1064)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-116)) (|has| |#1| (-118)) -((((-469)) |has| |#1| (-550 (-469)))) -(|has| |#1| (-315)) -(((|#1|) . T)) -((((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((|#1| |#1|) |has| |#1| (-257 |#1|))) -(((|#1|) |has| |#1| (-257 |#1|))) -(((|#1| $) |has| |#1| (-239 |#1| |#1|))) -((((-904 |#1|)) . T) ((|#1|) . T)) -((((-904 |#1|)) . T) (((-480)) . T) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| (-904 |#1|) (-945 (-345 (-480)))))) -((((-904 |#1|)) . T) ((|#1|) . T) (((-480)) OR (|has| |#1| (-945 (-480))) (|has| (-904 |#1|) (-945 (-480)))) (((-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| (-904 |#1|) (-945 (-345 (-480)))))) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-712)) (|has| |#2| (-956))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956)))) -((((-767)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-549 (-767))) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-315)) (|has| |#2| (-660)) (|has| |#2| (-712)) (|has| |#2| (-751)) (|has| |#2| (-956)) (|has| |#2| (-1007))) (((-1170 |#2|)) . T)) -(((|#2|) |has| |#2| (-956))) -((((-1081)) -12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956)))) -((((-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -((($ (-1081)) OR (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))))) -(((|#2|) |has| |#2| (-956))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-956))) (-12 (|has| |#2| (-187)) (|has| |#2| (-956))))) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -(|has| |#2| (-956)) -((((-480)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)) (|has| |#2| (-956))) (($) |has| |#2| (-956))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-956))) -(|has| |#2| (-315)) -(((|#2|) |has| |#2| (-956))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-956))) (($) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-956)) (((-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956)))) -(((|#2|) |has| |#2| (-1007))) -((((-480)) OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ((|#2|) |has| |#2| (-1007)) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -(((|#2|) |has| |#2| (-1007)) (((-480)) -12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (((-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007)))) -((((-480) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2|) . T)) -((((-480) |#2|) . T)) -((((-480) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-660)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-309)))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(OR (|has| |#2| (-712)) (|has| |#2| (-751))) -(|has| |#2| (-712)) -(|has| |#2| (-712)) -(((|#2|) |has| |#2| (-309))) +(|has| |#1| (-120)) +((((-472)) |has| |#1| (-553 (-472)))) +(|has| |#1| (-317)) +(((|#1|) . T)) +((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) +(((|#1|) |has| |#1| (-259 |#1|))) +(((|#1| $) |has| |#1| (-241 |#1| |#1|))) +((((-909 |#1|)) . T) ((|#1|) . T)) +((((-909 |#1|)) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| (-909 |#1|) (-950 (-347 (-483)))))) +((((-909 |#1|)) . T) ((|#1|) . T) (((-483)) OR (|has| |#1| (-950 (-483))) (|has| (-909 |#1|) (-950 (-483)))) (((-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| (-909 |#1|) (-950 (-347 (-483)))))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) +((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-317)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1012))) +((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012)))) +((((-483) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) . T)) +((((-483) |#2|) . T)) +((((-483) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(((|#2|) |has| |#2| (-311))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-767)) . T)) -(|has| |#1| (-188)) -((($) . T)) -(((|#1| (-465 (-733 (-1081))) (-733 (-1081))) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (((-733 (-1081))) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ (-733 (-1081))) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) (((-733 (-1081))) . T)) -((($ $) . T) (((-1081) $) |has| |#1| (-188)) (((-1081) |#1|) |has| |#1| (-188)) (((-733 (-1081)) |#1|) . T) (((-733 (-1081)) $) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-465 (-733 (-1081)))) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-772)) . T)) +(|has| |#1| (-190)) +((($) . T)) +(((|#1| (-468 (-738 (-1088))) (-738 (-1088))) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-738 (-1088))) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-738 (-1088))) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) (((-738 (-1088))) . T)) +((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-738 (-1088)) |#1|) . T) (((-738 (-1088)) $) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-468 (-738 (-1088)))) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -(((|#1| (-465 (-733 (-1081)))) . T)) -((((-1030 |#1| (-1081))) . T) (((-733 (-1081))) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-1081)) . T)) -((((-1030 |#1| (-1081))) . T) (((-480)) . T) (((-733 (-1081))) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-1081)) . T)) -(((|#1| (-1081) (-733 (-1081)) (-465 (-733 (-1081)))) . T)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -((((-345 (-480))) |has| |#2| (-309)) (($) |has| |#2| (-309))) -((((-345 (-480))) |has| |#2| (-309)) (($) |has| |#2| (-309))) -((((-345 (-480))) |has| |#2| (-309)) (($) |has| |#2| (-309))) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(|has| |#2| (-309)) -(((|#2|) . T)) -((($) . T)) -((((-345 (-480))) |has| |#2| (-309)) (($) |has| |#2| (-309)) ((|#2|) . T) (((-480)) . T)) -((((-345 (-480))) |has| |#2| (-309)) (($) . T)) -(((|#2|) . T) (((-767)) . T)) -((((-345 (-480))) |has| |#2| (-309)) (($) . T) (((-480)) . T)) -((((-345 (-480))) |has| |#2| (-309)) (($) . T)) -((((-345 (-480))) |has| |#2| (-309)) (($) . T)) -((((-345 (-480)) (-345 (-480))) |has| |#2| (-309)) (($ $) . T)) -((($) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-188)) -((($) |has| |#1| (-188))) -(|has| |#1| (-188)) -(((|#2|) |has| |#2| (-144))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +(((|#1| (-468 (-738 (-1088)))) . T)) +((((-1037 |#1| (-1088))) . T) (((-738 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-1088)) . T)) +((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-738 (-1088))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-1088)) . T)) +(((|#1| (-1088) (-738 (-1088)) (-468 (-738 (-1088)))) . T)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311))) +((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311))) +((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311))) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(|has| |#2| (-311)) +(((|#2|) . T)) +((($) . T)) +((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311)) ((|#2|) . T) (((-483)) . T)) +((((-347 (-483))) |has| |#2| (-311)) (($) . T)) +(((|#2|) . T) (((-772)) . T)) +((((-347 (-483))) |has| |#2| (-311)) (($) . T) (((-483)) . T)) +((((-347 (-483))) |has| |#2| (-311)) (($) . T)) +((((-347 (-483))) |has| |#2| (-311)) (($) . T)) +((((-347 (-483)) (-347 (-483))) |has| |#2| (-311)) (($ $) . T)) +((($) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-190)) +((($) |has| |#1| (-190))) +(|has| |#1| (-190)) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-144))) -(((|#2|) |has| |#2| (-144))) -((((-480)) . T) ((|#2|) |has| |#2| (-144))) -(((|#2|) . T)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -((($) |has| |#1| (-750))) -(|has| |#1| (-750)) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -((($) |has| |#1| (-750)) (((-480)) OR (|has| |#1| (-21)) (|has| |#1| (-750)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) OR (|has| |#1| (-750)) (|has| |#1| (-945 (-480)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1| |#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(|has| |#1| (-116)) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) +((((-483)) . T) ((|#2|) |has| |#2| (-146))) +(((|#2|) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +((($) |has| |#1| (-755))) +(|has| |#1| (-755)) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((($) |has| |#1| (-755)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#1| |#1|) . T)) -((((-84)) . T) ((|#1|) . T)) -((((-84)) . T) ((|#1|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-480)) . T)) -((((-767)) . T)) -((((-441)) . T)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -((($) |has| |#1| (-750))) -(|has| |#1| (-750)) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -((($) |has| |#1| (-750)) (((-480)) OR (|has| |#1| (-21)) (|has| |#1| (-750)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-750))) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) OR (|has| |#1| (-750)) (|has| |#1| (-945 (-480)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -((((-767)) |has| |#1| (-549 (-767))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) +((((-86)) . T) ((|#1|) . T)) +((((-86)) . T) ((|#1|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +((((-772)) . T)) +((((-444)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +((($) |has| |#1| (-755))) +(|has| |#1| (-755)) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((($) |has| |#1| (-755)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-480)) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) +((((-483)) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-144))) -(((|#2|) |has| |#2| (-144))) -(((|#2|) . T)) -((((-1167 |#1|)) . T) (((-480)) . T) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#2|) . T) (((-480)) |has| |#2| (-945 (-480))) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#2|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-795 (-480))) . T) (((-795 (-325))) . T) (((-469)) . T) (((-1081)) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1| |#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -((((-852 |#1|)) . T)) -(((|#1|) |has| |#1| (-144)) (((-852 |#1|)) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T)) -((((-852 |#1|)) . T) (((-767)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-480)) . T)) -((($) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) . T)) +((((-1174 |#1|)) . T) (((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#2|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-800 (-483))) . T) (((-800 (-327))) . T) (((-472)) . T) (((-1088)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-857 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-857 |#1|)) . T) (((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +((($) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -((((-773 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-773 |#1|)) . T) (((-345 (-480))) . T)) -((((-773 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-773 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-773 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-773 |#1|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-773 |#1|) (-773 |#1|)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-773 |#1|)) . T)) -((((-1081) (-773 |#1|)) |has| (-773 |#1|) (-449 (-1081) (-773 |#1|))) (((-773 |#1|) (-773 |#1|)) |has| (-773 |#1|) (-257 (-773 |#1|)))) -((((-773 |#1|)) |has| (-773 |#1|) (-257 (-773 |#1|)))) -((((-773 |#1|) $) |has| (-773 |#1|) (-239 (-773 |#1|) (-773 |#1|)))) -((((-773 |#1|)) . T)) -((($) . T) (((-773 |#1|)) . T) (((-345 (-480))) . T)) -((((-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -((((-480)) . T) (((-773 |#1|)) . T) (($) . T) (((-345 (-480))) . T)) -((((-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -((((-767)) . T)) -(|has| |#2| (-116)) +((((-483)) . T) (($) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-778 |#1|)) . T) (((-347 (-483))) . T)) +((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-778 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-778 |#1|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-778 |#1|) (-778 |#1|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-778 |#1|)) . T)) +((((-1088) (-778 |#1|)) |has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-259 (-778 |#1|)))) +((((-778 |#1|)) |has| (-778 |#1|) (-259 (-778 |#1|)))) +((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|)))) +((((-778 |#1|)) . T)) +((($) . T) (((-778 |#1|)) . T) (((-347 (-483))) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-483)) . T) (((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-772)) . T)) (|has| |#2| (-118)) -(((|#2|) . T)) -((((-1081)) |has| |#2| (-804 (-1081)))) -((((-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -(((|#2|) . T)) -(OR (|has| |#2| (-188)) (|has| |#2| (-187))) -((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) -(|has| |#2| (-188)) -(((|#2|) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T) (((-345 (-480))) . T)) -(((|#2|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#2|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#2|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#2|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1081) |#2|) |has| |#2| (-449 (-1081) |#2|)) ((|#2| |#2|) |has| |#2| (-257 |#2|))) -(((|#2|) |has| |#2| (-257 |#2|))) -(((|#2| $) |has| |#2| (-239 |#2| |#2|))) -(((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-345 (-480))) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T)) -((((-480)) |has| |#2| (-791 (-480))) (((-325)) |has| |#2| (-791 (-325)))) -(|has| |#2| (-735)) -(|has| |#2| (-735)) -(|has| |#2| (-735)) -(OR (|has| |#2| (-735)) (|has| |#2| (-751))) -(OR (|has| |#2| (-735)) (|has| |#2| (-751))) -(|has| |#2| (-735)) -(|has| |#2| (-735)) -(|has| |#2| (-735)) -(((|#2|) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-928)) -((((-469)) |has| |#2| (-550 (-469))) (((-795 (-480))) |has| |#2| (-550 (-795 (-480)))) (((-795 (-325))) |has| |#2| (-550 (-795 (-325)))) (((-325)) |has| |#2| (-928)) (((-177)) |has| |#2| (-928))) -((((-480)) . T) ((|#2|) . T) (($) . T) (((-345 (-480))) . T) (((-1081)) |has| |#2| (-945 (-1081)))) -((((-345 (-480))) |has| |#2| (-945 (-480))) (((-480)) |has| |#2| (-945 (-480))) (((-1081)) |has| |#2| (-945 (-1081))) ((|#2|) . T)) -(|has| |#2| (-1057)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) -(-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) -((((-767)) OR (-12 (|has| |#1| (-549 (-767))) (|has| |#2| (-549 (-767)))) (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))))) -((((-128)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1081)) . T) ((|#1|) . T)) -((((-1081)) . T) ((|#1|) . T)) -((((-767)) . T)) -((((-611 |#1|)) . T)) -((((-611 |#1|)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-1107 |#1|)) . T) (((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) +(|has| |#2| (-120)) +(((|#2|) . T)) +((((-1088)) |has| |#2| (-809 (-1088)))) +((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +(((|#2|) . T)) +(OR (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) +(((|#2|) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T) (((-347 (-483))) . T)) +(((|#2|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#2|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#2|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#2|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1088) |#2|) |has| |#2| (-452 (-1088) |#2|)) ((|#2| |#2|) |has| |#2| (-259 |#2|))) +(((|#2|) |has| |#2| (-259 |#2|))) +(((|#2| $) |has| |#2| (-241 |#2| |#2|))) +(((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-347 (-483))) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T)) +((((-483)) |has| |#2| (-796 (-483))) (((-327)) |has| |#2| (-796 (-327)))) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(OR (|has| |#2| (-740)) (|has| |#2| (-756))) +(OR (|has| |#2| (-740)) (|has| |#2| (-756))) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(((|#2|) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-933)) +((((-472)) |has| |#2| (-553 (-472))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-327)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933))) +((((-483)) . T) ((|#2|) . T) (($) . T) (((-347 (-483))) . T) (((-1088)) |has| |#2| (-950 (-1088)))) +((((-347 (-483))) |has| |#2| (-950 (-483))) (((-483)) |has| |#2| (-950 (-483))) (((-1088)) |has| |#2| (-950 (-1088))) ((|#2|) . T)) +(|has| |#2| (-1064)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) +(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) +((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))) +((((-130)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1088)) . T) ((|#1|) . T)) +((((-1088)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-614 |#1|)) . T)) +((((-614 |#1|)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-1114 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-767)) . T)) -(OR (|has| |#1| (-315)) (|has| |#1| (-751))) -(OR (|has| |#1| (-315)) (|has| |#1| (-751))) +((((-772)) . T)) +(OR (|has| |#1| (-317)) (|has| |#1| (-756))) +(OR (|has| |#1| (-317)) (|has| |#1| (-756))) (((|#1|) . T)) -((((-767)) . T)) -((((-480)) . T)) +((((-772)) . T)) +((((-483)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-118)) +(|has| $ (-120)) ((($) . T)) -((((-767)) . T)) +((((-772)) . T)) ((($) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($) . T) (((-345 (-480))) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-345 (-480)) (-345 (-480))) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-580 |#1|)) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($) . T) (((-347 (-483))) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-583 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469))) (((-795 (-325))) |has| |#1| (-550 (-795 (-325)))) (((-795 (-480))) |has| |#1| (-550 (-795 (-480))))) +((((-472)) |has| |#1| (-553 (-472))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483))))) ((($) . T)) -(((|#1| (-465 (-1081))) . T)) +(((|#1| (-468 (-1088))) . T)) (((|#1|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -(|has| |#1| (-116)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -(((|#1| (-465 (-1081))) . T)) -(((|#1|) . T)) -((($) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) -((($ $) . T) (((-1081) $) . T) (((-1081) |#1|) . T)) -((((-1081)) . T)) -((($ (-1081)) . T)) -((((-1081)) . T)) -((((-325)) |has| |#1| (-791 (-325))) (((-480)) |has| |#1| (-791 (-480)))) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T) (((-1081)) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ((|#1|) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) (((-1081)) . T)) -(((|#1| (-465 (-1081)) (-1081)) . T)) -((((-1025)) . T) (((-767)) . T)) +(|has| |#1| (-120)) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +(((|#1| (-468 (-1088))) . T)) +(((|#1|) . T)) +((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) +((($ $) . T) (((-1088) $) . T) (((-1088) |#1|) . T)) +((((-1088)) . T)) +((($ (-1088)) . T)) +((((-1088)) . T)) +((((-327)) |has| |#1| (-796 (-327))) (((-483)) |has| |#1| (-796 (-483)))) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T) (((-1088)) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-1088)) . T)) +(((|#1| (-468 (-1088)) (-1088)) . T)) +((((-1032)) . T) (((-772)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-767)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (($) . T)) -((($) |has| |#1| (-491)) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-480)) . T)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T)) +((($) |has| |#1| (-494)) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T)) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-712)) (|has| |#2| (-712))) -(-12 (|has| |#1| (-712)) (|has| |#2| (-712))) -(OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) -(OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) -(-12 (|has| |#1| (-712)) (|has| |#2| (-712))) -(-12 (|has| |#1| (-712)) (|has| |#2| (-712))) -((((-480)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) +(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +((((-483)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-408)) (|has| |#2| (-408))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) -(OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) -(OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) -(-12 (|has| |#1| (-315)) (|has| |#2| (-315))) -((((-767)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-580 (-825))) . T) (((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-195 |#1| |#2|) |#2|) . T)) -((((-767)) . T)) -((((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -(|has| |#1| (-116)) +(-12 (|has| |#1| (-410)) (|has| |#2| (-410))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) +(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) +(-12 (|has| |#1| (-317)) (|has| |#2| (-317))) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-583 (-830))) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-197 |#1| |#2|) |#2|) . T)) +((((-772)) . T)) +((((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) (|has| |#1| (-118)) -((((-469)) |has| |#1| (-550 (-469)))) -(((|#1|) . T)) -((((-1081)) |has| |#1| (-804 (-1081)))) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081))))) -(((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -(|has| |#1| (-188)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-243)) (|has| |#1| (-309))) -((((-480)) . T) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480)))))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-309))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-309))) -((($) . T) (((-480)) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-309))) -(((|#1|) . T) (($) OR (|has| |#1| (-243)) (|has| |#1| (-309))) (((-345 (-480))) |has| |#1| (-309))) -(((|#1|) . T) (($) OR (|has| |#1| (-243)) (|has| |#1| (-309))) (((-345 (-480))) |has| |#1| (-309))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-243)) (|has| |#1| (-309))) (((-345 (-480)) (-345 (-480))) |has| |#1| (-309))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-309))) -(((|#1|) . T)) -((((-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((|#1| |#1|) |has| |#1| (-257 |#1|))) -(((|#1|) |has| |#1| (-257 |#1|))) -(((|#1| $) |has| |#1| (-239 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-309)) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T)) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-345 |#2|) |#3|) . T)) -((((-345 (-480))) |has| (-345 |#2|) (-945 (-345 (-480)))) (((-480)) |has| (-345 |#2|) (-945 (-480))) (((-345 |#2|)) . T)) -((((-345 |#2|)) . T)) -((((-480)) |has| (-345 |#2|) (-577 (-480))) (((-345 |#2|)) . T)) -((((-345 |#2|)) . T)) -((((-345 |#2|) |#3|) . T)) -(|has| (-345 |#2|) (-118)) -((((-345 |#2|) |#3|) . T)) -(|has| (-345 |#2|) (-116)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -(|has| (-345 |#2|) (-188)) -((($) OR (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-187)))) -(OR (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-187))) -((((-345 |#2|)) . T)) -((($ (-1081)) OR (|has| (-345 |#2|) (-804 (-1081))) (|has| (-345 |#2|) (-806 (-1081))))) -((((-1081)) OR (|has| (-345 |#2|) (-804 (-1081))) (|has| (-345 |#2|) (-806 (-1081))))) -((((-1081)) |has| (-345 |#2|) (-804 (-1081)))) -((((-345 |#2|)) . T)) +(|has| |#1| (-120)) +((((-472)) |has| |#1| (-553 (-472)))) +(((|#1|) . T)) +((((-1088)) |has| |#1| (-809 (-1088)))) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088))))) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +(|has| |#1| (-190)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-245)) (|has| |#1| (-311))) +((((-483)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483)))))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311))) +((($) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-311))) +(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483))) |has| |#1| (-311))) +(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483))) |has| |#1| (-311))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483)) (-347 (-483))) |has| |#1| (-311))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311))) +(((|#1|) . T)) +((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) +(((|#1|) |has| |#1| (-259 |#1|))) +(((|#1| $) |has| |#1| (-241 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T)) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-347 |#2|) |#3|) . T)) +((((-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) (((-483)) |has| (-347 |#2|) (-950 (-483))) (((-347 |#2|)) . T)) +((((-347 |#2|)) . T)) +((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T)) +((((-347 |#2|)) . T)) +((((-347 |#2|) |#3|) . T)) +(|has| (-347 |#2|) (-120)) +((((-347 |#2|) |#3|) . T)) +(|has| (-347 |#2|) (-118)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +(|has| (-347 |#2|) (-190)) +((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))) +(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))) +((((-347 |#2|)) . T)) +((($ (-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088))))) +((((-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088))))) +((((-1088)) |has| (-347 |#2|) (-809 (-1088)))) +((((-347 |#2|)) . T)) (((|#3|) . T)) -((((-345 |#2|) (-345 |#2|)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-767)) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -((((-480)) |has| (-345 |#2|) (-577 (-480))) (((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T)) -((((-345 |#2|)) . T) (((-345 (-480))) . T) (($) . T) (((-480)) . T)) +((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-772)) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T)) +((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T)) (((|#1| |#2| |#3|) . T)) -((((-345 (-480))) . T) (((-767)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((($) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480)) . T) (((-345 (-480))) . T) (($) . T)) -((((-480) (-480)) . T) (((-345 (-480)) (-345 (-480))) . T) (($ $) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-345 (-480))) . T) (((-480)) . T)) -((((-480)) . T) (($) . T) (((-345 (-480))) . T)) -((((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -(((|#1|) . T) (($) . T) (((-480)) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (($) . T) (((-345 (-480))) . T) (((-480)) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) . T) (((-480) (-480)) . T) (($ $) . T)) -(((|#1|) . T) (((-480)) . T) (((-345 (-480))) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) . T)) -(((|#1|) . T) (((-480)) OR (|has| |#1| (-945 (-480))) (|has| (-345 (-480)) (-945 (-480)))) (((-345 (-480))) . T)) -((((-767)) . T)) +((((-347 (-483))) . T) (((-772)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((($) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483)) . T) (((-347 (-483))) . T) (($) . T)) +((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-347 (-483))) . T) (((-483)) . T)) +((((-483)) . T) (($) . T) (((-347 (-483))) . T)) +((((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (($) . T) (((-347 (-483))) . T) (((-483)) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) . T) (((-483) (-483)) . T) (($ $) . T)) +(((|#1|) . T) (((-483)) . T) (((-347 (-483))) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) . T)) +(((|#1|) . T) (((-483)) OR (|has| |#1| (-950 (-483))) (|has| (-347 (-483)) (-950 (-483)))) (((-347 (-483))) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-580 |#4|)) . T) (((-767)) . T)) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +((((-583 |#4|)) . T) (((-772)) . T)) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-469)) |has| |#4| (-550 (-469)))) +((((-472)) |has| |#4| (-553 (-472)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2912,44 +2920,44 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (((-480)) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-483)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(((|#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|))) . T)) -((((-698 |#1| (-768 |#2|))) . T)) -((((-580 (-698 |#1| (-768 |#2|)))) . T) (((-767)) . T)) -((((-698 |#1| (-768 |#2|))) |has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|))))) -((((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) |has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|))))) -((((-698 |#1| (-768 |#2|))) . T)) -((((-469)) |has| (-698 |#1| (-768 |#2|)) (-550 (-469)))) -(((|#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|))) . T)) -(((|#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|))) . T)) -((((-469)) |has| |#3| (-550 (-469)))) -(((|#3|) |has| |#3| (-309))) +(((|#1|) . T) (((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +((((-703 |#1| (-773 |#2|))) . T)) +((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T)) +((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|))))) +((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|))))) +((((-703 |#1| (-773 |#2|))) . T)) +((((-472)) |has| (-703 |#1| (-773 |#2|)) (-553 (-472)))) +(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +((((-472)) |has| |#3| (-553 (-472)))) +(((|#3|) |has| |#3| (-311))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-627 |#3|)) . T) (((-767)) . T)) -((((-480)) . T) ((|#3|) . T)) +((((-630 |#3|)) . T) (((-772)) . T)) +((((-483)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) -(((|#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)))) -(((|#1| |#2| |#3| (-195 |#2| |#3|) (-195 |#1| |#3|)) . T)) -(|has| |#1| (-1007)) -((((-767)) |has| |#1| (-1007))) -(|has| |#1| (-1007)) -((((-767)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) +(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) +(((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) +(|has| |#1| (-1012)) +((((-772)) |has| |#1| (-1012))) +(|has| |#1| (-1012)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-1081)) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +((((-1088)) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -2957,200 +2965,204 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -((((-480)) . T)) -((($) . T) (((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-480)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-480)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-246 |#3|)) . T)) -((((-246 |#3|)) . T)) +((((-483)) . T) (($) . T)) +((((-483)) . T)) +((($) . T) (((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-483)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-248 |#3|)) . T)) +((((-248 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-767)) . T)) -((((-767)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#3| |#3|) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-309))) -((((-1081)) -12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))))) -((($ (-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))))) -(((|#1|) |has| |#1| (-309))) -(OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) -((($) OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296)))) -(OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-309)) (|has| |#1| (-296))) -(OR (|has| |#1| (-315)) (|has| |#1| (-296))) -(|has| |#1| (-296)) -(|has| |#1| (-296)) -(OR (|has| |#1| (-116)) (|has| |#1| (-296))) -(|has| |#1| (-296)) +((((-772)) . T)) +((((-772)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-311))) +((((-1088)) -12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))))) +((($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))))) +(((|#1|) |has| |#1| (-311))) +(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) +((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298)))) +(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-311)) (|has| |#1| (-298))) +(OR (|has| |#1| (-317)) (|has| |#1| (-298))) +(|has| |#1| (-298)) +(|has| |#1| (-298)) +(OR (|has| |#1| (-118)) (|has| |#1| (-298))) +(|has| |#1| (-298)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-296))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($ $) . T) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1| |#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-296))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-296))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T)) -((((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-296))) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296)) (|has| |#1| (-945 (-345 (-480))))) ((|#1|) . T)) -(|has| |#1| (-118)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($ $) . T) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T)) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) +((((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T)) +(|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-296))) ((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) +((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) (((|#1|) . T)) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) (((|#1| |#2|) . T)) -((((-1081)) . T)) -((((-767)) . T)) -((((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-188)) (|has| |#1| (-187))) -((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-767)) . T)) -(|has| |#1| (-188)) -((($) . T)) -(((|#1| (-465 (-994 (-1081))) (-994 (-1081))) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (((-994 (-1081))) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ (-994 (-1081))) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) (((-994 (-1081))) . T)) -((($ $) . T) (((-1081) $) |has| |#1| (-188)) (((-1081) |#1|) |has| |#1| (-188)) (((-994 (-1081)) |#1|) . T) (((-994 (-1081)) $) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-465 (-994 (-1081)))) . T)) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) +((((-1088)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-772)) . T)) +(|has| |#1| (-190)) +((($) . T)) +(((|#1| (-468 (-999 (-1088))) (-999 (-1088))) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-999 (-1088))) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-999 (-1088))) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) (((-999 (-1088))) . T)) +((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-999 (-1088)) |#1|) . T) (((-999 (-1088)) $) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-468 (-999 (-1088)))) . T)) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) (((|#1|) . T)) -(((|#1| (-465 (-994 (-1081)))) . T)) -((((-1030 |#1| (-1081))) . T) (((-994 (-1081))) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-1081)) . T)) -((((-1030 |#1| (-1081))) . T) (((-480)) . T) (((-994 (-1081))) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-1081)) . T)) -(((|#1| (-1081) (-994 (-1081)) (-465 (-994 (-1081)))) . T)) +(((|#1| (-468 (-999 (-1088)))) . T)) +((((-1037 |#1| (-1088))) . T) (((-999 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-1088)) . T)) +((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-999 (-1088))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-1088)) . T)) +(((|#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) . T)) ((($) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-580 |#1|)) |has| |#1| (-750))) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -((((-767)) |has| |#1| (-1007))) -(|has| |#1| (-1007)) +(((|#1| (-583 |#1|)) |has| |#1| (-755))) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +((((-772)) |has| |#1| (-1012))) +(|has| |#1| (-1012)) (((|#1|) . T)) (((|#1|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(|has| (-995 |#1|) (-1007)) -((((-767)) |has| (-995 |#1|) (-1007))) -(|has| (-995 |#1|) (-1007)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(|has| (-1000 |#1|) (-1012)) +((((-772)) |has| (-1000 |#1|) (-1012))) +(|has| (-1000 |#1|) (-1012)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) +((((-772)) . T)) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) (((|#1|) . T)) (((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) +((((-472)) |has| |#1| (-553 (-472)))) (((|#1|) . T)) -(|has| |#1| (-315)) +(|has| |#1| (-317)) (((|#1|) . T)) (((|#1|) . T)) -((((-767)) . T)) -((((-580 $)) . T) (((-1064)) . T) (((-1081)) . T) (((-480)) . T) (((-177)) . T) (((-767)) . T)) -((((-480) $) . T) (((-580 (-480)) $) . T)) -((((-767)) . T)) -((((-1064) (-1081) (-480) (-177) (-767)) . T)) -((((-580 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-480) $) . T) (((-580 (-480)) $) . T)) -((((-767)) . T)) +((((-772)) . T)) +((((-583 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-772)) . T)) +((((-483) $) . T) (((-583 (-483)) $) . T)) +((((-772)) . T)) +((((-1071) (-1088) (-483) (-179) (-772)) . T)) +((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-483) $) . T) (((-583 (-483)) $) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-712)) (|has| |#3| (-956))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-315)) (|has| |#3| (-660)) (|has| |#3| (-712)) (|has| |#3| (-751)) (|has| |#3| (-956)) (|has| |#3| (-1007))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-315)) (|has| |#3| (-660)) (|has| |#3| (-712)) (|has| |#3| (-751)) (|has| |#3| (-956)) (|has| |#3| (-1007))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-712)) (|has| |#3| (-956))) -(OR (|has| |#3| (-21)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-712)) (|has| |#3| (-956))) -(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)) (|has| |#3| (-956)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956)))) -((((-767)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-549 (-767))) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-315)) (|has| |#3| (-660)) (|has| |#3| (-712)) (|has| |#3| (-751)) (|has| |#3| (-956)) (|has| |#3| (-1007))) (((-1170 |#3|)) . T)) -(((|#3|) |has| |#3| (-956))) -((((-1081)) -12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956)))) -((((-1081)) OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))))) -((($ (-1081)) OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))))) -(((|#3|) |has| |#3| (-956))) -(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) -((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956))))) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -(|has| |#3| (-956)) -((((-480)) OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956))) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)) (|has| |#3| (-956))) (($) |has| |#3| (-956))) -(-12 (|has| |#3| (-188)) (|has| |#3| (-956))) -(|has| |#3| (-315)) -(((|#3|) |has| |#3| (-956))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-956))) (($) |has| |#3| (-956)) (((-480)) -12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956)))) -(((|#3|) |has| |#3| (-956)) (((-480)) -12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956)))) -(((|#3|) |has| |#3| (-1007))) -((((-480)) OR (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (|has| |#3| (-956))) ((|#3|) |has| |#3| (-1007)) (((-345 (-480))) -12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007)))) -(((|#3|) |has| |#3| (-1007)) (((-480)) -12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (((-345 (-480))) -12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007)))) -((((-480) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) -(((|#3| |#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007)))) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1| |#1| |#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961)))) +((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012))) (((-1177 |#3|)) . T)) +(((|#3|) |has| |#3| (-961))) +((((-1088)) -12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961)))) +((((-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))))) +((($ (-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))))) +(((|#3|) |has| |#3| (-961))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +((((-483)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(|has| |#3| (-317)) +(((|#3|) |has| |#3| (-961))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-1012))) +((((-483)) OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1012)) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012)))) +(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012)))) +((((-483) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) +(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012)))) (((|#3|) . T)) -((((-480) |#3|) . T)) -((((-480) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)) (|has| |#3| (-660)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-309)))) -(|has| |#3| (-712)) -(|has| |#3| (-712)) -(OR (|has| |#3| (-712)) (|has| |#3| (-751))) -(OR (|has| |#3| (-712)) (|has| |#3| (-751))) -(|has| |#3| (-712)) -(|has| |#3| (-712)) -(((|#3|) |has| |#3| (-309))) +((((-483) |#3|) . T)) +((((-483) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(((|#3|) |has| |#3| (-311))) (((|#1| |#3|) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3158,874 +3170,874 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-480)) . T) (($) . T)) -((((-480)) . T)) -((($) . T) (((-480)) . T)) -((((-480)) . T)) -((((-469)) . T) (((-480)) . T) (((-795 (-480))) . T) (((-325)) . T) (((-177)) . T)) -((((-480)) . T)) -((((-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#2| (-550 (-469)))) (((-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) (((-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480)))))) +((((-483)) . T) (($) . T)) +((((-483)) . T)) +((($) . T) (((-483)) . T)) +((((-483)) . T)) +((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T)) +((((-483)) . T)) +((((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) (((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483)))))) ((($) . T)) -(((|#1| (-465 |#2|)) . T)) +(((|#1| (-468 |#2|)) . T)) (((|#1|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -(|has| |#1| (-116)) +((((-772)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816)))) -(((|#1| (-465 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(((|#1|) . T) (((-480)) |has| |#1| (-577 (-480)))) -(OR (|has| |#1| (-387)) (|has| |#1| (-816))) +(|has| |#1| (-120)) +(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))) +(((|#1| (-468 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483)))) +(OR (|has| |#1| (-389)) (|has| |#1| (-821))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#2| (-791 (-325)))) (((-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#2| (-791 (-480))))) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-345 (-480))) |has| |#1| (-945 (-345 (-480)))) (((-480)) |has| |#1| (-945 (-480))) ((|#1|) . T) ((|#2|) . T)) -((((-480)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ((|#1|) . T) (($) OR (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#2|) . T)) -(((|#1| (-465 |#2|) |#2|) . T)) +((((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) (((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483))))) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T) ((|#2|) . T)) +((((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#2|) . T)) +(((|#1| (-468 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-465 |#2|) |#2|) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -(|has| |#1| (-116)) +(((|#1| (-468 |#2|) |#2|) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -((((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -(((|#1| (-465 |#2|)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) +(|has| |#1| (-120)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +(((|#1| (-468 |#2|)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) (((|#1| |#2|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T) (((-767)) . T)) -((((-767)) . T)) -((((-1045 |#1| |#2|)) . T)) -((((-1045 |#1| |#2|) (-1045 |#1| |#2|)) |has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|)))) -((((-1045 |#1| |#2|)) |has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|)))) -((((-767)) . T)) -((((-1045 |#1| |#2|)) . T)) -((((-469)) |has| |#2| (-550 (-469)))) -(((|#2|) |has| |#2| (-6 (-3980 "*")))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-1052 |#1| |#2|)) . T)) +((((-1052 |#1| |#2|) (-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|)))) +((((-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|)))) +((((-772)) . T)) +((((-1052 |#1| |#2|)) . T)) +((((-472)) |has| |#2| (-553 (-472)))) +(((|#2|) |has| |#2| (-6 (-3991 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-627 |#2|)) . T) (((-767)) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3980 "*"))) (|has| |#2| (-144)))) -(((|#2|) OR (|has| |#2| (-6 (-3980 "*"))) (|has| |#2| (-144)))) +((((-630 |#2|)) . T) (((-772)) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3991 "*"))) (|has| |#2| (-146)))) +(((|#2|) OR (|has| |#2| (-6 (-3991 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1081)) |has| |#2| (-804 (-1081)))) -((((-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) -((($ (-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081))))) +((((-1088)) |has| |#2| (-809 (-1088)))) +((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) +((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088))))) (((|#2|) . T)) -(OR (|has| |#2| (-188)) (|has| |#2| (-187))) -((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) -(|has| |#2| (-188)) +(OR (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) -(((|#2|) . T) (((-480)) |has| |#2| (-577 (-480)))) +((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) +(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483)))) (((|#2|) . T)) -((((-480)) . T) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#2|) . T) (((-480)) |has| |#2| (-945 (-480))) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#1| |#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007)))) +((((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012)))) (((|#2|) . T)) -(((|#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) . T)) +(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-469)) |has| |#4| (-550 (-469)))) +((((-472)) |has| |#4| (-553 (-472)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-767)) . T) (((-580 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-580 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -((((-480) |#1|) . T)) -((((-1137 (-480)) $) . T) (((-480) |#1|) . T)) -((((-480) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-480) (-115)) . T)) -((((-480) (-115)) . T)) -((((-480) (-115)) . T) (((-1137 (-480)) $) . T)) -((((-115)) . T)) -((((-767)) . T)) -((((-115)) . T)) -((((-115)) . T)) -((((-1064) |#1|) . T)) -((((-767)) . T)) -((((-1064) |#1|) . T)) -((((-1064) |#1|) . T)) -((((-1064) |#1|) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) |has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) . T)) -((((-1064) |#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1080 |#1| |#2| |#3|)) . T)) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1080 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|))))) -((((-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|)))) (((-1081) (-1080 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-449 (-1081) (-1080 |#1| |#2| |#3|))))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -((($) OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -(OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -((($ (-1167 |#2|)) . T) (($ (-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1080 |#1| |#2| |#3|)) |has| |#1| (-309))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-118)))) -(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-116)))) -((((-767)) . T)) -(((|#1|) . T)) -((((-1080 |#1| |#2| |#3|) $) -12 (|has| |#1| (-309)) (|has| (-1080 |#1| |#2| |#3|) (-239 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)))) (($ $) . T) (((-480) |#1|) . T)) -(((|#1| (-480) (-988)) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) (((-480)) . T) (($) . T) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) (($) . T) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((((-1080 |#1| |#2| |#3|)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-480)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-480)) . T)) -(((|#1| (-480)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-1080 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-767)) . T)) -((((-345 $) (-345 $)) |has| |#1| (-491)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-816))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) -(|has| |#1| (-309)) -(((|#1| (-689) (-988)) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -((((-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (((-988)) . T)) -((($ (-1081)) OR (|has| |#1| (-804 (-1081))) (|has| |#1| (-806 (-1081)))) (($ (-988)) . T)) -((((-1081)) |has| |#1| (-804 (-1081))) (((-988)) . T)) -((((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-689)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-583 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +((((-483) |#1|) . T)) +((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) +((((-483) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-483) (-117)) . T)) +((((-483) (-117)) . T)) +((((-483) (-117)) . T) (((-1144 (-483)) $) . T)) +((((-117)) . T)) +((((-772)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-1071) |#1|) . T)) +((((-772)) . T)) +((((-1071) |#1|) . T)) +((((-1071) |#1|) . T)) +((((-1071) |#1|) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T)) +((((-1071) |#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1087 |#1| |#2| |#3|)) . T)) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))))) +((((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|)))) (((-1088) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|))))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +((($) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +(OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-118)))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1087 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T)) +(((|#1| (-483) (-993)) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((((-1087 |#1| |#2| |#3|)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-483)) . T)) +(((|#1| (-483)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-1087 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-772)) . T)) +((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) +(|has| |#1| (-311)) +(((|#1| (-694) (-993)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T)) +((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T)) +((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T)) +((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) (((-988)) . T) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480)))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#1| (-577 (-480))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-309)) (|has| |#1| (-387)) (|has| |#1| (-491)) (|has| |#1| (-816))) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -((((-988)) . T) ((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-689)) . T)) -((((-988) |#1|) . T) (((-988) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1057)) -(((|#1|) . T)) -((((-1080 |#1| |#2| |#3|)) . T) (((-1073 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($ $) . T) (((-345 (-480)) |#1|) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((($ (-1167 |#2|)) . T) (($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -(((|#1| (-345 (-480)) (-988)) . T)) -(|has| |#1| (-116)) +((((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483)))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-694)) . T)) +((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1064)) +(((|#1|) . T)) +((((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($ $) . T) (((-347 (-483)) |#1|) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +(((|#1| (-347 (-483)) (-993)) . T)) (|has| |#1| (-118)) -(((|#1| (-345 (-480))) . T)) -(((|#1| (-345 (-480))) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -((((-767)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -((((-1167 |#2|)) . T) (((-1080 |#1| |#2| |#3|)) . T) (((-1073 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(((|#1| (-1073 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-689)) . T)) -(((|#1| (-689)) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) +(|has| |#1| (-120)) +(((|#1| (-347 (-483))) . T)) +(((|#1| (-347 (-483))) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +((((-1174 |#2|)) . T) (((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(((|#1| (-1080 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-694)) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1| (-689) (-988)) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((($ (-1167 |#2|)) . T) (($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((((-689) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-689) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-689) |#1|)))) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (($) . T)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T)) -(|has| |#1| (-15 * (|#1| (-689) |#1|))) -(((|#1|) . T)) -((((-325)) . T) (((-480)) . T)) -((((-441)) . T)) -((((-441)) . T) (((-1064)) . T)) -((((-795 (-325))) . T) (((-795 (-480))) . T) (((-1081)) . T) (((-469)) . T)) -((((-767)) . T)) -(((|#1| (-879)) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1| (-694) (-993)) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-694) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T)) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +(((|#1|) . T)) +((((-327)) . T) (((-483)) . T)) +((((-444)) . T)) +((((-444)) . T) (((-1071)) . T)) +((((-800 (-327))) . T) (((-800 (-483))) . T) (((-1088)) . T) (((-472)) . T)) +((((-772)) . T)) +(((|#1| (-884)) . T)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((((-767)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (($) . T)) -((($) |has| |#1| (-491)) ((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) (((-480)) . T)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1|) . T)) -(((|#1|) . T) (((-480)) |has| |#1| (-945 (-480))) (((-345 (-480))) |has| |#1| (-945 (-345 (-480))))) -(((|#1| (-879)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1064)) . T) (((-441)) . T) (((-177)) . T) (((-480)) . T)) -((((-1064)) . T) (((-441)) . T) (((-177)) . T) (((-480)) . T)) -((((-469)) . T) (((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T)) +((($) |has| |#1| (-494)) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T)) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1|) . T)) +(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483))))) +(((|#1| (-884)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1071)) . T) (((-444)) . T) (((-179)) . T) (((-483)) . T)) +((((-1071)) . T) (((-444)) . T) (((-179)) . T) (((-483)) . T)) +((((-472)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-767)) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-333) (-1064)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1007)) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1007))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1081) $) . T)) -((((-1081)) . T)) -((((-767)) . T)) -((($ (-1081)) . T)) -((((-1081)) . T)) -(((|#1| (-465 (-1081)) (-1081)) . T)) -((($) . T) (((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -((($) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T)) -(|has| |#1| (-116)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-335) (-1071)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1012)) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1088) $) . T)) +((((-1088)) . T)) +((((-772)) . T)) +((($ (-1088)) . T)) +((((-1088)) . T)) +(((|#1| (-468 (-1088)) (-1088)) . T)) +((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) +((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -((((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491)))) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -((((-480)) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -((((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-491))) -(((|#1| (-465 (-1081))) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-1081)) . T)) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -((((-864 |#1|)) . T)) -((((-767)) |has| |#1| (-549 (-767))) (((-864 |#1|)) . T)) -((((-864 |#1|)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1160 |#1| |#2| |#3|)) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((((-1160 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|))))) -((((-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|)))) (((-1081) (-1160 |#1| |#2| |#3|)) -12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-449 (-1081) (-1160 |#1| |#2| |#3|))))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -((($) OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -(OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -((($ (-1167 |#2|)) . T) (($ (-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-309))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-118)))) -(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-116)))) -((((-767)) . T)) -(((|#1|) . T)) -((((-1160 |#1| |#2| |#3|) $) -12 (|has| |#1| (-309)) (|has| (-1160 |#1| |#2| |#3|) (-239 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)))) (($ $) . T) (((-480) |#1|) . T)) -(((|#1| (-480) (-988)) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) (((-480)) . T) (($) . T) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) (($) . T) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((((-1160 |#1| |#2| |#3|)) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-480)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-480)) . T)) -(((|#1| (-480)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-1160 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-309))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-1057))) -(((|#2|) . T) (((-1081)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) (((-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) (((-345 (-480))) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480))))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-928))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-816))) -(((|#2|) |has| |#1| (-309))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -(OR (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) (-12 (|has| |#1| (-309)) (|has| |#2| (-751)))) -(OR (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) (-12 (|has| |#1| (-309)) (|has| |#2| (-751)))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -(-12 (|has| |#1| (-309)) (|has| |#2| (-735))) -((((-325)) -12 (|has| |#1| (-309)) (|has| |#2| (-791 (-325)))) (((-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-791 (-480))))) -(((|#2|) |has| |#1| (-309))) -((((-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ((|#2|) |has| |#1| (-309))) -(((|#2|) |has| |#1| (-309))) -(((|#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) (((-1081) |#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-449 (-1081) |#2|)))) -(((|#2|) |has| |#1| (-309))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(OR (-12 (|has| |#1| (-309)) (|has| |#2| (-188))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -((($) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-188))) (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) -(OR (-12 (|has| |#1| (-309)) (|has| |#2| (-188))) (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) -(((|#2|) |has| |#1| (-309))) -((($ (-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -((((-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081)))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))))) -(((|#2|) |has| |#1| (-309))) -((((-177)) -12 (|has| |#1| (-309)) (|has| |#2| (-928))) (((-325)) -12 (|has| |#1| (-309)) (|has| |#2| (-928))) (((-795 (-325))) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-325))))) (((-795 (-480))) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-480))))) (((-469)) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-469))))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-309)) (|has| |#2| (-118)))) -(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-309)) (|has| |#2| (-116)))) -((((-767)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-309)) (|has| |#2| (-239 |#2| |#2|))) (($ $) . T) (((-480) |#1|) . T)) -(((|#1| (-480) (-988)) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#2|) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#2| |#2|) |has| |#1| (-309)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#2|) |has| |#1| (-309)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#2|) |has| |#1| (-309)) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#2|) |has| |#1| (-309)) (((-480)) . T) (($) . T) ((|#1|) . T)) -((((-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) ((|#2|) |has| |#1| (-309)) (($) . T) ((|#1|) . T)) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#2|) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -((((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) ((|#2|) |has| |#1| (-309)) ((|#1|) |has| |#1| (-144))) -(((|#2|) . T) (((-1081)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491))) (((-480)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-480)) . T)) -(((|#1| (-480)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) +(|has| |#1| (-120)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) +(((|#1| (-468 (-1088))) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-1088)) . T)) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +((((-869 |#1|)) . T)) +((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T)) +((((-869 |#1|)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1167 |#1| |#2| |#3|)) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((((-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))))) +((((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|)))) (((-1088) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|))))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +((($) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +(OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-118)))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1167 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T)) +(((|#1| (-483) (-993)) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((((-1167 |#1| |#2| |#3|)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-483)) . T)) +(((|#1| (-483)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-1167 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-311))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-1064))) +(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) (((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) (((-347 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483))))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-933))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-821))) +(((|#2|) |has| |#1| (-311))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) (-12 (|has| |#1| (-311)) (|has| |#2| (-756)))) +(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) (-12 (|has| |#1| (-311)) (|has| |#2| (-756)))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-311)) (|has| |#2| (-740))) +((((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) (((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483))))) +(((|#2|) |has| |#1| (-311))) +((((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((|#2|) |has| |#1| (-311))) +(((|#2|) |has| |#1| (-311))) +(((|#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) (((-1088) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|)))) +(((|#2|) |has| |#1| (-311))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +((($) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) +(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +(((|#2|) |has| |#1| (-311))) +((($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +(((|#2|) |has| |#1| (-311))) +((((-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) (((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) (((-800 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) (((-800 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) (((-472)) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| |#2| (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) +((((-772)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-483) |#1|) . T)) +(((|#1| (-483) (-993)) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2| |#2|) |has| |#1| (-311)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T)) +((((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-483)) . T)) +(((|#1| (-483)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) (((|#1| |#2|) . T)) -(((|#1| (-1060 |#1|)) |has| |#1| (-750))) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -(|has| |#1| (-1007)) -((((-767)) |has| |#1| (-1007))) -(|has| |#1| (-1007)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((($) . T)) -((((-767)) . T)) -((((-345 $) (-345 $)) |has| |#2| (-491)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-309)) -(OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-816))) -(OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) -(|has| |#2| (-309)) -(((|#2| (-689) (-988)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081)))) (((-988)) . T)) -((($ (-1081)) OR (|has| |#2| (-804 (-1081))) (|has| |#2| (-806 (-1081)))) (($ (-988)) . T)) -((((-1081)) |has| |#2| (-804 (-1081))) (((-988)) . T)) -((((-480)) |has| |#2| (-577 (-480))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-689)) . T)) +(((|#1| (-1067 |#1|)) |has| |#1| (-755))) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +(|has| |#1| (-1012)) +((((-772)) |has| |#1| (-1012))) +(|has| |#1| (-1012)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((($) . T)) +((((-772)) . T)) +((((-347 $) (-347 $)) |has| |#2| (-494)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-311)) +(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-821))) +(OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) +(|has| |#2| (-311)) +(((|#2| (-694) (-993)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))) (((-993)) . T)) +((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))) (($ (-993)) . T)) +((((-1088)) |has| |#2| (-809 (-1088))) (((-993)) . T)) +((((-483)) |has| |#2| (-580 (-483))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-694)) . T)) +(|has| |#2| (-120)) (|has| |#2| (-118)) -(|has| |#2| (-116)) -((((-1167 |#1|)) . T) (((-480)) . T) (($) OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) (((-988)) . T) ((|#2|) . T) (((-345 (-480))) OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480)))))) -((($) OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2|) |has| |#2| (-144)) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($) OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2|) |has| |#2| (-144)) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($) . T) (((-480)) |has| |#2| (-577 (-480))) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((((-480)) . T) (($) . T) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2|) . T) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($ $) OR (|has| |#2| (-144)) (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2| |#2|) . T) (((-345 (-480)) (-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -((($) OR (|has| |#2| (-309)) (|has| |#2| (-387)) (|has| |#2| (-491)) (|has| |#2| (-816))) ((|#2|) |has| |#2| (-144)) (((-345 (-480))) |has| |#2| (-38 (-345 (-480))))) -(((|#2|) . T)) -((((-988)) . T) ((|#2|) . T) (((-480)) |has| |#2| (-945 (-480))) (((-345 (-480))) |has| |#2| (-945 (-345 (-480))))) -(((|#2| (-689)) . T)) -((((-988) |#2|) . T) (((-988) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1057)) -(((|#2|) . T)) -((((-1160 |#1| |#2| |#3|)) . T) (((-1130 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($ $) . T) (((-345 (-480)) |#1|) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((($ (-1167 |#2|)) . T) (($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -(((|#1| (-345 (-480)) (-988)) . T)) -(|has| |#1| (-116)) +((((-1174 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-993)) . T) ((|#2|) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483)))))) +((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($) . T) (((-483)) |has| |#2| (-580 (-483))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((((-483)) . T) (($) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483))))) +(((|#2|) . T)) +((((-993)) . T) ((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483))))) +(((|#2| (-694)) . T)) +((((-993) |#2|) . T) (((-993) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1064)) +(((|#2|) . T)) +((((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($ $) . T) (((-347 (-483)) |#1|) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +(((|#1| (-347 (-483)) (-993)) . T)) (|has| |#1| (-118)) -(((|#1| (-345 (-480))) . T)) -(((|#1| (-345 (-480))) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -((((-767)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -((((-1167 |#2|)) . T) (((-1160 |#1| |#2| |#3|)) . T) (((-1130 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(((|#1| (-1130 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) -((($ $) . T) (((-345 (-480)) |#1|) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))))) -(((|#1| (-345 (-480)) (-988)) . T)) -(|has| |#1| (-116)) +(|has| |#1| (-120)) +(((|#1| (-347 (-483))) . T)) +(((|#1| (-347 (-483))) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +((((-1174 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(((|#1| (-1137 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) +((($ $) . T) (((-347 (-483)) |#1|) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))) +(((|#1| (-347 (-483)) (-993)) . T)) (|has| |#1| (-118)) -(((|#1| (-345 (-480))) . T)) -(((|#1| (-345 (-480))) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-309)) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -((((-767)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) (((-345 (-480)) (-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309)))) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) . T)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-309))) (((-480)) . T) (($) OR (|has| |#1| (-309)) (|has| |#1| (-491)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-309)) (|has| |#1| (-491))) -(OR (|has| |#1| (-309)) (|has| |#1| (-491))) -(|has| |#1| (-309)) -(|has| |#1| (-309)) -(|has| |#1| (-309)) +(|has| |#1| (-120)) +(((|#1| (-347 (-483))) . T)) +(((|#1| (-347 (-483))) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-311)) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311)))) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) +(OR (|has| |#1| (-311)) (|has| |#1| (-494))) +(|has| |#1| (-311)) +(|has| |#1| (-311)) +(|has| |#1| (-311)) (((|#1| |#2|) . T)) -((((-1151 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|)) . T)) -(|has| (-1151 |#2| |#3| |#4|) (-118)) -(|has| (-1151 |#2| |#3| |#4|) (-116)) -((($) . T) (((-1151 |#2| |#3| |#4|)) |has| (-1151 |#2| |#3| |#4|) (-144)) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((($) . T) (((-1151 |#2| |#3| |#4|)) |has| (-1151 |#2| |#3| |#4|) (-144)) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((((-767)) . T)) -((($) . T) (((-1151 |#2| |#3| |#4|)) . T) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((($) . T) (((-1151 |#2| |#3| |#4|)) . T) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((($ $) . T) (((-1151 |#2| |#3| |#4|) (-1151 |#2| |#3| |#4|)) . T) (((-345 (-480)) (-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((((-1151 |#2| |#3| |#4|)) . T) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -((((-1151 |#2| |#3| |#4|)) . T) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480)))) (($) . T)) -((($) . T) (((-1151 |#2| |#3| |#4|)) . T) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480)))) (((-480)) . T)) -((($) . T) (((-1151 |#2| |#3| |#4|)) |has| (-1151 |#2| |#3| |#4|) (-144)) (((-345 (-480))) |has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) -((((-1151 |#2| |#3| |#4|)) . T)) -((((-1151 |#2| |#3| |#4|)) . T)) -((((-1151 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(|has| |#1| (-38 (-345 (-480)))) -(((|#1| (-689)) . T)) -(((|#1| (-689)) . T)) -(|has| |#1| (-491)) -(|has| |#1| (-491)) -(OR (|has| |#1| (-144)) (|has| |#1| (-491))) +((((-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T)) +(|has| (-1158 |#2| |#3| |#4|) (-120)) +(|has| (-1158 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((((-772)) . T)) +((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((($ $) . T) (((-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) . T) (((-347 (-483)) (-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +((((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (($) . T)) +((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (((-483)) . T)) +((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) +((((-1158 |#2| |#3| |#4|)) . T)) +((((-1158 |#2| |#3| |#4|)) . T)) +((((-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(|has| |#1| (-38 (-347 (-483)))) +(((|#1| (-694)) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-494)) +(|has| |#1| (-494)) +(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(|has| |#1| (-120)) (|has| |#1| (-118)) -(|has| |#1| (-116)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-491))) ((|#1| |#1|) . T) (((-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480))))) -(((|#1| (-689) (-988)) . T)) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((($ (-1167 |#2|)) . T) (($ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((((-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|))))) -((((-689) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-689) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-689) |#1|)))) -((((-767)) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T) (($) . T)) -(((|#1|) . T) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (($) . T)) -((($) |has| |#1| (-491)) ((|#1|) |has| |#1| (-144)) (((-345 (-480))) |has| |#1| (-38 (-345 (-480)))) (((-480)) . T)) -(|has| |#1| (-15 * (|#1| (-689) |#1|))) -(((|#1|) . T)) -((((-1081)) . T) (((-767)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-480) |#1|) . T)) -((((-480) |#1|) . T)) -((((-480) |#1|) . T) (((-1137 (-480)) $) . T)) -((((-469)) |has| |#1| (-550 (-469)))) -(((|#1|) . T)) -(OR (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -(((|#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007)))) -((((-767)) OR (|has| |#1| (-549 (-767))) (|has| |#1| (-751)) (|has| |#1| (-1007)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-751)) (|has| |#1| (-1007))) -(((|#1|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-767)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -((((-1086)) . T)) -((((-767)) . T) (((-1086)) . T)) -((((-1086)) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) -(((|#1| |#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483))))) +(((|#1| (-694) (-993)) . T)) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-694) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) +((((-772)) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T)) +((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +(((|#1|) . T)) +((((-1088)) . T) (((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-483) |#1|) . T)) +((((-483) |#1|) . T)) +((((-483) |#1|) . T) (((-1144 (-483)) $) . T)) +((((-472)) |has| |#1| (-553 (-472)))) +(((|#1|) . T)) +(OR (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012))) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +((((-1093)) . T)) +((((-772)) . T) (((-1093)) . T)) +((((-1093)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-144)) ((|#4|) . T) (((-480)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T)) -(((|#4|) . T) (((-767)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-480)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +(((|#4|) . T) (((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-469)) |has| |#4| (-550 (-469)))) +((((-472)) |has| |#4| (-553 (-472)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) -(((|#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007)))) +(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) +(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012)))) (((|#4|) . T)) -((((-767)) . T) (((-580 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-767)) . T)) -((($) . T) (((-480)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-483)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-144))) -(((|#2|) |has| |#2| (-144))) -((((-734 |#1|)) . T)) -(((|#2|) . T) (((-480)) . T) (((-734 |#1|)) . T)) -(((|#2| (-734 |#1|)) . T)) -(((|#2| (-798 |#1|)) . T)) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) +((((-739 |#1|)) . T)) +(((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T)) +(((|#2| (-739 |#1|)) . T)) +(((|#2| (-803 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-144))) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-767)) . T)) -(((|#2|) . T) (($) . T) (((-480)) . T)) -((((-798 |#1|)) . T) ((|#2|) . T) (((-480)) . T) (((-734 |#1|)) . T)) -((((-798 |#1|)) . T) (((-734 |#1|)) . T)) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-483)) . T)) +((((-803 |#1|)) . T) ((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T)) +((((-803 |#1|)) . T) (((-739 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1081) |#1|) . T)) -(((|#1|) |has| |#1| (-144))) +((((-1088) |#1|) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (($) . T) (((-480)) . T)) -(((|#1|) . T) (((-480)) . T) (((-734 (-1081))) . T)) -((((-734 (-1081))) . T)) -((((-1081) |#1|) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-483)) . T)) +(((|#1|) . T) (((-483)) . T) (((-739 (-1088))) . T)) +((((-739 (-1088))) . T)) +((((-1088) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-144))) -(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-480)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-483)) . T)) (((|#1|) . T) (($) . T)) -((((-767)) . T)) -(((|#1|) . T) (($) . T) (((-480)) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-483)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-144))) -(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-767)) . T)) -(((|#2|) . T) (($) . T) (((-480)) . T)) -(((|#2|) . T) (((-480)) . T) (((-734 |#1|)) . T)) -((((-734 |#1|)) . T)) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-483)) . T)) +(((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T)) +((((-739 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-879)) . T)) -((((-879)) . T)) -((((-879)) . T) (((-767)) . T)) -((((-480)) . T)) +((((-884)) . T)) +((((-884)) . T)) +((((-884)) . T) (((-772)) . T)) +((((-483)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-767)) . T)) -((((-480)) . T) (($) . T)) +((((-772)) . T)) +((((-483)) . T) (($) . T)) ((($) . T)) -((((-480)) . T)) -(((-1200 . -144) T) ((-1200 . -552) 198994) ((-1200 . -964) T) ((-1200 . -1017) T) ((-1200 . -1052) T) ((-1200 . -660) T) ((-1200 . -956) T) ((-1200 . -587) 198981) ((-1200 . -585) 198953) ((-1200 . -102) T) ((-1200 . -25) T) ((-1200 . -72) T) ((-1200 . -13) T) ((-1200 . -1120) T) ((-1200 . -549) 198935) ((-1200 . -1007) T) ((-1200 . -23) T) ((-1200 . -21) T) ((-1200 . -963) 198922) ((-1200 . -958) 198909) ((-1200 . -80) 198894) ((-1200 . -315) T) ((-1200 . -550) 198876) ((-1200 . -1057) T) ((-1196 . -1007) T) ((-1196 . -549) 198843) ((-1196 . -1120) T) ((-1196 . -13) T) ((-1196 . -72) T) ((-1196 . -425) 198825) ((-1196 . -552) 198807) ((-1195 . -1193) 198786) ((-1195 . -945) 198763) ((-1195 . -552) 198712) ((-1195 . -956) T) ((-1195 . -660) T) ((-1195 . -1052) T) ((-1195 . -1017) T) ((-1195 . -964) T) ((-1195 . -21) T) ((-1195 . -585) 198671) ((-1195 . -23) T) ((-1195 . -1007) T) ((-1195 . -549) 198653) ((-1195 . -1120) T) ((-1195 . -13) T) ((-1195 . -72) T) ((-1195 . -25) T) ((-1195 . -102) T) ((-1195 . -587) 198627) ((-1195 . -1185) 198611) ((-1195 . -651) 198581) ((-1195 . -579) 198551) ((-1195 . -963) 198535) ((-1195 . -958) 198519) ((-1195 . -80) 198498) ((-1195 . -38) 198468) ((-1195 . -1190) 198447) ((-1194 . -956) T) ((-1194 . -660) T) ((-1194 . -1052) T) ((-1194 . -1017) T) ((-1194 . -964) T) ((-1194 . -21) T) ((-1194 . -585) 198406) ((-1194 . -23) T) ((-1194 . -1007) T) ((-1194 . -549) 198388) ((-1194 . -1120) T) ((-1194 . -13) T) ((-1194 . -72) T) ((-1194 . -25) T) ((-1194 . -102) T) ((-1194 . -587) 198362) ((-1194 . -552) 198318) ((-1194 . -1185) 198302) ((-1194 . -651) 198272) ((-1194 . -579) 198242) ((-1194 . -963) 198226) ((-1194 . -958) 198210) ((-1194 . -80) 198189) ((-1194 . -38) 198159) ((-1194 . -330) 198138) ((-1194 . -945) 198122) ((-1192 . -1193) 198098) ((-1192 . -945) 198072) ((-1192 . -552) 198018) ((-1192 . -956) T) ((-1192 . -660) T) ((-1192 . -1052) T) ((-1192 . -1017) T) ((-1192 . -964) T) ((-1192 . -21) T) ((-1192 . -585) 197977) ((-1192 . -23) T) ((-1192 . -1007) T) ((-1192 . -549) 197959) ((-1192 . -1120) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -25) T) ((-1192 . -102) T) ((-1192 . -587) 197933) ((-1192 . -1185) 197917) ((-1192 . -651) 197887) ((-1192 . -579) 197857) ((-1192 . -963) 197841) ((-1192 . -958) 197825) ((-1192 . -80) 197804) ((-1192 . -38) 197774) ((-1192 . -1190) 197750) ((-1191 . -1193) 197729) ((-1191 . -945) 197686) ((-1191 . -552) 197615) ((-1191 . -956) T) ((-1191 . -660) T) ((-1191 . -1052) T) ((-1191 . -1017) T) ((-1191 . -964) T) ((-1191 . -21) T) ((-1191 . -585) 197574) ((-1191 . -23) T) ((-1191 . -1007) T) ((-1191 . -549) 197556) ((-1191 . -1120) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -102) T) ((-1191 . -587) 197530) ((-1191 . -1185) 197514) ((-1191 . -651) 197484) ((-1191 . -579) 197454) ((-1191 . -963) 197438) ((-1191 . -958) 197422) ((-1191 . -80) 197401) ((-1191 . -38) 197371) ((-1191 . -1190) 197350) ((-1191 . -330) 197322) ((-1186 . -330) 197294) ((-1186 . -552) 197243) ((-1186 . -945) 197220) ((-1186 . -579) 197190) ((-1186 . -651) 197160) ((-1186 . -587) 197134) ((-1186 . -585) 197093) ((-1186 . -102) T) ((-1186 . -25) T) ((-1186 . -72) T) ((-1186 . -13) T) ((-1186 . -1120) T) ((-1186 . -549) 197075) ((-1186 . -1007) T) ((-1186 . -23) T) ((-1186 . -21) T) ((-1186 . -963) 197059) ((-1186 . -958) 197043) ((-1186 . -80) 197022) ((-1186 . -1193) 197001) ((-1186 . -956) T) ((-1186 . -660) T) ((-1186 . -1052) T) ((-1186 . -1017) T) ((-1186 . -964) T) ((-1186 . -1185) 196985) ((-1186 . -38) 196955) ((-1186 . -1190) 196934) ((-1184 . -1115) 196903) ((-1184 . -549) 196865) ((-1184 . -122) 196849) ((-1184 . -34) T) ((-1184 . -13) T) ((-1184 . -1120) T) ((-1184 . -72) T) ((-1184 . -257) 196787) ((-1184 . -449) 196720) ((-1184 . -1007) T) ((-1184 . -424) 196704) ((-1184 . -550) 196665) ((-1184 . -884) 196634) ((-1183 . -956) T) ((-1183 . -660) T) ((-1183 . -1052) T) ((-1183 . -1017) T) ((-1183 . -964) T) ((-1183 . -21) T) ((-1183 . -585) 196579) ((-1183 . -23) T) ((-1183 . -1007) T) ((-1183 . -549) 196548) ((-1183 . -1120) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1183 . -25) T) ((-1183 . -102) T) ((-1183 . -587) 196508) ((-1183 . -552) 196450) ((-1183 . -425) 196434) ((-1183 . -38) 196404) ((-1183 . -80) 196369) ((-1183 . -958) 196339) ((-1183 . -963) 196309) ((-1183 . -579) 196279) ((-1183 . -651) 196249) ((-1182 . -989) T) ((-1182 . -425) 196230) ((-1182 . -549) 196196) ((-1182 . -552) 196177) ((-1182 . -1007) T) ((-1182 . -1120) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1182 . -64) T) ((-1181 . -989) T) ((-1181 . -425) 196158) ((-1181 . -549) 196124) ((-1181 . -552) 196105) ((-1181 . -1007) T) ((-1181 . -1120) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1181 . -64) T) ((-1176 . -549) 196087) ((-1174 . -1007) T) ((-1174 . -549) 196069) ((-1174 . -1120) T) ((-1174 . -13) T) ((-1174 . -72) T) ((-1173 . -1007) T) ((-1173 . -549) 196051) ((-1173 . -1120) T) ((-1173 . -13) T) ((-1173 . -72) T) ((-1170 . -1169) 196035) ((-1170 . -319) 196019) ((-1170 . -754) 195998) ((-1170 . -751) 195977) ((-1170 . -122) 195961) ((-1170 . -34) T) ((-1170 . -13) T) ((-1170 . -1120) T) ((-1170 . -72) 195895) ((-1170 . -549) 195810) ((-1170 . -257) 195748) ((-1170 . -449) 195681) ((-1170 . -1007) 195634) ((-1170 . -424) 195618) ((-1170 . -550) 195579) ((-1170 . -239) 195531) ((-1170 . -535) 195508) ((-1170 . -241) 195485) ((-1170 . -590) 195469) ((-1170 . -19) 195453) ((-1167 . -1007) T) ((-1167 . -549) 195419) ((-1167 . -1120) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1160 . -1163) 195403) ((-1160 . -188) 195362) ((-1160 . -552) 195244) ((-1160 . -587) 195169) ((-1160 . -585) 195079) ((-1160 . -102) T) ((-1160 . -25) T) ((-1160 . -72) T) ((-1160 . -549) 195061) ((-1160 . -1007) T) ((-1160 . -23) T) ((-1160 . -21) T) ((-1160 . -964) T) ((-1160 . -1017) T) ((-1160 . -1052) T) ((-1160 . -660) T) ((-1160 . -956) T) ((-1160 . -184) 195014) ((-1160 . -13) T) ((-1160 . -1120) T) ((-1160 . -187) 194973) ((-1160 . -239) 194938) ((-1160 . -804) 194851) ((-1160 . -801) 194739) ((-1160 . -806) 194652) ((-1160 . -881) 194622) ((-1160 . -38) 194519) ((-1160 . -80) 194384) ((-1160 . -958) 194270) ((-1160 . -963) 194156) ((-1160 . -579) 194053) ((-1160 . -651) 193950) ((-1160 . -116) 193929) ((-1160 . -118) 193908) ((-1160 . -144) 193862) ((-1160 . -491) 193841) ((-1160 . -243) 193820) ((-1160 . -47) 193797) ((-1160 . -1149) 193774) ((-1160 . -35) 193740) ((-1160 . -66) 193706) ((-1160 . -237) 193672) ((-1160 . -428) 193638) ((-1160 . -1109) 193604) ((-1160 . -1106) 193570) ((-1160 . -910) 193536) ((-1157 . -274) 193480) ((-1157 . -945) 193446) ((-1157 . -350) 193412) ((-1157 . -38) 193269) ((-1157 . -552) 193143) ((-1157 . -587) 193032) ((-1157 . -585) 192906) ((-1157 . -964) T) ((-1157 . -1017) T) ((-1157 . -1052) T) ((-1157 . -660) T) ((-1157 . -956) T) ((-1157 . -80) 192756) ((-1157 . -958) 192645) ((-1157 . -963) 192534) ((-1157 . -21) T) ((-1157 . -23) T) ((-1157 . -1007) T) ((-1157 . -549) 192516) ((-1157 . -1120) T) ((-1157 . -13) T) ((-1157 . -72) T) ((-1157 . -25) T) ((-1157 . -102) T) ((-1157 . -579) 192373) ((-1157 . -651) 192230) ((-1157 . -116) 192191) ((-1157 . -118) 192152) ((-1157 . -144) T) ((-1157 . -491) T) ((-1157 . -243) T) ((-1157 . -47) 192096) ((-1156 . -1155) 192075) ((-1156 . -309) 192054) ((-1156 . -1125) 192033) ((-1156 . -827) 192012) ((-1156 . -491) 191966) ((-1156 . -144) 191900) ((-1156 . -552) 191719) ((-1156 . -651) 191566) ((-1156 . -579) 191413) ((-1156 . -38) 191260) ((-1156 . -387) 191239) ((-1156 . -255) 191218) ((-1156 . -587) 191118) ((-1156 . -585) 191003) ((-1156 . -964) T) ((-1156 . -1017) T) ((-1156 . -1052) T) ((-1156 . -660) T) ((-1156 . -956) T) ((-1156 . -80) 190823) ((-1156 . -958) 190664) ((-1156 . -963) 190505) ((-1156 . -21) T) ((-1156 . -23) T) ((-1156 . -1007) T) ((-1156 . -549) 190487) ((-1156 . -1120) T) ((-1156 . -13) T) ((-1156 . -72) T) ((-1156 . -25) T) ((-1156 . -102) T) ((-1156 . -243) 190441) ((-1156 . -199) 190420) ((-1156 . -910) 190386) ((-1156 . -1106) 190352) ((-1156 . -1109) 190318) ((-1156 . -428) 190284) ((-1156 . -237) 190250) ((-1156 . -66) 190216) ((-1156 . -35) 190182) ((-1156 . -1149) 190152) ((-1156 . -47) 190122) ((-1156 . -118) 190101) ((-1156 . -116) 190080) ((-1156 . -881) 190043) ((-1156 . -806) 189949) ((-1156 . -801) 189853) ((-1156 . -804) 189759) ((-1156 . -239) 189717) ((-1156 . -187) 189669) ((-1156 . -184) 189615) ((-1156 . -188) 189567) ((-1156 . -1153) 189551) ((-1156 . -945) 189535) ((-1151 . -1155) 189496) ((-1151 . -309) 189475) ((-1151 . -1125) 189454) ((-1151 . -827) 189433) ((-1151 . -491) 189387) ((-1151 . -144) 189321) ((-1151 . -552) 189070) ((-1151 . -651) 188917) ((-1151 . -579) 188764) ((-1151 . -38) 188611) ((-1151 . -387) 188590) ((-1151 . -255) 188569) ((-1151 . -587) 188469) ((-1151 . -585) 188354) ((-1151 . -964) T) ((-1151 . -1017) T) ((-1151 . -1052) T) ((-1151 . -660) T) ((-1151 . -956) T) ((-1151 . -80) 188174) ((-1151 . -958) 188015) ((-1151 . -963) 187856) ((-1151 . -21) T) ((-1151 . -23) T) ((-1151 . -1007) T) ((-1151 . -549) 187838) ((-1151 . -1120) T) ((-1151 . -13) T) ((-1151 . -72) T) ((-1151 . -25) T) ((-1151 . -102) T) ((-1151 . -243) 187792) ((-1151 . -199) 187771) ((-1151 . -910) 187737) ((-1151 . -1106) 187703) ((-1151 . -1109) 187669) ((-1151 . -428) 187635) ((-1151 . -237) 187601) ((-1151 . -66) 187567) ((-1151 . -35) 187533) ((-1151 . -1149) 187503) ((-1151 . -47) 187473) ((-1151 . -118) 187452) ((-1151 . -116) 187431) ((-1151 . -881) 187394) ((-1151 . -806) 187300) ((-1151 . -801) 187181) ((-1151 . -804) 187087) ((-1151 . -239) 187045) ((-1151 . -187) 186997) ((-1151 . -184) 186943) ((-1151 . -188) 186895) ((-1151 . -1153) 186879) ((-1151 . -945) 186814) ((-1139 . -1146) 186798) ((-1139 . -1057) 186776) ((-1139 . -550) NIL) ((-1139 . -257) 186763) ((-1139 . -449) 186711) ((-1139 . -274) 186688) ((-1139 . -945) 186571) ((-1139 . -350) 186555) ((-1139 . -38) 186387) ((-1139 . -80) 186192) ((-1139 . -958) 186018) ((-1139 . -963) 185844) ((-1139 . -585) 185754) ((-1139 . -587) 185643) ((-1139 . -579) 185475) ((-1139 . -651) 185307) ((-1139 . -552) 185063) ((-1139 . -116) 185042) ((-1139 . -118) 185021) ((-1139 . -47) 184998) ((-1139 . -324) 184982) ((-1139 . -577) 184930) ((-1139 . -804) 184874) ((-1139 . -801) 184781) ((-1139 . -806) 184692) ((-1139 . -791) NIL) ((-1139 . -816) 184671) ((-1139 . -1125) 184650) ((-1139 . -856) 184620) ((-1139 . -827) 184599) ((-1139 . -491) 184513) ((-1139 . -243) 184427) ((-1139 . -144) 184321) ((-1139 . -387) 184255) ((-1139 . -255) 184234) ((-1139 . -239) 184161) ((-1139 . -188) T) ((-1139 . -102) T) ((-1139 . -25) T) ((-1139 . -72) T) ((-1139 . -549) 184143) ((-1139 . -1007) T) ((-1139 . -23) T) ((-1139 . -21) T) ((-1139 . -964) T) ((-1139 . -1017) T) ((-1139 . -1052) T) ((-1139 . -660) T) ((-1139 . -956) T) ((-1139 . -184) 184130) ((-1139 . -13) T) ((-1139 . -1120) T) ((-1139 . -187) T) ((-1139 . -223) 184114) ((-1139 . -182) 184098) ((-1137 . -1000) 184082) ((-1137 . -554) 184066) ((-1137 . -1007) 184044) ((-1137 . -549) 184011) ((-1137 . -1120) 183989) ((-1137 . -13) 183967) ((-1137 . -72) 183945) ((-1137 . -1001) 183902) ((-1135 . -1134) 183881) ((-1135 . -910) 183847) ((-1135 . -1106) 183813) ((-1135 . -1109) 183779) ((-1135 . -428) 183745) ((-1135 . -237) 183711) ((-1135 . -66) 183677) ((-1135 . -35) 183643) ((-1135 . -1149) 183620) ((-1135 . -47) 183597) ((-1135 . -552) 183352) ((-1135 . -651) 183172) ((-1135 . -579) 182992) ((-1135 . -587) 182803) ((-1135 . -585) 182661) ((-1135 . -963) 182475) ((-1135 . -958) 182289) ((-1135 . -80) 182077) ((-1135 . -38) 181897) ((-1135 . -881) 181867) ((-1135 . -239) 181767) ((-1135 . -1132) 181751) ((-1135 . -964) T) ((-1135 . -1017) T) ((-1135 . -1052) T) ((-1135 . -660) T) ((-1135 . -956) T) ((-1135 . -21) T) ((-1135 . -23) T) ((-1135 . -1007) T) ((-1135 . -549) 181733) ((-1135 . -1120) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -25) T) ((-1135 . -102) T) ((-1135 . -116) 181661) ((-1135 . -118) 181589) ((-1135 . -550) 181262) ((-1135 . -182) 181232) ((-1135 . -804) 181086) ((-1135 . -806) 180886) ((-1135 . -801) 180684) ((-1135 . -223) 180654) ((-1135 . -187) 180516) ((-1135 . -184) 180372) ((-1135 . -188) 180280) ((-1135 . -309) 180259) ((-1135 . -1125) 180238) ((-1135 . -827) 180217) ((-1135 . -491) 180171) ((-1135 . -144) 180105) ((-1135 . -387) 180084) ((-1135 . -255) 180063) ((-1135 . -243) 180017) ((-1135 . -199) 179996) ((-1135 . -285) 179966) ((-1135 . -449) 179826) ((-1135 . -257) 179765) ((-1135 . -324) 179735) ((-1135 . -577) 179643) ((-1135 . -338) 179613) ((-1135 . -791) 179486) ((-1135 . -735) 179439) ((-1135 . -709) 179392) ((-1135 . -711) 179345) ((-1135 . -751) 179247) ((-1135 . -754) 179149) ((-1135 . -713) 179102) ((-1135 . -716) 179055) ((-1135 . -750) 179008) ((-1135 . -789) 178978) ((-1135 . -816) 178931) ((-1135 . -928) 178884) ((-1135 . -945) 178673) ((-1135 . -1057) 178625) ((-1135 . -899) 178595) ((-1130 . -1134) 178556) ((-1130 . -910) 178522) ((-1130 . -1106) 178488) ((-1130 . -1109) 178454) ((-1130 . -428) 178420) ((-1130 . -237) 178386) ((-1130 . -66) 178352) ((-1130 . -35) 178318) ((-1130 . -1149) 178295) ((-1130 . -47) 178272) ((-1130 . -552) 178073) ((-1130 . -651) 177875) ((-1130 . -579) 177677) ((-1130 . -587) 177532) ((-1130 . -585) 177372) ((-1130 . -963) 177168) ((-1130 . -958) 176964) ((-1130 . -80) 176716) ((-1130 . -38) 176518) ((-1130 . -881) 176488) ((-1130 . -239) 176316) ((-1130 . -1132) 176300) ((-1130 . -964) T) ((-1130 . -1017) T) ((-1130 . -1052) T) ((-1130 . -660) T) ((-1130 . -956) T) ((-1130 . -21) T) ((-1130 . -23) T) ((-1130 . -1007) T) ((-1130 . -549) 176282) ((-1130 . -1120) T) ((-1130 . -13) T) ((-1130 . -72) T) ((-1130 . -25) T) ((-1130 . -102) T) ((-1130 . -116) 176192) ((-1130 . -118) 176102) ((-1130 . -550) NIL) ((-1130 . -182) 176054) ((-1130 . -804) 175890) ((-1130 . -806) 175654) ((-1130 . -801) 175393) ((-1130 . -223) 175345) ((-1130 . -187) 175171) ((-1130 . -184) 174991) ((-1130 . -188) 174881) ((-1130 . -309) 174860) ((-1130 . -1125) 174839) ((-1130 . -827) 174818) ((-1130 . -491) 174772) ((-1130 . -144) 174706) ((-1130 . -387) 174685) ((-1130 . -255) 174664) ((-1130 . -243) 174618) ((-1130 . -199) 174597) ((-1130 . -285) 174549) ((-1130 . -449) 174283) ((-1130 . -257) 174168) ((-1130 . -324) 174120) ((-1130 . -577) 174072) ((-1130 . -338) 174024) ((-1130 . -791) NIL) ((-1130 . -735) NIL) ((-1130 . -709) NIL) ((-1130 . -711) NIL) ((-1130 . -751) NIL) ((-1130 . -754) NIL) ((-1130 . -713) NIL) ((-1130 . -716) NIL) ((-1130 . -750) NIL) ((-1130 . -789) 173976) ((-1130 . -816) NIL) ((-1130 . -928) NIL) ((-1130 . -945) 173942) ((-1130 . -1057) NIL) ((-1130 . -899) 173894) ((-1129 . -747) T) ((-1129 . -754) T) ((-1129 . -751) T) ((-1129 . -1007) T) ((-1129 . -549) 173876) ((-1129 . -1120) T) ((-1129 . -13) T) ((-1129 . -72) T) ((-1129 . -315) T) ((-1129 . -601) T) ((-1128 . -747) T) ((-1128 . -754) T) ((-1128 . -751) T) ((-1128 . -1007) T) ((-1128 . -549) 173858) ((-1128 . -1120) T) ((-1128 . -13) T) ((-1128 . -72) T) ((-1128 . -315) T) ((-1128 . -601) T) ((-1127 . -747) T) ((-1127 . -754) T) ((-1127 . -751) T) ((-1127 . -1007) T) ((-1127 . -549) 173840) ((-1127 . -1120) T) ((-1127 . -13) T) ((-1127 . -72) T) ((-1127 . -315) T) ((-1127 . -601) T) ((-1126 . -747) T) ((-1126 . -754) T) ((-1126 . -751) T) ((-1126 . -1007) T) ((-1126 . -549) 173822) ((-1126 . -1120) T) ((-1126 . -13) T) ((-1126 . -72) T) ((-1126 . -315) T) ((-1126 . -601) T) ((-1121 . -989) T) ((-1121 . -425) 173803) ((-1121 . -549) 173769) ((-1121 . -552) 173750) ((-1121 . -1007) T) ((-1121 . -1120) T) ((-1121 . -13) T) ((-1121 . -72) T) ((-1121 . -64) T) ((-1118 . -425) 173727) ((-1118 . -549) 173668) ((-1118 . -552) 173645) ((-1118 . -1007) 173623) ((-1118 . -1120) 173601) ((-1118 . -13) 173579) ((-1118 . -72) 173557) ((-1113 . -674) 173533) ((-1113 . -35) 173499) ((-1113 . -66) 173465) ((-1113 . -237) 173431) ((-1113 . -428) 173397) ((-1113 . -1109) 173363) ((-1113 . -1106) 173329) ((-1113 . -910) 173295) ((-1113 . -47) 173264) ((-1113 . -38) 173161) ((-1113 . -579) 173058) ((-1113 . -651) 172955) ((-1113 . -552) 172837) ((-1113 . -243) 172816) ((-1113 . -491) 172795) ((-1113 . -80) 172660) ((-1113 . -958) 172546) ((-1113 . -963) 172432) ((-1113 . -144) 172386) ((-1113 . -118) 172365) ((-1113 . -116) 172344) ((-1113 . -587) 172269) ((-1113 . -585) 172179) ((-1113 . -881) 172140) ((-1113 . -806) 172121) ((-1113 . -1120) T) ((-1113 . -13) T) ((-1113 . -801) 172100) ((-1113 . -956) T) ((-1113 . -660) T) ((-1113 . -1052) T) ((-1113 . -1017) T) ((-1113 . -964) T) ((-1113 . -21) T) ((-1113 . -23) T) ((-1113 . -1007) T) ((-1113 . -549) 172082) ((-1113 . -72) T) ((-1113 . -25) T) ((-1113 . -102) T) ((-1113 . -804) 172063) ((-1113 . -449) 172030) ((-1113 . -257) 172017) ((-1107 . -918) 172001) ((-1107 . -34) T) ((-1107 . -13) T) ((-1107 . -1120) T) ((-1107 . -72) 171955) ((-1107 . -549) 171890) ((-1107 . -257) 171828) ((-1107 . -449) 171761) ((-1107 . -1007) 171739) ((-1107 . -424) 171723) ((-1102 . -311) 171697) ((-1102 . -72) T) ((-1102 . -13) T) ((-1102 . -1120) T) ((-1102 . -549) 171679) ((-1102 . -1007) T) ((-1100 . -1007) T) ((-1100 . -549) 171661) ((-1100 . -1120) T) ((-1100 . -13) T) ((-1100 . -72) T) ((-1100 . -552) 171643) ((-1095 . -742) 171627) ((-1095 . -72) T) ((-1095 . -13) T) ((-1095 . -1120) T) ((-1095 . -549) 171609) ((-1095 . -1007) T) ((-1093 . -1098) 171588) ((-1093 . -181) 171536) ((-1093 . -76) 171484) ((-1093 . -257) 171282) ((-1093 . -449) 171034) ((-1093 . -424) 170969) ((-1093 . -122) 170917) ((-1093 . -550) NIL) ((-1093 . -191) 170865) ((-1093 . -546) 170844) ((-1093 . -241) 170823) ((-1093 . -1120) T) ((-1093 . -13) T) ((-1093 . -239) 170802) ((-1093 . -1007) T) ((-1093 . -549) 170784) ((-1093 . -72) T) ((-1093 . -34) T) ((-1093 . -535) 170763) ((-1089 . -1007) T) ((-1089 . -549) 170745) ((-1089 . -1120) T) ((-1089 . -13) T) ((-1089 . -72) T) ((-1088 . -747) T) ((-1088 . -754) T) ((-1088 . -751) T) ((-1088 . -1007) T) ((-1088 . -549) 170727) ((-1088 . -1120) T) ((-1088 . -13) T) ((-1088 . -72) T) ((-1088 . -315) T) ((-1088 . -601) T) ((-1087 . -747) T) ((-1087 . -754) T) ((-1087 . -751) T) ((-1087 . -1007) T) ((-1087 . -549) 170709) ((-1087 . -1120) T) ((-1087 . -13) T) ((-1087 . -72) T) ((-1087 . -315) T) ((-1086 . -1166) T) ((-1086 . -1007) T) ((-1086 . -549) 170676) ((-1086 . -1120) T) ((-1086 . -13) T) ((-1086 . -72) T) ((-1086 . -945) 170612) ((-1086 . -552) 170548) ((-1085 . -549) 170530) ((-1084 . -549) 170512) ((-1083 . -274) 170489) ((-1083 . -945) 170387) ((-1083 . -350) 170371) ((-1083 . -38) 170268) ((-1083 . -552) 170125) ((-1083 . -587) 170050) ((-1083 . -585) 169960) ((-1083 . -964) T) ((-1083 . -1017) T) ((-1083 . -1052) T) ((-1083 . -660) T) ((-1083 . -956) T) ((-1083 . -80) 169825) ((-1083 . -958) 169711) ((-1083 . -963) 169597) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1007) T) ((-1083 . -549) 169579) ((-1083 . -1120) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -25) T) ((-1083 . -102) T) ((-1083 . -579) 169476) ((-1083 . -651) 169373) ((-1083 . -116) 169352) ((-1083 . -118) 169331) ((-1083 . -144) 169285) ((-1083 . -491) 169264) ((-1083 . -243) 169243) ((-1083 . -47) 169220) ((-1081 . -751) T) ((-1081 . -549) 169202) ((-1081 . -1007) T) ((-1081 . -72) T) ((-1081 . -13) T) ((-1081 . -1120) T) ((-1081 . -754) T) ((-1081 . -550) 169124) ((-1081 . -552) 169090) ((-1081 . -945) 169072) ((-1081 . -791) 169039) ((-1080 . -1163) 169023) ((-1080 . -188) 168982) ((-1080 . -552) 168864) ((-1080 . -587) 168789) ((-1080 . -585) 168699) ((-1080 . -102) T) ((-1080 . -25) T) ((-1080 . -72) T) ((-1080 . -549) 168681) ((-1080 . -1007) T) ((-1080 . -23) T) ((-1080 . -21) T) ((-1080 . -964) T) ((-1080 . -1017) T) ((-1080 . -1052) T) ((-1080 . -660) T) ((-1080 . -956) T) ((-1080 . -184) 168634) ((-1080 . -13) T) ((-1080 . -1120) T) ((-1080 . -187) 168593) ((-1080 . -239) 168558) ((-1080 . -804) 168471) ((-1080 . -801) 168359) ((-1080 . -806) 168272) ((-1080 . -881) 168242) ((-1080 . -38) 168139) ((-1080 . -80) 168004) ((-1080 . -958) 167890) ((-1080 . -963) 167776) ((-1080 . -579) 167673) ((-1080 . -651) 167570) ((-1080 . -116) 167549) ((-1080 . -118) 167528) ((-1080 . -144) 167482) ((-1080 . -491) 167461) ((-1080 . -243) 167440) ((-1080 . -47) 167417) ((-1080 . -1149) 167394) ((-1080 . -35) 167360) ((-1080 . -66) 167326) ((-1080 . -237) 167292) ((-1080 . -428) 167258) ((-1080 . -1109) 167224) ((-1080 . -1106) 167190) ((-1080 . -910) 167156) ((-1079 . -1155) 167117) ((-1079 . -309) 167096) ((-1079 . -1125) 167075) ((-1079 . -827) 167054) ((-1079 . -491) 167008) ((-1079 . -144) 166942) ((-1079 . -552) 166691) ((-1079 . -651) 166538) ((-1079 . -579) 166385) ((-1079 . -38) 166232) ((-1079 . -387) 166211) ((-1079 . -255) 166190) ((-1079 . -587) 166090) ((-1079 . -585) 165975) ((-1079 . -964) T) ((-1079 . -1017) T) ((-1079 . -1052) T) ((-1079 . -660) T) ((-1079 . -956) T) ((-1079 . -80) 165795) ((-1079 . -958) 165636) ((-1079 . -963) 165477) ((-1079 . -21) T) ((-1079 . -23) T) ((-1079 . -1007) T) ((-1079 . -549) 165459) ((-1079 . -1120) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1079 . -25) T) ((-1079 . -102) T) ((-1079 . -243) 165413) ((-1079 . -199) 165392) ((-1079 . -910) 165358) ((-1079 . -1106) 165324) ((-1079 . -1109) 165290) ((-1079 . -428) 165256) ((-1079 . -237) 165222) ((-1079 . -66) 165188) ((-1079 . -35) 165154) ((-1079 . -1149) 165124) ((-1079 . -47) 165094) ((-1079 . -118) 165073) ((-1079 . -116) 165052) ((-1079 . -881) 165015) ((-1079 . -806) 164921) ((-1079 . -801) 164802) ((-1079 . -804) 164708) ((-1079 . -239) 164666) ((-1079 . -187) 164618) ((-1079 . -184) 164564) ((-1079 . -188) 164516) ((-1079 . -1153) 164500) ((-1079 . -945) 164435) ((-1076 . -1146) 164419) ((-1076 . -1057) 164397) ((-1076 . -550) NIL) ((-1076 . -257) 164384) ((-1076 . -449) 164332) ((-1076 . -274) 164309) ((-1076 . -945) 164192) ((-1076 . -350) 164176) ((-1076 . -38) 164008) ((-1076 . -80) 163813) ((-1076 . -958) 163639) ((-1076 . -963) 163465) ((-1076 . -585) 163375) ((-1076 . -587) 163264) ((-1076 . -579) 163096) ((-1076 . -651) 162928) ((-1076 . -552) 162705) ((-1076 . -116) 162684) ((-1076 . -118) 162663) ((-1076 . -47) 162640) ((-1076 . -324) 162624) ((-1076 . -577) 162572) ((-1076 . -804) 162516) ((-1076 . -801) 162423) ((-1076 . -806) 162334) ((-1076 . -791) NIL) ((-1076 . -816) 162313) ((-1076 . -1125) 162292) ((-1076 . -856) 162262) ((-1076 . -827) 162241) ((-1076 . -491) 162155) ((-1076 . -243) 162069) ((-1076 . -144) 161963) ((-1076 . -387) 161897) ((-1076 . -255) 161876) ((-1076 . -239) 161803) ((-1076 . -188) T) ((-1076 . -102) T) ((-1076 . -25) T) ((-1076 . -72) T) ((-1076 . -549) 161785) ((-1076 . -1007) T) ((-1076 . -23) T) ((-1076 . -21) T) ((-1076 . -964) T) ((-1076 . -1017) T) ((-1076 . -1052) T) ((-1076 . -660) T) ((-1076 . -956) T) ((-1076 . -184) 161772) ((-1076 . -13) T) ((-1076 . -1120) T) ((-1076 . -187) T) ((-1076 . -223) 161756) ((-1076 . -182) 161740) ((-1073 . -1134) 161701) ((-1073 . -910) 161667) ((-1073 . -1106) 161633) ((-1073 . -1109) 161599) ((-1073 . -428) 161565) ((-1073 . -237) 161531) ((-1073 . -66) 161497) ((-1073 . -35) 161463) ((-1073 . -1149) 161440) ((-1073 . -47) 161417) ((-1073 . -552) 161218) ((-1073 . -651) 161020) ((-1073 . -579) 160822) ((-1073 . -587) 160677) ((-1073 . -585) 160517) ((-1073 . -963) 160313) ((-1073 . -958) 160109) ((-1073 . -80) 159861) ((-1073 . -38) 159663) ((-1073 . -881) 159633) ((-1073 . -239) 159461) ((-1073 . -1132) 159445) ((-1073 . -964) T) ((-1073 . -1017) T) ((-1073 . -1052) T) ((-1073 . -660) T) ((-1073 . -956) T) ((-1073 . -21) T) ((-1073 . -23) T) ((-1073 . -1007) T) ((-1073 . -549) 159427) ((-1073 . -1120) T) ((-1073 . -13) T) ((-1073 . -72) T) ((-1073 . -25) T) ((-1073 . -102) T) ((-1073 . -116) 159337) ((-1073 . -118) 159247) ((-1073 . -550) NIL) ((-1073 . -182) 159199) ((-1073 . -804) 159035) ((-1073 . -806) 158799) ((-1073 . -801) 158538) ((-1073 . -223) 158490) ((-1073 . -187) 158316) ((-1073 . -184) 158136) ((-1073 . -188) 158026) ((-1073 . -309) 158005) ((-1073 . -1125) 157984) ((-1073 . -827) 157963) ((-1073 . -491) 157917) ((-1073 . -144) 157851) ((-1073 . -387) 157830) ((-1073 . -255) 157809) ((-1073 . -243) 157763) ((-1073 . -199) 157742) ((-1073 . -285) 157694) ((-1073 . -449) 157428) ((-1073 . -257) 157313) ((-1073 . -324) 157265) ((-1073 . -577) 157217) ((-1073 . -338) 157169) ((-1073 . -791) NIL) ((-1073 . -735) NIL) ((-1073 . -709) NIL) ((-1073 . -711) NIL) ((-1073 . -751) NIL) ((-1073 . -754) NIL) ((-1073 . -713) NIL) ((-1073 . -716) NIL) ((-1073 . -750) NIL) ((-1073 . -789) 157121) ((-1073 . -816) NIL) ((-1073 . -928) NIL) ((-1073 . -945) 157087) ((-1073 . -1057) NIL) ((-1073 . -899) 157039) ((-1072 . -989) T) ((-1072 . -425) 157020) ((-1072 . -549) 156986) ((-1072 . -552) 156967) ((-1072 . -1007) T) ((-1072 . -1120) T) ((-1072 . -13) T) ((-1072 . -72) T) ((-1072 . -64) T) ((-1071 . -1007) T) ((-1071 . -549) 156949) ((-1071 . -1120) T) ((-1071 . -13) T) ((-1071 . -72) T) ((-1070 . -1007) T) ((-1070 . -549) 156931) ((-1070 . -1120) T) ((-1070 . -13) T) ((-1070 . -72) T) ((-1065 . -1098) 156907) ((-1065 . -181) 156852) ((-1065 . -76) 156797) ((-1065 . -257) 156586) ((-1065 . -449) 156326) ((-1065 . -424) 156258) ((-1065 . -122) 156203) ((-1065 . -550) NIL) ((-1065 . -191) 156148) ((-1065 . -546) 156124) ((-1065 . -241) 156100) ((-1065 . -1120) T) ((-1065 . -13) T) ((-1065 . -239) 156076) ((-1065 . -1007) T) ((-1065 . -549) 156058) ((-1065 . -72) T) ((-1065 . -34) T) ((-1065 . -535) 156034) ((-1064 . -1049) T) ((-1064 . -319) 156016) ((-1064 . -754) T) ((-1064 . -751) T) ((-1064 . -122) 155998) ((-1064 . -34) T) ((-1064 . -13) T) ((-1064 . -1120) T) ((-1064 . -72) T) ((-1064 . -549) 155980) ((-1064 . -257) NIL) ((-1064 . -449) NIL) ((-1064 . -1007) T) ((-1064 . -424) 155962) ((-1064 . -550) NIL) ((-1064 . -239) 155912) ((-1064 . -535) 155887) ((-1064 . -241) 155862) ((-1064 . -590) 155844) ((-1064 . -19) 155826) ((-1060 . -613) 155810) ((-1060 . -590) 155794) ((-1060 . -241) 155771) ((-1060 . -239) 155723) ((-1060 . -535) 155700) ((-1060 . -550) 155661) ((-1060 . -424) 155645) ((-1060 . -1007) 155623) ((-1060 . -449) 155556) ((-1060 . -257) 155494) ((-1060 . -549) 155429) ((-1060 . -72) 155383) ((-1060 . -1120) T) ((-1060 . -13) T) ((-1060 . -34) T) ((-1060 . -122) 155367) ((-1060 . -1159) 155351) ((-1060 . -918) 155335) ((-1060 . -1055) 155319) ((-1060 . -552) 155296) ((-1058 . -989) T) ((-1058 . -425) 155277) ((-1058 . -549) 155243) ((-1058 . -552) 155224) ((-1058 . -1007) T) ((-1058 . -1120) T) ((-1058 . -13) T) ((-1058 . -72) T) ((-1058 . -64) T) ((-1056 . -1098) 155203) ((-1056 . -181) 155151) ((-1056 . -76) 155099) ((-1056 . -257) 154897) ((-1056 . -449) 154649) ((-1056 . -424) 154584) ((-1056 . -122) 154532) ((-1056 . -550) NIL) ((-1056 . -191) 154480) ((-1056 . -546) 154459) ((-1056 . -241) 154438) ((-1056 . -1120) T) ((-1056 . -13) T) ((-1056 . -239) 154417) ((-1056 . -1007) T) ((-1056 . -549) 154399) ((-1056 . -72) T) ((-1056 . -34) T) ((-1056 . -535) 154378) ((-1053 . -1026) 154362) ((-1053 . -424) 154346) ((-1053 . -1007) 154324) ((-1053 . -449) 154257) ((-1053 . -257) 154195) ((-1053 . -549) 154130) ((-1053 . -72) 154084) ((-1053 . -1120) T) ((-1053 . -13) T) ((-1053 . -34) T) ((-1053 . -76) 154068) ((-1051 . -1014) 154037) ((-1051 . -1115) 154006) ((-1051 . -549) 153968) ((-1051 . -122) 153952) ((-1051 . -34) T) ((-1051 . -13) T) ((-1051 . -1120) T) ((-1051 . -72) T) ((-1051 . -257) 153890) ((-1051 . -449) 153823) ((-1051 . -1007) T) ((-1051 . -424) 153807) ((-1051 . -550) 153768) ((-1051 . -884) 153737) ((-1051 . -977) 153706) ((-1047 . -1028) 153651) ((-1047 . -424) 153635) ((-1047 . -449) 153568) ((-1047 . -257) 153506) ((-1047 . -34) T) ((-1047 . -960) 153446) ((-1047 . -945) 153344) ((-1047 . -552) 153263) ((-1047 . -350) 153247) ((-1047 . -577) 153195) ((-1047 . -587) 153133) ((-1047 . -324) 153117) ((-1047 . -188) 153096) ((-1047 . -184) 153044) ((-1047 . -187) 152998) ((-1047 . -223) 152982) ((-1047 . -801) 152906) ((-1047 . -806) 152832) ((-1047 . -804) 152791) ((-1047 . -182) 152775) ((-1047 . -651) 152710) ((-1047 . -579) 152645) ((-1047 . -585) 152604) ((-1047 . -102) T) ((-1047 . -25) T) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1120) T) ((-1047 . -549) 152566) ((-1047 . -1007) T) ((-1047 . -23) T) ((-1047 . -21) T) ((-1047 . -963) 152550) ((-1047 . -958) 152534) ((-1047 . -80) 152513) ((-1047 . -956) T) ((-1047 . -660) T) ((-1047 . -1052) T) ((-1047 . -1017) T) ((-1047 . -964) T) ((-1047 . -38) 152473) ((-1047 . -550) 152434) ((-1046 . -918) 152405) ((-1046 . -34) T) ((-1046 . -13) T) ((-1046 . -1120) T) ((-1046 . -72) T) ((-1046 . -549) 152387) ((-1046 . -257) 152313) ((-1046 . -449) 152221) ((-1046 . -1007) T) ((-1046 . -424) 152192) ((-1045 . -1007) T) ((-1045 . -549) 152174) ((-1045 . -1120) T) ((-1045 . -13) T) ((-1045 . -72) T) ((-1040 . -1042) T) ((-1040 . -1166) T) ((-1040 . -64) T) ((-1040 . -72) T) ((-1040 . -13) T) ((-1040 . -1120) T) ((-1040 . -549) 152140) ((-1040 . -1007) T) ((-1040 . -552) 152121) ((-1040 . -425) 152102) ((-1040 . -989) T) ((-1038 . -1039) 152086) ((-1038 . -72) T) ((-1038 . -13) T) ((-1038 . -1120) T) ((-1038 . -549) 152068) ((-1038 . -1007) T) ((-1031 . -674) 152047) ((-1031 . -35) 152013) ((-1031 . -66) 151979) ((-1031 . -237) 151945) ((-1031 . -428) 151911) ((-1031 . -1109) 151877) ((-1031 . -1106) 151843) ((-1031 . -910) 151809) ((-1031 . -47) 151781) ((-1031 . -38) 151678) ((-1031 . -579) 151575) ((-1031 . -651) 151472) ((-1031 . -552) 151354) ((-1031 . -243) 151333) ((-1031 . -491) 151312) ((-1031 . -80) 151177) ((-1031 . -958) 151063) ((-1031 . -963) 150949) ((-1031 . -144) 150903) ((-1031 . -118) 150882) ((-1031 . -116) 150861) ((-1031 . -587) 150786) ((-1031 . -585) 150696) ((-1031 . -881) 150663) ((-1031 . -806) 150647) ((-1031 . -1120) T) ((-1031 . -13) T) ((-1031 . -801) 150629) ((-1031 . -956) T) ((-1031 . -660) T) ((-1031 . -1052) T) ((-1031 . -1017) T) ((-1031 . -964) T) ((-1031 . -21) T) ((-1031 . -23) T) ((-1031 . -1007) T) ((-1031 . -549) 150611) ((-1031 . -72) T) ((-1031 . -25) T) ((-1031 . -102) T) ((-1031 . -804) 150595) ((-1031 . -449) 150565) ((-1031 . -257) 150552) ((-1030 . -856) 150519) ((-1030 . -552) 150318) ((-1030 . -945) 150203) ((-1030 . -1125) 150182) ((-1030 . -816) 150161) ((-1030 . -791) 150020) ((-1030 . -806) 150004) ((-1030 . -801) 149986) ((-1030 . -804) 149970) ((-1030 . -449) 149922) ((-1030 . -387) 149876) ((-1030 . -577) 149824) ((-1030 . -587) 149713) ((-1030 . -324) 149697) ((-1030 . -47) 149669) ((-1030 . -38) 149521) ((-1030 . -579) 149373) ((-1030 . -651) 149225) ((-1030 . -243) 149159) ((-1030 . -491) 149093) ((-1030 . -80) 148918) ((-1030 . -958) 148764) ((-1030 . -963) 148610) ((-1030 . -144) 148524) ((-1030 . -118) 148503) ((-1030 . -116) 148482) ((-1030 . -585) 148392) ((-1030 . -102) T) ((-1030 . -25) T) ((-1030 . -72) T) ((-1030 . -13) T) ((-1030 . -1120) T) ((-1030 . -549) 148374) ((-1030 . -1007) T) ((-1030 . -23) T) ((-1030 . -21) T) ((-1030 . -956) T) ((-1030 . -660) T) ((-1030 . -1052) T) ((-1030 . -1017) T) ((-1030 . -964) T) ((-1030 . -350) 148358) ((-1030 . -274) 148330) ((-1030 . -257) 148317) ((-1030 . -550) 148065) ((-1025 . -479) T) ((-1025 . -1125) T) ((-1025 . -1057) T) ((-1025 . -945) 148047) ((-1025 . -550) 147962) ((-1025 . -928) T) ((-1025 . -791) 147944) ((-1025 . -750) T) ((-1025 . -716) T) ((-1025 . -713) T) ((-1025 . -754) T) ((-1025 . -751) T) ((-1025 . -711) T) ((-1025 . -709) T) ((-1025 . -735) T) ((-1025 . -587) 147916) ((-1025 . -577) 147898) ((-1025 . -827) T) ((-1025 . -491) T) ((-1025 . -243) T) ((-1025 . -144) T) ((-1025 . -552) 147870) ((-1025 . -651) 147857) ((-1025 . -579) 147844) ((-1025 . -963) 147831) ((-1025 . -958) 147818) ((-1025 . -80) 147803) ((-1025 . -38) 147790) ((-1025 . -387) T) ((-1025 . -255) T) ((-1025 . -187) T) ((-1025 . -184) 147777) ((-1025 . -188) T) ((-1025 . -114) T) ((-1025 . -956) T) ((-1025 . -660) T) ((-1025 . -1052) T) ((-1025 . -1017) T) ((-1025 . -964) T) ((-1025 . -21) T) ((-1025 . -585) 147749) ((-1025 . -23) T) ((-1025 . -1007) T) ((-1025 . -549) 147731) ((-1025 . -1120) T) ((-1025 . -13) T) ((-1025 . -72) T) ((-1025 . -25) T) ((-1025 . -102) T) ((-1025 . -118) T) ((-1025 . -747) T) ((-1025 . -315) T) ((-1025 . -82) T) ((-1025 . -601) T) ((-1021 . -989) T) ((-1021 . -425) 147712) ((-1021 . -549) 147678) ((-1021 . -552) 147659) ((-1021 . -1007) T) ((-1021 . -1120) T) ((-1021 . -13) T) ((-1021 . -72) T) ((-1021 . -64) T) ((-1020 . -1007) T) ((-1020 . -549) 147641) ((-1020 . -1120) T) ((-1020 . -13) T) ((-1020 . -72) T) ((-1018 . -194) 147620) ((-1018 . -1178) 147590) ((-1018 . -716) 147569) ((-1018 . -713) 147548) ((-1018 . -754) 147502) ((-1018 . -751) 147456) ((-1018 . -711) 147435) ((-1018 . -712) 147414) ((-1018 . -651) 147359) ((-1018 . -579) 147284) ((-1018 . -241) 147261) ((-1018 . -239) 147238) ((-1018 . -424) 147222) ((-1018 . -449) 147155) ((-1018 . -257) 147093) ((-1018 . -34) T) ((-1018 . -535) 147070) ((-1018 . -945) 146899) ((-1018 . -552) 146703) ((-1018 . -350) 146672) ((-1018 . -577) 146580) ((-1018 . -587) 146419) ((-1018 . -324) 146389) ((-1018 . -315) 146368) ((-1018 . -188) 146321) ((-1018 . -585) 146109) ((-1018 . -964) 146088) ((-1018 . -1017) 146067) ((-1018 . -1052) 146046) ((-1018 . -660) 146025) ((-1018 . -956) 146004) ((-1018 . -184) 145900) ((-1018 . -187) 145802) ((-1018 . -223) 145772) ((-1018 . -801) 145644) ((-1018 . -806) 145518) ((-1018 . -804) 145451) ((-1018 . -182) 145421) ((-1018 . -549) 145118) ((-1018 . -963) 145043) ((-1018 . -958) 144948) ((-1018 . -80) 144868) ((-1018 . -102) 144743) ((-1018 . -25) 144580) ((-1018 . -72) 144317) ((-1018 . -13) T) ((-1018 . -1120) T) ((-1018 . -1007) 144073) ((-1018 . -23) 143929) ((-1018 . -21) 143844) ((-1011 . -1010) 143808) ((-1011 . -72) T) ((-1011 . -549) 143790) ((-1011 . -1007) T) ((-1011 . -239) 143746) ((-1011 . -1120) T) ((-1011 . -13) T) ((-1011 . -554) 143661) ((-1009 . -1010) 143613) ((-1009 . -72) T) ((-1009 . -549) 143595) ((-1009 . -1007) T) ((-1009 . -239) 143551) ((-1009 . -1120) T) ((-1009 . -13) T) ((-1009 . -554) 143454) ((-1008 . -315) T) ((-1008 . -72) T) ((-1008 . -13) T) ((-1008 . -1120) T) ((-1008 . -549) 143436) ((-1008 . -1007) T) ((-1003 . -364) 143420) ((-1003 . -1005) 143404) ((-1003 . -315) 143383) ((-1003 . -191) 143367) ((-1003 . -550) 143328) ((-1003 . -122) 143312) ((-1003 . -424) 143296) ((-1003 . -1007) T) ((-1003 . -449) 143229) ((-1003 . -257) 143167) ((-1003 . -549) 143149) ((-1003 . -72) T) ((-1003 . -1120) T) ((-1003 . -13) T) ((-1003 . -34) T) ((-1003 . -76) 143133) ((-1003 . -181) 143117) ((-1002 . -989) T) ((-1002 . -425) 143098) ((-1002 . -549) 143064) ((-1002 . -552) 143045) ((-1002 . -1007) T) ((-1002 . -1120) T) ((-1002 . -13) T) ((-1002 . -72) T) ((-1002 . -64) T) ((-998 . -1120) T) ((-998 . -13) T) ((-998 . -1007) 143016) ((-998 . -549) 142976) ((-998 . -72) 142947) ((-997 . -989) T) ((-997 . -425) 142928) ((-997 . -549) 142894) ((-997 . -552) 142875) ((-997 . -1007) T) ((-997 . -1120) T) ((-997 . -13) T) ((-997 . -72) T) ((-997 . -64) T) ((-995 . -1000) 142859) ((-995 . -554) 142843) ((-995 . -1007) 142821) ((-995 . -549) 142788) ((-995 . -1120) 142766) ((-995 . -13) 142744) ((-995 . -72) 142722) ((-995 . -1001) 142680) ((-994 . -226) 142664) ((-994 . -552) 142648) ((-994 . -945) 142632) ((-994 . -754) T) ((-994 . -72) T) ((-994 . -1007) T) ((-994 . -549) 142614) ((-994 . -751) T) ((-994 . -184) 142601) ((-994 . -13) T) ((-994 . -1120) T) ((-994 . -187) T) ((-993 . -211) 142540) ((-993 . -552) 142284) ((-993 . -945) 142114) ((-993 . -550) NIL) ((-993 . -274) 142076) ((-993 . -350) 142060) ((-993 . -38) 141912) ((-993 . -80) 141737) ((-993 . -958) 141583) ((-993 . -963) 141429) ((-993 . -585) 141339) ((-993 . -587) 141228) ((-993 . -579) 141080) ((-993 . -651) 140932) ((-993 . -116) 140911) ((-993 . -118) 140890) ((-993 . -144) 140804) ((-993 . -491) 140738) ((-993 . -243) 140672) ((-993 . -47) 140634) ((-993 . -324) 140618) ((-993 . -577) 140566) ((-993 . -387) 140520) ((-993 . -449) 140385) ((-993 . -804) 140321) ((-993 . -801) 140220) ((-993 . -806) 140123) ((-993 . -791) NIL) ((-993 . -816) 140102) ((-993 . -1125) 140081) ((-993 . -856) 140028) ((-993 . -257) 140015) ((-993 . -188) 139994) ((-993 . -102) T) ((-993 . -25) T) ((-993 . -72) T) ((-993 . -549) 139976) ((-993 . -1007) T) ((-993 . -23) T) ((-993 . -21) T) ((-993 . -964) T) ((-993 . -1017) T) ((-993 . -1052) T) ((-993 . -660) T) ((-993 . -956) T) ((-993 . -184) 139924) ((-993 . -13) T) ((-993 . -1120) T) ((-993 . -187) 139878) ((-993 . -223) 139862) ((-993 . -182) 139846) ((-991 . -549) 139828) ((-988 . -751) T) ((-988 . -549) 139810) ((-988 . -1007) T) ((-988 . -72) T) ((-988 . -13) T) ((-988 . -1120) T) ((-988 . -754) T) ((-988 . -550) 139791) ((-985 . -658) 139770) ((-985 . -945) 139668) ((-985 . -350) 139652) ((-985 . -577) 139600) ((-985 . -587) 139477) ((-985 . -324) 139461) ((-985 . -317) 139440) ((-985 . -118) 139419) ((-985 . -552) 139244) ((-985 . -651) 139118) ((-985 . -579) 138992) ((-985 . -585) 138890) ((-985 . -963) 138803) ((-985 . -958) 138716) ((-985 . -80) 138608) ((-985 . -38) 138482) ((-985 . -348) 138461) ((-985 . -340) 138440) ((-985 . -116) 138394) ((-985 . -1057) 138373) ((-985 . -296) 138352) ((-985 . -315) 138306) ((-985 . -199) 138260) ((-985 . -243) 138214) ((-985 . -255) 138168) ((-985 . -387) 138122) ((-985 . -491) 138076) ((-985 . -827) 138030) ((-985 . -1125) 137984) ((-985 . -309) 137938) ((-985 . -188) 137866) ((-985 . -184) 137742) ((-985 . -187) 137624) ((-985 . -223) 137594) ((-985 . -801) 137466) ((-985 . -806) 137340) ((-985 . -804) 137273) ((-985 . -182) 137243) ((-985 . -550) 137227) ((-985 . -21) T) ((-985 . -23) T) ((-985 . -1007) T) ((-985 . -549) 137209) ((-985 . -1120) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -25) T) ((-985 . -102) T) ((-985 . -956) T) ((-985 . -660) T) ((-985 . -1052) T) ((-985 . -1017) T) ((-985 . -964) T) ((-985 . -144) T) ((-983 . -1007) T) ((-983 . -549) 137191) ((-983 . -1120) T) ((-983 . -13) T) ((-983 . -72) T) ((-983 . -239) 137170) ((-982 . -1007) T) ((-982 . -549) 137152) ((-982 . -1120) T) ((-982 . -13) T) ((-982 . -72) T) ((-981 . -1007) T) ((-981 . -549) 137134) ((-981 . -1120) T) ((-981 . -13) T) ((-981 . -72) T) ((-981 . -239) 137113) ((-981 . -945) 137090) ((-981 . -552) 137067) ((-980 . -1120) T) ((-980 . -13) T) ((-979 . -989) T) ((-979 . -425) 137048) ((-979 . -549) 137014) ((-979 . -552) 136995) ((-979 . -1007) T) ((-979 . -1120) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -64) T) ((-972 . -989) T) ((-972 . -425) 136976) ((-972 . -549) 136942) ((-972 . -552) 136923) ((-972 . -1007) T) ((-972 . -1120) T) ((-972 . -13) T) ((-972 . -72) T) ((-972 . -64) T) ((-969 . -479) T) ((-969 . -1125) T) ((-969 . -1057) T) ((-969 . -945) 136905) ((-969 . -550) 136820) ((-969 . -928) T) ((-969 . -791) 136802) ((-969 . -750) T) ((-969 . -716) T) ((-969 . -713) T) ((-969 . -754) T) ((-969 . -751) T) ((-969 . -711) T) ((-969 . -709) T) ((-969 . -735) T) ((-969 . -587) 136774) ((-969 . -577) 136756) ((-969 . -827) T) ((-969 . -491) T) ((-969 . -243) T) ((-969 . -144) T) ((-969 . -552) 136728) ((-969 . -651) 136715) ((-969 . -579) 136702) ((-969 . -963) 136689) ((-969 . -958) 136676) ((-969 . -80) 136661) ((-969 . -38) 136648) ((-969 . -387) T) ((-969 . -255) T) ((-969 . -187) T) ((-969 . -184) 136635) ((-969 . -188) T) ((-969 . -114) T) ((-969 . -956) T) ((-969 . -660) T) ((-969 . -1052) T) ((-969 . -1017) T) ((-969 . -964) T) ((-969 . -21) T) ((-969 . -585) 136607) ((-969 . -23) T) ((-969 . -1007) T) ((-969 . -549) 136589) ((-969 . -1120) T) ((-969 . -13) T) ((-969 . -72) T) ((-969 . -25) T) ((-969 . -102) T) ((-969 . -118) T) ((-969 . -554) 136570) ((-968 . -974) 136549) ((-968 . -72) T) ((-968 . -13) T) ((-968 . -1120) T) ((-968 . -549) 136531) ((-968 . -1007) T) ((-965 . -1120) T) ((-965 . -13) T) ((-965 . -1007) 136509) ((-965 . -549) 136476) ((-965 . -72) 136454) ((-961 . -960) 136394) ((-961 . -579) 136339) ((-961 . -651) 136284) ((-961 . -34) T) ((-961 . -257) 136222) ((-961 . -449) 136155) ((-961 . -424) 136139) ((-961 . -587) 136123) ((-961 . -585) 136092) ((-961 . -102) T) ((-961 . -25) T) ((-961 . -72) T) ((-961 . -13) T) ((-961 . -1120) T) ((-961 . -549) 136054) ((-961 . -1007) T) ((-961 . -23) T) ((-961 . -21) T) ((-961 . -963) 136038) ((-961 . -958) 136022) ((-961 . -80) 136001) ((-961 . -1178) 135971) ((-961 . -550) 135932) ((-953 . -977) 135861) ((-953 . -884) 135790) ((-953 . -550) 135732) ((-953 . -424) 135697) ((-953 . -1007) T) ((-953 . -449) 135581) ((-953 . -257) 135489) ((-953 . -549) 135432) ((-953 . -72) T) ((-953 . -1120) T) ((-953 . -13) T) ((-953 . -34) T) ((-953 . -122) 135397) ((-953 . -1115) 135326) ((-943 . -989) T) ((-943 . -425) 135307) ((-943 . -549) 135273) ((-943 . -552) 135254) ((-943 . -1007) T) ((-943 . -1120) T) ((-943 . -13) T) ((-943 . -72) T) ((-943 . -64) T) ((-942 . -144) T) ((-942 . -552) 135223) ((-942 . -964) T) ((-942 . -1017) T) ((-942 . -1052) T) ((-942 . -660) T) ((-942 . -956) T) ((-942 . -587) 135197) ((-942 . -585) 135156) ((-942 . -102) T) ((-942 . -25) T) ((-942 . -72) T) ((-942 . -13) T) ((-942 . -1120) T) ((-942 . -549) 135138) ((-942 . -1007) T) ((-942 . -23) T) ((-942 . -21) T) ((-942 . -963) 135112) ((-942 . -958) 135086) ((-942 . -80) 135053) ((-942 . -38) 135037) ((-942 . -579) 135021) ((-942 . -651) 135005) ((-935 . -977) 134974) ((-935 . -884) 134943) ((-935 . -550) 134904) ((-935 . -424) 134888) ((-935 . -1007) T) ((-935 . -449) 134821) ((-935 . -257) 134759) ((-935 . -549) 134721) ((-935 . -72) T) ((-935 . -1120) T) ((-935 . -13) T) ((-935 . -34) T) ((-935 . -122) 134705) ((-935 . -1115) 134674) ((-934 . -1007) T) ((-934 . -549) 134656) ((-934 . -1120) T) ((-934 . -13) T) ((-934 . -72) T) ((-932 . -920) T) ((-932 . -910) T) ((-932 . -709) T) ((-932 . -711) T) ((-932 . -751) T) ((-932 . -754) T) ((-932 . -713) T) ((-932 . -716) T) ((-932 . -750) T) ((-932 . -945) 134541) ((-932 . -350) 134503) ((-932 . -199) T) ((-932 . -243) T) ((-932 . -255) T) ((-932 . -387) T) ((-932 . -38) 134440) ((-932 . -579) 134377) ((-932 . -651) 134314) ((-932 . -552) 134251) ((-932 . -491) T) ((-932 . -827) T) ((-932 . -1125) T) ((-932 . -309) T) ((-932 . -80) 134160) ((-932 . -958) 134097) ((-932 . -963) 134034) ((-932 . -144) T) ((-932 . -118) T) ((-932 . -587) 133971) ((-932 . -585) 133908) ((-932 . -102) T) ((-932 . -25) T) ((-932 . -72) T) ((-932 . -13) T) ((-932 . -1120) T) ((-932 . -549) 133890) ((-932 . -1007) T) ((-932 . -23) T) ((-932 . -21) T) ((-932 . -956) T) ((-932 . -660) T) ((-932 . -1052) T) ((-932 . -1017) T) ((-932 . -964) T) ((-927 . -989) T) ((-927 . -425) 133871) ((-927 . -549) 133837) ((-927 . -552) 133818) ((-927 . -1007) T) ((-927 . -1120) T) ((-927 . -13) T) ((-927 . -72) T) ((-927 . -64) T) ((-912 . -899) 133800) ((-912 . -1057) T) ((-912 . -552) 133750) ((-912 . -945) 133710) ((-912 . -550) 133640) ((-912 . -928) T) ((-912 . -816) NIL) ((-912 . -789) 133622) ((-912 . -750) T) ((-912 . -716) T) ((-912 . -713) T) ((-912 . -754) T) ((-912 . -751) T) ((-912 . -711) T) ((-912 . -709) T) ((-912 . -735) T) ((-912 . -791) 133604) ((-912 . -338) 133586) ((-912 . -577) 133568) ((-912 . -324) 133550) ((-912 . -239) NIL) ((-912 . -257) NIL) ((-912 . -449) NIL) ((-912 . -285) 133532) ((-912 . -199) T) ((-912 . -80) 133459) ((-912 . -958) 133409) ((-912 . -963) 133359) ((-912 . -243) T) ((-912 . -651) 133309) ((-912 . -579) 133259) ((-912 . -587) 133209) ((-912 . -585) 133159) ((-912 . -38) 133109) ((-912 . -255) T) ((-912 . -387) T) ((-912 . -144) T) ((-912 . -491) T) ((-912 . -827) T) ((-912 . -1125) T) ((-912 . -309) T) ((-912 . -188) T) ((-912 . -184) 133096) ((-912 . -187) T) ((-912 . -223) 133078) ((-912 . -801) NIL) ((-912 . -806) NIL) ((-912 . -804) NIL) ((-912 . -182) 133060) ((-912 . -118) T) ((-912 . -116) NIL) ((-912 . -102) T) ((-912 . -25) T) ((-912 . -72) T) ((-912 . -13) T) ((-912 . -1120) T) ((-912 . -549) 133020) ((-912 . -1007) T) ((-912 . -23) T) ((-912 . -21) T) ((-912 . -956) T) ((-912 . -660) T) ((-912 . -1052) T) ((-912 . -1017) T) ((-912 . -964) T) ((-911 . -288) 132994) ((-911 . -144) T) ((-911 . -552) 132924) ((-911 . -964) T) ((-911 . -1017) T) ((-911 . -1052) T) ((-911 . -660) T) ((-911 . -956) T) ((-911 . -587) 132826) ((-911 . -585) 132756) ((-911 . -102) T) ((-911 . -25) T) ((-911 . -72) T) ((-911 . -13) T) ((-911 . -1120) T) ((-911 . -549) 132738) ((-911 . -1007) T) ((-911 . -23) T) ((-911 . -21) T) ((-911 . -963) 132683) ((-911 . -958) 132628) ((-911 . -80) 132545) ((-911 . -550) 132529) ((-911 . -182) 132506) ((-911 . -804) 132458) ((-911 . -806) 132370) ((-911 . -801) 132280) ((-911 . -223) 132257) ((-911 . -187) 132197) ((-911 . -184) 132131) ((-911 . -188) 132103) ((-911 . -309) T) ((-911 . -1125) T) ((-911 . -827) T) ((-911 . -491) T) ((-911 . -651) 132048) ((-911 . -579) 131993) ((-911 . -38) 131938) ((-911 . -387) T) ((-911 . -255) T) ((-911 . -243) T) ((-911 . -199) T) ((-911 . -315) NIL) ((-911 . -296) NIL) ((-911 . -1057) NIL) ((-911 . -116) 131910) ((-911 . -340) NIL) ((-911 . -348) 131882) ((-911 . -118) 131854) ((-911 . -317) 131826) ((-911 . -324) 131803) ((-911 . -577) 131737) ((-911 . -350) 131714) ((-911 . -945) 131591) ((-911 . -658) 131563) ((-908 . -903) 131547) ((-908 . -424) 131531) ((-908 . -1007) 131509) ((-908 . -449) 131442) ((-908 . -257) 131380) ((-908 . -549) 131315) ((-908 . -72) 131269) ((-908 . -1120) T) ((-908 . -13) T) ((-908 . -34) T) ((-908 . -76) 131253) ((-904 . -906) 131237) ((-904 . -754) 131216) ((-904 . -751) 131195) ((-904 . -945) 131093) ((-904 . -350) 131077) ((-904 . -577) 131025) ((-904 . -587) 130927) ((-904 . -324) 130911) ((-904 . -239) 130869) ((-904 . -257) 130834) ((-904 . -449) 130746) ((-904 . -285) 130730) ((-904 . -38) 130678) ((-904 . -80) 130556) ((-904 . -958) 130455) ((-904 . -963) 130354) ((-904 . -585) 130277) ((-904 . -579) 130225) ((-904 . -651) 130173) ((-904 . -552) 130067) ((-904 . -243) 130021) ((-904 . -199) 130000) ((-904 . -188) 129979) ((-904 . -184) 129927) ((-904 . -187) 129881) ((-904 . -223) 129865) ((-904 . -801) 129789) ((-904 . -806) 129715) ((-904 . -804) 129674) ((-904 . -182) 129658) ((-904 . -550) 129619) ((-904 . -118) 129598) ((-904 . -116) 129577) ((-904 . -102) T) ((-904 . -25) T) ((-904 . -72) T) ((-904 . -13) T) ((-904 . -1120) T) ((-904 . -549) 129559) ((-904 . -1007) T) ((-904 . -23) T) ((-904 . -21) T) ((-904 . -956) T) ((-904 . -660) T) ((-904 . -1052) T) ((-904 . -1017) T) ((-904 . -964) T) ((-902 . -989) T) ((-902 . -425) 129540) ((-902 . -549) 129506) ((-902 . -552) 129487) ((-902 . -1007) T) ((-902 . -1120) T) ((-902 . -13) T) ((-902 . -72) T) ((-902 . -64) T) ((-901 . -21) T) ((-901 . -585) 129469) ((-901 . -23) T) ((-901 . -1007) T) ((-901 . -549) 129451) ((-901 . -1120) T) ((-901 . -13) T) ((-901 . -72) T) ((-901 . -25) T) ((-901 . -102) T) ((-901 . -239) 129418) ((-897 . -549) 129400) ((-894 . -1007) T) ((-894 . -549) 129382) ((-894 . -1120) T) ((-894 . -13) T) ((-894 . -72) T) ((-879 . -716) T) ((-879 . -713) T) ((-879 . -754) T) ((-879 . -751) T) ((-879 . -711) T) ((-879 . -23) T) ((-879 . -1007) T) ((-879 . -549) 129342) ((-879 . -1120) T) ((-879 . -13) T) ((-879 . -72) T) ((-879 . -25) T) ((-879 . -102) T) ((-878 . -989) T) ((-878 . -425) 129323) ((-878 . -549) 129289) ((-878 . -552) 129270) ((-878 . -1007) T) ((-878 . -1120) T) ((-878 . -13) T) ((-878 . -72) T) ((-878 . -64) T) ((-872 . -875) T) ((-872 . -72) T) ((-872 . -549) 129252) ((-872 . -1007) T) ((-872 . -601) T) ((-872 . -13) T) ((-872 . -1120) T) ((-872 . -82) T) ((-872 . -552) 129236) ((-871 . -549) 129218) ((-870 . -1007) T) ((-870 . -549) 129200) ((-870 . -1120) T) ((-870 . -13) T) ((-870 . -72) T) ((-870 . -315) 129153) ((-870 . -660) 129055) ((-870 . -1017) 128957) ((-870 . -23) 128771) ((-870 . -25) 128585) ((-870 . -102) 128443) ((-870 . -408) 128396) ((-870 . -21) 128351) ((-870 . -585) 128295) ((-870 . -712) 128248) ((-870 . -711) 128201) ((-870 . -751) 128103) ((-870 . -754) 128005) ((-870 . -713) 127958) ((-870 . -716) 127911) ((-864 . -19) 127895) ((-864 . -590) 127879) ((-864 . -241) 127856) ((-864 . -239) 127808) ((-864 . -535) 127785) ((-864 . -550) 127746) ((-864 . -424) 127730) ((-864 . -1007) 127683) ((-864 . -449) 127616) ((-864 . -257) 127554) ((-864 . -549) 127469) ((-864 . -72) 127403) ((-864 . -1120) T) ((-864 . -13) T) ((-864 . -34) T) ((-864 . -122) 127387) ((-864 . -751) 127366) ((-864 . -754) 127345) ((-864 . -319) 127329) ((-862 . -274) 127308) ((-862 . -945) 127206) ((-862 . -350) 127190) ((-862 . -38) 127087) ((-862 . -552) 126944) ((-862 . -587) 126869) ((-862 . -585) 126779) ((-862 . -964) T) ((-862 . -1017) T) ((-862 . -1052) T) ((-862 . -660) T) ((-862 . -956) T) ((-862 . -80) 126644) ((-862 . -958) 126530) ((-862 . -963) 126416) ((-862 . -21) T) ((-862 . -23) T) ((-862 . -1007) T) ((-862 . -549) 126398) ((-862 . -1120) T) ((-862 . -13) T) ((-862 . -72) T) ((-862 . -25) T) ((-862 . -102) T) ((-862 . -579) 126295) ((-862 . -651) 126192) ((-862 . -116) 126171) ((-862 . -118) 126150) ((-862 . -144) 126104) ((-862 . -491) 126083) ((-862 . -243) 126062) ((-862 . -47) 126041) ((-860 . -1007) T) ((-860 . -549) 126007) ((-860 . -1120) T) ((-860 . -13) T) ((-860 . -72) T) ((-852 . -856) 125968) ((-852 . -552) 125764) ((-852 . -945) 125646) ((-852 . -1125) 125625) ((-852 . -816) 125604) ((-852 . -791) 125529) ((-852 . -806) 125510) ((-852 . -801) 125489) ((-852 . -804) 125470) ((-852 . -449) 125416) ((-852 . -387) 125370) ((-852 . -577) 125318) ((-852 . -587) 125207) ((-852 . -324) 125191) ((-852 . -47) 125160) ((-852 . -38) 125012) ((-852 . -579) 124864) ((-852 . -651) 124716) ((-852 . -243) 124650) ((-852 . -491) 124584) ((-852 . -80) 124409) ((-852 . -958) 124255) ((-852 . -963) 124101) ((-852 . -144) 124015) ((-852 . -118) 123994) ((-852 . -116) 123973) ((-852 . -585) 123883) ((-852 . -102) T) ((-852 . -25) T) ((-852 . -72) T) ((-852 . -13) T) ((-852 . -1120) T) ((-852 . -549) 123865) ((-852 . -1007) T) ((-852 . -23) T) ((-852 . -21) T) ((-852 . -956) T) ((-852 . -660) T) ((-852 . -1052) T) ((-852 . -1017) T) ((-852 . -964) T) ((-852 . -350) 123849) ((-852 . -274) 123818) ((-852 . -257) 123805) ((-852 . -550) 123666) ((-849 . -888) 123650) ((-849 . -19) 123634) ((-849 . -590) 123618) ((-849 . -241) 123595) ((-849 . -239) 123547) ((-849 . -535) 123524) ((-849 . -550) 123485) ((-849 . -424) 123469) ((-849 . -1007) 123422) ((-849 . -449) 123355) ((-849 . -257) 123293) ((-849 . -549) 123208) ((-849 . -72) 123142) ((-849 . -1120) T) ((-849 . -13) T) ((-849 . -34) T) ((-849 . -122) 123126) ((-849 . -751) 123105) ((-849 . -754) 123084) ((-849 . -319) 123068) ((-849 . -1169) 123052) ((-849 . -554) 123029) ((-833 . -882) T) ((-833 . -549) 123011) ((-831 . -861) T) ((-831 . -549) 122993) ((-825 . -713) T) ((-825 . -754) T) ((-825 . -751) T) ((-825 . -1007) T) ((-825 . -549) 122975) ((-825 . -1120) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -660) T) ((-825 . -1017) T) ((-820 . -309) T) ((-820 . -1125) T) ((-820 . -827) T) ((-820 . -491) T) ((-820 . -144) T) ((-820 . -552) 122912) ((-820 . -651) 122864) ((-820 . -579) 122816) ((-820 . -38) 122768) ((-820 . -387) T) ((-820 . -255) T) ((-820 . -587) 122720) ((-820 . -585) 122657) ((-820 . -964) T) ((-820 . -1017) T) ((-820 . -1052) T) ((-820 . -660) T) ((-820 . -956) T) ((-820 . -80) 122588) ((-820 . -958) 122540) ((-820 . -963) 122492) ((-820 . -21) T) ((-820 . -23) T) ((-820 . -1007) T) ((-820 . -549) 122474) ((-820 . -1120) T) ((-820 . -13) T) ((-820 . -72) T) ((-820 . -25) T) ((-820 . -102) T) ((-820 . -243) T) ((-820 . -199) T) ((-812 . -296) T) ((-812 . -1057) T) ((-812 . -315) T) ((-812 . -116) T) ((-812 . -309) T) ((-812 . -1125) T) ((-812 . -827) T) ((-812 . -491) T) ((-812 . -144) T) ((-812 . -552) 122424) ((-812 . -651) 122389) ((-812 . -579) 122354) ((-812 . -38) 122319) ((-812 . -387) T) ((-812 . -255) T) ((-812 . -80) 122268) ((-812 . -958) 122233) ((-812 . -963) 122198) ((-812 . -585) 122148) ((-812 . -587) 122113) ((-812 . -243) T) ((-812 . -199) T) ((-812 . -340) T) ((-812 . -187) T) ((-812 . -1120) T) ((-812 . -13) T) ((-812 . -184) 122100) ((-812 . -956) T) ((-812 . -660) T) ((-812 . -1052) T) ((-812 . -1017) T) ((-812 . -964) T) ((-812 . -21) T) ((-812 . -23) T) ((-812 . -1007) T) ((-812 . -549) 122082) ((-812 . -72) T) ((-812 . -25) T) ((-812 . -102) T) ((-812 . -188) T) ((-812 . -277) 122069) ((-812 . -118) 122051) ((-812 . -945) 122038) ((-812 . -1178) 122025) ((-812 . -1189) 122012) ((-812 . -550) 121994) ((-811 . -1007) T) ((-811 . -549) 121976) ((-811 . -1120) T) ((-811 . -13) T) ((-811 . -72) T) ((-808 . -810) 121960) ((-808 . -754) 121914) ((-808 . -751) 121868) ((-808 . -660) T) ((-808 . -1007) T) ((-808 . -549) 121850) ((-808 . -72) T) ((-808 . -1017) T) ((-808 . -408) T) ((-808 . -1120) T) ((-808 . -13) T) ((-808 . -239) 121829) ((-807 . -90) 121813) ((-807 . -424) 121797) ((-807 . -1007) 121775) ((-807 . -449) 121708) ((-807 . -257) 121646) ((-807 . -549) 121560) ((-807 . -72) 121514) ((-807 . -1120) T) ((-807 . -13) T) ((-807 . -34) T) ((-807 . -918) 121498) ((-798 . -751) T) ((-798 . -549) 121480) ((-798 . -1007) T) ((-798 . -72) T) ((-798 . -13) T) ((-798 . -1120) T) ((-798 . -754) T) ((-798 . -945) 121457) ((-798 . -552) 121434) ((-795 . -1007) T) ((-795 . -549) 121416) ((-795 . -1120) T) ((-795 . -13) T) ((-795 . -72) T) ((-795 . -945) 121384) ((-795 . -552) 121352) ((-793 . -1007) T) ((-793 . -549) 121334) ((-793 . -1120) T) ((-793 . -13) T) ((-793 . -72) T) ((-790 . -1007) T) ((-790 . -549) 121316) ((-790 . -1120) T) ((-790 . -13) T) ((-790 . -72) T) ((-780 . -989) T) ((-780 . -425) 121297) ((-780 . -549) 121263) ((-780 . -552) 121244) ((-780 . -1007) T) ((-780 . -1120) T) ((-780 . -13) T) ((-780 . -72) T) ((-780 . -64) T) ((-780 . -1166) T) ((-778 . -1007) T) ((-778 . -549) 121226) ((-778 . -1120) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -552) 121208) ((-777 . -1120) T) ((-777 . -13) T) ((-777 . -549) 121083) ((-777 . -1007) 121034) ((-777 . -72) 120985) ((-776 . -899) 120969) ((-776 . -1057) 120947) ((-776 . -945) 120814) ((-776 . -552) 120713) ((-776 . -550) 120516) ((-776 . -928) 120495) ((-776 . -816) 120474) ((-776 . -789) 120458) ((-776 . -750) 120437) ((-776 . -716) 120416) ((-776 . -713) 120395) ((-776 . -754) 120349) ((-776 . -751) 120303) ((-776 . -711) 120282) ((-776 . -709) 120261) ((-776 . -735) 120240) ((-776 . -791) 120165) ((-776 . -338) 120149) ((-776 . -577) 120097) ((-776 . -587) 120013) ((-776 . -324) 119997) ((-776 . -239) 119955) ((-776 . -257) 119920) ((-776 . -449) 119832) ((-776 . -285) 119816) ((-776 . -199) T) ((-776 . -80) 119747) ((-776 . -958) 119699) ((-776 . -963) 119651) ((-776 . -243) T) ((-776 . -651) 119603) ((-776 . -579) 119555) ((-776 . -585) 119492) ((-776 . -38) 119444) ((-776 . -255) T) ((-776 . -387) T) ((-776 . -144) T) ((-776 . -491) T) ((-776 . -827) T) ((-776 . -1125) T) ((-776 . -309) T) ((-776 . -188) 119423) ((-776 . -184) 119371) ((-776 . -187) 119325) ((-776 . -223) 119309) ((-776 . -801) 119233) ((-776 . -806) 119159) ((-776 . -804) 119118) ((-776 . -182) 119102) ((-776 . -118) 119081) ((-776 . -116) 119060) ((-776 . -102) T) ((-776 . -25) T) ((-776 . -72) T) ((-776 . -13) T) ((-776 . -1120) T) ((-776 . -549) 119042) ((-776 . -1007) T) ((-776 . -23) T) ((-776 . -21) T) ((-776 . -956) T) ((-776 . -660) T) ((-776 . -1052) T) ((-776 . -1017) T) ((-776 . -964) T) ((-775 . -899) 119019) ((-775 . -1057) NIL) ((-775 . -945) 118996) ((-775 . -552) 118926) ((-775 . -550) NIL) ((-775 . -928) NIL) ((-775 . -816) NIL) ((-775 . -789) 118903) ((-775 . -750) NIL) ((-775 . -716) NIL) ((-775 . -713) NIL) ((-775 . -754) NIL) ((-775 . -751) NIL) ((-775 . -711) NIL) ((-775 . -709) NIL) ((-775 . -735) NIL) ((-775 . -791) NIL) ((-775 . -338) 118880) ((-775 . -577) 118857) ((-775 . -587) 118802) ((-775 . -324) 118779) ((-775 . -239) 118709) ((-775 . -257) 118653) ((-775 . -449) 118516) ((-775 . -285) 118493) ((-775 . -199) T) ((-775 . -80) 118410) ((-775 . -958) 118355) ((-775 . -963) 118300) ((-775 . -243) T) ((-775 . -651) 118245) ((-775 . -579) 118190) ((-775 . -585) 118120) ((-775 . -38) 118065) ((-775 . -255) T) ((-775 . -387) T) ((-775 . -144) T) ((-775 . -491) T) ((-775 . -827) T) ((-775 . -1125) T) ((-775 . -309) T) ((-775 . -188) NIL) ((-775 . -184) NIL) ((-775 . -187) NIL) ((-775 . -223) 118042) ((-775 . -801) NIL) ((-775 . -806) NIL) ((-775 . -804) NIL) ((-775 . -182) 118019) ((-775 . -118) T) ((-775 . -116) NIL) ((-775 . -102) T) ((-775 . -25) T) ((-775 . -72) T) ((-775 . -13) T) ((-775 . -1120) T) ((-775 . -549) 118001) ((-775 . -1007) T) ((-775 . -23) T) ((-775 . -21) T) ((-775 . -956) T) ((-775 . -660) T) ((-775 . -1052) T) ((-775 . -1017) T) ((-775 . -964) T) ((-773 . -774) 117985) ((-773 . -827) T) ((-773 . -491) T) ((-773 . -243) T) ((-773 . -144) T) ((-773 . -552) 117957) ((-773 . -651) 117944) ((-773 . -579) 117931) ((-773 . -963) 117918) ((-773 . -958) 117905) ((-773 . -80) 117890) ((-773 . -38) 117877) ((-773 . -387) T) ((-773 . -255) T) ((-773 . -956) T) ((-773 . -660) T) ((-773 . -1052) T) ((-773 . -1017) T) ((-773 . -964) T) ((-773 . -21) T) ((-773 . -585) 117849) ((-773 . -23) T) ((-773 . -1007) T) ((-773 . -549) 117831) ((-773 . -1120) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -25) T) ((-773 . -102) T) ((-773 . -587) 117818) ((-773 . -118) T) ((-770 . -956) T) ((-770 . -660) T) ((-770 . -1052) T) ((-770 . -1017) T) ((-770 . -964) T) ((-770 . -21) T) ((-770 . -585) 117763) ((-770 . -23) T) ((-770 . -1007) T) ((-770 . -549) 117725) ((-770 . -1120) T) ((-770 . -13) T) ((-770 . -72) T) ((-770 . -25) T) ((-770 . -102) T) ((-770 . -587) 117685) ((-770 . -552) 117620) ((-770 . -425) 117597) ((-770 . -38) 117567) ((-770 . -80) 117532) ((-770 . -958) 117502) ((-770 . -963) 117472) ((-770 . -579) 117442) ((-770 . -651) 117412) ((-769 . -1007) T) ((-769 . -549) 117394) ((-769 . -1120) T) ((-769 . -13) T) ((-769 . -72) T) ((-768 . -747) T) ((-768 . -754) T) ((-768 . -751) T) ((-768 . -1007) T) ((-768 . -549) 117376) ((-768 . -1120) T) ((-768 . -13) T) ((-768 . -72) T) ((-768 . -315) T) ((-768 . -550) 117298) ((-767 . -1007) T) ((-767 . -549) 117280) ((-767 . -1120) T) ((-767 . -13) T) ((-767 . -72) T) ((-766 . -765) T) ((-766 . -145) T) ((-766 . -549) 117262) ((-762 . -751) T) ((-762 . -549) 117244) ((-762 . -1007) T) ((-762 . -72) T) ((-762 . -13) T) ((-762 . -1120) T) ((-762 . -754) T) ((-759 . -756) 117228) ((-759 . -945) 117126) ((-759 . -552) 117024) ((-759 . -350) 117008) ((-759 . -651) 116978) ((-759 . -579) 116948) ((-759 . -587) 116922) ((-759 . -585) 116881) ((-759 . -102) T) ((-759 . -25) T) ((-759 . -72) T) ((-759 . -13) T) ((-759 . -1120) T) ((-759 . -549) 116863) ((-759 . -1007) T) ((-759 . -23) T) ((-759 . -21) T) ((-759 . -963) 116847) ((-759 . -958) 116831) ((-759 . -80) 116810) ((-759 . -956) T) ((-759 . -660) T) ((-759 . -1052) T) ((-759 . -1017) T) ((-759 . -964) T) ((-759 . -38) 116780) ((-758 . -756) 116764) ((-758 . -945) 116662) ((-758 . -552) 116581) ((-758 . -350) 116565) ((-758 . -651) 116535) ((-758 . -579) 116505) ((-758 . -587) 116479) ((-758 . -585) 116438) ((-758 . -102) T) ((-758 . -25) T) ((-758 . -72) T) ((-758 . -13) T) ((-758 . -1120) T) ((-758 . -549) 116420) ((-758 . -1007) T) ((-758 . -23) T) ((-758 . -21) T) ((-758 . -963) 116404) ((-758 . -958) 116388) ((-758 . -80) 116367) ((-758 . -956) T) ((-758 . -660) T) ((-758 . -1052) T) ((-758 . -1017) T) ((-758 . -964) T) ((-758 . -38) 116337) ((-752 . -754) T) ((-752 . -1120) T) ((-752 . -13) T) ((-752 . -72) T) ((-752 . -425) 116321) ((-752 . -549) 116269) ((-752 . -552) 116253) ((-745 . -1007) T) ((-745 . -549) 116235) ((-745 . -1120) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -350) 116219) ((-745 . -552) 116092) ((-745 . -945) 115990) ((-745 . -21) 115945) ((-745 . -585) 115865) ((-745 . -23) 115820) ((-745 . -25) 115775) ((-745 . -102) 115730) ((-745 . -750) 115709) ((-745 . -587) 115682) ((-745 . -964) 115661) ((-745 . -1052) 115640) ((-745 . -956) 115619) ((-745 . -716) 115598) ((-745 . -713) 115577) ((-745 . -754) 115556) ((-745 . -751) 115535) ((-745 . -711) 115514) ((-745 . -709) 115493) ((-745 . -1017) 115472) ((-745 . -660) 115451) ((-744 . -742) 115433) ((-744 . -72) T) ((-744 . -13) T) ((-744 . -1120) T) ((-744 . -549) 115415) ((-744 . -1007) T) ((-740 . -956) T) ((-740 . -660) T) ((-740 . -1052) T) ((-740 . -1017) T) ((-740 . -964) T) ((-740 . -21) T) ((-740 . -585) 115360) ((-740 . -23) T) ((-740 . -1007) T) ((-740 . -549) 115342) ((-740 . -1120) T) ((-740 . -13) T) ((-740 . -72) T) ((-740 . -25) T) ((-740 . -102) T) ((-740 . -587) 115302) ((-740 . -552) 115257) ((-740 . -945) 115227) ((-740 . -239) 115206) ((-740 . -118) 115185) ((-740 . -116) 115164) ((-740 . -38) 115134) ((-740 . -80) 115099) ((-740 . -958) 115069) ((-740 . -963) 115039) ((-740 . -579) 115009) ((-740 . -651) 114979) ((-738 . -1007) T) ((-738 . -549) 114961) ((-738 . -1120) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -350) 114945) ((-738 . -552) 114818) ((-738 . -945) 114716) ((-738 . -21) 114671) ((-738 . -585) 114591) ((-738 . -23) 114546) ((-738 . -25) 114501) ((-738 . -102) 114456) ((-738 . -750) 114435) ((-738 . -587) 114408) ((-738 . -964) 114387) ((-738 . -1052) 114366) ((-738 . -956) 114345) ((-738 . -716) 114324) ((-738 . -713) 114303) ((-738 . -754) 114282) ((-738 . -751) 114261) ((-738 . -711) 114240) ((-738 . -709) 114219) ((-738 . -1017) 114198) ((-738 . -660) 114177) ((-736 . -642) 114161) ((-736 . -552) 114116) ((-736 . -651) 114086) ((-736 . -579) 114056) ((-736 . -587) 114030) ((-736 . -585) 113989) ((-736 . -102) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -13) T) ((-736 . -1120) T) ((-736 . -549) 113971) ((-736 . -1007) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -963) 113955) ((-736 . -958) 113939) ((-736 . -80) 113918) ((-736 . -956) T) ((-736 . -660) T) ((-736 . -1052) T) ((-736 . -1017) T) ((-736 . -964) T) ((-736 . -38) 113888) ((-736 . -188) 113867) ((-736 . -184) 113840) ((-736 . -187) 113819) ((-734 . -331) 113803) ((-734 . -552) 113787) ((-734 . -945) 113771) ((-734 . -754) T) ((-734 . -751) T) ((-734 . -1017) T) ((-734 . -72) T) ((-734 . -13) T) ((-734 . -1120) T) ((-734 . -549) 113753) ((-734 . -1007) T) ((-734 . -660) T) ((-734 . -749) T) ((-734 . -761) T) ((-733 . -226) 113737) ((-733 . -552) 113721) ((-733 . -945) 113705) ((-733 . -754) T) ((-733 . -72) T) ((-733 . -1007) T) ((-733 . -549) 113687) ((-733 . -751) T) ((-733 . -184) 113674) ((-733 . -13) T) ((-733 . -1120) T) ((-733 . -187) T) ((-732 . -80) 113609) ((-732 . -958) 113560) ((-732 . -963) 113511) ((-732 . -21) T) ((-732 . -585) 113447) ((-732 . -23) T) ((-732 . -1007) T) ((-732 . -549) 113416) ((-732 . -1120) T) ((-732 . -13) T) ((-732 . -72) T) ((-732 . -25) T) ((-732 . -102) T) ((-732 . -587) 113367) ((-732 . -188) T) ((-732 . -552) 113276) ((-732 . -964) T) ((-732 . -1017) T) ((-732 . -1052) T) ((-732 . -660) T) ((-732 . -956) T) ((-732 . -184) 113263) ((-732 . -187) T) ((-732 . -425) 113247) ((-732 . -309) 113226) ((-732 . -1125) 113205) ((-732 . -827) 113184) ((-732 . -491) 113163) ((-732 . -144) 113142) ((-732 . -651) 113079) ((-732 . -579) 113016) ((-732 . -38) 112953) ((-732 . -387) 112932) ((-732 . -255) 112911) ((-732 . -243) 112890) ((-732 . -199) 112869) ((-731 . -211) 112808) ((-731 . -552) 112552) ((-731 . -945) 112382) ((-731 . -550) NIL) ((-731 . -274) 112344) ((-731 . -350) 112328) ((-731 . -38) 112180) ((-731 . -80) 112005) ((-731 . -958) 111851) ((-731 . -963) 111697) ((-731 . -585) 111607) ((-731 . -587) 111496) ((-731 . -579) 111348) ((-731 . -651) 111200) ((-731 . -116) 111179) ((-731 . -118) 111158) ((-731 . -144) 111072) ((-731 . -491) 111006) ((-731 . -243) 110940) ((-731 . -47) 110902) ((-731 . -324) 110886) ((-731 . -577) 110834) ((-731 . -387) 110788) ((-731 . -449) 110653) ((-731 . -804) 110589) ((-731 . -801) 110488) ((-731 . -806) 110391) ((-731 . -791) NIL) ((-731 . -816) 110370) ((-731 . -1125) 110349) ((-731 . -856) 110296) ((-731 . -257) 110283) ((-731 . -188) 110262) ((-731 . -102) T) ((-731 . -25) T) ((-731 . -72) T) ((-731 . -549) 110244) ((-731 . -1007) T) ((-731 . -23) T) ((-731 . -21) T) ((-731 . -964) T) ((-731 . -1017) T) ((-731 . -1052) T) ((-731 . -660) T) ((-731 . -956) T) ((-731 . -184) 110192) ((-731 . -13) T) ((-731 . -1120) T) ((-731 . -187) 110146) ((-731 . -223) 110130) ((-731 . -182) 110114) ((-730 . -194) 110093) ((-730 . -1178) 110063) ((-730 . -716) 110042) ((-730 . -713) 110021) ((-730 . -754) 109975) ((-730 . -751) 109929) ((-730 . -711) 109908) ((-730 . -712) 109887) ((-730 . -651) 109832) ((-730 . -579) 109757) ((-730 . -241) 109734) ((-730 . -239) 109711) ((-730 . -424) 109695) ((-730 . -449) 109628) ((-730 . -257) 109566) ((-730 . -34) T) ((-730 . -535) 109543) ((-730 . -945) 109372) ((-730 . -552) 109176) ((-730 . -350) 109145) ((-730 . -577) 109053) ((-730 . -587) 108892) ((-730 . -324) 108862) ((-730 . -315) 108841) ((-730 . -188) 108794) ((-730 . -585) 108582) ((-730 . -964) 108561) ((-730 . -1017) 108540) ((-730 . -1052) 108519) ((-730 . -660) 108498) ((-730 . -956) 108477) ((-730 . -184) 108373) ((-730 . -187) 108275) ((-730 . -223) 108245) ((-730 . -801) 108117) ((-730 . -806) 107991) ((-730 . -804) 107924) ((-730 . -182) 107894) ((-730 . -549) 107591) ((-730 . -963) 107516) ((-730 . -958) 107421) ((-730 . -80) 107341) ((-730 . -102) 107216) ((-730 . -25) 107053) ((-730 . -72) 106790) ((-730 . -13) T) ((-730 . -1120) T) ((-730 . -1007) 106546) ((-730 . -23) 106402) ((-730 . -21) 106317) ((-717 . -715) 106301) ((-717 . -754) 106280) ((-717 . -751) 106259) ((-717 . -945) 106052) ((-717 . -552) 105905) ((-717 . -350) 105869) ((-717 . -239) 105827) ((-717 . -257) 105792) ((-717 . -449) 105704) ((-717 . -285) 105688) ((-717 . -315) 105667) ((-717 . -550) 105628) ((-717 . -118) 105607) ((-717 . -116) 105586) ((-717 . -651) 105570) ((-717 . -579) 105554) ((-717 . -587) 105528) ((-717 . -585) 105487) ((-717 . -102) T) ((-717 . -25) T) ((-717 . -72) T) ((-717 . -13) T) ((-717 . -1120) T) ((-717 . -549) 105469) ((-717 . -1007) T) ((-717 . -23) T) ((-717 . -21) T) ((-717 . -963) 105453) ((-717 . -958) 105437) ((-717 . -80) 105416) ((-717 . -956) T) ((-717 . -660) T) ((-717 . -1052) T) ((-717 . -1017) T) ((-717 . -964) T) ((-717 . -38) 105400) ((-699 . -1146) 105384) ((-699 . -1057) 105362) ((-699 . -550) NIL) ((-699 . -257) 105349) ((-699 . -449) 105297) ((-699 . -274) 105274) ((-699 . -945) 105136) ((-699 . -350) 105120) ((-699 . -38) 104952) ((-699 . -80) 104757) ((-699 . -958) 104583) ((-699 . -963) 104409) ((-699 . -585) 104319) ((-699 . -587) 104208) ((-699 . -579) 104040) ((-699 . -651) 103872) ((-699 . -552) 103628) ((-699 . -116) 103607) ((-699 . -118) 103586) ((-699 . -47) 103563) ((-699 . -324) 103547) ((-699 . -577) 103495) ((-699 . -804) 103439) ((-699 . -801) 103346) ((-699 . -806) 103257) ((-699 . -791) NIL) ((-699 . -816) 103236) ((-699 . -1125) 103215) ((-699 . -856) 103185) ((-699 . -827) 103164) ((-699 . -491) 103078) ((-699 . -243) 102992) ((-699 . -144) 102886) ((-699 . -387) 102820) ((-699 . -255) 102799) ((-699 . -239) 102726) ((-699 . -188) T) ((-699 . -102) T) ((-699 . -25) T) ((-699 . -72) T) ((-699 . -549) 102687) ((-699 . -1007) T) ((-699 . -23) T) ((-699 . -21) T) ((-699 . -964) T) ((-699 . -1017) T) ((-699 . -1052) T) ((-699 . -660) T) ((-699 . -956) T) ((-699 . -184) 102674) ((-699 . -13) T) ((-699 . -1120) T) ((-699 . -187) T) ((-699 . -223) 102658) ((-699 . -182) 102642) ((-698 . -971) 102609) ((-698 . -550) 102244) ((-698 . -257) 102231) ((-698 . -449) 102183) ((-698 . -274) 102155) ((-698 . -945) 102014) ((-698 . -350) 101998) ((-698 . -38) 101850) ((-698 . -552) 101623) ((-698 . -587) 101512) ((-698 . -585) 101422) ((-698 . -964) T) ((-698 . -1017) T) ((-698 . -1052) T) ((-698 . -660) T) ((-698 . -956) T) ((-698 . -80) 101247) ((-698 . -958) 101093) ((-698 . -963) 100939) ((-698 . -21) T) ((-698 . -23) T) ((-698 . -1007) T) ((-698 . -549) 100853) ((-698 . -1120) T) ((-698 . -13) T) ((-698 . -72) T) ((-698 . -25) T) ((-698 . -102) T) ((-698 . -579) 100705) ((-698 . -651) 100557) ((-698 . -116) 100536) ((-698 . -118) 100515) ((-698 . -144) 100429) ((-698 . -491) 100363) ((-698 . -243) 100297) ((-698 . -47) 100269) ((-698 . -324) 100253) ((-698 . -577) 100201) ((-698 . -387) 100155) ((-698 . -804) 100139) ((-698 . -801) 100121) ((-698 . -806) 100105) ((-698 . -791) 99964) ((-698 . -816) 99943) ((-698 . -1125) 99922) ((-698 . -856) 99889) ((-691 . -1007) T) ((-691 . -549) 99871) ((-691 . -1120) T) ((-691 . -13) T) ((-691 . -72) T) ((-689 . -712) T) ((-689 . -102) T) ((-689 . -25) T) ((-689 . -72) T) ((-689 . -13) T) ((-689 . -1120) T) ((-689 . -549) 99853) ((-689 . -1007) T) ((-689 . -23) T) ((-689 . -711) T) ((-689 . -751) T) ((-689 . -754) T) ((-689 . -713) T) ((-689 . -716) T) ((-689 . -660) T) ((-689 . -1017) T) ((-670 . -671) 99837) ((-670 . -1005) 99821) ((-670 . -191) 99805) ((-670 . -550) 99766) ((-670 . -122) 99750) ((-670 . -424) 99734) ((-670 . -1007) T) ((-670 . -449) 99667) ((-670 . -257) 99605) ((-670 . -549) 99587) ((-670 . -72) T) ((-670 . -1120) T) ((-670 . -13) T) ((-670 . -34) T) ((-670 . -76) 99571) ((-670 . -631) 99555) ((-669 . -956) T) ((-669 . -660) T) ((-669 . -1052) T) ((-669 . -1017) T) ((-669 . -964) T) ((-669 . -21) T) ((-669 . -585) 99500) ((-669 . -23) T) ((-669 . -1007) T) ((-669 . -549) 99482) ((-669 . -1120) T) ((-669 . -13) T) ((-669 . -72) T) ((-669 . -25) T) ((-669 . -102) T) ((-669 . -587) 99442) ((-669 . -552) 99398) ((-669 . -945) 99369) ((-669 . -118) 99348) ((-669 . -116) 99327) ((-669 . -38) 99297) ((-669 . -80) 99262) ((-669 . -958) 99232) ((-669 . -963) 99202) ((-669 . -579) 99172) ((-669 . -651) 99142) ((-669 . -315) 99095) ((-665 . -856) 99048) ((-665 . -552) 98840) ((-665 . -945) 98718) ((-665 . -1125) 98697) ((-665 . -816) 98676) ((-665 . -791) NIL) ((-665 . -806) 98653) ((-665 . -801) 98628) ((-665 . -804) 98605) ((-665 . -449) 98543) ((-665 . -387) 98497) ((-665 . -577) 98445) ((-665 . -587) 98334) ((-665 . -324) 98318) ((-665 . -47) 98283) ((-665 . -38) 98135) ((-665 . -579) 97987) ((-665 . -651) 97839) ((-665 . -243) 97773) ((-665 . -491) 97707) ((-665 . -80) 97532) ((-665 . -958) 97378) ((-665 . -963) 97224) ((-665 . -144) 97138) ((-665 . -118) 97117) ((-665 . -116) 97096) ((-665 . -585) 97006) ((-665 . -102) T) ((-665 . -25) T) ((-665 . -72) T) ((-665 . -13) T) ((-665 . -1120) T) ((-665 . -549) 96988) ((-665 . -1007) T) ((-665 . -23) T) ((-665 . -21) T) ((-665 . -956) T) ((-665 . -660) T) ((-665 . -1052) T) ((-665 . -1017) T) ((-665 . -964) T) ((-665 . -350) 96972) ((-665 . -274) 96937) ((-665 . -257) 96924) ((-665 . -550) 96785) ((-652 . -408) T) ((-652 . -1017) T) ((-652 . -72) T) ((-652 . -13) T) ((-652 . -1120) T) ((-652 . -549) 96767) ((-652 . -1007) T) ((-652 . -660) T) ((-649 . -956) T) ((-649 . -660) T) ((-649 . -1052) T) ((-649 . -1017) T) ((-649 . -964) T) ((-649 . -21) T) ((-649 . -585) 96739) ((-649 . -23) T) ((-649 . -1007) T) ((-649 . -549) 96721) ((-649 . -1120) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -102) T) ((-649 . -587) 96708) ((-649 . -552) 96690) ((-648 . -956) T) ((-648 . -660) T) ((-648 . -1052) T) ((-648 . -1017) T) ((-648 . -964) T) ((-648 . -21) T) ((-648 . -585) 96635) ((-648 . -23) T) ((-648 . -1007) T) ((-648 . -549) 96617) ((-648 . -1120) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -102) T) ((-648 . -587) 96577) ((-648 . -552) 96532) ((-648 . -945) 96502) ((-648 . -239) 96481) ((-648 . -118) 96460) ((-648 . -116) 96439) ((-648 . -38) 96409) ((-648 . -80) 96374) ((-648 . -958) 96344) ((-648 . -963) 96314) ((-648 . -579) 96284) ((-648 . -651) 96254) ((-647 . -751) T) ((-647 . -549) 96189) ((-647 . -1007) T) ((-647 . -72) T) ((-647 . -13) T) ((-647 . -1120) T) ((-647 . -754) T) ((-647 . -425) 96139) ((-647 . -552) 96089) ((-646 . -1146) 96073) ((-646 . -1057) 96051) ((-646 . -550) NIL) ((-646 . -257) 96038) ((-646 . -449) 95986) ((-646 . -274) 95963) ((-646 . -945) 95846) ((-646 . -350) 95830) ((-646 . -38) 95662) ((-646 . -80) 95467) ((-646 . -958) 95293) ((-646 . -963) 95119) ((-646 . -585) 95029) ((-646 . -587) 94918) ((-646 . -579) 94750) ((-646 . -651) 94582) ((-646 . -552) 94346) ((-646 . -116) 94325) ((-646 . -118) 94304) ((-646 . -47) 94281) ((-646 . -324) 94265) ((-646 . -577) 94213) ((-646 . -804) 94157) ((-646 . -801) 94064) ((-646 . -806) 93975) ((-646 . -791) NIL) ((-646 . -816) 93954) ((-646 . -1125) 93933) ((-646 . -856) 93903) ((-646 . -827) 93882) ((-646 . -491) 93796) ((-646 . -243) 93710) ((-646 . -144) 93604) ((-646 . -387) 93538) ((-646 . -255) 93517) ((-646 . -239) 93444) ((-646 . -188) T) ((-646 . -102) T) ((-646 . -25) T) ((-646 . -72) T) ((-646 . -549) 93426) ((-646 . -1007) T) ((-646 . -23) T) ((-646 . -21) T) ((-646 . -964) T) ((-646 . -1017) T) ((-646 . -1052) T) ((-646 . -660) T) ((-646 . -956) T) ((-646 . -184) 93413) ((-646 . -13) T) ((-646 . -1120) T) ((-646 . -187) T) ((-646 . -223) 93397) ((-646 . -182) 93381) ((-646 . -315) 93360) ((-645 . -309) T) ((-645 . -1125) T) ((-645 . -827) T) ((-645 . -491) T) ((-645 . -144) T) ((-645 . -552) 93310) ((-645 . -651) 93275) ((-645 . -579) 93240) ((-645 . -38) 93205) ((-645 . -387) T) ((-645 . -255) T) ((-645 . -587) 93170) ((-645 . -585) 93120) ((-645 . -964) T) ((-645 . -1017) T) ((-645 . -1052) T) ((-645 . -660) T) ((-645 . -956) T) ((-645 . -80) 93069) ((-645 . -958) 93034) ((-645 . -963) 92999) ((-645 . -21) T) ((-645 . -23) T) ((-645 . -1007) T) ((-645 . -549) 92981) ((-645 . -1120) T) ((-645 . -13) T) ((-645 . -72) T) ((-645 . -25) T) ((-645 . -102) T) ((-645 . -243) T) ((-645 . -199) T) ((-644 . -1007) T) ((-644 . -549) 92963) ((-644 . -1120) T) ((-644 . -13) T) ((-644 . -72) T) ((-629 . -1166) T) ((-629 . -945) 92947) ((-629 . -552) 92931) ((-629 . -549) 92913) ((-627 . -624) 92871) ((-627 . -424) 92855) ((-627 . -1007) 92833) ((-627 . -449) 92766) ((-627 . -257) 92704) ((-627 . -549) 92639) ((-627 . -72) 92593) ((-627 . -1120) T) ((-627 . -13) T) ((-627 . -34) T) ((-627 . -57) 92551) ((-627 . -550) 92512) ((-619 . -989) T) ((-619 . -425) 92493) ((-619 . -549) 92443) ((-619 . -552) 92424) ((-619 . -1007) T) ((-619 . -1120) T) ((-619 . -13) T) ((-619 . -72) T) ((-619 . -64) T) ((-615 . -751) T) ((-615 . -549) 92406) ((-615 . -1007) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1120) T) ((-615 . -754) T) ((-615 . -945) 92390) ((-615 . -552) 92374) ((-614 . -989) T) ((-614 . -425) 92355) ((-614 . -549) 92321) ((-614 . -552) 92302) ((-614 . -1007) T) ((-614 . -1120) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-611 . -751) T) ((-611 . -549) 92284) ((-611 . -1007) T) ((-611 . -72) T) ((-611 . -13) T) ((-611 . -1120) T) ((-611 . -754) T) ((-611 . -945) 92268) ((-611 . -552) 92252) ((-610 . -989) T) ((-610 . -425) 92233) ((-610 . -549) 92199) ((-610 . -552) 92180) ((-610 . -1007) T) ((-610 . -1120) T) ((-610 . -13) T) ((-610 . -72) T) ((-610 . -64) T) ((-609 . -1028) 92125) ((-609 . -424) 92109) ((-609 . -449) 92042) ((-609 . -257) 91980) ((-609 . -34) T) ((-609 . -960) 91920) ((-609 . -945) 91818) ((-609 . -552) 91737) ((-609 . -350) 91721) ((-609 . -577) 91669) ((-609 . -587) 91607) ((-609 . -324) 91591) ((-609 . -188) 91570) ((-609 . -184) 91518) ((-609 . -187) 91472) ((-609 . -223) 91456) ((-609 . -801) 91380) ((-609 . -806) 91306) ((-609 . -804) 91265) ((-609 . -182) 91249) ((-609 . -651) 91233) ((-609 . -579) 91217) ((-609 . -585) 91176) ((-609 . -102) T) ((-609 . -25) T) ((-609 . -72) T) ((-609 . -13) T) ((-609 . -1120) T) ((-609 . -549) 91138) ((-609 . -1007) T) ((-609 . -23) T) ((-609 . -21) T) ((-609 . -963) 91122) ((-609 . -958) 91106) ((-609 . -80) 91085) ((-609 . -956) T) ((-609 . -660) T) ((-609 . -1052) T) ((-609 . -1017) T) ((-609 . -964) T) ((-609 . -38) 91045) ((-609 . -356) 91029) ((-609 . -678) 91013) ((-609 . -654) T) ((-609 . -680) T) ((-609 . -313) 90997) ((-609 . -239) 90974) ((-603 . -321) 90953) ((-603 . -651) 90937) ((-603 . -579) 90921) ((-603 . -587) 90905) ((-603 . -585) 90874) ((-603 . -102) T) ((-603 . -25) T) ((-603 . -72) T) ((-603 . -13) T) ((-603 . -1120) T) ((-603 . -549) 90856) ((-603 . -1007) T) ((-603 . -23) T) ((-603 . -21) T) ((-603 . -963) 90840) ((-603 . -958) 90824) ((-603 . -80) 90803) ((-603 . -571) 90787) ((-603 . -330) 90759) ((-603 . -552) 90736) ((-603 . -945) 90713) ((-595 . -597) 90697) ((-595 . -38) 90667) ((-595 . -552) 90586) ((-595 . -587) 90560) ((-595 . -585) 90519) ((-595 . -964) T) ((-595 . -1017) T) ((-595 . -1052) T) ((-595 . -660) T) ((-595 . -956) T) ((-595 . -80) 90498) ((-595 . -958) 90482) ((-595 . -963) 90466) ((-595 . -21) T) ((-595 . -23) T) ((-595 . -1007) T) ((-595 . -549) 90448) ((-595 . -72) T) ((-595 . -25) T) ((-595 . -102) T) ((-595 . -579) 90418) ((-595 . -651) 90388) ((-595 . -350) 90372) ((-595 . -945) 90270) ((-595 . -756) 90254) ((-595 . -1120) T) ((-595 . -13) T) ((-595 . -239) 90215) ((-594 . -597) 90199) ((-594 . -38) 90169) ((-594 . -552) 90088) ((-594 . -587) 90062) ((-594 . -585) 90021) ((-594 . -964) T) ((-594 . -1017) T) ((-594 . -1052) T) ((-594 . -660) T) ((-594 . -956) T) ((-594 . -80) 90000) ((-594 . -958) 89984) ((-594 . -963) 89968) ((-594 . -21) T) ((-594 . -23) T) ((-594 . -1007) T) ((-594 . -549) 89950) ((-594 . -72) T) ((-594 . -25) T) ((-594 . -102) T) ((-594 . -579) 89920) ((-594 . -651) 89890) ((-594 . -350) 89874) ((-594 . -945) 89772) ((-594 . -756) 89756) ((-594 . -1120) T) ((-594 . -13) T) ((-594 . -239) 89735) ((-593 . -597) 89719) ((-593 . -38) 89689) ((-593 . -552) 89608) ((-593 . -587) 89582) ((-593 . -585) 89541) ((-593 . -964) T) ((-593 . -1017) T) ((-593 . -1052) T) ((-593 . -660) T) ((-593 . -956) T) ((-593 . -80) 89520) ((-593 . -958) 89504) ((-593 . -963) 89488) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1007) T) ((-593 . -549) 89470) ((-593 . -72) T) ((-593 . -25) T) ((-593 . -102) T) ((-593 . -579) 89440) ((-593 . -651) 89410) ((-593 . -350) 89394) ((-593 . -945) 89292) ((-593 . -756) 89276) ((-593 . -1120) T) ((-593 . -13) T) ((-593 . -239) 89255) ((-591 . -651) 89239) ((-591 . -579) 89223) ((-591 . -587) 89207) ((-591 . -585) 89176) ((-591 . -102) T) ((-591 . -25) T) ((-591 . -72) T) ((-591 . -13) T) ((-591 . -1120) T) ((-591 . -549) 89158) ((-591 . -1007) T) ((-591 . -23) T) ((-591 . -21) T) ((-591 . -963) 89142) ((-591 . -958) 89126) ((-591 . -80) 89105) ((-591 . -709) 89084) ((-591 . -711) 89063) ((-591 . -751) 89042) ((-591 . -754) 89021) ((-591 . -713) 89000) ((-591 . -716) 88979) ((-588 . -1007) T) ((-588 . -549) 88961) ((-588 . -1120) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -945) 88945) ((-588 . -552) 88929) ((-586 . -631) 88913) ((-586 . -76) 88897) ((-586 . -34) T) ((-586 . -13) T) ((-586 . -1120) T) ((-586 . -72) 88851) ((-586 . -549) 88786) ((-586 . -257) 88724) ((-586 . -449) 88657) ((-586 . -1007) 88635) ((-586 . -424) 88619) ((-586 . -122) 88603) ((-586 . -550) 88564) ((-586 . -191) 88548) ((-584 . -989) T) ((-584 . -425) 88529) ((-584 . -549) 88482) ((-584 . -552) 88463) ((-584 . -1007) T) ((-584 . -1120) T) ((-584 . -13) T) ((-584 . -72) T) ((-584 . -64) T) ((-580 . -605) 88447) ((-580 . -1159) 88431) ((-580 . -918) 88415) ((-580 . -1055) 88399) ((-580 . -751) 88378) ((-580 . -754) 88357) ((-580 . -319) 88341) ((-580 . -590) 88325) ((-580 . -241) 88302) ((-580 . -239) 88254) ((-580 . -535) 88231) ((-580 . -550) 88192) ((-580 . -424) 88176) ((-580 . -1007) 88129) ((-580 . -449) 88062) ((-580 . -257) 88000) ((-580 . -549) 87915) ((-580 . -72) 87849) ((-580 . -1120) T) ((-580 . -13) T) ((-580 . -34) T) ((-580 . -122) 87833) ((-580 . -235) 87817) ((-578 . -1178) 87801) ((-578 . -80) 87780) ((-578 . -958) 87764) ((-578 . -963) 87748) ((-578 . -21) T) ((-578 . -585) 87717) ((-578 . -23) T) ((-578 . -1007) T) ((-578 . -549) 87699) ((-578 . -1120) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -25) T) ((-578 . -102) T) ((-578 . -587) 87683) ((-578 . -579) 87667) ((-578 . -651) 87651) ((-578 . -239) 87618) ((-576 . -1178) 87602) ((-576 . -80) 87581) ((-576 . -958) 87565) ((-576 . -963) 87549) ((-576 . -21) T) ((-576 . -585) 87518) ((-576 . -23) T) ((-576 . -1007) T) ((-576 . -549) 87500) ((-576 . -1120) T) ((-576 . -13) T) ((-576 . -72) T) ((-576 . -25) T) ((-576 . -102) T) ((-576 . -587) 87484) ((-576 . -579) 87468) ((-576 . -651) 87452) ((-576 . -552) 87429) ((-576 . -444) 87401) ((-574 . -747) T) ((-574 . -754) T) ((-574 . -751) T) ((-574 . -1007) T) ((-574 . -549) 87383) ((-574 . -1120) T) ((-574 . -13) T) ((-574 . -72) T) ((-574 . -315) T) ((-574 . -552) 87360) ((-569 . -678) 87344) ((-569 . -654) T) ((-569 . -680) T) ((-569 . -80) 87323) ((-569 . -958) 87307) ((-569 . -963) 87291) ((-569 . -21) T) ((-569 . -585) 87260) ((-569 . -23) T) ((-569 . -1007) T) ((-569 . -549) 87229) ((-569 . -1120) T) ((-569 . -13) T) ((-569 . -72) T) ((-569 . -25) T) ((-569 . -102) T) ((-569 . -587) 87213) ((-569 . -579) 87197) ((-569 . -651) 87181) ((-569 . -356) 87146) ((-569 . -313) 87081) ((-569 . -239) 87039) ((-568 . -1098) 87014) ((-568 . -181) 86958) ((-568 . -76) 86902) ((-568 . -257) 86747) ((-568 . -449) 86547) ((-568 . -424) 86477) ((-568 . -122) 86421) ((-568 . -550) NIL) ((-568 . -191) 86365) ((-568 . -546) 86340) ((-568 . -241) 86315) ((-568 . -1120) T) ((-568 . -13) T) ((-568 . -239) 86268) ((-568 . -1007) T) ((-568 . -549) 86250) ((-568 . -72) T) ((-568 . -34) T) ((-568 . -535) 86225) ((-563 . -408) T) ((-563 . -1017) T) ((-563 . -72) T) ((-563 . -13) T) ((-563 . -1120) T) ((-563 . -549) 86207) ((-563 . -1007) T) ((-563 . -660) T) ((-562 . -989) T) ((-562 . -425) 86188) ((-562 . -549) 86154) ((-562 . -552) 86135) ((-562 . -1007) T) ((-562 . -1120) T) ((-562 . -13) T) ((-562 . -72) T) ((-562 . -64) T) ((-559 . -182) 86119) ((-559 . -804) 86078) ((-559 . -806) 86004) ((-559 . -801) 85928) ((-559 . -223) 85912) ((-559 . -187) 85866) ((-559 . -1120) T) ((-559 . -13) T) ((-559 . -184) 85814) ((-559 . -956) T) ((-559 . -660) T) ((-559 . -1052) T) ((-559 . -1017) T) ((-559 . -964) T) ((-559 . -21) T) ((-559 . -585) 85786) ((-559 . -23) T) ((-559 . -1007) T) ((-559 . -549) 85768) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -102) T) ((-559 . -587) 85755) ((-559 . -552) 85651) ((-559 . -188) 85630) ((-559 . -491) T) ((-559 . -243) T) ((-559 . -144) T) ((-559 . -651) 85617) ((-559 . -579) 85604) ((-559 . -963) 85591) ((-559 . -958) 85578) ((-559 . -80) 85563) ((-559 . -38) 85550) ((-559 . -550) 85527) ((-559 . -350) 85511) ((-559 . -945) 85396) ((-559 . -118) 85375) ((-559 . -116) 85354) ((-559 . -255) 85333) ((-559 . -387) 85312) ((-559 . -827) 85291) ((-555 . -38) 85275) ((-555 . -552) 85244) ((-555 . -587) 85218) ((-555 . -585) 85177) ((-555 . -964) T) ((-555 . -1017) T) ((-555 . -1052) T) ((-555 . -660) T) ((-555 . -956) T) ((-555 . -80) 85156) ((-555 . -958) 85140) ((-555 . -963) 85124) ((-555 . -21) T) ((-555 . -23) T) ((-555 . -1007) T) ((-555 . -549) 85106) ((-555 . -1120) T) ((-555 . -13) T) ((-555 . -72) T) ((-555 . -25) T) ((-555 . -102) T) ((-555 . -579) 85090) ((-555 . -651) 85074) ((-555 . -750) 85053) ((-555 . -716) 85032) ((-555 . -713) 85011) ((-555 . -754) 84990) ((-555 . -751) 84969) ((-555 . -711) 84948) ((-555 . -709) 84927) ((-553 . -875) T) ((-553 . -72) T) ((-553 . -549) 84909) ((-553 . -1007) T) ((-553 . -601) T) ((-553 . -13) T) ((-553 . -1120) T) ((-553 . -82) T) ((-553 . -315) T) ((-547 . -103) T) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1120) T) ((-547 . -549) 84891) ((-547 . -1007) T) ((-547 . -751) T) ((-547 . -754) T) ((-547 . -789) 84875) ((-547 . -550) 84736) ((-544 . -311) 84674) ((-544 . -72) T) ((-544 . -13) T) ((-544 . -1120) T) ((-544 . -549) 84656) ((-544 . -1007) T) ((-544 . -1098) 84632) ((-544 . -181) 84577) ((-544 . -76) 84522) ((-544 . -257) 84311) ((-544 . -449) 84051) ((-544 . -424) 83983) ((-544 . -122) 83928) ((-544 . -550) NIL) ((-544 . -191) 83873) ((-544 . -546) 83849) ((-544 . -241) 83825) ((-544 . -239) 83801) ((-544 . -34) T) ((-544 . -535) 83777) ((-543 . -1007) T) ((-543 . -549) 83730) ((-543 . -1120) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -425) 83698) ((-543 . -552) 83666) ((-542 . -1007) T) ((-542 . -549) 83648) ((-542 . -1120) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -601) T) ((-541 . -1007) T) ((-541 . -549) 83630) ((-541 . -1120) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -601) T) ((-540 . -1007) T) ((-540 . -549) 83598) ((-540 . -1120) T) ((-540 . -13) T) ((-540 . -72) T) ((-539 . -1007) T) ((-539 . -549) 83580) ((-539 . -1120) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -601) T) ((-538 . -1007) T) ((-538 . -549) 83548) ((-538 . -1120) T) ((-538 . -13) T) ((-538 . -72) T) ((-538 . -425) 83531) ((-538 . -552) 83514) ((-537 . -678) 83498) ((-537 . -654) T) ((-537 . -680) T) ((-537 . -80) 83477) ((-537 . -958) 83461) ((-537 . -963) 83445) ((-537 . -21) T) ((-537 . -585) 83414) ((-537 . -23) T) ((-537 . -1007) T) ((-537 . -549) 83383) ((-537 . -1120) T) ((-537 . -13) T) ((-537 . -72) T) ((-537 . -25) T) ((-537 . -102) T) ((-537 . -587) 83367) ((-537 . -579) 83351) ((-537 . -651) 83335) ((-537 . -356) 83300) ((-537 . -313) 83235) ((-537 . -239) 83193) ((-536 . -989) T) ((-536 . -425) 83174) ((-536 . -549) 83124) ((-536 . -552) 83105) ((-536 . -1007) T) ((-536 . -1120) T) ((-536 . -13) T) ((-536 . -72) T) ((-536 . -64) T) ((-533 . -1169) 83089) ((-533 . -319) 83073) ((-533 . -754) 83052) ((-533 . -751) 83031) ((-533 . -122) 83015) ((-533 . -34) T) ((-533 . -13) T) ((-533 . -1120) T) ((-533 . -72) 82949) ((-533 . -549) 82864) ((-533 . -257) 82802) ((-533 . -449) 82735) ((-533 . -1007) 82688) ((-533 . -424) 82672) ((-533 . -550) 82633) ((-533 . -239) 82585) ((-533 . -535) 82562) ((-533 . -241) 82539) ((-533 . -590) 82523) ((-533 . -19) 82507) ((-532 . -549) 82489) ((-528 . -1007) T) ((-528 . -549) 82455) ((-528 . -1120) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -425) 82436) ((-528 . -552) 82417) ((-527 . -956) T) ((-527 . -660) T) ((-527 . -1052) T) ((-527 . -1017) T) ((-527 . -964) T) ((-527 . -21) T) ((-527 . -585) 82376) ((-527 . -23) T) ((-527 . -1007) T) ((-527 . -549) 82358) ((-527 . -1120) T) ((-527 . -13) T) ((-527 . -72) T) ((-527 . -25) T) ((-527 . -102) T) ((-527 . -587) 82332) ((-527 . -552) 82290) ((-527 . -80) 82243) ((-527 . -958) 82203) ((-527 . -963) 82163) ((-527 . -491) 82142) ((-527 . -243) 82121) ((-527 . -144) 82100) ((-527 . -651) 82073) ((-527 . -579) 82046) ((-527 . -38) 82019) ((-526 . -1149) 81996) ((-526 . -47) 81973) ((-526 . -38) 81870) ((-526 . -579) 81767) ((-526 . -651) 81664) ((-526 . -552) 81546) ((-526 . -243) 81525) ((-526 . -491) 81504) ((-526 . -80) 81369) ((-526 . -958) 81255) ((-526 . -963) 81141) ((-526 . -144) 81095) ((-526 . -118) 81074) ((-526 . -116) 81053) ((-526 . -587) 80978) ((-526 . -585) 80888) ((-526 . -881) 80858) ((-526 . -806) 80771) ((-526 . -801) 80682) ((-526 . -804) 80595) ((-526 . -239) 80560) ((-526 . -187) 80519) ((-526 . -1120) T) ((-526 . -13) T) ((-526 . -184) 80472) ((-526 . -956) T) ((-526 . -660) T) ((-526 . -1052) T) ((-526 . -1017) T) ((-526 . -964) T) ((-526 . -21) T) ((-526 . -23) T) ((-526 . -1007) T) ((-526 . -549) 80454) ((-526 . -72) T) ((-526 . -25) T) ((-526 . -102) T) ((-526 . -188) 80413) ((-524 . -989) T) ((-524 . -425) 80394) ((-524 . -549) 80360) ((-524 . -552) 80341) ((-524 . -1007) T) ((-524 . -1120) T) ((-524 . -13) T) ((-524 . -72) T) ((-524 . -64) T) ((-518 . -1007) T) ((-518 . -549) 80307) ((-518 . -1120) T) ((-518 . -13) T) ((-518 . -72) T) ((-518 . -425) 80288) ((-518 . -552) 80269) ((-515 . -651) 80244) ((-515 . -579) 80219) ((-515 . -587) 80194) ((-515 . -585) 80154) ((-515 . -102) T) ((-515 . -25) T) ((-515 . -72) T) ((-515 . -13) T) ((-515 . -1120) T) ((-515 . -549) 80136) ((-515 . -1007) T) ((-515 . -23) T) ((-515 . -21) T) ((-515 . -963) 80111) ((-515 . -958) 80086) ((-515 . -80) 80047) ((-515 . -945) 80031) ((-515 . -552) 80015) ((-513 . -296) T) ((-513 . -1057) T) ((-513 . -315) T) ((-513 . -116) T) ((-513 . -309) T) ((-513 . -1125) T) ((-513 . -827) T) ((-513 . -491) T) ((-513 . -144) T) ((-513 . -552) 79965) ((-513 . -651) 79930) ((-513 . -579) 79895) ((-513 . -38) 79860) ((-513 . -387) T) ((-513 . -255) T) ((-513 . -80) 79809) ((-513 . -958) 79774) ((-513 . -963) 79739) ((-513 . -585) 79689) ((-513 . -587) 79654) ((-513 . -243) T) ((-513 . -199) T) ((-513 . -340) T) ((-513 . -187) T) ((-513 . -1120) T) ((-513 . -13) T) ((-513 . -184) 79641) ((-513 . -956) T) ((-513 . -660) T) ((-513 . -1052) T) ((-513 . -1017) T) ((-513 . -964) T) ((-513 . -21) T) ((-513 . -23) T) ((-513 . -1007) T) ((-513 . -549) 79623) ((-513 . -72) T) ((-513 . -25) T) ((-513 . -102) T) ((-513 . -188) T) ((-513 . -277) 79610) ((-513 . -118) 79592) ((-513 . -945) 79579) ((-513 . -1178) 79566) ((-513 . -1189) 79553) ((-513 . -550) 79535) ((-512 . -774) 79519) ((-512 . -827) T) ((-512 . -491) T) ((-512 . -243) T) ((-512 . -144) T) ((-512 . -552) 79491) ((-512 . -651) 79478) ((-512 . -579) 79465) ((-512 . -963) 79452) ((-512 . -958) 79439) ((-512 . -80) 79424) ((-512 . -38) 79411) ((-512 . -387) T) ((-512 . -255) T) ((-512 . -956) T) ((-512 . -660) T) ((-512 . -1052) T) ((-512 . -1017) T) ((-512 . -964) T) ((-512 . -21) T) ((-512 . -585) 79383) ((-512 . -23) T) ((-512 . -1007) T) ((-512 . -549) 79365) ((-512 . -1120) T) ((-512 . -13) T) ((-512 . -72) T) ((-512 . -25) T) ((-512 . -102) T) ((-512 . -587) 79352) ((-512 . -118) T) ((-511 . -1007) T) ((-511 . -549) 79334) ((-511 . -1120) T) ((-511 . -13) T) ((-511 . -72) T) ((-510 . -1007) T) ((-510 . -549) 79316) ((-510 . -1120) T) ((-510 . -13) T) ((-510 . -72) T) ((-509 . -508) T) ((-509 . -765) T) ((-509 . -145) T) ((-509 . -461) T) ((-509 . -549) 79298) ((-503 . -489) 79282) ((-503 . -35) T) ((-503 . -66) T) ((-503 . -237) T) ((-503 . -428) T) ((-503 . -1109) T) ((-503 . -1106) T) ((-503 . -945) 79264) ((-503 . -910) T) ((-503 . -754) T) ((-503 . -751) T) ((-503 . -491) T) ((-503 . -243) T) ((-503 . -144) T) ((-503 . -552) 79236) ((-503 . -651) 79223) ((-503 . -579) 79210) ((-503 . -587) 79197) ((-503 . -585) 79169) ((-503 . -102) T) ((-503 . -25) T) ((-503 . -72) T) ((-503 . -13) T) ((-503 . -1120) T) ((-503 . -549) 79151) ((-503 . -1007) T) ((-503 . -23) T) ((-503 . -21) T) ((-503 . -963) 79138) ((-503 . -958) 79125) ((-503 . -80) 79110) ((-503 . -956) T) ((-503 . -660) T) ((-503 . -1052) T) ((-503 . -1017) T) ((-503 . -964) T) ((-503 . -38) 79097) ((-503 . -387) T) ((-485 . -1098) 79076) ((-485 . -181) 79024) ((-485 . -76) 78972) ((-485 . -257) 78770) ((-485 . -449) 78522) ((-485 . -424) 78457) ((-485 . -122) 78405) ((-485 . -550) NIL) ((-485 . -191) 78353) ((-485 . -546) 78332) ((-485 . -241) 78311) ((-485 . -1120) T) ((-485 . -13) T) ((-485 . -239) 78290) ((-485 . -1007) T) ((-485 . -549) 78272) ((-485 . -72) T) ((-485 . -34) T) ((-485 . -535) 78251) ((-484 . -747) T) ((-484 . -754) T) ((-484 . -751) T) ((-484 . -1007) T) ((-484 . -549) 78233) ((-484 . -1120) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -315) T) ((-483 . -747) T) ((-483 . -754) T) ((-483 . -751) T) ((-483 . -1007) T) ((-483 . -549) 78215) ((-483 . -1120) T) ((-483 . -13) T) ((-483 . -72) T) ((-483 . -315) T) ((-482 . -747) T) ((-482 . -754) T) ((-482 . -751) T) ((-482 . -1007) T) ((-482 . -549) 78197) ((-482 . -1120) T) ((-482 . -13) T) ((-482 . -72) T) ((-482 . -315) T) ((-481 . -747) T) ((-481 . -754) T) ((-481 . -751) T) ((-481 . -1007) T) ((-481 . -549) 78179) ((-481 . -1120) T) ((-481 . -13) T) ((-481 . -72) T) ((-481 . -315) T) ((-480 . -479) T) ((-480 . -1125) T) ((-480 . -1057) T) ((-480 . -945) 78161) ((-480 . -550) 78076) ((-480 . -928) T) ((-480 . -791) 78058) ((-480 . -750) T) ((-480 . -716) T) ((-480 . -713) T) ((-480 . -754) T) ((-480 . -751) T) ((-480 . -711) T) ((-480 . -709) T) ((-480 . -735) T) ((-480 . -587) 78030) ((-480 . -577) 78012) ((-480 . -827) T) ((-480 . -491) T) ((-480 . -243) T) ((-480 . -144) T) ((-480 . -552) 77984) ((-480 . -651) 77971) ((-480 . -579) 77958) ((-480 . -963) 77945) ((-480 . -958) 77932) ((-480 . -80) 77917) ((-480 . -38) 77904) ((-480 . -387) T) ((-480 . -255) T) ((-480 . -187) T) ((-480 . -184) 77891) ((-480 . -188) T) ((-480 . -114) T) ((-480 . -956) T) ((-480 . -660) T) ((-480 . -1052) T) ((-480 . -1017) T) ((-480 . -964) T) ((-480 . -21) T) ((-480 . -585) 77863) ((-480 . -23) T) ((-480 . -1007) T) ((-480 . -549) 77845) ((-480 . -1120) T) ((-480 . -13) T) ((-480 . -72) T) ((-480 . -25) T) ((-480 . -102) T) ((-480 . -118) T) ((-469 . -1010) 77797) ((-469 . -72) T) ((-469 . -549) 77779) ((-469 . -1007) T) ((-469 . -239) 77735) ((-469 . -1120) T) ((-469 . -13) T) ((-469 . -554) 77638) ((-469 . -550) 77619) ((-467 . -686) 77601) ((-467 . -461) T) ((-467 . -145) T) ((-467 . -765) T) ((-467 . -508) T) ((-467 . -549) 77583) ((-465 . -712) T) ((-465 . -102) T) ((-465 . -25) T) ((-465 . -72) T) ((-465 . -13) T) ((-465 . -1120) T) ((-465 . -549) 77565) ((-465 . -1007) T) ((-465 . -23) T) ((-465 . -711) T) ((-465 . -751) T) ((-465 . -754) T) ((-465 . -713) T) ((-465 . -716) T) ((-465 . -444) 77542) ((-463 . -461) T) ((-463 . -145) T) ((-463 . -549) 77524) ((-459 . -989) T) ((-459 . -425) 77505) ((-459 . -549) 77471) ((-459 . -552) 77452) ((-459 . -1007) T) ((-459 . -1120) T) ((-459 . -13) T) ((-459 . -72) T) ((-459 . -64) T) ((-458 . -989) T) ((-458 . -425) 77433) ((-458 . -549) 77399) ((-458 . -552) 77380) ((-458 . -1007) T) ((-458 . -1120) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -624) 77330) ((-457 . -424) 77314) ((-457 . -1007) 77292) ((-457 . -449) 77225) ((-457 . -257) 77163) ((-457 . -549) 77098) ((-457 . -72) 77052) ((-457 . -1120) T) ((-457 . -13) T) ((-457 . -34) T) ((-457 . -57) 77002) ((-454 . -57) 76976) ((-454 . -34) T) ((-454 . -13) T) ((-454 . -1120) T) ((-454 . -72) 76930) ((-454 . -549) 76865) ((-454 . -257) 76803) ((-454 . -449) 76736) ((-454 . -1007) 76714) ((-454 . -424) 76698) ((-453 . -277) 76675) ((-453 . -188) T) ((-453 . -184) 76662) ((-453 . -187) T) ((-453 . -315) T) ((-453 . -1057) T) ((-453 . -296) T) ((-453 . -118) 76644) ((-453 . -552) 76574) ((-453 . -587) 76519) ((-453 . -585) 76449) ((-453 . -102) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1120) T) ((-453 . -549) 76431) ((-453 . -1007) T) ((-453 . -23) T) ((-453 . -21) T) ((-453 . -964) T) ((-453 . -1017) T) ((-453 . -1052) T) ((-453 . -660) T) ((-453 . -956) T) ((-453 . -309) T) ((-453 . -1125) T) ((-453 . -827) T) ((-453 . -491) T) ((-453 . -144) T) ((-453 . -651) 76376) ((-453 . -579) 76321) ((-453 . -38) 76286) ((-453 . -387) T) ((-453 . -255) T) ((-453 . -80) 76203) ((-453 . -958) 76148) ((-453 . -963) 76093) ((-453 . -243) T) ((-453 . -199) T) ((-453 . -340) T) ((-453 . -116) T) ((-453 . -945) 76070) ((-453 . -1178) 76047) ((-453 . -1189) 76024) ((-452 . -989) T) ((-452 . -425) 76005) ((-452 . -549) 75971) ((-452 . -552) 75952) ((-452 . -1007) T) ((-452 . -1120) T) ((-452 . -13) T) ((-452 . -72) T) ((-452 . -64) T) ((-451 . -19) 75936) ((-451 . -590) 75920) ((-451 . -241) 75897) ((-451 . -239) 75849) ((-451 . -535) 75826) ((-451 . -550) 75787) ((-451 . -424) 75771) ((-451 . -1007) 75724) ((-451 . -449) 75657) ((-451 . -257) 75595) ((-451 . -549) 75510) ((-451 . -72) 75444) ((-451 . -1120) T) ((-451 . -13) T) ((-451 . -34) T) ((-451 . -122) 75428) ((-451 . -751) 75407) ((-451 . -754) 75386) ((-451 . -319) 75370) ((-451 . -235) 75354) ((-450 . -271) 75333) ((-450 . -552) 75317) ((-450 . -945) 75301) ((-450 . -23) T) ((-450 . -1007) T) ((-450 . -549) 75283) ((-450 . -1120) T) ((-450 . -13) T) ((-450 . -72) T) ((-450 . -25) T) ((-450 . -102) T) ((-447 . -712) T) ((-447 . -102) T) ((-447 . -25) T) ((-447 . -72) T) ((-447 . -13) T) ((-447 . -1120) T) ((-447 . -549) 75265) ((-447 . -1007) T) ((-447 . -23) T) ((-447 . -711) T) ((-447 . -751) T) ((-447 . -754) T) ((-447 . -713) T) ((-447 . -716) T) ((-447 . -444) 75244) ((-446 . -711) T) ((-446 . -751) T) ((-446 . -754) T) ((-446 . -713) T) ((-446 . -25) T) ((-446 . -72) T) ((-446 . -13) T) ((-446 . -1120) T) ((-446 . -549) 75226) ((-446 . -1007) T) ((-446 . -23) T) ((-446 . -444) 75205) ((-445 . -444) 75184) ((-445 . -549) 75124) ((-445 . -1007) 75075) ((-445 . -1120) T) ((-445 . -13) T) ((-445 . -72) T) ((-443 . -23) T) ((-443 . -1007) T) ((-443 . -549) 75057) ((-443 . -1120) T) ((-443 . -13) T) ((-443 . -72) T) ((-443 . -25) T) ((-443 . -444) 75036) ((-442 . -21) T) ((-442 . -585) 75018) ((-442 . -23) T) ((-442 . -1007) T) ((-442 . -549) 75000) ((-442 . -1120) T) ((-442 . -13) T) ((-442 . -72) T) ((-442 . -25) T) ((-442 . -102) T) ((-442 . -444) 74979) ((-441 . -1007) T) ((-441 . -549) 74961) ((-441 . -1120) T) ((-441 . -13) T) ((-441 . -72) T) ((-439 . -1007) T) ((-439 . -549) 74943) ((-439 . -1120) T) ((-439 . -13) T) ((-439 . -72) T) ((-437 . -751) T) ((-437 . -549) 74925) ((-437 . -1007) T) ((-437 . -72) T) ((-437 . -13) T) ((-437 . -1120) T) ((-437 . -754) T) ((-437 . -552) 74906) ((-435 . -94) T) ((-435 . -319) 74889) ((-435 . -754) T) ((-435 . -751) T) ((-435 . -122) 74872) ((-435 . -34) T) ((-435 . -72) T) ((-435 . -549) 74854) ((-435 . -257) NIL) ((-435 . -449) NIL) ((-435 . -1007) T) ((-435 . -424) 74837) ((-435 . -550) 74819) ((-435 . -239) 74770) ((-435 . -535) 74746) ((-435 . -241) 74722) ((-435 . -590) 74705) ((-435 . -19) 74688) ((-435 . -601) T) ((-435 . -13) T) ((-435 . -1120) T) ((-435 . -82) T) ((-432 . -57) 74638) ((-432 . -34) T) ((-432 . -13) T) ((-432 . -1120) T) ((-432 . -72) 74592) ((-432 . -549) 74527) ((-432 . -257) 74465) ((-432 . -449) 74398) ((-432 . -1007) 74376) ((-432 . -424) 74360) ((-431 . -19) 74344) ((-431 . -590) 74328) ((-431 . -241) 74305) ((-431 . -239) 74257) ((-431 . -535) 74234) ((-431 . -550) 74195) ((-431 . -424) 74179) ((-431 . -1007) 74132) ((-431 . -449) 74065) ((-431 . -257) 74003) ((-431 . -549) 73918) ((-431 . -72) 73852) ((-431 . -1120) T) ((-431 . -13) T) ((-431 . -34) T) ((-431 . -122) 73836) ((-431 . -751) 73815) ((-431 . -754) 73794) ((-431 . -319) 73778) ((-430 . -251) T) ((-430 . -72) T) ((-430 . -13) T) ((-430 . -1120) T) ((-430 . -549) 73760) ((-430 . -1007) T) ((-430 . -552) 73661) ((-430 . -945) 73604) ((-430 . -449) 73570) ((-430 . -257) 73557) ((-430 . -27) T) ((-430 . -910) T) ((-430 . -199) T) ((-430 . -80) 73506) ((-430 . -958) 73471) ((-430 . -963) 73436) ((-430 . -243) T) ((-430 . -651) 73401) ((-430 . -579) 73366) ((-430 . -587) 73316) ((-430 . -585) 73266) ((-430 . -102) T) ((-430 . -25) T) ((-430 . -23) T) ((-430 . -21) T) ((-430 . -956) T) ((-430 . -660) T) ((-430 . -1052) T) ((-430 . -1017) T) ((-430 . -964) T) ((-430 . -38) 73231) ((-430 . -255) T) ((-430 . -387) T) ((-430 . -144) T) ((-430 . -491) T) ((-430 . -827) T) ((-430 . -1125) T) ((-430 . -309) T) ((-430 . -577) 73191) ((-430 . -928) T) ((-430 . -550) 73136) ((-430 . -118) T) ((-430 . -188) T) ((-430 . -184) 73123) ((-430 . -187) T) ((-426 . -1007) T) ((-426 . -549) 73089) ((-426 . -1120) T) ((-426 . -13) T) ((-426 . -72) T) ((-422 . -899) 73071) ((-422 . -1057) T) ((-422 . -552) 73021) ((-422 . -945) 72981) ((-422 . -550) 72911) ((-422 . -928) T) ((-422 . -816) NIL) ((-422 . -789) 72893) ((-422 . -750) T) ((-422 . -716) T) ((-422 . -713) T) ((-422 . -754) T) ((-422 . -751) T) ((-422 . -711) T) ((-422 . -709) T) ((-422 . -735) T) ((-422 . -791) 72875) ((-422 . -338) 72857) ((-422 . -577) 72839) ((-422 . -324) 72821) ((-422 . -239) NIL) ((-422 . -257) NIL) ((-422 . -449) NIL) ((-422 . -285) 72803) ((-422 . -199) T) ((-422 . -80) 72730) ((-422 . -958) 72680) ((-422 . -963) 72630) ((-422 . -243) T) ((-422 . -651) 72580) ((-422 . -579) 72530) ((-422 . -587) 72480) ((-422 . -585) 72430) ((-422 . -38) 72380) ((-422 . -255) T) ((-422 . -387) T) ((-422 . -144) T) ((-422 . -491) T) ((-422 . -827) T) ((-422 . -1125) T) ((-422 . -309) T) ((-422 . -188) T) ((-422 . -184) 72367) ((-422 . -187) T) ((-422 . -223) 72349) ((-422 . -801) NIL) ((-422 . -806) NIL) ((-422 . -804) NIL) ((-422 . -182) 72331) ((-422 . -118) T) ((-422 . -116) NIL) ((-422 . -102) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1120) T) ((-422 . -549) 72273) ((-422 . -1007) T) ((-422 . -23) T) ((-422 . -21) T) ((-422 . -956) T) ((-422 . -660) T) ((-422 . -1052) T) ((-422 . -1017) T) ((-422 . -964) T) ((-420 . -283) 72242) ((-420 . -102) T) ((-420 . -25) T) ((-420 . -72) T) ((-420 . -13) T) ((-420 . -1120) T) ((-420 . -549) 72224) ((-420 . -1007) T) ((-420 . -23) T) ((-420 . -585) 72206) ((-420 . -21) T) ((-419 . -876) 72190) ((-419 . -424) 72174) ((-419 . -1007) 72152) ((-419 . -449) 72085) ((-419 . -257) 72023) ((-419 . -549) 71958) ((-419 . -72) 71912) ((-419 . -1120) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -76) 71896) ((-418 . -989) T) ((-418 . -425) 71877) ((-418 . -549) 71843) ((-418 . -552) 71824) ((-418 . -1007) T) ((-418 . -1120) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -194) 71803) ((-417 . -1178) 71773) ((-417 . -716) 71752) ((-417 . -713) 71731) ((-417 . -754) 71685) ((-417 . -751) 71639) ((-417 . -711) 71618) ((-417 . -712) 71597) ((-417 . -651) 71542) ((-417 . -579) 71467) ((-417 . -241) 71444) ((-417 . -239) 71421) ((-417 . -424) 71405) ((-417 . -449) 71338) ((-417 . -257) 71276) ((-417 . -34) T) ((-417 . -535) 71253) ((-417 . -945) 71082) ((-417 . -552) 70886) ((-417 . -350) 70855) ((-417 . -577) 70763) ((-417 . -587) 70602) ((-417 . -324) 70572) ((-417 . -315) 70551) ((-417 . -188) 70504) ((-417 . -585) 70292) ((-417 . -964) 70271) ((-417 . -1017) 70250) ((-417 . -1052) 70229) ((-417 . -660) 70208) ((-417 . -956) 70187) ((-417 . -184) 70083) ((-417 . -187) 69985) ((-417 . -223) 69955) ((-417 . -801) 69827) ((-417 . -806) 69701) ((-417 . -804) 69634) ((-417 . -182) 69604) ((-417 . -549) 69301) ((-417 . -963) 69226) ((-417 . -958) 69131) ((-417 . -80) 69051) ((-417 . -102) 68926) ((-417 . -25) 68763) ((-417 . -72) 68500) ((-417 . -13) T) ((-417 . -1120) T) ((-417 . -1007) 68256) ((-417 . -23) 68112) ((-417 . -21) 68027) ((-416 . -856) 67972) ((-416 . -552) 67764) ((-416 . -945) 67642) ((-416 . -1125) 67621) ((-416 . -816) 67600) ((-416 . -791) NIL) ((-416 . -806) 67577) ((-416 . -801) 67552) ((-416 . -804) 67529) ((-416 . -449) 67467) ((-416 . -387) 67421) ((-416 . -577) 67369) ((-416 . -587) 67258) ((-416 . -324) 67242) ((-416 . -47) 67199) ((-416 . -38) 67051) ((-416 . -579) 66903) ((-416 . -651) 66755) ((-416 . -243) 66689) ((-416 . -491) 66623) ((-416 . -80) 66448) ((-416 . -958) 66294) ((-416 . -963) 66140) ((-416 . -144) 66054) ((-416 . -118) 66033) ((-416 . -116) 66012) ((-416 . -585) 65922) ((-416 . -102) T) ((-416 . -25) T) ((-416 . -72) T) ((-416 . -13) T) ((-416 . -1120) T) ((-416 . -549) 65904) ((-416 . -1007) T) ((-416 . -23) T) ((-416 . -21) T) ((-416 . -956) T) ((-416 . -660) T) ((-416 . -1052) T) ((-416 . -1017) T) ((-416 . -964) T) ((-416 . -350) 65888) ((-416 . -274) 65845) ((-416 . -257) 65832) ((-416 . -550) 65693) ((-414 . -1098) 65672) ((-414 . -181) 65620) ((-414 . -76) 65568) ((-414 . -257) 65366) ((-414 . -449) 65118) ((-414 . -424) 65053) ((-414 . -122) 65001) ((-414 . -550) NIL) ((-414 . -191) 64949) ((-414 . -546) 64928) ((-414 . -241) 64907) ((-414 . -1120) T) ((-414 . -13) T) ((-414 . -239) 64886) ((-414 . -1007) T) ((-414 . -549) 64868) ((-414 . -72) T) ((-414 . -34) T) ((-414 . -535) 64847) ((-413 . -989) T) ((-413 . -425) 64828) ((-413 . -549) 64794) ((-413 . -552) 64775) ((-413 . -1007) T) ((-413 . -1120) T) ((-413 . -13) T) ((-413 . -72) T) ((-413 . -64) T) ((-412 . -309) T) ((-412 . -1125) T) ((-412 . -827) T) ((-412 . -491) T) ((-412 . -144) T) ((-412 . -552) 64725) ((-412 . -651) 64690) ((-412 . -579) 64655) ((-412 . -38) 64620) ((-412 . -387) T) ((-412 . -255) T) ((-412 . -587) 64585) ((-412 . -585) 64535) ((-412 . -964) T) ((-412 . -1017) T) ((-412 . -1052) T) ((-412 . -660) T) ((-412 . -956) T) ((-412 . -80) 64484) ((-412 . -958) 64449) ((-412 . -963) 64414) ((-412 . -21) T) ((-412 . -23) T) ((-412 . -1007) T) ((-412 . -549) 64366) ((-412 . -1120) T) ((-412 . -13) T) ((-412 . -72) T) ((-412 . -25) T) ((-412 . -102) T) ((-412 . -243) T) ((-412 . -199) T) ((-412 . -118) T) ((-412 . -945) 64326) ((-412 . -928) T) ((-412 . -550) 64248) ((-411 . -1115) 64217) ((-411 . -549) 64179) ((-411 . -122) 64163) ((-411 . -34) T) ((-411 . -13) T) ((-411 . -1120) T) ((-411 . -72) T) ((-411 . -257) 64101) ((-411 . -449) 64034) ((-411 . -1007) T) ((-411 . -424) 64018) ((-411 . -550) 63979) ((-411 . -884) 63948) ((-410 . -1098) 63927) ((-410 . -181) 63875) ((-410 . -76) 63823) ((-410 . -257) 63621) ((-410 . -449) 63373) ((-410 . -424) 63308) ((-410 . -122) 63256) ((-410 . -550) NIL) ((-410 . -191) 63204) ((-410 . -546) 63183) ((-410 . -241) 63162) ((-410 . -1120) T) ((-410 . -13) T) ((-410 . -239) 63141) ((-410 . -1007) T) ((-410 . -549) 63123) ((-410 . -72) T) ((-410 . -34) T) ((-410 . -535) 63102) ((-409 . -1153) 63086) ((-409 . -188) 63038) ((-409 . -184) 62984) ((-409 . -187) 62936) ((-409 . -239) 62894) ((-409 . -804) 62800) ((-409 . -801) 62681) ((-409 . -806) 62587) ((-409 . -881) 62550) ((-409 . -38) 62397) ((-409 . -80) 62217) ((-409 . -958) 62058) ((-409 . -963) 61899) ((-409 . -585) 61784) ((-409 . -587) 61684) ((-409 . -579) 61531) ((-409 . -651) 61378) ((-409 . -552) 61210) ((-409 . -116) 61189) ((-409 . -118) 61168) ((-409 . -47) 61138) ((-409 . -1149) 61108) ((-409 . -35) 61074) ((-409 . -66) 61040) ((-409 . -237) 61006) ((-409 . -428) 60972) ((-409 . -1109) 60938) ((-409 . -1106) 60904) ((-409 . -910) 60870) ((-409 . -199) 60849) ((-409 . -243) 60803) ((-409 . -102) T) ((-409 . -25) T) ((-409 . -72) T) ((-409 . -13) T) ((-409 . -1120) T) ((-409 . -549) 60785) ((-409 . -1007) T) ((-409 . -23) T) ((-409 . -21) T) ((-409 . -956) T) ((-409 . -660) T) ((-409 . -1052) T) ((-409 . -1017) T) ((-409 . -964) T) ((-409 . -255) 60764) ((-409 . -387) 60743) ((-409 . -144) 60677) ((-409 . -491) 60631) ((-409 . -827) 60610) ((-409 . -1125) 60589) ((-409 . -309) 60568) ((-403 . -1007) T) ((-403 . -549) 60550) ((-403 . -1120) T) ((-403 . -13) T) ((-403 . -72) T) ((-398 . -884) 60519) ((-398 . -550) 60480) ((-398 . -424) 60464) ((-398 . -1007) T) ((-398 . -449) 60397) ((-398 . -257) 60335) ((-398 . -549) 60297) ((-398 . -72) T) ((-398 . -1120) T) ((-398 . -13) T) ((-398 . -34) T) ((-398 . -122) 60281) ((-396 . -651) 60252) ((-396 . -579) 60223) ((-396 . -587) 60194) ((-396 . -585) 60150) ((-396 . -102) T) ((-396 . -25) T) ((-396 . -72) T) ((-396 . -13) T) ((-396 . -1120) T) ((-396 . -549) 60132) ((-396 . -1007) T) ((-396 . -23) T) ((-396 . -21) T) ((-396 . -963) 60103) ((-396 . -958) 60074) ((-396 . -80) 60035) ((-389 . -856) 60002) ((-389 . -552) 59794) ((-389 . -945) 59672) ((-389 . -1125) 59651) ((-389 . -816) 59630) ((-389 . -791) NIL) ((-389 . -806) 59607) ((-389 . -801) 59582) ((-389 . -804) 59559) ((-389 . -449) 59497) ((-389 . -387) 59451) ((-389 . -577) 59399) ((-389 . -587) 59288) ((-389 . -324) 59272) ((-389 . -47) 59251) ((-389 . -38) 59103) ((-389 . -579) 58955) ((-389 . -651) 58807) ((-389 . -243) 58741) ((-389 . -491) 58675) ((-389 . -80) 58500) ((-389 . -958) 58346) ((-389 . -963) 58192) ((-389 . -144) 58106) ((-389 . -118) 58085) ((-389 . -116) 58064) ((-389 . -585) 57974) ((-389 . -102) T) ((-389 . -25) T) ((-389 . -72) T) ((-389 . -13) T) ((-389 . -1120) T) ((-389 . -549) 57956) ((-389 . -1007) T) ((-389 . -23) T) ((-389 . -21) T) ((-389 . -956) T) ((-389 . -660) T) ((-389 . -1052) T) ((-389 . -1017) T) ((-389 . -964) T) ((-389 . -350) 57940) ((-389 . -274) 57919) ((-389 . -257) 57906) ((-389 . -550) 57767) ((-388 . -356) 57737) ((-388 . -678) 57707) ((-388 . -654) T) ((-388 . -680) T) ((-388 . -80) 57658) ((-388 . -958) 57628) ((-388 . -963) 57598) ((-388 . -21) T) ((-388 . -585) 57513) ((-388 . -23) T) ((-388 . -1007) T) ((-388 . -549) 57495) ((-388 . -72) T) ((-388 . -25) T) ((-388 . -102) T) ((-388 . -587) 57425) ((-388 . -579) 57395) ((-388 . -651) 57365) ((-388 . -313) 57335) ((-388 . -1120) T) ((-388 . -13) T) ((-388 . -239) 57298) ((-376 . -1007) T) ((-376 . -549) 57280) ((-376 . -1120) T) ((-376 . -13) T) ((-376 . -72) T) ((-375 . -1007) T) ((-375 . -549) 57262) ((-375 . -1120) T) ((-375 . -13) T) ((-375 . -72) T) ((-374 . -1007) T) ((-374 . -549) 57244) ((-374 . -1120) T) ((-374 . -13) T) ((-374 . -72) T) ((-372 . -549) 57226) ((-367 . -38) 57210) ((-367 . -552) 57179) ((-367 . -587) 57153) ((-367 . -585) 57112) ((-367 . -964) T) ((-367 . -1017) T) ((-367 . -1052) T) ((-367 . -660) T) ((-367 . -956) T) ((-367 . -80) 57091) ((-367 . -958) 57075) ((-367 . -963) 57059) ((-367 . -21) T) ((-367 . -23) T) ((-367 . -1007) T) ((-367 . -549) 57041) ((-367 . -1120) T) ((-367 . -13) T) ((-367 . -72) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -579) 57025) ((-367 . -651) 57009) ((-353 . -660) T) ((-353 . -1007) T) ((-353 . -549) 56991) ((-353 . -1120) T) ((-353 . -13) T) ((-353 . -72) T) ((-353 . -1017) T) ((-351 . -408) T) ((-351 . -1017) T) ((-351 . -72) T) ((-351 . -13) T) ((-351 . -1120) T) ((-351 . -549) 56973) ((-351 . -1007) T) ((-351 . -660) T) ((-345 . -899) 56957) ((-345 . -1057) 56935) ((-345 . -945) 56802) ((-345 . -552) 56701) ((-345 . -550) 56504) ((-345 . -928) 56483) ((-345 . -816) 56462) ((-345 . -789) 56446) ((-345 . -750) 56425) ((-345 . -716) 56404) ((-345 . -713) 56383) ((-345 . -754) 56337) ((-345 . -751) 56291) ((-345 . -711) 56270) ((-345 . -709) 56249) ((-345 . -735) 56228) ((-345 . -791) 56153) ((-345 . -338) 56137) ((-345 . -577) 56085) ((-345 . -587) 56001) ((-345 . -324) 55985) ((-345 . -239) 55943) ((-345 . -257) 55908) ((-345 . -449) 55820) ((-345 . -285) 55804) ((-345 . -199) T) ((-345 . -80) 55735) ((-345 . -958) 55687) ((-345 . -963) 55639) ((-345 . -243) T) ((-345 . -651) 55591) ((-345 . -579) 55543) ((-345 . -585) 55480) ((-345 . -38) 55432) ((-345 . -255) T) ((-345 . -387) T) ((-345 . -144) T) ((-345 . -491) T) ((-345 . -827) T) ((-345 . -1125) T) ((-345 . -309) T) ((-345 . -188) 55411) ((-345 . -184) 55359) ((-345 . -187) 55313) ((-345 . -223) 55297) ((-345 . -801) 55221) ((-345 . -806) 55147) ((-345 . -804) 55106) ((-345 . -182) 55090) ((-345 . -118) 55069) ((-345 . -116) 55048) ((-345 . -102) T) ((-345 . -25) T) ((-345 . -72) T) ((-345 . -13) T) ((-345 . -1120) T) ((-345 . -549) 55030) ((-345 . -1007) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -956) T) ((-345 . -660) T) ((-345 . -1052) T) ((-345 . -1017) T) ((-345 . -964) T) ((-343 . -491) T) ((-343 . -243) T) ((-343 . -144) T) ((-343 . -552) 54939) ((-343 . -651) 54913) ((-343 . -579) 54887) ((-343 . -587) 54861) ((-343 . -585) 54820) ((-343 . -102) T) ((-343 . -25) T) ((-343 . -72) T) ((-343 . -13) T) ((-343 . -1120) T) ((-343 . -549) 54802) ((-343 . -1007) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -963) 54776) ((-343 . -958) 54750) ((-343 . -80) 54717) ((-343 . -956) T) ((-343 . -660) T) ((-343 . -1052) T) ((-343 . -1017) T) ((-343 . -964) T) ((-343 . -38) 54691) ((-343 . -182) 54675) ((-343 . -804) 54634) ((-343 . -806) 54560) ((-343 . -801) 54484) ((-343 . -223) 54468) ((-343 . -187) 54422) ((-343 . -184) 54370) ((-343 . -188) 54349) ((-343 . -285) 54333) ((-343 . -449) 54175) ((-343 . -257) 54114) ((-343 . -239) 54042) ((-343 . -350) 54026) ((-343 . -945) 53924) ((-343 . -387) 53877) ((-343 . -928) 53856) ((-343 . -550) 53759) ((-343 . -1125) 53737) ((-337 . -1007) T) ((-337 . -549) 53719) ((-337 . -1120) T) ((-337 . -13) T) ((-337 . -72) T) ((-337 . -187) T) ((-337 . -184) 53706) ((-337 . -550) 53683) ((-335 . -678) 53667) ((-335 . -654) T) ((-335 . -680) T) ((-335 . -80) 53646) ((-335 . -958) 53630) ((-335 . -963) 53614) ((-335 . -21) T) ((-335 . -585) 53583) ((-335 . -23) T) ((-335 . -1007) T) ((-335 . -549) 53565) ((-335 . -1120) T) ((-335 . -13) T) ((-335 . -72) T) ((-335 . -25) T) ((-335 . -102) T) ((-335 . -587) 53549) ((-335 . -579) 53533) ((-335 . -651) 53517) ((-333 . -334) T) ((-333 . -72) T) ((-333 . -13) T) ((-333 . -1120) T) ((-333 . -549) 53483) ((-333 . -1007) T) ((-333 . -552) 53464) ((-333 . -425) 53445) ((-332 . -331) 53429) ((-332 . -552) 53413) ((-332 . -945) 53397) ((-332 . -754) 53376) ((-332 . -751) 53355) ((-332 . -1017) T) ((-332 . -72) T) ((-332 . -13) T) ((-332 . -1120) T) ((-332 . -549) 53337) ((-332 . -1007) T) ((-332 . -660) T) ((-329 . -330) 53316) ((-329 . -552) 53300) ((-329 . -945) 53284) ((-329 . -579) 53254) ((-329 . -651) 53224) ((-329 . -587) 53208) ((-329 . -585) 53177) ((-329 . -102) T) ((-329 . -25) T) ((-329 . -72) T) ((-329 . -13) T) ((-329 . -1120) T) ((-329 . -549) 53159) ((-329 . -1007) T) ((-329 . -23) T) ((-329 . -21) T) ((-329 . -963) 53143) ((-329 . -958) 53127) ((-329 . -80) 53106) ((-328 . -80) 53085) ((-328 . -958) 53069) ((-328 . -963) 53053) ((-328 . -21) T) ((-328 . -585) 53022) ((-328 . -23) T) ((-328 . -1007) T) ((-328 . -549) 53004) ((-328 . -1120) T) ((-328 . -13) T) ((-328 . -72) T) ((-328 . -25) T) ((-328 . -102) T) ((-328 . -587) 52988) ((-328 . -444) 52967) ((-328 . -651) 52937) ((-328 . -579) 52907) ((-325 . -342) T) ((-325 . -118) T) ((-325 . -552) 52857) ((-325 . -587) 52822) ((-325 . -585) 52772) ((-325 . -102) T) ((-325 . -25) T) ((-325 . -72) T) ((-325 . -13) T) ((-325 . -1120) T) ((-325 . -549) 52739) ((-325 . -1007) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -964) T) ((-325 . -1017) T) ((-325 . -1052) T) ((-325 . -660) T) ((-325 . -956) T) ((-325 . -550) 52653) ((-325 . -309) T) ((-325 . -1125) T) ((-325 . -827) T) ((-325 . -491) T) ((-325 . -144) T) ((-325 . -651) 52618) ((-325 . -579) 52583) ((-325 . -38) 52548) ((-325 . -387) T) ((-325 . -255) T) ((-325 . -80) 52497) ((-325 . -958) 52462) ((-325 . -963) 52427) ((-325 . -243) T) ((-325 . -199) T) ((-325 . -750) T) ((-325 . -716) T) ((-325 . -713) T) ((-325 . -754) T) ((-325 . -751) T) ((-325 . -711) T) ((-325 . -709) T) ((-325 . -791) 52409) ((-325 . -910) T) ((-325 . -928) T) ((-325 . -945) 52369) ((-325 . -967) T) ((-325 . -188) T) ((-325 . -184) 52356) ((-325 . -187) T) ((-325 . -1106) T) ((-325 . -1109) T) ((-325 . -428) T) ((-325 . -237) T) ((-325 . -66) T) ((-325 . -35) T) ((-325 . -554) 52338) ((-310 . -311) 52315) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1120) T) ((-310 . -549) 52297) ((-310 . -1007) T) ((-307 . -408) T) ((-307 . -1017) T) ((-307 . -72) T) ((-307 . -13) T) ((-307 . -1120) T) ((-307 . -549) 52279) ((-307 . -1007) T) ((-307 . -660) T) ((-307 . -945) 52263) ((-307 . -552) 52247) ((-305 . -277) 52231) ((-305 . -188) 52210) ((-305 . -184) 52183) ((-305 . -187) 52162) ((-305 . -315) 52141) ((-305 . -1057) 52120) ((-305 . -296) 52099) ((-305 . -118) 52078) ((-305 . -552) 52015) ((-305 . -587) 51967) ((-305 . -585) 51904) ((-305 . -102) T) ((-305 . -25) T) ((-305 . -72) T) ((-305 . -13) T) ((-305 . -1120) T) ((-305 . -549) 51886) ((-305 . -1007) T) ((-305 . -23) T) ((-305 . -21) T) ((-305 . -964) T) ((-305 . -1017) T) ((-305 . -1052) T) ((-305 . -660) T) ((-305 . -956) T) ((-305 . -309) T) ((-305 . -1125) T) ((-305 . -827) T) ((-305 . -491) T) ((-305 . -144) T) ((-305 . -651) 51838) ((-305 . -579) 51790) ((-305 . -38) 51755) ((-305 . -387) T) ((-305 . -255) T) ((-305 . -80) 51686) ((-305 . -958) 51638) ((-305 . -963) 51590) ((-305 . -243) T) ((-305 . -199) T) ((-305 . -340) 51544) ((-305 . -116) 51498) ((-305 . -945) 51482) ((-305 . -1178) 51466) ((-305 . -1189) 51450) ((-301 . -277) 51434) ((-301 . -188) 51413) ((-301 . -184) 51386) ((-301 . -187) 51365) ((-301 . -315) 51344) ((-301 . -1057) 51323) ((-301 . -296) 51302) ((-301 . -118) 51281) ((-301 . -552) 51218) ((-301 . -587) 51170) ((-301 . -585) 51107) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1120) T) ((-301 . -549) 51089) ((-301 . -1007) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -964) T) ((-301 . -1017) T) ((-301 . -1052) T) ((-301 . -660) T) ((-301 . -956) T) ((-301 . -309) T) ((-301 . -1125) T) ((-301 . -827) T) ((-301 . -491) T) ((-301 . -144) T) ((-301 . -651) 51041) ((-301 . -579) 50993) ((-301 . -38) 50958) ((-301 . -387) T) ((-301 . -255) T) ((-301 . -80) 50889) ((-301 . -958) 50841) ((-301 . -963) 50793) ((-301 . -243) T) ((-301 . -199) T) ((-301 . -340) 50747) ((-301 . -116) 50701) ((-301 . -945) 50685) ((-301 . -1178) 50669) ((-301 . -1189) 50653) ((-300 . -277) 50637) ((-300 . -188) 50616) ((-300 . -184) 50589) ((-300 . -187) 50568) ((-300 . -315) 50547) ((-300 . -1057) 50526) ((-300 . -296) 50505) ((-300 . -118) 50484) ((-300 . -552) 50421) ((-300 . -587) 50373) ((-300 . -585) 50310) ((-300 . -102) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -13) T) ((-300 . -1120) T) ((-300 . -549) 50292) ((-300 . -1007) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -964) T) ((-300 . -1017) T) ((-300 . -1052) T) ((-300 . -660) T) ((-300 . -956) T) ((-300 . -309) T) ((-300 . -1125) T) ((-300 . -827) T) ((-300 . -491) T) ((-300 . -144) T) ((-300 . -651) 50244) ((-300 . -579) 50196) ((-300 . -38) 50161) ((-300 . -387) T) ((-300 . -255) T) ((-300 . -80) 50092) ((-300 . -958) 50044) ((-300 . -963) 49996) ((-300 . -243) T) ((-300 . -199) T) ((-300 . -340) 49950) ((-300 . -116) 49904) ((-300 . -945) 49888) ((-300 . -1178) 49872) ((-300 . -1189) 49856) ((-299 . -277) 49840) ((-299 . -188) 49819) ((-299 . -184) 49792) ((-299 . -187) 49771) ((-299 . -315) 49750) ((-299 . -1057) 49729) ((-299 . -296) 49708) ((-299 . -118) 49687) ((-299 . -552) 49624) ((-299 . -587) 49576) ((-299 . -585) 49513) ((-299 . -102) T) ((-299 . -25) T) ((-299 . -72) T) ((-299 . -13) T) ((-299 . -1120) T) ((-299 . -549) 49495) ((-299 . -1007) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -964) T) ((-299 . -1017) T) ((-299 . -1052) T) ((-299 . -660) T) ((-299 . -956) T) ((-299 . -309) T) ((-299 . -1125) T) ((-299 . -827) T) ((-299 . -491) T) ((-299 . -144) T) ((-299 . -651) 49447) ((-299 . -579) 49399) ((-299 . -38) 49364) ((-299 . -387) T) ((-299 . -255) T) ((-299 . -80) 49295) ((-299 . -958) 49247) ((-299 . -963) 49199) ((-299 . -243) T) ((-299 . -199) T) ((-299 . -340) 49153) ((-299 . -116) 49107) ((-299 . -945) 49091) ((-299 . -1178) 49075) ((-299 . -1189) 49059) ((-298 . -277) 49036) ((-298 . -188) T) ((-298 . -184) 49023) ((-298 . -187) T) ((-298 . -315) T) ((-298 . -1057) T) ((-298 . -296) T) ((-298 . -118) 49005) ((-298 . -552) 48935) ((-298 . -587) 48880) ((-298 . -585) 48810) ((-298 . -102) T) ((-298 . -25) T) ((-298 . -72) T) ((-298 . -13) T) ((-298 . -1120) T) ((-298 . -549) 48792) ((-298 . -1007) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -964) T) ((-298 . -1017) T) ((-298 . -1052) T) ((-298 . -660) T) ((-298 . -956) T) ((-298 . -309) T) ((-298 . -1125) T) ((-298 . -827) T) ((-298 . -491) T) ((-298 . -144) T) ((-298 . -651) 48737) ((-298 . -579) 48682) ((-298 . -38) 48647) ((-298 . -387) T) ((-298 . -255) T) ((-298 . -80) 48564) ((-298 . -958) 48509) ((-298 . -963) 48454) ((-298 . -243) T) ((-298 . -199) T) ((-298 . -340) T) ((-298 . -116) T) ((-298 . -945) 48431) ((-298 . -1178) 48408) ((-298 . -1189) 48385) ((-292 . -277) 48369) ((-292 . -188) 48348) ((-292 . -184) 48321) ((-292 . -187) 48300) ((-292 . -315) 48279) ((-292 . -1057) 48258) ((-292 . -296) 48237) ((-292 . -118) 48216) ((-292 . -552) 48153) ((-292 . -587) 48105) ((-292 . -585) 48042) ((-292 . -102) T) ((-292 . -25) T) ((-292 . -72) T) ((-292 . -13) T) ((-292 . -1120) T) ((-292 . -549) 48024) ((-292 . -1007) T) ((-292 . -23) T) ((-292 . -21) T) ((-292 . -964) T) ((-292 . -1017) T) ((-292 . -1052) T) ((-292 . -660) T) ((-292 . -956) T) ((-292 . -309) T) ((-292 . -1125) T) ((-292 . -827) T) ((-292 . -491) T) ((-292 . -144) T) ((-292 . -651) 47976) ((-292 . -579) 47928) ((-292 . -38) 47893) ((-292 . -387) T) ((-292 . -255) T) ((-292 . -80) 47824) ((-292 . -958) 47776) ((-292 . -963) 47728) ((-292 . -243) T) ((-292 . -199) T) ((-292 . -340) 47682) ((-292 . -116) 47636) ((-292 . -945) 47620) ((-292 . -1178) 47604) ((-292 . -1189) 47588) ((-291 . -277) 47572) ((-291 . -188) 47551) ((-291 . -184) 47524) ((-291 . -187) 47503) ((-291 . -315) 47482) ((-291 . -1057) 47461) ((-291 . -296) 47440) ((-291 . -118) 47419) ((-291 . -552) 47356) ((-291 . -587) 47308) ((-291 . -585) 47245) ((-291 . -102) T) ((-291 . -25) T) ((-291 . -72) T) ((-291 . -13) T) ((-291 . -1120) T) ((-291 . -549) 47227) ((-291 . -1007) T) ((-291 . -23) T) ((-291 . -21) T) ((-291 . -964) T) ((-291 . -1017) T) ((-291 . -1052) T) ((-291 . -660) T) ((-291 . -956) T) ((-291 . -309) T) ((-291 . -1125) T) ((-291 . -827) T) ((-291 . -491) T) ((-291 . -144) T) ((-291 . -651) 47179) ((-291 . -579) 47131) ((-291 . -38) 47096) ((-291 . -387) T) ((-291 . -255) T) ((-291 . -80) 47027) ((-291 . -958) 46979) ((-291 . -963) 46931) ((-291 . -243) T) ((-291 . -199) T) ((-291 . -340) 46885) ((-291 . -116) 46839) ((-291 . -945) 46823) ((-291 . -1178) 46807) ((-291 . -1189) 46791) ((-290 . -277) 46768) ((-290 . -188) T) ((-290 . -184) 46755) ((-290 . -187) T) ((-290 . -315) T) ((-290 . -1057) T) ((-290 . -296) T) ((-290 . -118) 46737) ((-290 . -552) 46667) ((-290 . -587) 46612) ((-290 . -585) 46542) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -72) T) ((-290 . -13) T) ((-290 . -1120) T) ((-290 . -549) 46524) ((-290 . -1007) T) ((-290 . -23) T) ((-290 . -21) T) ((-290 . -964) T) ((-290 . -1017) T) ((-290 . -1052) T) ((-290 . -660) T) ((-290 . -956) T) ((-290 . -309) T) ((-290 . -1125) T) ((-290 . -827) T) ((-290 . -491) T) ((-290 . -144) T) ((-290 . -651) 46469) ((-290 . -579) 46414) ((-290 . -38) 46379) ((-290 . -387) T) ((-290 . -255) T) ((-290 . -80) 46296) ((-290 . -958) 46241) ((-290 . -963) 46186) ((-290 . -243) T) ((-290 . -199) T) ((-290 . -340) T) ((-290 . -116) T) ((-290 . -945) 46163) ((-290 . -1178) 46140) ((-290 . -1189) 46117) ((-286 . -277) 46094) ((-286 . -188) T) ((-286 . -184) 46081) ((-286 . -187) T) ((-286 . -315) T) ((-286 . -1057) T) ((-286 . -296) T) ((-286 . -118) 46063) ((-286 . -552) 45993) ((-286 . -587) 45938) ((-286 . -585) 45868) ((-286 . -102) T) ((-286 . -25) T) ((-286 . -72) T) ((-286 . -13) T) ((-286 . -1120) T) ((-286 . -549) 45850) ((-286 . -1007) T) ((-286 . -23) T) ((-286 . -21) T) ((-286 . -964) T) ((-286 . -1017) T) ((-286 . -1052) T) ((-286 . -660) T) ((-286 . -956) T) ((-286 . -309) T) ((-286 . -1125) T) ((-286 . -827) T) ((-286 . -491) T) ((-286 . -144) T) ((-286 . -651) 45795) ((-286 . -579) 45740) ((-286 . -38) 45705) ((-286 . -387) T) ((-286 . -255) T) ((-286 . -80) 45622) ((-286 . -958) 45567) ((-286 . -963) 45512) ((-286 . -243) T) ((-286 . -199) T) ((-286 . -340) T) ((-286 . -116) T) ((-286 . -945) 45489) ((-286 . -1178) 45466) ((-286 . -1189) 45443) ((-280 . -283) 45412) ((-280 . -102) T) ((-280 . -25) T) ((-280 . -72) T) ((-280 . -13) T) ((-280 . -1120) T) ((-280 . -549) 45394) ((-280 . -1007) T) ((-280 . -23) T) ((-280 . -585) 45376) ((-280 . -21) T) ((-279 . -1007) T) ((-279 . -549) 45358) ((-279 . -1120) T) ((-279 . -13) T) ((-279 . -72) T) ((-278 . -751) T) ((-278 . -549) 45340) ((-278 . -1007) T) ((-278 . -72) T) ((-278 . -13) T) ((-278 . -1120) T) ((-278 . -754) T) ((-275 . -19) 45324) ((-275 . -590) 45308) ((-275 . -241) 45285) ((-275 . -239) 45237) ((-275 . -535) 45214) ((-275 . -550) 45175) ((-275 . -424) 45159) ((-275 . -1007) 45112) ((-275 . -449) 45045) ((-275 . -257) 44983) ((-275 . -549) 44898) ((-275 . -72) 44832) ((-275 . -1120) T) ((-275 . -13) T) ((-275 . -34) T) ((-275 . -122) 44816) ((-275 . -751) 44795) ((-275 . -754) 44774) ((-275 . -319) 44758) ((-275 . -235) 44742) ((-272 . -271) 44719) ((-272 . -552) 44703) ((-272 . -945) 44687) ((-272 . -23) T) ((-272 . -1007) T) ((-272 . -549) 44669) ((-272 . -1120) T) ((-272 . -13) T) ((-272 . -72) T) ((-272 . -25) T) ((-272 . -102) T) ((-270 . -21) T) ((-270 . -585) 44651) ((-270 . -23) T) ((-270 . -1007) T) ((-270 . -549) 44633) ((-270 . -1120) T) ((-270 . -13) T) ((-270 . -72) T) ((-270 . -25) T) ((-270 . -102) T) ((-270 . -651) 44615) ((-270 . -579) 44597) ((-270 . -587) 44579) ((-270 . -963) 44561) ((-270 . -958) 44543) ((-270 . -80) 44518) ((-270 . -271) 44495) ((-270 . -552) 44479) ((-270 . -945) 44463) ((-270 . -751) 44442) ((-270 . -754) 44421) ((-267 . -1153) 44405) ((-267 . -188) 44357) ((-267 . -184) 44303) ((-267 . -187) 44255) ((-267 . -239) 44213) ((-267 . -804) 44119) ((-267 . -801) 44023) ((-267 . -806) 43929) ((-267 . -881) 43892) ((-267 . -38) 43739) ((-267 . -80) 43559) ((-267 . -958) 43400) ((-267 . -963) 43241) ((-267 . -585) 43126) ((-267 . -587) 43026) ((-267 . -579) 42873) ((-267 . -651) 42720) ((-267 . -552) 42552) ((-267 . -116) 42531) ((-267 . -118) 42510) ((-267 . -47) 42480) ((-267 . -1149) 42450) ((-267 . -35) 42416) ((-267 . -66) 42382) ((-267 . -237) 42348) ((-267 . -428) 42314) ((-267 . -1109) 42280) ((-267 . -1106) 42246) ((-267 . -910) 42212) ((-267 . -199) 42191) ((-267 . -243) 42145) ((-267 . -102) T) ((-267 . -25) T) ((-267 . -72) T) ((-267 . -13) T) ((-267 . -1120) T) ((-267 . -549) 42127) ((-267 . -1007) T) ((-267 . -23) T) ((-267 . -21) T) ((-267 . -956) T) ((-267 . -660) T) ((-267 . -1052) T) ((-267 . -1017) T) ((-267 . -964) T) ((-267 . -255) 42106) ((-267 . -387) 42085) ((-267 . -144) 42019) ((-267 . -491) 41973) ((-267 . -827) 41952) ((-267 . -1125) 41931) ((-267 . -309) 41910) ((-267 . -711) T) ((-267 . -751) T) ((-267 . -754) T) ((-267 . -713) T) ((-262 . -359) 41894) ((-262 . -552) 41469) ((-262 . -945) 41140) ((-262 . -550) 41001) ((-262 . -789) 40985) ((-262 . -806) 40952) ((-262 . -801) 40917) ((-262 . -804) 40884) ((-262 . -408) 40863) ((-262 . -350) 40847) ((-262 . -791) 40772) ((-262 . -338) 40756) ((-262 . -577) 40664) ((-262 . -587) 40402) ((-262 . -324) 40372) ((-262 . -199) 40351) ((-262 . -80) 40240) ((-262 . -958) 40150) ((-262 . -963) 40060) ((-262 . -243) 40039) ((-262 . -651) 39949) ((-262 . -579) 39859) ((-262 . -585) 39526) ((-262 . -38) 39436) ((-262 . -255) 39415) ((-262 . -387) 39394) ((-262 . -144) 39373) ((-262 . -491) 39352) ((-262 . -827) 39331) ((-262 . -1125) 39310) ((-262 . -309) 39289) ((-262 . -257) 39276) ((-262 . -449) 39242) ((-262 . -251) T) ((-262 . -118) 39221) ((-262 . -116) 39200) ((-262 . -956) 39094) ((-262 . -660) 38947) ((-262 . -1052) 38841) ((-262 . -1017) 38694) ((-262 . -964) 38588) ((-262 . -102) 38463) ((-262 . -25) 38319) ((-262 . -72) T) ((-262 . -13) T) ((-262 . -1120) T) ((-262 . -549) 38301) ((-262 . -1007) T) ((-262 . -23) 38157) ((-262 . -21) 38032) ((-262 . -29) 38002) ((-262 . -910) 37981) ((-262 . -27) 37960) ((-262 . -1106) 37939) ((-262 . -1109) 37918) ((-262 . -428) 37897) ((-262 . -237) 37876) ((-262 . -66) 37855) ((-262 . -35) 37834) ((-262 . -131) 37813) ((-262 . -114) 37792) ((-262 . -566) 37771) ((-262 . -866) 37750) ((-262 . -1044) 37729) ((-261 . -899) 37690) ((-261 . -1057) NIL) ((-261 . -945) 37620) ((-261 . -552) 37503) ((-261 . -550) NIL) ((-261 . -928) NIL) ((-261 . -816) NIL) ((-261 . -789) 37464) ((-261 . -750) NIL) ((-261 . -716) NIL) ((-261 . -713) NIL) ((-261 . -754) NIL) ((-261 . -751) NIL) ((-261 . -711) NIL) ((-261 . -709) NIL) ((-261 . -735) NIL) ((-261 . -791) NIL) ((-261 . -338) 37425) ((-261 . -577) 37386) ((-261 . -587) 37315) ((-261 . -324) 37276) ((-261 . -239) 37142) ((-261 . -257) 37038) ((-261 . -449) 36789) ((-261 . -285) 36750) ((-261 . -199) T) ((-261 . -80) 36635) ((-261 . -958) 36564) ((-261 . -963) 36493) ((-261 . -243) T) ((-261 . -651) 36422) ((-261 . -579) 36351) ((-261 . -585) 36265) ((-261 . -38) 36194) ((-261 . -255) T) ((-261 . -387) T) ((-261 . -144) T) ((-261 . -491) T) ((-261 . -827) T) ((-261 . -1125) T) ((-261 . -309) T) ((-261 . -188) NIL) ((-261 . -184) NIL) ((-261 . -187) NIL) ((-261 . -223) 36155) ((-261 . -801) NIL) ((-261 . -806) NIL) ((-261 . -804) NIL) ((-261 . -182) 36116) ((-261 . -118) 36072) ((-261 . -116) 36028) ((-261 . -102) T) ((-261 . -25) T) ((-261 . -72) T) ((-261 . -13) T) ((-261 . -1120) T) ((-261 . -549) 36010) ((-261 . -1007) T) ((-261 . -23) T) ((-261 . -21) T) ((-261 . -956) T) ((-261 . -660) T) ((-261 . -1052) T) ((-261 . -1017) T) ((-261 . -964) T) ((-260 . -989) T) ((-260 . -425) 35991) ((-260 . -549) 35957) ((-260 . -552) 35938) ((-260 . -1007) T) ((-260 . -1120) T) ((-260 . -13) T) ((-260 . -72) T) ((-260 . -64) T) ((-259 . -1007) T) ((-259 . -549) 35920) ((-259 . -1120) T) ((-259 . -13) T) ((-259 . -72) T) ((-248 . -1098) 35899) ((-248 . -181) 35847) ((-248 . -76) 35795) ((-248 . -257) 35593) ((-248 . -449) 35345) ((-248 . -424) 35280) ((-248 . -122) 35228) ((-248 . -550) NIL) ((-248 . -191) 35176) ((-248 . -546) 35155) ((-248 . -241) 35134) ((-248 . -1120) T) ((-248 . -13) T) ((-248 . -239) 35113) ((-248 . -1007) T) ((-248 . -549) 35095) ((-248 . -72) T) ((-248 . -34) T) ((-248 . -535) 35074) ((-246 . -1120) T) ((-246 . -13) T) ((-246 . -449) 35023) ((-246 . -1007) 34809) ((-246 . -549) 34555) ((-246 . -72) 34341) ((-246 . -25) 34209) ((-246 . -21) 34096) ((-246 . -585) 33843) ((-246 . -23) 33730) ((-246 . -102) 33617) ((-246 . -1017) 33502) ((-246 . -660) 33408) ((-246 . -408) 33387) ((-246 . -956) 33333) ((-246 . -1052) 33279) ((-246 . -964) 33225) ((-246 . -587) 33093) ((-246 . -552) 33028) ((-246 . -80) 32948) ((-246 . -958) 32873) ((-246 . -963) 32798) ((-246 . -651) 32743) ((-246 . -579) 32688) ((-246 . -804) 32647) ((-246 . -801) 32604) ((-246 . -806) 32563) ((-246 . -1178) 32533) ((-244 . -549) 32515) ((-242 . -255) T) ((-242 . -387) T) ((-242 . -38) 32502) ((-242 . -552) 32474) ((-242 . -964) T) ((-242 . -1017) T) ((-242 . -1052) T) ((-242 . -660) T) ((-242 . -956) T) ((-242 . -80) 32459) ((-242 . -958) 32446) ((-242 . -963) 32433) ((-242 . -21) T) ((-242 . -585) 32405) ((-242 . -23) T) ((-242 . -1007) T) ((-242 . -549) 32387) ((-242 . -1120) T) ((-242 . -13) T) ((-242 . -72) T) ((-242 . -25) T) ((-242 . -102) T) ((-242 . -587) 32374) ((-242 . -579) 32361) ((-242 . -651) 32348) ((-242 . -144) T) ((-242 . -243) T) ((-242 . -491) T) ((-242 . -827) T) ((-242 . -239) 32327) ((-233 . -549) 32309) ((-232 . -549) 32291) ((-227 . -751) T) ((-227 . -549) 32273) ((-227 . -1007) T) ((-227 . -72) T) ((-227 . -13) T) ((-227 . -1120) T) ((-227 . -754) T) ((-224 . -211) 32235) ((-224 . -552) 31995) ((-224 . -945) 31841) ((-224 . -550) 31589) ((-224 . -274) 31561) ((-224 . -350) 31545) ((-224 . -38) 31397) ((-224 . -80) 31222) ((-224 . -958) 31068) ((-224 . -963) 30914) ((-224 . -585) 30824) ((-224 . -587) 30713) ((-224 . -579) 30565) ((-224 . -651) 30417) ((-224 . -116) 30396) ((-224 . -118) 30375) ((-224 . -144) 30289) ((-224 . -491) 30223) ((-224 . -243) 30157) ((-224 . -47) 30129) ((-224 . -324) 30113) ((-224 . -577) 30061) ((-224 . -387) 30015) ((-224 . -449) 29906) ((-224 . -804) 29852) ((-224 . -801) 29761) ((-224 . -806) 29674) ((-224 . -791) 29533) ((-224 . -816) 29512) ((-224 . -1125) 29491) ((-224 . -856) 29458) ((-224 . -257) 29445) ((-224 . -188) 29424) ((-224 . -102) T) ((-224 . -25) T) ((-224 . -72) T) ((-224 . -549) 29406) ((-224 . -1007) T) ((-224 . -23) T) ((-224 . -21) T) ((-224 . -964) T) ((-224 . -1017) T) ((-224 . -1052) T) ((-224 . -660) T) ((-224 . -956) T) ((-224 . -184) 29354) ((-224 . -13) T) ((-224 . -1120) T) ((-224 . -187) 29308) ((-224 . -223) 29292) ((-224 . -182) 29276) ((-219 . -1007) T) ((-219 . -549) 29258) ((-219 . -1120) T) ((-219 . -13) T) ((-219 . -72) T) ((-209 . -194) 29237) ((-209 . -1178) 29207) ((-209 . -716) 29186) ((-209 . -713) 29165) ((-209 . -754) 29119) ((-209 . -751) 29073) ((-209 . -711) 29052) ((-209 . -712) 29031) ((-209 . -651) 28976) ((-209 . -579) 28901) ((-209 . -241) 28878) ((-209 . -239) 28855) ((-209 . -424) 28839) ((-209 . -449) 28772) ((-209 . -257) 28710) ((-209 . -34) T) ((-209 . -535) 28687) ((-209 . -945) 28516) ((-209 . -552) 28320) ((-209 . -350) 28289) ((-209 . -577) 28197) ((-209 . -587) 28023) ((-209 . -324) 27993) ((-209 . -315) 27972) ((-209 . -188) 27925) ((-209 . -585) 27778) ((-209 . -964) 27757) ((-209 . -1017) 27736) ((-209 . -1052) 27715) ((-209 . -660) 27694) ((-209 . -956) 27673) ((-209 . -184) 27569) ((-209 . -187) 27471) ((-209 . -223) 27441) ((-209 . -801) 27313) ((-209 . -806) 27187) ((-209 . -804) 27120) ((-209 . -182) 27090) ((-209 . -549) 27051) ((-209 . -963) 26976) ((-209 . -958) 26881) ((-209 . -80) 26801) ((-209 . -102) T) ((-209 . -25) T) ((-209 . -72) T) ((-209 . -13) T) ((-209 . -1120) T) ((-209 . -1007) T) ((-209 . -23) T) ((-209 . -21) T) ((-208 . -194) 26780) ((-208 . -1178) 26750) ((-208 . -716) 26729) ((-208 . -713) 26708) ((-208 . -754) 26662) ((-208 . -751) 26616) ((-208 . -711) 26595) ((-208 . -712) 26574) ((-208 . -651) 26519) ((-208 . -579) 26444) ((-208 . -241) 26421) ((-208 . -239) 26398) ((-208 . -424) 26382) ((-208 . -449) 26315) ((-208 . -257) 26253) ((-208 . -34) T) ((-208 . -535) 26230) ((-208 . -945) 26059) ((-208 . -552) 25863) ((-208 . -350) 25832) ((-208 . -577) 25740) ((-208 . -587) 25553) ((-208 . -324) 25523) ((-208 . -315) 25502) ((-208 . -188) 25455) ((-208 . -585) 25295) ((-208 . -964) 25274) ((-208 . -1017) 25253) ((-208 . -1052) 25232) ((-208 . -660) 25211) ((-208 . -956) 25190) ((-208 . -184) 25086) ((-208 . -187) 24988) ((-208 . -223) 24958) ((-208 . -801) 24830) ((-208 . -806) 24704) ((-208 . -804) 24637) ((-208 . -182) 24607) ((-208 . -549) 24568) ((-208 . -963) 24493) ((-208 . -958) 24398) ((-208 . -80) 24318) ((-208 . -102) T) ((-208 . -25) T) ((-208 . -72) T) ((-208 . -13) T) ((-208 . -1120) T) ((-208 . -1007) T) ((-208 . -23) T) ((-208 . -21) T) ((-207 . -1007) T) ((-207 . -549) 24300) ((-207 . -1120) T) ((-207 . -13) T) ((-207 . -72) T) ((-207 . -239) 24274) ((-206 . -158) T) ((-206 . -1007) T) ((-206 . -549) 24241) ((-206 . -1120) T) ((-206 . -13) T) ((-206 . -72) T) ((-206 . -742) 24223) ((-205 . -1007) T) ((-205 . -549) 24205) ((-205 . -1120) T) ((-205 . -13) T) ((-205 . -72) T) ((-204 . -856) 24150) ((-204 . -552) 23942) ((-204 . -945) 23820) ((-204 . -1125) 23799) ((-204 . -816) 23778) ((-204 . -791) NIL) ((-204 . -806) 23755) ((-204 . -801) 23730) ((-204 . -804) 23707) ((-204 . -449) 23645) ((-204 . -387) 23599) ((-204 . -577) 23547) ((-204 . -587) 23436) ((-204 . -324) 23420) ((-204 . -47) 23377) ((-204 . -38) 23229) ((-204 . -579) 23081) ((-204 . -651) 22933) ((-204 . -243) 22867) ((-204 . -491) 22801) ((-204 . -80) 22626) ((-204 . -958) 22472) ((-204 . -963) 22318) ((-204 . -144) 22232) ((-204 . -118) 22211) ((-204 . -116) 22190) ((-204 . -585) 22100) ((-204 . -102) T) ((-204 . -25) T) ((-204 . -72) T) ((-204 . -13) T) ((-204 . -1120) T) ((-204 . -549) 22082) ((-204 . -1007) T) ((-204 . -23) T) ((-204 . -21) T) ((-204 . -956) T) ((-204 . -660) T) ((-204 . -1052) T) ((-204 . -1017) T) ((-204 . -964) T) ((-204 . -350) 22066) ((-204 . -274) 22023) ((-204 . -257) 22010) ((-204 . -550) 21871) ((-201 . -605) 21855) ((-201 . -1159) 21839) ((-201 . -918) 21823) ((-201 . -1055) 21807) ((-201 . -751) 21786) ((-201 . -754) 21765) ((-201 . -319) 21749) ((-201 . -590) 21733) ((-201 . -241) 21710) ((-201 . -239) 21662) ((-201 . -535) 21639) ((-201 . -550) 21600) ((-201 . -424) 21584) ((-201 . -1007) 21537) ((-201 . -449) 21470) ((-201 . -257) 21408) ((-201 . -549) 21303) ((-201 . -72) 21237) ((-201 . -1120) T) ((-201 . -13) T) ((-201 . -34) T) ((-201 . -122) 21221) ((-201 . -235) 21205) ((-201 . -425) 21182) ((-201 . -552) 21159) ((-195 . -194) 21138) ((-195 . -1178) 21108) ((-195 . -716) 21087) ((-195 . -713) 21066) ((-195 . -754) 21020) ((-195 . -751) 20974) ((-195 . -711) 20953) ((-195 . -712) 20932) ((-195 . -651) 20877) ((-195 . -579) 20802) ((-195 . -241) 20779) ((-195 . -239) 20756) ((-195 . -424) 20740) ((-195 . -449) 20673) ((-195 . -257) 20611) ((-195 . -34) T) ((-195 . -535) 20588) ((-195 . -945) 20417) ((-195 . -552) 20221) ((-195 . -350) 20190) ((-195 . -577) 20098) ((-195 . -587) 19937) ((-195 . -324) 19907) ((-195 . -315) 19886) ((-195 . -188) 19839) ((-195 . -585) 19627) ((-195 . -964) 19606) ((-195 . -1017) 19585) ((-195 . -1052) 19564) ((-195 . -660) 19543) ((-195 . -956) 19522) ((-195 . -184) 19418) ((-195 . -187) 19320) ((-195 . -223) 19290) ((-195 . -801) 19162) ((-195 . -806) 19036) ((-195 . -804) 18969) ((-195 . -182) 18939) ((-195 . -549) 18636) ((-195 . -963) 18561) ((-195 . -958) 18466) ((-195 . -80) 18386) ((-195 . -102) 18261) ((-195 . -25) 18098) ((-195 . -72) 17835) ((-195 . -13) T) ((-195 . -1120) T) ((-195 . -1007) 17591) ((-195 . -23) 17447) ((-195 . -21) 17362) ((-179 . -624) 17320) ((-179 . -424) 17304) ((-179 . -1007) 17282) ((-179 . -449) 17215) ((-179 . -257) 17153) ((-179 . -549) 17088) ((-179 . -72) 17042) ((-179 . -1120) T) ((-179 . -13) T) ((-179 . -34) T) ((-179 . -57) 17000) ((-177 . -342) T) ((-177 . -118) T) ((-177 . -552) 16950) ((-177 . -587) 16915) ((-177 . -585) 16865) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -72) T) ((-177 . -13) T) ((-177 . -1120) T) ((-177 . -549) 16847) ((-177 . -1007) T) ((-177 . -23) T) ((-177 . -21) T) ((-177 . -964) T) ((-177 . -1017) T) ((-177 . -1052) T) ((-177 . -660) T) ((-177 . -956) T) ((-177 . -550) 16777) ((-177 . -309) T) ((-177 . -1125) T) ((-177 . -827) T) ((-177 . -491) T) ((-177 . -144) T) ((-177 . -651) 16742) ((-177 . -579) 16707) ((-177 . -38) 16672) ((-177 . -387) T) ((-177 . -255) T) ((-177 . -80) 16621) ((-177 . -958) 16586) ((-177 . -963) 16551) ((-177 . -243) T) ((-177 . -199) T) ((-177 . -750) T) ((-177 . -716) T) ((-177 . -713) T) ((-177 . -754) T) ((-177 . -751) T) ((-177 . -711) T) ((-177 . -709) T) ((-177 . -791) 16533) ((-177 . -910) T) ((-177 . -928) T) ((-177 . -945) 16493) ((-177 . -967) T) ((-177 . -188) T) ((-177 . -184) 16480) ((-177 . -187) T) ((-177 . -1106) T) ((-177 . -1109) T) ((-177 . -428) T) ((-177 . -237) T) ((-177 . -66) T) ((-177 . -35) T) ((-175 . -557) 16457) ((-175 . -552) 16419) ((-175 . -587) 16386) ((-175 . -585) 16338) ((-175 . -964) T) ((-175 . -1017) T) ((-175 . -1052) T) ((-175 . -660) T) ((-175 . -956) T) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1007) T) ((-175 . -549) 16320) ((-175 . -1120) T) ((-175 . -13) T) ((-175 . -72) T) ((-175 . -25) T) ((-175 . -102) T) ((-175 . -945) 16297) ((-174 . -212) 16281) ((-174 . -1026) 16265) ((-174 . -76) 16249) ((-174 . -34) T) ((-174 . -13) T) ((-174 . -1120) T) ((-174 . -72) 16203) ((-174 . -549) 16138) ((-174 . -257) 16076) ((-174 . -449) 16009) ((-174 . -1007) 15987) ((-174 . -424) 15971) ((-174 . -903) 15955) ((-170 . -989) T) ((-170 . -425) 15936) ((-170 . -549) 15902) ((-170 . -552) 15883) ((-170 . -1007) T) ((-170 . -1120) T) ((-170 . -13) T) ((-170 . -72) T) ((-170 . -64) T) ((-169 . -899) 15865) ((-169 . -1057) T) ((-169 . -552) 15815) ((-169 . -945) 15775) ((-169 . -550) 15705) ((-169 . -928) T) ((-169 . -816) NIL) ((-169 . -789) 15687) ((-169 . -750) T) ((-169 . -716) T) ((-169 . -713) T) ((-169 . -754) T) ((-169 . -751) T) ((-169 . -711) T) ((-169 . -709) T) ((-169 . -735) T) ((-169 . -791) 15669) ((-169 . -338) 15651) ((-169 . -577) 15633) ((-169 . -324) 15615) ((-169 . -239) NIL) ((-169 . -257) NIL) ((-169 . -449) NIL) ((-169 . -285) 15597) ((-169 . -199) T) ((-169 . -80) 15524) ((-169 . -958) 15474) ((-169 . -963) 15424) ((-169 . -243) T) ((-169 . -651) 15374) ((-169 . -579) 15324) ((-169 . -587) 15274) ((-169 . -585) 15224) ((-169 . -38) 15174) ((-169 . -255) T) ((-169 . -387) T) ((-169 . -144) T) ((-169 . -491) T) ((-169 . -827) T) ((-169 . -1125) T) ((-169 . -309) T) ((-169 . -188) T) ((-169 . -184) 15161) ((-169 . -187) T) ((-169 . -223) 15143) ((-169 . -801) NIL) ((-169 . -806) NIL) ((-169 . -804) NIL) ((-169 . -182) 15125) ((-169 . -118) T) ((-169 . -116) NIL) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -72) T) ((-169 . -13) T) ((-169 . -1120) T) ((-169 . -549) 15067) ((-169 . -1007) T) ((-169 . -23) T) ((-169 . -21) T) ((-169 . -956) T) ((-169 . -660) T) ((-169 . -1052) T) ((-169 . -1017) T) ((-169 . -964) T) ((-166 . -747) T) ((-166 . -754) T) ((-166 . -751) T) ((-166 . -1007) T) ((-166 . -549) 15049) ((-166 . -1120) T) ((-166 . -13) T) ((-166 . -72) T) ((-166 . -315) T) ((-165 . -1007) T) ((-165 . -549) 15031) ((-165 . -1120) T) ((-165 . -13) T) ((-165 . -72) T) ((-165 . -552) 15008) ((-164 . -1007) T) ((-164 . -549) 14990) ((-164 . -1120) T) ((-164 . -13) T) ((-164 . -72) T) ((-159 . -1007) T) ((-159 . -549) 14972) ((-159 . -1120) T) ((-159 . -13) T) ((-159 . -72) T) ((-156 . -1007) T) ((-156 . -549) 14954) ((-156 . -1120) T) ((-156 . -13) T) ((-156 . -72) T) ((-155 . -158) T) ((-155 . -1007) T) ((-155 . -549) 14936) ((-155 . -1120) T) ((-155 . -13) T) ((-155 . -72) T) ((-155 . -742) 14918) ((-152 . -989) T) ((-152 . -425) 14899) ((-152 . -549) 14865) ((-152 . -552) 14846) ((-152 . -1007) T) ((-152 . -1120) T) ((-152 . -13) T) ((-152 . -72) T) ((-152 . -64) T) ((-147 . -549) 14828) ((-146 . -38) 14760) ((-146 . -552) 14677) ((-146 . -587) 14609) ((-146 . -585) 14526) ((-146 . -964) T) ((-146 . -1017) T) ((-146 . -1052) T) ((-146 . -660) T) ((-146 . -956) T) ((-146 . -80) 14425) ((-146 . -958) 14357) ((-146 . -963) 14289) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1007) T) ((-146 . -549) 14271) ((-146 . -1120) T) ((-146 . -13) T) ((-146 . -72) T) ((-146 . -25) T) ((-146 . -102) T) ((-146 . -579) 14203) ((-146 . -651) 14135) ((-146 . -309) T) ((-146 . -1125) T) ((-146 . -827) T) ((-146 . -491) T) ((-146 . -144) T) ((-146 . -387) T) ((-146 . -255) T) ((-146 . -243) T) ((-146 . -199) T) ((-143 . -1007) T) ((-143 . -549) 14117) ((-143 . -1120) T) ((-143 . -13) T) ((-143 . -72) T) ((-140 . -137) 14101) ((-140 . -35) 14079) ((-140 . -66) 14057) ((-140 . -237) 14035) ((-140 . -428) 14013) ((-140 . -1109) 13991) ((-140 . -1106) 13969) ((-140 . -910) 13921) ((-140 . -816) 13874) ((-140 . -550) 13642) ((-140 . -789) 13626) ((-140 . -315) 13580) ((-140 . -296) 13559) ((-140 . -1057) 13538) ((-140 . -340) 13517) ((-140 . -348) 13488) ((-140 . -38) 13322) ((-140 . -80) 13214) ((-140 . -958) 13127) ((-140 . -963) 13040) ((-140 . -579) 12874) ((-140 . -651) 12708) ((-140 . -317) 12679) ((-140 . -658) 12650) ((-140 . -945) 12548) ((-140 . -552) 12333) ((-140 . -350) 12317) ((-140 . -791) 12242) ((-140 . -338) 12226) ((-140 . -577) 12174) ((-140 . -587) 12051) ((-140 . -585) 11949) ((-140 . -324) 11933) ((-140 . -239) 11891) ((-140 . -257) 11856) ((-140 . -449) 11768) ((-140 . -285) 11752) ((-140 . -199) 11706) ((-140 . -1125) 11614) ((-140 . -309) 11568) ((-140 . -827) 11502) ((-140 . -491) 11416) ((-140 . -243) 11330) ((-140 . -387) 11264) ((-140 . -255) 11198) ((-140 . -188) 11152) ((-140 . -184) 11080) ((-140 . -187) 11014) ((-140 . -223) 10998) ((-140 . -801) 10922) ((-140 . -806) 10848) ((-140 . -804) 10807) ((-140 . -182) 10791) ((-140 . -144) T) ((-140 . -118) 10770) ((-140 . -956) T) ((-140 . -660) T) ((-140 . -1052) T) ((-140 . -1017) T) ((-140 . -964) T) ((-140 . -21) T) ((-140 . -23) T) ((-140 . -1007) T) ((-140 . -549) 10752) ((-140 . -1120) T) ((-140 . -13) T) ((-140 . -72) T) ((-140 . -25) T) ((-140 . -102) T) ((-140 . -116) 10706) ((-133 . -989) T) ((-133 . -425) 10687) ((-133 . -549) 10653) ((-133 . -552) 10634) ((-133 . -1007) T) ((-133 . -1120) T) ((-133 . -13) T) ((-133 . -72) T) ((-133 . -64) T) ((-132 . -1007) T) ((-132 . -549) 10616) ((-132 . -1120) T) ((-132 . -13) T) ((-132 . -72) T) ((-128 . -25) T) ((-128 . -72) T) ((-128 . -13) T) ((-128 . -1120) T) ((-128 . -549) 10598) ((-128 . -1007) T) ((-127 . -989) T) ((-127 . -425) 10579) ((-127 . -549) 10545) ((-127 . -552) 10526) ((-127 . -1007) T) ((-127 . -1120) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -989) T) ((-125 . -425) 10507) ((-125 . -549) 10473) ((-125 . -552) 10454) ((-125 . -1007) T) ((-125 . -1120) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -64) T) ((-123 . -956) T) ((-123 . -660) T) ((-123 . -1052) T) ((-123 . -1017) T) ((-123 . -964) T) ((-123 . -21) T) ((-123 . -585) 10413) ((-123 . -23) T) ((-123 . -1007) T) ((-123 . -549) 10395) ((-123 . -1120) T) ((-123 . -13) T) ((-123 . -72) T) ((-123 . -25) T) ((-123 . -102) T) ((-123 . -587) 10369) ((-123 . -552) 10338) ((-123 . -38) 10322) ((-123 . -80) 10301) ((-123 . -958) 10285) ((-123 . -963) 10269) ((-123 . -579) 10253) ((-123 . -651) 10237) ((-123 . -1178) 10221) ((-115 . -747) T) ((-115 . -754) T) ((-115 . -751) T) ((-115 . -1007) T) ((-115 . -549) 10203) ((-115 . -1120) T) ((-115 . -13) T) ((-115 . -72) T) ((-115 . -315) T) ((-112 . -1007) T) ((-112 . -549) 10185) ((-112 . -1120) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -550) 10144) ((-112 . -364) 10126) ((-112 . -1005) 10108) ((-112 . -315) T) ((-112 . -191) 10090) ((-112 . -122) 10072) ((-112 . -424) 10054) ((-112 . -449) NIL) ((-112 . -257) NIL) ((-112 . -34) T) ((-112 . -76) 10036) ((-112 . -181) 10018) ((-111 . -549) 10000) ((-110 . -158) T) ((-110 . -1007) T) ((-110 . -549) 9967) ((-110 . -1120) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -742) 9949) ((-109 . -989) T) ((-109 . -425) 9930) ((-109 . -549) 9896) ((-109 . -552) 9877) ((-109 . -1007) T) ((-109 . -1120) T) ((-109 . -13) T) ((-109 . -72) T) ((-109 . -64) T) ((-108 . -989) T) ((-108 . -425) 9858) ((-108 . -549) 9824) ((-108 . -552) 9805) ((-108 . -1007) T) ((-108 . -1120) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -64) T) ((-106 . -400) 9782) ((-106 . -552) 9678) ((-106 . -945) 9662) ((-106 . -1007) T) ((-106 . -549) 9644) ((-106 . -1120) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -405) 9599) ((-106 . -239) 9576) ((-105 . -751) T) ((-105 . -549) 9558) ((-105 . -1007) T) ((-105 . -72) T) ((-105 . -13) T) ((-105 . -1120) T) ((-105 . -754) T) ((-105 . -23) T) ((-105 . -25) T) ((-105 . -660) T) ((-105 . -1017) T) ((-105 . -945) 9540) ((-105 . -552) 9522) ((-104 . -989) T) ((-104 . -425) 9503) ((-104 . -549) 9469) ((-104 . -552) 9450) ((-104 . -1007) T) ((-104 . -1120) T) ((-104 . -13) T) ((-104 . -72) T) ((-104 . -64) T) ((-101 . -1007) T) ((-101 . -549) 9432) ((-101 . -1120) T) ((-101 . -13) T) ((-101 . -72) T) ((-100 . -19) 9415) ((-100 . -590) 9398) ((-100 . -241) 9374) ((-100 . -239) 9325) ((-100 . -535) 9301) ((-100 . -550) NIL) ((-100 . -424) 9284) ((-100 . -1007) T) ((-100 . -449) NIL) ((-100 . -257) NIL) ((-100 . -549) 9229) ((-100 . -72) T) ((-100 . -1120) T) ((-100 . -13) T) ((-100 . -34) T) ((-100 . -122) 9212) ((-100 . -751) T) ((-100 . -754) T) ((-100 . -319) 9195) ((-99 . -747) T) ((-99 . -754) T) ((-99 . -751) T) ((-99 . -1007) T) ((-99 . -549) 9177) ((-99 . -1120) T) ((-99 . -13) T) ((-99 . -72) T) ((-99 . -315) T) ((-99 . -601) T) ((-98 . -96) 9161) ((-98 . -918) 9145) ((-98 . -34) T) ((-98 . -13) T) ((-98 . -1120) T) ((-98 . -72) 9099) ((-98 . -549) 9034) ((-98 . -257) 8972) ((-98 . -449) 8905) ((-98 . -1007) 8883) ((-98 . -424) 8867) ((-98 . -90) 8851) ((-97 . -96) 8835) ((-97 . -918) 8819) ((-97 . -34) T) ((-97 . -13) T) ((-97 . -1120) T) ((-97 . -72) 8773) ((-97 . -549) 8708) ((-97 . -257) 8646) ((-97 . -449) 8579) ((-97 . -1007) 8557) ((-97 . -424) 8541) ((-97 . -90) 8525) ((-92 . -96) 8509) ((-92 . -918) 8493) ((-92 . -34) T) ((-92 . -13) T) ((-92 . -1120) T) ((-92 . -72) 8447) ((-92 . -549) 8382) ((-92 . -257) 8320) ((-92 . -449) 8253) ((-92 . -1007) 8231) ((-92 . -424) 8215) ((-92 . -90) 8199) ((-88 . -899) 8177) ((-88 . -1057) NIL) ((-88 . -945) 8155) ((-88 . -552) 8086) ((-88 . -550) NIL) ((-88 . -928) NIL) ((-88 . -816) NIL) ((-88 . -789) 8064) ((-88 . -750) NIL) ((-88 . -716) NIL) ((-88 . -713) NIL) ((-88 . -754) NIL) ((-88 . -751) NIL) ((-88 . -711) NIL) ((-88 . -709) NIL) ((-88 . -735) NIL) ((-88 . -791) NIL) ((-88 . -338) 8042) ((-88 . -577) 8020) ((-88 . -587) 7966) ((-88 . -324) 7944) ((-88 . -239) 7878) ((-88 . -257) 7825) ((-88 . -449) 7695) ((-88 . -285) 7673) ((-88 . -199) T) ((-88 . -80) 7592) ((-88 . -958) 7538) ((-88 . -963) 7484) ((-88 . -243) T) ((-88 . -651) 7430) ((-88 . -579) 7376) ((-88 . -585) 7307) ((-88 . -38) 7253) ((-88 . -255) T) ((-88 . -387) T) ((-88 . -144) T) ((-88 . -491) T) ((-88 . -827) T) ((-88 . -1125) T) ((-88 . -309) T) ((-88 . -188) NIL) ((-88 . -184) NIL) ((-88 . -187) NIL) ((-88 . -223) 7231) ((-88 . -801) NIL) ((-88 . -806) NIL) ((-88 . -804) NIL) ((-88 . -182) 7209) ((-88 . -118) T) ((-88 . -116) NIL) ((-88 . -102) T) ((-88 . -25) T) ((-88 . -72) T) ((-88 . -13) T) ((-88 . -1120) T) ((-88 . -549) 7191) ((-88 . -1007) T) ((-88 . -23) T) ((-88 . -21) T) ((-88 . -956) T) ((-88 . -660) T) ((-88 . -1052) T) ((-88 . -1017) T) ((-88 . -964) T) ((-87 . -774) 7175) ((-87 . -827) T) ((-87 . -491) T) ((-87 . -243) T) ((-87 . -144) T) ((-87 . -552) 7147) ((-87 . -651) 7134) ((-87 . -579) 7121) ((-87 . -963) 7108) ((-87 . -958) 7095) ((-87 . -80) 7080) ((-87 . -38) 7067) ((-87 . -387) T) ((-87 . -255) T) ((-87 . -956) T) ((-87 . -660) T) ((-87 . -1052) T) ((-87 . -1017) T) ((-87 . -964) T) ((-87 . -21) T) ((-87 . -585) 7039) ((-87 . -23) T) ((-87 . -1007) T) ((-87 . -549) 7021) ((-87 . -1120) T) ((-87 . -13) T) ((-87 . -72) T) ((-87 . -25) T) ((-87 . -102) T) ((-87 . -587) 7008) ((-87 . -118) T) ((-84 . -751) T) ((-84 . -549) 6990) ((-84 . -1007) T) ((-84 . -72) T) ((-84 . -13) T) ((-84 . -1120) T) ((-84 . -754) T) ((-84 . -742) 6971) ((-83 . -747) T) ((-83 . -754) T) ((-83 . -751) T) ((-83 . -1007) T) ((-83 . -549) 6953) ((-83 . -1120) T) ((-83 . -13) T) ((-83 . -72) T) ((-83 . -315) T) ((-83 . -875) T) ((-83 . -601) T) ((-83 . -82) T) ((-83 . -550) 6935) ((-79 . -94) T) ((-79 . -319) 6918) ((-79 . -754) T) ((-79 . -751) T) ((-79 . -122) 6901) ((-79 . -34) T) ((-79 . -72) T) ((-79 . -549) 6883) ((-79 . -257) NIL) ((-79 . -449) NIL) ((-79 . -1007) T) ((-79 . -424) 6866) ((-79 . -550) 6848) ((-79 . -239) 6799) ((-79 . -535) 6775) ((-79 . -241) 6751) ((-79 . -590) 6734) ((-79 . -19) 6717) ((-79 . -601) T) ((-79 . -13) T) ((-79 . -1120) T) ((-79 . -82) T) ((-78 . -549) 6699) ((-77 . -899) 6681) ((-77 . -1057) T) ((-77 . -552) 6631) ((-77 . -945) 6591) ((-77 . -550) 6521) ((-77 . -928) T) ((-77 . -816) NIL) ((-77 . -789) 6503) ((-77 . -750) T) ((-77 . -716) T) ((-77 . -713) T) ((-77 . -754) T) ((-77 . -751) T) ((-77 . -711) T) ((-77 . -709) T) ((-77 . -735) T) ((-77 . -791) 6485) ((-77 . -338) 6467) ((-77 . -577) 6449) ((-77 . -324) 6431) ((-77 . -239) NIL) ((-77 . -257) NIL) ((-77 . -449) NIL) ((-77 . -285) 6413) ((-77 . -199) T) ((-77 . -80) 6340) ((-77 . -958) 6290) ((-77 . -963) 6240) ((-77 . -243) T) ((-77 . -651) 6190) ((-77 . -579) 6140) ((-77 . -587) 6090) ((-77 . -585) 6040) ((-77 . -38) 5990) ((-77 . -255) T) ((-77 . -387) T) ((-77 . -144) T) ((-77 . -491) T) ((-77 . -827) T) ((-77 . -1125) T) ((-77 . -309) T) ((-77 . -188) T) ((-77 . -184) 5977) ((-77 . -187) T) ((-77 . -223) 5959) ((-77 . -801) NIL) ((-77 . -806) NIL) ((-77 . -804) NIL) ((-77 . -182) 5941) ((-77 . -118) T) ((-77 . -116) NIL) ((-77 . -102) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1120) T) ((-77 . -549) 5884) ((-77 . -1007) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -956) T) ((-77 . -660) T) ((-77 . -1052) T) ((-77 . -1017) T) ((-77 . -964) T) ((-73 . -96) 5868) ((-73 . -918) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1120) T) ((-73 . -72) 5806) ((-73 . -549) 5741) ((-73 . -257) 5679) ((-73 . -449) 5612) ((-73 . -1007) 5590) ((-73 . -424) 5574) ((-73 . -90) 5558) ((-69 . -408) T) ((-69 . -1017) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1120) T) ((-69 . -549) 5540) ((-69 . -1007) T) ((-69 . -660) T) ((-69 . -239) 5519) ((-67 . -989) T) ((-67 . -425) 5500) ((-67 . -549) 5466) ((-67 . -552) 5447) ((-67 . -1007) T) ((-67 . -1120) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1026) 5431) ((-62 . -424) 5415) ((-62 . -1007) 5393) ((-62 . -449) 5326) ((-62 . -257) 5264) ((-62 . -549) 5199) ((-62 . -72) 5153) ((-62 . -1120) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1120) T) ((-60 . -72) 5053) ((-60 . -549) 4988) ((-60 . -257) 4926) ((-60 . -449) 4859) ((-60 . -1007) 4837) ((-60 . -424) 4821) ((-58 . -19) 4805) ((-58 . -590) 4789) ((-58 . -241) 4766) ((-58 . -239) 4718) ((-58 . -535) 4695) ((-58 . -550) 4656) ((-58 . -424) 4640) ((-58 . -1007) 4593) ((-58 . -449) 4526) ((-58 . -257) 4464) ((-58 . -549) 4379) ((-58 . -72) 4313) ((-58 . -1120) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -122) 4297) ((-58 . -751) 4276) ((-58 . -754) 4255) ((-58 . -319) 4239) ((-55 . -1007) T) ((-55 . -549) 4221) ((-55 . -1120) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -945) 4203) ((-55 . -552) 4185) ((-51 . -1007) T) ((-51 . -549) 4167) ((-51 . -1120) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -557) 4151) ((-50 . -552) 4120) ((-50 . -587) 4094) ((-50 . -585) 4053) ((-50 . -964) T) ((-50 . -1017) T) ((-50 . -1052) T) ((-50 . -660) T) ((-50 . -956) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1007) T) ((-50 . -549) 4035) ((-50 . -1120) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -102) T) ((-50 . -945) 4019) ((-49 . -1007) T) ((-49 . -549) 4001) ((-49 . -1120) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -251) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1120) T) ((-48 . -549) 3983) ((-48 . -1007) T) ((-48 . -552) 3884) ((-48 . -945) 3827) ((-48 . -449) 3793) ((-48 . -257) 3780) ((-48 . -27) T) ((-48 . -910) T) ((-48 . -199) T) ((-48 . -80) 3729) ((-48 . -958) 3694) ((-48 . -963) 3659) ((-48 . -243) T) ((-48 . -651) 3624) ((-48 . -579) 3589) ((-48 . -587) 3539) ((-48 . -585) 3489) ((-48 . -102) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -956) T) ((-48 . -660) T) ((-48 . -1052) T) ((-48 . -1017) T) ((-48 . -964) T) ((-48 . -38) 3454) ((-48 . -255) T) ((-48 . -387) T) ((-48 . -144) T) ((-48 . -491) T) ((-48 . -827) T) ((-48 . -1125) T) ((-48 . -309) T) ((-48 . -577) 3414) ((-48 . -928) T) ((-48 . -550) 3359) ((-48 . -118) T) ((-48 . -188) T) ((-48 . -184) 3346) ((-48 . -187) T) ((-45 . -36) 3325) ((-45 . -535) 3248) ((-45 . -257) 3046) ((-45 . -449) 2798) ((-45 . -424) 2733) ((-45 . -239) 2631) ((-45 . -241) 2554) ((-45 . -546) 2533) ((-45 . -191) 2481) ((-45 . -76) 2429) ((-45 . -181) 2377) ((-45 . -1098) 2356) ((-45 . -235) 2304) ((-45 . -122) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1120) T) ((-45 . -72) T) ((-45 . -549) 2234) ((-45 . -1007) T) ((-45 . -550) NIL) ((-45 . -590) 2182) ((-45 . -319) 2130) ((-45 . -754) NIL) ((-45 . -751) NIL) ((-45 . -1055) 2078) ((-45 . -918) 2026) ((-45 . -1159) 1974) ((-45 . -605) 1922) ((-44 . -356) 1906) ((-44 . -678) 1890) ((-44 . -654) T) ((-44 . -680) T) ((-44 . -80) 1869) ((-44 . -958) 1853) ((-44 . -963) 1837) ((-44 . -21) T) ((-44 . -585) 1780) ((-44 . -23) T) ((-44 . -1007) T) ((-44 . -549) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -102) T) ((-44 . -587) 1720) ((-44 . -579) 1704) ((-44 . -651) 1688) ((-44 . -313) 1672) ((-44 . -1120) T) ((-44 . -13) T) ((-44 . -239) 1649) ((-40 . -288) 1623) ((-40 . -144) T) ((-40 . -552) 1553) ((-40 . -964) T) ((-40 . -1017) T) ((-40 . -1052) T) ((-40 . -660) T) ((-40 . -956) T) ((-40 . -587) 1455) ((-40 . -585) 1385) ((-40 . -102) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1120) T) ((-40 . -549) 1367) ((-40 . -1007) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -963) 1312) ((-40 . -958) 1257) ((-40 . -80) 1174) ((-40 . -550) 1158) ((-40 . -182) 1135) ((-40 . -804) 1087) ((-40 . -806) 999) ((-40 . -801) 909) ((-40 . -223) 886) ((-40 . -187) 826) ((-40 . -184) 760) ((-40 . -188) 732) ((-40 . -309) T) ((-40 . -1125) T) ((-40 . -827) T) ((-40 . -491) T) ((-40 . -651) 677) ((-40 . -579) 622) ((-40 . -38) 567) ((-40 . -387) T) ((-40 . -255) T) ((-40 . -243) T) ((-40 . -199) T) ((-40 . -315) NIL) ((-40 . -296) NIL) ((-40 . -1057) NIL) ((-40 . -116) 539) ((-40 . -340) NIL) ((-40 . -348) 511) ((-40 . -118) 483) ((-40 . -317) 455) ((-40 . -324) 432) ((-40 . -577) 366) ((-40 . -350) 343) ((-40 . -945) 220) ((-40 . -658) 192) ((-31 . -989) T) ((-31 . -425) 173) ((-31 . -549) 139) ((-31 . -552) 120) ((-31 . -1007) T) ((-31 . -1120) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -861) T) ((-30 . -549) 102) ((0 . |EnumerationCategory|) T) ((0 . -549) 84) ((0 . -1007) T) ((0 . -72) T) ((0 . -1120) T) ((-2 . |RecordCategory|) T) ((-2 . -549) 66) ((-2 . -1007) T) ((-2 . -72) T) ((-2 . -1120) T) ((-3 . |UnionCategory|) T) ((-3 . -549) 48) ((-3 . -1007) T) ((-3 . -72) T) ((-3 . -1120) T) ((-1 . -1007) T) ((-1 . -549) 30) ((-1 . -1120) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-483)) . T)) +(((-1207 . -146) T) ((-1207 . -555) 199241) ((-1207 . -969) T) ((-1207 . -1024) T) ((-1207 . -1059) T) ((-1207 . -663) T) ((-1207 . -961) T) ((-1207 . -590) 199228) ((-1207 . -588) 199200) ((-1207 . -104) T) ((-1207 . -25) T) ((-1207 . -72) T) ((-1207 . -13) T) ((-1207 . -1127) T) ((-1207 . -552) 199182) ((-1207 . -1012) T) ((-1207 . -23) T) ((-1207 . -21) T) ((-1207 . -968) 199169) ((-1207 . -963) 199156) ((-1207 . -82) 199141) ((-1207 . -317) T) ((-1207 . -553) 199123) ((-1207 . -1064) T) ((-1203 . -1012) T) ((-1203 . -552) 199090) ((-1203 . -1127) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -427) 199072) ((-1203 . -555) 199054) ((-1202 . -1200) 199033) ((-1202 . -950) 199010) ((-1202 . -555) 198959) ((-1202 . -961) T) ((-1202 . -663) T) ((-1202 . -1059) T) ((-1202 . -1024) T) ((-1202 . -969) T) ((-1202 . -21) T) ((-1202 . -588) 198918) ((-1202 . -23) T) ((-1202 . -1012) T) ((-1202 . -552) 198900) ((-1202 . -1127) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -590) 198874) ((-1202 . -1192) 198858) ((-1202 . -654) 198828) ((-1202 . -582) 198798) ((-1202 . -968) 198782) ((-1202 . -963) 198766) ((-1202 . -82) 198745) ((-1202 . -38) 198715) ((-1202 . -1197) 198694) ((-1201 . -961) T) ((-1201 . -663) T) ((-1201 . -1059) T) ((-1201 . -1024) T) ((-1201 . -969) T) ((-1201 . -21) T) ((-1201 . -588) 198653) ((-1201 . -23) T) ((-1201 . -1012) T) ((-1201 . -552) 198635) ((-1201 . -1127) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -590) 198609) ((-1201 . -555) 198565) ((-1201 . -1192) 198549) ((-1201 . -654) 198519) ((-1201 . -582) 198489) ((-1201 . -968) 198473) ((-1201 . -963) 198457) ((-1201 . -82) 198436) ((-1201 . -38) 198406) ((-1201 . -332) 198385) ((-1201 . -950) 198369) ((-1199 . -1200) 198345) ((-1199 . -950) 198319) ((-1199 . -555) 198265) ((-1199 . -961) T) ((-1199 . -663) T) ((-1199 . -1059) T) ((-1199 . -1024) T) ((-1199 . -969) T) ((-1199 . -21) T) ((-1199 . -588) 198224) ((-1199 . -23) T) ((-1199 . -1012) T) ((-1199 . -552) 198206) ((-1199 . -1127) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -590) 198180) ((-1199 . -1192) 198164) ((-1199 . -654) 198134) ((-1199 . -582) 198104) ((-1199 . -968) 198088) ((-1199 . -963) 198072) ((-1199 . -82) 198051) ((-1199 . -38) 198021) ((-1199 . -1197) 197997) ((-1198 . -1200) 197976) ((-1198 . -950) 197933) ((-1198 . -555) 197862) ((-1198 . -961) T) ((-1198 . -663) T) ((-1198 . -1059) T) ((-1198 . -1024) T) ((-1198 . -969) T) ((-1198 . -21) T) ((-1198 . -588) 197821) ((-1198 . -23) T) ((-1198 . -1012) T) ((-1198 . -552) 197803) ((-1198 . -1127) T) ((-1198 . -13) T) ((-1198 . -72) T) ((-1198 . -25) T) ((-1198 . -104) T) ((-1198 . -590) 197777) ((-1198 . -1192) 197761) ((-1198 . -654) 197731) ((-1198 . -582) 197701) ((-1198 . -968) 197685) ((-1198 . -963) 197669) ((-1198 . -82) 197648) ((-1198 . -38) 197618) ((-1198 . -1197) 197597) ((-1198 . -332) 197569) ((-1193 . -332) 197541) ((-1193 . -555) 197490) ((-1193 . -950) 197467) ((-1193 . -582) 197437) ((-1193 . -654) 197407) ((-1193 . -590) 197381) ((-1193 . -588) 197340) ((-1193 . -104) T) ((-1193 . -25) T) ((-1193 . -72) T) ((-1193 . -13) T) ((-1193 . -1127) T) ((-1193 . -552) 197322) ((-1193 . -1012) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -968) 197306) ((-1193 . -963) 197290) ((-1193 . -82) 197269) ((-1193 . -1200) 197248) ((-1193 . -961) T) ((-1193 . -663) T) ((-1193 . -1059) T) ((-1193 . -1024) T) ((-1193 . -969) T) ((-1193 . -1192) 197232) ((-1193 . -38) 197202) ((-1193 . -1197) 197181) ((-1191 . -1122) 197150) ((-1191 . -552) 197112) ((-1191 . -124) 197096) ((-1191 . -34) T) ((-1191 . -13) T) ((-1191 . -1127) T) ((-1191 . -72) T) ((-1191 . -259) 197034) ((-1191 . -452) 196967) ((-1191 . -1012) T) ((-1191 . -426) 196951) ((-1191 . -553) 196912) ((-1191 . -889) 196881) ((-1190 . -961) T) ((-1190 . -663) T) ((-1190 . -1059) T) ((-1190 . -1024) T) ((-1190 . -969) T) ((-1190 . -21) T) ((-1190 . -588) 196826) ((-1190 . -23) T) ((-1190 . -1012) T) ((-1190 . -552) 196795) ((-1190 . -1127) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -25) T) ((-1190 . -104) T) ((-1190 . -590) 196755) ((-1190 . -555) 196697) ((-1190 . -427) 196681) ((-1190 . -38) 196651) ((-1190 . -82) 196616) ((-1190 . -963) 196586) ((-1190 . -968) 196556) ((-1190 . -582) 196526) ((-1190 . -654) 196496) ((-1189 . -994) T) ((-1189 . -427) 196477) ((-1189 . -552) 196443) ((-1189 . -555) 196424) ((-1189 . -1012) T) ((-1189 . -1127) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1188 . -994) T) ((-1188 . -427) 196405) ((-1188 . -552) 196371) ((-1188 . -555) 196352) ((-1188 . -1012) T) ((-1188 . -1127) T) ((-1188 . -13) T) ((-1188 . -72) T) ((-1188 . -64) T) ((-1183 . -552) 196334) ((-1181 . -1012) T) ((-1181 . -552) 196316) ((-1181 . -1127) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1180 . -1012) T) ((-1180 . -552) 196298) ((-1180 . -1127) T) ((-1180 . -13) T) ((-1180 . -72) T) ((-1177 . -1176) 196282) ((-1177 . -321) 196266) ((-1177 . -759) 196245) ((-1177 . -756) 196224) ((-1177 . -124) 196208) ((-1177 . -34) T) ((-1177 . -13) T) ((-1177 . -1127) T) ((-1177 . -72) 196142) ((-1177 . -552) 196057) ((-1177 . -259) 195995) ((-1177 . -452) 195928) ((-1177 . -1012) 195881) ((-1177 . -426) 195865) ((-1177 . -553) 195826) ((-1177 . -241) 195778) ((-1177 . -538) 195755) ((-1177 . -243) 195732) ((-1177 . -593) 195716) ((-1177 . -19) 195700) ((-1174 . -1012) T) ((-1174 . -552) 195666) ((-1174 . -1127) T) ((-1174 . -13) T) ((-1174 . -72) T) ((-1167 . -1170) 195650) ((-1167 . -190) 195609) ((-1167 . -555) 195491) ((-1167 . -590) 195416) ((-1167 . -588) 195326) ((-1167 . -104) T) ((-1167 . -25) T) ((-1167 . -72) T) ((-1167 . -552) 195308) ((-1167 . -1012) T) ((-1167 . -23) T) ((-1167 . -21) T) ((-1167 . -969) T) ((-1167 . -1024) T) ((-1167 . -1059) T) ((-1167 . -663) T) ((-1167 . -961) T) ((-1167 . -186) 195261) ((-1167 . -13) T) ((-1167 . -1127) T) ((-1167 . -189) 195220) ((-1167 . -241) 195185) ((-1167 . -809) 195098) ((-1167 . -806) 194986) ((-1167 . -811) 194899) ((-1167 . -886) 194869) ((-1167 . -38) 194766) ((-1167 . -82) 194631) ((-1167 . -963) 194517) ((-1167 . -968) 194403) ((-1167 . -582) 194300) ((-1167 . -654) 194197) ((-1167 . -118) 194176) ((-1167 . -120) 194155) ((-1167 . -146) 194109) ((-1167 . -494) 194088) ((-1167 . -245) 194067) ((-1167 . -47) 194044) ((-1167 . -1156) 194021) ((-1167 . -35) 193987) ((-1167 . -66) 193953) ((-1167 . -239) 193919) ((-1167 . -430) 193885) ((-1167 . -1116) 193851) ((-1167 . -1113) 193817) ((-1167 . -915) 193783) ((-1164 . -276) 193727) ((-1164 . -950) 193693) ((-1164 . -352) 193659) ((-1164 . -38) 193516) ((-1164 . -555) 193390) ((-1164 . -590) 193279) ((-1164 . -588) 193153) ((-1164 . -969) T) ((-1164 . -1024) T) ((-1164 . -1059) T) ((-1164 . -663) T) ((-1164 . -961) T) ((-1164 . -82) 193003) ((-1164 . -963) 192892) ((-1164 . -968) 192781) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1012) T) ((-1164 . -552) 192763) ((-1164 . -1127) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -582) 192620) ((-1164 . -654) 192477) ((-1164 . -118) 192438) ((-1164 . -120) 192399) ((-1164 . -146) T) ((-1164 . -494) T) ((-1164 . -245) T) ((-1164 . -47) 192343) ((-1163 . -1162) 192322) ((-1163 . -311) 192301) ((-1163 . -1132) 192280) ((-1163 . -832) 192259) ((-1163 . -494) 192213) ((-1163 . -146) 192147) ((-1163 . -555) 191966) ((-1163 . -654) 191813) ((-1163 . -582) 191660) ((-1163 . -38) 191507) ((-1163 . -389) 191486) ((-1163 . -257) 191465) ((-1163 . -590) 191365) ((-1163 . -588) 191250) ((-1163 . -969) T) ((-1163 . -1024) T) ((-1163 . -1059) T) ((-1163 . -663) T) ((-1163 . -961) T) ((-1163 . -82) 191070) ((-1163 . -963) 190911) ((-1163 . -968) 190752) ((-1163 . -21) T) ((-1163 . -23) T) ((-1163 . -1012) T) ((-1163 . -552) 190734) ((-1163 . -1127) T) ((-1163 . -13) T) ((-1163 . -72) T) ((-1163 . -25) T) ((-1163 . -104) T) ((-1163 . -245) 190688) ((-1163 . -201) 190667) ((-1163 . -915) 190633) ((-1163 . -1113) 190599) ((-1163 . -1116) 190565) ((-1163 . -430) 190531) ((-1163 . -239) 190497) ((-1163 . -66) 190463) ((-1163 . -35) 190429) ((-1163 . -1156) 190399) ((-1163 . -47) 190369) ((-1163 . -120) 190348) ((-1163 . -118) 190327) ((-1163 . -886) 190290) ((-1163 . -811) 190196) ((-1163 . -806) 190100) ((-1163 . -809) 190006) ((-1163 . -241) 189964) ((-1163 . -189) 189916) ((-1163 . -186) 189862) ((-1163 . -190) 189814) ((-1163 . -1160) 189798) ((-1163 . -950) 189782) ((-1158 . -1162) 189743) ((-1158 . -311) 189722) ((-1158 . -1132) 189701) ((-1158 . -832) 189680) ((-1158 . -494) 189634) ((-1158 . -146) 189568) ((-1158 . -555) 189317) ((-1158 . -654) 189164) ((-1158 . -582) 189011) ((-1158 . -38) 188858) ((-1158 . -389) 188837) ((-1158 . -257) 188816) ((-1158 . -590) 188716) ((-1158 . -588) 188601) ((-1158 . -969) T) ((-1158 . -1024) T) ((-1158 . -1059) T) ((-1158 . -663) T) ((-1158 . -961) T) ((-1158 . -82) 188421) ((-1158 . -963) 188262) ((-1158 . -968) 188103) ((-1158 . -21) T) ((-1158 . -23) T) ((-1158 . -1012) T) ((-1158 . -552) 188085) ((-1158 . -1127) T) ((-1158 . -13) T) ((-1158 . -72) T) ((-1158 . -25) T) ((-1158 . -104) T) ((-1158 . -245) 188039) ((-1158 . -201) 188018) ((-1158 . -915) 187984) ((-1158 . -1113) 187950) ((-1158 . -1116) 187916) ((-1158 . -430) 187882) ((-1158 . -239) 187848) ((-1158 . -66) 187814) ((-1158 . -35) 187780) ((-1158 . -1156) 187750) ((-1158 . -47) 187720) ((-1158 . -120) 187699) ((-1158 . -118) 187678) ((-1158 . -886) 187641) ((-1158 . -811) 187547) ((-1158 . -806) 187428) ((-1158 . -809) 187334) ((-1158 . -241) 187292) ((-1158 . -189) 187244) ((-1158 . -186) 187190) ((-1158 . -190) 187142) ((-1158 . -1160) 187126) ((-1158 . -950) 187061) ((-1146 . -1153) 187045) ((-1146 . -1064) 187023) ((-1146 . -553) NIL) ((-1146 . -259) 187010) ((-1146 . -452) 186958) ((-1146 . -276) 186935) ((-1146 . -950) 186818) ((-1146 . -352) 186802) ((-1146 . -38) 186634) ((-1146 . -82) 186439) ((-1146 . -963) 186265) ((-1146 . -968) 186091) ((-1146 . -588) 186001) ((-1146 . -590) 185890) ((-1146 . -582) 185722) ((-1146 . -654) 185554) ((-1146 . -555) 185310) ((-1146 . -118) 185289) ((-1146 . -120) 185268) ((-1146 . -47) 185245) ((-1146 . -326) 185229) ((-1146 . -580) 185177) ((-1146 . -809) 185121) ((-1146 . -806) 185028) ((-1146 . -811) 184939) ((-1146 . -796) NIL) ((-1146 . -821) 184918) ((-1146 . -1132) 184897) ((-1146 . -861) 184867) ((-1146 . -832) 184846) ((-1146 . -494) 184760) ((-1146 . -245) 184674) ((-1146 . -146) 184568) ((-1146 . -389) 184502) ((-1146 . -257) 184481) ((-1146 . -241) 184408) ((-1146 . -190) T) ((-1146 . -104) T) ((-1146 . -25) T) ((-1146 . -72) T) ((-1146 . -552) 184390) ((-1146 . -1012) T) ((-1146 . -23) T) ((-1146 . -21) T) ((-1146 . -969) T) ((-1146 . -1024) T) ((-1146 . -1059) T) ((-1146 . -663) T) ((-1146 . -961) T) ((-1146 . -186) 184377) ((-1146 . -13) T) ((-1146 . -1127) T) ((-1146 . -189) T) ((-1146 . -225) 184361) ((-1146 . -184) 184345) ((-1144 . -1005) 184329) ((-1144 . -557) 184313) ((-1144 . -1012) 184291) ((-1144 . -552) 184258) ((-1144 . -1127) 184236) ((-1144 . -13) 184214) ((-1144 . -72) 184192) ((-1144 . -1006) 184149) ((-1142 . -1141) 184128) ((-1142 . -915) 184094) ((-1142 . -1113) 184060) ((-1142 . -1116) 184026) ((-1142 . -430) 183992) ((-1142 . -239) 183958) ((-1142 . -66) 183924) ((-1142 . -35) 183890) ((-1142 . -1156) 183867) ((-1142 . -47) 183844) ((-1142 . -555) 183599) ((-1142 . -654) 183419) ((-1142 . -582) 183239) ((-1142 . -590) 183050) ((-1142 . -588) 182908) ((-1142 . -968) 182722) ((-1142 . -963) 182536) ((-1142 . -82) 182324) ((-1142 . -38) 182144) ((-1142 . -886) 182114) ((-1142 . -241) 182014) ((-1142 . -1139) 181998) ((-1142 . -969) T) ((-1142 . -1024) T) ((-1142 . -1059) T) ((-1142 . -663) T) ((-1142 . -961) T) ((-1142 . -21) T) ((-1142 . -23) T) ((-1142 . -1012) T) ((-1142 . -552) 181980) ((-1142 . -1127) T) ((-1142 . -13) T) ((-1142 . -72) T) ((-1142 . -25) T) ((-1142 . -104) T) ((-1142 . -118) 181908) ((-1142 . -120) 181836) ((-1142 . -553) 181509) ((-1142 . -184) 181479) ((-1142 . -809) 181333) ((-1142 . -811) 181133) ((-1142 . -806) 180931) ((-1142 . -225) 180901) ((-1142 . -189) 180763) ((-1142 . -186) 180619) ((-1142 . -190) 180527) ((-1142 . -311) 180506) ((-1142 . -1132) 180485) ((-1142 . -832) 180464) ((-1142 . -494) 180418) ((-1142 . -146) 180352) ((-1142 . -389) 180331) ((-1142 . -257) 180310) ((-1142 . -245) 180264) ((-1142 . -201) 180243) ((-1142 . -287) 180213) ((-1142 . -452) 180073) ((-1142 . -259) 180012) ((-1142 . -326) 179982) ((-1142 . -580) 179890) ((-1142 . -340) 179860) ((-1142 . -796) 179733) ((-1142 . -740) 179686) ((-1142 . -714) 179639) ((-1142 . -716) 179592) ((-1142 . -756) 179494) ((-1142 . -759) 179396) ((-1142 . -718) 179349) ((-1142 . -721) 179302) ((-1142 . -755) 179255) ((-1142 . -794) 179225) ((-1142 . -821) 179178) ((-1142 . -933) 179131) ((-1142 . -950) 178920) ((-1142 . -1064) 178872) ((-1142 . -904) 178842) ((-1137 . -1141) 178803) ((-1137 . -915) 178769) ((-1137 . -1113) 178735) ((-1137 . -1116) 178701) ((-1137 . -430) 178667) ((-1137 . -239) 178633) ((-1137 . -66) 178599) ((-1137 . -35) 178565) ((-1137 . -1156) 178542) ((-1137 . -47) 178519) ((-1137 . -555) 178320) ((-1137 . -654) 178122) ((-1137 . -582) 177924) ((-1137 . -590) 177779) ((-1137 . -588) 177619) ((-1137 . -968) 177415) ((-1137 . -963) 177211) ((-1137 . -82) 176963) ((-1137 . -38) 176765) ((-1137 . -886) 176735) ((-1137 . -241) 176563) ((-1137 . -1139) 176547) ((-1137 . -969) T) ((-1137 . -1024) T) ((-1137 . -1059) T) ((-1137 . -663) T) ((-1137 . -961) T) ((-1137 . -21) T) ((-1137 . -23) T) ((-1137 . -1012) T) ((-1137 . -552) 176529) ((-1137 . -1127) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -25) T) ((-1137 . -104) T) ((-1137 . -118) 176439) ((-1137 . -120) 176349) ((-1137 . -553) NIL) ((-1137 . -184) 176301) ((-1137 . -809) 176137) ((-1137 . -811) 175901) ((-1137 . -806) 175640) ((-1137 . -225) 175592) ((-1137 . -189) 175418) ((-1137 . -186) 175238) ((-1137 . -190) 175128) ((-1137 . -311) 175107) ((-1137 . -1132) 175086) ((-1137 . -832) 175065) ((-1137 . -494) 175019) ((-1137 . -146) 174953) ((-1137 . -389) 174932) ((-1137 . -257) 174911) ((-1137 . -245) 174865) ((-1137 . -201) 174844) ((-1137 . -287) 174796) ((-1137 . -452) 174530) ((-1137 . -259) 174415) ((-1137 . -326) 174367) ((-1137 . -580) 174319) ((-1137 . -340) 174271) ((-1137 . -796) NIL) ((-1137 . -740) NIL) ((-1137 . -714) NIL) ((-1137 . -716) NIL) ((-1137 . -756) NIL) ((-1137 . -759) NIL) ((-1137 . -718) NIL) ((-1137 . -721) NIL) ((-1137 . -755) NIL) ((-1137 . -794) 174223) ((-1137 . -821) NIL) ((-1137 . -933) NIL) ((-1137 . -950) 174189) ((-1137 . -1064) NIL) ((-1137 . -904) 174141) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1012) T) ((-1136 . -552) 174123) ((-1136 . -1127) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -317) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1012) T) ((-1135 . -552) 174105) ((-1135 . -1127) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -317) T) ((-1135 . -604) T) ((-1134 . -752) T) ((-1134 . -759) T) ((-1134 . -756) T) ((-1134 . -1012) T) ((-1134 . -552) 174087) ((-1134 . -1127) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -317) T) ((-1134 . -604) T) ((-1133 . -752) T) ((-1133 . -759) T) ((-1133 . -756) T) ((-1133 . -1012) T) ((-1133 . -552) 174069) ((-1133 . -1127) T) ((-1133 . -13) T) ((-1133 . -72) T) ((-1133 . -317) T) ((-1133 . -604) T) ((-1128 . -994) T) ((-1128 . -427) 174050) ((-1128 . -552) 174016) ((-1128 . -555) 173997) ((-1128 . -1012) T) ((-1128 . -1127) T) ((-1128 . -13) T) ((-1128 . -72) T) ((-1128 . -64) T) ((-1125 . -427) 173974) ((-1125 . -552) 173915) ((-1125 . -555) 173892) ((-1125 . -1012) 173870) ((-1125 . -1127) 173848) ((-1125 . -13) 173826) ((-1125 . -72) 173804) ((-1120 . -679) 173780) ((-1120 . -35) 173746) ((-1120 . -66) 173712) ((-1120 . -239) 173678) ((-1120 . -430) 173644) ((-1120 . -1116) 173610) ((-1120 . -1113) 173576) ((-1120 . -915) 173542) ((-1120 . -47) 173511) ((-1120 . -38) 173408) ((-1120 . -582) 173305) ((-1120 . -654) 173202) ((-1120 . -555) 173084) ((-1120 . -245) 173063) ((-1120 . -494) 173042) ((-1120 . -82) 172907) ((-1120 . -963) 172793) ((-1120 . -968) 172679) ((-1120 . -146) 172633) ((-1120 . -120) 172612) ((-1120 . -118) 172591) ((-1120 . -590) 172516) ((-1120 . -588) 172426) ((-1120 . -886) 172387) ((-1120 . -811) 172368) ((-1120 . -1127) T) ((-1120 . -13) T) ((-1120 . -806) 172347) ((-1120 . -961) T) ((-1120 . -663) T) ((-1120 . -1059) T) ((-1120 . -1024) T) ((-1120 . -969) T) ((-1120 . -21) T) ((-1120 . -23) T) ((-1120 . -1012) T) ((-1120 . -552) 172329) ((-1120 . -72) T) ((-1120 . -25) T) ((-1120 . -104) T) ((-1120 . -809) 172310) ((-1120 . -452) 172277) ((-1120 . -259) 172264) ((-1114 . -923) 172248) ((-1114 . -34) T) ((-1114 . -13) T) ((-1114 . -1127) T) ((-1114 . -72) 172202) ((-1114 . -552) 172137) ((-1114 . -259) 172075) ((-1114 . -452) 172008) ((-1114 . -1012) 171986) ((-1114 . -426) 171970) ((-1109 . -313) 171944) ((-1109 . -72) T) ((-1109 . -13) T) ((-1109 . -1127) T) ((-1109 . -552) 171926) ((-1109 . -1012) T) ((-1107 . -1012) T) ((-1107 . -552) 171908) ((-1107 . -1127) T) ((-1107 . -13) T) ((-1107 . -72) T) ((-1107 . -555) 171890) ((-1102 . -747) 171874) ((-1102 . -72) T) ((-1102 . -13) T) ((-1102 . -1127) T) ((-1102 . -552) 171856) ((-1102 . -1012) T) ((-1100 . -1105) 171835) ((-1100 . -183) 171783) ((-1100 . -76) 171731) ((-1100 . -259) 171529) ((-1100 . -452) 171281) ((-1100 . -426) 171216) ((-1100 . -124) 171164) ((-1100 . -553) NIL) ((-1100 . -193) 171112) ((-1100 . -549) 171091) ((-1100 . -243) 171070) ((-1100 . -1127) T) ((-1100 . -13) T) ((-1100 . -241) 171049) ((-1100 . -1012) T) ((-1100 . -552) 171031) ((-1100 . -72) T) ((-1100 . -34) T) ((-1100 . -538) 171010) ((-1096 . -1012) T) ((-1096 . -552) 170992) ((-1096 . -1127) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1095 . -752) T) ((-1095 . -759) T) ((-1095 . -756) T) ((-1095 . -1012) T) ((-1095 . -552) 170974) ((-1095 . -1127) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -317) T) ((-1095 . -604) T) ((-1094 . -752) T) ((-1094 . -759) T) ((-1094 . -756) T) ((-1094 . -1012) T) ((-1094 . -552) 170956) ((-1094 . -1127) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -317) T) ((-1093 . -1173) T) ((-1093 . -1012) T) ((-1093 . -552) 170923) ((-1093 . -1127) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -950) 170859) ((-1093 . -555) 170795) ((-1092 . -552) 170777) ((-1091 . -552) 170759) ((-1090 . -276) 170736) ((-1090 . -950) 170634) ((-1090 . -352) 170618) ((-1090 . -38) 170515) ((-1090 . -555) 170372) ((-1090 . -590) 170297) ((-1090 . -588) 170207) ((-1090 . -969) T) ((-1090 . -1024) T) ((-1090 . -1059) T) ((-1090 . -663) T) ((-1090 . -961) T) ((-1090 . -82) 170072) ((-1090 . -963) 169958) ((-1090 . -968) 169844) ((-1090 . -21) T) ((-1090 . -23) T) ((-1090 . -1012) T) ((-1090 . -552) 169826) ((-1090 . -1127) T) ((-1090 . -13) T) ((-1090 . -72) T) ((-1090 . -25) T) ((-1090 . -104) T) ((-1090 . -582) 169723) ((-1090 . -654) 169620) ((-1090 . -118) 169599) ((-1090 . -120) 169578) ((-1090 . -146) 169532) ((-1090 . -494) 169511) ((-1090 . -245) 169490) ((-1090 . -47) 169467) ((-1088 . -756) T) ((-1088 . -552) 169449) ((-1088 . -1012) T) ((-1088 . -72) T) ((-1088 . -13) T) ((-1088 . -1127) T) ((-1088 . -759) T) ((-1088 . -553) 169371) ((-1088 . -555) 169337) ((-1088 . -950) 169319) ((-1088 . -796) 169286) ((-1087 . -1170) 169270) ((-1087 . -190) 169229) ((-1087 . -555) 169111) ((-1087 . -590) 169036) ((-1087 . -588) 168946) ((-1087 . -104) T) ((-1087 . -25) T) ((-1087 . -72) T) ((-1087 . -552) 168928) ((-1087 . -1012) T) ((-1087 . -23) T) ((-1087 . -21) T) ((-1087 . -969) T) ((-1087 . -1024) T) ((-1087 . -1059) T) ((-1087 . -663) T) ((-1087 . -961) T) ((-1087 . -186) 168881) ((-1087 . -13) T) ((-1087 . -1127) T) ((-1087 . -189) 168840) ((-1087 . -241) 168805) ((-1087 . -809) 168718) ((-1087 . -806) 168606) ((-1087 . -811) 168519) ((-1087 . -886) 168489) ((-1087 . -38) 168386) ((-1087 . -82) 168251) ((-1087 . -963) 168137) ((-1087 . -968) 168023) ((-1087 . -582) 167920) ((-1087 . -654) 167817) ((-1087 . -118) 167796) ((-1087 . -120) 167775) ((-1087 . -146) 167729) ((-1087 . -494) 167708) ((-1087 . -245) 167687) ((-1087 . -47) 167664) ((-1087 . -1156) 167641) ((-1087 . -35) 167607) ((-1087 . -66) 167573) ((-1087 . -239) 167539) ((-1087 . -430) 167505) ((-1087 . -1116) 167471) ((-1087 . -1113) 167437) ((-1087 . -915) 167403) ((-1086 . -1162) 167364) ((-1086 . -311) 167343) ((-1086 . -1132) 167322) ((-1086 . -832) 167301) ((-1086 . -494) 167255) ((-1086 . -146) 167189) ((-1086 . -555) 166938) ((-1086 . -654) 166785) ((-1086 . -582) 166632) ((-1086 . -38) 166479) ((-1086 . -389) 166458) ((-1086 . -257) 166437) ((-1086 . -590) 166337) ((-1086 . -588) 166222) ((-1086 . -969) T) ((-1086 . -1024) T) ((-1086 . -1059) T) ((-1086 . -663) T) ((-1086 . -961) T) ((-1086 . -82) 166042) ((-1086 . -963) 165883) ((-1086 . -968) 165724) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1012) T) ((-1086 . -552) 165706) ((-1086 . -1127) T) ((-1086 . -13) T) ((-1086 . -72) T) ((-1086 . -25) T) ((-1086 . -104) T) ((-1086 . -245) 165660) ((-1086 . -201) 165639) ((-1086 . -915) 165605) ((-1086 . -1113) 165571) ((-1086 . -1116) 165537) ((-1086 . -430) 165503) ((-1086 . -239) 165469) ((-1086 . -66) 165435) ((-1086 . -35) 165401) ((-1086 . -1156) 165371) ((-1086 . -47) 165341) ((-1086 . -120) 165320) ((-1086 . -118) 165299) ((-1086 . -886) 165262) ((-1086 . -811) 165168) ((-1086 . -806) 165049) ((-1086 . -809) 164955) ((-1086 . -241) 164913) ((-1086 . -189) 164865) ((-1086 . -186) 164811) ((-1086 . -190) 164763) ((-1086 . -1160) 164747) ((-1086 . -950) 164682) ((-1083 . -1153) 164666) ((-1083 . -1064) 164644) ((-1083 . -553) NIL) ((-1083 . -259) 164631) ((-1083 . -452) 164579) ((-1083 . -276) 164556) ((-1083 . -950) 164439) ((-1083 . -352) 164423) ((-1083 . -38) 164255) ((-1083 . -82) 164060) ((-1083 . -963) 163886) ((-1083 . -968) 163712) ((-1083 . -588) 163622) ((-1083 . -590) 163511) ((-1083 . -582) 163343) ((-1083 . -654) 163175) ((-1083 . -555) 162952) ((-1083 . -118) 162931) ((-1083 . -120) 162910) ((-1083 . -47) 162887) ((-1083 . -326) 162871) ((-1083 . -580) 162819) ((-1083 . -809) 162763) ((-1083 . -806) 162670) ((-1083 . -811) 162581) ((-1083 . -796) NIL) ((-1083 . -821) 162560) ((-1083 . -1132) 162539) ((-1083 . -861) 162509) ((-1083 . -832) 162488) ((-1083 . -494) 162402) ((-1083 . -245) 162316) ((-1083 . -146) 162210) ((-1083 . -389) 162144) ((-1083 . -257) 162123) ((-1083 . -241) 162050) ((-1083 . -190) T) ((-1083 . -104) T) ((-1083 . -25) T) ((-1083 . -72) T) ((-1083 . -552) 162032) ((-1083 . -1012) T) ((-1083 . -23) T) ((-1083 . -21) T) ((-1083 . -969) T) ((-1083 . -1024) T) ((-1083 . -1059) T) ((-1083 . -663) T) ((-1083 . -961) T) ((-1083 . -186) 162019) ((-1083 . -13) T) ((-1083 . -1127) T) ((-1083 . -189) T) ((-1083 . -225) 162003) ((-1083 . -184) 161987) ((-1080 . -1141) 161948) ((-1080 . -915) 161914) ((-1080 . -1113) 161880) ((-1080 . -1116) 161846) ((-1080 . -430) 161812) ((-1080 . -239) 161778) ((-1080 . -66) 161744) ((-1080 . -35) 161710) ((-1080 . -1156) 161687) ((-1080 . -47) 161664) ((-1080 . -555) 161465) ((-1080 . -654) 161267) ((-1080 . -582) 161069) ((-1080 . -590) 160924) ((-1080 . -588) 160764) ((-1080 . -968) 160560) ((-1080 . -963) 160356) ((-1080 . -82) 160108) ((-1080 . -38) 159910) ((-1080 . -886) 159880) ((-1080 . -241) 159708) ((-1080 . -1139) 159692) ((-1080 . -969) T) ((-1080 . -1024) T) ((-1080 . -1059) T) ((-1080 . -663) T) ((-1080 . -961) T) ((-1080 . -21) T) ((-1080 . -23) T) ((-1080 . -1012) T) ((-1080 . -552) 159674) ((-1080 . -1127) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -25) T) ((-1080 . -104) T) ((-1080 . -118) 159584) ((-1080 . -120) 159494) ((-1080 . -553) NIL) ((-1080 . -184) 159446) ((-1080 . -809) 159282) ((-1080 . -811) 159046) ((-1080 . -806) 158785) ((-1080 . -225) 158737) ((-1080 . -189) 158563) ((-1080 . -186) 158383) ((-1080 . -190) 158273) ((-1080 . -311) 158252) ((-1080 . -1132) 158231) ((-1080 . -832) 158210) ((-1080 . -494) 158164) ((-1080 . -146) 158098) ((-1080 . -389) 158077) ((-1080 . -257) 158056) ((-1080 . -245) 158010) ((-1080 . -201) 157989) ((-1080 . -287) 157941) ((-1080 . -452) 157675) ((-1080 . -259) 157560) ((-1080 . -326) 157512) ((-1080 . -580) 157464) ((-1080 . -340) 157416) ((-1080 . -796) NIL) ((-1080 . -740) NIL) ((-1080 . -714) NIL) ((-1080 . -716) NIL) ((-1080 . -756) NIL) ((-1080 . -759) NIL) ((-1080 . -718) NIL) ((-1080 . -721) NIL) ((-1080 . -755) NIL) ((-1080 . -794) 157368) ((-1080 . -821) NIL) ((-1080 . -933) NIL) ((-1080 . -950) 157334) ((-1080 . -1064) NIL) ((-1080 . -904) 157286) ((-1079 . -994) T) ((-1079 . -427) 157267) ((-1079 . -552) 157233) ((-1079 . -555) 157214) ((-1079 . -1012) T) ((-1079 . -1127) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1079 . -64) T) ((-1078 . -1012) T) ((-1078 . -552) 157196) ((-1078 . -1127) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1077 . -1012) T) ((-1077 . -552) 157178) ((-1077 . -1127) T) ((-1077 . -13) T) ((-1077 . -72) T) ((-1072 . -1105) 157154) ((-1072 . -183) 157099) ((-1072 . -76) 157044) ((-1072 . -259) 156833) ((-1072 . -452) 156573) ((-1072 . -426) 156505) ((-1072 . -124) 156450) ((-1072 . -553) NIL) ((-1072 . -193) 156395) ((-1072 . -549) 156371) ((-1072 . -243) 156347) ((-1072 . -1127) T) ((-1072 . -13) T) ((-1072 . -241) 156323) ((-1072 . -1012) T) ((-1072 . -552) 156305) ((-1072 . -72) T) ((-1072 . -34) T) ((-1072 . -538) 156281) ((-1071 . -1056) T) ((-1071 . -321) 156263) ((-1071 . -759) T) ((-1071 . -756) T) ((-1071 . -124) 156245) ((-1071 . -34) T) ((-1071 . -13) T) ((-1071 . -1127) T) ((-1071 . -72) T) ((-1071 . -552) 156227) ((-1071 . -259) NIL) ((-1071 . -452) NIL) ((-1071 . -1012) T) ((-1071 . -426) 156209) ((-1071 . -553) NIL) ((-1071 . -241) 156159) ((-1071 . -538) 156134) ((-1071 . -243) 156109) ((-1071 . -593) 156091) ((-1071 . -19) 156073) ((-1067 . -616) 156057) ((-1067 . -593) 156041) ((-1067 . -243) 156018) ((-1067 . -241) 155970) ((-1067 . -538) 155947) ((-1067 . -553) 155908) ((-1067 . -426) 155892) ((-1067 . -1012) 155870) ((-1067 . -452) 155803) ((-1067 . -259) 155741) ((-1067 . -552) 155676) ((-1067 . -72) 155630) ((-1067 . -1127) T) ((-1067 . -13) T) ((-1067 . -34) T) ((-1067 . -124) 155614) ((-1067 . -1166) 155598) ((-1067 . -923) 155582) ((-1067 . -1062) 155566) ((-1067 . -555) 155543) ((-1065 . -994) T) ((-1065 . -427) 155524) ((-1065 . -552) 155490) ((-1065 . -555) 155471) ((-1065 . -1012) T) ((-1065 . -1127) T) ((-1065 . -13) T) ((-1065 . -72) T) ((-1065 . -64) T) ((-1063 . -1105) 155450) ((-1063 . -183) 155398) ((-1063 . -76) 155346) ((-1063 . -259) 155144) ((-1063 . -452) 154896) ((-1063 . -426) 154831) ((-1063 . -124) 154779) ((-1063 . -553) NIL) ((-1063 . -193) 154727) ((-1063 . -549) 154706) ((-1063 . -243) 154685) ((-1063 . -1127) T) ((-1063 . -13) T) ((-1063 . -241) 154664) ((-1063 . -1012) T) ((-1063 . -552) 154646) ((-1063 . -72) T) ((-1063 . -34) T) ((-1063 . -538) 154625) ((-1060 . -1033) 154609) ((-1060 . -426) 154593) ((-1060 . -1012) 154571) ((-1060 . -452) 154504) ((-1060 . -259) 154442) ((-1060 . -552) 154377) ((-1060 . -72) 154331) ((-1060 . -1127) T) ((-1060 . -13) T) ((-1060 . -34) T) ((-1060 . -76) 154315) ((-1058 . -1019) 154284) ((-1058 . -1122) 154253) ((-1058 . -552) 154215) ((-1058 . -124) 154199) ((-1058 . -34) T) ((-1058 . -13) T) ((-1058 . -1127) T) ((-1058 . -72) T) ((-1058 . -259) 154137) ((-1058 . -452) 154070) ((-1058 . -1012) T) ((-1058 . -426) 154054) ((-1058 . -553) 154015) ((-1058 . -889) 153984) ((-1058 . -982) 153953) ((-1054 . -1035) 153898) ((-1054 . -426) 153882) ((-1054 . -452) 153815) ((-1054 . -259) 153753) ((-1054 . -34) T) ((-1054 . -965) 153693) ((-1054 . -950) 153591) ((-1054 . -555) 153510) ((-1054 . -352) 153494) ((-1054 . -580) 153442) ((-1054 . -590) 153380) ((-1054 . -326) 153364) ((-1054 . -190) 153343) ((-1054 . -186) 153291) ((-1054 . -189) 153245) ((-1054 . -225) 153229) ((-1054 . -806) 153153) ((-1054 . -811) 153079) ((-1054 . -809) 153038) ((-1054 . -184) 153022) ((-1054 . -654) 152957) ((-1054 . -582) 152892) ((-1054 . -588) 152851) ((-1054 . -104) T) ((-1054 . -25) T) ((-1054 . -72) T) ((-1054 . -13) T) ((-1054 . -1127) T) ((-1054 . -552) 152813) ((-1054 . -1012) T) ((-1054 . -23) T) ((-1054 . -21) T) ((-1054 . -968) 152797) ((-1054 . -963) 152781) ((-1054 . -82) 152760) ((-1054 . -961) T) ((-1054 . -663) T) ((-1054 . -1059) T) ((-1054 . -1024) T) ((-1054 . -969) T) ((-1054 . -38) 152720) ((-1054 . -553) 152681) ((-1053 . -923) 152652) ((-1053 . -34) T) ((-1053 . -13) T) ((-1053 . -1127) T) ((-1053 . -72) T) ((-1053 . -552) 152634) ((-1053 . -259) 152560) ((-1053 . -452) 152468) ((-1053 . -1012) T) ((-1053 . -426) 152439) ((-1052 . -1012) T) ((-1052 . -552) 152421) ((-1052 . -1127) T) ((-1052 . -13) T) ((-1052 . -72) T) ((-1047 . -1049) T) ((-1047 . -1173) T) ((-1047 . -64) T) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1127) T) ((-1047 . -552) 152387) ((-1047 . -1012) T) ((-1047 . -555) 152368) ((-1047 . -427) 152349) ((-1047 . -994) T) ((-1045 . -1046) 152333) ((-1045 . -72) T) ((-1045 . -13) T) ((-1045 . -1127) T) ((-1045 . -552) 152315) ((-1045 . -1012) T) ((-1038 . -679) 152294) ((-1038 . -35) 152260) ((-1038 . -66) 152226) ((-1038 . -239) 152192) ((-1038 . -430) 152158) ((-1038 . -1116) 152124) ((-1038 . -1113) 152090) ((-1038 . -915) 152056) ((-1038 . -47) 152028) ((-1038 . -38) 151925) ((-1038 . -582) 151822) ((-1038 . -654) 151719) ((-1038 . -555) 151601) ((-1038 . -245) 151580) ((-1038 . -494) 151559) ((-1038 . -82) 151424) ((-1038 . -963) 151310) ((-1038 . -968) 151196) ((-1038 . -146) 151150) ((-1038 . -120) 151129) ((-1038 . -118) 151108) ((-1038 . -590) 151033) ((-1038 . -588) 150943) ((-1038 . -886) 150910) ((-1038 . -811) 150894) ((-1038 . -1127) T) ((-1038 . -13) T) ((-1038 . -806) 150876) ((-1038 . -961) T) ((-1038 . -663) T) ((-1038 . -1059) T) ((-1038 . -1024) T) ((-1038 . -969) T) ((-1038 . -21) T) ((-1038 . -23) T) ((-1038 . -1012) T) ((-1038 . -552) 150858) ((-1038 . -72) T) ((-1038 . -25) T) ((-1038 . -104) T) ((-1038 . -809) 150842) ((-1038 . -452) 150812) ((-1038 . -259) 150799) ((-1037 . -861) 150766) ((-1037 . -555) 150565) ((-1037 . -950) 150450) ((-1037 . -1132) 150429) ((-1037 . -821) 150408) ((-1037 . -796) 150267) ((-1037 . -811) 150251) ((-1037 . -806) 150233) ((-1037 . -809) 150217) ((-1037 . -452) 150169) ((-1037 . -389) 150123) ((-1037 . -580) 150071) ((-1037 . -590) 149960) ((-1037 . -326) 149944) ((-1037 . -47) 149916) ((-1037 . -38) 149768) ((-1037 . -582) 149620) ((-1037 . -654) 149472) ((-1037 . -245) 149406) ((-1037 . -494) 149340) ((-1037 . -82) 149165) ((-1037 . -963) 149011) ((-1037 . -968) 148857) ((-1037 . -146) 148771) ((-1037 . -120) 148750) ((-1037 . -118) 148729) ((-1037 . -588) 148639) ((-1037 . -104) T) ((-1037 . -25) T) ((-1037 . -72) T) ((-1037 . -13) T) ((-1037 . -1127) T) ((-1037 . -552) 148621) ((-1037 . -1012) T) ((-1037 . -23) T) ((-1037 . -21) T) ((-1037 . -961) T) ((-1037 . -663) T) ((-1037 . -1059) T) ((-1037 . -1024) T) ((-1037 . -969) T) ((-1037 . -352) 148605) ((-1037 . -276) 148577) ((-1037 . -259) 148564) ((-1037 . -553) 148312) ((-1032 . -482) T) ((-1032 . -1132) T) ((-1032 . -1064) T) ((-1032 . -950) 148294) ((-1032 . -553) 148209) ((-1032 . -933) T) ((-1032 . -796) 148191) ((-1032 . -755) T) ((-1032 . -721) T) ((-1032 . -718) T) ((-1032 . -759) T) ((-1032 . -756) T) ((-1032 . -716) T) ((-1032 . -714) T) ((-1032 . -740) T) ((-1032 . -590) 148163) ((-1032 . -580) 148145) ((-1032 . -832) T) ((-1032 . -494) T) ((-1032 . -245) T) ((-1032 . -146) T) ((-1032 . -555) 148117) ((-1032 . -654) 148104) ((-1032 . -582) 148091) ((-1032 . -968) 148078) ((-1032 . -963) 148065) ((-1032 . -82) 148050) ((-1032 . -38) 148037) ((-1032 . -389) T) ((-1032 . -257) T) ((-1032 . -189) T) ((-1032 . -186) 148024) ((-1032 . -190) T) ((-1032 . -116) T) ((-1032 . -961) T) ((-1032 . -663) T) ((-1032 . -1059) T) ((-1032 . -1024) T) ((-1032 . -969) T) ((-1032 . -21) T) ((-1032 . -588) 147996) ((-1032 . -23) T) ((-1032 . -1012) T) ((-1032 . -552) 147978) ((-1032 . -1127) T) ((-1032 . -13) T) ((-1032 . -72) T) ((-1032 . -25) T) ((-1032 . -104) T) ((-1032 . -120) T) ((-1032 . -752) T) ((-1032 . -317) T) ((-1032 . -84) T) ((-1032 . -604) T) ((-1028 . -994) T) ((-1028 . -427) 147959) ((-1028 . -552) 147925) ((-1028 . -555) 147906) ((-1028 . -1012) T) ((-1028 . -1127) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1028 . -64) T) ((-1027 . -1012) T) ((-1027 . -552) 147888) ((-1027 . -1127) T) ((-1027 . -13) T) ((-1027 . -72) T) ((-1025 . -196) 147867) ((-1025 . -1185) 147837) ((-1025 . -721) 147816) ((-1025 . -718) 147795) ((-1025 . -759) 147749) ((-1025 . -756) 147703) ((-1025 . -716) 147682) ((-1025 . -717) 147661) ((-1025 . -654) 147606) ((-1025 . -582) 147531) ((-1025 . -243) 147508) ((-1025 . -241) 147485) ((-1025 . -426) 147469) ((-1025 . -452) 147402) ((-1025 . -259) 147340) ((-1025 . -34) T) ((-1025 . -538) 147317) ((-1025 . -950) 147146) ((-1025 . -555) 146950) ((-1025 . -352) 146919) ((-1025 . -580) 146827) ((-1025 . -590) 146666) ((-1025 . -326) 146636) ((-1025 . -317) 146615) ((-1025 . -190) 146568) ((-1025 . -588) 146356) ((-1025 . -969) 146335) ((-1025 . -1024) 146314) ((-1025 . -1059) 146293) ((-1025 . -663) 146272) ((-1025 . -961) 146251) ((-1025 . -186) 146147) ((-1025 . -189) 146049) ((-1025 . -225) 146019) ((-1025 . -806) 145891) ((-1025 . -811) 145765) ((-1025 . -809) 145698) ((-1025 . -184) 145668) ((-1025 . -552) 145365) ((-1025 . -968) 145290) ((-1025 . -963) 145195) ((-1025 . -82) 145115) ((-1025 . -104) 144990) ((-1025 . -25) 144827) ((-1025 . -72) 144564) ((-1025 . -13) T) ((-1025 . -1127) T) ((-1025 . -1012) 144320) ((-1025 . -23) 144176) ((-1025 . -21) 144091) ((-1021 . -1022) 144075) ((-1021 . |MappingCategory|) 144049) ((-1021 . -1127) T) ((-1021 . -80) 144033) ((-1021 . -1012) T) ((-1021 . -552) 144015) ((-1021 . -13) T) ((-1021 . -72) T) ((-1016 . -1015) 143979) ((-1016 . -72) T) ((-1016 . -552) 143961) ((-1016 . -1012) T) ((-1016 . -241) 143917) ((-1016 . -1127) T) ((-1016 . -13) T) ((-1016 . -557) 143832) ((-1014 . -1015) 143784) ((-1014 . -72) T) ((-1014 . -552) 143766) ((-1014 . -1012) T) ((-1014 . -241) 143722) ((-1014 . -1127) T) ((-1014 . -13) T) ((-1014 . -557) 143625) ((-1013 . -317) T) ((-1013 . -72) T) ((-1013 . -13) T) ((-1013 . -1127) T) ((-1013 . -552) 143607) ((-1013 . -1012) T) ((-1008 . -366) 143591) ((-1008 . -1010) 143575) ((-1008 . -317) 143554) ((-1008 . -193) 143538) ((-1008 . -553) 143499) ((-1008 . -124) 143483) ((-1008 . -426) 143467) ((-1008 . -1012) T) ((-1008 . -452) 143400) ((-1008 . -259) 143338) ((-1008 . -552) 143320) ((-1008 . -72) T) ((-1008 . -1127) T) ((-1008 . -13) T) ((-1008 . -34) T) ((-1008 . -76) 143304) ((-1008 . -183) 143288) ((-1007 . -994) T) ((-1007 . -427) 143269) ((-1007 . -552) 143235) ((-1007 . -555) 143216) ((-1007 . -1012) T) ((-1007 . -1127) T) ((-1007 . -13) T) ((-1007 . -72) T) ((-1007 . -64) T) ((-1003 . -1127) T) ((-1003 . -13) T) ((-1003 . -1012) 143186) ((-1003 . -552) 143145) ((-1003 . -72) 143115) ((-1002 . -994) T) ((-1002 . -427) 143096) ((-1002 . -552) 143062) ((-1002 . -555) 143043) ((-1002 . -1012) T) ((-1002 . -1127) T) ((-1002 . -13) T) ((-1002 . -72) T) ((-1002 . -64) T) ((-1000 . -1005) 143027) ((-1000 . -557) 143011) ((-1000 . -1012) 142989) ((-1000 . -552) 142956) ((-1000 . -1127) 142934) ((-1000 . -13) 142912) ((-1000 . -72) 142890) ((-1000 . -1006) 142848) ((-999 . -228) 142832) ((-999 . -555) 142816) ((-999 . -950) 142800) ((-999 . -759) T) ((-999 . -72) T) ((-999 . -1012) T) ((-999 . -552) 142782) ((-999 . -756) T) ((-999 . -186) 142769) ((-999 . -13) T) ((-999 . -1127) T) ((-999 . -189) T) ((-998 . -213) 142708) ((-998 . -555) 142452) ((-998 . -950) 142282) ((-998 . -553) NIL) ((-998 . -276) 142244) ((-998 . -352) 142228) ((-998 . -38) 142080) ((-998 . -82) 141905) ((-998 . -963) 141751) ((-998 . -968) 141597) ((-998 . -588) 141507) ((-998 . -590) 141396) ((-998 . -582) 141248) ((-998 . -654) 141100) ((-998 . -118) 141079) ((-998 . -120) 141058) ((-998 . -146) 140972) ((-998 . -494) 140906) ((-998 . -245) 140840) ((-998 . -47) 140802) ((-998 . -326) 140786) ((-998 . -580) 140734) ((-998 . -389) 140688) ((-998 . -452) 140553) ((-998 . -809) 140489) ((-998 . -806) 140388) ((-998 . -811) 140291) ((-998 . -796) NIL) ((-998 . -821) 140270) ((-998 . -1132) 140249) ((-998 . -861) 140196) ((-998 . -259) 140183) ((-998 . -190) 140162) ((-998 . -104) T) ((-998 . -25) T) ((-998 . -72) T) ((-998 . -552) 140144) ((-998 . -1012) T) ((-998 . -23) T) ((-998 . -21) T) ((-998 . -969) T) ((-998 . -1024) T) ((-998 . -1059) T) ((-998 . -663) T) ((-998 . -961) T) ((-998 . -186) 140092) ((-998 . -13) T) ((-998 . -1127) T) ((-998 . -189) 140046) ((-998 . -225) 140030) ((-998 . -184) 140014) ((-996 . -552) 139996) ((-993 . -756) T) ((-993 . -552) 139978) ((-993 . -1012) T) ((-993 . -72) T) ((-993 . -13) T) ((-993 . -1127) T) ((-993 . -759) T) ((-993 . -553) 139959) ((-990 . -661) 139938) ((-990 . -950) 139836) ((-990 . -352) 139820) ((-990 . -580) 139768) ((-990 . -590) 139645) ((-990 . -326) 139629) ((-990 . -319) 139608) ((-990 . -120) 139587) ((-990 . -555) 139412) ((-990 . -654) 139286) ((-990 . -582) 139160) ((-990 . -588) 139058) ((-990 . -968) 138971) ((-990 . -963) 138884) ((-990 . -82) 138776) ((-990 . -38) 138650) ((-990 . -350) 138629) ((-990 . -342) 138608) ((-990 . -118) 138562) ((-990 . -1064) 138541) ((-990 . -298) 138520) ((-990 . -317) 138474) ((-990 . -201) 138428) ((-990 . -245) 138382) ((-990 . -257) 138336) ((-990 . -389) 138290) ((-990 . -494) 138244) ((-990 . -832) 138198) ((-990 . -1132) 138152) ((-990 . -311) 138106) ((-990 . -190) 138034) ((-990 . -186) 137910) ((-990 . -189) 137792) ((-990 . -225) 137762) ((-990 . -806) 137634) ((-990 . -811) 137508) ((-990 . -809) 137441) ((-990 . -184) 137411) ((-990 . -553) 137395) ((-990 . -21) T) ((-990 . -23) T) ((-990 . -1012) T) ((-990 . -552) 137377) ((-990 . -1127) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -25) T) ((-990 . -104) T) ((-990 . -961) T) ((-990 . -663) T) ((-990 . -1059) T) ((-990 . -1024) T) ((-990 . -969) T) ((-990 . -146) T) ((-988 . -1012) T) ((-988 . -552) 137359) ((-988 . -1127) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 137338) ((-987 . -1012) T) ((-987 . -552) 137320) ((-987 . -1127) T) ((-987 . -13) T) ((-987 . -72) T) ((-986 . -1012) T) ((-986 . -552) 137302) ((-986 . -1127) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -241) 137281) ((-986 . -950) 137258) ((-986 . -555) 137235) ((-985 . -1127) T) ((-985 . -13) T) ((-984 . -994) T) ((-984 . -427) 137216) ((-984 . -552) 137182) ((-984 . -555) 137163) ((-984 . -1012) T) ((-984 . -1127) T) ((-984 . -13) T) ((-984 . -72) T) ((-984 . -64) T) ((-977 . -994) T) ((-977 . -427) 137144) ((-977 . -552) 137110) ((-977 . -555) 137091) ((-977 . -1012) T) ((-977 . -1127) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -64) T) ((-974 . -482) T) ((-974 . -1132) T) ((-974 . -1064) T) ((-974 . -950) 137073) ((-974 . -553) 136988) ((-974 . -933) T) ((-974 . -796) 136970) ((-974 . -755) T) ((-974 . -721) T) ((-974 . -718) T) ((-974 . -759) T) ((-974 . -756) T) ((-974 . -716) T) ((-974 . -714) T) ((-974 . -740) T) ((-974 . -590) 136942) ((-974 . -580) 136924) ((-974 . -832) T) ((-974 . -494) T) ((-974 . -245) T) ((-974 . -146) T) ((-974 . -555) 136896) ((-974 . -654) 136883) ((-974 . -582) 136870) ((-974 . -968) 136857) ((-974 . -963) 136844) ((-974 . -82) 136829) ((-974 . -38) 136816) ((-974 . -389) T) ((-974 . -257) T) ((-974 . -189) T) ((-974 . -186) 136803) ((-974 . -190) T) ((-974 . -116) T) ((-974 . -961) T) ((-974 . -663) T) ((-974 . -1059) T) ((-974 . -1024) T) ((-974 . -969) T) ((-974 . -21) T) ((-974 . -588) 136775) ((-974 . -23) T) ((-974 . -1012) T) ((-974 . -552) 136757) ((-974 . -1127) T) ((-974 . -13) T) ((-974 . -72) T) ((-974 . -25) T) ((-974 . -104) T) ((-974 . -120) T) ((-974 . -557) 136738) ((-973 . -979) 136717) ((-973 . -72) T) ((-973 . -13) T) ((-973 . -1127) T) ((-973 . -552) 136699) ((-973 . -1012) T) ((-970 . -1127) T) ((-970 . -13) T) ((-970 . -1012) 136677) ((-970 . -552) 136644) ((-970 . -72) 136622) ((-966 . -965) 136562) ((-966 . -582) 136507) ((-966 . -654) 136452) ((-966 . -34) T) ((-966 . -259) 136390) ((-966 . -452) 136323) ((-966 . -426) 136307) ((-966 . -590) 136291) ((-966 . -588) 136260) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1127) T) ((-966 . -552) 136222) ((-966 . -1012) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 136206) ((-966 . -963) 136190) ((-966 . -82) 136169) ((-966 . -1185) 136139) ((-966 . -553) 136100) ((-958 . -982) 136029) ((-958 . -889) 135958) ((-958 . -553) 135900) ((-958 . -426) 135865) ((-958 . -1012) T) ((-958 . -452) 135749) ((-958 . -259) 135657) ((-958 . -552) 135600) ((-958 . -72) T) ((-958 . -1127) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 135565) ((-958 . -1122) 135494) ((-948 . -994) T) ((-948 . -427) 135475) ((-948 . -552) 135441) ((-948 . -555) 135422) ((-948 . -1012) T) ((-948 . -1127) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 135391) ((-947 . -969) T) ((-947 . -1024) T) ((-947 . -1059) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 135365) ((-947 . -588) 135324) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1127) T) ((-947 . -552) 135306) ((-947 . -1012) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 135280) ((-947 . -963) 135254) ((-947 . -82) 135221) ((-947 . -38) 135205) ((-947 . -582) 135189) ((-947 . -654) 135173) ((-940 . -982) 135142) ((-940 . -889) 135111) ((-940 . -553) 135072) ((-940 . -426) 135056) ((-940 . -1012) T) ((-940 . -452) 134989) ((-940 . -259) 134927) ((-940 . -552) 134889) ((-940 . -72) T) ((-940 . -1127) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 134873) ((-940 . -1122) 134842) ((-939 . -1012) T) ((-939 . -552) 134824) ((-939 . -1127) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 134709) ((-937 . -352) 134671) ((-937 . -201) T) ((-937 . -245) T) ((-937 . -257) T) ((-937 . -389) T) ((-937 . -38) 134608) ((-937 . -582) 134545) ((-937 . -654) 134482) ((-937 . -555) 134419) ((-937 . -494) T) ((-937 . -832) T) ((-937 . -1132) T) ((-937 . -311) T) ((-937 . -82) 134328) ((-937 . -963) 134265) ((-937 . -968) 134202) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 134139) ((-937 . -588) 134076) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1127) T) ((-937 . -552) 134058) ((-937 . -1012) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1059) T) ((-937 . -1024) T) ((-937 . -969) T) ((-932 . -994) T) ((-932 . -427) 134039) ((-932 . -552) 134005) ((-932 . -555) 133986) ((-932 . -1012) T) ((-932 . -1127) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 133968) ((-917 . -1064) T) ((-917 . -555) 133918) ((-917 . -950) 133878) ((-917 . -553) 133808) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 133790) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 133772) ((-917 . -340) 133754) ((-917 . -580) 133736) ((-917 . -326) 133718) ((-917 . -241) NIL) ((-917 . -259) NIL) ((-917 . -452) NIL) ((-917 . -287) 133700) ((-917 . -201) T) ((-917 . -82) 133627) ((-917 . -963) 133577) ((-917 . -968) 133527) ((-917 . -245) T) ((-917 . -654) 133477) ((-917 . -582) 133427) ((-917 . -590) 133377) ((-917 . -588) 133327) ((-917 . -38) 133277) ((-917 . -257) T) ((-917 . -389) T) ((-917 . -146) T) ((-917 . -494) T) ((-917 . -832) T) ((-917 . -1132) T) ((-917 . -311) T) ((-917 . -190) T) ((-917 . -186) 133264) ((-917 . -189) T) ((-917 . -225) 133246) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 133228) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1127) T) ((-917 . -552) 133188) ((-917 . -1012) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1059) T) ((-917 . -1024) T) ((-917 . -969) T) ((-916 . -290) 133162) ((-916 . -146) T) ((-916 . -555) 133092) ((-916 . -969) T) ((-916 . -1024) T) ((-916 . -1059) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 132994) ((-916 . -588) 132924) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1127) T) ((-916 . -552) 132906) ((-916 . -1012) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 132851) ((-916 . -963) 132796) ((-916 . -82) 132713) ((-916 . -553) 132697) ((-916 . -184) 132674) ((-916 . -809) 132626) ((-916 . -811) 132538) ((-916 . -806) 132448) ((-916 . -225) 132425) ((-916 . -189) 132365) ((-916 . -186) 132299) ((-916 . -190) 132271) ((-916 . -311) T) ((-916 . -1132) T) ((-916 . -832) T) ((-916 . -494) T) ((-916 . -654) 132216) ((-916 . -582) 132161) ((-916 . -38) 132106) ((-916 . -389) T) ((-916 . -257) T) ((-916 . -245) T) ((-916 . -201) T) ((-916 . -317) NIL) ((-916 . -298) NIL) ((-916 . -1064) NIL) ((-916 . -118) 132078) ((-916 . -342) NIL) ((-916 . -350) 132050) ((-916 . -120) 132022) ((-916 . -319) 131994) ((-916 . -326) 131971) ((-916 . -580) 131905) ((-916 . -352) 131882) ((-916 . -950) 131759) ((-916 . -661) 131731) ((-913 . -908) 131715) ((-913 . -426) 131699) ((-913 . -1012) 131677) ((-913 . -452) 131610) ((-913 . -259) 131548) ((-913 . -552) 131483) ((-913 . -72) 131437) ((-913 . -1127) T) ((-913 . -13) T) ((-913 . -34) T) ((-913 . -76) 131421) ((-909 . -911) 131405) ((-909 . -759) 131384) ((-909 . -756) 131363) ((-909 . -950) 131261) ((-909 . -352) 131245) ((-909 . -580) 131193) ((-909 . -590) 131095) ((-909 . -326) 131079) ((-909 . -241) 131037) ((-909 . -259) 131002) ((-909 . -452) 130914) ((-909 . -287) 130898) ((-909 . -38) 130846) ((-909 . -82) 130724) ((-909 . -963) 130623) ((-909 . -968) 130522) ((-909 . -588) 130445) ((-909 . -582) 130393) ((-909 . -654) 130341) ((-909 . -555) 130235) ((-909 . -245) 130189) ((-909 . -201) 130168) ((-909 . -190) 130147) ((-909 . -186) 130095) ((-909 . -189) 130049) ((-909 . -225) 130033) ((-909 . -806) 129957) ((-909 . -811) 129883) ((-909 . -809) 129842) ((-909 . -184) 129826) ((-909 . -553) 129787) ((-909 . -120) 129766) ((-909 . -118) 129745) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1127) T) ((-909 . -552) 129727) ((-909 . -1012) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1059) T) ((-909 . -1024) T) ((-909 . -969) T) ((-907 . -994) T) ((-907 . -427) 129708) ((-907 . -552) 129674) ((-907 . -555) 129655) ((-907 . -1012) T) ((-907 . -1127) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 129637) ((-906 . -23) T) ((-906 . -1012) T) ((-906 . -552) 129619) ((-906 . -1127) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 129586) ((-902 . -552) 129568) ((-899 . -1012) T) ((-899 . -552) 129550) ((-899 . -1127) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1012) T) ((-884 . -552) 129510) ((-884 . -1127) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -994) T) ((-883 . -427) 129491) ((-883 . -552) 129457) ((-883 . -555) 129438) ((-883 . -1012) T) ((-883 . -1127) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 129420) ((-877 . -1012) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1127) T) ((-877 . -84) T) ((-877 . -555) 129404) ((-876 . -552) 129386) ((-875 . -1012) T) ((-875 . -552) 129368) ((-875 . -1127) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -317) 129321) ((-875 . -663) 129223) ((-875 . -1024) 129125) ((-875 . -23) 128939) ((-875 . -25) 128753) ((-875 . -104) 128611) ((-875 . -410) 128564) ((-875 . -21) 128519) ((-875 . -588) 128463) ((-875 . -717) 128416) ((-875 . -716) 128369) ((-875 . -756) 128271) ((-875 . -759) 128173) ((-875 . -718) 128126) ((-875 . -721) 128079) ((-869 . -19) 128063) ((-869 . -593) 128047) ((-869 . -243) 128024) ((-869 . -241) 127976) ((-869 . -538) 127953) ((-869 . -553) 127914) ((-869 . -426) 127898) ((-869 . -1012) 127851) ((-869 . -452) 127784) ((-869 . -259) 127722) ((-869 . -552) 127637) ((-869 . -72) 127571) ((-869 . -1127) T) ((-869 . -13) T) ((-869 . -34) T) ((-869 . -124) 127555) ((-869 . -756) 127534) ((-869 . -759) 127513) ((-869 . -321) 127497) ((-867 . -276) 127476) ((-867 . -950) 127374) ((-867 . -352) 127358) ((-867 . -38) 127255) ((-867 . -555) 127112) ((-867 . -590) 127037) ((-867 . -588) 126947) ((-867 . -969) T) ((-867 . -1024) T) ((-867 . -1059) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 126812) ((-867 . -963) 126698) ((-867 . -968) 126584) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1012) T) ((-867 . -552) 126566) ((-867 . -1127) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 126463) ((-867 . -654) 126360) ((-867 . -118) 126339) ((-867 . -120) 126318) ((-867 . -146) 126272) ((-867 . -494) 126251) ((-867 . -245) 126230) ((-867 . -47) 126209) ((-865 . -1012) T) ((-865 . -552) 126175) ((-865 . -1127) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 126136) ((-857 . -555) 125932) ((-857 . -950) 125814) ((-857 . -1132) 125793) ((-857 . -821) 125772) ((-857 . -796) 125697) ((-857 . -811) 125678) ((-857 . -806) 125657) ((-857 . -809) 125638) ((-857 . -452) 125584) ((-857 . -389) 125538) ((-857 . -580) 125486) ((-857 . -590) 125375) ((-857 . -326) 125359) ((-857 . -47) 125328) ((-857 . -38) 125180) ((-857 . -582) 125032) ((-857 . -654) 124884) ((-857 . -245) 124818) ((-857 . -494) 124752) ((-857 . -82) 124577) ((-857 . -963) 124423) ((-857 . -968) 124269) ((-857 . -146) 124183) ((-857 . -120) 124162) ((-857 . -118) 124141) ((-857 . -588) 124051) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1127) T) ((-857 . -552) 124033) ((-857 . -1012) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1059) T) ((-857 . -1024) T) ((-857 . -969) T) ((-857 . -352) 124017) ((-857 . -276) 123986) ((-857 . -259) 123973) ((-857 . -553) 123834) ((-854 . -893) 123818) ((-854 . -19) 123802) ((-854 . -593) 123786) ((-854 . -243) 123763) ((-854 . -241) 123715) ((-854 . -538) 123692) ((-854 . -553) 123653) ((-854 . -426) 123637) ((-854 . -1012) 123590) ((-854 . -452) 123523) ((-854 . -259) 123461) ((-854 . -552) 123376) ((-854 . -72) 123310) ((-854 . -1127) T) ((-854 . -13) T) ((-854 . -34) T) ((-854 . -124) 123294) ((-854 . -756) 123273) ((-854 . -759) 123252) ((-854 . -321) 123236) ((-854 . -1176) 123220) ((-854 . -557) 123197) ((-838 . -887) T) ((-838 . -552) 123179) ((-836 . -866) T) ((-836 . -552) 123161) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1012) T) ((-830 . -552) 123143) ((-830 . -1127) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1024) T) ((-825 . -311) T) ((-825 . -1132) T) ((-825 . -832) T) ((-825 . -494) T) ((-825 . -146) T) ((-825 . -555) 123080) ((-825 . -654) 123032) ((-825 . -582) 122984) ((-825 . -38) 122936) ((-825 . -389) T) ((-825 . -257) T) ((-825 . -590) 122888) ((-825 . -588) 122825) ((-825 . -969) T) ((-825 . -1024) T) ((-825 . -1059) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 122756) ((-825 . -963) 122708) ((-825 . -968) 122660) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1012) T) ((-825 . -552) 122642) ((-825 . -1127) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -245) T) ((-825 . -201) T) ((-817 . -298) T) ((-817 . -1064) T) ((-817 . -317) T) ((-817 . -118) T) ((-817 . -311) T) ((-817 . -1132) T) ((-817 . -832) T) ((-817 . -494) T) ((-817 . -146) T) ((-817 . -555) 122592) ((-817 . -654) 122557) ((-817 . -582) 122522) ((-817 . -38) 122487) ((-817 . -389) T) ((-817 . -257) T) ((-817 . -82) 122436) ((-817 . -963) 122401) ((-817 . -968) 122366) ((-817 . -588) 122316) ((-817 . -590) 122281) ((-817 . -245) T) ((-817 . -201) T) ((-817 . -342) T) ((-817 . -189) T) ((-817 . -1127) T) ((-817 . -13) T) ((-817 . -186) 122268) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1059) T) ((-817 . -1024) T) ((-817 . -969) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1012) T) ((-817 . -552) 122250) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -279) 122237) ((-817 . -120) 122219) ((-817 . -950) 122206) ((-817 . -1185) 122193) ((-817 . -1196) 122180) ((-817 . -553) 122162) ((-816 . -1012) T) ((-816 . -552) 122144) ((-816 . -1127) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 122128) ((-813 . -759) 122082) ((-813 . -756) 122036) ((-813 . -663) T) ((-813 . -1012) T) ((-813 . -552) 122018) ((-813 . -72) T) ((-813 . -1024) T) ((-813 . -410) T) ((-813 . -1127) T) ((-813 . -13) T) ((-813 . -241) 121997) ((-812 . -92) 121981) ((-812 . -426) 121965) ((-812 . -1012) 121943) ((-812 . -452) 121876) ((-812 . -259) 121814) ((-812 . -552) 121728) ((-812 . -72) 121682) ((-812 . -1127) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 121666) ((-803 . -756) T) ((-803 . -552) 121648) ((-803 . -1012) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1127) T) ((-803 . -759) T) ((-803 . -950) 121625) ((-803 . -555) 121602) ((-800 . -1012) T) ((-800 . -552) 121584) ((-800 . -1127) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 121552) ((-800 . -555) 121520) ((-798 . -1012) T) ((-798 . -552) 121502) ((-798 . -1127) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1012) T) ((-795 . -552) 121484) ((-795 . -1127) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -994) T) ((-785 . -427) 121465) ((-785 . -552) 121431) ((-785 . -555) 121412) ((-785 . -1012) T) ((-785 . -1127) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1173) T) ((-783 . -1012) T) ((-783 . -552) 121394) ((-783 . -1127) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 121376) ((-782 . -1127) T) ((-782 . -13) T) ((-782 . -552) 121251) ((-782 . -1012) 121202) ((-782 . -72) 121153) ((-781 . -904) 121137) ((-781 . -1064) 121115) ((-781 . -950) 120982) ((-781 . -555) 120881) ((-781 . -553) 120684) ((-781 . -933) 120663) ((-781 . -821) 120642) ((-781 . -794) 120626) ((-781 . -755) 120605) ((-781 . -721) 120584) ((-781 . -718) 120563) ((-781 . -759) 120517) ((-781 . -756) 120471) ((-781 . -716) 120450) ((-781 . -714) 120429) ((-781 . -740) 120408) ((-781 . -796) 120333) ((-781 . -340) 120317) ((-781 . -580) 120265) ((-781 . -590) 120181) ((-781 . -326) 120165) ((-781 . -241) 120123) ((-781 . -259) 120088) ((-781 . -452) 120000) ((-781 . -287) 119984) ((-781 . -201) T) ((-781 . -82) 119915) ((-781 . -963) 119867) ((-781 . -968) 119819) ((-781 . -245) T) ((-781 . -654) 119771) ((-781 . -582) 119723) ((-781 . -588) 119660) ((-781 . -38) 119612) ((-781 . -257) T) ((-781 . -389) T) ((-781 . -146) T) ((-781 . -494) T) ((-781 . -832) T) ((-781 . -1132) T) ((-781 . -311) T) ((-781 . -190) 119591) ((-781 . -186) 119539) ((-781 . -189) 119493) ((-781 . -225) 119477) ((-781 . -806) 119401) ((-781 . -811) 119327) ((-781 . -809) 119286) ((-781 . -184) 119270) ((-781 . -120) 119249) ((-781 . -118) 119228) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1127) T) ((-781 . -552) 119210) ((-781 . -1012) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1059) T) ((-781 . -1024) T) ((-781 . -969) T) ((-780 . -904) 119187) ((-780 . -1064) NIL) ((-780 . -950) 119164) ((-780 . -555) 119094) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 119071) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -340) 119048) ((-780 . -580) 119025) ((-780 . -590) 118970) ((-780 . -326) 118947) ((-780 . -241) 118877) ((-780 . -259) 118821) ((-780 . -452) 118684) ((-780 . -287) 118661) ((-780 . -201) T) ((-780 . -82) 118578) ((-780 . -963) 118523) ((-780 . -968) 118468) ((-780 . -245) T) ((-780 . -654) 118413) ((-780 . -582) 118358) ((-780 . -588) 118288) ((-780 . -38) 118233) ((-780 . -257) T) ((-780 . -389) T) ((-780 . -146) T) ((-780 . -494) T) ((-780 . -832) T) ((-780 . -1132) T) ((-780 . -311) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 118210) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 118187) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1127) T) ((-780 . -552) 118169) ((-780 . -1012) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1059) T) ((-780 . -1024) T) ((-780 . -969) T) ((-778 . -779) 118153) ((-778 . -832) T) ((-778 . -494) T) ((-778 . -245) T) ((-778 . -146) T) ((-778 . -555) 118125) ((-778 . -654) 118112) ((-778 . -582) 118099) ((-778 . -968) 118086) ((-778 . -963) 118073) ((-778 . -82) 118058) ((-778 . -38) 118045) ((-778 . -389) T) ((-778 . -257) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1059) T) ((-778 . -1024) T) ((-778 . -969) T) ((-778 . -21) T) ((-778 . -588) 118017) ((-778 . -23) T) ((-778 . -1012) T) ((-778 . -552) 117999) ((-778 . -1127) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 117986) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1059) T) ((-775 . -1024) T) ((-775 . -969) T) ((-775 . -21) T) ((-775 . -588) 117931) ((-775 . -23) T) ((-775 . -1012) T) ((-775 . -552) 117893) ((-775 . -1127) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 117853) ((-775 . -555) 117788) ((-775 . -427) 117765) ((-775 . -38) 117735) ((-775 . -82) 117700) ((-775 . -963) 117670) ((-775 . -968) 117640) ((-775 . -582) 117610) ((-775 . -654) 117580) ((-774 . -1012) T) ((-774 . -552) 117562) ((-774 . -1127) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1012) T) ((-773 . -552) 117544) ((-773 . -1127) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -317) T) ((-773 . -553) 117466) ((-772 . -1012) T) ((-772 . -552) 117448) ((-772 . -1127) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 117430) ((-767 . -756) T) ((-767 . -552) 117412) ((-767 . -1012) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1127) T) ((-767 . -759) T) ((-764 . -761) 117396) ((-764 . -950) 117294) ((-764 . -555) 117192) ((-764 . -352) 117176) ((-764 . -654) 117146) ((-764 . -582) 117116) ((-764 . -590) 117090) ((-764 . -588) 117049) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1127) T) ((-764 . -552) 117031) ((-764 . -1012) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 117015) ((-764 . -963) 116999) ((-764 . -82) 116978) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1059) T) ((-764 . -1024) T) ((-764 . -969) T) ((-764 . -38) 116948) ((-763 . -761) 116932) ((-763 . -950) 116830) ((-763 . -555) 116749) ((-763 . -352) 116733) ((-763 . -654) 116703) ((-763 . -582) 116673) ((-763 . -590) 116647) ((-763 . -588) 116606) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1127) T) ((-763 . -552) 116588) ((-763 . -1012) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 116572) ((-763 . -963) 116556) ((-763 . -82) 116535) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1059) T) ((-763 . -1024) T) ((-763 . -969) T) ((-763 . -38) 116505) ((-757 . -759) T) ((-757 . -1127) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -427) 116489) ((-757 . -552) 116437) ((-757 . -555) 116421) ((-750 . -1012) T) ((-750 . -552) 116403) ((-750 . -1127) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -352) 116387) ((-750 . -555) 116260) ((-750 . -950) 116158) ((-750 . -21) 116113) ((-750 . -588) 116033) ((-750 . -23) 115988) ((-750 . -25) 115943) ((-750 . -104) 115898) ((-750 . -755) 115877) ((-750 . -590) 115850) ((-750 . -969) 115829) ((-750 . -1059) 115808) ((-750 . -961) 115787) ((-750 . -721) 115766) ((-750 . -718) 115745) ((-750 . -759) 115724) ((-750 . -756) 115703) ((-750 . -716) 115682) ((-750 . -714) 115661) ((-750 . -1024) 115640) ((-750 . -663) 115619) ((-749 . -747) 115601) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1127) T) ((-749 . -552) 115583) ((-749 . -1012) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1059) T) ((-745 . -1024) T) ((-745 . -969) T) ((-745 . -21) T) ((-745 . -588) 115528) ((-745 . -23) T) ((-745 . -1012) T) ((-745 . -552) 115510) ((-745 . -1127) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 115470) ((-745 . -555) 115425) ((-745 . -950) 115395) ((-745 . -241) 115374) ((-745 . -120) 115353) ((-745 . -118) 115332) ((-745 . -38) 115302) ((-745 . -82) 115267) ((-745 . -963) 115237) ((-745 . -968) 115207) ((-745 . -582) 115177) ((-745 . -654) 115147) ((-743 . -1012) T) ((-743 . -552) 115129) ((-743 . -1127) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -352) 115113) ((-743 . -555) 114986) ((-743 . -950) 114884) ((-743 . -21) 114839) ((-743 . -588) 114759) ((-743 . -23) 114714) ((-743 . -25) 114669) ((-743 . -104) 114624) ((-743 . -755) 114603) ((-743 . -590) 114576) ((-743 . -969) 114555) ((-743 . -1059) 114534) ((-743 . -961) 114513) ((-743 . -721) 114492) ((-743 . -718) 114471) ((-743 . -759) 114450) ((-743 . -756) 114429) ((-743 . -716) 114408) ((-743 . -714) 114387) ((-743 . -1024) 114366) ((-743 . -663) 114345) ((-741 . -645) 114329) ((-741 . -555) 114284) ((-741 . -654) 114254) ((-741 . -582) 114224) ((-741 . -590) 114198) ((-741 . -588) 114157) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1127) T) ((-741 . -552) 114139) ((-741 . -1012) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 114123) ((-741 . -963) 114107) ((-741 . -82) 114086) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1059) T) ((-741 . -1024) T) ((-741 . -969) T) ((-741 . -38) 114056) ((-741 . -190) 114035) ((-741 . -186) 114008) ((-741 . -189) 113987) ((-739 . -333) 113971) ((-739 . -555) 113955) ((-739 . -950) 113939) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1024) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1127) T) ((-739 . -552) 113921) ((-739 . -1012) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 113905) ((-738 . -555) 113889) ((-738 . -950) 113873) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1012) T) ((-738 . -552) 113855) ((-738 . -756) T) ((-738 . -186) 113842) ((-738 . -13) T) ((-738 . -1127) T) ((-738 . -189) T) ((-737 . -82) 113777) ((-737 . -963) 113728) ((-737 . -968) 113679) ((-737 . -21) T) ((-737 . -588) 113615) ((-737 . -23) T) ((-737 . -1012) T) ((-737 . -552) 113584) ((-737 . -1127) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 113535) ((-737 . -190) T) ((-737 . -555) 113444) ((-737 . -969) T) ((-737 . -1024) T) ((-737 . -1059) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 113431) ((-737 . -189) T) ((-737 . -427) 113415) ((-737 . -311) 113394) ((-737 . -1132) 113373) ((-737 . -832) 113352) ((-737 . -494) 113331) ((-737 . -146) 113310) ((-737 . -654) 113247) ((-737 . -582) 113184) ((-737 . -38) 113121) ((-737 . -389) 113100) ((-737 . -257) 113079) ((-737 . -245) 113058) ((-737 . -201) 113037) ((-736 . -213) 112976) ((-736 . -555) 112720) ((-736 . -950) 112550) ((-736 . -553) NIL) ((-736 . -276) 112512) ((-736 . -352) 112496) ((-736 . -38) 112348) ((-736 . -82) 112173) ((-736 . -963) 112019) ((-736 . -968) 111865) ((-736 . -588) 111775) ((-736 . -590) 111664) ((-736 . -582) 111516) ((-736 . -654) 111368) ((-736 . -118) 111347) ((-736 . -120) 111326) ((-736 . -146) 111240) ((-736 . -494) 111174) ((-736 . -245) 111108) ((-736 . -47) 111070) ((-736 . -326) 111054) ((-736 . -580) 111002) ((-736 . -389) 110956) ((-736 . -452) 110821) ((-736 . -809) 110757) ((-736 . -806) 110656) ((-736 . -811) 110559) ((-736 . -796) NIL) ((-736 . -821) 110538) ((-736 . -1132) 110517) ((-736 . -861) 110464) ((-736 . -259) 110451) ((-736 . -190) 110430) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 110412) ((-736 . -1012) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -969) T) ((-736 . -1024) T) ((-736 . -1059) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 110360) ((-736 . -13) T) ((-736 . -1127) T) ((-736 . -189) 110314) ((-736 . -225) 110298) ((-736 . -184) 110282) ((-735 . -196) 110261) ((-735 . -1185) 110231) ((-735 . -721) 110210) ((-735 . -718) 110189) ((-735 . -759) 110143) ((-735 . -756) 110097) ((-735 . -716) 110076) ((-735 . -717) 110055) ((-735 . -654) 110000) ((-735 . -582) 109925) ((-735 . -243) 109902) ((-735 . -241) 109879) ((-735 . -426) 109863) ((-735 . -452) 109796) ((-735 . -259) 109734) ((-735 . -34) T) ((-735 . -538) 109711) ((-735 . -950) 109540) ((-735 . -555) 109344) ((-735 . -352) 109313) ((-735 . -580) 109221) ((-735 . -590) 109060) ((-735 . -326) 109030) ((-735 . -317) 109009) ((-735 . -190) 108962) ((-735 . -588) 108750) ((-735 . -969) 108729) ((-735 . -1024) 108708) ((-735 . -1059) 108687) ((-735 . -663) 108666) ((-735 . -961) 108645) ((-735 . -186) 108541) ((-735 . -189) 108443) ((-735 . -225) 108413) ((-735 . -806) 108285) ((-735 . -811) 108159) ((-735 . -809) 108092) ((-735 . -184) 108062) ((-735 . -552) 107759) ((-735 . -968) 107684) ((-735 . -963) 107589) ((-735 . -82) 107509) ((-735 . -104) 107384) ((-735 . -25) 107221) ((-735 . -72) 106958) ((-735 . -13) T) ((-735 . -1127) T) ((-735 . -1012) 106714) ((-735 . -23) 106570) ((-735 . -21) 106485) ((-722 . -720) 106469) ((-722 . -759) 106448) ((-722 . -756) 106427) ((-722 . -950) 106220) ((-722 . -555) 106073) ((-722 . -352) 106037) ((-722 . -241) 105995) ((-722 . -259) 105960) ((-722 . -452) 105872) ((-722 . -287) 105856) ((-722 . -317) 105835) ((-722 . -553) 105796) ((-722 . -120) 105775) ((-722 . -118) 105754) ((-722 . -654) 105738) ((-722 . -582) 105722) ((-722 . -590) 105696) ((-722 . -588) 105655) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1127) T) ((-722 . -552) 105637) ((-722 . -1012) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 105621) ((-722 . -963) 105605) ((-722 . -82) 105584) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1059) T) ((-722 . -1024) T) ((-722 . -969) T) ((-722 . -38) 105568) ((-704 . -1153) 105552) ((-704 . -1064) 105530) ((-704 . -553) NIL) ((-704 . -259) 105517) ((-704 . -452) 105465) ((-704 . -276) 105442) ((-704 . -950) 105304) ((-704 . -352) 105288) ((-704 . -38) 105120) ((-704 . -82) 104925) ((-704 . -963) 104751) ((-704 . -968) 104577) ((-704 . -588) 104487) ((-704 . -590) 104376) ((-704 . -582) 104208) ((-704 . -654) 104040) ((-704 . -555) 103796) ((-704 . -118) 103775) ((-704 . -120) 103754) ((-704 . -47) 103731) ((-704 . -326) 103715) ((-704 . -580) 103663) ((-704 . -809) 103607) ((-704 . -806) 103514) ((-704 . -811) 103425) ((-704 . -796) NIL) ((-704 . -821) 103404) ((-704 . -1132) 103383) ((-704 . -861) 103353) ((-704 . -832) 103332) ((-704 . -494) 103246) ((-704 . -245) 103160) ((-704 . -146) 103054) ((-704 . -389) 102988) ((-704 . -257) 102967) ((-704 . -241) 102894) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 102855) ((-704 . -1012) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -969) T) ((-704 . -1024) T) ((-704 . -1059) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 102842) ((-704 . -13) T) ((-704 . -1127) T) ((-704 . -189) T) ((-704 . -225) 102826) ((-704 . -184) 102810) ((-703 . -976) 102777) ((-703 . -553) 102412) ((-703 . -259) 102399) ((-703 . -452) 102351) ((-703 . -276) 102323) ((-703 . -950) 102182) ((-703 . -352) 102166) ((-703 . -38) 102018) ((-703 . -555) 101791) ((-703 . -590) 101680) ((-703 . -588) 101590) ((-703 . -969) T) ((-703 . -1024) T) ((-703 . -1059) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 101415) ((-703 . -963) 101261) ((-703 . -968) 101107) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1012) T) ((-703 . -552) 101021) ((-703 . -1127) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 100873) ((-703 . -654) 100725) ((-703 . -118) 100704) ((-703 . -120) 100683) ((-703 . -146) 100597) ((-703 . -494) 100531) ((-703 . -245) 100465) ((-703 . -47) 100437) ((-703 . -326) 100421) ((-703 . -580) 100369) ((-703 . -389) 100323) ((-703 . -809) 100307) ((-703 . -806) 100289) ((-703 . -811) 100273) ((-703 . -796) 100132) ((-703 . -821) 100111) ((-703 . -1132) 100090) ((-703 . -861) 100057) ((-696 . -1012) T) ((-696 . -552) 100039) ((-696 . -1127) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1127) T) ((-694 . -552) 100021) ((-694 . -1012) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1024) T) ((-675 . -676) 100005) ((-675 . -1010) 99989) ((-675 . -193) 99973) ((-675 . -553) 99934) ((-675 . -124) 99918) ((-675 . -426) 99902) ((-675 . -1012) T) ((-675 . -452) 99835) ((-675 . -259) 99773) ((-675 . -552) 99755) ((-675 . -72) T) ((-675 . -1127) T) ((-675 . -13) T) ((-675 . -34) T) ((-675 . -76) 99739) ((-675 . -634) 99723) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1059) T) ((-674 . -1024) T) ((-674 . -969) T) ((-674 . -21) T) ((-674 . -588) 99668) ((-674 . -23) T) ((-674 . -1012) T) ((-674 . -552) 99650) ((-674 . -1127) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 99610) ((-674 . -555) 99566) ((-674 . -950) 99537) ((-674 . -120) 99516) ((-674 . -118) 99495) ((-674 . -38) 99465) ((-674 . -82) 99430) ((-674 . -963) 99400) ((-674 . -968) 99370) ((-674 . -582) 99340) ((-674 . -654) 99310) ((-674 . -317) 99263) ((-670 . -861) 99216) ((-670 . -555) 99008) ((-670 . -950) 98886) ((-670 . -1132) 98865) ((-670 . -821) 98844) ((-670 . -796) NIL) ((-670 . -811) 98821) ((-670 . -806) 98796) ((-670 . -809) 98773) ((-670 . -452) 98711) ((-670 . -389) 98665) ((-670 . -580) 98613) ((-670 . -590) 98502) ((-670 . -326) 98486) ((-670 . -47) 98451) ((-670 . -38) 98303) ((-670 . -582) 98155) ((-670 . -654) 98007) ((-670 . -245) 97941) ((-670 . -494) 97875) ((-670 . -82) 97700) ((-670 . -963) 97546) ((-670 . -968) 97392) ((-670 . -146) 97306) ((-670 . -120) 97285) ((-670 . -118) 97264) ((-670 . -588) 97174) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1127) T) ((-670 . -552) 97156) ((-670 . -1012) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1059) T) ((-670 . -1024) T) ((-670 . -969) T) ((-670 . -352) 97140) ((-670 . -276) 97105) ((-670 . -259) 97092) ((-670 . -553) 96953) ((-664 . -665) 96937) ((-664 . -80) 96921) ((-664 . -1127) T) ((-664 . |MappingCategory|) 96895) ((-664 . -1022) 96879) ((-664 . -1012) T) ((-664 . -552) 96861) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -410) T) ((-655 . -1024) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1127) T) ((-655 . -552) 96843) ((-655 . -1012) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1059) T) ((-652 . -1024) T) ((-652 . -969) T) ((-652 . -21) T) ((-652 . -588) 96815) ((-652 . -23) T) ((-652 . -1012) T) ((-652 . -552) 96797) ((-652 . -1127) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 96784) ((-652 . -555) 96766) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1059) T) ((-651 . -1024) T) ((-651 . -969) T) ((-651 . -21) T) ((-651 . -588) 96711) ((-651 . -23) T) ((-651 . -1012) T) ((-651 . -552) 96693) ((-651 . -1127) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 96653) ((-651 . -555) 96608) ((-651 . -950) 96578) ((-651 . -241) 96557) ((-651 . -120) 96536) ((-651 . -118) 96515) ((-651 . -38) 96485) ((-651 . -82) 96450) ((-651 . -963) 96420) ((-651 . -968) 96390) ((-651 . -582) 96360) ((-651 . -654) 96330) ((-650 . -756) T) ((-650 . -552) 96265) ((-650 . -1012) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1127) T) ((-650 . -759) T) ((-650 . -427) 96215) ((-650 . -555) 96165) ((-649 . -1153) 96149) ((-649 . -1064) 96127) ((-649 . -553) NIL) ((-649 . -259) 96114) ((-649 . -452) 96062) ((-649 . -276) 96039) ((-649 . -950) 95922) ((-649 . -352) 95906) ((-649 . -38) 95738) ((-649 . -82) 95543) ((-649 . -963) 95369) ((-649 . -968) 95195) ((-649 . -588) 95105) ((-649 . -590) 94994) ((-649 . -582) 94826) ((-649 . -654) 94658) ((-649 . -555) 94422) ((-649 . -118) 94401) ((-649 . -120) 94380) ((-649 . -47) 94357) ((-649 . -326) 94341) ((-649 . -580) 94289) ((-649 . -809) 94233) ((-649 . -806) 94140) ((-649 . -811) 94051) ((-649 . -796) NIL) ((-649 . -821) 94030) ((-649 . -1132) 94009) ((-649 . -861) 93979) ((-649 . -832) 93958) ((-649 . -494) 93872) ((-649 . -245) 93786) ((-649 . -146) 93680) ((-649 . -389) 93614) ((-649 . -257) 93593) ((-649 . -241) 93520) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 93502) ((-649 . -1012) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -969) T) ((-649 . -1024) T) ((-649 . -1059) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 93489) ((-649 . -13) T) ((-649 . -1127) T) ((-649 . -189) T) ((-649 . -225) 93473) ((-649 . -184) 93457) ((-649 . -317) 93436) ((-648 . -311) T) ((-648 . -1132) T) ((-648 . -832) T) ((-648 . -494) T) ((-648 . -146) T) ((-648 . -555) 93386) ((-648 . -654) 93351) ((-648 . -582) 93316) ((-648 . -38) 93281) ((-648 . -389) T) ((-648 . -257) T) ((-648 . -590) 93246) ((-648 . -588) 93196) ((-648 . -969) T) ((-648 . -1024) T) ((-648 . -1059) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 93145) ((-648 . -963) 93110) ((-648 . -968) 93075) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1012) T) ((-648 . -552) 93057) ((-648 . -1127) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -245) T) ((-648 . -201) T) ((-647 . -1012) T) ((-647 . -552) 93039) ((-647 . -1127) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1173) T) ((-632 . -950) 93023) ((-632 . -555) 93007) ((-632 . -552) 92989) ((-630 . -627) 92947) ((-630 . -426) 92931) ((-630 . -1012) 92909) ((-630 . -452) 92842) ((-630 . -259) 92780) ((-630 . -552) 92715) ((-630 . -72) 92669) ((-630 . -1127) T) ((-630 . -13) T) ((-630 . -34) T) ((-630 . -57) 92627) ((-630 . -553) 92588) ((-622 . -994) T) ((-622 . -427) 92569) ((-622 . -552) 92519) ((-622 . -555) 92500) ((-622 . -1012) T) ((-622 . -1127) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 92482) ((-618 . -1012) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1127) T) ((-618 . -759) T) ((-618 . -950) 92466) ((-618 . -555) 92450) ((-617 . -994) T) ((-617 . -427) 92431) ((-617 . -552) 92397) ((-617 . -555) 92378) ((-617 . -1012) T) ((-617 . -1127) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 92360) ((-614 . -1012) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1127) T) ((-614 . -759) T) ((-614 . -950) 92344) ((-614 . -555) 92328) ((-613 . -994) T) ((-613 . -427) 92309) ((-613 . -552) 92275) ((-613 . -555) 92256) ((-613 . -1012) T) ((-613 . -1127) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1035) 92201) ((-612 . -426) 92185) ((-612 . -452) 92118) ((-612 . -259) 92056) ((-612 . -34) T) ((-612 . -965) 91996) ((-612 . -950) 91894) ((-612 . -555) 91813) ((-612 . -352) 91797) ((-612 . -580) 91745) ((-612 . -590) 91683) ((-612 . -326) 91667) ((-612 . -190) 91646) ((-612 . -186) 91594) ((-612 . -189) 91548) ((-612 . -225) 91532) ((-612 . -806) 91456) ((-612 . -811) 91382) ((-612 . -809) 91341) ((-612 . -184) 91325) ((-612 . -654) 91309) ((-612 . -582) 91293) ((-612 . -588) 91252) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1127) T) ((-612 . -552) 91214) ((-612 . -1012) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 91198) ((-612 . -963) 91182) ((-612 . -82) 91161) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1059) T) ((-612 . -1024) T) ((-612 . -969) T) ((-612 . -38) 91121) ((-612 . -358) 91105) ((-612 . -683) 91089) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -315) 91073) ((-612 . -241) 91050) ((-606 . -323) 91029) ((-606 . -654) 91013) ((-606 . -582) 90997) ((-606 . -590) 90981) ((-606 . -588) 90950) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1127) T) ((-606 . -552) 90932) ((-606 . -1012) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 90916) ((-606 . -963) 90900) ((-606 . -82) 90879) ((-606 . -574) 90863) ((-606 . -332) 90835) ((-606 . -555) 90812) ((-606 . -950) 90789) ((-598 . -600) 90773) ((-598 . -38) 90743) ((-598 . -555) 90662) ((-598 . -590) 90636) ((-598 . -588) 90595) ((-598 . -969) T) ((-598 . -1024) T) ((-598 . -1059) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 90574) ((-598 . -963) 90558) ((-598 . -968) 90542) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1012) T) ((-598 . -552) 90524) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 90494) ((-598 . -654) 90464) ((-598 . -352) 90448) ((-598 . -950) 90346) ((-598 . -761) 90330) ((-598 . -1127) T) ((-598 . -13) T) ((-598 . -241) 90291) ((-597 . -600) 90275) ((-597 . -38) 90245) ((-597 . -555) 90164) ((-597 . -590) 90138) ((-597 . -588) 90097) ((-597 . -969) T) ((-597 . -1024) T) ((-597 . -1059) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 90076) ((-597 . -963) 90060) ((-597 . -968) 90044) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1012) T) ((-597 . -552) 90026) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 89996) ((-597 . -654) 89966) ((-597 . -352) 89950) ((-597 . -950) 89848) ((-597 . -761) 89832) ((-597 . -1127) T) ((-597 . -13) T) ((-597 . -241) 89811) ((-596 . -600) 89795) ((-596 . -38) 89765) ((-596 . -555) 89684) ((-596 . -590) 89658) ((-596 . -588) 89617) ((-596 . -969) T) ((-596 . -1024) T) ((-596 . -1059) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 89596) ((-596 . -963) 89580) ((-596 . -968) 89564) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1012) T) ((-596 . -552) 89546) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 89516) ((-596 . -654) 89486) ((-596 . -352) 89470) ((-596 . -950) 89368) ((-596 . -761) 89352) ((-596 . -1127) T) ((-596 . -13) T) ((-596 . -241) 89331) ((-594 . -654) 89315) ((-594 . -582) 89299) ((-594 . -590) 89283) ((-594 . -588) 89252) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1127) T) ((-594 . -552) 89234) ((-594 . -1012) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 89218) ((-594 . -963) 89202) ((-594 . -82) 89181) ((-594 . -714) 89160) ((-594 . -716) 89139) ((-594 . -756) 89118) ((-594 . -759) 89097) ((-594 . -718) 89076) ((-594 . -721) 89055) ((-591 . -1012) T) ((-591 . -552) 89037) ((-591 . -1127) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 89021) ((-591 . -555) 89005) ((-589 . -634) 88989) ((-589 . -76) 88973) ((-589 . -34) T) ((-589 . -13) T) ((-589 . -1127) T) ((-589 . -72) 88927) ((-589 . -552) 88862) ((-589 . -259) 88800) ((-589 . -452) 88733) ((-589 . -1012) 88711) ((-589 . -426) 88695) ((-589 . -124) 88679) ((-589 . -553) 88640) ((-589 . -193) 88624) ((-587 . -994) T) ((-587 . -427) 88605) ((-587 . -552) 88558) ((-587 . -555) 88539) ((-587 . -1012) T) ((-587 . -1127) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 88523) ((-583 . -1166) 88507) ((-583 . -923) 88491) ((-583 . -1062) 88475) ((-583 . -756) 88454) ((-583 . -759) 88433) ((-583 . -321) 88417) ((-583 . -593) 88401) ((-583 . -243) 88378) ((-583 . -241) 88330) ((-583 . -538) 88307) ((-583 . -553) 88268) ((-583 . -426) 88252) ((-583 . -1012) 88205) ((-583 . -452) 88138) ((-583 . -259) 88076) ((-583 . -552) 87991) ((-583 . -72) 87925) ((-583 . -1127) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 87909) ((-583 . -237) 87893) ((-581 . -1185) 87877) ((-581 . -82) 87856) ((-581 . -963) 87840) ((-581 . -968) 87824) ((-581 . -21) T) ((-581 . -588) 87793) ((-581 . -23) T) ((-581 . -1012) T) ((-581 . -552) 87775) ((-581 . -1127) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 87759) ((-581 . -582) 87743) ((-581 . -654) 87727) ((-581 . -241) 87694) ((-579 . -1185) 87678) ((-579 . -82) 87657) ((-579 . -963) 87641) ((-579 . -968) 87625) ((-579 . -21) T) ((-579 . -588) 87594) ((-579 . -23) T) ((-579 . -1012) T) ((-579 . -552) 87576) ((-579 . -1127) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 87560) ((-579 . -582) 87544) ((-579 . -654) 87528) ((-579 . -555) 87505) ((-579 . -447) 87477) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1012) T) ((-577 . -552) 87459) ((-577 . -1127) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -317) T) ((-577 . -555) 87436) ((-572 . -683) 87420) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 87399) ((-572 . -963) 87383) ((-572 . -968) 87367) ((-572 . -21) T) ((-572 . -588) 87336) ((-572 . -23) T) ((-572 . -1012) T) ((-572 . -552) 87305) ((-572 . -1127) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 87289) ((-572 . -582) 87273) ((-572 . -654) 87257) ((-572 . -358) 87222) ((-572 . -315) 87157) ((-572 . -241) 87115) ((-571 . -1105) 87090) ((-571 . -183) 87034) ((-571 . -76) 86978) ((-571 . -259) 86823) ((-571 . -452) 86623) ((-571 . -426) 86553) ((-571 . -124) 86497) ((-571 . -553) NIL) ((-571 . -193) 86441) ((-571 . -549) 86416) ((-571 . -243) 86391) ((-571 . -1127) T) ((-571 . -13) T) ((-571 . -241) 86344) ((-571 . -1012) T) ((-571 . -552) 86326) ((-571 . -72) T) ((-571 . -34) T) ((-571 . -538) 86301) ((-566 . -410) T) ((-566 . -1024) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1127) T) ((-566 . -552) 86283) ((-566 . -1012) T) ((-566 . -663) T) ((-565 . -994) T) ((-565 . -427) 86264) ((-565 . -552) 86230) ((-565 . -555) 86211) ((-565 . -1012) T) ((-565 . -1127) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 86195) ((-562 . -809) 86154) ((-562 . -811) 86080) ((-562 . -806) 86004) ((-562 . -225) 85988) ((-562 . -189) 85942) ((-562 . -1127) T) ((-562 . -13) T) ((-562 . -186) 85890) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1059) T) ((-562 . -1024) T) ((-562 . -969) T) ((-562 . -21) T) ((-562 . -588) 85862) ((-562 . -23) T) ((-562 . -1012) T) ((-562 . -552) 85844) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 85831) ((-562 . -555) 85727) ((-562 . -190) 85706) ((-562 . -494) T) ((-562 . -245) T) ((-562 . -146) T) ((-562 . -654) 85693) ((-562 . -582) 85680) ((-562 . -968) 85667) ((-562 . -963) 85654) ((-562 . -82) 85639) ((-562 . -38) 85626) ((-562 . -553) 85603) ((-562 . -352) 85587) ((-562 . -950) 85472) ((-562 . -120) 85451) ((-562 . -118) 85430) ((-562 . -257) 85409) ((-562 . -389) 85388) ((-562 . -832) 85367) ((-558 . -38) 85351) ((-558 . -555) 85320) ((-558 . -590) 85294) ((-558 . -588) 85253) ((-558 . -969) T) ((-558 . -1024) T) ((-558 . -1059) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 85232) ((-558 . -963) 85216) ((-558 . -968) 85200) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1012) T) ((-558 . -552) 85182) ((-558 . -1127) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 85166) ((-558 . -654) 85150) ((-558 . -755) 85129) ((-558 . -721) 85108) ((-558 . -718) 85087) ((-558 . -759) 85066) ((-558 . -756) 85045) ((-558 . -716) 85024) ((-558 . -714) 85003) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 84985) ((-556 . -1012) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1127) T) ((-556 . -84) T) ((-556 . -317) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1127) T) ((-550 . -552) 84967) ((-550 . -1012) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 84951) ((-550 . -553) 84812) ((-547 . -313) 84750) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1127) T) ((-547 . -552) 84732) ((-547 . -1012) T) ((-547 . -1105) 84708) ((-547 . -183) 84653) ((-547 . -76) 84598) ((-547 . -259) 84387) ((-547 . -452) 84127) ((-547 . -426) 84059) ((-547 . -124) 84004) ((-547 . -553) NIL) ((-547 . -193) 83949) ((-547 . -549) 83925) ((-547 . -243) 83901) ((-547 . -241) 83877) ((-547 . -34) T) ((-547 . -538) 83853) ((-546 . -1012) T) ((-546 . -552) 83805) ((-546 . -1127) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -427) 83772) ((-546 . -555) 83739) ((-545 . -1012) T) ((-545 . -552) 83721) ((-545 . -1127) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1012) T) ((-544 . -552) 83703) ((-544 . -1127) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1012) T) ((-543 . -552) 83670) ((-543 . -1127) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1012) T) ((-542 . -552) 83652) ((-542 . -1127) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1012) T) ((-541 . -552) 83619) ((-541 . -1127) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -427) 83601) ((-541 . -555) 83583) ((-540 . -683) 83567) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 83546) ((-540 . -963) 83530) ((-540 . -968) 83514) ((-540 . -21) T) ((-540 . -588) 83483) ((-540 . -23) T) ((-540 . -1012) T) ((-540 . -552) 83452) ((-540 . -1127) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 83436) ((-540 . -582) 83420) ((-540 . -654) 83404) ((-540 . -358) 83369) ((-540 . -315) 83304) ((-540 . -241) 83262) ((-539 . -994) T) ((-539 . -427) 83243) ((-539 . -552) 83193) ((-539 . -555) 83174) ((-539 . -1012) T) ((-539 . -1127) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -1176) 83158) ((-536 . -321) 83142) ((-536 . -759) 83121) ((-536 . -756) 83100) ((-536 . -124) 83084) ((-536 . -34) T) ((-536 . -13) T) ((-536 . -1127) T) ((-536 . -72) 83018) ((-536 . -552) 82933) ((-536 . -259) 82871) ((-536 . -452) 82804) ((-536 . -1012) 82757) ((-536 . -426) 82741) ((-536 . -553) 82702) ((-536 . -241) 82654) ((-536 . -538) 82631) ((-536 . -243) 82608) ((-536 . -593) 82592) ((-536 . -19) 82576) ((-535 . -552) 82558) ((-531 . -1012) T) ((-531 . -552) 82524) ((-531 . -1127) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -427) 82505) ((-531 . -555) 82486) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1059) T) ((-530 . -1024) T) ((-530 . -969) T) ((-530 . -21) T) ((-530 . -588) 82445) ((-530 . -23) T) ((-530 . -1012) T) ((-530 . -552) 82427) ((-530 . -1127) T) ((-530 . -13) T) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -590) 82401) ((-530 . -555) 82359) ((-530 . -82) 82312) ((-530 . -963) 82272) ((-530 . -968) 82232) ((-530 . -494) 82211) ((-530 . -245) 82190) ((-530 . -146) 82169) ((-530 . -654) 82142) ((-530 . -582) 82115) ((-530 . -38) 82088) ((-529 . -1156) 82065) ((-529 . -47) 82042) ((-529 . -38) 81939) ((-529 . -582) 81836) ((-529 . -654) 81733) ((-529 . -555) 81615) ((-529 . -245) 81594) ((-529 . -494) 81573) ((-529 . -82) 81438) ((-529 . -963) 81324) ((-529 . -968) 81210) ((-529 . -146) 81164) ((-529 . -120) 81143) ((-529 . -118) 81122) ((-529 . -590) 81047) ((-529 . -588) 80957) ((-529 . -886) 80927) ((-529 . -811) 80840) ((-529 . -806) 80751) ((-529 . -809) 80664) ((-529 . -241) 80629) ((-529 . -189) 80588) ((-529 . -1127) T) ((-529 . -13) T) ((-529 . -186) 80541) ((-529 . -961) T) ((-529 . -663) T) ((-529 . -1059) T) ((-529 . -1024) T) ((-529 . -969) T) ((-529 . -21) T) ((-529 . -23) T) ((-529 . -1012) T) ((-529 . -552) 80523) ((-529 . -72) T) ((-529 . -25) T) ((-529 . -104) T) ((-529 . -190) 80482) ((-527 . -994) T) ((-527 . -427) 80463) ((-527 . -552) 80429) ((-527 . -555) 80410) ((-527 . -1012) T) ((-527 . -1127) T) ((-527 . -13) T) ((-527 . -72) T) ((-527 . -64) T) ((-521 . -1012) T) ((-521 . -552) 80376) ((-521 . -1127) T) ((-521 . -13) T) ((-521 . -72) T) ((-521 . -427) 80357) ((-521 . -555) 80338) ((-518 . -654) 80313) ((-518 . -582) 80288) ((-518 . -590) 80263) ((-518 . -588) 80223) ((-518 . -104) T) ((-518 . -25) T) ((-518 . -72) T) ((-518 . -13) T) ((-518 . -1127) T) ((-518 . -552) 80205) ((-518 . -1012) T) ((-518 . -23) T) ((-518 . -21) T) ((-518 . -968) 80180) ((-518 . -963) 80155) ((-518 . -82) 80116) ((-518 . -950) 80100) ((-518 . -555) 80084) ((-516 . -298) T) ((-516 . -1064) T) ((-516 . -317) T) ((-516 . -118) T) ((-516 . -311) T) ((-516 . -1132) T) ((-516 . -832) T) ((-516 . -494) T) ((-516 . -146) T) ((-516 . -555) 80034) ((-516 . -654) 79999) ((-516 . -582) 79964) ((-516 . -38) 79929) ((-516 . -389) T) ((-516 . -257) T) ((-516 . -82) 79878) ((-516 . -963) 79843) ((-516 . -968) 79808) ((-516 . -588) 79758) ((-516 . -590) 79723) ((-516 . -245) T) ((-516 . -201) T) ((-516 . -342) T) ((-516 . -189) T) ((-516 . -1127) T) ((-516 . -13) T) ((-516 . -186) 79710) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1059) T) ((-516 . -1024) T) ((-516 . -969) T) ((-516 . -21) T) ((-516 . -23) T) ((-516 . -1012) T) ((-516 . -552) 79692) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -190) T) ((-516 . -279) 79679) ((-516 . -120) 79661) ((-516 . -950) 79648) ((-516 . -1185) 79635) ((-516 . -1196) 79622) ((-516 . -553) 79604) ((-515 . -779) 79588) ((-515 . -832) T) ((-515 . -494) T) ((-515 . -245) T) ((-515 . -146) T) ((-515 . -555) 79560) ((-515 . -654) 79547) ((-515 . -582) 79534) ((-515 . -968) 79521) ((-515 . -963) 79508) ((-515 . -82) 79493) ((-515 . -38) 79480) ((-515 . -389) T) ((-515 . -257) T) ((-515 . -961) T) ((-515 . -663) T) ((-515 . -1059) T) ((-515 . -1024) T) ((-515 . -969) T) ((-515 . -21) T) ((-515 . -588) 79452) ((-515 . -23) T) ((-515 . -1012) T) ((-515 . -552) 79434) ((-515 . -1127) T) ((-515 . -13) T) ((-515 . -72) T) ((-515 . -25) T) ((-515 . -104) T) ((-515 . -590) 79421) ((-515 . -120) T) ((-514 . -1012) T) ((-514 . -552) 79403) ((-514 . -1127) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -1012) T) ((-513 . -552) 79385) ((-513 . -1127) T) ((-513 . -13) T) ((-513 . -72) T) ((-512 . -511) T) ((-512 . -770) T) ((-512 . -147) T) ((-512 . -464) T) ((-512 . -552) 79367) ((-506 . -492) 79351) ((-506 . -35) T) ((-506 . -66) T) ((-506 . -239) T) ((-506 . -430) T) ((-506 . -1116) T) ((-506 . -1113) T) ((-506 . -950) 79333) ((-506 . -915) T) ((-506 . -759) T) ((-506 . -756) T) ((-506 . -494) T) ((-506 . -245) T) ((-506 . -146) T) ((-506 . -555) 79305) ((-506 . -654) 79292) ((-506 . -582) 79279) ((-506 . -590) 79266) ((-506 . -588) 79238) ((-506 . -104) T) ((-506 . -25) T) ((-506 . -72) T) ((-506 . -13) T) ((-506 . -1127) T) ((-506 . -552) 79220) ((-506 . -1012) T) ((-506 . -23) T) ((-506 . -21) T) ((-506 . -968) 79207) ((-506 . -963) 79194) ((-506 . -82) 79179) ((-506 . -961) T) ((-506 . -663) T) ((-506 . -1059) T) ((-506 . -1024) T) ((-506 . -969) T) ((-506 . -38) 79166) ((-506 . -389) T) ((-488 . -1105) 79145) ((-488 . -183) 79093) ((-488 . -76) 79041) ((-488 . -259) 78839) ((-488 . -452) 78591) ((-488 . -426) 78526) ((-488 . -124) 78474) ((-488 . -553) NIL) ((-488 . -193) 78422) ((-488 . -549) 78401) ((-488 . -243) 78380) ((-488 . -1127) T) ((-488 . -13) T) ((-488 . -241) 78359) ((-488 . -1012) T) ((-488 . -552) 78341) ((-488 . -72) T) ((-488 . -34) T) ((-488 . -538) 78320) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1012) T) ((-487 . -552) 78302) ((-487 . -1127) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -317) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1012) T) ((-486 . -552) 78284) ((-486 . -1127) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -317) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1012) T) ((-485 . -552) 78266) ((-485 . -1127) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -317) T) ((-484 . -752) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -1012) T) ((-484 . -552) 78248) ((-484 . -1127) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -317) T) ((-483 . -482) T) ((-483 . -1132) T) ((-483 . -1064) T) ((-483 . -950) 78230) ((-483 . -553) 78145) ((-483 . -933) T) ((-483 . -796) 78127) ((-483 . -755) T) ((-483 . -721) T) ((-483 . -718) T) ((-483 . -759) T) ((-483 . -756) T) ((-483 . -716) T) ((-483 . -714) T) ((-483 . -740) T) ((-483 . -590) 78099) ((-483 . -580) 78081) ((-483 . -832) T) ((-483 . -494) T) ((-483 . -245) T) ((-483 . -146) T) ((-483 . -555) 78053) ((-483 . -654) 78040) ((-483 . -582) 78027) ((-483 . -968) 78014) ((-483 . -963) 78001) ((-483 . -82) 77986) ((-483 . -38) 77973) ((-483 . -389) T) ((-483 . -257) T) ((-483 . -189) T) ((-483 . -186) 77960) ((-483 . -190) T) ((-483 . -116) T) ((-483 . -961) T) ((-483 . -663) T) ((-483 . -1059) T) ((-483 . -1024) T) ((-483 . -969) T) ((-483 . -21) T) ((-483 . -588) 77932) ((-483 . -23) T) ((-483 . -1012) T) ((-483 . -552) 77914) ((-483 . -1127) T) ((-483 . -13) T) ((-483 . -72) T) ((-483 . -25) T) ((-483 . -104) T) ((-483 . -120) T) ((-472 . -1015) 77866) ((-472 . -72) T) ((-472 . -552) 77848) ((-472 . -1012) T) ((-472 . -241) 77804) ((-472 . -1127) T) ((-472 . -13) T) ((-472 . -557) 77707) ((-472 . -553) 77688) ((-470 . -691) 77670) ((-470 . -464) T) ((-470 . -147) T) ((-470 . -770) T) ((-470 . -511) T) ((-470 . -552) 77652) ((-468 . -717) T) ((-468 . -104) T) ((-468 . -25) T) ((-468 . -72) T) ((-468 . -13) T) ((-468 . -1127) T) ((-468 . -552) 77634) ((-468 . -1012) T) ((-468 . -23) T) ((-468 . -716) T) ((-468 . -756) T) ((-468 . -759) T) ((-468 . -718) T) ((-468 . -721) T) ((-468 . -447) 77611) ((-466 . -464) T) ((-466 . -147) T) ((-466 . -552) 77593) ((-462 . -994) T) ((-462 . -427) 77574) ((-462 . -552) 77540) ((-462 . -555) 77521) ((-462 . -1012) T) ((-462 . -1127) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -994) T) ((-461 . -427) 77502) ((-461 . -552) 77468) ((-461 . -555) 77449) ((-461 . -1012) T) ((-461 . -1127) T) ((-461 . -13) T) ((-461 . -72) T) ((-461 . -64) T) ((-460 . -627) 77399) ((-460 . -426) 77383) ((-460 . -1012) 77361) ((-460 . -452) 77294) ((-460 . -259) 77232) ((-460 . -552) 77167) ((-460 . -72) 77121) ((-460 . -1127) T) ((-460 . -13) T) ((-460 . -34) T) ((-460 . -57) 77071) ((-457 . -57) 77045) ((-457 . -34) T) ((-457 . -13) T) ((-457 . -1127) T) ((-457 . -72) 76999) ((-457 . -552) 76934) ((-457 . -259) 76872) ((-457 . -452) 76805) ((-457 . -1012) 76783) ((-457 . -426) 76767) ((-456 . -279) 76744) ((-456 . -190) T) ((-456 . -186) 76731) ((-456 . -189) T) ((-456 . -317) T) ((-456 . -1064) T) ((-456 . -298) T) ((-456 . -120) 76713) ((-456 . -555) 76643) ((-456 . -590) 76588) ((-456 . -588) 76518) ((-456 . -104) T) ((-456 . -25) T) ((-456 . -72) T) ((-456 . -13) T) ((-456 . -1127) T) ((-456 . -552) 76500) ((-456 . -1012) T) ((-456 . -23) T) ((-456 . -21) T) ((-456 . -969) T) ((-456 . -1024) T) ((-456 . -1059) T) ((-456 . -663) T) ((-456 . -961) T) ((-456 . -311) T) ((-456 . -1132) T) ((-456 . -832) T) ((-456 . -494) T) ((-456 . -146) T) ((-456 . -654) 76445) ((-456 . -582) 76390) ((-456 . -38) 76355) ((-456 . -389) T) ((-456 . -257) T) ((-456 . -82) 76272) ((-456 . -963) 76217) ((-456 . -968) 76162) ((-456 . -245) T) ((-456 . -201) T) ((-456 . -342) T) ((-456 . -118) T) ((-456 . -950) 76139) ((-456 . -1185) 76116) ((-456 . -1196) 76093) ((-455 . -994) T) ((-455 . -427) 76074) ((-455 . -552) 76040) ((-455 . -555) 76021) ((-455 . -1012) T) ((-455 . -1127) T) ((-455 . -13) T) ((-455 . -72) T) ((-455 . -64) T) ((-454 . -19) 76005) ((-454 . -593) 75989) ((-454 . -243) 75966) ((-454 . -241) 75918) ((-454 . -538) 75895) ((-454 . -553) 75856) ((-454 . -426) 75840) ((-454 . -1012) 75793) ((-454 . -452) 75726) ((-454 . -259) 75664) ((-454 . -552) 75579) ((-454 . -72) 75513) ((-454 . -1127) T) ((-454 . -13) T) ((-454 . -34) T) ((-454 . -124) 75497) ((-454 . -756) 75476) ((-454 . -759) 75455) ((-454 . -321) 75439) ((-454 . -237) 75423) ((-453 . -273) 75402) ((-453 . -555) 75386) ((-453 . -950) 75370) ((-453 . -23) T) ((-453 . -1012) T) ((-453 . -552) 75352) ((-453 . -1127) T) ((-453 . -13) T) ((-453 . -72) T) ((-453 . -25) T) ((-453 . -104) T) ((-450 . -717) T) ((-450 . -104) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1127) T) ((-450 . -552) 75334) ((-450 . -1012) T) ((-450 . -23) T) ((-450 . -716) T) ((-450 . -756) T) ((-450 . -759) T) ((-450 . -718) T) ((-450 . -721) T) ((-450 . -447) 75313) ((-449 . -716) T) ((-449 . -756) T) ((-449 . -759) T) ((-449 . -718) T) ((-449 . -25) T) ((-449 . -72) T) ((-449 . -13) T) ((-449 . -1127) T) ((-449 . -552) 75295) ((-449 . -1012) T) ((-449 . -23) T) ((-449 . -447) 75274) ((-448 . -447) 75253) ((-448 . -552) 75193) ((-448 . -1012) 75144) ((-448 . -1127) T) ((-448 . -13) T) ((-448 . -72) T) ((-446 . -23) T) ((-446 . -1012) T) ((-446 . -552) 75126) ((-446 . -1127) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -447) 75105) ((-445 . -21) T) ((-445 . -588) 75087) ((-445 . -23) T) ((-445 . -1012) T) ((-445 . -552) 75069) ((-445 . -1127) T) ((-445 . -13) T) ((-445 . -72) T) ((-445 . -25) T) ((-445 . -104) T) ((-445 . -447) 75048) ((-444 . -1012) T) ((-444 . -552) 75030) ((-444 . -1127) T) ((-444 . -13) T) ((-444 . -72) T) ((-441 . -1012) T) ((-441 . -552) 75012) ((-441 . -1127) T) ((-441 . -13) T) ((-441 . -72) T) ((-439 . -756) T) ((-439 . -552) 74994) ((-439 . -1012) T) ((-439 . -72) T) ((-439 . -13) T) ((-439 . -1127) T) ((-439 . -759) T) ((-439 . -555) 74975) ((-437 . -96) T) ((-437 . -321) 74958) ((-437 . -759) T) ((-437 . -756) T) ((-437 . -124) 74941) ((-437 . -34) T) ((-437 . -72) T) ((-437 . -552) 74923) ((-437 . -259) NIL) ((-437 . -452) NIL) ((-437 . -1012) T) ((-437 . -426) 74906) ((-437 . -553) 74888) ((-437 . -241) 74839) ((-437 . -538) 74815) ((-437 . -243) 74791) ((-437 . -593) 74774) ((-437 . -19) 74757) ((-437 . -604) T) ((-437 . -13) T) ((-437 . -1127) T) ((-437 . -84) T) ((-434 . -57) 74707) ((-434 . -34) T) ((-434 . -13) T) ((-434 . -1127) T) ((-434 . -72) 74661) ((-434 . -552) 74596) ((-434 . -259) 74534) ((-434 . -452) 74467) ((-434 . -1012) 74445) ((-434 . -426) 74429) ((-433 . -19) 74413) ((-433 . -593) 74397) ((-433 . -243) 74374) ((-433 . -241) 74326) ((-433 . -538) 74303) ((-433 . -553) 74264) ((-433 . -426) 74248) ((-433 . -1012) 74201) ((-433 . -452) 74134) ((-433 . -259) 74072) ((-433 . -552) 73987) ((-433 . -72) 73921) ((-433 . -1127) T) ((-433 . -13) T) ((-433 . -34) T) ((-433 . -124) 73905) ((-433 . -756) 73884) ((-433 . -759) 73863) ((-433 . -321) 73847) ((-432 . -253) T) ((-432 . -72) T) ((-432 . -13) T) ((-432 . -1127) T) ((-432 . -552) 73829) ((-432 . -1012) T) ((-432 . -555) 73730) ((-432 . -950) 73673) ((-432 . -452) 73639) ((-432 . -259) 73626) ((-432 . -27) T) ((-432 . -915) T) ((-432 . -201) T) ((-432 . -82) 73575) ((-432 . -963) 73540) ((-432 . -968) 73505) ((-432 . -245) T) ((-432 . -654) 73470) ((-432 . -582) 73435) ((-432 . -590) 73385) ((-432 . -588) 73335) ((-432 . -104) T) ((-432 . -25) T) ((-432 . -23) T) ((-432 . -21) T) ((-432 . -961) T) ((-432 . -663) T) ((-432 . -1059) T) ((-432 . -1024) T) ((-432 . -969) T) ((-432 . -38) 73300) ((-432 . -257) T) ((-432 . -389) T) ((-432 . -146) T) ((-432 . -494) T) ((-432 . -832) T) ((-432 . -1132) T) ((-432 . -311) T) ((-432 . -580) 73260) ((-432 . -933) T) ((-432 . -553) 73205) ((-432 . -120) T) ((-432 . -190) T) ((-432 . -186) 73192) ((-432 . -189) T) ((-428 . -1012) T) ((-428 . -552) 73158) ((-428 . -1127) T) ((-428 . -13) T) ((-428 . -72) T) ((-424 . -904) 73140) ((-424 . -1064) T) ((-424 . -555) 73090) ((-424 . -950) 73050) ((-424 . -553) 72980) ((-424 . -933) T) ((-424 . -821) NIL) ((-424 . -794) 72962) ((-424 . -755) T) ((-424 . -721) T) ((-424 . -718) T) ((-424 . -759) T) ((-424 . -756) T) ((-424 . -716) T) ((-424 . -714) T) ((-424 . -740) T) ((-424 . -796) 72944) ((-424 . -340) 72926) ((-424 . -580) 72908) ((-424 . -326) 72890) ((-424 . -241) NIL) ((-424 . -259) NIL) ((-424 . -452) NIL) ((-424 . -287) 72872) ((-424 . -201) T) ((-424 . -82) 72799) ((-424 . -963) 72749) ((-424 . -968) 72699) ((-424 . -245) T) ((-424 . -654) 72649) ((-424 . -582) 72599) ((-424 . -590) 72549) ((-424 . -588) 72499) ((-424 . -38) 72449) ((-424 . -257) T) ((-424 . -389) T) ((-424 . -146) T) ((-424 . -494) T) ((-424 . -832) T) ((-424 . -1132) T) ((-424 . -311) T) ((-424 . -190) T) ((-424 . -186) 72436) ((-424 . -189) T) ((-424 . -225) 72418) ((-424 . -806) NIL) ((-424 . -811) NIL) ((-424 . -809) NIL) ((-424 . -184) 72400) ((-424 . -120) T) ((-424 . -118) NIL) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1127) T) ((-424 . -552) 72342) ((-424 . -1012) T) ((-424 . -23) T) ((-424 . -21) T) ((-424 . -961) T) ((-424 . -663) T) ((-424 . -1059) T) ((-424 . -1024) T) ((-424 . -969) T) ((-422 . -285) 72311) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1127) T) ((-422 . -552) 72293) ((-422 . -1012) T) ((-422 . -23) T) ((-422 . -588) 72275) ((-422 . -21) T) ((-421 . -881) 72259) ((-421 . -426) 72243) ((-421 . -1012) 72221) ((-421 . -452) 72154) ((-421 . -259) 72092) ((-421 . -552) 72027) ((-421 . -72) 71981) ((-421 . -1127) T) ((-421 . -13) T) ((-421 . -34) T) ((-421 . -76) 71965) ((-420 . -994) T) ((-420 . -427) 71946) ((-420 . -552) 71912) ((-420 . -555) 71893) ((-420 . -1012) T) ((-420 . -1127) T) ((-420 . -13) T) ((-420 . -72) T) ((-420 . -64) T) ((-419 . -196) 71872) ((-419 . -1185) 71842) ((-419 . -721) 71821) ((-419 . -718) 71800) ((-419 . -759) 71754) ((-419 . -756) 71708) ((-419 . -716) 71687) ((-419 . -717) 71666) ((-419 . -654) 71611) ((-419 . -582) 71536) ((-419 . -243) 71513) ((-419 . -241) 71490) ((-419 . -426) 71474) ((-419 . -452) 71407) ((-419 . -259) 71345) ((-419 . -34) T) ((-419 . -538) 71322) ((-419 . -950) 71151) ((-419 . -555) 70955) ((-419 . -352) 70924) ((-419 . -580) 70832) ((-419 . -590) 70671) ((-419 . -326) 70641) ((-419 . -317) 70620) ((-419 . -190) 70573) ((-419 . -588) 70361) ((-419 . -969) 70340) ((-419 . -1024) 70319) ((-419 . -1059) 70298) ((-419 . -663) 70277) ((-419 . -961) 70256) ((-419 . -186) 70152) ((-419 . -189) 70054) ((-419 . -225) 70024) ((-419 . -806) 69896) ((-419 . -811) 69770) ((-419 . -809) 69703) ((-419 . -184) 69673) ((-419 . -552) 69370) ((-419 . -968) 69295) ((-419 . -963) 69200) ((-419 . -82) 69120) ((-419 . -104) 68995) ((-419 . -25) 68832) ((-419 . -72) 68569) ((-419 . -13) T) ((-419 . -1127) T) ((-419 . -1012) 68325) ((-419 . -23) 68181) ((-419 . -21) 68096) ((-418 . -861) 68041) ((-418 . -555) 67833) ((-418 . -950) 67711) ((-418 . -1132) 67690) ((-418 . -821) 67669) ((-418 . -796) NIL) ((-418 . -811) 67646) ((-418 . -806) 67621) ((-418 . -809) 67598) ((-418 . -452) 67536) ((-418 . -389) 67490) ((-418 . -580) 67438) ((-418 . -590) 67327) ((-418 . -326) 67311) ((-418 . -47) 67268) ((-418 . -38) 67120) ((-418 . -582) 66972) ((-418 . -654) 66824) ((-418 . -245) 66758) ((-418 . -494) 66692) ((-418 . -82) 66517) ((-418 . -963) 66363) ((-418 . -968) 66209) ((-418 . -146) 66123) ((-418 . -120) 66102) ((-418 . -118) 66081) ((-418 . -588) 65991) ((-418 . -104) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -13) T) ((-418 . -1127) T) ((-418 . -552) 65973) ((-418 . -1012) T) ((-418 . -23) T) ((-418 . -21) T) ((-418 . -961) T) ((-418 . -663) T) ((-418 . -1059) T) ((-418 . -1024) T) ((-418 . -969) T) ((-418 . -352) 65957) ((-418 . -276) 65914) ((-418 . -259) 65901) ((-418 . -553) 65762) ((-416 . -1105) 65741) ((-416 . -183) 65689) ((-416 . -76) 65637) ((-416 . -259) 65435) ((-416 . -452) 65187) ((-416 . -426) 65122) ((-416 . -124) 65070) ((-416 . -553) NIL) ((-416 . -193) 65018) ((-416 . -549) 64997) ((-416 . -243) 64976) ((-416 . -1127) T) ((-416 . -13) T) ((-416 . -241) 64955) ((-416 . -1012) T) ((-416 . -552) 64937) ((-416 . -72) T) ((-416 . -34) T) ((-416 . -538) 64916) ((-415 . -994) T) ((-415 . -427) 64897) ((-415 . -552) 64863) ((-415 . -555) 64844) ((-415 . -1012) T) ((-415 . -1127) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -64) T) ((-414 . -311) T) ((-414 . -1132) T) ((-414 . -832) T) ((-414 . -494) T) ((-414 . -146) T) ((-414 . -555) 64794) ((-414 . -654) 64759) ((-414 . -582) 64724) ((-414 . -38) 64689) ((-414 . -389) T) ((-414 . -257) T) ((-414 . -590) 64654) ((-414 . -588) 64604) ((-414 . -969) T) ((-414 . -1024) T) ((-414 . -1059) T) ((-414 . -663) T) ((-414 . -961) T) ((-414 . -82) 64553) ((-414 . -963) 64518) ((-414 . -968) 64483) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1012) T) ((-414 . -552) 64435) ((-414 . -1127) T) ((-414 . -13) T) ((-414 . -72) T) ((-414 . -25) T) ((-414 . -104) T) ((-414 . -245) T) ((-414 . -201) T) ((-414 . -120) T) ((-414 . -950) 64395) ((-414 . -933) T) ((-414 . -553) 64317) ((-413 . -1122) 64286) ((-413 . -552) 64248) ((-413 . -124) 64232) ((-413 . -34) T) ((-413 . -13) T) ((-413 . -1127) T) ((-413 . -72) T) ((-413 . -259) 64170) ((-413 . -452) 64103) ((-413 . -1012) T) ((-413 . -426) 64087) ((-413 . -553) 64048) ((-413 . -889) 64017) ((-412 . -1105) 63996) ((-412 . -183) 63944) ((-412 . -76) 63892) ((-412 . -259) 63690) ((-412 . -452) 63442) ((-412 . -426) 63377) ((-412 . -124) 63325) ((-412 . -553) NIL) ((-412 . -193) 63273) ((-412 . -549) 63252) ((-412 . -243) 63231) ((-412 . -1127) T) ((-412 . -13) T) ((-412 . -241) 63210) ((-412 . -1012) T) ((-412 . -552) 63192) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -538) 63171) ((-411 . -1160) 63155) ((-411 . -190) 63107) ((-411 . -186) 63053) ((-411 . -189) 63005) ((-411 . -241) 62963) ((-411 . -809) 62869) ((-411 . -806) 62750) ((-411 . -811) 62656) ((-411 . -886) 62619) ((-411 . -38) 62466) ((-411 . -82) 62286) ((-411 . -963) 62127) ((-411 . -968) 61968) ((-411 . -588) 61853) ((-411 . -590) 61753) ((-411 . -582) 61600) ((-411 . -654) 61447) ((-411 . -555) 61279) ((-411 . -118) 61258) ((-411 . -120) 61237) ((-411 . -47) 61207) ((-411 . -1156) 61177) ((-411 . -35) 61143) ((-411 . -66) 61109) ((-411 . -239) 61075) ((-411 . -430) 61041) ((-411 . -1116) 61007) ((-411 . -1113) 60973) ((-411 . -915) 60939) ((-411 . -201) 60918) ((-411 . -245) 60872) ((-411 . -104) T) ((-411 . -25) T) ((-411 . -72) T) ((-411 . -13) T) ((-411 . -1127) T) ((-411 . -552) 60854) ((-411 . -1012) T) ((-411 . -23) T) ((-411 . -21) T) ((-411 . -961) T) ((-411 . -663) T) ((-411 . -1059) T) ((-411 . -1024) T) ((-411 . -969) T) ((-411 . -257) 60833) ((-411 . -389) 60812) ((-411 . -146) 60746) ((-411 . -494) 60700) ((-411 . -832) 60679) ((-411 . -1132) 60658) ((-411 . -311) 60637) ((-405 . -1012) T) ((-405 . -552) 60619) ((-405 . -1127) T) ((-405 . -13) T) ((-405 . -72) T) ((-400 . -889) 60588) ((-400 . -553) 60549) ((-400 . -426) 60533) ((-400 . -1012) T) ((-400 . -452) 60466) ((-400 . -259) 60404) ((-400 . -552) 60366) ((-400 . -72) T) ((-400 . -1127) T) ((-400 . -13) T) ((-400 . -34) T) ((-400 . -124) 60350) ((-398 . -654) 60321) ((-398 . -582) 60292) ((-398 . -590) 60263) ((-398 . -588) 60219) ((-398 . -104) T) ((-398 . -25) T) ((-398 . -72) T) ((-398 . -13) T) ((-398 . -1127) T) ((-398 . -552) 60201) ((-398 . -1012) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -968) 60172) ((-398 . -963) 60143) ((-398 . -82) 60104) ((-391 . -861) 60071) ((-391 . -555) 59863) ((-391 . -950) 59741) ((-391 . -1132) 59720) ((-391 . -821) 59699) ((-391 . -796) NIL) ((-391 . -811) 59676) ((-391 . -806) 59651) ((-391 . -809) 59628) ((-391 . -452) 59566) ((-391 . -389) 59520) ((-391 . -580) 59468) ((-391 . -590) 59357) ((-391 . -326) 59341) ((-391 . -47) 59320) ((-391 . -38) 59172) ((-391 . -582) 59024) ((-391 . -654) 58876) ((-391 . -245) 58810) ((-391 . -494) 58744) ((-391 . -82) 58569) ((-391 . -963) 58415) ((-391 . -968) 58261) ((-391 . -146) 58175) ((-391 . -120) 58154) ((-391 . -118) 58133) ((-391 . -588) 58043) ((-391 . -104) T) ((-391 . -25) T) ((-391 . -72) T) ((-391 . -13) T) ((-391 . -1127) T) ((-391 . -552) 58025) ((-391 . -1012) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -961) T) ((-391 . -663) T) ((-391 . -1059) T) ((-391 . -1024) T) ((-391 . -969) T) ((-391 . -352) 58009) ((-391 . -276) 57988) ((-391 . -259) 57975) ((-391 . -553) 57836) ((-390 . -358) 57806) ((-390 . -683) 57776) ((-390 . -657) T) ((-390 . -685) T) ((-390 . -82) 57727) ((-390 . -963) 57697) ((-390 . -968) 57667) ((-390 . -21) T) ((-390 . -588) 57582) ((-390 . -23) T) ((-390 . -1012) T) ((-390 . -552) 57564) ((-390 . -72) T) ((-390 . -25) T) ((-390 . -104) T) ((-390 . -590) 57494) ((-390 . -582) 57464) ((-390 . -654) 57434) ((-390 . -315) 57404) ((-390 . -1127) T) ((-390 . -13) T) ((-390 . -241) 57367) ((-378 . -1012) T) ((-378 . -552) 57349) ((-378 . -1127) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1012) T) ((-377 . -552) 57331) ((-377 . -1127) T) ((-377 . -13) T) ((-377 . -72) T) ((-376 . -1012) T) ((-376 . -552) 57313) ((-376 . -1127) T) ((-376 . -13) T) ((-376 . -72) T) ((-374 . -552) 57295) ((-369 . -38) 57279) ((-369 . -555) 57248) ((-369 . -590) 57222) ((-369 . -588) 57181) ((-369 . -969) T) ((-369 . -1024) T) ((-369 . -1059) T) ((-369 . -663) T) ((-369 . -961) T) ((-369 . -82) 57160) ((-369 . -963) 57144) ((-369 . -968) 57128) ((-369 . -21) T) ((-369 . -23) T) ((-369 . -1012) T) ((-369 . -552) 57110) ((-369 . -1127) T) ((-369 . -13) T) ((-369 . -72) T) ((-369 . -25) T) ((-369 . -104) T) ((-369 . -582) 57094) ((-369 . -654) 57078) ((-355 . -663) T) ((-355 . -1012) T) ((-355 . -552) 57060) ((-355 . -1127) T) ((-355 . -13) T) ((-355 . -72) T) ((-355 . -1024) T) ((-353 . -410) T) ((-353 . -1024) T) ((-353 . -72) T) ((-353 . -13) T) ((-353 . -1127) T) ((-353 . -552) 57042) ((-353 . -1012) T) ((-353 . -663) T) ((-347 . -904) 57026) ((-347 . -1064) 57004) ((-347 . -950) 56871) ((-347 . -555) 56770) ((-347 . -553) 56573) ((-347 . -933) 56552) ((-347 . -821) 56531) ((-347 . -794) 56515) ((-347 . -755) 56494) ((-347 . -721) 56473) ((-347 . -718) 56452) ((-347 . -759) 56406) ((-347 . -756) 56360) ((-347 . -716) 56339) ((-347 . -714) 56318) ((-347 . -740) 56297) ((-347 . -796) 56222) ((-347 . -340) 56206) ((-347 . -580) 56154) ((-347 . -590) 56070) ((-347 . -326) 56054) ((-347 . -241) 56012) ((-347 . -259) 55977) ((-347 . -452) 55889) ((-347 . -287) 55873) ((-347 . -201) T) ((-347 . -82) 55804) ((-347 . -963) 55756) ((-347 . -968) 55708) ((-347 . -245) T) ((-347 . -654) 55660) ((-347 . -582) 55612) ((-347 . -588) 55549) ((-347 . -38) 55501) ((-347 . -257) T) ((-347 . -389) T) ((-347 . -146) T) ((-347 . -494) T) ((-347 . -832) T) ((-347 . -1132) T) ((-347 . -311) T) ((-347 . -190) 55480) ((-347 . -186) 55428) ((-347 . -189) 55382) ((-347 . -225) 55366) ((-347 . -806) 55290) ((-347 . -811) 55216) ((-347 . -809) 55175) ((-347 . -184) 55159) ((-347 . -120) 55138) ((-347 . -118) 55117) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1127) T) ((-347 . -552) 55099) ((-347 . -1012) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -961) T) ((-347 . -663) T) ((-347 . -1059) T) ((-347 . -1024) T) ((-347 . -969) T) ((-345 . -494) T) ((-345 . -245) T) ((-345 . -146) T) ((-345 . -555) 55008) ((-345 . -654) 54982) ((-345 . -582) 54956) ((-345 . -590) 54930) ((-345 . -588) 54889) ((-345 . -104) T) ((-345 . -25) T) ((-345 . -72) T) ((-345 . -13) T) ((-345 . -1127) T) ((-345 . -552) 54871) ((-345 . -1012) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -968) 54845) ((-345 . -963) 54819) ((-345 . -82) 54786) ((-345 . -961) T) ((-345 . -663) T) ((-345 . -1059) T) ((-345 . -1024) T) ((-345 . -969) T) ((-345 . -38) 54760) ((-345 . -184) 54744) ((-345 . -809) 54703) ((-345 . -811) 54629) ((-345 . -806) 54553) ((-345 . -225) 54537) ((-345 . -189) 54491) ((-345 . -186) 54439) ((-345 . -190) 54418) ((-345 . -287) 54402) ((-345 . -452) 54244) ((-345 . -259) 54183) ((-345 . -241) 54111) ((-345 . -352) 54095) ((-345 . -950) 53993) ((-345 . -389) 53946) ((-345 . -933) 53925) ((-345 . -553) 53828) ((-345 . -1132) 53806) ((-339 . -1012) T) ((-339 . -552) 53788) ((-339 . -1127) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -189) T) ((-339 . -186) 53775) ((-339 . -553) 53752) ((-337 . -683) 53736) ((-337 . -657) T) ((-337 . -685) T) ((-337 . -82) 53715) ((-337 . -963) 53699) ((-337 . -968) 53683) ((-337 . -21) T) ((-337 . -588) 53652) ((-337 . -23) T) ((-337 . -1012) T) ((-337 . -552) 53634) ((-337 . -1127) T) ((-337 . -13) T) ((-337 . -72) T) ((-337 . -25) T) ((-337 . -104) T) ((-337 . -590) 53618) ((-337 . -582) 53602) ((-337 . -654) 53586) ((-335 . -336) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1127) T) ((-335 . -552) 53552) ((-335 . -1012) T) ((-335 . -555) 53533) ((-335 . -427) 53514) ((-334 . -333) 53498) ((-334 . -555) 53482) ((-334 . -950) 53466) ((-334 . -759) 53445) ((-334 . -756) 53424) ((-334 . -1024) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1127) T) ((-334 . -552) 53406) ((-334 . -1012) T) ((-334 . -663) T) ((-331 . -332) 53385) ((-331 . -555) 53369) ((-331 . -950) 53353) ((-331 . -582) 53323) ((-331 . -654) 53293) ((-331 . -590) 53277) ((-331 . -588) 53246) ((-331 . -104) T) ((-331 . -25) T) ((-331 . -72) T) ((-331 . -13) T) ((-331 . -1127) T) ((-331 . -552) 53228) ((-331 . -1012) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -968) 53212) ((-331 . -963) 53196) ((-331 . -82) 53175) ((-330 . -82) 53154) ((-330 . -963) 53138) ((-330 . -968) 53122) ((-330 . -21) T) ((-330 . -588) 53091) ((-330 . -23) T) ((-330 . -1012) T) ((-330 . -552) 53073) ((-330 . -1127) T) ((-330 . -13) T) ((-330 . -72) T) ((-330 . -25) T) ((-330 . -104) T) ((-330 . -590) 53057) ((-330 . -447) 53036) ((-330 . -654) 53006) ((-330 . -582) 52976) ((-327 . -344) T) ((-327 . -120) T) ((-327 . -555) 52926) ((-327 . -590) 52891) ((-327 . -588) 52841) ((-327 . -104) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -13) T) ((-327 . -1127) T) ((-327 . -552) 52808) ((-327 . -1012) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -969) T) ((-327 . -1024) T) ((-327 . -1059) T) ((-327 . -663) T) ((-327 . -961) T) ((-327 . -553) 52722) ((-327 . -311) T) ((-327 . -1132) T) ((-327 . -832) T) ((-327 . -494) T) ((-327 . -146) T) ((-327 . -654) 52687) ((-327 . -582) 52652) ((-327 . -38) 52617) ((-327 . -389) T) ((-327 . -257) T) ((-327 . -82) 52566) ((-327 . -963) 52531) ((-327 . -968) 52496) ((-327 . -245) T) ((-327 . -201) T) ((-327 . -755) T) ((-327 . -721) T) ((-327 . -718) T) ((-327 . -759) T) ((-327 . -756) T) ((-327 . -716) T) ((-327 . -714) T) ((-327 . -796) 52478) ((-327 . -915) T) ((-327 . -933) T) ((-327 . -950) 52438) ((-327 . -972) T) ((-327 . -190) T) ((-327 . -186) 52425) ((-327 . -189) T) ((-327 . -1113) T) ((-327 . -1116) T) ((-327 . -430) T) ((-327 . -239) T) ((-327 . -66) T) ((-327 . -35) T) ((-327 . -557) 52407) ((-312 . -313) 52384) ((-312 . -72) T) ((-312 . -13) T) ((-312 . -1127) T) ((-312 . -552) 52366) ((-312 . -1012) T) ((-309 . -410) T) ((-309 . -1024) T) ((-309 . -72) T) ((-309 . -13) T) ((-309 . -1127) T) ((-309 . -552) 52348) ((-309 . -1012) T) ((-309 . -663) T) ((-309 . -950) 52332) ((-309 . -555) 52316) ((-307 . -279) 52300) ((-307 . -190) 52279) ((-307 . -186) 52252) ((-307 . -189) 52231) ((-307 . -317) 52210) ((-307 . -1064) 52189) ((-307 . -298) 52168) ((-307 . -120) 52147) ((-307 . -555) 52084) ((-307 . -590) 52036) ((-307 . -588) 51973) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -72) T) ((-307 . -13) T) ((-307 . -1127) T) ((-307 . -552) 51955) ((-307 . -1012) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -969) T) ((-307 . -1024) T) ((-307 . -1059) T) ((-307 . -663) T) ((-307 . -961) T) ((-307 . -311) T) ((-307 . -1132) T) ((-307 . -832) T) ((-307 . -494) T) ((-307 . -146) T) ((-307 . -654) 51907) ((-307 . -582) 51859) ((-307 . -38) 51824) ((-307 . -389) T) ((-307 . -257) T) ((-307 . -82) 51755) ((-307 . -963) 51707) ((-307 . -968) 51659) ((-307 . -245) T) ((-307 . -201) T) ((-307 . -342) 51613) ((-307 . -118) 51567) ((-307 . -950) 51551) ((-307 . -1185) 51535) ((-307 . -1196) 51519) ((-303 . -279) 51503) ((-303 . -190) 51482) ((-303 . -186) 51455) ((-303 . -189) 51434) ((-303 . -317) 51413) ((-303 . -1064) 51392) ((-303 . -298) 51371) ((-303 . -120) 51350) ((-303 . -555) 51287) ((-303 . -590) 51239) ((-303 . -588) 51176) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1127) T) ((-303 . -552) 51158) ((-303 . -1012) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -969) T) ((-303 . -1024) T) ((-303 . -1059) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -311) T) ((-303 . -1132) T) ((-303 . -832) T) ((-303 . -494) T) ((-303 . -146) T) ((-303 . -654) 51110) ((-303 . -582) 51062) ((-303 . -38) 51027) ((-303 . -389) T) ((-303 . -257) T) ((-303 . -82) 50958) ((-303 . -963) 50910) ((-303 . -968) 50862) ((-303 . -245) T) ((-303 . -201) T) ((-303 . -342) 50816) ((-303 . -118) 50770) ((-303 . -950) 50754) ((-303 . -1185) 50738) ((-303 . -1196) 50722) ((-302 . -279) 50706) ((-302 . -190) 50685) ((-302 . -186) 50658) ((-302 . -189) 50637) ((-302 . -317) 50616) ((-302 . -1064) 50595) ((-302 . -298) 50574) ((-302 . -120) 50553) ((-302 . -555) 50490) ((-302 . -590) 50442) ((-302 . -588) 50379) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1127) T) ((-302 . -552) 50361) ((-302 . -1012) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -969) T) ((-302 . -1024) T) ((-302 . -1059) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -311) T) ((-302 . -1132) T) ((-302 . -832) T) ((-302 . -494) T) ((-302 . -146) T) ((-302 . -654) 50313) ((-302 . -582) 50265) ((-302 . -38) 50230) ((-302 . -389) T) ((-302 . -257) T) ((-302 . -82) 50161) ((-302 . -963) 50113) ((-302 . -968) 50065) ((-302 . -245) T) ((-302 . -201) T) ((-302 . -342) 50019) ((-302 . -118) 49973) ((-302 . -950) 49957) ((-302 . -1185) 49941) ((-302 . -1196) 49925) ((-301 . -279) 49909) ((-301 . -190) 49888) ((-301 . -186) 49861) ((-301 . -189) 49840) ((-301 . -317) 49819) ((-301 . -1064) 49798) ((-301 . -298) 49777) ((-301 . -120) 49756) ((-301 . -555) 49693) ((-301 . -590) 49645) ((-301 . -588) 49582) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1127) T) ((-301 . -552) 49564) ((-301 . -1012) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -969) T) ((-301 . -1024) T) ((-301 . -1059) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -311) T) ((-301 . -1132) T) ((-301 . -832) T) ((-301 . -494) T) ((-301 . -146) T) ((-301 . -654) 49516) ((-301 . -582) 49468) ((-301 . -38) 49433) ((-301 . -389) T) ((-301 . -257) T) ((-301 . -82) 49364) ((-301 . -963) 49316) ((-301 . -968) 49268) ((-301 . -245) T) ((-301 . -201) T) ((-301 . -342) 49222) ((-301 . -118) 49176) ((-301 . -950) 49160) ((-301 . -1185) 49144) ((-301 . -1196) 49128) ((-300 . -279) 49105) ((-300 . -190) T) ((-300 . -186) 49092) ((-300 . -189) T) ((-300 . -317) T) ((-300 . -1064) T) ((-300 . -298) T) ((-300 . -120) 49074) ((-300 . -555) 49004) ((-300 . -590) 48949) ((-300 . -588) 48879) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -13) T) ((-300 . -1127) T) ((-300 . -552) 48861) ((-300 . -1012) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -969) T) ((-300 . -1024) T) ((-300 . -1059) T) ((-300 . -663) T) ((-300 . -961) T) ((-300 . -311) T) ((-300 . -1132) T) ((-300 . -832) T) ((-300 . -494) T) ((-300 . -146) T) ((-300 . -654) 48806) ((-300 . -582) 48751) ((-300 . -38) 48716) ((-300 . -389) T) ((-300 . -257) T) ((-300 . -82) 48633) ((-300 . -963) 48578) ((-300 . -968) 48523) ((-300 . -245) T) ((-300 . -201) T) ((-300 . -342) T) ((-300 . -118) T) ((-300 . -950) 48500) ((-300 . -1185) 48477) ((-300 . -1196) 48454) ((-294 . -279) 48438) ((-294 . -190) 48417) ((-294 . -186) 48390) ((-294 . -189) 48369) ((-294 . -317) 48348) ((-294 . -1064) 48327) ((-294 . -298) 48306) ((-294 . -120) 48285) ((-294 . -555) 48222) ((-294 . -590) 48174) ((-294 . -588) 48111) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1127) T) ((-294 . -552) 48093) ((-294 . -1012) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -969) T) ((-294 . -1024) T) ((-294 . -1059) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -311) T) ((-294 . -1132) T) ((-294 . -832) T) ((-294 . -494) T) ((-294 . -146) T) ((-294 . -654) 48045) ((-294 . -582) 47997) ((-294 . -38) 47962) ((-294 . -389) T) ((-294 . -257) T) ((-294 . -82) 47893) ((-294 . -963) 47845) ((-294 . -968) 47797) ((-294 . -245) T) ((-294 . -201) T) ((-294 . -342) 47751) ((-294 . -118) 47705) ((-294 . -950) 47689) ((-294 . -1185) 47673) ((-294 . -1196) 47657) ((-293 . -279) 47641) ((-293 . -190) 47620) ((-293 . -186) 47593) ((-293 . -189) 47572) ((-293 . -317) 47551) ((-293 . -1064) 47530) ((-293 . -298) 47509) ((-293 . -120) 47488) ((-293 . -555) 47425) ((-293 . -590) 47377) ((-293 . -588) 47314) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1127) T) ((-293 . -552) 47296) ((-293 . -1012) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -969) T) ((-293 . -1024) T) ((-293 . -1059) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -311) T) ((-293 . -1132) T) ((-293 . -832) T) ((-293 . -494) T) ((-293 . -146) T) ((-293 . -654) 47248) ((-293 . -582) 47200) ((-293 . -38) 47165) ((-293 . -389) T) ((-293 . -257) T) ((-293 . -82) 47096) ((-293 . -963) 47048) ((-293 . -968) 47000) ((-293 . -245) T) ((-293 . -201) T) ((-293 . -342) 46954) ((-293 . -118) 46908) ((-293 . -950) 46892) ((-293 . -1185) 46876) ((-293 . -1196) 46860) ((-292 . -279) 46837) ((-292 . -190) T) ((-292 . -186) 46824) ((-292 . -189) T) ((-292 . -317) T) ((-292 . -1064) T) ((-292 . -298) T) ((-292 . -120) 46806) ((-292 . -555) 46736) ((-292 . -590) 46681) ((-292 . -588) 46611) ((-292 . -104) T) ((-292 . -25) T) ((-292 . -72) T) ((-292 . -13) T) ((-292 . -1127) T) ((-292 . -552) 46593) ((-292 . -1012) T) ((-292 . -23) T) ((-292 . -21) T) ((-292 . -969) T) ((-292 . -1024) T) ((-292 . -1059) T) ((-292 . -663) T) ((-292 . -961) T) ((-292 . -311) T) ((-292 . -1132) T) ((-292 . -832) T) ((-292 . -494) T) ((-292 . -146) T) ((-292 . -654) 46538) ((-292 . -582) 46483) ((-292 . -38) 46448) ((-292 . -389) T) ((-292 . -257) T) ((-292 . -82) 46365) ((-292 . -963) 46310) ((-292 . -968) 46255) ((-292 . -245) T) ((-292 . -201) T) ((-292 . -342) T) ((-292 . -118) T) ((-292 . -950) 46232) ((-292 . -1185) 46209) ((-292 . -1196) 46186) ((-288 . -279) 46163) ((-288 . -190) T) ((-288 . -186) 46150) ((-288 . -189) T) ((-288 . -317) T) ((-288 . -1064) T) ((-288 . -298) T) ((-288 . -120) 46132) ((-288 . -555) 46062) ((-288 . -590) 46007) ((-288 . -588) 45937) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -72) T) ((-288 . -13) T) ((-288 . -1127) T) ((-288 . -552) 45919) ((-288 . -1012) T) ((-288 . -23) T) ((-288 . -21) T) ((-288 . -969) T) ((-288 . -1024) T) ((-288 . -1059) T) ((-288 . -663) T) ((-288 . -961) T) ((-288 . -311) T) ((-288 . -1132) T) ((-288 . -832) T) ((-288 . -494) T) ((-288 . -146) T) ((-288 . -654) 45864) ((-288 . -582) 45809) ((-288 . -38) 45774) ((-288 . -389) T) ((-288 . -257) T) ((-288 . -82) 45691) ((-288 . -963) 45636) ((-288 . -968) 45581) ((-288 . -245) T) ((-288 . -201) T) ((-288 . -342) T) ((-288 . -118) T) ((-288 . -950) 45558) ((-288 . -1185) 45535) ((-288 . -1196) 45512) ((-282 . -285) 45481) ((-282 . -104) T) ((-282 . -25) T) ((-282 . -72) T) ((-282 . -13) T) ((-282 . -1127) T) ((-282 . -552) 45463) ((-282 . -1012) T) ((-282 . -23) T) ((-282 . -588) 45445) ((-282 . -21) T) ((-281 . -1012) T) ((-281 . -552) 45427) ((-281 . -1127) T) ((-281 . -13) T) ((-281 . -72) T) ((-280 . -756) T) ((-280 . -552) 45409) ((-280 . -1012) T) ((-280 . -72) T) ((-280 . -13) T) ((-280 . -1127) T) ((-280 . -759) T) ((-277 . -19) 45393) ((-277 . -593) 45377) ((-277 . -243) 45354) ((-277 . -241) 45306) ((-277 . -538) 45283) ((-277 . -553) 45244) ((-277 . -426) 45228) ((-277 . -1012) 45181) ((-277 . -452) 45114) ((-277 . -259) 45052) ((-277 . -552) 44967) ((-277 . -72) 44901) ((-277 . -1127) T) ((-277 . -13) T) ((-277 . -34) T) ((-277 . -124) 44885) ((-277 . -756) 44864) ((-277 . -759) 44843) ((-277 . -321) 44827) ((-277 . -237) 44811) ((-274 . -273) 44788) ((-274 . -555) 44772) ((-274 . -950) 44756) ((-274 . -23) T) ((-274 . -1012) T) ((-274 . -552) 44738) ((-274 . -1127) T) ((-274 . -13) T) ((-274 . -72) T) ((-274 . -25) T) ((-274 . -104) T) ((-272 . -21) T) ((-272 . -588) 44720) ((-272 . -23) T) ((-272 . -1012) T) ((-272 . -552) 44702) ((-272 . -1127) T) ((-272 . -13) T) ((-272 . -72) T) ((-272 . -25) T) ((-272 . -104) T) ((-272 . -654) 44684) ((-272 . -582) 44666) ((-272 . -590) 44648) ((-272 . -968) 44630) ((-272 . -963) 44612) ((-272 . -82) 44587) ((-272 . -273) 44564) ((-272 . -555) 44548) ((-272 . -950) 44532) ((-272 . -756) 44511) ((-272 . -759) 44490) ((-269 . -1160) 44474) ((-269 . -190) 44426) ((-269 . -186) 44372) ((-269 . -189) 44324) ((-269 . -241) 44282) ((-269 . -809) 44188) ((-269 . -806) 44092) ((-269 . -811) 43998) ((-269 . -886) 43961) ((-269 . -38) 43808) ((-269 . -82) 43628) ((-269 . -963) 43469) ((-269 . -968) 43310) ((-269 . -588) 43195) ((-269 . -590) 43095) ((-269 . -582) 42942) ((-269 . -654) 42789) ((-269 . -555) 42621) ((-269 . -118) 42600) ((-269 . -120) 42579) ((-269 . -47) 42549) ((-269 . -1156) 42519) ((-269 . -35) 42485) ((-269 . -66) 42451) ((-269 . -239) 42417) ((-269 . -430) 42383) ((-269 . -1116) 42349) ((-269 . -1113) 42315) ((-269 . -915) 42281) ((-269 . -201) 42260) ((-269 . -245) 42214) ((-269 . -104) T) ((-269 . -25) T) ((-269 . -72) T) ((-269 . -13) T) ((-269 . -1127) T) ((-269 . -552) 42196) ((-269 . -1012) T) ((-269 . -23) T) ((-269 . -21) T) ((-269 . -961) T) ((-269 . -663) T) ((-269 . -1059) T) ((-269 . -1024) T) ((-269 . -969) T) ((-269 . -257) 42175) ((-269 . -389) 42154) ((-269 . -146) 42088) ((-269 . -494) 42042) ((-269 . -832) 42021) ((-269 . -1132) 42000) ((-269 . -311) 41979) ((-269 . -716) T) ((-269 . -756) T) ((-269 . -759) T) ((-269 . -718) T) ((-264 . -361) 41963) ((-264 . -555) 41538) ((-264 . -950) 41209) ((-264 . -553) 41070) ((-264 . -794) 41054) ((-264 . -811) 41021) ((-264 . -806) 40986) ((-264 . -809) 40953) ((-264 . -410) 40932) ((-264 . -352) 40916) ((-264 . -796) 40841) ((-264 . -340) 40825) ((-264 . -580) 40733) ((-264 . -590) 40471) ((-264 . -326) 40441) ((-264 . -201) 40420) ((-264 . -82) 40309) ((-264 . -963) 40219) ((-264 . -968) 40129) ((-264 . -245) 40108) ((-264 . -654) 40018) ((-264 . -582) 39928) ((-264 . -588) 39595) ((-264 . -38) 39505) ((-264 . -257) 39484) ((-264 . -389) 39463) ((-264 . -146) 39442) ((-264 . -494) 39421) ((-264 . -832) 39400) ((-264 . -1132) 39379) ((-264 . -311) 39358) ((-264 . -259) 39345) ((-264 . -452) 39311) ((-264 . -253) T) ((-264 . -120) 39290) ((-264 . -118) 39269) ((-264 . -961) 39163) ((-264 . -663) 39016) ((-264 . -1059) 38910) ((-264 . -1024) 38763) ((-264 . -969) 38657) ((-264 . -104) 38532) ((-264 . -25) 38388) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1127) T) ((-264 . -552) 38370) ((-264 . -1012) T) ((-264 . -23) 38226) ((-264 . -21) 38101) ((-264 . -29) 38071) ((-264 . -915) 38050) ((-264 . -27) 38029) ((-264 . -1113) 38008) ((-264 . -1116) 37987) ((-264 . -430) 37966) ((-264 . -239) 37945) ((-264 . -66) 37924) ((-264 . -35) 37903) ((-264 . -133) 37882) ((-264 . -116) 37861) ((-264 . -569) 37840) ((-264 . -871) 37819) ((-264 . -1051) 37798) ((-263 . -904) 37759) ((-263 . -1064) NIL) ((-263 . -950) 37689) ((-263 . -555) 37572) ((-263 . -553) NIL) ((-263 . -933) NIL) ((-263 . -821) NIL) ((-263 . -794) 37533) ((-263 . -755) NIL) ((-263 . -721) NIL) ((-263 . -718) NIL) ((-263 . -759) NIL) ((-263 . -756) NIL) ((-263 . -716) NIL) ((-263 . -714) NIL) ((-263 . -740) NIL) ((-263 . -796) NIL) ((-263 . -340) 37494) ((-263 . -580) 37455) ((-263 . -590) 37384) ((-263 . -326) 37345) ((-263 . -241) 37211) ((-263 . -259) 37107) ((-263 . -452) 36858) ((-263 . -287) 36819) ((-263 . -201) T) ((-263 . -82) 36704) ((-263 . -963) 36633) ((-263 . -968) 36562) ((-263 . -245) T) ((-263 . -654) 36491) ((-263 . -582) 36420) ((-263 . -588) 36334) ((-263 . -38) 36263) ((-263 . -257) T) ((-263 . -389) T) ((-263 . -146) T) ((-263 . -494) T) ((-263 . -832) T) ((-263 . -1132) T) ((-263 . -311) T) ((-263 . -190) NIL) ((-263 . -186) NIL) ((-263 . -189) NIL) ((-263 . -225) 36224) ((-263 . -806) NIL) ((-263 . -811) NIL) ((-263 . -809) NIL) ((-263 . -184) 36185) ((-263 . -120) 36141) ((-263 . -118) 36097) ((-263 . -104) T) ((-263 . -25) T) ((-263 . -72) T) ((-263 . -13) T) ((-263 . -1127) T) ((-263 . -552) 36079) ((-263 . -1012) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -961) T) ((-263 . -663) T) ((-263 . -1059) T) ((-263 . -1024) T) ((-263 . -969) T) ((-262 . -994) T) ((-262 . -427) 36060) ((-262 . -552) 36026) ((-262 . -555) 36007) ((-262 . -1012) T) ((-262 . -1127) T) ((-262 . -13) T) ((-262 . -72) T) ((-262 . -64) T) ((-261 . -1012) T) ((-261 . -552) 35989) ((-261 . -1127) T) ((-261 . -13) T) ((-261 . -72) T) ((-250 . -1105) 35968) ((-250 . -183) 35916) ((-250 . -76) 35864) ((-250 . -259) 35662) ((-250 . -452) 35414) ((-250 . -426) 35349) ((-250 . -124) 35297) ((-250 . -553) NIL) ((-250 . -193) 35245) ((-250 . -549) 35224) ((-250 . -243) 35203) ((-250 . -1127) T) ((-250 . -13) T) ((-250 . -241) 35182) ((-250 . -1012) T) ((-250 . -552) 35164) ((-250 . -72) T) ((-250 . -34) T) ((-250 . -538) 35143) ((-248 . -1127) T) ((-248 . -13) T) ((-248 . -452) 35092) ((-248 . -1012) 34878) ((-248 . -552) 34624) ((-248 . -72) 34410) ((-248 . -25) 34278) ((-248 . -21) 34165) ((-248 . -588) 33912) ((-248 . -23) 33799) ((-248 . -104) 33686) ((-248 . -1024) 33571) ((-248 . -663) 33477) ((-248 . -410) 33456) ((-248 . -961) 33402) ((-248 . -1059) 33348) ((-248 . -969) 33294) ((-248 . -590) 33162) ((-248 . -555) 33097) ((-248 . -82) 33017) ((-248 . -963) 32942) ((-248 . -968) 32867) ((-248 . -654) 32812) ((-248 . -582) 32757) ((-248 . -809) 32716) ((-248 . -806) 32673) ((-248 . -811) 32632) ((-248 . -1185) 32602) ((-246 . -552) 32584) ((-244 . -257) T) ((-244 . -389) T) ((-244 . -38) 32571) ((-244 . -555) 32543) ((-244 . -969) T) ((-244 . -1024) T) ((-244 . -1059) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 32528) ((-244 . -963) 32515) ((-244 . -968) 32502) ((-244 . -21) T) ((-244 . -588) 32474) ((-244 . -23) T) ((-244 . -1012) T) ((-244 . -552) 32456) ((-244 . -1127) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 32443) ((-244 . -582) 32430) ((-244 . -654) 32417) ((-244 . -146) T) ((-244 . -245) T) ((-244 . -494) T) ((-244 . -832) T) ((-244 . -241) 32396) ((-235 . -552) 32378) ((-234 . -552) 32360) ((-229 . -756) T) ((-229 . -552) 32342) ((-229 . -1012) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1127) T) ((-229 . -759) T) ((-226 . -213) 32304) ((-226 . -555) 32064) ((-226 . -950) 31910) ((-226 . -553) 31658) ((-226 . -276) 31630) ((-226 . -352) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -963) 31137) ((-226 . -968) 30983) ((-226 . -588) 30893) ((-226 . -590) 30782) ((-226 . -582) 30634) ((-226 . -654) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -494) 30292) ((-226 . -245) 30226) ((-226 . -47) 30198) ((-226 . -326) 30182) ((-226 . -580) 30130) ((-226 . -389) 30084) ((-226 . -452) 29975) ((-226 . -809) 29921) ((-226 . -806) 29830) ((-226 . -811) 29743) ((-226 . -796) 29602) ((-226 . -821) 29581) ((-226 . -1132) 29560) ((-226 . -861) 29527) ((-226 . -259) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 29475) ((-226 . -1012) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -969) T) ((-226 . -1024) T) ((-226 . -1059) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1127) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1012) T) ((-221 . -552) 29327) ((-221 . -1127) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1185) 29276) ((-211 . -721) 29255) ((-211 . -718) 29234) ((-211 . -759) 29188) ((-211 . -756) 29142) ((-211 . -716) 29121) ((-211 . -717) 29100) ((-211 . -654) 29045) ((-211 . -582) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -426) 28908) ((-211 . -452) 28841) ((-211 . -259) 28779) ((-211 . -34) T) ((-211 . -538) 28756) ((-211 . -950) 28585) ((-211 . -555) 28389) ((-211 . -352) 28358) ((-211 . -580) 28266) ((-211 . -590) 28092) ((-211 . -326) 28062) ((-211 . -317) 28041) ((-211 . -190) 27994) ((-211 . -588) 27847) ((-211 . -969) 27826) ((-211 . -1024) 27805) ((-211 . -1059) 27784) ((-211 . -663) 27763) ((-211 . -961) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -806) 27382) ((-211 . -811) 27256) ((-211 . -809) 27189) ((-211 . -184) 27159) ((-211 . -552) 27120) ((-211 . -968) 27045) ((-211 . -963) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1127) T) ((-211 . -1012) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1185) 26819) ((-210 . -721) 26798) ((-210 . -718) 26777) ((-210 . -759) 26731) ((-210 . -756) 26685) ((-210 . -716) 26664) ((-210 . -717) 26643) ((-210 . -654) 26588) ((-210 . -582) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -426) 26451) ((-210 . -452) 26384) ((-210 . -259) 26322) ((-210 . -34) T) ((-210 . -538) 26299) ((-210 . -950) 26128) ((-210 . -555) 25932) ((-210 . -352) 25901) ((-210 . -580) 25809) ((-210 . -590) 25622) ((-210 . -326) 25592) ((-210 . -317) 25571) ((-210 . -190) 25524) ((-210 . -588) 25364) ((-210 . -969) 25343) ((-210 . -1024) 25322) ((-210 . -1059) 25301) ((-210 . -663) 25280) ((-210 . -961) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -806) 24899) ((-210 . -811) 24773) ((-210 . -809) 24706) ((-210 . -184) 24676) ((-210 . -552) 24637) ((-210 . -968) 24562) ((-210 . -963) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1127) T) ((-210 . -1012) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1012) T) ((-209 . -552) 24369) ((-209 . -1127) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1012) T) ((-208 . -552) 24310) ((-208 . -1127) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24292) ((-207 . -1012) T) ((-207 . -552) 24274) ((-207 . -1127) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24219) ((-206 . -555) 24011) ((-206 . -950) 23889) ((-206 . -1132) 23868) ((-206 . -821) 23847) ((-206 . -796) NIL) ((-206 . -811) 23824) ((-206 . -806) 23799) ((-206 . -809) 23776) ((-206 . -452) 23714) ((-206 . -389) 23668) ((-206 . -580) 23616) ((-206 . -590) 23505) ((-206 . -326) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -582) 23150) ((-206 . -654) 23002) ((-206 . -245) 22936) ((-206 . -494) 22870) ((-206 . -82) 22695) ((-206 . -963) 22541) ((-206 . -968) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -588) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1127) T) ((-206 . -552) 22151) ((-206 . -1012) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1059) T) ((-206 . -1024) T) ((-206 . -969) T) ((-206 . -352) 22135) ((-206 . -276) 22092) ((-206 . -259) 22079) ((-206 . -553) 21940) ((-203 . -608) 21924) ((-203 . -1166) 21908) ((-203 . -923) 21892) ((-203 . -1062) 21876) ((-203 . -756) 21855) ((-203 . -759) 21834) ((-203 . -321) 21818) ((-203 . -593) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -538) 21708) ((-203 . -553) 21669) ((-203 . -426) 21653) ((-203 . -1012) 21606) ((-203 . -452) 21539) ((-203 . -259) 21477) ((-203 . -552) 21372) ((-203 . -72) 21306) ((-203 . -1127) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -427) 21251) ((-203 . -555) 21228) ((-197 . -196) 21207) ((-197 . -1185) 21177) ((-197 . -721) 21156) ((-197 . -718) 21135) ((-197 . -759) 21089) ((-197 . -756) 21043) ((-197 . -716) 21022) ((-197 . -717) 21001) ((-197 . -654) 20946) ((-197 . -582) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -426) 20809) ((-197 . -452) 20742) ((-197 . -259) 20680) ((-197 . -34) T) ((-197 . -538) 20657) ((-197 . -950) 20486) ((-197 . -555) 20290) ((-197 . -352) 20259) ((-197 . -580) 20167) ((-197 . -590) 20006) ((-197 . -326) 19976) ((-197 . -317) 19955) ((-197 . -190) 19908) ((-197 . -588) 19696) ((-197 . -969) 19675) ((-197 . -1024) 19654) ((-197 . -1059) 19633) ((-197 . -663) 19612) ((-197 . -961) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -806) 19231) ((-197 . -811) 19105) ((-197 . -809) 19038) ((-197 . -184) 19008) ((-197 . -552) 18705) ((-197 . -968) 18630) ((-197 . -963) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1127) T) ((-197 . -1012) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -627) 17389) ((-181 . -426) 17373) ((-181 . -1012) 17351) ((-181 . -452) 17284) ((-181 . -259) 17222) ((-181 . -552) 17157) ((-181 . -72) 17111) ((-181 . -1127) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -344) T) ((-179 . -120) T) ((-179 . -555) 17019) ((-179 . -590) 16984) ((-179 . -588) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1127) T) ((-179 . -552) 16916) ((-179 . -1012) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -969) T) ((-179 . -1024) T) ((-179 . -1059) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 16846) ((-179 . -311) T) ((-179 . -1132) T) ((-179 . -832) T) ((-179 . -494) T) ((-179 . -146) T) ((-179 . -654) 16811) ((-179 . -582) 16776) ((-179 . -38) 16741) ((-179 . -389) T) ((-179 . -257) T) ((-179 . -82) 16690) ((-179 . -963) 16655) ((-179 . -968) 16620) ((-179 . -245) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 16602) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 16562) ((-179 . -972) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1113) T) ((-179 . -1116) T) ((-179 . -430) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16526) ((-177 . -555) 16488) ((-177 . -590) 16455) ((-177 . -588) 16407) ((-177 . -969) T) ((-177 . -1024) T) ((-177 . -1059) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1012) T) ((-177 . -552) 16389) ((-177 . -1127) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16366) ((-176 . -214) 16350) ((-176 . -1033) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1127) T) ((-176 . -72) 16272) ((-176 . -552) 16207) ((-176 . -259) 16145) ((-176 . -452) 16078) ((-176 . -1012) 16056) ((-176 . -426) 16040) ((-176 . -908) 16024) ((-172 . -994) T) ((-172 . -427) 16005) ((-172 . -552) 15971) ((-172 . -555) 15952) ((-172 . -1012) T) ((-172 . -1127) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 15934) ((-171 . -1064) T) ((-171 . -555) 15884) ((-171 . -950) 15844) ((-171 . -553) 15774) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 15756) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 15738) ((-171 . -340) 15720) ((-171 . -580) 15702) ((-171 . -326) 15684) ((-171 . -241) NIL) ((-171 . -259) NIL) ((-171 . -452) NIL) ((-171 . -287) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -963) 15543) ((-171 . -968) 15493) ((-171 . -245) T) ((-171 . -654) 15443) ((-171 . -582) 15393) ((-171 . -590) 15343) ((-171 . -588) 15293) ((-171 . -38) 15243) ((-171 . -257) T) ((-171 . -389) T) ((-171 . -146) T) ((-171 . -494) T) ((-171 . -832) T) ((-171 . -1132) T) ((-171 . -311) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1127) T) ((-171 . -552) 15136) ((-171 . -1012) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1059) T) ((-171 . -1024) T) ((-171 . -969) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1012) T) ((-168 . -552) 15118) ((-168 . -1127) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -317) T) ((-167 . -1012) T) ((-167 . -552) 15100) ((-167 . -1127) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15077) ((-166 . -1012) T) ((-166 . -552) 15059) ((-166 . -1127) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1012) T) ((-161 . -552) 15041) ((-161 . -1127) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1012) T) ((-158 . -552) 15023) ((-158 . -1127) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1012) T) ((-157 . -552) 15005) ((-157 . -1127) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 14987) ((-154 . -994) T) ((-154 . -427) 14968) ((-154 . -552) 14934) ((-154 . -555) 14915) ((-154 . -1012) T) ((-154 . -1127) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 14897) ((-148 . -38) 14829) ((-148 . -555) 14746) ((-148 . -590) 14678) ((-148 . -588) 14595) ((-148 . -969) T) ((-148 . -1024) T) ((-148 . -1059) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14494) ((-148 . -963) 14426) ((-148 . -968) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1012) T) ((-148 . -552) 14340) ((-148 . -1127) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14272) ((-148 . -654) 14204) ((-148 . -311) T) ((-148 . -1132) T) ((-148 . -832) T) ((-148 . -494) T) ((-148 . -146) T) ((-148 . -389) T) ((-148 . -257) T) ((-148 . -245) T) ((-148 . -201) T) ((-145 . -1012) T) ((-145 . -552) 14186) ((-145 . -1127) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -430) 14082) ((-142 . -1116) 14060) ((-142 . -1113) 14038) ((-142 . -915) 13990) ((-142 . -821) 13943) ((-142 . -553) 13711) ((-142 . -794) 13695) ((-142 . -317) 13649) ((-142 . -298) 13628) ((-142 . -1064) 13607) ((-142 . -342) 13586) ((-142 . -350) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -963) 13196) ((-142 . -968) 13109) ((-142 . -582) 12943) ((-142 . -654) 12777) ((-142 . -319) 12748) ((-142 . -661) 12719) ((-142 . -950) 12617) ((-142 . -555) 12402) ((-142 . -352) 12386) ((-142 . -796) 12311) ((-142 . -340) 12295) ((-142 . -580) 12243) ((-142 . -590) 12120) ((-142 . -588) 12018) ((-142 . -326) 12002) ((-142 . -241) 11960) ((-142 . -259) 11925) ((-142 . -452) 11837) ((-142 . -287) 11821) ((-142 . -201) 11775) ((-142 . -1132) 11683) ((-142 . -311) 11637) ((-142 . -832) 11571) ((-142 . -494) 11485) ((-142 . -245) 11399) ((-142 . -389) 11333) ((-142 . -257) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -806) 10991) ((-142 . -811) 10917) ((-142 . -809) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1059) T) ((-142 . -1024) T) ((-142 . -969) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1012) T) ((-142 . -552) 10821) ((-142 . -1127) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -994) T) ((-135 . -427) 10756) ((-135 . -552) 10722) ((-135 . -555) 10703) ((-135 . -1012) T) ((-135 . -1127) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1012) T) ((-134 . -552) 10685) ((-134 . -1127) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1127) T) ((-130 . -552) 10667) ((-130 . -1012) T) ((-129 . -994) T) ((-129 . -427) 10648) ((-129 . -552) 10614) ((-129 . -555) 10595) ((-129 . -1012) T) ((-129 . -1127) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -994) T) ((-127 . -427) 10576) ((-127 . -552) 10542) ((-127 . -555) 10523) ((-127 . -1012) T) ((-127 . -1127) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1059) T) ((-125 . -1024) T) ((-125 . -969) T) ((-125 . -21) T) ((-125 . -588) 10482) ((-125 . -23) T) ((-125 . -1012) T) ((-125 . -552) 10464) ((-125 . -1127) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10438) ((-125 . -555) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -963) 10354) ((-125 . -968) 10338) ((-125 . -582) 10322) ((-125 . -654) 10306) ((-125 . -1185) 10290) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1012) T) ((-117 . -552) 10272) ((-117 . -1127) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -317) T) ((-114 . -1012) T) ((-114 . -552) 10254) ((-114 . -1127) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10213) ((-114 . -366) 10195) ((-114 . -1010) 10177) ((-114 . -317) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -426) 10123) ((-114 . -452) NIL) ((-114 . -259) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -552) 10069) ((-112 . -160) T) ((-112 . -1012) T) ((-112 . -552) 10036) ((-112 . -1127) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10018) ((-111 . -994) T) ((-111 . -427) 9999) ((-111 . -552) 9965) ((-111 . -555) 9946) ((-111 . -1012) T) ((-111 . -1127) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -994) T) ((-110 . -427) 9927) ((-110 . -552) 9893) ((-110 . -555) 9874) ((-110 . -1012) T) ((-110 . -1127) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -402) 9851) ((-108 . -555) 9747) ((-108 . -950) 9731) ((-108 . -1012) T) ((-108 . -552) 9713) ((-108 . -1127) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -407) 9668) ((-108 . -241) 9645) ((-107 . -756) T) ((-107 . -552) 9627) ((-107 . -1012) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1127) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1024) T) ((-107 . -950) 9609) ((-107 . -555) 9591) ((-106 . -994) T) ((-106 . -427) 9572) ((-106 . -552) 9538) ((-106 . -555) 9519) ((-106 . -1012) T) ((-106 . -1127) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1012) T) ((-103 . -552) 9501) ((-103 . -1127) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -593) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -538) 9365) ((-102 . -553) NIL) ((-102 . -426) 9347) ((-102 . -1012) T) ((-102 . -452) NIL) ((-102 . -259) NIL) ((-102 . -552) 9291) ((-102 . -72) T) ((-102 . -1127) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -321) 9255) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1012) T) ((-101 . -552) 9237) ((-101 . -1127) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -317) T) ((-101 . -604) T) ((-100 . -98) 9221) ((-100 . -923) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1127) T) ((-100 . -72) 9159) ((-100 . -552) 9094) ((-100 . -259) 9032) ((-100 . -452) 8965) ((-100 . -1012) 8943) ((-100 . -426) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -923) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1127) T) ((-99 . -72) 8833) ((-99 . -552) 8768) ((-99 . -259) 8706) ((-99 . -452) 8639) ((-99 . -1012) 8617) ((-99 . -426) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -923) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1127) T) ((-94 . -72) 8507) ((-94 . -552) 8442) ((-94 . -259) 8380) ((-94 . -452) 8313) ((-94 . -1012) 8291) ((-94 . -426) 8275) ((-94 . -92) 8259) ((-90 . -904) 8237) ((-90 . -1064) NIL) ((-90 . -950) 8215) ((-90 . -555) 8146) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8124) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -340) 8102) ((-90 . -580) 8080) ((-90 . -590) 8026) ((-90 . -326) 8004) ((-90 . -241) 7938) ((-90 . -259) 7885) ((-90 . -452) 7755) ((-90 . -287) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -963) 7598) ((-90 . -968) 7544) ((-90 . -245) T) ((-90 . -654) 7490) ((-90 . -582) 7436) ((-90 . -588) 7367) ((-90 . -38) 7313) ((-90 . -257) T) ((-90 . -389) T) ((-90 . -146) T) ((-90 . -494) T) ((-90 . -832) T) ((-90 . -1132) T) ((-90 . -311) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1127) T) ((-90 . -552) 7251) ((-90 . -1012) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1059) T) ((-90 . -1024) T) ((-90 . -969) T) ((-89 . -779) 7235) ((-89 . -832) T) ((-89 . -494) T) ((-89 . -245) T) ((-89 . -146) T) ((-89 . -555) 7207) ((-89 . -654) 7194) ((-89 . -582) 7181) ((-89 . -968) 7168) ((-89 . -963) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -389) T) ((-89 . -257) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1059) T) ((-89 . -1024) T) ((-89 . -969) T) ((-89 . -21) T) ((-89 . -588) 7099) ((-89 . -23) T) ((-89 . -1012) T) ((-89 . -552) 7081) ((-89 . -1127) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7068) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7050) ((-86 . -1012) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1127) T) ((-86 . -759) T) ((-86 . -747) 7031) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1012) T) ((-85 . -552) 7013) ((-85 . -1127) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -317) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 6995) ((-81 . -96) T) ((-81 . -321) 6978) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -552) 6943) ((-81 . -259) NIL) ((-81 . -452) NIL) ((-81 . -1012) T) ((-81 . -426) 6926) ((-81 . -553) 6908) ((-81 . -241) 6859) ((-81 . -538) 6835) ((-81 . -243) 6811) ((-81 . -593) 6794) ((-81 . -19) 6777) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1127) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1127) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1012) T) ((-79 . -552) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6699) ((-77 . -904) 6681) ((-77 . -1064) T) ((-77 . -555) 6631) ((-77 . -950) 6591) ((-77 . -553) 6521) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6503) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6485) ((-77 . -340) 6467) ((-77 . -580) 6449) ((-77 . -326) 6431) ((-77 . -241) NIL) ((-77 . -259) NIL) ((-77 . -452) NIL) ((-77 . -287) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -963) 6290) ((-77 . -968) 6240) ((-77 . -245) T) ((-77 . -654) 6190) ((-77 . -582) 6140) ((-77 . -590) 6090) ((-77 . -588) 6040) ((-77 . -38) 5990) ((-77 . -257) T) ((-77 . -389) T) ((-77 . -146) T) ((-77 . -494) T) ((-77 . -832) T) ((-77 . -1132) T) ((-77 . -311) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1127) T) ((-77 . -552) 5884) ((-77 . -1012) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1059) T) ((-77 . -1024) T) ((-77 . -969) T) ((-73 . -98) 5868) ((-73 . -923) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1127) T) ((-73 . -72) 5806) ((-73 . -552) 5741) ((-73 . -259) 5679) ((-73 . -452) 5612) ((-73 . -1012) 5590) ((-73 . -426) 5574) ((-73 . -92) 5558) ((-69 . -410) T) ((-69 . -1024) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1127) T) ((-69 . -552) 5540) ((-69 . -1012) T) ((-69 . -663) T) ((-69 . -241) 5519) ((-67 . -994) T) ((-67 . -427) 5500) ((-67 . -552) 5466) ((-67 . -555) 5447) ((-67 . -1012) T) ((-67 . -1127) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1033) 5431) ((-62 . -426) 5415) ((-62 . -1012) 5393) ((-62 . -452) 5326) ((-62 . -259) 5264) ((-62 . -552) 5199) ((-62 . -72) 5153) ((-62 . -1127) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1127) T) ((-60 . -72) 5053) ((-60 . -552) 4988) ((-60 . -259) 4926) ((-60 . -452) 4859) ((-60 . -1012) 4837) ((-60 . -426) 4821) ((-58 . -19) 4805) ((-58 . -593) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -538) 4695) ((-58 . -553) 4656) ((-58 . -426) 4640) ((-58 . -1012) 4593) ((-58 . -452) 4526) ((-58 . -259) 4464) ((-58 . -552) 4379) ((-58 . -72) 4313) ((-58 . -1127) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -756) 4276) ((-58 . -759) 4255) ((-58 . -321) 4239) ((-55 . -1012) T) ((-55 . -552) 4221) ((-55 . -1127) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4203) ((-55 . -555) 4185) ((-51 . -1012) T) ((-51 . -552) 4167) ((-51 . -1127) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4151) ((-50 . -555) 4120) ((-50 . -590) 4094) ((-50 . -588) 4053) ((-50 . -969) T) ((-50 . -1024) T) ((-50 . -1059) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1012) T) ((-50 . -552) 4035) ((-50 . -1127) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4019) ((-49 . -1012) T) ((-49 . -552) 4001) ((-49 . -1127) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -253) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1127) T) ((-48 . -552) 3983) ((-48 . -1012) T) ((-48 . -555) 3884) ((-48 . -950) 3827) ((-48 . -452) 3793) ((-48 . -259) 3780) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -963) 3694) ((-48 . -968) 3659) ((-48 . -245) T) ((-48 . -654) 3624) ((-48 . -582) 3589) ((-48 . -590) 3539) ((-48 . -588) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1059) T) ((-48 . -1024) T) ((-48 . -969) T) ((-48 . -38) 3454) ((-48 . -257) T) ((-48 . -389) T) ((-48 . -146) T) ((-48 . -494) T) ((-48 . -832) T) ((-48 . -1132) T) ((-48 . -311) T) ((-48 . -580) 3414) ((-48 . -933) T) ((-48 . -553) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -538) 3248) ((-45 . -259) 3046) ((-45 . -452) 2798) ((-45 . -426) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -549) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1105) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1127) T) ((-45 . -72) T) ((-45 . -552) 2234) ((-45 . -1012) T) ((-45 . -553) NIL) ((-45 . -593) 2182) ((-45 . -321) 2130) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -1062) 2078) ((-45 . -923) 2026) ((-45 . -1166) 1974) ((-45 . -608) 1922) ((-44 . -358) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1012) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -315) 1672) ((-44 . -1127) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -290) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -969) T) ((-40 . -1024) T) ((-40 . -1059) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1127) T) ((-40 . -552) 1367) ((-40 . -1012) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -311) T) ((-40 . -1132) T) ((-40 . -832) T) ((-40 . -494) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -389) T) ((-40 . -257) T) ((-40 . -245) T) ((-40 . -201) T) ((-40 . -317) NIL) ((-40 . -298) NIL) ((-40 . -1064) NIL) ((-40 . -118) 539) ((-40 . -342) NIL) ((-40 . -350) 511) ((-40 . -120) 483) ((-40 . -319) 455) ((-40 . -326) 432) ((-40 . -580) 366) ((-40 . -352) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -994) T) ((-31 . -427) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1012) T) ((-31 . -1127) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1012) T) ((0 . -72) T) ((0 . -1127) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1012) T) ((-2 . -72) T) ((-2 . -1127) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1012) T) ((-3 . -72) T) ((-3 . -1127) T) ((-1 . -1012) T) ((-1 . -552) 30) ((-1 . -1127) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index cdaf1982..45e17117 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3538630436) -(3981 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3539125282) +(3992 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -21,19 +21,19 @@ |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |Bits| |BiModule| |BooleanLogic&| |BooleanLogic| - |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| - |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| - |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| - |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensor| - |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |CategoryConstructor| - |Category| |CharacterClass| |CommonDenominator| - |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| - |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| - |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| + |BinaryExpansion| |Binding| |BinaryOperation| |BinaryOperatorCategory| |Bits| + |BiModule| |BooleanLogic&| |BooleanLogic| |Boolean| |BasicOperator| + |BasicOperatorFunctions1| |BoundIntegerRoots| |BalancedPAdicInteger| + |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| + |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| + |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| + |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| |CachableSet| + |CapsuleAst| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| + |CaseAst| |CategoryAst| |CategoryConstructor| |Category| |CharacterClass| + |CommonDenominator| |CombinatorialFunctionCategory| |Character| + |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| + |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| @@ -141,7 +141,7 @@ |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| - |Identifier| |IndexedDirectProductAbelianGroup| + |IdempotentOperatorCategory| |Identifier| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| @@ -211,18 +211,18 @@ |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| - |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| - |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| - |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| - |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| - |MultisetAggregate| |MoreSystemCommands| |MergeThing| - |MultivariateTaylorSeriesCategory| |MultivariateFactorize| - |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| - |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| - |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| - |NonCommutativeOperatorDivision| |NetworkClientSocket| - |NumberFieldIntegralBasis| |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| + |MonogenicAlgebra| |Monoid&| |Monoid| |MonoidOperation| + |MonoidOperatorCategory| |MonomialExtensionTools| |MPolyCatFunctions2| + |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| + |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| + |MonoidRingFunctions2| |MonoidRing| |Multiset| |MultisetAggregate| + |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| + |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| + |NonAssociativeAlgebra| |NonAssociativeRng&| |NonAssociativeRng| + |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| + |NumericContinuedFraction| |NonCommutativeOperatorDivision| + |NetworkClientSocket| |NumberFieldIntegralBasis| |NonLinearSolvePackage| + |NonNegativeInteger| |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| @@ -330,8 +330,9 @@ |SExpressionCategory| |SExpressionOf| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| - |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| + |SemiGroupOperation| |SemiGroupOperatorCategory| |SemiGroup&| |SemiGroup| + |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |Signature| + |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| @@ -406,9 +407,9 @@ |uncouplingMatrices| |associatedEquations| |arrayStack| |morphism| |balancedFactorisation| |before?| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| - |bezoutDiscriminant| |inspect| |extract!| |bag| |binding| |setProperties| - |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?| - |unary?| |nullary?| |properties| |derivative| |constantOperator| + |bezoutDiscriminant| |inspect| |extract!| |bag| |binding| |binaryOperation| + |setProperties| |setProperty| |deleteProperty!| |has?| |comparison| |equality| + |nary?| |unary?| |nullary?| |properties| |derivative| |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte| @@ -625,9 +626,9 @@ |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| - |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| - |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| - |numberOfMonomials| |multiset| |systemCommand| |mergeDifference| + |derivationCoordinates| |generator| |one?| |monoidOperation| |neutralValue| + |splitSquarefree| |normalDenom| |reshape| |totalfract| |pushdterm| |pushucoef| + |pushuconst| |numberOfMonomials| |multiset| |systemCommand| |mergeDifference| |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |antiCommutator| |commutator| |associator| |complexEigenvalues| |complexEigenvectors| @@ -807,39 +808,39 @@ |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| - |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| - |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| - |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| - |signatureAst| |xor| |depth| |top| |pop!| |push!| |minordet| |determinant| - |diagonalProduct| |trace| |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| - |completeHermite| |smith| |completeSmith| |diophantineSystem| |csubst| - |particularSolution| |mapSolve| |linear| |quadratic| |cubic| |quartic| - |aLinear| |aQuadratic| |aCubic| |aQuartic| |radicalSolve| |radicalRoots| - |contractSolve| |decomposeFunc| |unvectorise| |bubbleSort!| |insertionSort!| - |check| |objects| |lprop| |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| - |polygon?| |polygon| |closedCurve?| |closedCurve| |curve?| |curve| |point?| - |enterPointData| |composites| |components| |numberOfComposites| - |numberOfComponents| |create3Space| |parse| |outputAsFortran| |outputAsScript| - |outputAsTex| |abs| |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| - |besselI| |besselK| |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| - |setStatus!| |setCondition!| |setValue!| |copy| |status| |value| |empty?| - |splitNodeOf!| |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| - |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| - |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| - |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| - |KrullNumber| |numberOfVariables| |algebraicDecompose| - |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches| - |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack| - |size?| |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |step| - |upperBound| |lowerBound| |iterationVar| |infiniteProduct| - |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct| - |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output| - |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers| - |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag| - |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos| - |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh| - |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch| - |subresultantVector| |primitivePart| |pointData| |parent| |level| + |unrankImproperPartitions1| |semiGroupOperation| |subresultantSequence| + |SturmHabichtSequence| |SturmHabichtCoefficients| |SturmHabicht| + |countRealRoots| |SturmHabichtMultiple| |countRealRootsMultiple| |source| + |target| |signature| |signatureAst| |xor| |depth| |top| |pop!| |push!| + |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix| + |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith| + |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear| + |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic| + |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise| + |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp| + |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve| + |curve?| |curve| |point?| |enterPointData| |composites| |components| + |numberOfComposites| |numberOfComponents| |create3Space| |parse| + |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma| + |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi| + |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!| + |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove| + |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!| + |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim| + |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?| + |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber| + |numberOfVariables| |algebraicDecompose| |transcendentalDecompose| + |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess| + |internalZeroSetSplit| |internalAugment| |stack| |size?| |possiblyInfinite?| + |explicitlyFinite?| |nextItem| |init| |step| |upperBound| |lowerBound| + |iterationVar| |infiniteProduct| |evenInfiniteProduct| |oddInfiniteProduct| + |generalInfiniteProduct| |filterUntil| |filterWhile| |generate| |showAll?| + |showAllElements| |output| |cons| |delay| |findCycle| |repeating?| |repeating| + |exquo| |recip| |integers| |oddintegers| |int| |mapmult| |deriv| |gderiv| + |compose| |addiag| |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| + |power| |sincos| |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| + |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| + |acsch| |subresultantVector| |primitivePart| |pointData| |parent| |level| |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index f2d1886a..02d7945e 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4010 +1,4039 @@ -(2801385 . 3538630445) -((-1721 (((-83) (-1 (-83) |#2| |#2|) $) 86 T ELT) (((-83) $) NIL T ELT)) (-1719 (($ (-1 (-83) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3771 ((|#2| $ (-480) |#2|) NIL T ELT) ((|#2| $ (-1137 (-480)) |#2|) 44 T ELT)) (-2285 (($ $) 80 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3402 (((-480) (-1 (-83) |#2|) $) 27 T ELT) (((-480) |#2| $) NIL T ELT) (((-480) |#2| $ (-480)) 96 T ELT)) (-2875 (((-580 |#2|) $) 13 T ELT)) (-3501 (($ (-1 (-83) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1938 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2292 (($ |#2| $ (-480)) NIL T ELT) (($ $ $ (-480)) 67 T ELT)) (-1343 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 29 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3783 ((|#2| $ (-480) |#2|) NIL T ELT) ((|#2| $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) 66 T ELT)) (-2293 (($ $ (-480)) 76 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 34 T ELT) (((-689) |#2| $) NIL T ELT)) (-1720 (($ $ $ (-480)) 69 T ELT)) (-3383 (($ $) 68 T ELT)) (-3513 (($ (-580 |#2|)) 73 T ELT)) (-3785 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-580 $)) 85 T ELT)) (-3929 (((-767) $) 92 T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 22 T ELT)) (-3042 (((-83) $ $) 95 T ELT)) (-2671 (((-83) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -2671 ((-83) |#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -1719 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -1720 (|#1| |#1| |#1| (-480))) (-15 -1721 ((-83) |#1|)) (-15 -3501 (|#1| |#1| |#1|)) (-15 -3402 ((-480) |#2| |#1| (-480))) (-15 -3402 ((-480) |#2| |#1|)) (-15 -3402 ((-480) (-1 (-83) |#2|) |#1|)) (-15 -1721 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3501 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3771 (|#2| |#1| (-1137 (-480)) |#2|)) (-15 -2292 (|#1| |#1| |#1| (-480))) (-15 -2292 (|#1| |#2| |#1| (-480))) (-15 -2293 (|#1| |#1| (-1137 (-480)))) (-15 -2293 (|#1| |#1| (-480))) (-15 -3941 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3785 (|#1| (-580 |#1|))) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#2| |#1|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#1| (-1137 (-480)))) (-15 -3513 (|#1| (-580 |#2|))) (-15 -1343 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3783 (|#2| |#1| (-480))) (-15 -3783 (|#2| |#1| (-480) |#2|)) (-15 -3771 (|#2| |#1| (-480) |#2|)) (-15 -1935 ((-689) |#2| |#1|)) (-15 -2875 ((-580 |#2|) |#1|)) (-15 -1935 ((-689) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1938 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3383 (|#1| |#1|))) (-19 |#2|) (-1120)) (T -18)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3979)) ELT) (($ $) 97 (-12 (|has| |#1| (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 99 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 109 T ELT)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) 106 T ELT) (((-480) |#1| $) 105 (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) 104 (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 91 (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 92 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 100 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 93 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 95 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) 94 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 96 (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-19 |#1|) (-111) (-1120)) (T -19)) -NIL -(-13 (-319 |t#1|) (-10 -7 (-6 -3979))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-319 |#1|) . T) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-1007) OR (|has| |#1| (-1007)) (|has| |#1| (-751))) ((-1120) . T)) -((-1301 (((-3 $ "failed") $ $) 12 T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) 16 T ELT) (($ (-480) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 -1301 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|))) (-21)) (T -20)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT))) -(((-21) (-111)) (T -21)) -((-3820 (*1 *1 *1) (-4 *1 (-21))) (-3820 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-102) (-585 (-480)) (-10 -8 (-15 -3820 ($ $)) (-15 -3820 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-1007) . T) ((-1120) . T)) -((-3173 (((-83) $) 10 T ELT)) (-3707 (($) 15 T CONST)) (* (($ (-825) $) 14 T ELT) (($ (-689) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-689) |#1|)) (-15 -3173 ((-83) |#1|)) (-15 -3707 (|#1|) -3935) (-15 * (|#1| (-825) |#1|))) (-23)) (T -22)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT))) -(((-23) (-111)) (T -23)) -((-2646 (*1 *1) (-4 *1 (-23))) (-3707 (*1 *1) (-4 *1 (-23))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-689))))) -(-13 (-25) (-10 -8 (-15 -2646 ($) -3935) (-15 -3707 ($) -3935) (-15 -3173 ((-83) $)) (-15 * ($ (-689) $)))) -(((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((* (($ (-825) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-825) |#1|))) (-25)) (T -24)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT))) -(((-25) (-111)) (T -25)) -((-3822 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-825))))) -(-13 (-1007) (-10 -8 (-15 -3822 ($ $ $)) (-15 * ($ (-825) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-1205 (((-580 $) (-852 $)) 32 T ELT) (((-580 $) (-1076 $)) 16 T ELT) (((-580 $) (-1076 $) (-1081)) 20 T ELT)) (-1206 (($ (-852 $)) 30 T ELT) (($ (-1076 $)) 11 T ELT) (($ (-1076 $) (-1081)) 60 T ELT)) (-1207 (((-580 $) (-852 $)) 33 T ELT) (((-580 $) (-1076 $)) 18 T ELT) (((-580 $) (-1076 $) (-1081)) 19 T ELT)) (-3168 (($ (-852 $)) 31 T ELT) (($ (-1076 $)) 13 T ELT) (($ (-1076 $) (-1081)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1205 ((-580 |#1|) (-1076 |#1|) (-1081))) (-15 -1205 ((-580 |#1|) (-1076 |#1|))) (-15 -1205 ((-580 |#1|) (-852 |#1|))) (-15 -1206 (|#1| (-1076 |#1|) (-1081))) (-15 -1206 (|#1| (-1076 |#1|))) (-15 -1206 (|#1| (-852 |#1|))) (-15 -1207 ((-580 |#1|) (-1076 |#1|) (-1081))) (-15 -1207 ((-580 |#1|) (-1076 |#1|))) (-15 -1207 ((-580 |#1|) (-852 |#1|))) (-15 -3168 (|#1| (-1076 |#1|) (-1081))) (-15 -3168 (|#1| (-1076 |#1|))) (-15 -3168 (|#1| (-852 |#1|)))) (-27)) (T -26)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1205 (((-580 $) (-852 $)) 96 T ELT) (((-580 $) (-1076 $)) 95 T ELT) (((-580 $) (-1076 $) (-1081)) 94 T ELT)) (-1206 (($ (-852 $)) 99 T ELT) (($ (-1076 $)) 98 T ELT) (($ (-1076 $) (-1081)) 97 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-3023 (($ $) 108 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-1207 (((-580 $) (-852 $)) 102 T ELT) (((-580 $) (-1076 $)) 101 T ELT) (((-580 $) (-1076 $) (-1081)) 100 T ELT)) (-3168 (($ (-852 $)) 105 T ELT) (($ (-1076 $)) 104 T ELT) (($ (-1076 $) (-1081)) 103 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 107 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT) (($ $ (-345 (-480))) 106 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-27) (-111)) (T -27)) -((-3168 (*1 *1 *2) (-12 (-5 *2 (-852 *1)) (-4 *1 (-27)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-27)))) (-3168 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 *1)) (-5 *3 (-1081)) (-4 *1 (-27)))) (-1207 (*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) (-1207 (*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) (-1207 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *1)) (-5 *4 (-1081)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) (-1206 (*1 *1 *2) (-12 (-5 *2 (-852 *1)) (-4 *1 (-27)))) (-1206 (*1 *1 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-27)))) (-1206 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 *1)) (-5 *3 (-1081)) (-4 *1 (-27)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *1)) (-5 *4 (-1081)) (-4 *1 (-27)) (-5 *2 (-580 *1))))) -(-13 (-309) (-910) (-10 -8 (-15 -3168 ($ (-852 $))) (-15 -3168 ($ (-1076 $))) (-15 -3168 ($ (-1076 $) (-1081))) (-15 -1207 ((-580 $) (-852 $))) (-15 -1207 ((-580 $) (-1076 $))) (-15 -1207 ((-580 $) (-1076 $) (-1081))) (-15 -1206 ($ (-852 $))) (-15 -1206 ($ (-1076 $))) (-15 -1206 ($ (-1076 $) (-1081))) (-15 -1205 ((-580 $) (-852 $))) (-15 -1205 ((-580 $) (-1076 $))) (-15 -1205 ((-580 $) (-1076 $) (-1081))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-910) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-1205 (((-580 $) (-852 $)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-1076 $) (-1081)) 54 T ELT) (((-580 $) $) 22 T ELT) (((-580 $) $ (-1081)) 45 T ELT)) (-1206 (($ (-852 $)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-1076 $) (-1081)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1081)) 39 T ELT)) (-1207 (((-580 $) (-852 $)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-1076 $) (-1081)) 52 T ELT) (((-580 $) $) 18 T ELT) (((-580 $) $ (-1081)) 47 T ELT)) (-3168 (($ (-852 $)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-1076 $) (-1081)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1081)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1205 ((-580 |#1|) |#1| (-1081))) (-15 -1206 (|#1| |#1| (-1081))) (-15 -1205 ((-580 |#1|) |#1|)) (-15 -1206 (|#1| |#1|)) (-15 -1207 ((-580 |#1|) |#1| (-1081))) (-15 -3168 (|#1| |#1| (-1081))) (-15 -1207 ((-580 |#1|) |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -1205 ((-580 |#1|) (-1076 |#1|) (-1081))) (-15 -1205 ((-580 |#1|) (-1076 |#1|))) (-15 -1205 ((-580 |#1|) (-852 |#1|))) (-15 -1206 (|#1| (-1076 |#1|) (-1081))) (-15 -1206 (|#1| (-1076 |#1|))) (-15 -1206 (|#1| (-852 |#1|))) (-15 -1207 ((-580 |#1|) (-1076 |#1|) (-1081))) (-15 -1207 ((-580 |#1|) (-1076 |#1|))) (-15 -1207 ((-580 |#1|) (-852 |#1|))) (-15 -3168 (|#1| (-1076 |#1|) (-1081))) (-15 -3168 (|#1| (-1076 |#1|))) (-15 -3168 (|#1| (-852 |#1|)))) (-29 |#2|) (-491)) (T -28)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1205 (((-580 $) (-852 $)) 96 T ELT) (((-580 $) (-1076 $)) 95 T ELT) (((-580 $) (-1076 $) (-1081)) 94 T ELT) (((-580 $) $) 146 T ELT) (((-580 $) $ (-1081)) 144 T ELT)) (-1206 (($ (-852 $)) 99 T ELT) (($ (-1076 $)) 98 T ELT) (($ (-1076 $) (-1081)) 97 T ELT) (($ $) 147 T ELT) (($ $ (-1081)) 145 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-1081)) $) 215 T ELT)) (-3069 (((-345 (-1076 $)) $ (-547 $)) 247 (|has| |#1| (-491)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1589 (((-580 (-547 $)) $) 178 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-1593 (($ $ (-580 (-547 $)) (-580 $)) 168 T ELT) (($ $ (-580 (-246 $))) 167 T ELT) (($ $ (-246 $)) 166 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-3023 (($ $) 108 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-1207 (((-580 $) (-852 $)) 102 T ELT) (((-580 $) (-1076 $)) 101 T ELT) (((-580 $) (-1076 $) (-1081)) 100 T ELT) (((-580 $) $) 150 T ELT) (((-580 $) $ (-1081)) 148 T ELT)) (-3168 (($ (-852 $)) 105 T ELT) (($ (-1076 $)) 104 T ELT) (($ (-1076 $) (-1081)) 103 T ELT) (($ $) 151 T ELT) (($ $ (-1081)) 149 T ELT)) (-3142 (((-3 (-852 |#1|) #1="failed") $) 266 (|has| |#1| (-956)) ELT) (((-3 (-345 (-852 |#1|)) #1#) $) 249 (|has| |#1| (-491)) ELT) (((-3 |#1| #1#) $) 211 T ELT) (((-3 (-480) #1#) $) 208 (|has| |#1| (-945 (-480))) ELT) (((-3 (-1081) #1#) $) 202 T ELT) (((-3 (-547 $) #1#) $) 153 T ELT) (((-3 (-345 (-480)) #1#) $) 141 (OR (-12 (|has| |#1| (-945 (-480))) (|has| |#1| (-491))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3141 (((-852 |#1|) $) 265 (|has| |#1| (-956)) ELT) (((-345 (-852 |#1|)) $) 248 (|has| |#1| (-491)) ELT) ((|#1| $) 210 T ELT) (((-480) $) 209 (|has| |#1| (-945 (-480))) ELT) (((-1081) $) 201 T ELT) (((-547 $) $) 152 T ELT) (((-345 (-480)) $) 142 (OR (-12 (|has| |#1| (-945 (-480))) (|has| |#1| (-491))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2550 (($ $ $) 69 T ELT)) (-2267 (((-627 |#1|) (-627 $)) 254 (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 253 (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 140 (OR (-2548 (|has| |#1| (-956)) (|has| |#1| (-577 (-480)))) (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT) (((-627 (-480)) (-627 $)) 139 (OR (-2548 (|has| |#1| (-956)) (|has| |#1| (-577 (-480)))) (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 207 (|has| |#1| (-791 (-325))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 206 (|has| |#1| (-791 (-480))) ELT)) (-2559 (($ (-580 $)) 172 T ELT) (($ $) 171 T ELT)) (-1588 (((-580 (-84)) $) 179 T ELT)) (-3578 (((-84) (-84)) 180 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2659 (((-83) $) 200 (|has| $ (-945 (-480))) ELT)) (-2982 (($ $) 232 (|has| |#1| (-956)) ELT)) (-2984 (((-1030 |#1| (-547 $)) $) 231 (|has| |#1| (-956)) ELT)) (-2997 (($ $ (-480)) 107 T ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 66 T ELT)) (-1586 (((-1076 $) (-547 $)) 197 (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) 186 T ELT)) (-1591 (((-3 (-547 $) "failed") $) 176 T ELT)) (-2268 (((-627 |#1|) (-1170 $)) 256 (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 255 (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 138 (OR (-2548 (|has| |#1| (-956)) (|has| |#1| (-577 (-480)))) (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT) (((-627 (-480)) (-1170 $)) 137 (OR (-2548 (|has| |#1| (-956)) (|has| |#1| (-577 (-480)))) (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1590 (((-580 (-547 $)) $) 177 T ELT)) (-2223 (($ (-84) (-580 $)) 185 T ELT) (($ (-84) $) 184 T ELT)) (-2809 (((-3 (-580 $) #3="failed") $) 226 (|has| |#1| (-1017)) ELT)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -2389 (-480))) #3#) $) 235 (|has| |#1| (-956)) ELT)) (-2808 (((-3 (-580 $) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-1783 (((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 $))) #3#) $) 229 (|has| |#1| (-25)) ELT)) (-2810 (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #3#) $ (-1081)) 234 (|has| |#1| (-956)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #3#) $ (-84)) 233 (|has| |#1| (-956)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #3#) $) 227 (|has| |#1| (-1017)) ELT)) (-2619 (((-83) $ (-1081)) 183 T ELT) (((-83) $ (-84)) 182 T ELT)) (-2470 (($ $) 86 T ELT)) (-2589 (((-689) $) 175 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 213 T ELT)) (-1785 ((|#1| $) 214 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1587 (((-83) $ (-1081)) 188 T ELT) (((-83) $ $) 187 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-2660 (((-83) $) 199 (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-1081) (-689) (-1 $ $)) 239 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689) (-1 $ (-580 $))) 238 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ (-580 $)))) 237 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ $))) 236 (|has| |#1| (-956)) ELT) (($ $ (-580 (-84)) (-580 $) (-1081)) 225 (|has| |#1| (-550 (-469))) ELT) (($ $ (-84) $ (-1081)) 224 (|has| |#1| (-550 (-469))) ELT) (($ $) 223 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-1081))) 222 (|has| |#1| (-550 (-469))) ELT) (($ $ (-1081)) 221 (|has| |#1| (-550 (-469))) ELT) (($ $ (-84) (-1 $ $)) 196 T ELT) (($ $ (-84) (-1 $ (-580 $))) 195 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) 194 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) 193 T ELT) (($ $ (-1081) (-1 $ $)) 192 T ELT) (($ $ (-1081) (-1 $ (-580 $))) 191 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) 190 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) 189 T ELT) (($ $ (-580 $) (-580 $)) 160 T ELT) (($ $ $ $) 159 T ELT) (($ $ (-246 $)) 158 T ELT) (($ $ (-580 (-246 $))) 157 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 156 T ELT) (($ $ (-547 $) $) 155 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-3783 (($ (-84) (-580 $)) 165 T ELT) (($ (-84) $ $ $ $) 164 T ELT) (($ (-84) $ $ $) 163 T ELT) (($ (-84) $ $) 162 T ELT) (($ (-84) $) 161 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-1592 (($ $ $) 174 T ELT) (($ $) 173 T ELT)) (-3741 (($ $ (-580 (-1081)) (-580 (-689))) 261 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) 260 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) 259 (|has| |#1| (-956)) ELT) (($ $ (-1081)) 257 (|has| |#1| (-956)) ELT)) (-2981 (($ $) 242 (|has| |#1| (-491)) ELT)) (-2983 (((-1030 |#1| (-547 $)) $) 241 (|has| |#1| (-491)) ELT)) (-3170 (($ $) 198 (|has| $ (-956)) ELT)) (-3955 (((-469) $) 270 (|has| |#1| (-550 (-469))) ELT) (($ (-343 $)) 240 (|has| |#1| (-491)) ELT) (((-795 (-325)) $) 205 (|has| |#1| (-550 (-795 (-325)))) ELT) (((-795 (-480)) $) 204 (|has| |#1| (-550 (-795 (-480)))) ELT)) (-2995 (($ $ $) 269 (|has| |#1| (-408)) ELT)) (-2421 (($ $ $) 268 (|has| |#1| (-408)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ (-852 |#1|)) 267 (|has| |#1| (-956)) ELT) (($ (-345 (-852 |#1|))) 250 (|has| |#1| (-491)) ELT) (($ (-345 (-852 (-345 |#1|)))) 246 (|has| |#1| (-491)) ELT) (($ (-852 (-345 |#1|))) 245 (|has| |#1| (-491)) ELT) (($ (-345 |#1|)) 244 (|has| |#1| (-491)) ELT) (($ (-1030 |#1| (-547 $))) 230 (|has| |#1| (-956)) ELT) (($ |#1|) 212 T ELT) (($ (-1081)) 203 T ELT) (($ (-547 $)) 154 T ELT)) (-2688 (((-629 $) $) 252 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-2576 (($ (-580 $)) 170 T ELT) (($ $) 169 T ELT)) (-2242 (((-83) (-84)) 181 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-1784 (($ (-1081) (-580 $)) 220 T ELT) (($ (-1081) $ $ $ $) 219 T ELT) (($ (-1081) $ $ $) 218 T ELT) (($ (-1081) $ $) 217 T ELT) (($ (-1081) $) 216 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 (-1081)) (-580 (-689))) 264 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) 263 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) 262 (|has| |#1| (-956)) ELT) (($ $ (-1081)) 258 (|has| |#1| (-956)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT) (($ (-1030 |#1| (-547 $)) (-1030 |#1| (-547 $))) 243 (|has| |#1| (-491)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT) (($ $ (-345 (-480))) 106 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT) (($ $ |#1|) 251 (|has| |#1| (-144)) ELT) (($ |#1| $) 143 (|has| |#1| (-956)) ELT))) -(((-29 |#1|) (-111) (-491)) (T -29)) -((-3168 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-491)))) (-1207 (*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *3)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-29 *3)) (-4 *3 (-491)))) (-1207 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *4)))) (-1206 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-491)))) (-1205 (*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *3)))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-29 *3)) (-4 *3 (-491)))) (-1205 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-359 |t#1|) (-10 -8 (-15 -3168 ($ $)) (-15 -1207 ((-580 $) $)) (-15 -3168 ($ $ (-1081))) (-15 -1207 ((-580 $) $ (-1081))) (-15 -1206 ($ $)) (-15 -1205 ((-580 $) $)) (-15 -1206 ($ $ (-1081))) (-15 -1205 ((-580 $) $ (-1081))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) . T) ((-552 (-345 (-852 |#1|))) |has| |#1| (-491)) ((-552 (-480)) . T) ((-552 (-547 $)) . T) ((-552 (-852 |#1|)) |has| |#1| (-956)) ((-552 (-1081)) . T) ((-552 |#1|) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-550 (-795 (-325))) |has| |#1| (-550 (-795 (-325)))) ((-550 (-795 (-480))) |has| |#1| (-550 (-795 (-480)))) ((-199) . T) ((-243) . T) ((-255) . T) ((-257 $) . T) ((-251) . T) ((-309) . T) ((-324 |#1|) |has| |#1| (-956)) ((-338 |#1|) . T) ((-350 |#1|) . T) ((-359 |#1|) . T) ((-387) . T) ((-408) |has| |#1| (-408)) ((-449 (-547 $) $) . T) ((-449 $ $) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 |#1|) OR (|has| |#1| (-956)) (|has| |#1| (-144))) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 (-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ((-587 |#1|) OR (|has| |#1| (-956)) (|has| |#1| (-144))) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) . T) ((-577 (-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ((-577 |#1|) |has| |#1| (-956)) ((-651 (-345 (-480))) . T) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) . T) ((-660) . T) ((-801 $ (-1081)) |has| |#1| (-956)) ((-804 (-1081)) |has| |#1| (-956)) ((-806 (-1081)) |has| |#1| (-956)) ((-791 (-325)) |has| |#1| (-791 (-325))) ((-791 (-480)) |has| |#1| (-791 (-480))) ((-789 |#1|) . T) ((-827) . T) ((-910) . T) ((-945 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480))))) ((-945 (-345 (-852 |#1|))) |has| |#1| (-491)) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 (-547 $)) . T) ((-945 (-852 |#1|)) |has| |#1| (-956)) ((-945 (-1081)) . T) ((-945 |#1|) . T) ((-958 (-345 (-480))) . T) ((-958 |#1|) |has| |#1| (-144)) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 |#1|) |has| |#1| (-144)) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-2882 (((-995 (-177)) $) NIL T ELT)) (-2883 (((-995 (-177)) $) NIL T ELT)) (-3119 (($ $ (-177)) 164 T ELT)) (-1208 (($ (-852 (-480)) (-1081) (-1081) (-995 (-345 (-480))) (-995 (-345 (-480)))) 103 T ELT)) (-2884 (((-580 (-580 (-849 (-177)))) $) 181 T ELT)) (-3929 (((-767) $) 195 T ELT))) -(((-30) (-13 (-861) (-10 -8 (-15 -1208 ($ (-852 (-480)) (-1081) (-1081) (-995 (-345 (-480))) (-995 (-345 (-480))))) (-15 -3119 ($ $ (-177)))))) (T -30)) -((-1208 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-852 (-480))) (-5 *3 (-1081)) (-5 *4 (-995 (-345 (-480)))) (-5 *1 (-30)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (((-1040) $) 10 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-31) (-13 (-989) (-10 -8 (-15 -2680 ((-1040) $)) (-15 -3218 ((-1040) $))))) (T -31)) -((-2680 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-31)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-31))))) -((-3168 ((|#2| (-1076 |#2|) (-1081)) 39 T ELT)) (-3578 (((-84) (-84)) 53 T ELT)) (-1586 (((-1076 |#2|) (-547 |#2|)) 148 (|has| |#1| (-945 (-480))) ELT)) (-1211 ((|#2| |#1| (-480)) 120 (|has| |#1| (-945 (-480))) ELT)) (-1209 ((|#2| (-1076 |#2|) |#2|) 29 T ELT)) (-1210 (((-767) (-580 |#2|)) 87 T ELT)) (-3170 ((|#2| |#2|) 143 (|has| |#1| (-945 (-480))) ELT)) (-2242 (((-83) (-84)) 17 T ELT)) (** ((|#2| |#2| (-345 (-480))) 96 (|has| |#1| (-945 (-480))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3168 (|#2| (-1076 |#2|) (-1081))) (-15 -3578 ((-84) (-84))) (-15 -2242 ((-83) (-84))) (-15 -1209 (|#2| (-1076 |#2|) |#2|)) (-15 -1210 ((-767) (-580 |#2|))) (IF (|has| |#1| (-945 (-480))) (PROGN (-15 ** (|#2| |#2| (-345 (-480)))) (-15 -1586 ((-1076 |#2|) (-547 |#2|))) (-15 -3170 (|#2| |#2|)) (-15 -1211 (|#2| |#1| (-480)))) |%noBranch|)) (-491) (-359 |#1|)) (T -32)) -((-1211 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-4 *2 (-359 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-945 *4)) (-4 *3 (-491)))) (-3170 (*1 *2 *2) (-12 (-4 *3 (-945 (-480))) (-4 *3 (-491)) (-5 *1 (-32 *3 *2)) (-4 *2 (-359 *3)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-547 *5)) (-4 *5 (-359 *4)) (-4 *4 (-945 (-480))) (-4 *4 (-491)) (-5 *2 (-1076 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-345 (-480))) (-4 *4 (-945 (-480))) (-4 *4 (-491)) (-5 *1 (-32 *4 *2)) (-4 *2 (-359 *4)))) (-1210 (*1 *2 *3) (-12 (-5 *3 (-580 *5)) (-4 *5 (-359 *4)) (-4 *4 (-491)) (-5 *2 (-767)) (-5 *1 (-32 *4 *5)))) (-1209 (*1 *2 *3 *2) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) (-5 *1 (-32 *4 *2)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) (-4 *5 (-359 *4)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-32 *3 *4)) (-4 *4 (-359 *3)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *2)) (-5 *4 (-1081)) (-4 *2 (-359 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-491))))) -((-3707 (($) 10 T CONST)) (-1212 (((-83) $ $) 8 T ELT)) (-3386 (((-83) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3707 (|#1|) -3935) (-15 -3386 ((-83) |#1|)) (-15 -1212 ((-83) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3707 (($) 7 T CONST)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3383 (($ $) 10 T ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-34) (-111)) (T -34)) -((-1212 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3383 (*1 *1 *1) (-4 *1 (-34))) (-3548 (*1 *1) (-4 *1 (-34))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3707 (*1 *1) (-4 *1 (-34))) (-3940 (*1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-34)) (-5 *2 (-689))))) -(-13 (-1120) (-10 -8 (-15 -1212 ((-83) $ $)) (-15 -3383 ($ $)) (-15 -3548 ($)) (-15 -3386 ((-83) $)) (-15 -3707 ($) -3935) (IF (|has| $ (-6 -3978)) (-15 -3940 ((-689) $)) |%noBranch|))) -(((-13) . T) ((-1120) . T)) -((-3481 (($ $) 11 T ELT)) (-3479 (($ $) 10 T ELT)) (-3483 (($ $) 9 T ELT)) (-3484 (($ $) 8 T ELT)) (-3482 (($ $) 7 T ELT)) (-3480 (($ $) 6 T ELT))) -(((-35) (-111)) (T -35)) -((-3481 (*1 *1 *1) (-4 *1 (-35))) (-3479 (*1 *1 *1) (-4 *1 (-35))) (-3483 (*1 *1 *1) (-4 *1 (-35))) (-3484 (*1 *1 *1) (-4 *1 (-35))) (-3482 (*1 *1 *1) (-4 *1 (-35))) (-3480 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3480 ($ $)) (-15 -3482 ($ $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3479 ($ $)) (-15 -3481 ($ $)))) -((-2554 (((-83) $ $) 19 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3385 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3778 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3780 (($ $) 154 T ELT)) (-3582 (($) 77 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2186 (((-1176) $ |#1| |#1|) 104 (|has| $ (-6 -3979)) ELT) (((-1176) $ (-480) (-480)) 186 (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 167 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-83) $) 214 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-1719 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3979)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3425 (((-83) $ (-689)) 203 T ELT)) (-3011 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 163 (|has| $ (-6 -3979)) ELT)) (-3769 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3979)) ELT)) (-3772 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-1137 (-480)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3979)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 140 (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3978)) ELT)) (-3779 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2219 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 212 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 222 T ELT)) (-3782 (($ $ (-689)) 150 T ELT) (($ $) 148 T ELT)) (-2356 (($ $) 225 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-1342 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978)))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3978)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3978)) ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) 196 T ELT)) (-3426 (((-83) $) 200 T ELT)) (-3402 (((-480) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT) (((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) 217 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) 84 (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 131 T ELT)) (-3013 (((-83) $ $) 139 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-3597 (($ (-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3702 (((-83) $ (-689)) 202 T ELT)) (-2188 ((|#1| $) 101 (|has| |#1| (-751)) ELT) (((-480) $) 188 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 204 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2842 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3501 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) 85 (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT) (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 ((|#1| $) 100 (|has| |#1| (-751)) ELT) (((-480) $) 189 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 205 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3979)) ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3517 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3699 (((-83) $ (-689)) 201 T ELT)) (-3016 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3510 (((-83) $) 132 T ELT)) (-3227 (((-1064) $) 22 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3781 (($ $ (-689)) 153 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2220 (((-580 |#1|) $) 67 T ELT)) (-2221 (((-83) |#1| $) 68 T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) 230 T ELT) (($ $ $ (-480)) 229 T ELT)) (-2292 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) 170 T ELT) (($ $ $ (-480)) 169 T ELT)) (-2191 (((-580 |#1|) $) 98 T ELT) (((-580 (-480)) $) 191 T ELT)) (-2192 (((-83) |#1| $) 97 T ELT) (((-83) (-480) $) 192 T ELT)) (-3228 (((-1025) $) 21 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3784 ((|#2| $) 102 (|has| |#1| (-751)) ELT) (($ $ (-689)) 147 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2187 (($ $ |#2|) 103 (|has| $ (-6 -3979)) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3427 (((-83) $) 199 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 91 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) 89 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) 88 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-2193 (((-580 |#2|) $) 96 T ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) 194 T ELT) (($ $ (-1137 (-480))) 177 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3015 (((-480) $ $) 137 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1560 (($ $ (-480)) 233 T ELT) (($ $ (-1137 (-480))) 232 T ELT)) (-2293 (($ $ (-480)) 172 T ELT) (($ $ (-1137 (-480))) 171 T ELT)) (-3616 (((-83) $) 135 T ELT)) (-3775 (($ $) 159 T ELT)) (-3773 (($ $) 160 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) 158 T ELT)) (-3777 (($ $) 157 T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) |#2| $) 86 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3978)) ELT)) (-1720 (($ $ $ (-480)) 213 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469)))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3774 (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3785 (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-580 $)) 174 T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3929 (((-767) $) 17 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767)))) ELT)) (-3505 (((-580 $) $) 130 T ELT)) (-3014 (((-83) $ $) 138 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-1255 (((-83) $ $) 20 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1213 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 206 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2553 (((-83) $ $) 208 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3042 (((-83) $ $) 18 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2670 (((-83) $ $) 207 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2671 (((-83) $ $) 209 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-36 |#1| |#2|) (-111) (-1007) (-1007)) (T -36)) -((-1213 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-2 (|:| -3843 *3) (|:| |entry| *4)))))) -(-13 (-1098 |t#1| |t#2|) (-605 (-2 (|:| -3843 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1213 ((-3 (-2 (|:| -3843 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1007)) (|has| |#2| (-72))) ((-549 (-767)) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-1007)) (|has| |#2| (-549 (-767)))) ((-122 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-550 (-469)) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ((-181 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-191 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-239 (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-239 (-1137 (-480)) $) . T) ((-239 |#1| |#2|) . T) ((-241 (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-257 |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-235 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-319 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-424 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-424 |#2|) . T) ((-535 (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-535 |#1| |#2|) . T) ((-449 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-449 |#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-13) . T) ((-546 |#1| |#2|) . T) ((-590 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-605 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-751) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ((-754) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ((-918 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-1007) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) (|has| |#2| (-1007))) ((-1055 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-1098 |#1| |#2|) . T) ((-1120) . T) ((-1159 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T)) -((-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#2|)) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-38 |#2|) (-144)) (T -37)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-38 |#1|) (-111) (-144)) (T -38)) -NIL -(-13 (-956) (-651 |t#1|) (-552 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-660) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3401 (((-343 |#1|) |#1|) 41 T ELT)) (-3715 (((-343 |#1|) |#1|) 30 T ELT) (((-343 |#1|) |#1| (-580 (-48))) 33 T ELT)) (-1214 (((-83) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3715 ((-343 |#1|) |#1| (-580 (-48)))) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3401 ((-343 |#1|) |#1|)) (-15 -1214 ((-83) |#1|))) (-1146 (-48))) (T -39)) -((-1214 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48))))) (-3401 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-48))) (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1636 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2051 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2049 (((-83) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1771 (((-627 (-345 |#2|)) (-1170 $)) NIL T ELT) (((-627 (-345 |#2|))) NIL T ELT)) (-3313 (((-345 |#2|) $) NIL T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1597 (((-83) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3121 (((-689)) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1650 (((-83)) NIL T ELT)) (-1649 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| (-345 |#2|) (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-3 (-345 |#2|) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| (-345 |#2|) (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-345 |#2|) $) NIL T ELT)) (-1781 (($ (-1170 (-345 |#2|)) (-1170 $)) NIL T ELT) (($ (-1170 (-345 |#2|))) 60 T ELT) (($ (-1170 |#2|) |#2|) 130 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-345 |#2|) (-296)) ELT)) (-2550 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1770 (((-627 (-345 |#2|)) $ (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) (-627 $)) NIL T ELT)) (-1641 (((-1170 $) (-1170 $)) NIL T ELT)) (-3825 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-345 |#3|)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-1628 (((-580 (-580 |#1|))) NIL (|has| |#1| (-315)) ELT)) (-1653 (((-83) |#1| |#1|) NIL T ELT)) (-3094 (((-825)) NIL T ELT)) (-2980 (($) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1648 (((-83)) NIL T ELT)) (-1647 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-2549 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3486 (($ $) NIL T ELT)) (-2819 (($) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1669 (((-83) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1753 (($ $ (-689)) NIL (|has| (-345 |#2|) (-296)) ELT) (($ $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3706 (((-83) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3755 (((-825) $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-738 (-825)) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-3360 (((-689)) NIL T ELT)) (-1642 (((-1170 $) (-1170 $)) 105 T ELT)) (-3117 (((-345 |#2|) $) NIL T ELT)) (-1629 (((-580 (-852 |#1|)) (-1081)) NIL (|has| |#1| (-309)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2002 ((|#3| $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1998 (((-825) $) NIL (|has| (-345 |#2|) (-315)) ELT)) (-3065 ((|#3| $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-1170 $) $) NIL T ELT) (((-627 (-345 |#2|)) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1215 (((-1176) (-689)) 83 T ELT)) (-1637 (((-627 (-345 |#2|))) 55 T ELT)) (-1639 (((-627 (-345 |#2|))) 48 T ELT)) (-2470 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1634 (($ (-1170 |#2|) |#2|) 131 T ELT)) (-1638 (((-627 (-345 |#2|))) 49 T ELT)) (-1640 (((-627 (-345 |#2|))) 47 T ELT)) (-1633 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1635 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1646 (((-1170 $)) 46 T ELT)) (-3901 (((-1170 $)) 45 T ELT)) (-1645 (((-83) $) NIL T ELT)) (-1644 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3429 (($) NIL (|has| (-345 |#2|) (-296)) CONST)) (-2388 (($ (-825)) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1631 (((-3 |#2| #1#)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1655 (((-689)) NIL T ELT)) (-2397 (($) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3715 (((-343 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-345 |#2|) (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1596 (((-689) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3783 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1632 (((-3 |#2| #1#)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3740 (((-345 |#2|) (-1170 $)) NIL T ELT) (((-345 |#2|)) 43 T ELT)) (-1754 (((-689) $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-3 (-689) #1#) $ $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3741 (($ $ (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-2396 (((-627 (-345 |#2|)) (-1170 $) (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3170 ((|#3|) 54 T ELT)) (-1663 (($) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3209 (((-1170 (-345 |#2|)) $ (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 (-345 |#2|)) $) 61 T ELT) (((-627 (-345 |#2|)) (-1170 $)) 106 T ELT)) (-3955 (((-1170 (-345 |#2|)) $) NIL T ELT) (($ (-1170 (-345 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1643 (((-1170 $) (-1170 $)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 |#2|)) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2688 (($ $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-629 $) $) NIL (|has| (-345 |#2|) (-116)) ELT)) (-2435 ((|#3| $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1652 (((-83)) 41 T ELT)) (-1651 (((-83) |#1|) 53 T ELT) (((-83) |#2|) 137 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1630 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1654 (((-83)) NIL T ELT)) (-2646 (($) 17 T CONST)) (-2652 (($) 27 T CONST)) (-2655 (($ $ (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| (-345 |#2|) (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 |#2|)) NIL T ELT) (($ (-345 |#2|) $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-345 (-480))) NIL (|has| (-345 |#2|) (-309)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-288 |#1| |#2| |#3|) (-10 -7 (-15 -1215 ((-1176) (-689))))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) |#3|) (T -40)) -((-1215 (*1 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-309)) (-4 *5 (-1146 *4)) (-5 *2 (-1176)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1146 (-345 *5))) (-14 *7 *6)))) -((-1216 ((|#2| |#2|) 47 T ELT)) (-1221 ((|#2| |#2|) 136 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-13 (-387) (-945 (-480))))) ELT)) (-1220 ((|#2| |#2|) 100 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-13 (-387) (-945 (-480))))) ELT)) (-1219 ((|#2| |#2|) 101 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-13 (-387) (-945 (-480))))) ELT)) (-1222 ((|#2| (-84) |#2| (-689)) 80 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-13 (-387) (-945 (-480))))) ELT)) (-1218 (((-1076 |#2|) |#2|) 44 T ELT)) (-1217 ((|#2| |#2| (-580 (-547 |#2|))) 18 T ELT) ((|#2| |#2| (-580 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1216 (|#2| |#2|)) (-15 -1217 (|#2| |#2|)) (-15 -1217 (|#2| |#2| |#2|)) (-15 -1217 (|#2| |#2| (-580 |#2|))) (-15 -1217 (|#2| |#2| (-580 (-547 |#2|)))) (-15 -1218 ((-1076 |#2|) |#2|)) (IF (|has| |#1| (-13 (-387) (-945 (-480)))) (IF (|has| |#2| (-359 |#1|)) (PROGN (-15 -1219 (|#2| |#2|)) (-15 -1220 (|#2| |#2|)) (-15 -1221 (|#2| |#2|)) (-15 -1222 (|#2| (-84) |#2| (-689)))) |%noBranch|) |%noBranch|)) (-491) (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 |#1| (-547 $)) $)) (-15 -2983 ((-1030 |#1| (-547 $)) $)) (-15 -3929 ($ (-1030 |#1| (-547 $))))))) (T -41)) -((-1222 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-84)) (-5 *4 (-689)) (-4 *5 (-13 (-387) (-945 (-480)))) (-4 *5 (-491)) (-5 *1 (-41 *5 *2)) (-4 *2 (-359 *5)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *5 (-547 $)) $)) (-15 -2983 ((-1030 *5 (-547 $)) $)) (-15 -3929 ($ (-1030 *5 (-547 $))))))))) (-1221 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-359 *3)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $))))))))) (-1220 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-359 *3)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $))))))))) (-1219 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-359 *3)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $))))))))) (-1218 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-1076 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) (-15 -2983 ((-1030 *4 (-547 $)) $)) (-15 -3929 ($ (-1030 *4 (-547 $))))))))) (-1217 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-547 *2))) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) (-15 -2983 ((-1030 *4 (-547 $)) $)) (-15 -3929 ($ (-1030 *4 (-547 $))))))) (-4 *4 (-491)) (-5 *1 (-41 *4 *2)))) (-1217 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) (-15 -2983 ((-1030 *4 (-547 $)) $)) (-15 -3929 ($ (-1030 *4 (-547 $))))))) (-4 *4 (-491)) (-5 *1 (-41 *4 *2)))) (-1217 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $))))))))) (-1217 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $))))))))) (-1216 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-309) (-251) (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) (-15 -2983 ((-1030 *3 (-547 $)) $)) (-15 -3929 ($ (-1030 *3 (-547 $)))))))))) -((-3715 (((-343 (-1076 |#3|)) (-1076 |#3|) (-580 (-48))) 23 T ELT) (((-343 |#3|) |#3| (-580 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3715 ((-343 |#3|) |#3| (-580 (-48)))) (-15 -3715 ((-343 (-1076 |#3|)) (-1076 |#3|) (-580 (-48))))) (-751) (-712) (-856 (-48) |#2| |#1|)) (T -42)) -((-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-48))) (-4 *5 (-751)) (-4 *6 (-712)) (-4 *7 (-856 (-48) *6 *5)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-48))) (-4 *5 (-751)) (-4 *6 (-712)) (-5 *2 (-343 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-856 (-48) *6 *5))))) -((-1226 (((-689) |#2|) 70 T ELT)) (-1224 (((-689) |#2|) 74 T ELT)) (-1239 (((-580 |#2|)) 37 T ELT)) (-1223 (((-689) |#2|) 73 T ELT)) (-1225 (((-689) |#2|) 69 T ELT)) (-1227 (((-689) |#2|) 72 T ELT)) (-1237 (((-580 (-627 |#1|))) 65 T ELT)) (-1232 (((-580 |#2|)) 60 T ELT)) (-1230 (((-580 |#2|) |#2|) 48 T ELT)) (-1234 (((-580 |#2|)) 62 T ELT)) (-1233 (((-580 |#2|)) 61 T ELT)) (-1236 (((-580 (-627 |#1|))) 53 T ELT)) (-1231 (((-580 |#2|)) 59 T ELT)) (-1229 (((-580 |#2|) |#2|) 47 T ELT)) (-1228 (((-580 |#2|)) 55 T ELT)) (-1238 (((-580 (-627 |#1|))) 66 T ELT)) (-1235 (((-580 |#2|)) 64 T ELT)) (-2000 (((-1170 |#2|) (-1170 |#2|)) 99 (|has| |#1| (-255)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1223 ((-689) |#2|)) (-15 -1224 ((-689) |#2|)) (-15 -1225 ((-689) |#2|)) (-15 -1226 ((-689) |#2|)) (-15 -1227 ((-689) |#2|)) (-15 -1228 ((-580 |#2|))) (-15 -1229 ((-580 |#2|) |#2|)) (-15 -1230 ((-580 |#2|) |#2|)) (-15 -1231 ((-580 |#2|))) (-15 -1232 ((-580 |#2|))) (-15 -1233 ((-580 |#2|))) (-15 -1234 ((-580 |#2|))) (-15 -1235 ((-580 |#2|))) (-15 -1236 ((-580 (-627 |#1|)))) (-15 -1237 ((-580 (-627 |#1|)))) (-15 -1238 ((-580 (-627 |#1|)))) (-15 -1239 ((-580 |#2|))) (IF (|has| |#1| (-255)) (-15 -2000 ((-1170 |#2|) (-1170 |#2|))) |%noBranch|)) (-491) (-356 |#1|)) (T -43)) -((-2000 (*1 *2 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-356 *3)) (-4 *3 (-255)) (-4 *3 (-491)) (-5 *1 (-43 *3 *4)))) (-1239 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1238 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1237 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1236 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1235 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1234 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1233 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1232 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1231 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1228 (*1 *2) (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3)))) (-1227 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1226 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1225 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4)))) (-1223 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1761 (((-3 $ #1="failed")) NIL (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-3208 (((-1170 (-627 |#1|)) (-1170 $)) NIL T ELT) (((-1170 (-627 |#1|))) 24 T ELT)) (-1718 (((-1170 $)) 52 T ELT)) (-3707 (($) NIL T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (|has| |#1| (-491)) ELT)) (-1692 (((-3 $ #1#)) NIL (|has| |#1| (-491)) ELT)) (-1777 (((-627 |#1|) (-1170 $)) NIL T ELT) (((-627 |#1|)) NIL T ELT)) (-1716 ((|#1| $) NIL T ELT)) (-1775 (((-627 |#1|) $ (-1170 $)) NIL T ELT) (((-627 |#1|) $) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| |#1| (-491)) ELT)) (-1889 (((-1076 (-852 |#1|))) NIL (|has| |#1| (-309)) ELT)) (-2395 (($ $ (-825)) NIL T ELT)) (-1714 ((|#1| $) NIL T ELT)) (-1694 (((-1076 |#1|) $) NIL (|has| |#1| (-491)) ELT)) (-1779 ((|#1| (-1170 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1712 (((-1076 |#1|) $) NIL T ELT)) (-1706 (((-83)) 99 T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) NIL T ELT) (($ (-1170 |#1|)) NIL T ELT)) (-3450 (((-3 $ #1#) $) 14 (|has| |#1| (-491)) ELT)) (-3094 (((-825)) 53 T ELT)) (-1703 (((-83)) NIL T ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1701 (((-83)) 101 T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (|has| |#1| (-491)) ELT)) (-1693 (((-3 $ #1#)) NIL (|has| |#1| (-491)) ELT)) (-1778 (((-627 |#1|) (-1170 $)) NIL T ELT) (((-627 |#1|)) NIL T ELT)) (-1717 ((|#1| $) NIL T ELT)) (-1776 (((-627 |#1|) $ (-1170 $)) NIL T ELT) (((-627 |#1|) $) NIL T ELT)) (-2393 (((-3 $ #1#) $) NIL (|has| |#1| (-491)) ELT)) (-1893 (((-1076 (-852 |#1|))) NIL (|has| |#1| (-309)) ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-1715 ((|#1| $) NIL T ELT)) (-1695 (((-1076 |#1|) $) NIL (|has| |#1| (-491)) ELT)) (-1780 ((|#1| (-1170 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1713 (((-1076 |#1|) $) NIL T ELT)) (-1707 (((-83)) 98 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1698 (((-83)) 106 T ELT)) (-1700 (((-83)) 105 T ELT)) (-1702 (((-83)) 107 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1705 (((-83)) 100 T ELT)) (-3783 ((|#1| $ (-480)) 55 T ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 48 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#1|) $) 28 T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-3955 (((-1170 |#1|) $) NIL T ELT) (($ (-1170 |#1|)) NIL T ELT)) (-1881 (((-580 (-852 |#1|)) (-1170 $)) NIL T ELT) (((-580 (-852 |#1|))) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-1711 (((-83)) 95 T ELT)) (-3929 (((-767) $) 71 T ELT) (($ (-1170 |#1|)) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 51 T ELT)) (-1696 (((-580 (-1170 |#1|))) NIL (|has| |#1| (-491)) ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-1709 (((-83)) 91 T ELT)) (-2531 (($ (-627 |#1|) $) 18 T ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) 97 T ELT)) (-1708 (((-83)) 92 T ELT)) (-1704 (((-83)) 90 T ELT)) (-2646 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1047 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-356 |#1|) (-587 (-1047 |#2| |#1|)) (-10 -8 (-15 -3929 ($ (-1170 |#1|))))) (-309) (-825) (-580 (-1081)) (-1170 (-627 |#1|))) (T -44)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-309)) (-14 *6 (-1170 (-627 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-825)) (-14 *5 (-580 (-1081)))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3385 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3778 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3780 (($ $) NIL T ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT) (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-83) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-1719 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751))) ELT)) (-2895 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3425 (((-83) $ (-689)) NIL T ELT)) (-3011 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 34 (|has| $ (-6 -3979)) ELT)) (-3769 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT)) (-3772 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-1137 (-480)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3779 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2219 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-3782 (($ $ (-689)) NIL T ELT) (($ $) 30 T ELT)) (-2356 (($ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) NIL T ELT)) (-3426 (((-83) $) NIL T ELT)) (-3402 (((-480) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT) (((-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-3597 (($ (-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3702 (((-83) $ (-689)) NIL T ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT) (((-480) $) 39 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2842 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3501 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT) (((-480) $) 41 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3517 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3699 (((-83) $ (-689)) NIL T ELT)) (-3016 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) 50 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3781 (($ $ (-689)) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2220 (((-580 |#1|) $) 23 T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2292 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT) (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT) (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT) (($ $ (-689)) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3427 (((-83) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT) (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3386 (((-83) $) 19 T ELT)) (-3548 (($) 15 T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-1455 (($) 14 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1560 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3773 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3774 (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3785 (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-580 $)) NIL T ELT) (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1213 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2670 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-751)) ELT)) (-3940 (((-689) $) 26 (|has| $ (-6 -3978)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1007) (-1007)) (T -45)) -NIL -((-3920 (((-83) $) 12 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-345 (-480)) $) 25 T ELT) (($ $ (-345 (-480))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-345 (-480)))) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 -3920 ((-83) |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|))) (-47 |#2| |#3|) (-956) (-711)) (T -46)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| |#2|) 79 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-3931 ((|#2| $) 82 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT)) (-3660 ((|#1| $ |#2|) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-47 |#1| |#2|) (-111) (-956) (-711)) (T -47)) -((-3159 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) (-2880 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-83)))) (-2879 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) (-3660 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) (-3932 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *2 (-309))))) -(-13 (-956) (-80 |t#1| |t#1|) (-10 -8 (-15 -3159 (|t#1| $)) (-15 -2880 ($ $)) (-15 -3931 (|t#2| $)) (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (-15 -3920 ((-83) $)) (-15 -2879 ($ |t#1| |t#2|)) (-15 -3942 ($ $)) (-15 -3660 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-309)) (-15 -3932 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-6 (-144)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-491)) (-6 (-491)) |%noBranch|) (IF (|has| |t#1| (-38 (-345 (-480)))) (-6 (-38 (-345 (-480)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-243) |has| |#1| (-491)) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-1205 (((-580 $) (-1076 $) (-1081)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-852 $)) NIL T ELT)) (-1206 (($ (-1076 $) (-1081)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-852 $)) NIL T ELT)) (-3173 (((-83) $) 9 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1589 (((-580 (-547 $)) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1593 (($ $ (-246 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-3023 (($ $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1207 (((-580 $) (-1076 $) (-1081)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-852 $)) NIL T ELT)) (-3168 (($ (-1076 $) (-1081)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-852 $)) NIL T ELT)) (-3142 (((-3 (-547 $) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3141 (((-547 $) $) NIL T ELT) (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-345 (-480)))) (|:| |vec| (-1170 (-345 (-480))))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-345 (-480))) (-627 $)) NIL T ELT)) (-3825 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2559 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1588 (((-580 (-84)) $) NIL T ELT)) (-3578 (((-84) (-84)) NIL T ELT)) (-2398 (((-83) $) 11 T ELT)) (-2659 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-2984 (((-1030 (-480) (-547 $)) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-3117 (((-1076 $) (-1076 $) (-547 $)) NIL T ELT) (((-1076 $) (-1076 $) (-580 (-547 $))) NIL T ELT) (($ $ (-547 $)) NIL T ELT) (($ $ (-580 (-547 $))) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-1586 (((-1076 $) (-547 $)) NIL (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) NIL T ELT)) (-1591 (((-3 (-547 $) #1#) $) NIL T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-345 (-480)))) (|:| |vec| (-1170 (-345 (-480))))) (-1170 $) $) NIL T ELT) (((-627 (-345 (-480))) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1590 (((-580 (-547 $)) $) NIL T ELT)) (-2223 (($ (-84) $) NIL T ELT) (($ (-84) (-580 $)) NIL T ELT)) (-2619 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1081)) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-2589 (((-689) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1587 (((-83) $ $) NIL T ELT) (((-83) $ (-1081)) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2660 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-547 $) $) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-1081) (-1 $ (-580 $))) NIL T ELT) (($ $ (-1081) (-1 $ $)) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-580 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-580 $)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1592 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2983 (((-1030 (-480) (-547 $)) $) NIL T ELT)) (-3170 (($ $) NIL (|has| $ (-956)) ELT)) (-3955 (((-325) $) NIL T ELT) (((-177) $) NIL T ELT) (((-140 (-325)) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-547 $)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-1030 (-480) (-547 $))) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-2576 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-2242 (((-83) (-84)) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 6 T CONST)) (-2652 (($) 10 T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3042 (((-83) $ $) 13 T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-345 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT)) (* (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-825) $) NIL T ELT))) -(((-48) (-13 (-251) (-27) (-945 (-480)) (-945 (-345 (-480))) (-577 (-480)) (-928) (-577 (-345 (-480))) (-118) (-550 (-140 (-325))) (-188) (-552 (-1030 (-480) (-547 $))) (-10 -8 (-15 -2984 ((-1030 (-480) (-547 $)) $)) (-15 -2983 ((-1030 (-480) (-547 $)) $)) (-15 -3825 ($ $)) (-15 -3117 ((-1076 $) (-1076 $) (-547 $))) (-15 -3117 ((-1076 $) (-1076 $) (-580 (-547 $)))) (-15 -3117 ($ $ (-547 $))) (-15 -3117 ($ $ (-580 (-547 $))))))) (T -48)) -((-2984 (*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-48)))) (-5 *1 (-48)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-48)))) (-5 *1 (-48)))) (-3825 (*1 *1 *1) (-5 *1 (-48))) (-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 (-48))) (-5 *3 (-547 (-48))) (-5 *1 (-48)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 (-48))) (-5 *3 (-580 (-547 (-48)))) (-5 *1 (-48)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-547 (-48))) (-5 *1 (-48)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-547 (-48)))) (-5 *1 (-48))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1927 (((-580 (-441)) $) 17 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 7 T ELT)) (-3218 (((-1086) $) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-49) (-13 (-1007) (-10 -8 (-15 -1927 ((-580 (-441)) $)) (-15 -3218 ((-1086) $))))) (T -49)) -((-1927 (*1 *2 *1) (-12 (-5 *2 (-580 (-441))) (-5 *1 (-49)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-49))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 86 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2650 (((-83) $) 31 T ELT)) (-3142 (((-3 |#1| #1#) $) 34 T ELT)) (-3141 ((|#1| $) 35 T ELT)) (-3942 (($ $) 41 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3159 ((|#1| $) 32 T ELT)) (-1444 (($ $) 75 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1443 (((-83) $) 44 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($ (-689)) 73 T ELT)) (-3926 (($ (-580 (-480))) 74 T ELT)) (-3931 (((-689) $) 45 T ELT)) (-3929 (((-767) $) 92 T ELT) (($ (-480)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3660 ((|#1| $ $) 29 T ELT)) (-3111 (((-689)) 72 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 46 T CONST)) (-2652 (($) 17 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 65 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-557 |#1|) (-945 |#1|) (-10 -8 (-15 -3159 (|#1| $)) (-15 -1444 ($ $)) (-15 -3942 ($ $)) (-15 -3660 (|#1| $ $)) (-15 -2397 ($ (-689))) (-15 -3926 ($ (-580 (-480)))) (-15 -1443 ((-83) $)) (-15 -2650 ((-83) $)) (-15 -3931 ((-689) $)) (-15 -3941 ($ (-1 |#1| |#1|) $)))) (-956) (-580 (-1081))) (T -50)) -((-3159 (*1 *2 *1) (-12 (-4 *2 (-956)) (-5 *1 (-50 *2 *3)) (-14 *3 (-580 (-1081))))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-956)) (-14 *3 (-580 (-1081))))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-956)) (-14 *3 (-580 (-1081))))) (-3660 (*1 *2 *1 *1) (-12 (-4 *2 (-956)) (-5 *1 (-50 *2 *3)) (-14 *3 (-580 (-1081))))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) (-14 *4 (-580 (-1081))))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) (-14 *4 (-580 (-1081))))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) (-14 *4 (-580 (-1081))))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) (-14 *4 (-580 (-1081))))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) (-14 *4 (-580 (-1081))))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-50 *3 *4)) (-14 *4 (-580 (-1081)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1240 (((-691) $) 8 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1241 (((-1009) $) 10 T ELT)) (-3929 (((-767) $) 15 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1242 (($ (-1009) (-691)) 16 T ELT)) (-3042 (((-83) $ $) 12 T ELT))) -(((-51) (-13 (-1007) (-10 -8 (-15 -1242 ($ (-1009) (-691))) (-15 -1241 ((-1009) $)) (-15 -1240 ((-691) $))))) (T -51)) -((-1242 (*1 *1 *2 *3) (-12 (-5 *2 (-1009)) (-5 *3 (-691)) (-5 *1 (-51)))) (-1241 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-51)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-691)) (-5 *1 (-51))))) -((-2650 (((-83) (-51)) 18 T ELT)) (-3142 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3141 ((|#1| (-51)) 21 T ELT)) (-3929 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3929 ((-51) |#1|)) (-15 -3142 ((-3 |#1| "failed") (-51))) (-15 -2650 ((-83) (-51))) (-15 -3141 (|#1| (-51)))) (-1120)) (T -52)) -((-3141 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1120)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1120)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1120)))) (-3929 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1120))))) -((-2531 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2531 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-956) (-587 |#1|) (-756 |#1|)) (T -53)) -((-2531 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-587 *5)) (-4 *5 (-956)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-756 *5))))) -((-1244 ((|#3| |#3| (-580 (-1081))) 44 T ELT)) (-1243 ((|#3| (-580 (-981 |#1| |#2| |#3|)) |#3| (-825)) 32 T ELT) ((|#3| (-580 (-981 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1243 (|#3| (-580 (-981 |#1| |#2| |#3|)) |#3|)) (-15 -1243 (|#3| (-580 (-981 |#1| |#2| |#3|)) |#3| (-825))) (-15 -1244 (|#3| |#3| (-580 (-1081))))) (-1007) (-13 (-956) (-791 |#1|) (-550 (-795 |#1|))) (-13 (-359 |#2|) (-791 |#1|) (-550 (-795 |#1|)))) (T -54)) -((-1244 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) (-1243 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-580 (-981 *5 *6 *2))) (-5 *4 (-825)) (-4 *5 (-1007)) (-4 *6 (-13 (-956) (-791 *5) (-550 (-795 *5)))) (-4 *2 (-13 (-359 *6) (-791 *5) (-550 (-795 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1243 (*1 *2 *3 *2) (-12 (-5 *3 (-580 (-981 *4 *5 *2))) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 13 T ELT)) (-3142 (((-3 (-689) "failed") $) 31 T ELT)) (-3141 (((-689) $) NIL T ELT)) (-2398 (((-83) $) 15 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) 17 T ELT)) (-3929 (((-767) $) 22 T ELT) (($ (-689)) 28 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1245 (($) 10 T CONST)) (-3042 (((-83) $ $) 19 T ELT))) -(((-55) (-13 (-1007) (-945 (-689)) (-10 -8 (-15 -1245 ($) -3935) (-15 -3173 ((-83) $)) (-15 -2398 ((-83) $))))) (T -55)) -((-1245 (*1 *1) (-5 *1 (-55))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55))))) -((-1247 (($ $ (-480) |#3|) 60 T ELT)) (-1246 (($ $ (-480) |#4|) 64 T ELT)) (-3097 ((|#3| $ (-480)) 73 T ELT)) (-2875 (((-580 |#2|) $) 41 T ELT)) (-3230 (((-83) |#2| $) 68 T ELT)) (-1938 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2187 (($ $ |#2|) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3783 ((|#2| $ (-480) (-480)) NIL T ELT) ((|#2| $ (-480) (-480) |#2|) 29 T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 35 T ELT) (((-689) |#2| $) 70 T ELT)) (-3383 (($ $) 45 T ELT)) (-3096 ((|#4| $ (-480)) 76 T ELT)) (-3929 (((-767) $) 82 T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 20 T ELT)) (-3042 (((-83) $ $) 67 T ELT)) (-3940 (((-689) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3941 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1938 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1246 (|#1| |#1| (-480) |#4|)) (-15 -1247 (|#1| |#1| (-480) |#3|)) (-15 -2875 ((-580 |#2|) |#1|)) (-15 -3096 (|#4| |#1| (-480))) (-15 -3097 (|#3| |#1| (-480))) (-15 -3783 (|#2| |#1| (-480) (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480) (-480))) (-15 -2187 (|#1| |#1| |#2|)) (-15 -3230 ((-83) |#2| |#1|)) (-15 -1935 ((-689) |#2| |#1|)) (-15 -1935 ((-689) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 ((-689) |#1|)) (-15 -3383 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1120) (-319 |#2|) (-319 |#2|)) (T -56)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) 48 T ELT)) (-1247 (($ $ (-480) |#2|) 46 T ELT)) (-1246 (($ $ (-480) |#3|) 45 T ELT)) (-3707 (($) 7 T CONST)) (-3097 ((|#2| $ (-480)) 50 T ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) 47 T ELT)) (-3098 ((|#1| $ (-480) (-480)) 52 T ELT)) (-2875 (((-580 |#1|) $) 30 T ELT)) (-3100 (((-689) $) 55 T ELT)) (-3597 (($ (-689) (-689) |#1|) 61 T ELT)) (-3099 (((-689) $) 54 T ELT)) (-3104 (((-480) $) 59 T ELT)) (-3102 (((-480) $) 57 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3103 (((-480) $) 58 T ELT)) (-3101 (((-480) $) 56 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) 60 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) (-480)) 53 T ELT) ((|#1| $ (-480) (-480) |#1|) 51 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3096 ((|#3| $ (-480)) 49 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-57 |#1| |#2| |#3|) (-111) (-1120) (-319 |t#1|) (-319 |t#1|)) (T -57)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3597 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-689)) (-4 *3 (-1120)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-2187 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-480)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-480)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-480)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-480)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-689)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-689)))) (-3783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-1120)))) (-3098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-1120)))) (-3783 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) (-4 *5 (-319 *2)))) (-3097 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) (-4 *2 (-319 *4)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) (-4 *2 (-319 *4)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-580 *3)))) (-3771 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) (-4 *5 (-319 *2)))) (-1565 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) (-4 *5 (-319 *2)))) (-1247 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-480)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1120)) (-4 *3 (-319 *4)) (-4 *5 (-319 *4)))) (-1246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-480)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) (-4 *3 (-319 *4)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3941 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3))))) -(-13 (-424 |t#1|) (-10 -8 (-6 -3979) (-6 -3978) (-15 -3597 ($ (-689) (-689) |t#1|)) (-15 -2187 ($ $ |t#1|)) (-15 -3104 ((-480) $)) (-15 -3103 ((-480) $)) (-15 -3102 ((-480) $)) (-15 -3101 ((-480) $)) (-15 -3100 ((-689) $)) (-15 -3099 ((-689) $)) (-15 -3783 (|t#1| $ (-480) (-480))) (-15 -3098 (|t#1| $ (-480) (-480))) (-15 -3783 (|t#1| $ (-480) (-480) |t#1|)) (-15 -3097 (|t#2| $ (-480))) (-15 -3096 (|t#3| $ (-480))) (-15 -2875 ((-580 |t#1|) $)) (-15 -3771 (|t#1| $ (-480) (-480) |t#1|)) (-15 -1565 (|t#1| $ (-480) (-480) |t#1|)) (-15 -1247 ($ $ (-480) |t#2|)) (-15 -1246 ($ $ (-480) |t#3|)) (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (-15 -1938 ($ (-1 |t#1| |t#1|) $)) (-15 -3941 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3941 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1248 (($ (-580 |#1|)) 11 T ELT) (($ (-689) |#1|) 14 T ELT)) (-3597 (($ (-689) |#1|) 13 T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 10 T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1248 ($ (-580 |#1|))) (-15 -1248 ($ (-689) |#1|)))) (-1120)) (T -58)) -((-1248 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-58 *3)))) (-1248 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-58 *3)) (-4 *3 (-1120))))) -((-3824 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3825 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3941 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3824 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3825 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3941 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1120) (-1120)) (T -59)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-59 *5 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-1247 (($ $ (-480) (-58 |#1|)) NIL T ELT)) (-1246 (($ $ (-480) (-58 |#1|)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3097 (((-58 |#1|) $ (-480)) NIL T ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-3098 ((|#1| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3100 (((-689) $) NIL T ELT)) (-3597 (($ (-689) (-689) |#1|) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) (-480)) NIL T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3096 (((-58 |#1|) $ (-480)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3979))) (-1120)) (T -60)) -NIL -((-1250 (((-1170 (-627 |#1|)) (-627 |#1|)) 61 T ELT)) (-1249 (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 (-580 (-825))))) |#2| (-825)) 49 T ELT)) (-1251 (((-2 (|:| |minor| (-580 (-825))) (|:| -3251 |#2|) (|:| |minors| (-580 (-580 (-825)))) (|:| |ops| (-580 |#2|))) |#2| (-825)) 72 (|has| |#1| (-309)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1249 ((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 (-580 (-825))))) |#2| (-825))) (-15 -1250 ((-1170 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-309)) (-15 -1251 ((-2 (|:| |minor| (-580 (-825))) (|:| -3251 |#2|) (|:| |minors| (-580 (-580 (-825)))) (|:| |ops| (-580 |#2|))) |#2| (-825))) |%noBranch|)) (-491) (-597 |#1|)) (T -61)) -((-1251 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *5 (-491)) (-5 *2 (-2 (|:| |minor| (-580 (-825))) (|:| -3251 *3) (|:| |minors| (-580 (-580 (-825)))) (|:| |ops| (-580 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-825)) (-4 *3 (-597 *5)))) (-1250 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-1170 (-627 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-627 *4)) (-4 *5 (-597 *4)))) (-1249 (*1 *2 *3 *4) (-12 (-4 *5 (-491)) (-5 *2 (-2 (|:| |mat| (-627 *5)) (|:| |vec| (-1170 (-580 (-825)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-825)) (-4 *3 (-597 *5))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3307 ((|#1| $) 42 T ELT)) (-3707 (($) NIL T CONST)) (-3309 ((|#1| |#1| $) 37 T ELT)) (-3308 ((|#1| $) 35 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) NIL T ELT)) (-3592 (($ |#1| $) 38 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 36 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 20 T ELT)) (-3548 (($) 46 T ELT)) (-3306 (((-689) $) 33 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 19 T ELT)) (-3929 (((-767) $) 32 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) NIL T ELT)) (-1252 (($ (-580 |#1|)) 44 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 17 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 14 (|has| $ (-6 -3978)) ELT))) -(((-62 |#1|) (-13 (-1026 |#1|) (-10 -8 (-15 -1252 ($ (-580 |#1|))))) (-1007)) (T -62)) -((-1252 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-62 *3))))) -((-3929 (((-767) $) 13 T ELT) (($ (-1086)) 9 T ELT) (((-1086) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3929 ((-1086) |#1|)) (-15 -3929 (|#1| (-1086))) (-15 -3929 ((-767) |#1|))) (-64)) (T -63)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-1086)) 20 T ELT) (((-1086) $) 19 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-64) (-111)) (T -64)) -NIL -(-13 (-1007) (-425 (-1086))) -(((-72) . T) ((-552 (-1086)) . T) ((-549 (-767)) . T) ((-549 (-1086)) . T) ((-425 (-1086)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3471 (($ $) 10 T ELT)) (-3472 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3472 (|#1| |#1|)) (-15 -3471 (|#1| |#1|))) (-66)) (T -65)) -NIL -((-3469 (($ $) 11 T ELT)) (-3467 (($ $) 10 T ELT)) (-3471 (($ $) 9 T ELT)) (-3472 (($ $) 8 T ELT)) (-3470 (($ $) 7 T ELT)) (-3468 (($ $) 6 T ELT))) -(((-66) (-111)) (T -66)) -((-3469 (*1 *1 *1) (-4 *1 (-66))) (-3467 (*1 *1 *1) (-4 *1 (-66))) (-3471 (*1 *1 *1) (-4 *1 (-66))) (-3472 (*1 *1 *1) (-4 *1 (-66))) (-3470 (*1 *1 *1) (-4 *1 (-66))) (-3468 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3468 ($ $)) (-15 -3470 ($ $)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3467 ($ $)) (-15 -3469 ($ $)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3525 (((-1040) $) 11 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 17 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-67) (-13 (-989) (-10 -8 (-15 -3525 ((-1040) $))))) (T -67)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-67))))) -NIL -(((-68) (-111)) (T -68)) -NIL -(-13 (-10 -7 (-6 -3978) (-6 (-3980 "*")) (-6 -3979) (-6 -3975) (-6 -3973) (-6 -3972) (-6 -3971) (-6 -3976) (-6 -3970) (-6 -3969) (-6 -3968) (-6 -3967) (-6 -3966) (-6 -3974) (-6 -3977) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3965))) -((-2554 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1253 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-480))) 24 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 16 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#1| $ |#1|) 13 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 8 T CONST)) (-3042 (((-83) $ $) 10 T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) 30 T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-408) (-239 |#1| |#1|) (-10 -8 (-15 -1253 ($ (-1 |#1| |#1|))) (-15 -1253 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1253 ($ (-1 |#1| |#1| (-480)))))) (-956)) (T -69)) -((-1253 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-69 *3)))) (-1253 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-69 *3)))) (-1253 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-480))) (-4 *3 (-956)) (-5 *1 (-69 *3))))) -((-1254 (((-343 |#2|) |#2| (-580 |#2|)) 10 T ELT) (((-343 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1254 ((-343 |#2|) |#2| |#2|)) (-15 -1254 ((-343 |#2|) |#2| (-580 |#2|)))) (-13 (-387) (-118)) (-1146 |#1|)) (T -70)) -((-1254 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-13 (-387) (-118))) (-5 *2 (-343 *3)) (-5 *1 (-70 *5 *3)))) (-1254 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-387) (-118))) (-5 *2 (-343 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) 13 T ELT)) (-1255 (((-83) $ $) 14 T ELT)) (-3042 (((-83) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1255 ((-83) |#1| |#1|)) (-15 -2554 ((-83) |#1| |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-72) (-111)) (T -72)) -((-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-2554 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-1255 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) -(-13 (-1120) (-10 -8 (-15 -3042 ((-83) $ $)) (-15 -2554 ((-83) $ $)) (-15 -1255 ((-83) $ $)))) -(((-13) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) NIL T ELT)) (-3011 ((|#1| $ |#1|) 24 (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) NIL (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) NIL (|has| $ (-6 -3979)) ELT)) (-1258 (($ $ (-580 |#1|)) 30 T ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3122 (($ $) 12 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1291 (($ $ |#1| $) 32 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1257 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1256 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-580 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3123 (($ $) 11 T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) 13 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 9 T ELT)) (-3548 (($) 31 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1259 (($ (-689) |#1|) 33 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-73 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3978) (-6 -3979) (-15 -1259 ($ (-689) |#1|)) (-15 -1258 ($ $ (-580 |#1|))) (-15 -1257 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1257 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1256 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1256 ($ $ |#1| (-1 (-580 |#1|) |#1| |#1| |#1|))))) (-1007)) (T -73)) -((-1259 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-73 *3)) (-4 *3 (-1007)))) (-1258 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-73 *3)))) (-1257 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1007)))) (-1257 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-73 *3)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1007)) (-5 *1 (-73 *2)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-580 *2) *2 *2 *2)) (-4 *2 (-1007)) (-5 *1 (-73 *2))))) -((-1260 ((|#3| |#2| |#2|) 34 T ELT)) (-1262 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3980 #1="*"))) ELT)) (-1261 ((|#3| |#2| |#2|) 36 T ELT)) (-1263 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3980 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1260 (|#3| |#2| |#2|)) (-15 -1261 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3980 "*"))) (PROGN (-15 -1262 (|#1| |#2| |#2|)) (-15 -1263 (|#1| |#2|))) |%noBranch|)) (-956) (-1146 |#1|) (-624 |#1| |#4| |#5|) (-319 |#1|) (-319 |#1|)) (T -74)) -((-1263 (*1 *2 *3) (-12 (|has| *2 (-6 (-3980 #1="*"))) (-4 *5 (-319 *2)) (-4 *6 (-319 *2)) (-4 *2 (-956)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1146 *2)) (-4 *4 (-624 *2 *5 *6)))) (-1262 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3980 #1#))) (-4 *5 (-319 *2)) (-4 *6 (-319 *2)) (-4 *2 (-956)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1146 *2)) (-4 *4 (-624 *2 *5 *6)))) (-1261 (*1 *2 *3 *3) (-12 (-4 *4 (-956)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1146 *4)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)))) (-1260 (*1 *2 *3 *3) (-12 (-4 *4 (-956)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1146 *4)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4))))) -((-1266 (($ (-580 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1266 (|#1| (-580 |#2|)))) (-76 |#2|) (-1120)) (T -75)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3707 (($) 7 T CONST)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-76 |#1|) (-111) (-1120)) (T -76)) -((-1266 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-76 *3)))) (-1265 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120)))) (-3592 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120)))) (-1264 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120))))) -(-13 (-424 |t#1|) (-10 -8 (-6 -3979) (-15 -1266 ($ (-580 |t#1|))) (-15 -1265 (|t#1| $)) (-15 -3592 ($ |t#1| $)) (-15 -1264 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-480) $) NIL (|has| (-480) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-480) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-3141 (((-480) $) NIL T ELT) (((-1081) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-480) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-480) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-480) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-480) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| (-480) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-3941 (($ (-1 (-480) (-480)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-480) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-480) (-255)) ELT) (((-345 (-480)) $) NIL T ELT)) (-3115 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-480)) (-580 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-480) (-480)) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-246 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-246 (-480)))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-1081)) (-580 (-480))) NIL (|has| (-480) (-449 (-1081) (-480))) ELT) (($ $ (-1081) (-480)) NIL (|has| (-480) (-449 (-1081) (-480))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-480)) NIL (|has| (-480) (-239 (-480) (-480))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-480) $) NIL T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-480) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-480) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-480) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-480) (-928)) ELT) (((-177) $) NIL (|has| (-480) (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-480) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 8 T ELT) (($ (-480)) NIL T ELT) (($ (-1081)) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL T ELT) (((-912 2) $) 10 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-480) (-816))) (|has| (-480) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-2017 (($ (-345 (-480))) 9 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| (-480) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3932 (($ $ $) NIL T ELT) (($ (-480) (-480)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ (-480)) NIL T ELT))) -(((-77) (-13 (-899 (-480)) (-549 (-345 (-480))) (-549 (-912 2)) (-10 -8 (-15 -3113 ((-345 (-480)) $)) (-15 -2017 ($ (-345 (-480))))))) (T -77)) -((-3113 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-77)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-77))))) -((-1277 (((-580 (-871)) $) 14 T ELT)) (-3525 (((-441) $) 12 T ELT)) (-3929 (((-767) $) 21 T ELT)) (-1267 (($ (-441) (-580 (-871))) 16 T ELT))) -(((-78) (-13 (-549 (-767)) (-10 -8 (-15 -3525 ((-441) $)) (-15 -1277 ((-580 (-871)) $)) (-15 -1267 ($ (-441) (-580 (-871))))))) (T -78)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-78)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-580 (-871))) (-5 *1 (-78)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-871))) (-5 *1 (-78))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3305 (($ $ $) NIL T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) NIL (|has| (-83) (-751)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1719 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-751))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) NIL (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3771 (((-83) $ (-1137 (-480)) (-83)) NIL (|has| $ (-6 -3979)) ELT) (((-83) $ (-480) (-83)) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-3389 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-3825 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-1565 (((-83) $ (-480) (-83)) NIL (|has| $ (-6 -3979)) ELT)) (-3098 (((-83) $ (-480)) NIL T ELT)) (-3402 (((-480) (-83) $ (-480)) NIL (|has| (-83) (-1007)) ELT) (((-480) (-83) $) NIL (|has| (-83) (-1007)) ELT) (((-480) (-1 (-83) (-83)) $) NIL T ELT)) (-2875 (((-580 (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2546 (($ $) NIL T ELT)) (-1289 (($ $ $) NIL T ELT)) (-3597 (($ (-689) (-83)) 10 T ELT)) (-1290 (($ $ $) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL T ELT)) (-3501 (($ $ $) NIL (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2594 (((-580 (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL T ELT)) (-1938 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2292 (($ $ $ (-480)) NIL T ELT) (($ (-83) $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-83) $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2187 (($ $ (-83)) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-83)) (-580 (-83))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-246 (-83))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-580 (-246 (-83)))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-2193 (((-580 (-83)) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 (($ $ (-1137 (-480))) NIL T ELT) (((-83) $ (-480)) NIL T ELT) (((-83) $ (-480) (-83)) NIL T ELT)) (-2293 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-1935 (((-689) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT) (((-689) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-83) (-550 (-469))) ELT)) (-3513 (($ (-580 (-83))) NIL T ELT)) (-3785 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1758 (($ (-689) (-83)) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-79) (-13 (-94) (-10 -8 (-15 -1758 ($ (-689) (-83)))))) (T -79)) -((-1758 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-83)) (-5 *1 (-79))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-80 |#1| |#2|) (-111) (-956) (-956)) (T -80)) -NIL -(-13 (-587 |t#1|) (-963 |t#2|) (-10 -7 (-6 -3973) (-6 -3972))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-958 |#2|) . T) ((-963 |#2|) . T) ((-1007) . T) ((-1120) . T)) -((-2547 (($ $ $) 12 T ELT)) (-2546 (($ $) 8 T ELT)) (-2548 (($ $ $) 10 T ELT))) -(((-81 |#1|) (-10 -7 (-15 -2547 (|#1| |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2546 (|#1| |#1|))) (-82)) (T -81)) -NIL -((-2301 (($ $) 8 T ELT)) (-2547 (($ $ $) 9 T ELT)) (-2546 (($ $) 11 T ELT)) (-2548 (($ $ $) 10 T ELT)) (-2299 (($ $ $) 6 T ELT)) (-2300 (($ $ $) 7 T ELT))) -(((-82) (-111)) (T -82)) -((-2546 (*1 *1 *1) (-4 *1 (-82))) (-2548 (*1 *1 *1 *1) (-4 *1 (-82))) (-2547 (*1 *1 *1 *1) (-4 *1 (-82)))) -(-13 (-601) (-10 -8 (-15 -2546 ($ $)) (-15 -2548 ($ $ $)) (-15 -2547 ($ $ $)))) -(((-13) . T) ((-601) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 9 T ELT)) (-3305 (($ $ $) 14 T ELT)) (-2841 (($) 6 T CONST)) (-3121 (((-689)) 23 T ELT)) (-2980 (($) 31 T ELT)) (-2547 (($ $ $) 12 T ELT)) (-2546 (($ $) 8 T ELT)) (-1289 (($ $ $) 15 T ELT)) (-1290 (($ $ $) 16 T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) 29 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 27 T ELT)) (-2839 (($ $ $) 19 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2840 (($) 7 T CONST)) (-2838 (($ $ $) 20 T ELT)) (-3955 (((-469) $) 33 T ELT)) (-3929 (((-767) $) 35 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2548 (($ $ $) 10 T ELT)) (-2299 (($ $ $) 13 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 18 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 21 T ELT)) (-2300 (($ $ $) 11 T ELT))) -(((-83) (-13 (-747) (-875) (-550 (-469)) (-10 -8 (-15 -3305 ($ $ $)) (-15 -1290 ($ $ $)) (-15 -1289 ($ $ $))))) (T -83)) -((-3305 (*1 *1 *1 *1) (-5 *1 (-83))) (-1290 (*1 *1 *1 *1) (-5 *1 (-83))) (-1289 (*1 *1 *1 *1) (-5 *1 (-83)))) -((-2554 (((-83) $ $) NIL T ELT)) (-1511 (((-689) $) 92 T ELT) (($ $ (-689)) 38 T ELT)) (-1275 (((-83) $) 42 T ELT)) (-1269 (($ $ (-1064) (-691)) 59 T ELT) (($ $ (-441) (-691)) 34 T ELT)) (-1268 (($ $ (-45 (-1064) (-691))) 16 T ELT)) (-2827 (((-3 (-691) "failed") $ (-1064)) 27 T ELT) (((-629 (-691)) $ (-441)) 33 T ELT)) (-1277 (((-45 (-1064) (-691)) $) 15 T ELT)) (-3578 (($ (-1081)) 20 T ELT) (($ (-1081) (-689)) 23 T ELT) (($ (-1081) (-55)) 24 T ELT)) (-1276 (((-83) $) 40 T ELT)) (-1274 (((-83) $) 44 T ELT)) (-3525 (((-1081) $) 8 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2619 (((-83) $ (-1081)) 11 T ELT)) (-2116 (($ $ (-1 (-469) (-580 (-469)))) 65 T ELT) (((-629 (-1 (-469) (-580 (-469)))) $) 69 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1271 (((-83) $ (-441)) 37 T ELT)) (-1273 (($ $ (-1 (-83) $ $)) 46 T ELT)) (-3600 (((-629 (-1 (-767) (-580 (-767)))) $) 67 T ELT) (($ $ (-1 (-767) (-580 (-767)))) 52 T ELT) (($ $ (-1 (-767) (-767))) 54 T ELT)) (-1270 (($ $ (-1064)) 56 T ELT) (($ $ (-441)) 57 T ELT)) (-3383 (($ $) 75 T ELT)) (-1272 (($ $ (-1 (-83) $ $)) 47 T ELT)) (-3929 (((-767) $) 61 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2778 (($ $ (-441)) 35 T ELT)) (-2507 (((-55) $) 70 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 88 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 104 T ELT))) -(((-84) (-13 (-751) (-742 (-1081)) (-10 -8 (-15 -1277 ((-45 (-1064) (-691)) $)) (-15 -3383 ($ $)) (-15 -3578 ($ (-1081))) (-15 -3578 ($ (-1081) (-689))) (-15 -3578 ($ (-1081) (-55))) (-15 -1276 ((-83) $)) (-15 -1275 ((-83) $)) (-15 -1274 ((-83) $)) (-15 -1511 ((-689) $)) (-15 -1511 ($ $ (-689))) (-15 -1273 ($ $ (-1 (-83) $ $))) (-15 -1272 ($ $ (-1 (-83) $ $))) (-15 -3600 ((-629 (-1 (-767) (-580 (-767)))) $)) (-15 -3600 ($ $ (-1 (-767) (-580 (-767))))) (-15 -3600 ($ $ (-1 (-767) (-767)))) (-15 -2116 ($ $ (-1 (-469) (-580 (-469))))) (-15 -2116 ((-629 (-1 (-469) (-580 (-469)))) $)) (-15 -1271 ((-83) $ (-441))) (-15 -2778 ($ $ (-441))) (-15 -1270 ($ $ (-1064))) (-15 -1270 ($ $ (-441))) (-15 -2827 ((-3 (-691) "failed") $ (-1064))) (-15 -2827 ((-629 (-691)) $ (-441))) (-15 -1269 ($ $ (-1064) (-691))) (-15 -1269 ($ $ (-441) (-691))) (-15 -1268 ($ $ (-45 (-1064) (-691))))))) (T -84)) -((-1277 (*1 *2 *1) (-12 (-5 *2 (-45 (-1064) (-691))) (-5 *1 (-84)))) (-3383 (*1 *1 *1) (-5 *1 (-84))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-84)))) (-3578 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *1 (-84)))) (-3578 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-55)) (-5 *1 (-84)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-84)))) (-1511 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-84)))) (-1273 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-1272 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-629 (-1 (-767) (-580 (-767))))) (-5 *1 (-84)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-767) (-580 (-767)))) (-5 *1 (-84)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-84)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-469) (-580 (-469)))) (-5 *1 (-84)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-629 (-1 (-469) (-580 (-469))))) (-5 *1 (-84)))) (-1271 (*1 *2 *1 *3) (-12 (-5 *3 (-441)) (-5 *2 (-83)) (-5 *1 (-84)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-84)))) (-1270 (*1 *1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-84)))) (-1270 (*1 *1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-84)))) (-2827 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1064)) (-5 *2 (-691)) (-5 *1 (-84)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-691))) (-5 *1 (-84)))) (-1269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1064)) (-5 *3 (-691)) (-5 *1 (-84)))) (-1269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-691)) (-5 *1 (-84)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1064) (-691))) (-5 *1 (-84))))) -((-2504 (((-3 (-1 |#1| (-580 |#1|)) #1="failed") (-84)) 23 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 13 T ELT) (((-84) (-84) (-1 |#1| (-580 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-84) (-580 |#1|)) 25 T ELT)) (-1278 (((-3 (-580 (-1 |#1| (-580 |#1|))) #1#) (-84)) 29 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 33 T ELT) (((-84) (-84) (-580 (-1 |#1| (-580 |#1|)))) 30 T ELT)) (-1279 (((-84) |#1|) 63 T ELT)) (-1280 (((-3 |#1| #1#) (-84)) 58 T ELT))) -(((-85 |#1|) (-10 -7 (-15 -2504 ((-3 |#1| #1="failed") (-84) (-580 |#1|))) (-15 -2504 ((-84) (-84) (-1 |#1| (-580 |#1|)))) (-15 -2504 ((-84) (-84) (-1 |#1| |#1|))) (-15 -2504 ((-3 (-1 |#1| (-580 |#1|)) #1#) (-84))) (-15 -1278 ((-84) (-84) (-580 (-1 |#1| (-580 |#1|))))) (-15 -1278 ((-84) (-84) (-1 |#1| |#1|))) (-15 -1278 ((-3 (-580 (-1 |#1| (-580 |#1|))) #1#) (-84))) (-15 -1279 ((-84) |#1|)) (-15 -1280 ((-3 |#1| #1#) (-84)))) (-1007)) (T -85)) -((-1280 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1007)))) (-1279 (*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1007)))) (-1278 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-580 (-1 *4 (-580 *4)))) (-5 *1 (-85 *4)) (-4 *4 (-1007)))) (-1278 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) (-1278 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 (-1 *4 (-580 *4)))) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) (-2504 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-580 *4))) (-5 *1 (-85 *4)) (-4 *4 (-1007)))) (-2504 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) (-2504 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-580 *4))) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) (-2504 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-580 *2)) (-5 *1 (-85 *2)) (-4 *2 (-1007))))) -((-1281 (((-480) |#2|) 41 T ELT))) -(((-86 |#1| |#2|) (-10 -7 (-15 -1281 ((-480) |#2|))) (-13 (-309) (-945 (-345 (-480)))) (-1146 |#1|)) (T -86)) -((-1281 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-945 (-345 *2)))) (-5 *2 (-480)) (-5 *1 (-86 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $ (-480)) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2597 (($ (-1076 (-480)) (-480)) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2598 (($ $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3755 (((-689) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2600 (((-480)) NIL T ELT)) (-2599 (((-480) $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3752 (($ $ (-480)) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2601 (((-1060 (-480)) $) NIL T ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-480) $ (-480)) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-87 |#1|) (-774 |#1|) (-480)) (T -87)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-87 |#1|) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-87 |#1|) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-87 |#1|) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-87 |#1|) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-87 |#1|) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-87 |#1|) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-87 |#1|) (-945 (-480))) ELT)) (-3141 (((-87 |#1|) $) NIL T ELT) (((-1081) $) NIL (|has| (-87 |#1|) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-87 |#1|) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-87 |#1|) (-945 (-480))) ELT)) (-3713 (($ $) NIL T ELT) (($ (-480) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-87 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-87 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-87 |#1|))) (|:| |vec| (-1170 (-87 |#1|)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-87 |#1|)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-87 |#1|) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-87 |#1|) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-87 |#1|) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-87 |#1|) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-87 |#1|) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| (-87 |#1|) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-87 |#1|) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-3941 (($ (-1 (-87 |#1|) (-87 |#1|)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-87 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-87 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-87 |#1|))) (|:| |vec| (-1170 (-87 |#1|)))) (-1170 $) $) NIL T ELT) (((-627 (-87 |#1|)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-87 |#1|) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-87 |#1|) (-255)) ELT)) (-3115 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-87 |#1|) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-87 |#1|) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-87 |#1|)) (-580 (-87 |#1|))) NIL (|has| (-87 |#1|) (-257 (-87 |#1|))) ELT) (($ $ (-87 |#1|) (-87 |#1|)) NIL (|has| (-87 |#1|) (-257 (-87 |#1|))) ELT) (($ $ (-246 (-87 |#1|))) NIL (|has| (-87 |#1|) (-257 (-87 |#1|))) ELT) (($ $ (-580 (-246 (-87 |#1|)))) NIL (|has| (-87 |#1|) (-257 (-87 |#1|))) ELT) (($ $ (-580 (-1081)) (-580 (-87 |#1|))) NIL (|has| (-87 |#1|) (-449 (-1081) (-87 |#1|))) ELT) (($ $ (-1081) (-87 |#1|)) NIL (|has| (-87 |#1|) (-449 (-1081) (-87 |#1|))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-87 |#1|)) NIL (|has| (-87 |#1|) (-239 (-87 |#1|) (-87 |#1|))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-87 |#1|) $) NIL T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-87 |#1|) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-87 |#1|) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-87 |#1|) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-87 |#1|) (-928)) ELT) (((-177) $) NIL (|has| (-87 |#1|) (-928)) ELT)) (-2602 (((-146 (-345 (-480))) $) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-87 |#1|)) NIL T ELT) (($ (-1081)) NIL (|has| (-87 |#1|) (-945 (-1081))) ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-816))) (|has| (-87 |#1|) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-345 (-480)) $ (-480)) NIL T ELT)) (-3366 (($ $) NIL (|has| (-87 |#1|) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-87 |#1|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-87 |#1|) (-751)) ELT)) (-3932 (($ $ $) NIL T ELT) (($ (-87 |#1|) (-87 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-87 |#1|) $) NIL T ELT) (($ $ (-87 |#1|)) NIL T ELT))) -(((-88 |#1|) (-13 (-899 (-87 |#1|)) (-10 -8 (-15 -3753 ((-345 (-480)) $ (-480))) (-15 -2602 ((-146 (-345 (-480))) $)) (-15 -3713 ($ $)) (-15 -3713 ($ (-480) $)))) (-480)) (T -88)) -((-3753 (*1 *2 *1 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-480)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-88 *3)) (-14 *3 (-480)))) (-3713 (*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-480)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-88 *3)) (-14 *3 *2)))) -((-3771 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3017 (((-580 $) $) 31 T ELT)) (-3013 (((-83) $ $) 36 T ELT)) (-3230 (((-83) |#2| $) 40 T ELT)) (-3016 (((-580 |#2|) $) 25 T ELT)) (-3510 (((-83) $) 18 T ELT)) (-3783 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3616 (((-83) $) 57 T ELT)) (-3929 (((-767) $) 47 T ELT)) (-3505 (((-580 $) $) 32 T ELT)) (-3042 (((-83) $ $) 38 T ELT)) (-3940 (((-689) $) 50 T ELT))) -(((-89 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3771 (|#1| |#1| #1="right" |#1|)) (-15 -3771 (|#1| |#1| #2="left" |#1|)) (-15 -3783 (|#1| |#1| #1#)) (-15 -3783 (|#1| |#1| #2#)) (-15 -3771 (|#2| |#1| #3="value" |#2|)) (-15 -3013 ((-83) |#1| |#1|)) (-15 -3016 ((-580 |#2|) |#1|)) (-15 -3616 ((-83) |#1|)) (-15 -3783 (|#2| |#1| #3#)) (-15 -3510 ((-83) |#1|)) (-15 -3017 ((-580 |#1|) |#1|)) (-15 -3505 ((-580 |#1|) |#1|)) (-15 -3230 ((-83) |#2| |#1|)) (-15 -3940 ((-689) |#1|))) (-90 |#2|) (-1120)) (T -89)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) 58 (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) 60 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3979)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-3122 (($ $) 63 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3123 (($ $) 65 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-90 |#1|) (-111) (-1120)) (T -90)) -((-3123 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1120)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1120)))) (-3122 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1120)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1120)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3979)) (-4 *1 (-90 *3)) (-4 *3 (-1120)))) (-1283 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-90 *2)) (-4 *2 (-1120)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3979)) (-4 *1 (-90 *3)) (-4 *3 (-1120)))) (-1282 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-90 *2)) (-4 *2 (-1120))))) -(-13 (-918 |t#1|) (-10 -8 (-15 -3123 ($ $)) (-15 -3783 ($ $ "left")) (-15 -3122 ($ $)) (-15 -3783 ($ $ "right")) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3771 ($ $ "left" $)) (-15 -1283 ($ $ $)) (-15 -3771 ($ $ "right" $)) (-15 -1282 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-1286 (((-83) |#1|) 29 T ELT)) (-1285 (((-689) (-689)) 28 T ELT) (((-689)) 27 T ELT)) (-1284 (((-83) |#1| (-83)) 30 T ELT) (((-83) |#1|) 31 T ELT))) -(((-91 |#1|) (-10 -7 (-15 -1284 ((-83) |#1|)) (-15 -1284 ((-83) |#1| (-83))) (-15 -1285 ((-689))) (-15 -1285 ((-689) (-689))) (-15 -1286 ((-83) |#1|))) (-1146 (-480))) (T -91)) -((-1286 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) (-1285 (*1 *2 *2) (-12 (-5 *2 (-689)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) (-1285 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) (-1284 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) (-1284 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480)))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 18 T ELT)) (-3401 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3011 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) 21 (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) 23 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3122 (($ $) 20 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1291 (($ $ |#1| $) 27 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3123 (($ $) 22 T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1287 (($ |#1| $) 28 T ELT)) (-3592 (($ |#1| $) 15 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 17 T ELT)) (-3548 (($) 11 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1288 (($ (-580 |#1|)) 16 T ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-92 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3979) (-6 -3978) (-15 -1288 ($ (-580 |#1|))) (-15 -3592 ($ |#1| $)) (-15 -1287 ($ |#1| $)) (-15 -3401 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-751)) (T -92)) -((-1288 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-92 *3)))) (-3592 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-751)))) (-1287 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-751)))) (-3401 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) (-5 *1 (-92 *3)) (-4 *3 (-751))))) -((-2301 (($ $) 13 T ELT)) (-2546 (($ $) 11 T ELT)) (-1289 (($ $ $) 23 T ELT)) (-1290 (($ $ $) 21 T ELT)) (-2299 (($ $ $) 19 T ELT)) (-2300 (($ $ $) 17 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1289 (|#1| |#1| |#1|)) (-15 -1290 (|#1| |#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2546 (|#1| |#1|))) (-94)) (T -93)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-2301 (($ $) 103 T ELT)) (-3305 (($ $ $) 31 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 66 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) 98 (|has| (-83) (-751)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) 92 T ELT)) (-1719 (($ $) 102 (-12 (|has| (-83) (-751)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-83) (-83)) $) 101 (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) 97 (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $) 91 T ELT)) (-3771 (((-83) $ (-1137 (-480)) (-83)) 88 (|has| $ (-6 -3979)) ELT) (((-83) $ (-480) (-83)) 54 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) (-83)) $) 71 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 38 T CONST)) (-2285 (($ $) 100 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 90 T ELT)) (-1342 (($ $) 68 (-12 (|has| (-83) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ (-1 (-83) (-83)) $) 72 (|has| $ (-6 -3978)) ELT) (($ (-83) $) 69 (-12 (|has| (-83) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3825 (((-83) (-1 (-83) (-83) (-83)) $) 74 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) 73 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) 70 (-12 (|has| (-83) (-1007)) (|has| $ (-6 -3978))) ELT)) (-1565 (((-83) $ (-480) (-83)) 53 (|has| $ (-6 -3979)) ELT)) (-3098 (((-83) $ (-480)) 55 T ELT)) (-3402 (((-480) (-83) $ (-480)) 95 (|has| (-83) (-1007)) ELT) (((-480) (-83) $) 94 (|has| (-83) (-1007)) ELT) (((-480) (-1 (-83) (-83)) $) 93 T ELT)) (-2875 (((-580 (-83)) $) 45 (|has| $ (-6 -3978)) ELT)) (-2547 (($ $ $) 108 T ELT)) (-2546 (($ $) 106 T ELT)) (-1289 (($ $ $) 32 T ELT)) (-3597 (($ (-689) (-83)) 78 T ELT)) (-1290 (($ $ $) 33 T ELT)) (-2188 (((-480) $) 63 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 23 T ELT)) (-3501 (($ $ $) 96 (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) 89 T ELT)) (-2594 (((-580 (-83)) $) 46 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-83) $) 48 (-12 (|has| (-83) (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 62 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 22 T ELT)) (-1938 (($ (-1 (-83) (-83)) $) 41 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-83) (-83) (-83)) $ $) 83 T ELT) (($ (-1 (-83) (-83)) $) 40 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2292 (($ $ $ (-480)) 87 T ELT) (($ (-83) $ (-480)) 86 T ELT)) (-2191 (((-580 (-480)) $) 60 T ELT)) (-2192 (((-83) (-480) $) 59 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-83) $) 64 (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-83) "failed") (-1 (-83) (-83)) $) 75 T ELT)) (-2187 (($ $ (-83)) 65 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) 43 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-83)) (-580 (-83))) 52 (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-83) (-83)) 51 (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-246 (-83))) 50 (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-580 (-246 (-83)))) 49 (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT)) (-1212 (((-83) $ $) 34 T ELT)) (-2190 (((-83) (-83) $) 61 (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-2193 (((-580 (-83)) $) 58 T ELT)) (-3386 (((-83) $) 37 T ELT)) (-3548 (($) 36 T ELT)) (-3783 (($ $ (-1137 (-480))) 77 T ELT) (((-83) $ (-480)) 57 T ELT) (((-83) $ (-480) (-83)) 56 T ELT)) (-2293 (($ $ (-1137 (-480))) 85 T ELT) (($ $ (-480)) 84 T ELT)) (-1935 (((-689) (-83) $) 47 (-12 (|has| (-83) (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) (-83)) $) 44 (|has| $ (-6 -3978)) ELT)) (-1720 (($ $ $ (-480)) 99 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 35 T ELT)) (-3955 (((-469) $) 67 (|has| (-83) (-550 (-469))) ELT)) (-3513 (($ (-580 (-83))) 76 T ELT)) (-3785 (($ (-580 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-83) $) 80 T ELT) (($ $ (-83)) 79 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-1937 (((-83) (-1 (-83) (-83)) $) 42 (|has| $ (-6 -3978)) ELT)) (-2548 (($ $ $) 107 T ELT)) (-2299 (($ $ $) 105 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-2300 (($ $ $) 104 T ELT)) (-3940 (((-689) $) 39 (|has| $ (-6 -3978)) ELT))) -(((-94) (-111)) (T -94)) -((-1290 (*1 *1 *1 *1) (-4 *1 (-94))) (-1289 (*1 *1 *1 *1) (-4 *1 (-94))) (-3305 (*1 *1 *1 *1) (-4 *1 (-94)))) -(-13 (-751) (-82) (-601) (-19 (-83)) (-10 -8 (-15 -1290 ($ $ $)) (-15 -1289 ($ $ $)) (-15 -3305 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-82) . T) ((-549 (-767)) . T) ((-122 (-83)) . T) ((-550 (-469)) |has| (-83) (-550 (-469))) ((-239 (-480) (-83)) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) (-83)) . T) ((-257 (-83)) -12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ((-319 (-83)) . T) ((-424 (-83)) . T) ((-535 (-480) (-83)) . T) ((-449 (-83) (-83)) -12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ((-13) . T) ((-590 (-83)) . T) ((-601) . T) ((-19 (-83)) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-1938 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3383 (($ $) 16 T ELT)) (-3940 (((-689) $) 25 T ELT))) -(((-95 |#1| |#2|) (-10 -7 (-15 -1938 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 ((-689) |#1|)) (-15 -3383 (|#1| |#1|))) (-96 |#2|) (-1007)) (T -95)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) 58 (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) 60 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-3122 (($ $) 63 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-1291 (($ $ |#1| $) 66 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3123 (($ $) 65 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-96 |#1|) (-111) (-1007)) (T -96)) -((-1291 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1007))))) -(-13 (-90 |t#1|) (-10 -8 (-6 -3979) (-6 -3978) (-15 -1291 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-90 |#1|) . T) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 18 T ELT)) (-3011 ((|#1| $ |#1|) 22 (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) 23 (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) 21 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3122 (($ $) 24 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1291 (($ $ |#1| $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3123 (($ $) NIL T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3592 (($ |#1| $) 15 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 17 T ELT)) (-3548 (($) 11 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 20 T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1292 (($ (-580 |#1|)) 16 T ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-97 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3979) (-15 -1292 ($ (-580 |#1|))) (-15 -3592 ($ |#1| $)))) (-751)) (T -97)) -((-1292 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-97 *3)))) (-3592 (*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-751))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 31 T ELT)) (-3011 ((|#1| $ |#1|) 33 (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) 37 (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) 35 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3122 (($ $) 24 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1291 (($ $ |#1| $) 17 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3123 (($ $) 23 T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) 26 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 21 T ELT)) (-3548 (($) 13 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1293 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 12 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-98 |#1|) (-13 (-96 |#1|) (-10 -8 (-15 -1293 ($ |#1|)) (-15 -1293 ($ $ |#1| $)))) (-1007)) (T -98)) -((-1293 (*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1007)))) (-1293 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 32 T ELT)) (-3121 (((-689)) 17 T ELT)) (-3707 (($) 9 T CONST)) (-2980 (($) 27 T ELT)) (-2517 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2843 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-1998 (((-825) $) 25 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 23 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1294 (($ (-689)) 8 T ELT)) (-3708 (($ $ $) 29 T ELT)) (-3709 (($ $ $) 28 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) 31 T ELT)) (-2552 (((-83) $ $) 14 T ELT)) (-2553 (((-83) $ $) 12 T ELT)) (-3042 (((-83) $ $) 10 T ELT)) (-2670 (((-83) $ $) 13 T ELT)) (-2671 (((-83) $ $) 11 T ELT)) (-2300 (($ $ $) 30 T ELT))) -(((-99) (-13 (-747) (-601) (-10 -8 (-15 -1294 ($ (-689))) (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935)))) (T -99)) -((-1294 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-99)))) (-3709 (*1 *1 *1 *1) (-5 *1 (-99))) (-3708 (*1 *1 *1 *1) (-5 *1 (-99))) (-3707 (*1 *1) (-5 *1 (-99)))) -((-689) (|%ilt| |#1| 256)) -((-2554 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) (-99) (-99)) $) NIL T ELT) (((-83) $) NIL (|has| (-99) (-751)) ELT)) (-1719 (($ (-1 (-83) (-99) (-99)) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-751))) ELT)) (-2895 (($ (-1 (-83) (-99) (-99)) $) NIL T ELT) (($ $) NIL (|has| (-99) (-751)) ELT)) (-3771 (((-99) $ (-480) (-99)) 26 (|has| $ (-6 -3979)) ELT) (((-99) $ (-1137 (-480)) (-99)) NIL (|has| $ (-6 -3979)) ELT)) (-1295 (((-689) $ (-689)) 35 T ELT)) (-3693 (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT)) (-3389 (($ (-99) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT) (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-99) (-1 (-99) (-99) (-99)) $ (-99) (-99)) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT) (((-99) (-1 (-99) (-99) (-99)) $ (-99)) NIL (|has| $ (-6 -3978)) ELT) (((-99) (-1 (-99) (-99) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 (((-99) $ (-480) (-99)) 25 (|has| $ (-6 -3979)) ELT)) (-3098 (((-99) $ (-480)) 20 T ELT)) (-3402 (((-480) (-1 (-83) (-99)) $) NIL T ELT) (((-480) (-99) $) NIL (|has| (-99) (-1007)) ELT) (((-480) (-99) $ (-480)) NIL (|has| (-99) (-1007)) ELT)) (-2875 (((-580 (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) (-99)) 14 T ELT)) (-2188 (((-480) $) 27 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| (-99) (-751)) ELT)) (-3501 (($ (-1 (-83) (-99) (-99)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-99) (-751)) ELT)) (-2594 (((-580 (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT)) (-2189 (((-480) $) 30 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-99) (-751)) ELT)) (-1938 (($ (-1 (-99) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-99) (-99)) $) NIL T ELT) (($ (-1 (-99) (-99) (-99)) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| (-99) (-1007)) ELT)) (-2292 (($ (-99) $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| (-99) (-1007)) ELT)) (-3784 (((-99) $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-99) "failed") (-1 (-83) (-99)) $) NIL T ELT)) (-2187 (($ $ (-99)) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-99)))) NIL (-12 (|has| (-99) (-257 (-99))) (|has| (-99) (-1007))) ELT) (($ $ (-246 (-99))) NIL (-12 (|has| (-99) (-257 (-99))) (|has| (-99) (-1007))) ELT) (($ $ (-99) (-99)) NIL (-12 (|has| (-99) (-257 (-99))) (|has| (-99) (-1007))) ELT) (($ $ (-580 (-99)) (-580 (-99))) NIL (-12 (|has| (-99) (-257 (-99))) (|has| (-99) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT)) (-2193 (((-580 (-99)) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 12 T ELT)) (-3783 (((-99) $ (-480) (-99)) NIL T ELT) (((-99) $ (-480)) 23 T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-99) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-99) (-550 (-469))) ELT)) (-3513 (($ (-580 (-99))) 41 T ELT)) (-3785 (($ $ (-99)) NIL T ELT) (($ (-99) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-864 (-99)) $) 36 T ELT) (((-1064) $) 38 T ELT) (((-767) $) NIL (|has| (-99) (-549 (-767))) ELT)) (-1296 (((-689) $) 18 T ELT)) (-1297 (($ (-689)) 8 T ELT)) (-1255 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-1937 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-99) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-99) (-751)) ELT)) (-3042 (((-83) $ $) 33 (|has| (-99) (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-99) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-99) (-751)) ELT)) (-3940 (((-689) $) 15 (|has| $ (-6 -3978)) ELT))) -(((-100) (-13 (-19 (-99)) (-549 (-864 (-99))) (-549 (-1064)) (-10 -8 (-15 -1297 ($ (-689))) (-15 -1296 ((-689) $)) (-15 -1295 ((-689) $ (-689))) (-6 -3978)))) (T -100)) -((-1297 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-100)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-100)))) (-1295 (*1 *2 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-100))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1298 (($) 6 T CONST)) (-1300 (($) 7 T CONST)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 14 T ELT)) (-1299 (($) 8 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 10 T ELT))) -(((-101) (-13 (-1007) (-10 -8 (-15 -1300 ($) -3935) (-15 -1299 ($) -3935) (-15 -1298 ($) -3935)))) (T -101)) -((-1300 (*1 *1) (-5 *1 (-101))) (-1299 (*1 *1) (-5 *1 (-101))) (-1298 (*1 *1) (-5 *1 (-101)))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT))) -(((-102) (-111)) (T -102)) -((-1301 (*1 *1 *1 *1) (|partial| -4 *1 (-102)))) -(-13 (-23) (-10 -8 (-15 -1301 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-1302 (((-1176) $ (-689)) 17 T ELT)) (-3402 (((-689) $) 18 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-103) (-111)) (T -103)) -((-3402 (*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-689)))) (-1302 (*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-689)) (-5 *2 (-1176))))) -(-13 (-1007) (-10 -8 (-15 -3402 ((-689) $)) (-15 -1302 ((-1176) $ (-689))))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-580 (-1040)) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-104) (-13 (-989) (-10 -8 (-15 -3218 ((-580 (-1040)) $))))) (T -104)) -((-3218 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-104))))) -((-2554 (((-83) $ $) 49 T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-689) #1="failed") $) 60 T ELT)) (-3141 (((-689) $) 58 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) 37 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1304 (((-83)) 61 T ELT)) (-1303 (((-83) (-83)) 63 T ELT)) (-2511 (((-83) $) 30 T ELT)) (-1305 (((-83) $) 57 T ELT)) (-3929 (((-767) $) 28 T ELT) (($ (-689)) 20 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 18 T CONST)) (-2652 (($) 19 T CONST)) (-1306 (($ (-689)) 21 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) 40 T ELT)) (-3042 (((-83) $ $) 32 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 35 T ELT)) (-3820 (((-3 $ #1#) $ $) 42 T ELT)) (-3822 (($ $ $) 38 T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-689) $) 48 T ELT) (($ (-825) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-105) (-13 (-751) (-23) (-660) (-945 (-689)) (-10 -8 (-6 (-3980 "*")) (-15 -3820 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1306 ($ (-689))) (-15 -2511 ((-83) $)) (-15 -1305 ((-83) $)) (-15 -1304 ((-83))) (-15 -1303 ((-83) (-83)))))) (T -105)) -((-3820 (*1 *1 *1 *1) (|partial| -5 *1 (-105))) (** (*1 *1 *1 *1) (-5 *1 (-105))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-105)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1304 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1303 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1307 (($ (-580 |#3|)) 63 T ELT)) (-3397 (($ $) 125 T ELT) (($ $ (-480) (-480)) 124 T ELT)) (-3707 (($) 20 T ELT)) (-3142 (((-3 |#3| "failed") $) 86 T ELT)) (-3141 ((|#3| $) NIL T ELT)) (-1311 (($ $ (-580 (-480))) 126 T ELT)) (-1308 (((-580 |#3|) $) 58 T ELT)) (-3094 (((-689) $) 68 T ELT)) (-3927 (($ $ $) 120 T ELT)) (-1309 (($) 67 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1310 (($) 19 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#3| $ (-480)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-480) (-480)) 73 T ELT) ((|#3| $ (-480) (-480) (-480)) 74 T ELT) ((|#3| $ (-480) (-480) (-480) (-480)) 75 T ELT) ((|#3| $ (-580 (-480))) 76 T ELT)) (-3931 (((-689) $) 69 T ELT)) (-1971 (($ $ (-480) $ (-480)) 121 T ELT) (($ $ (-480) (-480)) 123 T ELT)) (-3929 (((-767) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-195 |#2| |#3|)) 102 T ELT) (($ (-1047 |#2| |#3|)) 105 T ELT) (($ (-580 |#3|)) 77 T ELT) (($ (-580 $)) 83 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 96 T CONST)) (-2652 (($) 97 T CONST)) (-3042 (((-83) $ $) 107 T ELT)) (-3820 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3822 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-480)) 116 T ELT) (($ (-480) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-106 |#1| |#2| |#3|) (-13 (-400 |#3| (-689)) (-405 (-480) (-689)) (-239 (-480) |#3|) (-552 (-195 |#2| |#3|)) (-552 (-1047 |#2| |#3|)) (-552 (-580 |#3|)) (-552 (-580 $)) (-10 -8 (-15 -3094 ((-689) $)) (-15 -3783 (|#3| $)) (-15 -3783 (|#3| $ (-480) (-480))) (-15 -3783 (|#3| $ (-480) (-480) (-480))) (-15 -3783 (|#3| $ (-480) (-480) (-480) (-480))) (-15 -3783 (|#3| $ (-580 (-480)))) (-15 -3927 ($ $ $)) (-15 * ($ $ $)) (-15 -1971 ($ $ (-480) $ (-480))) (-15 -1971 ($ $ (-480) (-480))) (-15 -3397 ($ $)) (-15 -3397 ($ $ (-480) (-480))) (-15 -1311 ($ $ (-580 (-480)))) (-15 -1310 ($)) (-15 -1309 ($)) (-15 -1308 ((-580 |#3|) $)) (-15 -1307 ($ (-580 |#3|))) (-15 -3707 ($)))) (-480) (-689) (-144)) (T -106)) -((-3927 (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) (-14 *4 *2) (-4 *5 (-144)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-480)) (-14 *4 (-689)))) (-3783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-689)))) (-3783 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-689)))) (-3783 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-689)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-580 (-480))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 (-480)) (-14 *5 (-689)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) (-1971 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) (-4 *5 (-144)))) (-1971 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) (-4 *5 (-144)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) (-3397 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) (-4 *5 (-144)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) (-14 *4 (-689)) (-4 *5 (-144)))) (-1310 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) (-1309 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-580 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) (-14 *4 (-689)) (-4 *5 (-144)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-580 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) (-14 *4 (-689)))) (-3707 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144))))) -((-2401 (((-106 |#1| |#2| |#4|) (-580 |#4|) (-106 |#1| |#2| |#3|)) 14 T ELT)) (-3941 (((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)) 18 T ELT))) -(((-107 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2401 ((-106 |#1| |#2| |#4|) (-580 |#4|) (-106 |#1| |#2| |#3|))) (-15 -3941 ((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)))) (-480) (-689) (-144) (-144)) (T -107)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-480)) (-14 *6 (-689)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-480)) (-14 *6 (-689)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 (((-1040) $) 12 T ELT)) (-3512 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-108) (-13 (-989) (-10 -8 (-15 -3512 ((-1040) $)) (-15 -3511 ((-1040) $))))) (T -108)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-108)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-108))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1415 (((-159) $) 11 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-580 (-1040)) $) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-109) (-13 (-989) (-10 -8 (-15 -1415 ((-159) $)) (-15 -3218 ((-580 (-1040)) $))))) (T -109)) -((-1415 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-109))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1413 (((-580 (-769)) $) NIL T ELT)) (-3525 (((-441) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1415 (((-159) $) NIL T ELT)) (-2619 (((-83) $ (-441)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1414 (((-580 (-83)) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (((-155) $) 6 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2507 (((-55) $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-110) (-13 (-158) (-549 (-155)))) (T -110)) -NIL -((-1313 (((-580 (-156 (-110))) $) 13 T ELT)) (-1312 (((-580 (-156 (-110))) $) 14 T ELT)) (-1314 (((-580 (-744)) $) 10 T ELT)) (-1471 (((-110) $) 7 T ELT)) (-3929 (((-767) $) 16 T ELT))) -(((-111) (-13 (-549 (-767)) (-10 -8 (-15 -1471 ((-110) $)) (-15 -1314 ((-580 (-744)) $)) (-15 -1313 ((-580 (-156 (-110))) $)) (-15 -1312 ((-580 (-156 (-110))) $))))) (T -111)) -((-1471 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-580 (-744))) (-5 *1 (-111)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-580 (-156 (-110)))) (-5 *1 (-111)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-580 (-156 (-110)))) (-5 *1 (-111))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3410 (($) 17 T CONST)) (-1791 (($) NIL (|has| (-115) (-315)) ELT)) (-3219 (($ $ $) 19 T ELT) (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT)) (-3221 (($ $ $) NIL T ELT)) (-3220 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| (-115) (-315)) ELT)) (-3224 (($) NIL T ELT) (($ (-580 (-115))) NIL T ELT)) (-1559 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-3388 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-115) $) 56 (|has| $ (-6 -3978)) ELT)) (-3389 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-3825 (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3978)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3978)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-2980 (($) NIL (|has| (-115) (-315)) ELT)) (-2875 (((-580 (-115)) $) 65 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) NIL T ELT)) (-2517 (((-115) $) NIL (|has| (-115) (-751)) ELT)) (-2594 (((-580 (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-115) $) 29 (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-2843 (((-115) $) NIL (|has| (-115) (-751)) ELT)) (-1938 (($ (-1 (-115) (-115)) $) 64 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-115) (-115)) $) 60 T ELT)) (-3412 (($) 18 T CONST)) (-1998 (((-825) $) NIL (|has| (-115) (-315)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3223 (($ $ $) 32 T ELT)) (-1264 (((-115) $) 57 T ELT)) (-3592 (($ (-115) $) 55 T ELT)) (-2388 (($ (-825)) NIL (|has| (-115) (-315)) ELT)) (-1317 (($) 16 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-1343 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-1265 (((-115) $) 58 T ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-115)) (-580 (-115))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-246 (-115))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-580 (-246 (-115)))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 53 T ELT)) (-1318 (($) 15 T CONST)) (-3222 (($ $ $) 34 T ELT) (($ $ (-115)) NIL T ELT)) (-1455 (($ (-580 (-115))) NIL T ELT) (($) NIL T ELT)) (-1935 (((-689) (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT) (((-689) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-1064) $) 39 T ELT) (((-469) $) NIL (|has| (-115) (-550 (-469))) ELT) (((-580 (-115)) $) 37 T ELT)) (-3513 (($ (-580 (-115))) NIL T ELT)) (-1792 (($ $) 35 (|has| (-115) (-315)) ELT)) (-3929 (((-767) $) 51 T ELT)) (-1319 (($ (-1064)) 14 T ELT) (($ (-580 (-115))) 48 T ELT)) (-1793 (((-689) $) NIL T ELT)) (-3225 (($) 54 T ELT) (($ (-580 (-115))) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1266 (($ (-580 (-115))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-1315 (($) 21 T CONST)) (-1316 (($) 20 T CONST)) (-3042 (((-83) $ $) 26 T ELT)) (-3940 (((-689) $) 52 (|has| $ (-6 -3978)) ELT))) -(((-112) (-13 (-1007) (-550 (-1064)) (-364 (-115)) (-550 (-580 (-115))) (-10 -8 (-15 -1319 ($ (-1064))) (-15 -1319 ($ (-580 (-115)))) (-15 -1318 ($) -3935) (-15 -1317 ($) -3935) (-15 -3410 ($) -3935) (-15 -3412 ($) -3935) (-15 -1316 ($) -3935) (-15 -1315 ($) -3935)))) (T -112)) -((-1319 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-112)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-580 (-115))) (-5 *1 (-112)))) (-1318 (*1 *1) (-5 *1 (-112))) (-1317 (*1 *1) (-5 *1 (-112))) (-3410 (*1 *1) (-5 *1 (-112))) (-3412 (*1 *1) (-5 *1 (-112))) (-1316 (*1 *1) (-5 *1 (-112))) (-1315 (*1 *1) (-5 *1 (-112)))) -((-3724 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3722 ((|#1| |#3|) 9 T ELT)) (-3723 ((|#3| |#3|) 15 T ELT))) -(((-113 |#1| |#2| |#3|) (-10 -7 (-15 -3722 (|#1| |#3|)) (-15 -3723 (|#3| |#3|)) (-15 -3724 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-491) (-899 |#1|) (-319 |#2|)) (T -113)) -((-3724 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) (-4 *3 (-319 *5)))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-491)) (-4 *4 (-899 *3)) (-5 *1 (-113 *3 *4 *2)) (-4 *2 (-319 *4)))) (-3722 (*1 *2 *3) (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-113 *2 *4 *3)) (-4 *3 (-319 *4))))) -((-1358 (($ $ $) 8 T ELT)) (-1356 (($ $) 7 T ELT)) (-3087 (($ $ $) 6 T ELT))) -(((-114) (-111)) (T -114)) -((-1358 (*1 *1 *1 *1) (-4 *1 (-114))) (-1356 (*1 *1 *1) (-4 *1 (-114))) (-3087 (*1 *1 *1 *1) (-4 *1 (-114)))) -(-13 (-10 -8 (-15 -3087 ($ $ $)) (-15 -1356 ($ $)) (-15 -1358 ($ $ $)))) -((-2554 (((-83) $ $) NIL T ELT)) (-1327 (($) 30 T CONST)) (-1322 (((-83) $) 42 T ELT)) (-3410 (($ $) 52 T ELT)) (-1334 (($) 23 T CONST)) (-1507 (($) 21 T CONST)) (-3121 (((-689)) 13 T ELT)) (-2980 (($) 20 T ELT)) (-2565 (($) 22 T CONST)) (-1336 (((-689) $) 17 T ELT)) (-1333 (($) 24 T CONST)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1321 (((-83) $) 44 T ELT)) (-3412 (($ $) 53 T ELT)) (-1998 (((-825) $) 18 T ELT)) (-1331 (($) 26 T CONST)) (-3227 (((-1064) $) 50 T ELT)) (-2388 (($ (-825)) 16 T ELT)) (-1328 (($) 29 T CONST)) (-1324 (((-83) $) 40 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1330 (($) 27 T CONST)) (-1326 (($) 31 T CONST)) (-1325 (((-83) $) 38 T ELT)) (-3929 (((-767) $) 33 T ELT)) (-1335 (($ (-689)) 14 T ELT) (($ (-1064)) 51 T ELT)) (-1332 (($) 25 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-1329 (($) 28 T CONST)) (-1320 (((-83) $) 48 T ELT)) (-1323 (((-83) $) 46 T ELT)) (-2552 (((-83) $ $) 11 T ELT)) (-2553 (((-83) $ $) 9 T ELT)) (-3042 (((-83) $ $) 7 T ELT)) (-2670 (((-83) $ $) 10 T ELT)) (-2671 (((-83) $ $) 8 T ELT))) -(((-115) (-13 (-747) (-10 -8 (-15 -1336 ((-689) $)) (-15 -1335 ($ (-689))) (-15 -1335 ($ (-1064))) (-15 -1507 ($) -3935) (-15 -2565 ($) -3935) (-15 -1334 ($) -3935) (-15 -1333 ($) -3935) (-15 -1332 ($) -3935) (-15 -1331 ($) -3935) (-15 -1330 ($) -3935) (-15 -1329 ($) -3935) (-15 -1328 ($) -3935) (-15 -1327 ($) -3935) (-15 -1326 ($) -3935) (-15 -3410 ($ $)) (-15 -3412 ($ $)) (-15 -1325 ((-83) $)) (-15 -1324 ((-83) $)) (-15 -1323 ((-83) $)) (-15 -1322 ((-83) $)) (-15 -1321 ((-83) $)) (-15 -1320 ((-83) $))))) (T -115)) -((-1336 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-115)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-115)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-115)))) (-1507 (*1 *1) (-5 *1 (-115))) (-2565 (*1 *1) (-5 *1 (-115))) (-1334 (*1 *1) (-5 *1 (-115))) (-1333 (*1 *1) (-5 *1 (-115))) (-1332 (*1 *1) (-5 *1 (-115))) (-1331 (*1 *1) (-5 *1 (-115))) (-1330 (*1 *1) (-5 *1 (-115))) (-1329 (*1 *1) (-5 *1 (-115))) (-1328 (*1 *1) (-5 *1 (-115))) (-1327 (*1 *1) (-5 *1 (-115))) (-1326 (*1 *1) (-5 *1 (-115))) (-3410 (*1 *1 *1) (-5 *1 (-115))) (-3412 (*1 *1 *1) (-5 *1 (-115))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-2688 (((-629 $) $) 45 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-116) (-111)) (T -116)) -((-2688 (*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-116))))) -(-13 (-956) (-10 -8 (-15 -2688 ((-629 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2435 ((|#1| (-627 |#1|) |#1|) 19 T ELT))) -(((-117 |#1|) (-10 -7 (-15 -2435 (|#1| (-627 |#1|) |#1|))) (-144)) (T -117)) -((-2435 (*1 *2 *3 *2) (-12 (-5 *3 (-627 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-118) (-111)) (T -118)) -NIL -(-13 (-956)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-1339 (((-2 (|:| -2389 (-689)) (|:| -3937 (-345 |#2|)) (|:| |radicand| |#2|)) (-345 |#2|) (-689)) 76 T ELT)) (-1338 (((-3 (-2 (|:| |radicand| (-345 |#2|)) (|:| |deg| (-689))) "failed") |#3|) 56 T ELT)) (-1337 (((-2 (|:| -3937 (-345 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1340 ((|#1| |#3| |#3|) 44 T ELT)) (-3751 ((|#3| |#3| (-345 |#2|) (-345 |#2|)) 20 T ELT)) (-1341 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-345 |#2|)) (|:| |c2| (-345 |#2|)) (|:| |deg| (-689))) |#3| |#3|) 53 T ELT))) -(((-119 |#1| |#2| |#3|) (-10 -7 (-15 -1337 ((-2 (|:| -3937 (-345 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1338 ((-3 (-2 (|:| |radicand| (-345 |#2|)) (|:| |deg| (-689))) "failed") |#3|)) (-15 -1339 ((-2 (|:| -2389 (-689)) (|:| -3937 (-345 |#2|)) (|:| |radicand| |#2|)) (-345 |#2|) (-689))) (-15 -1340 (|#1| |#3| |#3|)) (-15 -3751 (|#3| |#3| (-345 |#2|) (-345 |#2|))) (-15 -1341 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-345 |#2|)) (|:| |c2| (-345 |#2|)) (|:| |deg| (-689))) |#3| |#3|))) (-1125) (-1146 |#1|) (-1146 (-345 |#2|))) (T -119)) -((-1341 (*1 *2 *3 *3) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-345 *5)) (|:| |c2| (-345 *5)) (|:| |deg| (-689)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1146 (-345 *5))))) (-3751 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-345 *5)) (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1146 *3)))) (-1340 (*1 *2 *3 *3) (-12 (-4 *4 (-1146 *2)) (-4 *2 (-1125)) (-5 *1 (-119 *2 *4 *3)) (-4 *3 (-1146 (-345 *4))))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *6)) (-4 *5 (-1125)) (-4 *6 (-1146 *5)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| *6))) (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-689)) (-4 *7 (-1146 *3)))) (-1338 (*1 *2 *3) (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| |radicand| (-345 *5)) (|:| |deg| (-689)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1146 (-345 *5))))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| -3937 (-345 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1146 (-345 *5)))))) -((-2690 (((-3 (-580 (-1076 |#2|)) "failed") (-580 (-1076 |#2|)) (-1076 |#2|)) 35 T ELT))) -(((-120 |#1| |#2|) (-10 -7 (-15 -2690 ((-3 (-580 (-1076 |#2|)) "failed") (-580 (-1076 |#2|)) (-1076 |#2|)))) (-479) (-137 |#1|)) (T -120)) -((-2690 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 *5))) (-5 *3 (-1076 *5)) (-4 *5 (-137 *4)) (-4 *4 (-479)) (-5 *1 (-120 *4 *5))))) -((-3693 (($ (-1 (-83) |#2|) $) 37 T ELT)) (-1342 (($ $) 44 T ELT)) (-3389 (($ (-1 (-83) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1343 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 27 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 24 T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 18 T ELT) (((-689) |#2| $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3940 (((-689) $) 12 T ELT))) -(((-121 |#1| |#2|) (-10 -7 (-15 -1342 (|#1| |#1|)) (-15 -3389 (|#1| |#2| |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3693 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3389 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1343 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-689) |#2| |#1|)) (-15 -1935 ((-689) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3940 ((-689) |#1|))) (-122 |#2|) (-1120)) (T -121)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 48 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 45 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 52 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 44 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 53 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-122 |#1|) (-111) (-1120)) (T -122)) -((-3513 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-122 *3)))) (-1343 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1120)))) (-3825 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)))) (-3825 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)))) (-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *3)) (-4 *3 (-1120)))) (-3693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *3)) (-4 *3 (-1120)))) (-3825 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1007)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)))) (-3389 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)) (-4 *2 (-1007)))) (-1342 (*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)) (-4 *2 (-1007))))) -(-13 (-424 |t#1|) (-10 -8 (-15 -3513 ($ (-580 |t#1|))) (-15 -1343 ((-3 |t#1| "failed") (-1 (-83) |t#1|) $)) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3825 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3825 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3389 ($ (-1 (-83) |t#1|) $)) (-15 -3693 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1007)) (PROGN (-15 -3825 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3389 ($ |t#1| $)) (-15 -1342 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) 113 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-580 (-825))) 72 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1344 (($ (-825)) 58 T ELT)) (-3894 (((-105)) 23 T ELT)) (-3929 (((-767) $) 88 T ELT) (($ (-480)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3660 ((|#2| $ (-580 (-825))) 75 T ELT)) (-3111 (((-689)) 20 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 48 T CONST)) (-2652 (($) 52 T CONST)) (-3042 (((-83) $ $) 34 T ELT)) (-3932 (($ $ |#2|) NIL T ELT)) (-3820 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3822 (($ $ $) 39 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-123 |#1| |#2| |#3|) (-13 (-956) (-38 |#2|) (-1178 |#2|) (-10 -8 (-15 -1344 ($ (-825))) (-15 -2879 ($ |#2| (-580 (-825)))) (-15 -3660 (|#2| $ (-580 (-825)))) (-15 -3450 ((-3 $ "failed") $)))) (-825) (-309) (-901 |#1| |#2|)) (T -123)) -((-3450 (*1 *1 *1) (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-825)) (-4 *3 (-309)) (-14 *4 (-901 *2 *3)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-309)) (-14 *5 (-901 *3 *4)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-825)) (-4 *2 (-309)) (-14 *5 (-901 *4 *2)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-580 (-825))) (-4 *2 (-309)) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-825)) (-14 *5 (-901 *4 *2))))) -((-1346 (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-580 (-849 (-177)))) (-177) (-177) (-177) (-177)) 59 T ELT)) (-1345 (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831) (-345 (-480)) (-345 (-480))) 95 T ELT) (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831)) 96 T ELT)) (-1499 (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-580 (-849 (-177))))) 99 T ELT) (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-849 (-177)))) 98 T ELT) (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831) (-345 (-480)) (-345 (-480))) 89 T ELT) (((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831)) 90 T ELT))) -(((-124) (-10 -7 (-15 -1499 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831))) (-15 -1499 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831) (-345 (-480)) (-345 (-480)))) (-15 -1345 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831))) (-15 -1345 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-831) (-345 (-480)) (-345 (-480)))) (-15 -1346 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-580 (-849 (-177)))) (-177) (-177) (-177) (-177))) (-15 -1499 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-849 (-177))))) (-15 -1499 ((-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177)))) (-580 (-580 (-849 (-177)))))))) (T -124)) -((-1499 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124)) (-5 *3 (-580 (-580 (-849 (-177))))))) (-1499 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124)) (-5 *3 (-580 (-849 (-177)))))) (-1346 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-177)) (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 *4)))) (|:| |xValues| (-995 *4)) (|:| |yValues| (-995 *4)))) (-5 *1 (-124)) (-5 *3 (-580 (-580 (-849 *4)))))) (-1345 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 (-480))) (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 (-480))) (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) (|:| |yValues| (-995 (-177))))) (-5 *1 (-124))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3166 (((-580 (-1040)) $) 20 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 27 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 10 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-125) (-13 (-989) (-10 -8 (-15 -3166 ((-580 (-1040)) $)) (-15 -3218 ((-1040) $))))) (T -125)) -((-3166 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-125)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-125))))) -((-1399 (((-580 (-140 |#2|)) |#1| |#2|) 50 T ELT))) -(((-126 |#1| |#2|) (-10 -7 (-15 -1399 ((-580 (-140 |#2|)) |#1| |#2|))) (-1146 (-140 (-480))) (-13 (-309) (-750))) (T -126)) -((-1399 (*1 *2 *3 *4) (-12 (-5 *2 (-580 (-140 *4))) (-5 *1 (-126 *3 *4)) (-4 *3 (-1146 (-140 (-480)))) (-4 *4 (-13 (-309) (-750)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 (((-1121) $) 13 T ELT)) (-3512 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-127) (-13 (-989) (-10 -8 (-15 -3512 ((-1040) $)) (-15 -3511 ((-1121) $))))) (T -127)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-127)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-127))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1348 (($) 38 T ELT)) (-3084 (($) 37 T ELT)) (-1347 (((-825)) 43 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2942 (((-480) $) 41 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3083 (($) 39 T ELT)) (-2941 (($ (-480)) 44 T ELT)) (-3929 (((-767) $) 50 T ELT)) (-3082 (($) 40 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 35 T ELT)) (-3822 (($ $ $) 32 T ELT)) (* (($ (-825) $) 42 T ELT) (($ (-177) $) 11 T ELT))) -(((-128) (-13 (-25) (-10 -8 (-15 * ($ (-825) $)) (-15 * ($ (-177) $)) (-15 -3822 ($ $ $)) (-15 -3084 ($)) (-15 -1348 ($)) (-15 -3083 ($)) (-15 -3082 ($)) (-15 -2942 ((-480) $)) (-15 -1347 ((-825))) (-15 -2941 ($ (-480)))))) (T -128)) -((-3822 (*1 *1 *1 *1) (-5 *1 (-128))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-128)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) (-3084 (*1 *1) (-5 *1 (-128))) (-1348 (*1 *1) (-5 *1 (-128))) (-3083 (*1 *1) (-5 *1 (-128))) (-3082 (*1 *1) (-5 *1 (-128))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-128)))) (-1347 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-128)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-128))))) -((-1361 ((|#2| |#2| (-998 |#2|)) 98 T ELT) ((|#2| |#2| (-1081)) 75 T ELT)) (-3927 ((|#2| |#2| (-998 |#2|)) 97 T ELT) ((|#2| |#2| (-1081)) 74 T ELT)) (-1358 ((|#2| |#2| |#2|) 25 T ELT)) (-3578 (((-84) (-84)) 111 T ELT)) (-1355 ((|#2| (-580 |#2|)) 130 T ELT)) (-1352 ((|#2| (-580 |#2|)) 150 T ELT)) (-1351 ((|#2| (-580 |#2|)) 138 T ELT)) (-1349 ((|#2| |#2|) 136 T ELT)) (-1353 ((|#2| (-580 |#2|)) 124 T ELT)) (-1354 ((|#2| (-580 |#2|)) 125 T ELT)) (-1350 ((|#2| (-580 |#2|)) 148 T ELT)) (-1362 ((|#2| |#2| (-1081)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1356 ((|#2| |#2|) 21 T ELT)) (-3087 ((|#2| |#2| |#2|) 24 T ELT)) (-2242 (((-83) (-84)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-129 |#1| |#2|) (-10 -7 (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 ** (|#2| |#2| |#2|)) (-15 -3087 (|#2| |#2| |#2|)) (-15 -1358 (|#2| |#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -1362 (|#2| |#2| (-1081))) (-15 -1361 (|#2| |#2| (-1081))) (-15 -1361 (|#2| |#2| (-998 |#2|))) (-15 -3927 (|#2| |#2| (-1081))) (-15 -3927 (|#2| |#2| (-998 |#2|))) (-15 -1349 (|#2| |#2|)) (-15 -1350 (|#2| (-580 |#2|))) (-15 -1351 (|#2| (-580 |#2|))) (-15 -1352 (|#2| (-580 |#2|))) (-15 -1353 (|#2| (-580 |#2|))) (-15 -1354 (|#2| (-580 |#2|))) (-15 -1355 (|#2| (-580 |#2|)))) (-491) (-359 |#1|)) (T -129)) -((-1355 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-491)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) (-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)))) (-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) (-1362 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (-1358 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (-3087 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-129 *3 *4)) (-4 *4 (-359 *3)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) (-4 *5 (-359 *4))))) -((-1360 ((|#1| |#1| |#1|) 66 T ELT)) (-1359 ((|#1| |#1| |#1|) 63 T ELT)) (-1358 ((|#1| |#1| |#1|) 57 T ELT)) (-2876 ((|#1| |#1|) 43 T ELT)) (-1357 ((|#1| |#1| (-580 |#1|)) 55 T ELT)) (-1356 ((|#1| |#1|) 47 T ELT)) (-3087 ((|#1| |#1| |#1|) 51 T ELT))) -(((-130 |#1|) (-10 -7 (-15 -3087 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -1357 (|#1| |#1| (-580 |#1|))) (-15 -2876 (|#1| |#1|)) (-15 -1358 (|#1| |#1| |#1|)) (-15 -1359 (|#1| |#1| |#1|)) (-15 -1360 (|#1| |#1| |#1|))) (-479)) (T -130)) -((-1360 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) (-1359 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) (-1358 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) (-2876 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) (-1357 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-479)) (-5 *1 (-130 *2)))) (-1356 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) (-3087 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479))))) -((-1361 (($ $ (-1081)) 12 T ELT) (($ $ (-998 $)) 11 T ELT)) (-3927 (($ $ (-1081)) 10 T ELT) (($ $ (-998 $)) 9 T ELT)) (-1358 (($ $ $) 8 T ELT)) (-1362 (($ $) 14 T ELT) (($ $ (-1081)) 13 T ELT)) (-1356 (($ $) 7 T ELT)) (-3087 (($ $ $) 6 T ELT))) -(((-131) (-111)) (T -131)) -((-1362 (*1 *1 *1) (-4 *1 (-131))) (-1362 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081)))) (-1361 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-131)))) (-3927 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-131))))) -(-13 (-114) (-10 -8 (-15 -1362 ($ $)) (-15 -1362 ($ $ (-1081))) (-15 -1361 ($ $ (-1081))) (-15 -1361 ($ $ (-998 $))) (-15 -3927 ($ $ (-1081))) (-15 -3927 ($ $ (-998 $))))) -(((-114) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-1363 (($ (-480)) 15 T ELT) (($ $ $) 16 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 19 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 11 T ELT))) -(((-132) (-13 (-1007) (-10 -8 (-15 -1363 ($ (-480))) (-15 -1363 ($ $ $))))) (T -132)) -((-1363 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-132)))) (-1363 (*1 *1 *1 *1) (-5 *1 (-132)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 16 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-580 (-1040)) $) 10 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-133) (-13 (-989) (-10 -8 (-15 -3218 ((-580 (-1040)) $))))) (T -133)) -((-3218 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-133))))) -((-3578 (((-84) (-1081)) 103 T ELT))) -(((-134) (-10 -7 (-15 -3578 ((-84) (-1081))))) (T -134)) -((-3578 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-84)) (-5 *1 (-134))))) -((-1584 ((|#3| |#3|) 19 T ELT))) -(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1584 (|#3| |#3|))) (-956) (-1146 |#1|) (-1146 |#2|)) (T -135)) -((-1584 (*1 *2 *2) (-12 (-4 *3 (-956)) (-4 *4 (-1146 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-1146 *4))))) -((-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 222 T ELT)) (-3313 ((|#2| $) 102 T ELT)) (-3475 (($ $) 255 T ELT)) (-3622 (($ $) 249 T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 47 T ELT)) (-3473 (($ $) 253 T ELT)) (-3621 (($ $) 247 T ELT)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2550 (($ $ $) 228 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 160 T ELT) (((-627 |#2|) (-627 $)) 154 T ELT)) (-3825 (($ (-1076 |#2|)) 125 T ELT) (((-3 $ #1#) (-345 (-1076 |#2|))) NIL T ELT)) (-3450 (((-3 $ #1#) $) 213 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 203 T ELT)) (-3009 (((-83) $) 198 T ELT)) (-3008 (((-345 (-480)) $) 201 T ELT)) (-3094 (((-825)) 96 T ELT)) (-2549 (($ $ $) 230 T ELT)) (-1364 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3610 (($) 244 T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 192 T ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 197 T ELT)) (-3117 ((|#2| $) 100 T ELT)) (-2002 (((-1076 |#2|) $) 127 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3925 (($ $) 246 T ELT)) (-3065 (((-1076 |#2|) $) 126 T ELT)) (-2470 (($ $) 206 T ELT)) (-1366 (($) 103 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 95 T ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 64 T ELT)) (-3449 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3926 (($ $) 245 T ELT)) (-1596 (((-689) $) 225 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 234 T ELT)) (-3740 ((|#2| (-1170 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3741 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-3170 (((-1076 |#2|)) 120 T ELT)) (-3474 (($ $) 254 T ELT)) (-3617 (($ $) 248 T ELT)) (-3209 (((-1170 |#2|) $ (-1170 $)) 136 T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#2|) $) 116 T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-3955 (((-1170 |#2|) $) NIL T ELT) (($ (-1170 |#2|)) NIL T ELT) (((-1076 |#2|) $) NIL T ELT) (($ (-1076 |#2|)) NIL T ELT) (((-795 (-480)) $) 183 T ELT) (((-795 (-325)) $) 187 T ELT) (((-140 (-325)) $) 172 T ELT) (((-140 (-177)) $) 167 T ELT) (((-469) $) 179 T ELT)) (-2995 (($ $) 104 T ELT)) (-3929 (((-767) $) 143 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT)) (-2435 (((-1076 |#2|) $) 32 T ELT)) (-3111 (((-689)) 106 T CONST)) (-1255 (((-83) $ $) 13 T ELT)) (-3481 (($ $) 258 T ELT)) (-3469 (($ $) 252 T ELT)) (-3479 (($ $) 256 T ELT)) (-3467 (($ $) 250 T ELT)) (-2224 ((|#2| $) 241 T ELT)) (-3480 (($ $) 257 T ELT)) (-3468 (($ $) 251 T ELT)) (-3366 (($ $) 162 T ELT)) (-3042 (((-83) $ $) 110 T ELT)) (-3820 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 111 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-345 (-480))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT))) -(((-136 |#1| |#2|) (-10 -7 (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3929 (|#1| |#1|)) (-15 -3449 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2052 ((-2 (|:| -1761 |#1|) (|:| -3965 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1596 ((-689) |#1|)) (-15 -2865 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 ** (|#1| |#1| (-480))) (-15 * (|#1| |#1| (-345 (-480)))) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3955 ((-469) |#1|)) (-15 -3955 ((-140 (-177)) |#1|)) (-15 -3955 ((-140 (-325)) |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3610 (|#1|)) (-15 ** (|#1| |#1| (-345 (-480)))) (-15 -2692 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2691 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2690 ((-3 (-580 (-1076 |#1|)) #1#) (-580 (-1076 |#1|)) (-1076 |#1|))) (-15 -3010 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3008 ((-345 (-480)) |#1|)) (-15 -3009 ((-83) |#1|)) (-15 -1364 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2224 (|#2| |#1|)) (-15 -3366 (|#1| |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1| |#2|)) (-15 -2995 (|#1| |#1|)) (-15 -1366 (|#1|)) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -2782 ((-793 (-325) |#1|) |#1| (-795 (-325)) (-793 (-325) |#1|))) (-15 -2782 ((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|))) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3825 ((-3 |#1| #1#) (-345 (-1076 |#2|)))) (-15 -3065 ((-1076 |#2|) |#1|)) (-15 -3955 (|#1| (-1076 |#2|))) (-15 -3825 (|#1| (-1076 |#2|))) (-15 -3170 ((-1076 |#2|))) (-15 -2267 ((-627 |#2|) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3955 ((-1076 |#2|) |#1|)) (-15 -3740 (|#2|)) (-15 -3955 (|#1| (-1170 |#2|))) (-15 -3955 ((-1170 |#2|) |#1|)) (-15 -3209 ((-627 |#2|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1|)) (-15 -2002 ((-1076 |#2|) |#1|)) (-15 -2435 ((-1076 |#2|) |#1|)) (-15 -3740 (|#2| (-1170 |#1|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1| (-1170 |#1|))) (-15 -3117 (|#2| |#1|)) (-15 -3313 (|#2| |#1|)) (-15 -3094 ((-825))) (-15 -3929 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3111 ((-689)) -3935) (-15 -3929 (|#1| (-480))) (-15 -3450 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-689))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-825))) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -1255 ((-83) |#1| |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-137 |#2|) (-144)) (T -136)) -((-3111 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3094 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-825)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3740 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) (-3170 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1076 *4)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 112 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-2051 (($ $) 113 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-2049 (((-83) $) 115 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-1771 (((-627 |#1|) (-1170 $)) 59 T ELT) (((-627 |#1|)) 75 T ELT)) (-3313 ((|#1| $) 65 T ELT)) (-3475 (($ $) 248 (|has| |#1| (-1106)) ELT)) (-3622 (($ $) 231 (|has| |#1| (-1106)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 165 (|has| |#1| (-296)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 262 (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-3758 (($ $) 132 (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-3954 (((-343 $) $) 133 (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-3023 (($ $) 261 (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT)) (-2690 (((-3 (-580 (-1076 $)) "failed") (-580 (-1076 $)) (-1076 $)) 265 (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-1597 (((-83) $ $) 123 (|has| |#1| (-255)) ELT)) (-3121 (((-689)) 106 (|has| |#1| (-315)) ELT)) (-3473 (($ $) 247 (|has| |#1| (-1106)) ELT)) (-3621 (($ $) 232 (|has| |#1| (-1106)) ELT)) (-3477 (($ $) 246 (|has| |#1| (-1106)) ELT)) (-3620 (($ $) 233 (|has| |#1| (-1106)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 192 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 190 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3141 (((-480) $) 191 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 189 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 188 T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) 61 T ELT) (($ (-1170 |#1|)) 78 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-296)) ELT)) (-2550 (($ $ $) 127 (|has| |#1| (-255)) ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) 66 T ELT) (((-627 |#1|) $) 73 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 184 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 183 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 182 T ELT) (((-627 |#1|) (-627 $)) 181 T ELT)) (-3825 (($ (-1076 |#1|)) 176 T ELT) (((-3 $ "failed") (-345 (-1076 |#1|))) 173 (|has| |#1| (-309)) ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3626 ((|#1| $) 273 T ELT)) (-3010 (((-3 (-345 (-480)) "failed") $) 266 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 268 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 267 (|has| |#1| (-479)) ELT)) (-3094 (((-825)) 67 T ELT)) (-2980 (($) 109 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) 126 (|has| |#1| (-255)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 121 (|has| |#1| (-255)) ELT)) (-2819 (($) 167 (|has| |#1| (-296)) ELT)) (-1669 (((-83) $) 168 (|has| |#1| (-296)) ELT)) (-1753 (($ $ (-689)) 159 (|has| |#1| (-296)) ELT) (($ $) 158 (|has| |#1| (-296)) ELT)) (-3706 (((-83) $) 134 (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-1364 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 269 (-12 (|has| |#1| (-967)) (|has| |#1| (-1106))) ELT)) (-3610 (($) 258 (|has| |#1| (-1106)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 281 (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 280 (|has| |#1| (-791 (-325))) ELT)) (-3755 (((-825) $) 170 (|has| |#1| (-296)) ELT) (((-738 (-825)) $) 156 (|has| |#1| (-296)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 260 (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT)) (-3117 ((|#1| $) 64 T ELT)) (-3428 (((-629 $) $) 160 (|has| |#1| (-296)) ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 130 (|has| |#1| (-255)) ELT)) (-2002 (((-1076 |#1|) $) 57 (|has| |#1| (-309)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 282 T ELT)) (-1998 (((-825) $) 108 (|has| |#1| (-315)) ELT)) (-3925 (($ $) 255 (|has| |#1| (-1106)) ELT)) (-3065 (((-1076 |#1|) $) 174 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 186 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 185 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 180 T ELT) (((-627 |#1|) (-1170 $)) 179 T ELT)) (-1880 (($ (-580 $)) 119 (OR (|has| |#1| (-255)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-255)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 135 (|has| |#1| (-309)) ELT)) (-3429 (($) 161 (|has| |#1| (-296)) CONST)) (-2388 (($ (-825)) 107 (|has| |#1| (-315)) ELT)) (-1366 (($) 277 T ELT)) (-3627 ((|#1| $) 274 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2397 (($) 178 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 120 (OR (|has| |#1| (-255)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-3129 (($ (-580 $)) 117 (OR (|has| |#1| (-255)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT) (($ $ $) 116 (OR (|has| |#1| (-255)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 164 (|has| |#1| (-296)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 264 (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 263 (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-3715 (((-343 $) $) 131 (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-255)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 128 (|has| |#1| (-255)) ELT)) (-3449 (((-3 $ "failed") $ |#1|) 272 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ $) 111 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 122 (|has| |#1| (-255)) ELT)) (-3926 (($ $) 256 (|has| |#1| (-1106)) ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) 288 (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) 287 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) 286 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 285 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 284 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) 283 (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-1596 (((-689) $) 124 (|has| |#1| (-255)) ELT)) (-3783 (($ $ |#1|) 289 (|has| |#1| (-239 |#1| |#1|)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 125 (|has| |#1| (-255)) ELT)) (-3740 ((|#1| (-1170 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1754 (((-689) $) 169 (|has| |#1| (-296)) ELT) (((-3 (-689) "failed") $ $) 157 (|has| |#1| (-296)) ELT)) (-3741 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 142 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) 148 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) 147 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) 146 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) 144 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-689)) 154 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-187))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2548 (|has| |#1| (-187)) (|has| |#1| (-309)))) ELT) (($ $) 152 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-187))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2548 (|has| |#1| (-187)) (|has| |#1| (-309)))) ELT)) (-2396 (((-627 |#1|) (-1170 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-309)) ELT)) (-3170 (((-1076 |#1|)) 177 T ELT)) (-3478 (($ $) 245 (|has| |#1| (-1106)) ELT)) (-3619 (($ $) 234 (|has| |#1| (-1106)) ELT)) (-1663 (($) 166 (|has| |#1| (-296)) ELT)) (-3476 (($ $) 244 (|has| |#1| (-1106)) ELT)) (-3618 (($ $) 235 (|has| |#1| (-1106)) ELT)) (-3474 (($ $) 243 (|has| |#1| (-1106)) ELT)) (-3617 (($ $) 236 (|has| |#1| (-1106)) ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 63 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 62 T ELT) (((-1170 |#1|) $) 80 T ELT) (((-627 |#1|) (-1170 $)) 79 T ELT)) (-3955 (((-1170 |#1|) $) 77 T ELT) (($ (-1170 |#1|)) 76 T ELT) (((-1076 |#1|) $) 193 T ELT) (($ (-1076 |#1|)) 175 T ELT) (((-795 (-480)) $) 279 (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) 278 (|has| |#1| (-550 (-795 (-325)))) ELT) (((-140 (-325)) $) 230 (|has| |#1| (-928)) ELT) (((-140 (-177)) $) 229 (|has| |#1| (-928)) ELT) (((-469) $) 228 (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) 276 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 163 (OR (-2548 (|has| $ (-116)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) (|has| |#1| (-296))) ELT)) (-1365 (($ |#1| |#1|) 275 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-345 (-480))) 105 (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) 110 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-2688 (($ $) 162 (|has| |#1| (-296)) ELT) (((-629 $) $) 56 (OR (-2548 (|has| $ (-116)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) (|has| |#1| (-116))) ELT)) (-2435 (((-1076 |#1|) $) 58 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 81 T ELT)) (-3481 (($ $) 254 (|has| |#1| (-1106)) ELT)) (-3469 (($ $) 242 (|has| |#1| (-1106)) ELT)) (-2050 (((-83) $ $) 114 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816)))) ELT)) (-3479 (($ $) 253 (|has| |#1| (-1106)) ELT)) (-3467 (($ $) 241 (|has| |#1| (-1106)) ELT)) (-3483 (($ $) 252 (|has| |#1| (-1106)) ELT)) (-3471 (($ $) 240 (|has| |#1| (-1106)) ELT)) (-2224 ((|#1| $) 270 (|has| |#1| (-1106)) ELT)) (-3484 (($ $) 251 (|has| |#1| (-1106)) ELT)) (-3472 (($ $) 239 (|has| |#1| (-1106)) ELT)) (-3482 (($ $) 250 (|has| |#1| (-1106)) ELT)) (-3470 (($ $) 238 (|has| |#1| (-1106)) ELT)) (-3480 (($ $) 249 (|has| |#1| (-1106)) ELT)) (-3468 (($ $) 237 (|has| |#1| (-1106)) ELT)) (-3366 (($ $) 271 (|has| |#1| (-967)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) 141 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 140 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) 151 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) 150 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) 149 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) 145 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-689)) 155 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-187))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2548 (|has| |#1| (-187)) (|has| |#1| (-309)))) ELT) (($ $) 153 (OR (-2548 (|has| |#1| (-309)) (|has| |#1| (-187))) (-2548 (|has| |#1| (-309)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2548 (|has| |#1| (-187)) (|has| |#1| (-309)))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 139 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-345 (-480))) 259 (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT) (($ $ $) 257 (|has| |#1| (-1106)) ELT) (($ $ (-480)) 136 (|has| |#1| (-309)) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-345 (-480)) $) 138 (|has| |#1| (-309)) ELT) (($ $ (-345 (-480))) 137 (|has| |#1| (-309)) ELT))) -(((-137 |#1|) (-111) (-144)) (T -137)) -((-3117 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1366 (*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1365 (*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3449 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) (-3366 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1106)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-967)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) (-3010 (*1 *2 *1) (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480)))))) -(-13 (-658 |t#1| (-1076 |t#1|)) (-350 |t#1|) (-182 |t#1|) (-285 |t#1|) (-338 |t#1|) (-789 |t#1|) (-324 |t#1|) (-144) (-10 -8 (-6 -1365) (-15 -1366 ($)) (-15 -2995 ($ $)) (-15 -1365 ($ |t#1| |t#1|)) (-15 -3627 (|t#1| $)) (-15 -3626 (|t#1| $)) (-15 -3117 (|t#1| $)) (IF (|has| |t#1| (-491)) (PROGN (-6 (-491)) (-15 -3449 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-255)) (-6 (-255)) |%noBranch|) (IF (|has| |t#1| (-6 -3977)) (-6 -3977) |%noBranch|) (IF (|has| |t#1| (-6 -3974)) (-6 -3974) |%noBranch|) (IF (|has| |t#1| (-309)) (-6 (-309)) |%noBranch|) (IF (|has| |t#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-928)) (PROGN (-6 (-550 (-140 (-177)))) (-6 (-550 (-140 (-325))))) |%noBranch|) (IF (|has| |t#1| (-967)) (-15 -3366 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-1106)) (-15 -2224 (|t#1| $)) (IF (|has| |t#1| (-910)) (-6 (-910)) |%noBranch|) (IF (|has| |t#1| (-967)) (-15 -1364 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-816)) (IF (|has| |t#1| (-255)) (-6 (-816)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-35) |has| |#1| (-1106)) ((-66) |has| |#1| (-1106)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-296)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-296)) (|has| |#1| (-309))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 $) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-549 (-767)) . T) ((-144) . T) ((-550 (-140 (-177))) |has| |#1| (-928)) ((-550 (-140 (-325))) |has| |#1| (-928)) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-550 (-795 (-325))) |has| |#1| (-550 (-795 (-325)))) ((-550 (-795 (-480))) |has| |#1| (-550 (-795 (-480)))) ((-550 (-1076 |#1|)) . T) ((-184 $) OR (|has| |#1| (-296)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) OR (|has| |#1| (-296)) (|has| |#1| (-188))) ((-187) OR (|has| |#1| (-296)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-223 |#1|) . T) ((-199) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-237) |has| |#1| (-1106)) ((-239 |#1| $) |has| |#1| (-239 |#1| |#1|)) ((-243) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-255) OR (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-257 |#1|) |has| |#1| (-257 |#1|)) ((-309) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-340) |has| |#1| (-296)) ((-315) OR (|has| |#1| (-296)) (|has| |#1| (-315))) ((-296) |has| |#1| (-296)) ((-317 |#1| (-1076 |#1|)) . T) ((-348 |#1| (-1076 |#1|)) . T) ((-285 |#1|) . T) ((-324 |#1|) . T) ((-338 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-428) |has| |#1| (-1106)) ((-449 (-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((-449 |#1| |#1|) |has| |#1| (-257 |#1|)) ((-491) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-579 |#1|) . T) ((-579 $) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-651 |#1|) . T) ((-651 $) OR (|has| |#1| (-491)) (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-658 |#1| (-1076 |#1|)) . T) ((-660) . T) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-791 (-325)) |has| |#1| (-791 (-325))) ((-791 (-480)) |has| |#1| (-791 (-480))) ((-789 |#1|) . T) ((-816) -12 (|has| |#1| (-255)) (|has| |#1| (-816))) ((-827) OR (|has| |#1| (-296)) (|has| |#1| (-309)) (|has| |#1| (-255))) ((-910) -12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-958 |#1|) . T) ((-958 $) . T) ((-963 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-963 |#1|) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| |#1| (-296)) ((-1106) |has| |#1| (-1106)) ((-1109) |has| |#1| (-1106)) ((-1120) . T) ((-1125) OR (|has| |#1| (-296)) (|has| |#1| (-309)) (-12 (|has| |#1| (-255)) (|has| |#1| (-816))))) -((-3715 (((-343 |#2|) |#2|) 67 T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3715 ((-343 |#2|) |#2|))) (-255) (-1146 (-140 |#1|))) (T -138)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-138 *4 *3)) (-4 *3 (-1146 (-140 *4)))))) -((-1369 (((-1040) (-1040) (-244)) 8 T ELT)) (-1367 (((-580 (-629 (-233))) (-1064)) 81 T ELT)) (-1368 (((-629 (-233)) (-1040)) 76 T ELT))) -(((-139) (-13 (-1120) (-10 -7 (-15 -1369 ((-1040) (-1040) (-244))) (-15 -1368 ((-629 (-233)) (-1040))) (-15 -1367 ((-580 (-629 (-233))) (-1064)))))) (T -139)) -((-1369 (*1 *2 *2 *3) (-12 (-5 *2 (-1040)) (-5 *3 (-244)) (-5 *1 (-139)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1040)) (-5 *2 (-629 (-233))) (-5 *1 (-139)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-629 (-233)))) (-5 *1 (-139))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 15 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-2051 (($ $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-2049 (((-83) $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-1771 (((-627 |#1|) (-1170 $)) NIL T ELT) (((-627 |#1|)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3622 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| |#1| (-296)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-3758 (($ $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-3954 (((-343 $) $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-3023 (($ $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-255)) ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3621 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3477 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3620 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) NIL T ELT) (($ (-1170 |#1|)) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-296)) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-255)) ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) NIL T ELT) (((-627 |#1|) $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3825 (($ (-1076 |#1|)) NIL T ELT) (((-3 $ #1#) (-345 (-1076 |#1|))) NIL (|has| |#1| (-309)) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3626 ((|#1| $) 20 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) NIL (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) NIL (|has| |#1| (-479)) ELT)) (-3094 (((-825)) NIL T ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-255)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-255)) ELT)) (-2819 (($) NIL (|has| |#1| (-296)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-296)) ELT)) (-1753 (($ $ (-689)) NIL (|has| |#1| (-296)) ELT) (($ $) NIL (|has| |#1| (-296)) ELT)) (-3706 (((-83) $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-1364 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-967)) (|has| |#1| (-1106))) ELT)) (-3610 (($) NIL (|has| |#1| (-1106)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| |#1| (-791 (-325))) ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-296)) ELT) (((-738 (-825)) $) NIL (|has| |#1| (-296)) ELT)) (-2398 (((-83) $) 17 T ELT)) (-2997 (($ $ (-480)) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT)) (-3117 ((|#1| $) 30 T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-296)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-255)) ELT)) (-2002 (((-1076 |#1|) $) NIL (|has| |#1| (-309)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3065 (((-1076 |#1|) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-255)) ELT) (($ $ $) NIL (|has| |#1| (-255)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3429 (($) NIL (|has| |#1| (-296)) CONST)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1366 (($) NIL T ELT)) (-3627 ((|#1| $) 21 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-255)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-255)) ELT) (($ $ $) NIL (|has| |#1| (-255)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| |#1| (-296)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) ELT)) (-3715 (((-343 $) $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-309))) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-255)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-255)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-255)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-255)) ELT)) (-3783 (($ $ |#1|) NIL (|has| |#1| (-239 |#1| |#1|)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-255)) ELT)) (-3740 ((|#1| (-1170 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-296)) ELT) (((-3 (-689) #1#) $ $) NIL (|has| |#1| (-296)) ELT)) (-3741 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (|has| |#1| (-187))) ELT)) (-2396 (((-627 |#1|) (-1170 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-309)) ELT)) (-3170 (((-1076 |#1|)) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3619 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-1663 (($) NIL (|has| |#1| (-296)) ELT)) (-3476 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3618 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3617 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) NIL T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#1|) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-3955 (((-1170 |#1|) $) NIL T ELT) (($ (-1170 |#1|)) NIL T ELT) (((-1076 |#1|) $) NIL T ELT) (($ (-1076 |#1|)) NIL T ELT) (((-795 (-480)) $) NIL (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| |#1| (-550 (-795 (-325)))) ELT) (((-140 (-325)) $) NIL (|has| |#1| (-928)) ELT) (((-140 (-177)) $) NIL (|has| |#1| (-928)) ELT) (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) 29 T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-296))) ELT)) (-1365 (($ |#1| |#1|) 19 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-2688 (($ $) NIL (|has| |#1| (-296)) ELT) (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-2435 (((-1076 |#1|) $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3469 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-2050 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-255)) (|has| |#1| (-816))) (|has| |#1| (-491))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3471 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-2224 ((|#1| $) NIL (|has| |#1| (-1106)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3470 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3468 (($ $) NIL (|has| |#1| (-1106)) ELT)) (-3366 (($ $) NIL (|has| |#1| (-967)) ELT)) (-2646 (($) 8 T CONST)) (-2652 (($) 10 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-309))) (|has| |#1| (-187))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 23 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-345 (-480))) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-1106))) ELT) (($ $ $) NIL (|has| |#1| (-1106)) ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-309)) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-309)) ELT))) -(((-140 |#1|) (-137 |#1|) (-144)) (T -140)) -NIL -((-3941 (((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)) 14 T ELT))) -(((-141 |#1| |#2|) (-10 -7 (-15 -3941 ((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)))) (-144) (-144)) (T -141)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6))))) -((-3955 (((-795 |#1|) |#3|) 22 T ELT))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-795 |#1|) |#3|))) (-1007) (-13 (-550 (-795 |#1|)) (-144)) (-137 |#2|)) (T -142)) -((-3955 (*1 *2 *3) (-12 (-4 *5 (-13 (-550 *2) (-144))) (-5 *2 (-795 *4)) (-5 *1 (-142 *4 *5 *3)) (-4 *4 (-1007)) (-4 *3 (-137 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1371 (((-83) $) 9 T ELT)) (-1370 (((-83) $ (-83)) 11 T ELT)) (-3597 (($) 13 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3383 (($ $) 14 T ELT)) (-3929 (((-767) $) 18 T ELT)) (-3685 (((-83) $) 8 T ELT)) (-3844 (((-83) $ (-83)) 10 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-143) (-13 (-1007) (-10 -8 (-15 -3597 ($)) (-15 -3685 ((-83) $)) (-15 -1371 ((-83) $)) (-15 -3844 ((-83) $ (-83))) (-15 -1370 ((-83) $ (-83))) (-15 -3383 ($ $))))) (T -143)) -((-3597 (*1 *1) (-5 *1 (-143))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3844 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1370 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3383 (*1 *1 *1) (-5 *1 (-143)))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-144) (-111)) (T -144)) -NIL -(-13 (-956) (-80 $ $) (-10 -7 (-6 (-3980 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-1689 (($ $) 6 T ELT))) -(((-145) (-111)) (T -145)) -((-1689 (*1 *1 *1) (-4 *1 (-145)))) -(-13 (-10 -8 (-15 -1689 ($ $)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 ((|#1| $) 79 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL T ELT)) (-1376 (($ $) 21 T ELT)) (-1380 (($ |#1| (-1060 |#1|)) 48 T ELT)) (-3450 (((-3 $ #1#) $) 123 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-1377 (((-1060 |#1|) $) 86 T ELT)) (-1379 (((-1060 |#1|) $) 83 T ELT)) (-1378 (((-1060 |#1|) $) 84 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1373 (((-1060 |#1|) $) 93 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-1880 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3752 (($ $ (-480)) 96 T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1372 (((-1060 |#1|) $) 94 T ELT)) (-1374 (((-1060 (-345 |#1|)) $) 14 T ELT)) (-2602 (($ (-345 |#1|)) 17 T ELT) (($ |#1| (-1060 |#1|) (-1060 |#1|)) 38 T ELT)) (-2877 (($ $) 98 T ELT)) (-3929 (((-767) $) 139 T ELT) (($ (-480)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-345 |#1|)) 36 T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT)) (-3111 (((-689)) 67 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-1375 (((-1060 (-345 |#1|)) $) 20 T ELT)) (-2646 (($) 103 T CONST)) (-2652 (($) 28 T CONST)) (-3042 (((-83) $ $) 35 T ELT)) (-3932 (($ $ $) 121 T ELT)) (-3820 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3822 (($ $ $) 107 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-345 |#1|) $) 117 T ELT) (($ $ (-345 |#1|)) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT))) -(((-146 |#1|) (-13 (-38 |#1|) (-38 (-345 |#1|)) (-309) (-10 -8 (-15 -2602 ($ (-345 |#1|))) (-15 -2602 ($ |#1| (-1060 |#1|) (-1060 |#1|))) (-15 -1380 ($ |#1| (-1060 |#1|))) (-15 -1379 ((-1060 |#1|) $)) (-15 -1378 ((-1060 |#1|) $)) (-15 -1377 ((-1060 |#1|) $)) (-15 -3114 (|#1| $)) (-15 -1376 ($ $)) (-15 -1375 ((-1060 (-345 |#1|)) $)) (-15 -1374 ((-1060 (-345 |#1|)) $)) (-15 -1373 ((-1060 |#1|) $)) (-15 -1372 ((-1060 |#1|) $)) (-15 -3752 ($ $ (-480))) (-15 -2877 ($ $)))) (-255)) (T -146)) -((-2602 (*1 *1 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-255)) (-5 *1 (-146 *3)))) (-2602 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-255)) (-5 *1 (-146 *2)))) (-1380 (*1 *1 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-255)) (-5 *1 (-146 *2)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-3114 (*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255)))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-1060 (-345 *3))) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-1060 (-345 *3))) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) (-2877 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255))))) -((-1381 (($ (-78) $) 15 T ELT)) (-3206 (((-629 (-78)) (-441) $) 14 T ELT)) (-3929 (((-767) $) 18 T ELT)) (-1382 (((-580 (-78)) $) 8 T ELT))) -(((-147) (-13 (-549 (-767)) (-10 -8 (-15 -1382 ((-580 (-78)) $)) (-15 -1381 ($ (-78) $)) (-15 -3206 ((-629 (-78)) (-441) $))))) (T -147)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-580 (-78))) (-5 *1 (-147)))) (-1381 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147)))) (-3206 (*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-78))) (-5 *1 (-147))))) -((-1395 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 38 T ELT)) (-1386 (((-849 |#1|) (-849 |#1|)) 22 T ELT)) (-1391 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 34 T ELT)) (-1384 (((-849 |#1|) (-849 |#1|)) 20 T ELT)) (-1389 (((-849 |#1|) (-849 |#1|)) 28 T ELT)) (-1388 (((-849 |#1|) (-849 |#1|)) 27 T ELT)) (-1387 (((-849 |#1|) (-849 |#1|)) 26 T ELT)) (-1392 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 35 T ELT)) (-1390 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 33 T ELT)) (-1632 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 32 T ELT)) (-1385 (((-849 |#1|) (-849 |#1|)) 21 T ELT)) (-1396 (((-1 (-849 |#1|) (-849 |#1|)) |#1| |#1|) 41 T ELT)) (-1383 (((-849 |#1|) (-849 |#1|)) 8 T ELT)) (-1394 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 37 T ELT)) (-1393 (((-1 (-849 |#1|) (-849 |#1|)) |#1|) 36 T ELT))) -(((-148 |#1|) (-10 -7 (-15 -1383 ((-849 |#1|) (-849 |#1|))) (-15 -1384 ((-849 |#1|) (-849 |#1|))) (-15 -1385 ((-849 |#1|) (-849 |#1|))) (-15 -1386 ((-849 |#1|) (-849 |#1|))) (-15 -1387 ((-849 |#1|) (-849 |#1|))) (-15 -1388 ((-849 |#1|) (-849 |#1|))) (-15 -1389 ((-849 |#1|) (-849 |#1|))) (-15 -1632 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1390 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1391 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1392 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1393 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1394 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1395 ((-1 (-849 |#1|) (-849 |#1|)) |#1|)) (-15 -1396 ((-1 (-849 |#1|) (-849 |#1|)) |#1| |#1|))) (-13 (-309) (-1106) (-910))) (T -148)) -((-1396 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1395 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1390 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-309) (-1106) (-910))))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) (-5 *1 (-148 *3))))) -((-2435 ((|#2| |#3|) 28 T ELT))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2435 (|#2| |#3|))) (-144) (-1146 |#1|) (-658 |#1| |#2|)) (T -149)) -((-2435 (*1 *2 *3) (-12 (-4 *4 (-144)) (-4 *2 (-1146 *4)) (-5 *1 (-149 *4 *2 *3)) (-4 *3 (-658 *4 *2))))) -((-2782 (((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)) 44 (|has| (-852 |#2|) (-791 |#1|)) ELT))) -(((-150 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-852 |#2|) (-791 |#1|)) (-15 -2782 ((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|))) |%noBranch|)) (-1007) (-13 (-791 |#1|) (-144)) (-137 |#2|)) (T -150)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *3)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *3 (-137 *6)) (-4 (-852 *6) (-791 *5)) (-4 *6 (-13 (-791 *5) (-144))) (-5 *1 (-150 *5 *6 *3))))) -((-1398 (((-580 |#1|) (-580 |#1|) |#1|) 41 T ELT)) (-1397 (((-580 |#1|) |#1| (-580 |#1|)) 20 T ELT)) (-2065 (((-580 |#1|) (-580 (-580 |#1|)) (-580 |#1|)) 36 T ELT) ((|#1| (-580 |#1|) (-580 |#1|)) 32 T ELT))) -(((-151 |#1|) (-10 -7 (-15 -1397 ((-580 |#1|) |#1| (-580 |#1|))) (-15 -2065 (|#1| (-580 |#1|) (-580 |#1|))) (-15 -2065 ((-580 |#1|) (-580 (-580 |#1|)) (-580 |#1|))) (-15 -1398 ((-580 |#1|) (-580 |#1|) |#1|))) (-255)) (T -151)) -((-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-580 *3)) (-4 *3 (-255)) (-5 *1 (-151 *3)))) (-2065 (*1 *2 *3 *2) (-12 (-5 *3 (-580 (-580 *4))) (-5 *2 (-580 *4)) (-4 *4 (-255)) (-5 *1 (-151 *4)))) (-2065 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-151 *2)) (-4 *2 (-255)))) (-1397 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-255)) (-5 *1 (-151 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3302 (((-1121) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 11 T ELT)) (-3929 (((-767) $) 21 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-152) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $)) (-15 -3302 ((-1121) $))))) (T -152)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-152)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-152))))) -((-1407 (((-2 (|:| |start| |#2|) (|:| -1768 (-343 |#2|))) |#2|) 66 T ELT)) (-1406 ((|#1| |#1|) 58 T ELT)) (-1405 (((-140 |#1|) |#2|) 94 T ELT)) (-1404 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1403 ((|#2| |#2|) 91 T ELT)) (-1402 (((-343 |#2|) |#2| |#1|) 119 T ELT) (((-343 |#2|) |#2| |#1| (-83)) 88 T ELT)) (-3117 ((|#1| |#2|) 118 T ELT)) (-1401 ((|#2| |#2|) 131 T ELT)) (-3715 (((-343 |#2|) |#2|) 154 T ELT) (((-343 |#2|) |#2| |#1|) 33 T ELT) (((-343 |#2|) |#2| |#1| (-83)) 153 T ELT)) (-1400 (((-580 (-2 (|:| -1768 (-580 |#2|)) (|:| -1585 |#1|))) |#2| |#2|) 152 T ELT) (((-580 (-2 (|:| -1768 (-580 |#2|)) (|:| -1585 |#1|))) |#2| |#2| (-83)) 82 T ELT)) (-1399 (((-580 (-140 |#1|)) |#2| |#1|) 42 T ELT) (((-580 (-140 |#1|)) |#2|) 43 T ELT))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1399 ((-580 (-140 |#1|)) |#2|)) (-15 -1399 ((-580 (-140 |#1|)) |#2| |#1|)) (-15 -1400 ((-580 (-2 (|:| -1768 (-580 |#2|)) (|:| -1585 |#1|))) |#2| |#2| (-83))) (-15 -1400 ((-580 (-2 (|:| -1768 (-580 |#2|)) (|:| -1585 |#1|))) |#2| |#2|)) (-15 -3715 ((-343 |#2|) |#2| |#1| (-83))) (-15 -3715 ((-343 |#2|) |#2| |#1|)) (-15 -3715 ((-343 |#2|) |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -3117 (|#1| |#2|)) (-15 -1402 ((-343 |#2|) |#2| |#1| (-83))) (-15 -1402 ((-343 |#2|) |#2| |#1|)) (-15 -1403 (|#2| |#2|)) (-15 -1404 (|#1| |#2| |#1|)) (-15 -1404 (|#1| |#2|)) (-15 -1405 ((-140 |#1|) |#2|)) (-15 -1406 (|#1| |#1|)) (-15 -1407 ((-2 (|:| |start| |#2|) (|:| -1768 (-343 |#2|))) |#2|))) (-13 (-309) (-750)) (-1146 (-140 |#1|))) (T -153)) -((-1407 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-2 (|:| |start| *3) (|:| -1768 (-343 *3)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-1406 (*1 *2 *2) (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1146 (-140 *2))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-309) (-750))) (-4 *3 (-1146 *2)))) (-1404 (*1 *2 *3) (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1146 (-140 *2))))) (-1404 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1146 (-140 *2))))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-750))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1146 (-140 *3))))) (-1402 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-1402 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-3117 (*1 *2 *3) (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1146 (-140 *2))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-750))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1146 (-140 *3))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-3715 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-1400 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-580 (-2 (|:| -1768 (-580 *3)) (|:| -1585 *4)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-1400 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-309) (-750))) (-5 *2 (-580 (-2 (|:| -1768 (-580 *3)) (|:| -1585 *5)))) (-5 *1 (-153 *5 *3)) (-4 *3 (-1146 (-140 *5))))) (-1399 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-580 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-580 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4)))))) -((-1408 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1409 (((-689) |#2|) 18 T ELT)) (-1410 ((|#2| |#2| |#2|) 20 T ELT))) -(((-154 |#1| |#2|) (-10 -7 (-15 -1408 ((-3 |#2| "failed") |#2|)) (-15 -1409 ((-689) |#2|)) (-15 -1410 (|#2| |#2| |#2|))) (-1120) (-613 |#1|)) (T -154)) -((-1410 (*1 *2 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-154 *3 *2)) (-4 *2 (-613 *3)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-689)) (-5 *1 (-154 *4 *3)) (-4 *3 (-613 *4)))) (-1408 (*1 *2 *2) (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-154 *3 *2)) (-4 *2 (-613 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1413 (((-580 (-769)) $) NIL T ELT)) (-3525 (((-441) $) 8 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1415 (((-159) $) 10 T ELT)) (-2619 (((-83) $ (-441)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1411 (((-629 $) (-441)) 17 T ELT)) (-1414 (((-580 (-83)) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2507 (((-55) $) 12 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-155) (-13 (-158) (-10 -8 (-15 -1411 ((-629 $) (-441)))))) (T -155)) -((-1411 (*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-155))) (-5 *1 (-155))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1471 ((|#1| $) 7 T ELT)) (-3929 (((-767) $) 14 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1412 (((-580 (-1086)) $) 10 T ELT)) (-3042 (((-83) $ $) 12 T ELT))) -(((-156 |#1|) (-13 (-1007) (-10 -8 (-15 -1471 (|#1| $)) (-15 -1412 ((-580 (-1086)) $)))) (-158)) (T -156)) -((-1471 (*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) -((-1413 (((-580 (-769)) $) 16 T ELT)) (-1415 (((-159) $) 8 T ELT)) (-1414 (((-580 (-83)) $) 13 T ELT)) (-2507 (((-55) $) 10 T ELT))) -(((-157 |#1|) (-10 -7 (-15 -1413 ((-580 (-769)) |#1|)) (-15 -1414 ((-580 (-83)) |#1|)) (-15 -1415 ((-159) |#1|)) (-15 -2507 ((-55) |#1|))) (-158)) (T -157)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1413 (((-580 (-769)) $) 22 T ELT)) (-3525 (((-441) $) 19 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1415 (((-159) $) 24 T ELT)) (-2619 (((-83) $ (-441)) 17 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1414 (((-580 (-83)) $) 23 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2507 (((-55) $) 18 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-158) (-111)) (T -158)) -((-1415 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-580 (-83))))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-580 (-769)))))) -(-13 (-742 (-441)) (-10 -8 (-15 -1415 ((-159) $)) (-15 -1414 ((-580 (-83)) $)) (-15 -1413 ((-580 (-769)) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-742 (-441)) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3929 (((-767) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 10 T ELT))) -(((-159) (-13 (-1007) (-10 -8 (-15 -9 ($) -3935) (-15 -8 ($) -3935) (-15 -7 ($) -3935)))) (T -159)) -((-9 (*1 *1) (-5 *1 (-159))) (-8 (*1 *1) (-5 *1 (-159))) (-7 (*1 *1) (-5 *1 (-159)))) -((-3625 ((|#2| |#2|) 28 T ELT)) (-3628 (((-83) |#2|) 19 T ELT)) (-3626 (((-262 |#1|) |#2|) 12 T ELT)) (-3627 (((-262 |#1|) |#2|) 14 T ELT)) (-3623 ((|#2| |#2| (-1081)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3629 (((-140 (-262 |#1|)) |#2|) 10 T ELT)) (-3624 ((|#2| |#2| (-1081)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-160 |#1| |#2|) (-10 -7 (-15 -3623 (|#2| |#2|)) (-15 -3623 (|#2| |#2| (-1081))) (-15 -3624 (|#2| |#2|)) (-15 -3624 (|#2| |#2| (-1081))) (-15 -3626 ((-262 |#1|) |#2|)) (-15 -3627 ((-262 |#1|) |#2|)) (-15 -3628 ((-83) |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3629 ((-140 (-262 |#1|)) |#2|))) (-13 (-491) (-945 (-480))) (-13 (-27) (-1106) (-359 (-140 |#1|)))) (T -160)) -((-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-140 (-262 *4))) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3)))))) (-3628 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-262 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-262 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3624 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3)))))) (-3623 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 (-140 *4)))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3))))))) -((-1419 (((-1170 (-627 (-852 |#1|))) (-1170 (-627 |#1|))) 26 T ELT)) (-3929 (((-1170 (-627 (-345 (-852 |#1|)))) (-1170 (-627 |#1|))) 37 T ELT))) -(((-161 |#1|) (-10 -7 (-15 -1419 ((-1170 (-627 (-852 |#1|))) (-1170 (-627 |#1|)))) (-15 -3929 ((-1170 (-627 (-345 (-852 |#1|)))) (-1170 (-627 |#1|))))) (-144)) (T -161)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-1170 (-627 *4))) (-4 *4 (-144)) (-5 *2 (-1170 (-627 (-345 (-852 *4))))) (-5 *1 (-161 *4)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-1170 (-627 *4))) (-4 *4 (-144)) (-5 *2 (-1170 (-627 (-852 *4)))) (-5 *1 (-161 *4))))) -((-1427 (((-1083 (-345 (-480))) (-1083 (-345 (-480))) (-1083 (-345 (-480)))) 93 T ELT)) (-1429 (((-1083 (-345 (-480))) (-580 (-480)) (-580 (-480))) 106 T ELT)) (-1420 (((-1083 (-345 (-480))) (-825)) 54 T ELT)) (-3837 (((-1083 (-345 (-480))) (-825)) 79 T ELT)) (-3751 (((-345 (-480)) (-1083 (-345 (-480)))) 89 T ELT)) (-1421 (((-1083 (-345 (-480))) (-825)) 37 T ELT)) (-1424 (((-1083 (-345 (-480))) (-825)) 66 T ELT)) (-1423 (((-1083 (-345 (-480))) (-825)) 61 T ELT)) (-1426 (((-1083 (-345 (-480))) (-1083 (-345 (-480))) (-1083 (-345 (-480)))) 87 T ELT)) (-2877 (((-1083 (-345 (-480))) (-825)) 29 T ELT)) (-1425 (((-345 (-480)) (-1083 (-345 (-480))) (-1083 (-345 (-480)))) 91 T ELT)) (-1422 (((-1083 (-345 (-480))) (-825)) 35 T ELT)) (-1428 (((-1083 (-345 (-480))) (-580 (-825))) 100 T ELT))) -(((-162) (-10 -7 (-15 -2877 ((-1083 (-345 (-480))) (-825))) (-15 -1420 ((-1083 (-345 (-480))) (-825))) (-15 -1421 ((-1083 (-345 (-480))) (-825))) (-15 -1422 ((-1083 (-345 (-480))) (-825))) (-15 -1423 ((-1083 (-345 (-480))) (-825))) (-15 -1424 ((-1083 (-345 (-480))) (-825))) (-15 -3837 ((-1083 (-345 (-480))) (-825))) (-15 -1425 ((-345 (-480)) (-1083 (-345 (-480))) (-1083 (-345 (-480))))) (-15 -1426 ((-1083 (-345 (-480))) (-1083 (-345 (-480))) (-1083 (-345 (-480))))) (-15 -3751 ((-345 (-480)) (-1083 (-345 (-480))))) (-15 -1427 ((-1083 (-345 (-480))) (-1083 (-345 (-480))) (-1083 (-345 (-480))))) (-15 -1428 ((-1083 (-345 (-480))) (-580 (-825)))) (-15 -1429 ((-1083 (-345 (-480))) (-580 (-480)) (-580 (-480)))))) (T -162)) -((-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1427 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1083 (-345 (-480)))) (-5 *2 (-345 (-480))) (-5 *1 (-162)))) (-1426 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1425 (*1 *2 *3 *3) (-12 (-5 *3 (-1083 (-345 (-480)))) (-5 *2 (-345 (-480))) (-5 *1 (-162)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -((-1431 (((-343 (-1076 (-480))) (-480)) 38 T ELT)) (-1430 (((-580 (-1076 (-480))) (-480)) 33 T ELT)) (-2787 (((-1076 (-480)) (-480)) 28 T ELT))) -(((-163) (-10 -7 (-15 -1430 ((-580 (-1076 (-480))) (-480))) (-15 -2787 ((-1076 (-480)) (-480))) (-15 -1431 ((-343 (-1076 (-480))) (-480))))) (T -163)) -((-1431 (*1 *2 *3) (-12 (-5 *2 (-343 (-1076 (-480)))) (-5 *1 (-163)) (-5 *3 (-480)))) (-2787 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-163)) (-5 *3 (-480)))) (-1430 (*1 *2 *3) (-12 (-5 *2 (-580 (-1076 (-480)))) (-5 *1 (-163)) (-5 *3 (-480))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1432 ((|#2| $ (-689) |#2|) 11 T ELT)) (-3098 ((|#2| $ (-689)) 10 T ELT)) (-3597 (($) 8 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 23 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 13 T ELT))) -(((-164 |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -3597 ($)) (-15 -3098 (|#2| $ (-689))) (-15 -1432 (|#2| $ (-689) |#2|)))) (-825) (-1007)) (T -164)) -((-3597 (*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-825)) (-4 *3 (-1007)))) (-3098 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *2 (-1007)) (-5 *1 (-164 *4 *2)) (-14 *4 (-825)))) (-1432 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-164 *4 *2)) (-14 *4 (-825)) (-4 *2 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1953 (((-1176) $) 36 T ELT) (((-1176) $ (-825) (-825)) 40 T ELT)) (-3783 (($ $ (-897)) 19 T ELT) (((-201 (-1064)) $ (-1081)) 15 T ELT)) (-3600 (((-1176) $) 34 T ELT)) (-3929 (((-767) $) 31 T ELT) (($ (-580 |#1|)) 8 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $ $) 26 T ELT)) (-3822 (($ $ $) 22 T ELT))) -(((-165 |#1|) (-13 (-1007) (-552 (-580 |#1|)) (-10 -8 (-15 -3783 ($ $ (-897))) (-15 -3783 ((-201 (-1064)) $ (-1081))) (-15 -3822 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $)) (-15 -1953 ((-1176) $ (-825) (-825))))) (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))) (T -165)) -((-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-201 (-1064))) (-5 *1 (-165 *4)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ *3)) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))))) (-3820 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) (-15 -1953 (*2 $))))))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) (-15 -1953 (*2 $))))))) (-1953 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-165 *4)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) (-15 -1953 (*2 $)))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 10 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2837 (($ (-574 |#1|)) 11 T ELT)) (-3929 (((-767) $) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-166 |#1|) (-13 (-747) (-10 -8 (-15 -2837 ($ (-574 |#1|))))) (-580 (-1081))) (T -166)) -((-2837 (*1 *1 *2) (-12 (-5 *2 (-574 *3)) (-14 *3 (-580 (-1081))) (-5 *1 (-166 *3))))) -((-1433 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1433 (|#2| |#4| (-1 |#2| |#2|)))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -167)) -((-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-309)) (-4 *6 (-1146 (-345 *2))) (-4 *2 (-1146 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-288 *5 *2 *6))))) -((-1437 ((|#2| |#2| (-689) |#2|) 55 T ELT)) (-1436 ((|#2| |#2| (-689) |#2|) 51 T ELT)) (-2359 (((-580 |#2|) (-580 (-2 (|:| |deg| (-689)) (|:| -2561 |#2|)))) 79 T ELT)) (-1435 (((-580 (-2 (|:| |deg| (-689)) (|:| -2561 |#2|))) |#2|) 72 T ELT)) (-1438 (((-83) |#2|) 70 T ELT)) (-3716 (((-343 |#2|) |#2|) 92 T ELT)) (-3715 (((-343 |#2|) |#2|) 91 T ELT)) (-2360 ((|#2| |#2| (-689) |#2|) 49 T ELT)) (-1434 (((-2 (|:| |cont| |#1|) (|:| -1768 (-580 (-2 (|:| |irr| |#2|) (|:| -2383 (-480)))))) |#2| (-83)) 86 T ELT))) -(((-168 |#1| |#2|) (-10 -7 (-15 -3715 ((-343 |#2|) |#2|)) (-15 -3716 ((-343 |#2|) |#2|)) (-15 -1434 ((-2 (|:| |cont| |#1|) (|:| -1768 (-580 (-2 (|:| |irr| |#2|) (|:| -2383 (-480)))))) |#2| (-83))) (-15 -1435 ((-580 (-2 (|:| |deg| (-689)) (|:| -2561 |#2|))) |#2|)) (-15 -2359 ((-580 |#2|) (-580 (-2 (|:| |deg| (-689)) (|:| -2561 |#2|))))) (-15 -2360 (|#2| |#2| (-689) |#2|)) (-15 -1436 (|#2| |#2| (-689) |#2|)) (-15 -1437 (|#2| |#2| (-689) |#2|)) (-15 -1438 ((-83) |#2|))) (-296) (-1146 |#1|)) (T -168)) -((-1438 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4)))) (-1437 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4)))) (-1436 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4)))) (-2360 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| |deg| (-689)) (|:| -2561 *5)))) (-4 *5 (-1146 *4)) (-4 *4 (-296)) (-5 *2 (-580 *5)) (-5 *1 (-168 *4 *5)))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-580 (-2 (|:| |deg| (-689)) (|:| -2561 *3)))) (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4)))) (-1434 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-296)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) (-5 *1 (-168 *5 *3)) (-4 *3 (-1146 *5)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-343 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-343 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-480) $) NIL (|has| (-480) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-480) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-3141 (((-480) $) NIL T ELT) (((-1081) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-480) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-480) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-480) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-480) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| (-480) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-3941 (($ (-1 (-480) (-480)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-480) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-480) (-255)) ELT) (((-345 (-480)) $) NIL T ELT)) (-3115 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-480)) (-580 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-480) (-480)) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-246 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-246 (-480)))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-1081)) (-580 (-480))) NIL (|has| (-480) (-449 (-1081) (-480))) ELT) (($ $ (-1081) (-480)) NIL (|has| (-480) (-449 (-1081) (-480))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-480)) NIL (|has| (-480) (-239 (-480) (-480))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-480) $) NIL T ELT)) (-1439 (($ (-345 (-480))) 9 T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-480) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-480) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-480) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-480) (-928)) ELT) (((-177) $) NIL (|has| (-480) (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-480) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 8 T ELT) (($ (-480)) NIL T ELT) (($ (-1081)) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL T ELT) (((-912 10) $) 10 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-480) (-816))) (|has| (-480) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| (-480) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3932 (($ $ $) NIL T ELT) (($ (-480) (-480)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ (-480)) NIL T ELT))) -(((-169) (-13 (-899 (-480)) (-549 (-345 (-480))) (-549 (-912 10)) (-10 -8 (-15 -3113 ((-345 (-480)) $)) (-15 -1439 ($ (-345 (-480))))))) (T -169)) -((-3113 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-169)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-169))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3303 (((-1020) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3163 (((-418) $) 11 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 16 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-170) (-13 (-989) (-10 -8 (-15 -3163 ((-418) $)) (-15 -3303 ((-1020) $)) (-15 -3218 ((-1040) $))))) (T -170)) -((-3163 (*1 *2 *1) (-12 (-5 *2 (-418)) (-5 *1 (-170)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-170)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-170))))) -((-3795 (((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-998 (-745 |#2|)) (-1064)) 29 T ELT) (((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-998 (-745 |#2|))) 25 T ELT)) (-1440 (((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1081) (-745 |#2|) (-745 |#2|) (-83)) 17 T ELT))) -(((-171 |#1| |#2|) (-10 -7 (-15 -3795 ((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-998 (-745 |#2|)))) (-15 -3795 ((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-998 (-745 |#2|)) (-1064))) (-15 -1440 ((-3 (|:| |f1| (-745 |#2|)) (|:| |f2| (-580 (-745 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1081) (-745 |#2|) (-745 |#2|) (-83)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-866) (-29 |#1|))) (T -171)) -((-1440 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1081)) (-5 *6 (-83)) (-4 *7 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-4 *3 (-13 (-1106) (-866) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-171 *7 *3)) (-5 *5 (-745 *3)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-745 *3))) (-5 *5 (-1064)) (-4 *3 (-13 (-1106) (-866) (-29 *6))) (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *6 *3)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-745 *3))) (-4 *3 (-13 (-1106) (-866) (-29 *5))) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *5 *3))))) -((-3795 (((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-345 (-852 |#1|)) (-998 (-745 (-345 (-852 |#1|)))) (-1064)) 49 T ELT) (((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-345 (-852 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-262 |#1|))) (-1064)) 50 T ELT) (((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-262 |#1|)))) 22 T ELT))) -(((-172 |#1|) (-10 -7 (-15 -3795 ((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-345 (-852 |#1|)) (-998 (-745 (-262 |#1|))))) (-15 -3795 ((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-262 |#1|))) (-1064))) (-15 -3795 ((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-345 (-852 |#1|)))))) (-15 -3795 ((-3 (|:| |f1| (-745 (-262 |#1|))) (|:| |f2| (-580 (-745 (-262 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-345 (-852 |#1|)) (-998 (-745 (-345 (-852 |#1|)))) (-1064)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (T -172)) -((-3795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-745 (-345 (-852 *6))))) (-5 *5 (-1064)) (-5 *3 (-345 (-852 *6))) (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 (-262 *6))) (|:| |f2| (-580 (-745 (-262 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-172 *6)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-745 (-345 (-852 *5))))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 (-262 *5))) (|:| |f2| (-580 (-745 (-262 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 (-852 *6))) (-5 *4 (-998 (-745 (-262 *6)))) (-5 *5 (-1064)) (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 (-262 *6))) (|:| |f2| (-580 (-745 (-262 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *6)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-998 (-745 (-262 *5)))) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |f1| (-745 (-262 *5))) (|:| |f2| (-580 (-745 (-262 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5))))) -((-3825 (((-2 (|:| -1992 (-1076 |#1|)) (|:| |deg| (-825))) (-1076 |#1|)) 26 T ELT)) (-3946 (((-580 (-262 |#2|)) (-262 |#2|) (-825)) 51 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3825 ((-2 (|:| -1992 (-1076 |#1|)) (|:| |deg| (-825))) (-1076 |#1|))) (-15 -3946 ((-580 (-262 |#2|)) (-262 |#2|) (-825)))) (-956) (-491)) (T -173)) -((-3946 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-4 *6 (-491)) (-5 *2 (-580 (-262 *6))) (-5 *1 (-173 *5 *6)) (-5 *3 (-262 *6)) (-4 *5 (-956)))) (-3825 (*1 *2 *3) (-12 (-4 *4 (-956)) (-5 *2 (-2 (|:| -1992 (-1076 *4)) (|:| |deg| (-825)))) (-5 *1 (-173 *4 *5)) (-5 *3 (-1076 *4)) (-4 *5 (-491))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1484 ((|#1| $) NIL T ELT)) (-3307 ((|#1| $) 31 T ELT)) (-3707 (($) NIL T CONST)) (-2988 (($ $) NIL T ELT)) (-2285 (($ $) 40 T ELT)) (-3309 ((|#1| |#1| $) NIL T ELT)) (-3308 ((|#1| $) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3816 (((-689) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) NIL T ELT)) (-1482 ((|#1| |#1| $) 36 T ELT)) (-1481 ((|#1| |#1| $) 38 T ELT)) (-3592 (($ |#1| $) NIL T ELT)) (-2589 (((-689) $) 34 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2987 ((|#1| $) NIL T ELT)) (-1480 ((|#1| $) 32 T ELT)) (-1479 ((|#1| $) 30 T ELT)) (-1265 ((|#1| $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2990 ((|#1| |#1| $) NIL T ELT)) (-3386 (((-83) $) 9 T ELT)) (-3548 (($) NIL T ELT)) (-2989 ((|#1| $) NIL T ELT)) (-1485 (($) NIL T ELT) (($ (-580 |#1|)) 17 T ELT)) (-3306 (((-689) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1483 ((|#1| $) 14 T ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) NIL T ELT)) (-2986 ((|#1| $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-174 |#1|) (-13 (-212 |#1|) (-10 -8 (-15 -1485 ($ (-580 |#1|))))) (-1007)) (T -174)) -((-1485 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-174 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1442 (($ (-262 |#1|)) 24 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2650 (((-83) $) NIL T ELT)) (-3142 (((-3 (-262 |#1|) #1#) $) NIL T ELT)) (-3141 (((-262 |#1|) $) NIL T ELT)) (-3942 (($ $) 32 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3941 (($ (-1 (-262 |#1|) (-262 |#1|)) $) NIL T ELT)) (-3159 (((-262 |#1|) $) NIL T ELT)) (-1444 (($ $) 31 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1443 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($ (-689)) NIL T ELT)) (-1441 (($ $) 33 T ELT)) (-3931 (((-480) $) NIL T ELT)) (-3929 (((-767) $) 65 T ELT) (($ (-480)) NIL T ELT) (($ (-262 |#1|)) NIL T ELT)) (-3660 (((-262 |#1|) $ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 26 T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) 29 T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 20 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-262 |#1|) $) 19 T ELT))) -(((-175 |#1| |#2|) (-13 (-557 (-262 |#1|)) (-945 (-262 |#1|)) (-10 -8 (-15 -3159 ((-262 |#1|) $)) (-15 -1444 ($ $)) (-15 -3942 ($ $)) (-15 -3660 ((-262 |#1|) $ $)) (-15 -2397 ($ (-689))) (-15 -1443 ((-83) $)) (-15 -2650 ((-83) $)) (-15 -3931 ((-480) $)) (-15 -3941 ($ (-1 (-262 |#1|) (-262 |#1|)) $)) (-15 -1442 ($ (-262 |#1|))) (-15 -1441 ($ $)))) (-13 (-956) (-751)) (-580 (-1081))) (T -175)) -((-3159 (*1 *2 *1) (-12 (-5 *2 (-262 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) (-14 *3 (-580 (-1081))))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) (-14 *3 (-580 (-1081))))) (-3660 (*1 *2 *1 *1) (-12 (-5 *2 (-262 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) (-14 *4 (-580 (-1081))))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-262 *3) (-262 *3))) (-4 *3 (-13 (-956) (-751))) (-5 *1 (-175 *3 *4)) (-14 *4 (-580 (-1081))))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-262 *3)) (-4 *3 (-13 (-956) (-751))) (-5 *1 (-175 *3 *4)) (-14 *4 (-580 (-1081))))) (-1441 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) (-14 *3 (-580 (-1081)))))) -((-1445 (((-83) (-1064)) 26 T ELT)) (-1446 (((-3 (-745 |#2|) #1="failed") (-547 |#2|) |#2| (-745 |#2|) (-745 |#2|) (-83)) 35 T ELT)) (-1447 (((-3 (-83) #1#) (-1076 |#2|) (-745 |#2|) (-745 |#2|) (-83)) 83 T ELT) (((-3 (-83) #1#) (-852 |#1|) (-1081) (-745 |#2|) (-745 |#2|) (-83)) 84 T ELT))) -(((-176 |#1| |#2|) (-10 -7 (-15 -1445 ((-83) (-1064))) (-15 -1446 ((-3 (-745 |#2|) #1="failed") (-547 |#2|) |#2| (-745 |#2|) (-745 |#2|) (-83))) (-15 -1447 ((-3 (-83) #1#) (-852 |#1|) (-1081) (-745 |#2|) (-745 |#2|) (-83))) (-15 -1447 ((-3 (-83) #1#) (-1076 |#2|) (-745 |#2|) (-745 |#2|) (-83)))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-29 |#1|))) (T -176)) -((-1447 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1076 *6)) (-5 *4 (-745 *6)) (-4 *6 (-13 (-1106) (-29 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-176 *5 *6)))) (-1447 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-852 *6)) (-5 *4 (-1081)) (-5 *5 (-745 *7)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-176 *6 *7)))) (-1446 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-745 *4)) (-5 *3 (-547 *4)) (-5 *5 (-83)) (-4 *4 (-13 (-1106) (-29 *6))) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-176 *6 *4)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 86 T ELT)) (-3114 (((-480) $) 18 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3754 (($ $) NIL T ELT)) (-3475 (($ $) 73 T ELT)) (-3622 (($ $) 61 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-3023 (($ $) 52 T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3473 (($ $) 71 T ELT)) (-3621 (($ $) 59 T ELT)) (-3606 (((-480) $) 83 T ELT)) (-3477 (($ $) 76 T ELT)) (-3620 (($ $) 63 T ELT)) (-3707 (($) NIL T CONST)) (-3112 (($ $) NIL T ELT)) (-3142 (((-3 (-480) #1#) $) 116 T ELT) (((-3 (-345 (-480)) #1#) $) 113 T ELT)) (-3141 (((-480) $) 114 T ELT) (((-345 (-480)) $) 111 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 91 T ELT)) (-1733 (((-345 (-480)) $ (-689)) 106 T ELT) (((-345 (-480)) $ (-689) (-689)) 105 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-1757 (((-825)) 12 T ELT) (((-825) (-825)) NIL (|has| $ (-6 -3969)) ELT)) (-3171 (((-83) $) 107 T ELT)) (-3610 (($) 31 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL T ELT)) (-3755 (((-480) $) 25 T ELT)) (-2398 (((-83) $) 87 T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3172 (((-83) $) 85 T ELT)) (-1448 (((-83) $) 140 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) 49 T ELT) (($) 21 (-12 (-2546 (|has| $ (-6 -3961))) (-2546 (|has| $ (-6 -3969)))) ELT)) (-2843 (($ $ $) 48 T ELT) (($) 20 (-12 (-2546 (|has| $ (-6 -3961))) (-2546 (|has| $ (-6 -3969)))) ELT)) (-1759 (((-480) $) 10 T ELT)) (-1732 (($ $) 16 T ELT)) (-1731 (($ $) 53 T ELT)) (-3925 (($ $) 58 T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-1756 (((-825) (-480)) NIL (|has| $ (-6 -3969)) ELT)) (-3228 (((-1025) $) 89 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL T ELT)) (-3115 (($ $) NIL T ELT)) (-3239 (($ (-480) (-480)) NIL T ELT) (($ (-480) (-480) (-825)) 98 T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2389 (((-480) $) 11 T ELT)) (-1730 (($) 30 T ELT)) (-3926 (($ $) 57 T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2601 (((-825)) NIL T ELT) (((-825) (-825)) NIL (|has| $ (-6 -3969)) ELT)) (-3741 (($ $) 92 T ELT) (($ $ (-689)) NIL T ELT)) (-1755 (((-825) (-480)) NIL (|has| $ (-6 -3969)) ELT)) (-3478 (($ $) 74 T ELT)) (-3619 (($ $) 64 T ELT)) (-3476 (($ $) 75 T ELT)) (-3618 (($ $) 62 T ELT)) (-3474 (($ $) 72 T ELT)) (-3617 (($ $) 60 T ELT)) (-3955 (((-325) $) 102 T ELT) (((-177) $) 99 T ELT) (((-795 (-325)) $) NIL T ELT) (((-469) $) 38 T ELT)) (-3929 (((-767) $) 35 T ELT) (($ (-480)) 56 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-480)) 56 T ELT) (($ (-345 (-480))) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (($ $) NIL T ELT)) (-1758 (((-825)) 19 T ELT) (((-825) (-825)) NIL (|has| $ (-6 -3969)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (((-825)) 7 T ELT)) (-3481 (($ $) 79 T ELT)) (-3469 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3479 (($ $) 77 T ELT)) (-3467 (($ $) 65 T ELT)) (-3483 (($ $) 82 T ELT)) (-3471 (($ $) 70 T ELT)) (-3484 (($ $) 80 T ELT)) (-3472 (($ $) 68 T ELT)) (-3482 (($ $) 81 T ELT)) (-3470 (($ $) 69 T ELT)) (-3480 (($ $) 78 T ELT)) (-3468 (($ $) 66 T ELT)) (-3366 (($ $) 108 T ELT)) (-2646 (($) 27 T CONST)) (-2652 (($) 28 T CONST)) (-3370 (($ $) 95 T ELT)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3367 (($ $ $) 97 T ELT)) (-2552 (((-83) $ $) 42 T ELT)) (-2553 (((-83) $ $) 40 T ELT)) (-3042 (((-83) $ $) 50 T ELT)) (-2670 (((-83) $ $) 41 T ELT)) (-2671 (((-83) $ $) 39 T ELT)) (-3932 (($ $ $) 29 T ELT) (($ $ (-480)) 51 T ELT)) (-3820 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3822 (($ $ $) 44 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 54 T ELT) (($ $ (-345 (-480))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-177) (-13 (-342) (-188) (-1106) (-550 (-469)) (-10 -8 (-15 -3932 ($ $ (-480))) (-15 ** ($ $ $)) (-15 -1730 ($)) (-15 -1732 ($ $)) (-15 -1731 ($ $)) (-15 -3469 ($ $ $)) (-15 -3370 ($ $)) (-15 -3367 ($ $ $)) (-15 -1733 ((-345 (-480)) $ (-689))) (-15 -1733 ((-345 (-480)) $ (-689) (-689))) (-15 -1448 ((-83) $))))) (T -177)) -((** (*1 *1 *1 *1) (-5 *1 (-177))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-177)))) (-1730 (*1 *1) (-5 *1 (-177))) (-1732 (*1 *1 *1) (-5 *1 (-177))) (-1731 (*1 *1 *1) (-5 *1 (-177))) (-3469 (*1 *1 *1 *1) (-5 *1 (-177))) (-3370 (*1 *1 *1) (-5 *1 (-177))) (-3367 (*1 *1 *1 *1) (-5 *1 (-177))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-177)))) (-1733 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-177)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) -((-3369 (((-140 (-177)) (-689) (-140 (-177))) 11 T ELT) (((-177) (-689) (-177)) 12 T ELT)) (-1449 (((-140 (-177)) (-140 (-177))) 13 T ELT) (((-177) (-177)) 14 T ELT)) (-1450 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 19 T ELT) (((-177) (-177) (-177)) 22 T ELT)) (-3368 (((-140 (-177)) (-140 (-177))) 27 T ELT) (((-177) (-177)) 26 T ELT)) (-3372 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 57 T ELT) (((-177) (-177) (-177)) 49 T ELT)) (-3374 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 62 T ELT) (((-177) (-177) (-177)) 60 T ELT)) (-3371 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 15 T ELT) (((-177) (-177) (-177)) 16 T ELT)) (-3373 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 17 T ELT) (((-177) (-177) (-177)) 18 T ELT)) (-3376 (((-140 (-177)) (-140 (-177))) 74 T ELT) (((-177) (-177)) 73 T ELT)) (-3375 (((-177) (-177)) 68 T ELT) (((-140 (-177)) (-140 (-177))) 72 T ELT)) (-3370 (((-140 (-177)) (-140 (-177))) 8 T ELT) (((-177) (-177)) 9 T ELT)) (-3367 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 35 T ELT) (((-177) (-177) (-177)) 31 T ELT))) -(((-178) (-10 -7 (-15 -3370 ((-177) (-177))) (-15 -3370 ((-140 (-177)) (-140 (-177)))) (-15 -3367 ((-177) (-177) (-177))) (-15 -3367 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -1449 ((-177) (-177))) (-15 -1449 ((-140 (-177)) (-140 (-177)))) (-15 -3368 ((-177) (-177))) (-15 -3368 ((-140 (-177)) (-140 (-177)))) (-15 -3369 ((-177) (-689) (-177))) (-15 -3369 ((-140 (-177)) (-689) (-140 (-177)))) (-15 -3371 ((-177) (-177) (-177))) (-15 -3371 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3372 ((-177) (-177) (-177))) (-15 -3372 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3373 ((-177) (-177) (-177))) (-15 -3373 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3374 ((-177) (-177) (-177))) (-15 -3374 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3375 ((-140 (-177)) (-140 (-177)))) (-15 -3375 ((-177) (-177))) (-15 -3376 ((-177) (-177))) (-15 -3376 ((-140 (-177)) (-140 (-177)))) (-15 -1450 ((-177) (-177) (-177))) (-15 -1450 ((-140 (-177)) (-140 (-177)) (-140 (-177)))))) (T -178)) -((-1450 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1450 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3374 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3374 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3369 (*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-689)) (-5 *1 (-178)))) (-3369 (*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-689)) (-5 *1 (-178)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689) (-689)) NIL T ELT)) (-2338 (($ $ $) NIL T ELT)) (-3397 (($ (-1170 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3856 (($ |#1| |#1| |#1|) 33 T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2337 (($ $ (-480) (-480)) NIL T ELT)) (-2336 (($ $ (-480) (-480)) NIL T ELT)) (-2335 (($ $ (-480) (-480) (-480) (-480)) NIL T ELT)) (-2340 (($ $) NIL T ELT)) (-3108 (((-83) $) NIL T ELT)) (-2334 (($ $ (-480) (-480) $) NIL T ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480)) $) NIL T ELT)) (-1247 (($ $ (-480) (-1170 |#1|)) NIL T ELT)) (-1246 (($ $ (-480) (-1170 |#1|)) NIL T ELT)) (-3830 (($ |#1| |#1| |#1|) 32 T ELT)) (-3316 (($ (-689) |#1|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) NIL (|has| |#1| (-255)) ELT)) (-3097 (((-1170 |#1|) $ (-480)) NIL T ELT)) (-1451 (($ |#1|) 31 T ELT)) (-1452 (($ |#1|) 30 T ELT)) (-1453 (($ |#1|) 29 T ELT)) (-3094 (((-689) $) NIL (|has| |#1| (-491)) ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-3098 ((|#1| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3093 (((-689) $) NIL (|has| |#1| (-491)) ELT)) (-3092 (((-580 (-1170 |#1|)) $) NIL (|has| |#1| (-491)) ELT)) (-3100 (((-689) $) NIL T ELT)) (-3597 (($ (-689) (-689) |#1|) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3310 ((|#1| $) NIL (|has| |#1| (-6 (-3980 #1="*"))) ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-3109 (($ (-580 (-580 |#1|))) 11 T ELT) (($ (-689) (-689) (-1 |#1| (-480) (-480))) NIL T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3577 (((-580 (-580 |#1|)) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3573 (((-3 $ #2="failed") $) NIL (|has| |#1| (-309)) ELT)) (-1454 (($) 12 T ELT)) (-2339 (($ $ $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-3449 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) (-480)) NIL T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480))) NIL T ELT)) (-3315 (($ (-580 |#1|)) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3311 ((|#1| $) NIL (|has| |#1| (-6 (-3980 #1#))) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3096 (((-1170 |#1|) $ (-480)) NIL T ELT)) (-3929 (($ (-1170 |#1|)) NIL T ELT) (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-480) $) NIL T ELT) (((-1170 |#1|) $ (-1170 |#1|)) 15 T ELT) (((-1170 |#1|) (-1170 |#1|) $) NIL T ELT) (((-849 |#1|) $ (-849 |#1|)) 21 T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-179 |#1|) (-13 (-624 |#1| (-1170 |#1|) (-1170 |#1|)) (-10 -8 (-15 * ((-849 |#1|) $ (-849 |#1|))) (-15 -1454 ($)) (-15 -1453 ($ |#1|)) (-15 -1452 ($ |#1|)) (-15 -1451 ($ |#1|)) (-15 -3830 ($ |#1| |#1| |#1|)) (-15 -3856 ($ |#1| |#1| |#1|)))) (-13 (-309) (-1106))) (T -179)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106))) (-5 *1 (-179 *3)))) (-1454 (*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) (-1453 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) (-1452 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) (-1451 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) (-3830 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) (-3856 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106)))))) -((-1559 (($ (-1 (-83) |#2|) $) 16 T ELT)) (-3388 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 28 T ELT)) (-1455 (($) NIL T ELT) (($ (-580 |#2|)) 11 T ELT)) (-3042 (((-83) $ $) 26 T ELT))) -(((-180 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -1559 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3388 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3388 (|#1| |#2| |#1|)) (-15 -1455 (|#1| (-580 |#2|))) (-15 -1455 (|#1|))) (-181 |#2|) (-1007)) (T -180)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-181 |#1|) (-111) (-1007)) (T -181)) -NIL -(-13 (-191 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-191 |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-1 |#1| |#1|) (-689)) 63 T ELT) (($ $ (-1 |#1| |#1|)) 62 T ELT) (($ $ (-1081)) 61 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 59 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 58 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 57 (|has| |#1| (-806 (-1081))) ELT) (($ $) 53 (|has| |#1| (-187)) ELT) (($ $ (-689)) 51 (|has| |#1| (-187)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#1| |#1|) (-689)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1081)) 60 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 56 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 55 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 54 (|has| |#1| (-806 (-1081))) ELT) (($ $) 52 (|has| |#1| (-187)) ELT) (($ $ (-689)) 50 (|has| |#1| (-187)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-182 |#1|) (-111) (-956)) (T -182)) -NIL -(-13 (-956) (-223 |t#1|) (-10 -7 (IF (|has| |t#1| (-188)) (-6 (-188)) |%noBranch|) (IF (|has| |t#1| (-804 (-1081))) (-6 (-804 (-1081))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-223 |#1|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2655 ((|#2| $) 9 T ELT))) -(((-183 |#1| |#2|) (-10 -7 (-15 -2655 (|#2| |#1|))) (-184 |#2|) (-1120)) (T -183)) -NIL -((-3741 ((|#1| $) 7 T ELT)) (-2655 ((|#1| $) 6 T ELT))) -(((-184 |#1|) (-111) (-1120)) (T -184)) -((-3741 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1120)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3741 (|t#1| $)) (-15 -2655 (|t#1| $)))) -(((-13) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-689)) 42 T ELT) (($ $) 40 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2655 (($ $ (-689)) 43 T ELT) (($ $) 41 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-185 |#1|) (-111) (-956)) (T -185)) -NIL -(-13 (-80 |t#1| |t#1|) (-187) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-651 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-184 $) . T) ((-187) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-3741 (($ $) NIL T ELT) (($ $ (-689)) 9 T ELT)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) 11 T ELT))) -(((-186 |#1|) (-10 -7 (-15 -2655 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-689))) (-15 -2655 (|#1| |#1|)) (-15 -3741 (|#1| |#1|))) (-187)) (T -186)) -NIL -((-3741 (($ $) 7 T ELT) (($ $ (-689)) 10 T ELT)) (-2655 (($ $) 6 T ELT) (($ $ (-689)) 9 T ELT))) -(((-187) (-111)) (T -187)) -((-3741 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-689)))) (-2655 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-689))))) -(-13 (-184 $) (-10 -8 (-15 -3741 ($ $ (-689))) (-15 -2655 ($ $ (-689))))) -(((-184 $) . T) ((-13) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-689)) 48 T ELT) (($ $) 46 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-689)) 49 T ELT) (($ $) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-188) (-111)) (T -188)) -NIL -(-13 (-956) (-187)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-184 $) . T) ((-187) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-3707 (($) 30 T CONST)) (-3450 (((-3 $ "failed") $) 35 T ELT)) (-3171 (((-83) $) 28 T ELT)) (-2398 (((-83) $) 37 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 29 T CONST)) (-2652 (($) 38 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3822 (($ $ $) 25 T ELT)) (** (($ $ (-825)) 39 T ELT) (($ $ (-689)) 36 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT) (($ $ $) 40 T ELT))) -(((-189) (-111)) (T -189)) -NIL -(-13 (-711) (-1052)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-660) . T) ((-711) . T) ((-713) . T) ((-751) . T) ((-754) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-1455 (($) 12 T ELT) (($ (-580 |#2|)) NIL T ELT)) (-3383 (($ $) 14 T ELT)) (-3513 (($ (-580 |#2|)) 10 T ELT)) (-3929 (((-767) $) 21 T ELT))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3929 ((-767) |#1|)) (-15 -1455 (|#1| (-580 |#2|))) (-15 -1455 (|#1|)) (-15 -3513 (|#1| (-580 |#2|))) (-15 -3383 (|#1| |#1|))) (-191 |#2|) (-1007)) (T -190)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-191 |#1|) (-111) (-1007)) (T -191)) -((-1455 (*1 *1) (-12 (-4 *1 (-191 *2)) (-4 *2 (-1007)))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-191 *3)))) (-3388 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-191 *2)) (-4 *2 (-1007)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-191 *3)) (-4 *3 (-1007)))) (-1559 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-191 *3)) (-4 *3 (-1007))))) -(-13 (-76 |t#1|) (-122 |t#1|) (-10 -8 (-15 -1455 ($)) (-15 -1455 ($ (-580 |t#1|))) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3388 ($ |t#1| $)) (-15 -3388 ($ (-1 (-83) |t#1|) $)) (-15 -1559 ($ (-1 (-83) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-1456 (((-2 (|:| |varOrder| (-580 (-1081))) (|:| |inhom| (-3 (-580 (-1170 (-689))) "failed")) (|:| |hom| (-580 (-1170 (-689))))) (-246 (-852 (-480)))) 42 T ELT))) -(((-192) (-10 -7 (-15 -1456 ((-2 (|:| |varOrder| (-580 (-1081))) (|:| |inhom| (-3 (-580 (-1170 (-689))) "failed")) (|:| |hom| (-580 (-1170 (-689))))) (-246 (-852 (-480))))))) (T -192)) -((-1456 (*1 *2 *3) (-12 (-5 *3 (-246 (-852 (-480)))) (-5 *2 (-2 (|:| |varOrder| (-580 (-1081))) (|:| |inhom| (-3 (-580 (-1170 (-689))) "failed")) (|:| |hom| (-580 (-1170 (-689)))))) (-5 *1 (-192))))) -((-3121 (((-689)) 56 T ELT)) (-2267 (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 $) (-1170 $)) 53 T ELT) (((-627 |#3|) (-627 $)) 44 T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3894 (((-105)) 62 T ELT)) (-3741 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-3929 (((-1170 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-767) $) NIL T ELT) (($ (-480)) 12 T ELT) (($ (-345 (-480))) NIL T ELT)) (-3111 (((-689)) 15 T CONST)) (-3932 (($ $ |#3|) 59 T ELT))) -(((-193 |#1| |#2| |#3|) (-10 -7 (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 (|#1| (-480))) (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3929 ((-767) |#1|)) (-15 -3111 ((-689)) -3935) (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -3929 (|#1| |#3|)) (-15 -3741 (|#1| |#1| (-1 |#3| |#3|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2267 ((-627 |#3|) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 |#1|) (-1170 |#1|))) (-15 -3121 ((-689))) (-15 -3932 (|#1| |#1| |#3|)) (-15 -3894 ((-105))) (-15 -3929 ((-1170 |#3|) |#1|))) (-194 |#2| |#3|) (-689) (-1120)) (T -193)) -((-3894 (*1 *2) (-12 (-14 *4 (-689)) (-4 *5 (-1120)) (-5 *2 (-105)) (-5 *1 (-193 *3 *4 *5)) (-4 *3 (-194 *4 *5)))) (-3121 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-689)) (-5 *1 (-193 *3 *4 *5)) (-4 *3 (-194 *4 *5)))) (-3111 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-689)) (-5 *1 (-193 *3 *4 *5)) (-4 *3 (-194 *4 *5))))) -((-2554 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-3173 (((-83) $) 80 (|has| |#2| (-23)) ELT)) (-3690 (($ (-825)) 134 (|has| |#2| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) 130 (|has| |#2| (-712)) ELT)) (-1301 (((-3 $ "failed") $ $) 82 (|has| |#2| (-102)) ELT)) (-3121 (((-689)) 119 (|has| |#2| (-315)) ELT)) (-3771 ((|#2| $ (-480) |#2|) 56 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 75 (-2548 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) 72 (-2548 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1007)) ELT)) (-3141 (((-480) $) 74 (-2548 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-345 (-480)) $) 71 (-2548 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) ((|#2| $) 70 (|has| |#2| (-1007)) ELT)) (-2267 (((-627 (-480)) (-627 $)) 116 (-2548 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 115 (-2548 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 114 (|has| |#2| (-956)) ELT) (((-627 |#2|) (-627 $)) 113 (|has| |#2| (-956)) ELT)) (-3450 (((-3 $ "failed") $) 93 (|has| |#2| (-956)) ELT)) (-2980 (($) 122 (|has| |#2| (-315)) ELT)) (-1565 ((|#2| $ (-480) |#2|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ (-480)) 55 T ELT)) (-3171 (((-83) $) 129 (|has| |#2| (-712)) ELT)) (-2875 (((-580 |#2|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) 91 (|has| |#2| (-956)) ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 123 (|has| |#2| (-751)) ELT)) (-2594 (((-580 |#2|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 124 (|has| |#2| (-751)) ELT)) (-1938 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-1998 (((-825) $) 121 (|has| |#2| (-315)) ELT)) (-2268 (((-627 (-480)) (-1170 $)) 118 (-2548 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 117 (-2548 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) 112 (|has| |#2| (-956)) ELT) (((-627 |#2|) (-1170 $)) 111 (|has| |#2| (-956)) ELT)) (-3227 (((-1064) $) 22 (|has| |#2| (-1007)) ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-2388 (($ (-825)) 120 (|has| |#2| (-315)) ELT)) (-3228 (((-1025) $) 21 (|has| |#2| (-1007)) ELT)) (-3784 ((|#2| $) 46 (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#2|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) 26 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) 25 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 23 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#2| $ (-480) |#2|) 54 T ELT) ((|#2| $ (-480)) 53 T ELT)) (-3819 ((|#2| $ $) 133 (|has| |#2| (-956)) ELT)) (-1457 (($ (-1170 |#2|)) 135 T ELT)) (-3894 (((-105)) 132 (|has| |#2| (-309)) ELT)) (-3741 (($ $ (-689)) 109 (-2548 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) 107 (-2548 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 103 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) 102 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) 101 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) 99 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) 97 (|has| |#2| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) 28 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-1170 |#2|) $) 136 T ELT) (($ (-480)) 76 (OR (-2548 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ELT) (($ (-345 (-480))) 73 (-2548 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (($ |#2|) 68 (|has| |#2| (-1007)) ELT) (((-767) $) 17 (|has| |#2| (-549 (-767))) ELT)) (-3111 (((-689)) 94 (|has| |#2| (-956)) CONST)) (-1255 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2646 (($) 79 (|has| |#2| (-23)) CONST)) (-2652 (($) 90 (|has| |#2| (-956)) CONST)) (-2655 (($ $ (-689)) 110 (-2548 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) 108 (-2548 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 106 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) 105 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) 104 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) 100 (-2548 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) 95 (|has| |#2| (-956)) ELT)) (-2552 (((-83) $ $) 125 (|has| |#2| (-751)) ELT)) (-2553 (((-83) $ $) 127 (|has| |#2| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-2670 (((-83) $ $) 126 (|has| |#2| (-751)) ELT)) (-2671 (((-83) $ $) 128 (|has| |#2| (-751)) ELT)) (-3932 (($ $ |#2|) 131 (|has| |#2| (-309)) ELT)) (-3820 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3822 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-689)) 92 (|has| |#2| (-956)) ELT) (($ $ (-825)) 88 (|has| |#2| (-956)) ELT)) (* (($ $ $) 89 (|has| |#2| (-956)) ELT) (($ $ |#2|) 87 (|has| |#2| (-660)) ELT) (($ |#2| $) 86 (|has| |#2| (-660)) ELT) (($ (-480) $) 83 (|has| |#2| (-21)) ELT) (($ (-689) $) 81 (|has| |#2| (-23)) ELT) (($ (-825) $) 78 (|has| |#2| (-25)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-194 |#1| |#2|) (-111) (-689) (-1120)) (T -194)) -((-1457 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1120)) (-4 *1 (-194 *3 *4)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-194 *3 *4)) (-4 *4 (-956)) (-4 *4 (-1120)))) (-3819 (*1 *2 *1 *1) (-12 (-4 *1 (-194 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-956))))) -(-13 (-535 (-480) |t#2|) (-549 (-1170 |t#2|)) (-10 -8 (-6 -3978) (-15 -1457 ($ (-1170 |t#2|))) (IF (|has| |t#2| (-1007)) (-6 (-350 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-956)) (PROGN (-6 (-80 |t#2| |t#2|)) (-6 (-182 |t#2|)) (-6 (-324 |t#2|)) (-15 -3690 ($ (-825))) (-15 -3819 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-660)) (-6 (-579 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#2| (-144)) (-6 (-651 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3975)) (-6 -3975) |%noBranch|) (IF (|has| |t#2| (-751)) (-6 (-751)) |%noBranch|) (IF (|has| |t#2| (-712)) (-6 (-712)) |%noBranch|) (IF (|has| |t#2| (-309)) (-6 (-1178 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-956)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-956)) (|has| |#2| (-712)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-956)) (|has| |#2| (-712)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1007)) (|has| |#2| (-956)) (|has| |#2| (-751)) (|has| |#2| (-712)) (|has| |#2| (-660)) (|has| |#2| (-315)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-80 |#2| |#2|) OR (|has| |#2| (-956)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-102) OR (|has| |#2| (-956)) (|has| |#2| (-712)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-21))) ((-552 (-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ((-552 (-480)) OR (|has| |#2| (-956)) (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007)))) ((-552 |#2|) |has| |#2| (-1007)) ((-549 (-767)) OR (|has| |#2| (-1007)) (|has| |#2| (-956)) (|has| |#2| (-751)) (|has| |#2| (-712)) (|has| |#2| (-660)) (|has| |#2| (-315)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-549 (-767))) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-549 (-1170 |#2|)) . T) ((-184 $) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) (-12 (|has| |#2| (-188)) (|has| |#2| (-956)))) ((-182 |#2|) |has| |#2| (-956)) ((-188) -12 (|has| |#2| (-188)) (|has| |#2| (-956))) ((-187) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) (-12 (|has| |#2| (-188)) (|has| |#2| (-956)))) ((-223 |#2|) |has| |#2| (-956)) ((-239 (-480) |#2|) . T) ((-241 (-480) |#2|) . T) ((-257 |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-315) |has| |#2| (-315)) ((-324 |#2|) |has| |#2| (-956)) ((-350 |#2|) |has| |#2| (-1007)) ((-424 |#2|) . T) ((-535 (-480) |#2|) . T) ((-449 |#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-13) . T) ((-585 (-480)) OR (|has| |#2| (-956)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-585 |#2|) OR (|has| |#2| (-956)) (|has| |#2| (-660)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-585 $) |has| |#2| (-956)) ((-587 (-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ((-587 |#2|) OR (|has| |#2| (-956)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-587 $) |has| |#2| (-956)) ((-579 |#2|) OR (|has| |#2| (-660)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-577 (-480)) -12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ((-577 |#2|) |has| |#2| (-956)) ((-651 |#2|) OR (|has| |#2| (-309)) (|has| |#2| (-144))) ((-660) |has| |#2| (-956)) ((-711) |has| |#2| (-712)) ((-712) |has| |#2| (-712)) ((-713) |has| |#2| (-712)) ((-716) |has| |#2| (-712)) ((-751) OR (|has| |#2| (-751)) (|has| |#2| (-712))) ((-754) OR (|has| |#2| (-751)) (|has| |#2| (-712))) ((-801 $ (-1081)) OR (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956)))) ((-804 (-1081)) -12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956))) ((-806 (-1081)) OR (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) (-12 (|has| |#2| (-804 (-1081))) (|has| |#2| (-956)))) ((-945 (-345 (-480))) -12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ((-945 (-480)) -12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ((-945 |#2|) |has| |#2| (-1007)) ((-958 |#2|) OR (|has| |#2| (-956)) (|has| |#2| (-660)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-963 |#2|) OR (|has| |#2| (-956)) (|has| |#2| (-309)) (|has| |#2| (-144))) ((-956) |has| |#2| (-956)) ((-964) |has| |#2| (-956)) ((-1017) |has| |#2| (-956)) ((-1052) |has| |#2| (-956)) ((-1007) OR (|has| |#2| (-1007)) (|has| |#2| (-956)) (|has| |#2| (-751)) (|has| |#2| (-712)) (|has| |#2| (-660)) (|has| |#2| (-315)) (|has| |#2| (-309)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1120) . T) ((-1178 |#2|) |has| |#2| (-309))) -((-2554 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3173 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3690 (($ (-825)) 63 (|has| |#2| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) 69 (|has| |#2| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-102)) ELT)) (-3121 (((-689)) NIL (|has| |#2| (-315)) ELT)) (-3771 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1007)) ELT)) (-3141 (((-480) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) ((|#2| $) 29 (|has| |#2| (-1007)) ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-956)) ELT)) (-3450 (((-3 $ #1#) $) 59 (|has| |#2| (-956)) ELT)) (-2980 (($) NIL (|has| |#2| (-315)) ELT)) (-1565 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ (-480)) 57 T ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-712)) ELT)) (-2875 (((-580 |#2|) $) 14 (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#2| (-956)) ELT)) (-2188 (((-480) $) 20 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-2594 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-1938 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#2| (-315)) ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-1170 $)) NIL (|has| |#2| (-956)) ELT)) (-3227 (((-1064) $) NIL (|has| |#2| (-1007)) ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#2| (-315)) ELT)) (-3228 (((-1025) $) NIL (|has| |#2| (-1007)) ELT)) (-3784 ((|#2| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 24 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ (-480) |#2|) NIL T ELT) ((|#2| $ (-480)) 21 T ELT)) (-3819 ((|#2| $ $) NIL (|has| |#2| (-956)) ELT)) (-1457 (($ (-1170 |#2|)) 18 T ELT)) (-3894 (((-105)) NIL (|has| |#2| (-309)) ELT)) (-3741 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#2|) $) 9 T ELT) (($ (-480)) NIL (OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (($ |#2|) 12 (|has| |#2| (-1007)) ELT) (((-767) $) NIL (|has| |#2| (-549 (-767))) ELT)) (-3111 (((-689)) NIL (|has| |#2| (-956)) CONST)) (-1255 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) 37 (|has| |#2| (-23)) CONST)) (-2652 (($) 41 (|has| |#2| (-956)) CONST)) (-2655 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-3042 (((-83) $ $) 28 (|has| |#2| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2671 (((-83) $ $) 67 (|has| |#2| (-751)) ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3822 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-689)) NIL (|has| |#2| (-956)) ELT) (($ $ (-825)) NIL (|has| |#2| (-956)) ELT)) (* (($ $ $) 47 (|has| |#2| (-956)) ELT) (($ $ |#2|) 45 (|has| |#2| (-660)) ELT) (($ |#2| $) 46 (|has| |#2| (-660)) ELT) (($ (-480) $) NIL (|has| |#2| (-21)) ELT) (($ (-689) $) NIL (|has| |#2| (-23)) ELT) (($ (-825) $) NIL (|has| |#2| (-25)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-195 |#1| |#2|) (-194 |#1| |#2|) (-689) (-1120)) (T -195)) -NIL -((-3824 (((-195 |#1| |#3|) (-1 |#3| |#2| |#3|) (-195 |#1| |#2|) |#3|) 21 T ELT)) (-3825 ((|#3| (-1 |#3| |#2| |#3|) (-195 |#1| |#2|) |#3|) 23 T ELT)) (-3941 (((-195 |#1| |#3|) (-1 |#3| |#2|) (-195 |#1| |#2|)) 18 T ELT))) -(((-196 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-195 |#1| |#3|) (-1 |#3| |#2| |#3|) (-195 |#1| |#2|) |#3|)) (-15 -3825 (|#3| (-1 |#3| |#2| |#3|) (-195 |#1| |#2|) |#3|)) (-15 -3941 ((-195 |#1| |#3|) (-1 |#3| |#2|) (-195 |#1| |#2|)))) (-689) (-1120) (-1120)) (T -196)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-195 *5 *6)) (-14 *5 (-689)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-195 *5 *7)) (-5 *1 (-196 *5 *6 *7)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-195 *5 *6)) (-14 *5 (-689)) (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-196 *5 *6 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-195 *6 *7)) (-14 *6 (-689)) (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-195 *6 *5)) (-5 *1 (-196 *6 *7 *5))))) -((-1461 (((-480) (-580 (-1064))) 36 T ELT) (((-480) (-1064)) 29 T ELT)) (-1460 (((-1176) (-580 (-1064))) 40 T ELT) (((-1176) (-1064)) 39 T ELT)) (-1458 (((-1064)) 16 T ELT)) (-1459 (((-1064) (-480) (-1064)) 23 T ELT)) (-3756 (((-580 (-1064)) (-580 (-1064)) (-480) (-1064)) 37 T ELT) (((-1064) (-1064) (-480) (-1064)) 35 T ELT)) (-2606 (((-580 (-1064)) (-580 (-1064))) 15 T ELT) (((-580 (-1064)) (-1064)) 11 T ELT))) -(((-197) (-10 -7 (-15 -2606 ((-580 (-1064)) (-1064))) (-15 -2606 ((-580 (-1064)) (-580 (-1064)))) (-15 -1458 ((-1064))) (-15 -1459 ((-1064) (-480) (-1064))) (-15 -3756 ((-1064) (-1064) (-480) (-1064))) (-15 -3756 ((-580 (-1064)) (-580 (-1064)) (-480) (-1064))) (-15 -1460 ((-1176) (-1064))) (-15 -1460 ((-1176) (-580 (-1064)))) (-15 -1461 ((-480) (-1064))) (-15 -1461 ((-480) (-580 (-1064)))))) (T -197)) -((-1461 (*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-480)) (-5 *1 (-197)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-480)) (-5 *1 (-197)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1176)) (-5 *1 (-197)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-197)))) (-3756 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-580 (-1064))) (-5 *3 (-480)) (-5 *4 (-1064)) (-5 *1 (-197)))) (-3756 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-480)) (-5 *1 (-197)))) (-1459 (*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-480)) (-5 *1 (-197)))) (-1458 (*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-197)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-197)))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-197)) (-5 *3 (-1064))))) -((** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 18 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-345 (-480)) $) 25 T ELT) (($ $ (-345 (-480))) NIL T ELT))) -(((-198 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-480))) (-15 * (|#1| |#1| (-345 (-480)))) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 ** (|#1| |#1| (-689))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-825))) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|))) (-199)) (T -198)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 53 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 57 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 54 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-345 (-480)) $) 56 T ELT) (($ $ (-345 (-480))) 55 T ELT))) -(((-199) (-111)) (T -199)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-199)) (-5 *2 (-480)))) (-2470 (*1 *1 *1) (-4 *1 (-199)))) -(-13 (-243) (-38 (-345 (-480))) (-10 -8 (-15 ** ($ $ (-480))) (-15 -2470 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-243) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-651 (-345 (-480))) . T) ((-660) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3780 (($ $) 63 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-1463 (($ $ $) 59 (|has| $ (-6 -3979)) ELT)) (-1462 (($ $ $) 58 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-1465 (($ $) 62 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-1464 (($ $) 61 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) 65 T ELT)) (-3163 (($ $) 64 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3774 (($ $ $) 60 (|has| $ (-6 -3979)) ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-200 |#1|) (-111) (-1120)) (T -200)) -((-3781 (*1 *2 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-3163 (*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-3780 (*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-1465 (*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-1464 (*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-3774 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-1463 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120)))) (-1462 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120))))) -(-13 (-918 |t#1|) (-10 -8 (-15 -3781 (|t#1| $)) (-15 -3163 ($ $)) (-15 -3780 ($ $)) (-15 -1465 ($ $)) (-15 -1464 ($ $)) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3774 ($ $ $)) (-15 -1463 ($ $ $)) (-15 -1462 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) NIL T ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3780 (($ $) NIL T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) NIL (|has| |#1| (-751)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1719 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) 10 (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3425 (((-83) $ (-689)) NIL T ELT)) (-3011 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) NIL (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-3782 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2356 (($ $) NIL (|has| |#1| (-1007)) ELT)) (-1342 (($ $) 7 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) NIL (|has| |#1| (-1007)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3389 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3426 (((-83) $) NIL T ELT)) (-3402 (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) (-1 (-83) |#1|) $) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-3702 (((-83) $ (-689)) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3501 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ |#1|) NIL T ELT)) (-3699 (((-83) $ (-689)) NIL T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3592 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2292 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3427 (((-83) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT) ((|#1| $ (-480)) NIL T ELT) ((|#1| $ (-480) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-689) $ "count") 16 T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-1560 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-2293 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-1466 (($ (-580 |#1|)) 22 T ELT)) (-3616 (((-83) $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3773 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3774 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3785 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-580 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3929 (($ (-580 |#1|)) 17 T ELT) (((-580 |#1|) $) 18 T ELT) (((-767) $) 21 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 14 (|has| $ (-6 -3978)) ELT))) -(((-201 |#1|) (-13 (-605 |#1|) (-425 (-580 |#1|)) (-10 -8 (-15 -1466 ($ (-580 |#1|))) (-15 -3783 ($ $ "unique")) (-15 -3783 ($ $ "sort")) (-15 -3783 ((-689) $ "count")))) (-751)) (T -201)) -((-1466 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-201 *3)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-201 *3)) (-4 *3 (-751)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-201 *3)) (-4 *3 (-751)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-689)) (-5 *1 (-201 *4)) (-4 *4 (-751))))) -((-1467 (((-3 (-689) "failed") |#1| |#1| (-689)) 40 T ELT))) -(((-202 |#1|) (-10 -7 (-15 -1467 ((-3 (-689) "failed") |#1| |#1| (-689)))) (-13 (-660) (-315) (-10 -7 (-15 ** (|#1| |#1| (-480)))))) (T -202)) -((-1467 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-689)) (-4 *3 (-13 (-660) (-315) (-10 -7 (-15 ** (*3 *3 (-480)))))) (-5 *1 (-202 *3))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $) 59 (|has| |#1| (-187)) ELT) (($ $ (-689)) 57 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 55 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 53 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 52 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 51 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1 |#1| |#1|) (-689)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2655 (($ $) 58 (|has| |#1| (-187)) ELT) (($ $ (-689)) 56 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 54 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 50 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 49 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 48 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1 |#1| |#1|) (-689)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-203 |#1|) (-111) (-956)) (T -203)) -NIL -(-13 (-80 |t#1| |t#1|) (-223 |t#1|) (-10 -7 (IF (|has| |t#1| (-187)) (-6 (-185 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-806 (-1081))) (-6 (-803 |t#1| (-1081))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-184 $) |has| |#1| (-187)) ((-185 |#1|) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-223 |#1|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-806 (-1081)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-651 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-806 (-1081)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-801 $ (-1081)) |has| |#1| (-806 (-1081))) ((-803 |#1| (-1081)) |has| |#1| (-806 (-1081))) ((-806 (-1081)) |has| |#1| (-806 (-1081))) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-768 |#1|)) $) NIL T ELT)) (-3069 (((-1076 $) $ (-768 |#1|)) NIL T ELT) (((-1076 |#2|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-768 |#1|))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#2| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-768 |#1|) $) NIL T ELT)) (-3739 (($ $ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1926 (($ $ (-580 (-480))) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-816)) ELT)) (-1613 (($ $ |#2| (-195 (-3940 |#1|) (-689)) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#2|) (-768 |#1|)) NIL T ELT) (($ (-1076 $) (-768 |#1|)) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-195 (-3940 |#1|) (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-768 |#1|)) NIL T ELT)) (-2806 (((-195 (-3940 |#1|) (-689)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-1614 (($ (-1 (-195 (-3940 |#1|) (-689)) (-195 (-3940 |#1|) (-689))) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3068 (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-768 |#1|)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#2| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-768 |#1|) |#2|) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 |#2|)) NIL T ELT) (($ $ (-768 |#1|) $) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 $)) NIL T ELT)) (-3740 (($ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3741 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3931 (((-195 (-3940 |#1|) (-689)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-768 |#1|) (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#2| $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-768 |#1|)) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#2| (-491)) ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-195 (-3940 |#1|) (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-204 |#1| |#2|) (-13 (-856 |#2| (-195 (-3940 |#1|) (-689)) (-768 |#1|)) (-10 -8 (-15 -1926 ($ $ (-580 (-480)))))) (-580 (-1081)) (-956)) (T -204)) -((-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-204 *3 *4)) (-14 *3 (-580 (-1081))) (-4 *4 (-956))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1468 (((-1176) $) 17 T ELT)) (-1470 (((-156 (-206)) $) 11 T ELT)) (-1469 (($ (-156 (-206))) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1471 (((-206) $) 7 T ELT)) (-3929 (((-767) $) 9 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 15 T ELT))) -(((-205) (-13 (-1007) (-10 -8 (-15 -1471 ((-206) $)) (-15 -1470 ((-156 (-206)) $)) (-15 -1469 ($ (-156 (-206)))) (-15 -1468 ((-1176) $))))) (T -205)) -((-1471 (*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-205)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-156 (-206))) (-5 *1 (-205)))) (-1469 (*1 *1 *2) (-12 (-5 *2 (-156 (-206))) (-5 *1 (-205)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-205))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1413 (((-580 (-769)) $) NIL T ELT)) (-3525 (((-441) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1415 (((-159) $) NIL T ELT)) (-2619 (((-83) $ (-441)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1472 (((-279) $) 7 T ELT)) (-1414 (((-580 (-83)) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (((-155) $) 8 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2507 (((-55) $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-206) (-13 (-158) (-549 (-155)) (-10 -8 (-15 -1472 ((-279) $))))) (T -206)) -((-1472 (*1 *2 *1) (-12 (-5 *2 (-279)) (-5 *1 (-206))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 (((-1086) $ (-689)) 14 T ELT)) (-3929 (((-767) $) 20 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 17 T ELT)) (-3940 (((-689) $) 11 T ELT))) -(((-207) (-13 (-1007) (-239 (-689) (-1086)) (-10 -8 (-15 -3940 ((-689) $))))) (T -207)) -((-3940 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-207))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3690 (($ (-825)) NIL (|has| |#4| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) NIL (|has| |#4| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#4| (-315)) ELT)) (-3771 ((|#4| $ (-480) |#4|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1007)) ELT) (((-3 (-480) #1#) $) NIL (-12 (|has| |#4| (-945 (-480))) (|has| |#4| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#4| (-945 (-345 (-480)))) (|has| |#4| (-1007))) ELT)) (-3141 ((|#4| $) NIL (|has| |#4| (-1007)) ELT) (((-480) $) NIL (-12 (|has| |#4| (-945 (-480))) (|has| |#4| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#4| (-945 (-345 (-480)))) (|has| |#4| (-1007))) ELT)) (-2267 (((-2 (|:| |mat| (-627 |#4|)) (|:| |vec| (-1170 |#4|))) (-627 $) (-1170 $)) NIL (|has| |#4| (-956)) ELT) (((-627 |#4|) (-627 $)) NIL (|has| |#4| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956))) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#4| (-956)) ELT)) (-2980 (($) NIL (|has| |#4| (-315)) ELT)) (-1565 ((|#4| $ (-480) |#4|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#4| $ (-480)) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#4| (-712)) ELT)) (-2875 (((-580 |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#4| (-956)) ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#4| (-751)) ELT)) (-2594 (((-580 |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#4| (-751)) ELT)) (-1938 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#4| (-315)) ELT)) (-2268 (((-2 (|:| |mat| (-627 |#4|)) (|:| |vec| (-1170 |#4|))) (-1170 $) $) NIL (|has| |#4| (-956)) ELT) (((-627 |#4|) (-1170 $)) NIL (|has| |#4| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#4| (-577 (-480))) (|has| |#4| (-956))) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#4| (-315)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 ((|#4| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#4|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-2193 (((-580 |#4|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#4| $ (-480) |#4|) NIL T ELT) ((|#4| $ (-480)) 12 T ELT)) (-3819 ((|#4| $ $) NIL (|has| |#4| (-956)) ELT)) (-1457 (($ (-1170 |#4|)) NIL T ELT)) (-3894 (((-105)) NIL (|has| |#4| (-309)) ELT)) (-3741 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-956)) ELT) (($ $ (-1 |#4| |#4|) (-689)) NIL (|has| |#4| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956)))) ELT)) (-1935 (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1007)) ELT) (((-767) $) NIL T ELT) (($ (-480)) NIL (OR (-12 (|has| |#4| (-945 (-480))) (|has| |#4| (-1007))) (|has| |#4| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#4| (-945 (-345 (-480)))) (|has| |#4| (-1007))) ELT)) (-3111 (((-689)) NIL (|has| |#4| (-956)) CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL (|has| |#4| (-956)) CONST)) (-2655 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-956)) ELT) (($ $ (-1 |#4| |#4|) (-689)) NIL (|has| |#4| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#4| (-804 (-1081))) (|has| |#4| (-956))) (-12 (|has| |#4| (-806 (-1081))) (|has| |#4| (-956)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-956))) (-12 (|has| |#4| (-187)) (|has| |#4| (-956)))) ELT)) (-2552 (((-83) $ $) NIL (|has| |#4| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#4| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#4| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#4| (-751)) ELT)) (-3932 (($ $ |#4|) NIL (|has| |#4| (-309)) ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL (|has| |#4| (-956)) ELT) (($ $ (-825)) NIL (|has| |#4| (-956)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-480) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-825) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-660)) ELT) (($ |#4| $) NIL (|has| |#4| (-660)) ELT) (($ $ $) NIL (|has| |#4| (-956)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-208 |#1| |#2| |#3| |#4|) (-13 (-194 |#1| |#4|) (-587 |#2|) (-587 |#3|)) (-825) (-956) (-1028 |#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) (-587 |#2|)) (T -208)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3690 (($ (-825)) NIL (|has| |#3| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) NIL (|has| |#3| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#3| (-315)) ELT)) (-3771 ((|#3| $ (-480) |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1007)) ELT) (((-3 (-480) #1#) $) NIL (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT)) (-3141 ((|#3| $) NIL (|has| |#3| (-1007)) ELT) (((-480) $) NIL (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT)) (-2267 (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 $) (-1170 $)) NIL (|has| |#3| (-956)) ELT) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#3| (-956)) ELT)) (-2980 (($) NIL (|has| |#3| (-315)) ELT)) (-1565 ((|#3| $ (-480) |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#3| $ (-480)) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#3| (-712)) ELT)) (-2875 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#3| (-956)) ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#3| (-751)) ELT)) (-2594 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#3| (-751)) ELT)) (-1938 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#3| (-315)) ELT)) (-2268 (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-1170 $) $) NIL (|has| |#3| (-956)) ELT) (((-627 |#3|) (-1170 $)) NIL (|has| |#3| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#3| (-315)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 ((|#3| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#3|))) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-246 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-580 |#3|) (-580 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-2193 (((-580 |#3|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#3| $ (-480) |#3|) NIL T ELT) ((|#3| $ (-480)) 11 T ELT)) (-3819 ((|#3| $ $) NIL (|has| |#3| (-956)) ELT)) (-1457 (($ (-1170 |#3|)) NIL T ELT)) (-3894 (((-105)) NIL (|has| |#3| (-309)) ELT)) (-3741 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-956)) ELT) (($ $ (-1 |#3| |#3|) (-689)) NIL (|has| |#3| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) ELT)) (-1935 (((-689) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1007)) ELT) (((-767) $) NIL T ELT) (($ (-480)) NIL (OR (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (|has| |#3| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT)) (-3111 (((-689)) NIL (|has| |#3| (-956)) CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL (|has| |#3| (-956)) CONST)) (-2655 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-956)) ELT) (($ $ (-1 |#3| |#3|) (-689)) NIL (|has| |#3| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#3| (-804 (-1081))) (|has| |#3| (-956))) (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-956))) (-12 (|has| |#3| (-187)) (|has| |#3| (-956)))) ELT)) (-2552 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-3932 (($ $ |#3|) NIL (|has| |#3| (-309)) ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL (|has| |#3| (-956)) ELT) (($ $ (-825)) NIL (|has| |#3| (-956)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-480) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-825) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-660)) ELT) (($ |#3| $) NIL (|has| |#3| (-660)) ELT) (($ $ $) NIL (|has| |#3| (-956)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-209 |#1| |#2| |#3|) (-13 (-194 |#1| |#3|) (-587 |#2|)) (-689) (-956) (-587 |#2|)) (T -209)) -NIL -((-1477 (((-580 (-689)) $) 56 T ELT) (((-580 (-689)) $ |#3|) 59 T ELT)) (-1511 (((-689) $) 58 T ELT) (((-689) $ |#3|) 61 T ELT)) (-1473 (($ $) 76 T ELT)) (-3142 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3755 (((-689) $ |#3|) 43 T ELT) (((-689) $) 38 T ELT)) (-1512 (((-1 $ (-689)) |#3|) 15 T ELT) (((-1 $ (-689)) $) 88 T ELT)) (-1475 ((|#4| $) 69 T ELT)) (-1476 (((-83) $) 67 T ELT)) (-1474 (($ $) 75 T ELT)) (-3751 (($ $ (-580 (-246 $))) 111 T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-580 |#4|) (-580 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-580 |#4|) (-580 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-580 |#3|) (-580 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-580 |#3|) (-580 |#2|)) 97 T ELT)) (-3741 (($ $ (-580 |#4|) (-580 (-689))) NIL T ELT) (($ $ |#4| (-689)) NIL T ELT) (($ $ (-580 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-1478 (((-580 |#3|) $) 86 T ELT)) (-3931 ((|#5| $) NIL T ELT) (((-689) $ |#4|) NIL T ELT) (((-580 (-689)) $ (-580 |#4|)) NIL T ELT) (((-689) $ |#3|) 49 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT))) -(((-210 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3929 (|#1| |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3751 (|#1| |#1| (-580 |#3|) (-580 |#2|))) (-15 -3751 (|#1| |#1| |#3| |#2|)) (-15 -3751 (|#1| |#1| (-580 |#3|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#3| |#1|)) (-15 -1512 ((-1 |#1| (-689)) |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -1475 (|#4| |#1|)) (-15 -1476 ((-83) |#1|)) (-15 -1511 ((-689) |#1| |#3|)) (-15 -1477 ((-580 (-689)) |#1| |#3|)) (-15 -1511 ((-689) |#1|)) (-15 -1477 ((-580 (-689)) |#1|)) (-15 -3931 ((-689) |#1| |#3|)) (-15 -3755 ((-689) |#1|)) (-15 -3755 ((-689) |#1| |#3|)) (-15 -1478 ((-580 |#3|) |#1|)) (-15 -1512 ((-1 |#1| (-689)) |#3|)) (-15 -3929 (|#1| |#3|)) (-15 -3142 ((-3 |#3| #1="failed") |#1|)) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3931 ((-580 (-689)) |#1| (-580 |#4|))) (-15 -3931 ((-689) |#1| |#4|)) (-15 -3929 (|#1| |#4|)) (-15 -3142 ((-3 |#4| #1#) |#1|)) (-15 -3751 (|#1| |#1| (-580 |#4|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#4| |#1|)) (-15 -3751 (|#1| |#1| (-580 |#4|) (-580 |#2|))) (-15 -3751 (|#1| |#1| |#4| |#2|)) (-15 -3751 (|#1| |#1| (-580 |#1|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| (-246 |#1|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -3931 (|#5| |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3741 (|#1| |#1| |#4|)) (-15 -3741 (|#1| |#1| (-580 |#4|))) (-15 -3741 (|#1| |#1| |#4| (-689))) (-15 -3741 (|#1| |#1| (-580 |#4|) (-580 (-689)))) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-211 |#2| |#3| |#4| |#5|) (-956) (-751) (-226 |#3|) (-712)) (T -210)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1477 (((-580 (-689)) $) 249 T ELT) (((-580 (-689)) $ |#2|) 247 T ELT)) (-1511 (((-689) $) 248 T ELT) (((-689) $ |#2|) 246 T ELT)) (-3067 (((-580 |#3|) $) 121 T ELT)) (-3069 (((-1076 $) $ |#3|) 136 T ELT) (((-1076 |#1|) $) 135 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 98 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 99 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 101 (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) 123 T ELT) (((-689) $ (-580 |#3|)) 122 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 111 (|has| |#1| (-816)) ELT)) (-3758 (($ $) 109 (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) 108 (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 114 (|has| |#1| (-816)) ELT)) (-1473 (($ $) 242 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-345 (-480)) #2#) $) 176 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #2#) $) 174 (|has| |#1| (-945 (-480))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 |#2| #2#) $) 256 T ELT)) (-3141 ((|#1| $) 178 T ELT) (((-345 (-480)) $) 177 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) 175 (|has| |#1| (-945 (-480))) ELT) ((|#3| $) 152 T ELT) ((|#2| $) 257 T ELT)) (-3739 (($ $ $ |#3|) 119 (|has| |#1| (-144)) ELT)) (-3942 (($ $) 169 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 147 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 146 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 145 T ELT) (((-627 |#1|) (-627 $)) 144 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3486 (($ $) 191 (|has| |#1| (-387)) ELT) (($ $ |#3|) 116 (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) 120 T ELT)) (-3706 (((-83) $) 107 (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| |#4| $) 187 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 95 (-12 (|has| |#3| (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 94 (-12 (|has| |#3| (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ |#2|) 252 T ELT) (((-689) $) 251 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2406 (((-689) $) 184 T ELT)) (-3070 (($ (-1076 |#1|) |#3|) 128 T ELT) (($ (-1076 $) |#3|) 127 T ELT)) (-2807 (((-580 $) $) 137 T ELT)) (-3920 (((-83) $) 167 T ELT)) (-2879 (($ |#1| |#4|) 168 T ELT) (($ $ |#3| (-689)) 130 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 129 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#3|) 131 T ELT)) (-2806 ((|#4| $) 185 T ELT) (((-689) $ |#3|) 133 T ELT) (((-580 (-689)) $ (-580 |#3|)) 132 T ELT)) (-1614 (($ (-1 |#4| |#4|) $) 186 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1512 (((-1 $ (-689)) |#2|) 254 T ELT) (((-1 $ (-689)) $) 241 (|has| |#1| (-188)) ELT)) (-3068 (((-3 |#3| #3="failed") $) 134 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 149 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 148 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 143 T ELT) (((-627 |#1|) (-1170 $)) 142 T ELT)) (-2880 (($ $) 164 T ELT)) (-3159 ((|#1| $) 163 T ELT)) (-1475 ((|#3| $) 244 T ELT)) (-1880 (($ (-580 $)) 105 (|has| |#1| (-387)) ELT) (($ $ $) 104 (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1476 (((-83) $) 245 T ELT)) (-2809 (((-3 (-580 $) #3#) $) 125 T ELT)) (-2808 (((-3 (-580 $) #3#) $) 126 T ELT)) (-2810 (((-3 (-2 (|:| |var| |#3|) (|:| -2389 (-689))) #3#) $) 124 T ELT)) (-1474 (($ $) 243 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 181 T ELT)) (-1785 ((|#1| $) 182 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 106 (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) 103 (|has| |#1| (-387)) ELT) (($ $ $) 102 (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 113 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 112 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 110 (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) 160 T ELT) (($ $ (-246 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-580 $) (-580 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-580 |#3|) (-580 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-580 |#3|) (-580 $)) 153 T ELT) (($ $ |#2| $) 240 (|has| |#1| (-188)) ELT) (($ $ (-580 |#2|) (-580 $)) 239 (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) 238 (|has| |#1| (-188)) ELT) (($ $ (-580 |#2|) (-580 |#1|)) 237 (|has| |#1| (-188)) ELT)) (-3740 (($ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#3|) (-580 (-689))) 50 T ELT) (($ $ |#3| (-689)) 49 T ELT) (($ $ (-580 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 260 T ELT) (($ $) 236 (|has| |#1| (-187)) ELT) (($ $ (-689)) 234 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 232 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 230 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 229 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 228 (|has| |#1| (-806 (-1081))) ELT)) (-1478 (((-580 |#2|) $) 253 T ELT)) (-3931 ((|#4| $) 165 T ELT) (((-689) $ |#3|) 141 T ELT) (((-580 (-689)) $ (-580 |#3|)) 140 T ELT) (((-689) $ |#2|) 250 T ELT)) (-3955 (((-795 (-325)) $) 93 (-12 (|has| |#3| (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) 92 (-12 (|has| |#3| (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) 91 (-12 (|has| |#3| (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) 190 (|has| |#1| (-387)) ELT) (($ $ |#3|) 117 (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 115 (-2548 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ |#2|) 255 T ELT) (($ (-345 (-480))) 89 (OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ELT) (($ $) 96 (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) 183 T ELT)) (-3660 ((|#1| $ |#4|) 170 T ELT) (($ $ |#3| (-689)) 139 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 138 T ELT)) (-2688 (((-629 $) $) 90 (OR (-2548 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1612 (($ $ $ (-689)) 188 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 100 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 |#3|) (-580 (-689))) 53 T ELT) (($ $ |#3| (-689)) 52 T ELT) (($ $ (-580 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT) (($ $ (-1 |#1| |#1|)) 259 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 258 T ELT) (($ $) 235 (|has| |#1| (-187)) ELT) (($ $ (-689)) 233 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 231 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 227 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 226 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 225 (|has| |#1| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 171 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 173 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 172 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-211 |#1| |#2| |#3| |#4|) (-111) (-956) (-751) (-226 |t#2|) (-712)) (T -211)) -((-1512 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-1 *1 (-689))) (-4 *1 (-211 *4 *3 *5 *6)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-580 *4)))) (-3755 (*1 *2 *1 *3) (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-689)))) (-3931 (*1 *2 *1 *3) (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-580 (-689))))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-689)))) (-1477 (*1 *2 *1 *3) (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-580 (-689))))) (-1511 (*1 *2 *1 *3) (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-83)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-211 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-712)) (-4 *2 (-226 *4)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-211 *2 *3 *4 *5)) (-4 *2 (-956)) (-4 *3 (-751)) (-4 *4 (-226 *3)) (-4 *5 (-712)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-211 *2 *3 *4 *5)) (-4 *2 (-956)) (-4 *3 (-751)) (-4 *4 (-226 *3)) (-4 *5 (-712)))) (-1512 (*1 *2 *1) (-12 (-4 *3 (-188)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-1 *1 (-689))) (-4 *1 (-211 *3 *4 *5 *6))))) -(-13 (-856 |t#1| |t#4| |t#3|) (-182 |t#1|) (-945 |t#2|) (-10 -8 (-15 -1512 ((-1 $ (-689)) |t#2|)) (-15 -1478 ((-580 |t#2|) $)) (-15 -3755 ((-689) $ |t#2|)) (-15 -3755 ((-689) $)) (-15 -3931 ((-689) $ |t#2|)) (-15 -1477 ((-580 (-689)) $)) (-15 -1511 ((-689) $)) (-15 -1477 ((-580 (-689)) $ |t#2|)) (-15 -1511 ((-689) $ |t#2|)) (-15 -1476 ((-83) $)) (-15 -1475 (|t#3| $)) (-15 -1474 ($ $)) (-15 -1473 ($ $)) (IF (|has| |t#1| (-188)) (PROGN (-6 (-449 |t#2| |t#1|)) (-6 (-449 |t#2| $)) (-6 (-257 $)) (-15 -1512 ((-1 $ (-689)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 |#2|) . T) ((-552 |#3|) . T) ((-552 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-550 (-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#3| (-550 (-469)))) ((-550 (-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#3| (-550 (-795 (-325))))) ((-550 (-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#3| (-550 (-795 (-480))))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-223 |#1|) . T) ((-243) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-257 $) . T) ((-274 |#1| |#4|) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-816)) (|has| |#1| (-387))) ((-449 |#2| |#1|) |has| |#1| (-188)) ((-449 |#2| $) |has| |#1| (-188)) ((-449 |#3| |#1|) . T) ((-449 |#3| $) . T) ((-449 $ $) . T) ((-491) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-660) . T) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-801 $ |#3|) . T) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-804 |#3|) . T) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-806 |#3|) . T) ((-791 (-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#3| (-791 (-325)))) ((-791 (-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#3| (-791 (-480)))) ((-856 |#1| |#4| |#3|) . T) ((-816) |has| |#1| (-816)) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-945 |#2|) . T) ((-945 |#3|) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) |has| |#1| (-816))) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1484 ((|#1| $) 58 T ELT)) (-3307 ((|#1| $) 48 T ELT)) (-3707 (($) 7 T CONST)) (-2988 (($ $) 64 T ELT)) (-2285 (($ $) 52 T ELT)) (-3309 ((|#1| |#1| $) 50 T ELT)) (-3308 ((|#1| $) 49 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3816 (((-689) $) 65 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-1482 ((|#1| |#1| $) 56 T ELT)) (-1481 ((|#1| |#1| $) 55 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-2589 (((-689) $) 59 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-2987 ((|#1| $) 66 T ELT)) (-1480 ((|#1| $) 54 T ELT)) (-1479 ((|#1| $) 53 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2990 ((|#1| |#1| $) 62 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-2989 ((|#1| $) 63 T ELT)) (-1485 (($) 61 T ELT) (($ (-580 |#1|)) 60 T ELT)) (-3306 (((-689) $) 47 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1483 ((|#1| $) 57 T ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-2986 ((|#1| $) 67 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-212 |#1|) (-111) (-1120)) (T -212)) -((-1485 (*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-212 *3)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-212 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1482 (*1 *2 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1481 (*1 *2 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) (-2285 (*1 *1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(-13 (-1026 |t#1|) (-903 |t#1|) (-10 -8 (-15 -1485 ($)) (-15 -1485 ($ (-580 |t#1|))) (-15 -2589 ((-689) $)) (-15 -1484 (|t#1| $)) (-15 -1483 (|t#1| $)) (-15 -1482 (|t#1| |t#1| $)) (-15 -1481 (|t#1| |t#1| $)) (-15 -1480 (|t#1| $)) (-15 -1479 (|t#1| $)) (-15 -2285 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-903 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1026 |#1|) . T) ((-1120) . T)) -((-1486 (((-1038 (-177)) (-787 |#1|) (-998 (-325)) (-998 (-325))) 75 T ELT) (((-1038 (-177)) (-787 |#1|) (-998 (-325)) (-998 (-325)) (-580 (-219))) 74 T ELT) (((-1038 (-177)) |#1| (-998 (-325)) (-998 (-325))) 65 T ELT) (((-1038 (-177)) |#1| (-998 (-325)) (-998 (-325)) (-580 (-219))) 64 T ELT) (((-1038 (-177)) (-784 |#1|) (-998 (-325))) 56 T ELT) (((-1038 (-177)) (-784 |#1|) (-998 (-325)) (-580 (-219))) 55 T ELT)) (-1493 (((-1174) (-787 |#1|) (-998 (-325)) (-998 (-325))) 78 T ELT) (((-1174) (-787 |#1|) (-998 (-325)) (-998 (-325)) (-580 (-219))) 77 T ELT) (((-1174) |#1| (-998 (-325)) (-998 (-325))) 68 T ELT) (((-1174) |#1| (-998 (-325)) (-998 (-325)) (-580 (-219))) 67 T ELT) (((-1174) (-784 |#1|) (-998 (-325))) 60 T ELT) (((-1174) (-784 |#1|) (-998 (-325)) (-580 (-219))) 59 T ELT) (((-1173) (-782 |#1|) (-998 (-325))) 47 T ELT) (((-1173) (-782 |#1|) (-998 (-325)) (-580 (-219))) 46 T ELT) (((-1173) |#1| (-998 (-325))) 38 T ELT) (((-1173) |#1| (-998 (-325)) (-580 (-219))) 36 T ELT))) -(((-213 |#1|) (-10 -7 (-15 -1493 ((-1173) |#1| (-998 (-325)) (-580 (-219)))) (-15 -1493 ((-1173) |#1| (-998 (-325)))) (-15 -1493 ((-1173) (-782 |#1|) (-998 (-325)) (-580 (-219)))) (-15 -1493 ((-1173) (-782 |#1|) (-998 (-325)))) (-15 -1493 ((-1174) (-784 |#1|) (-998 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-784 |#1|) (-998 (-325)))) (-15 -1486 ((-1038 (-177)) (-784 |#1|) (-998 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-784 |#1|) (-998 (-325)))) (-15 -1493 ((-1174) |#1| (-998 (-325)) (-998 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) |#1| (-998 (-325)) (-998 (-325)))) (-15 -1486 ((-1038 (-177)) |#1| (-998 (-325)) (-998 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) |#1| (-998 (-325)) (-998 (-325)))) (-15 -1493 ((-1174) (-787 |#1|) (-998 (-325)) (-998 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-787 |#1|) (-998 (-325)) (-998 (-325)))) (-15 -1486 ((-1038 (-177)) (-787 |#1|) (-998 (-325)) (-998 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-787 |#1|) (-998 (-325)) (-998 (-325))))) (-13 (-550 (-469)) (-1007))) (T -213)) -((-1486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-998 (-325))) (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *5)))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *6)))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-998 (-325))) (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *5)))) (-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *6)))) (-1486 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1174)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) (-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) (-1486 (*1 *2 *3 *4) (-12 (-5 *3 (-784 *5)) (-5 *4 (-998 (-325))) (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *5)))) (-1486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *6)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-784 *5)) (-5 *4 (-998 (-325))) (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *5)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *6)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-782 *5)) (-5 *4 (-998 (-325))) (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1173)) (-5 *1 (-213 *5)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1173)) (-5 *1 (-213 *6)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1173)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007)))))) -((-1487 (((-1 (-849 (-177)) (-177) (-177)) (-1 (-849 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 158 T ELT)) (-1486 (((-1038 (-177)) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325))) 178 T ELT) (((-1038 (-177)) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)) (-580 (-219))) 176 T ELT) (((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325))) 181 T ELT) (((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219))) 177 T ELT) (((-1038 (-177)) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325))) 169 T ELT) (((-1038 (-177)) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219))) 168 T ELT) (((-1038 (-177)) (-1 (-849 (-177)) (-177)) (-995 (-325))) 150 T ELT) (((-1038 (-177)) (-1 (-849 (-177)) (-177)) (-995 (-325)) (-580 (-219))) 148 T ELT) (((-1038 (-177)) (-784 (-1 (-177) (-177))) (-995 (-325))) 149 T ELT) (((-1038 (-177)) (-784 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219))) 146 T ELT)) (-1493 (((-1174) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325))) 180 T ELT) (((-1174) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)) (-580 (-219))) 179 T ELT) (((-1174) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325))) 183 T ELT) (((-1174) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219))) 182 T ELT) (((-1174) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325))) 171 T ELT) (((-1174) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219))) 170 T ELT) (((-1174) (-1 (-849 (-177)) (-177)) (-995 (-325))) 156 T ELT) (((-1174) (-1 (-849 (-177)) (-177)) (-995 (-325)) (-580 (-219))) 155 T ELT) (((-1174) (-784 (-1 (-177) (-177))) (-995 (-325))) 154 T ELT) (((-1174) (-784 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219))) 153 T ELT) (((-1173) (-782 (-1 (-177) (-177))) (-995 (-325))) 118 T ELT) (((-1173) (-782 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219))) 117 T ELT) (((-1173) (-1 (-177) (-177)) (-995 (-325))) 112 T ELT) (((-1173) (-1 (-177) (-177)) (-995 (-325)) (-580 (-219))) 110 T ELT))) -(((-214) (-10 -7 (-15 -1493 ((-1173) (-1 (-177) (-177)) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1173) (-1 (-177) (-177)) (-995 (-325)))) (-15 -1493 ((-1173) (-782 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1173) (-782 (-1 (-177) (-177))) (-995 (-325)))) (-15 -1493 ((-1174) (-784 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-784 (-1 (-177) (-177))) (-995 (-325)))) (-15 -1493 ((-1174) (-1 (-849 (-177)) (-177)) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-1 (-849 (-177)) (-177)) (-995 (-325)))) (-15 -1486 ((-1038 (-177)) (-784 (-1 (-177) (-177))) (-995 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-784 (-1 (-177) (-177))) (-995 (-325)))) (-15 -1486 ((-1038 (-177)) (-1 (-849 (-177)) (-177)) (-995 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-1 (-849 (-177)) (-177)) (-995 (-325)))) (-15 -1493 ((-1174) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)))) (-15 -1486 ((-1038 (-177)) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-1 (-177) (-177) (-177)) (-995 (-325)) (-995 (-325)))) (-15 -1493 ((-1174) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)))) (-15 -1486 ((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-325)) (-995 (-325)))) (-15 -1493 ((-1174) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1493 ((-1174) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)))) (-15 -1486 ((-1038 (-177)) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)) (-580 (-219)))) (-15 -1486 ((-1038 (-177)) (-787 (-1 (-177) (-177) (-177))) (-995 (-325)) (-995 (-325)))) (-15 -1487 ((-1 (-849 (-177)) (-177) (-177)) (-1 (-849 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -214)) -((-1487 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-849 (-177)) (-177) (-177))) (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4) (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1173)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1173)) (-5 *1 (-214)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-214))))) -((-1493 (((-1173) (-246 |#2|) (-1081) (-1081) (-580 (-219))) 102 T ELT))) -(((-215 |#1| |#2|) (-10 -7 (-15 -1493 ((-1173) (-246 |#2|) (-1081) (-1081) (-580 (-219))))) (-13 (-491) (-751) (-945 (-480))) (-359 |#1|)) (T -215)) -((-1493 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-246 *7)) (-5 *4 (-1081)) (-5 *5 (-580 (-219))) (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-751) (-945 (-480)))) (-5 *2 (-1173)) (-5 *1 (-215 *6 *7))))) -((-1490 (((-480) (-480)) 71 T ELT)) (-1491 (((-480) (-480)) 72 T ELT)) (-1492 (((-177) (-177)) 73 T ELT)) (-1489 (((-1174) (-1 (-140 (-177)) (-140 (-177))) (-995 (-177)) (-995 (-177))) 70 T ELT)) (-1488 (((-1174) (-1 (-140 (-177)) (-140 (-177))) (-995 (-177)) (-995 (-177)) (-83)) 68 T ELT))) -(((-216) (-10 -7 (-15 -1488 ((-1174) (-1 (-140 (-177)) (-140 (-177))) (-995 (-177)) (-995 (-177)) (-83))) (-15 -1489 ((-1174) (-1 (-140 (-177)) (-140 (-177))) (-995 (-177)) (-995 (-177)))) (-15 -1490 ((-480) (-480))) (-15 -1491 ((-480) (-480))) (-15 -1492 ((-177) (-177))))) (T -216)) -((-1492 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-216)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-216)))) (-1490 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-216)))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-995 (-177))) (-5 *2 (-1174)) (-5 *1 (-216)))) (-1488 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-995 (-177))) (-5 *5 (-83)) (-5 *2 (-1174)) (-5 *1 (-216))))) -((-3929 (((-998 (-325)) (-998 (-262 |#1|))) 16 T ELT))) -(((-217 |#1|) (-10 -7 (-15 -3929 ((-998 (-325)) (-998 (-262 |#1|))))) (-13 (-751) (-491) (-550 (-325)))) (T -217)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-998 (-262 *4))) (-4 *4 (-13 (-751) (-491) (-550 (-325)))) (-5 *2 (-998 (-325))) (-5 *1 (-217 *4))))) -((-1493 (((-1174) (-580 (-177)) (-580 (-177)) (-580 (-177)) (-580 (-219))) 23 T ELT) (((-1174) (-580 (-177)) (-580 (-177)) (-580 (-177))) 24 T ELT) (((-1173) (-580 (-849 (-177))) (-580 (-219))) 16 T ELT) (((-1173) (-580 (-849 (-177)))) 17 T ELT) (((-1173) (-580 (-177)) (-580 (-177)) (-580 (-219))) 20 T ELT) (((-1173) (-580 (-177)) (-580 (-177))) 21 T ELT))) -(((-218) (-10 -7 (-15 -1493 ((-1173) (-580 (-177)) (-580 (-177)))) (-15 -1493 ((-1173) (-580 (-177)) (-580 (-177)) (-580 (-219)))) (-15 -1493 ((-1173) (-580 (-849 (-177))))) (-15 -1493 ((-1173) (-580 (-849 (-177))) (-580 (-219)))) (-15 -1493 ((-1174) (-580 (-177)) (-580 (-177)) (-580 (-177)))) (-15 -1493 ((-1174) (-580 (-177)) (-580 (-177)) (-580 (-177)) (-580 (-219)))))) (T -218)) -((-1493 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-580 (-177))) (-5 *4 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-218)))) (-1493 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-580 (-177))) (-5 *2 (-1174)) (-5 *1 (-218)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *4 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-218)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *2 (-1173)) (-5 *1 (-218)))) (-1493 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-580 (-177))) (-5 *4 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-218)))) (-1493 (*1 *2 *3 *3) (-12 (-5 *3 (-580 (-177))) (-5 *2 (-1173)) (-5 *1 (-218))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3864 (($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 24 T ELT)) (-1506 (($ (-825)) 81 T ELT)) (-1505 (($ (-825)) 80 T ELT)) (-1761 (($ (-580 (-325))) 87 T ELT)) (-1509 (($ (-325)) 66 T ELT)) (-1508 (($ (-825)) 82 T ELT)) (-1502 (($ (-83)) 33 T ELT)) (-3866 (($ (-1064)) 28 T ELT)) (-1501 (($ (-1064)) 29 T ELT)) (-1507 (($ (-1038 (-177))) 76 T ELT)) (-1917 (($ (-580 (-995 (-325)))) 72 T ELT)) (-1495 (($ (-580 (-995 (-325)))) 68 T ELT) (($ (-580 (-995 (-345 (-480))))) 71 T ELT)) (-1498 (($ (-325)) 38 T ELT) (($ (-778)) 42 T ELT)) (-1494 (((-83) (-580 $) (-1081)) 100 T ELT)) (-1510 (((-3 (-51) "failed") (-580 $) (-1081)) 102 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1497 (($ (-325)) 43 T ELT) (($ (-778)) 44 T ELT)) (-3209 (($ (-1 (-849 (-177)) (-849 (-177)))) 65 T ELT)) (-2254 (($ (-1 (-849 (-177)) (-849 (-177)))) 83 T ELT)) (-1496 (($ (-1 (-177) (-177))) 48 T ELT) (($ (-1 (-177) (-177) (-177))) 52 T ELT) (($ (-1 (-177) (-177) (-177) (-177))) 56 T ELT)) (-3929 (((-767) $) 93 T ELT)) (-1499 (($ (-83)) 34 T ELT) (($ (-580 (-995 (-325)))) 60 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1912 (($ (-83)) 35 T ELT)) (-3042 (((-83) $ $) 97 T ELT))) -(((-219) (-13 (-1007) (-10 -8 (-15 -1912 ($ (-83))) (-15 -1499 ($ (-83))) (-15 -3864 ($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3866 ($ (-1064))) (-15 -1501 ($ (-1064))) (-15 -1502 ($ (-83))) (-15 -1499 ($ (-580 (-995 (-325))))) (-15 -3209 ($ (-1 (-849 (-177)) (-849 (-177))))) (-15 -1498 ($ (-325))) (-15 -1498 ($ (-778))) (-15 -1497 ($ (-325))) (-15 -1497 ($ (-778))) (-15 -1496 ($ (-1 (-177) (-177)))) (-15 -1496 ($ (-1 (-177) (-177) (-177)))) (-15 -1496 ($ (-1 (-177) (-177) (-177) (-177)))) (-15 -1509 ($ (-325))) (-15 -1495 ($ (-580 (-995 (-325))))) (-15 -1495 ($ (-580 (-995 (-345 (-480)))))) (-15 -1917 ($ (-580 (-995 (-325))))) (-15 -1507 ($ (-1038 (-177)))) (-15 -1505 ($ (-825))) (-15 -1506 ($ (-825))) (-15 -1508 ($ (-825))) (-15 -2254 ($ (-1 (-849 (-177)) (-849 (-177))))) (-15 -1761 ($ (-580 (-325)))) (-15 -1510 ((-3 (-51) "failed") (-580 $) (-1081))) (-15 -1494 ((-83) (-580 $) (-1081)))))) (T -219)) -((-1912 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219)))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-219)))) (-3866 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-219)))) (-1501 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-219)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219)))) (-3209 (*1 *1 *2) (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *1 (-219)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-219)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-219)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-219)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-219)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-219)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-345 (-480))))) (-5 *1 (-219)))) (-1917 (*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-219)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *1 (-219)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-219)))) (-1510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *2 (-51)) (-5 *1 (-219)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *2 (-83)) (-5 *1 (-219))))) -((-3864 (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-580 (-219)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 25 T ELT)) (-1506 (((-825) (-580 (-219)) (-825)) 52 T ELT)) (-1505 (((-825) (-580 (-219)) (-825)) 51 T ELT)) (-3834 (((-580 (-325)) (-580 (-219)) (-580 (-325))) 68 T ELT)) (-1509 (((-325) (-580 (-219)) (-325)) 57 T ELT)) (-1508 (((-825) (-580 (-219)) (-825)) 53 T ELT)) (-1502 (((-83) (-580 (-219)) (-83)) 27 T ELT)) (-3866 (((-1064) (-580 (-219)) (-1064)) 19 T ELT)) (-1501 (((-1064) (-580 (-219)) (-1064)) 26 T ELT)) (-1507 (((-1038 (-177)) (-580 (-219))) 46 T ELT)) (-1917 (((-580 (-995 (-325))) (-580 (-219)) (-580 (-995 (-325)))) 40 T ELT)) (-1503 (((-778) (-580 (-219)) (-778)) 32 T ELT)) (-1504 (((-778) (-580 (-219)) (-778)) 33 T ELT)) (-2254 (((-1 (-849 (-177)) (-849 (-177))) (-580 (-219)) (-1 (-849 (-177)) (-849 (-177)))) 63 T ELT)) (-1500 (((-83) (-580 (-219)) (-83)) 14 T ELT)) (-1912 (((-83) (-580 (-219)) (-83)) 13 T ELT))) -(((-220) (-10 -7 (-15 -1912 ((-83) (-580 (-219)) (-83))) (-15 -1500 ((-83) (-580 (-219)) (-83))) (-15 -3864 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-580 (-219)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3866 ((-1064) (-580 (-219)) (-1064))) (-15 -1501 ((-1064) (-580 (-219)) (-1064))) (-15 -1502 ((-83) (-580 (-219)) (-83))) (-15 -1503 ((-778) (-580 (-219)) (-778))) (-15 -1504 ((-778) (-580 (-219)) (-778))) (-15 -1917 ((-580 (-995 (-325))) (-580 (-219)) (-580 (-995 (-325))))) (-15 -1505 ((-825) (-580 (-219)) (-825))) (-15 -1506 ((-825) (-580 (-219)) (-825))) (-15 -1507 ((-1038 (-177)) (-580 (-219)))) (-15 -1508 ((-825) (-580 (-219)) (-825))) (-15 -1509 ((-325) (-580 (-219)) (-325))) (-15 -2254 ((-1 (-849 (-177)) (-849 (-177))) (-580 (-219)) (-1 (-849 (-177)) (-849 (-177))))) (-15 -3834 ((-580 (-325)) (-580 (-219)) (-580 (-325)))))) (T -220)) -((-3834 (*1 *2 *3 *2) (-12 (-5 *2 (-580 (-325))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-2254 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-325)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1508 (*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1917 (*1 *2 *3 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *2) (-12 (-5 *2 (-778)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-778)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-3866 (*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-3864 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) (-1912 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -((-1510 (((-3 |#1| "failed") (-580 (-219)) (-1081)) 17 T ELT))) -(((-221 |#1|) (-10 -7 (-15 -1510 ((-3 |#1| "failed") (-580 (-219)) (-1081)))) (-1120)) (T -221)) -((-1510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *1 (-221 *2)) (-4 *2 (-1120))))) -((-3741 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-689)) 11 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) 19 T ELT) (($ $ (-689)) NIL T ELT) (($ $) 16 T ELT)) (-2655 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-689)) 14 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT))) -(((-222 |#1| |#2|) (-10 -7 (-15 -3741 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -2655 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -2655 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -2655 (|#1| |#1| (-580 (-1081)))) (-15 -2655 (|#1| |#1| (-1081) (-689))) (-15 -2655 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -2655 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -2655 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|)))) (-223 |#2|) (-1120)) (T -222)) -NIL -((-3741 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 22 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) 16 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 15 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 14 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081)) 12 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-689)) 10 (|has| |#1| (-187)) ELT) (($ $) 8 (|has| |#1| (-187)) ELT)) (-2655 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 20 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) 19 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 18 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 17 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081)) 13 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-689)) 11 (|has| |#1| (-187)) ELT) (($ $) 9 (|has| |#1| (-187)) ELT))) -(((-223 |#1|) (-111) (-1120)) (T -223)) -((-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1120)))) (-3741 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *1 (-223 *4)) (-4 *4 (-1120)))) (-2655 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1120)))) (-2655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *1 (-223 *4)) (-4 *4 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3741 ($ $ (-1 |t#1| |t#1|))) (-15 -3741 ($ $ (-1 |t#1| |t#1|) (-689))) (-15 -2655 ($ $ (-1 |t#1| |t#1|))) (-15 -2655 ($ $ (-1 |t#1| |t#1|) (-689))) (IF (|has| |t#1| (-187)) (-6 (-187)) |%noBranch|) (IF (|has| |t#1| (-806 (-1081))) (-6 (-806 (-1081))) |%noBranch|))) -(((-184 $) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-13) . T) ((-801 $ (-1081)) |has| |#1| (-806 (-1081))) ((-806 (-1081)) |has| |#1| (-806 (-1081))) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1477 (((-580 (-689)) $) NIL T ELT) (((-580 (-689)) $ |#2|) NIL T ELT)) (-1511 (((-689) $) NIL T ELT) (((-689) $ |#2|) NIL T ELT)) (-3067 (((-580 |#3|) $) NIL T ELT)) (-3069 (((-1076 $) $ |#3|) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 |#3|)) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1473 (($ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1030 |#1| |#2|) #1#) $) 23 T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1030 |#1| |#2|) $) NIL T ELT)) (-3739 (($ $ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ |#3|) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-465 |#3|) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| |#1| (-791 (-325))) (|has| |#3| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| |#1| (-791 (-480))) (|has| |#3| (-791 (-480)))) ELT)) (-3755 (((-689) $ |#2|) NIL T ELT) (((-689) $) 10 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#1|) |#3|) NIL T ELT) (($ (-1076 $) |#3|) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-465 |#3|)) NIL T ELT) (($ $ |#3| (-689)) NIL T ELT) (($ $ (-580 |#3|) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#3|) NIL T ELT)) (-2806 (((-465 |#3|) $) NIL T ELT) (((-689) $ |#3|) NIL T ELT) (((-580 (-689)) $ (-580 |#3|)) NIL T ELT)) (-1614 (($ (-1 (-465 |#3|) (-465 |#3|)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1512 (((-1 $ (-689)) |#2|) NIL T ELT) (((-1 $ (-689)) $) NIL (|has| |#1| (-188)) ELT)) (-3068 (((-3 |#3| #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1475 ((|#3| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1476 (((-83) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| |#3|) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-580 |#3|) (-580 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-580 |#3|) (-580 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 |#2|) (-580 $)) NIL (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 |#2|) (-580 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3740 (($ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#3|) (-580 (-689))) NIL T ELT) (($ $ |#3| (-689)) NIL T ELT) (($ $ (-580 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-1478 (((-580 |#2|) $) NIL T ELT)) (-3931 (((-465 |#3|) $) NIL T ELT) (((-689) $ |#3|) NIL T ELT) (((-580 (-689)) $ (-580 |#3|)) NIL T ELT) (((-689) $ |#2|) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#3| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#3| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| |#1| (-550 (-469))) (|has| |#3| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ |#3|) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1030 |#1| |#2|)) 32 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-465 |#3|)) NIL T ELT) (($ $ |#3| (-689)) NIL T ELT) (($ $ (-580 |#3|) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 |#3|) (-580 (-689))) NIL T ELT) (($ $ |#3| (-689)) NIL T ELT) (($ $ (-580 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-224 |#1| |#2| |#3|) (-13 (-211 |#1| |#2| |#3| (-465 |#3|)) (-945 (-1030 |#1| |#2|))) (-956) (-751) (-226 |#2|)) (T -224)) -NIL -((-1511 (((-689) $) 37 T ELT)) (-3142 (((-3 |#2| "failed") $) 22 T ELT)) (-3141 ((|#2| $) 33 T ELT)) (-3741 (($ $ (-689)) 18 T ELT) (($ $) 14 T ELT)) (-3929 (((-767) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3042 (((-83) $ $) 26 T ELT)) (-2671 (((-83) $ $) 36 T ELT))) -(((-225 |#1| |#2|) (-10 -7 (-15 -1511 ((-689) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3142 ((-3 |#2| "failed") |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -2671 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-226 |#2|) (-751)) (T -225)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1511 (((-689) $) 26 T ELT)) (-3814 ((|#1| $) 27 T ELT)) (-3142 (((-3 |#1| "failed") $) 31 T ELT)) (-3141 ((|#1| $) 32 T ELT)) (-3755 (((-689) $) 28 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-1512 (($ |#1| (-689)) 29 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-689)) 35 T ELT) (($ $) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2655 (($ $ (-689)) 36 T ELT) (($ $) 34 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT))) -(((-226 |#1|) (-111) (-751)) (T -226)) -((-1512 (*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-226 *2)) (-4 *2 (-751)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-226 *3)) (-4 *3 (-751)) (-5 *2 (-689)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-751)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-226 *3)) (-4 *3 (-751)) (-5 *2 (-689))))) -(-13 (-751) (-187) (-945 |t#1|) (-10 -8 (-15 -1512 ($ |t#1| (-689))) (-15 -3755 ((-689) $)) (-15 -3814 (|t#1| $)) (-15 -1511 ((-689) $)))) -(((-72) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-184 $) . T) ((-187) . T) ((-13) . T) ((-751) . T) ((-754) . T) ((-945 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1514 (((-580 (-480)) $) 28 T ELT)) (-3931 (((-689) $) 26 T ELT)) (-3929 (((-767) $) 32 T ELT) (($ (-580 (-480))) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1513 (($ (-689)) 29 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 11 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 18 T ELT))) -(((-227) (-13 (-751) (-10 -8 (-15 -3929 ($ (-580 (-480)))) (-15 -3931 ((-689) $)) (-15 -1514 ((-580 (-480)) $)) (-15 -1513 ($ (-689)))))) (T -227)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-227)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-227)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-227)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-227))))) -((-3475 ((|#2| |#2|) 77 T ELT)) (-3622 ((|#2| |#2|) 65 T ELT)) (-1543 (((-3 |#2| "failed") |#2| (-580 (-2 (|:| |func| |#2|) (|:| |pole| (-83))))) 123 T ELT)) (-3473 ((|#2| |#2|) 75 T ELT)) (-3621 ((|#2| |#2|) 63 T ELT)) (-3477 ((|#2| |#2|) 79 T ELT)) (-3620 ((|#2| |#2|) 67 T ELT)) (-3610 ((|#2|) 46 T ELT)) (-3578 (((-84) (-84)) 97 T ELT)) (-3925 ((|#2| |#2|) 61 T ELT)) (-1544 (((-83) |#2|) 146 T ELT)) (-1533 ((|#2| |#2|) 193 T ELT)) (-1521 ((|#2| |#2|) 169 T ELT)) (-1516 ((|#2|) 59 T ELT)) (-1515 ((|#2|) 58 T ELT)) (-1531 ((|#2| |#2|) 189 T ELT)) (-1519 ((|#2| |#2|) 165 T ELT)) (-1535 ((|#2| |#2|) 197 T ELT)) (-1523 ((|#2| |#2|) 173 T ELT)) (-1518 ((|#2| |#2|) 161 T ELT)) (-1517 ((|#2| |#2|) 163 T ELT)) (-1536 ((|#2| |#2|) 199 T ELT)) (-1524 ((|#2| |#2|) 175 T ELT)) (-1534 ((|#2| |#2|) 195 T ELT)) (-1522 ((|#2| |#2|) 171 T ELT)) (-1532 ((|#2| |#2|) 191 T ELT)) (-1520 ((|#2| |#2|) 167 T ELT)) (-1539 ((|#2| |#2|) 205 T ELT)) (-1527 ((|#2| |#2|) 181 T ELT)) (-1537 ((|#2| |#2|) 201 T ELT)) (-1525 ((|#2| |#2|) 177 T ELT)) (-1541 ((|#2| |#2|) 209 T ELT)) (-1529 ((|#2| |#2|) 185 T ELT)) (-1542 ((|#2| |#2|) 211 T ELT)) (-1530 ((|#2| |#2|) 187 T ELT)) (-1540 ((|#2| |#2|) 207 T ELT)) (-1528 ((|#2| |#2|) 183 T ELT)) (-1538 ((|#2| |#2|) 203 T ELT)) (-1526 ((|#2| |#2|) 179 T ELT)) (-3926 ((|#2| |#2|) 62 T ELT)) (-3478 ((|#2| |#2|) 80 T ELT)) (-3619 ((|#2| |#2|) 68 T ELT)) (-3476 ((|#2| |#2|) 78 T ELT)) (-3618 ((|#2| |#2|) 66 T ELT)) (-3474 ((|#2| |#2|) 76 T ELT)) (-3617 ((|#2| |#2|) 64 T ELT)) (-2242 (((-83) (-84)) 95 T ELT)) (-3481 ((|#2| |#2|) 83 T ELT)) (-3469 ((|#2| |#2|) 71 T ELT)) (-3479 ((|#2| |#2|) 81 T ELT)) (-3467 ((|#2| |#2|) 69 T ELT)) (-3483 ((|#2| |#2|) 85 T ELT)) (-3471 ((|#2| |#2|) 73 T ELT)) (-3484 ((|#2| |#2|) 86 T ELT)) (-3472 ((|#2| |#2|) 74 T ELT)) (-3482 ((|#2| |#2|) 84 T ELT)) (-3470 ((|#2| |#2|) 72 T ELT)) (-3480 ((|#2| |#2|) 82 T ELT)) (-3468 ((|#2| |#2|) 70 T ELT))) -(((-228 |#1| |#2|) (-10 -7 (-15 -3926 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3468 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3610 (|#2|)) (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 -1515 (|#2|)) (-15 -1516 (|#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 ((-3 |#2| "failed") |#2| (-580 (-2 (|:| |func| |#2|) (|:| |pole| (-83)))))) (-15 -1544 ((-83) |#2|))) (-491) (-13 (-359 |#1|) (-910))) (T -228)) -((-1544 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-228 *4 *3)) (-4 *3 (-13 (-359 *4) (-910))))) (-1543 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-580 (-2 (|:| |func| *2) (|:| |pole| (-83))))) (-4 *2 (-13 (-359 *4) (-910))) (-4 *4 (-491)) (-5 *1 (-228 *4 *2)))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-1516 (*1 *2) (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491)))) (-1515 (*1 *2) (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-228 *3 *4)) (-4 *4 (-13 (-359 *3) (-910))))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-359 *4) (-910))))) (-3610 (*1 *2) (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) -((-1547 (((-3 |#2| "failed") (-580 (-547 |#2|)) |#2| (-1081)) 151 T ELT)) (-1549 ((|#2| (-345 (-480)) |#2|) 49 T ELT)) (-1548 ((|#2| |#2| (-547 |#2|)) 144 T ELT)) (-1545 (((-2 (|:| |func| |#2|) (|:| |kers| (-580 (-547 |#2|))) (|:| |vals| (-580 |#2|))) |#2| (-1081)) 143 T ELT)) (-1546 ((|#2| |#2| (-1081)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2429 ((|#2| |#2| (-1081)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-229 |#1| |#2|) (-10 -7 (-15 -2429 (|#2| |#2|)) (-15 -2429 (|#2| |#2| (-1081))) (-15 -1545 ((-2 (|:| |func| |#2|) (|:| |kers| (-580 (-547 |#2|))) (|:| |vals| (-580 |#2|))) |#2| (-1081))) (-15 -1546 (|#2| |#2|)) (-15 -1546 (|#2| |#2| (-1081))) (-15 -1547 ((-3 |#2| "failed") (-580 (-547 |#2|)) |#2| (-1081))) (-15 -1548 (|#2| |#2| (-547 |#2|))) (-15 -1549 (|#2| (-345 (-480)) |#2|))) (-13 (-491) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -229)) -((-1549 (*1 *2 *3 *2) (-12 (-5 *3 (-345 (-480))) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-1548 (*1 *2 *2 *3) (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *4 *2)))) (-1547 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-580 (-547 *2))) (-5 *4 (-1081)) (-4 *2 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *5 *2)))) (-1546 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-580 (-547 *3))) (|:| |vals| (-580 *3)))) (-5 *1 (-229 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-2429 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3)))))) -((-2961 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3475 ((|#3| |#3|) 142 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3622 ((|#3| |#3|) 132 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3473 ((|#3| |#3|) 140 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3621 ((|#3| |#3|) 130 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3477 ((|#3| |#3|) 144 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3620 ((|#3| |#3|) 134 T ELT)) (-2944 (((-3 |#3| #1#) |#3| (-689)) 41 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3925 ((|#3| |#3|) 129 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3926 ((|#3| |#3|) 128 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3478 ((|#3| |#3|) 145 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3619 ((|#3| |#3|) 135 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3476 ((|#3| |#3|) 143 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3618 ((|#3| |#3|) 133 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3474 ((|#3| |#3|) 141 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3617 ((|#3| |#3|) 131 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3481 ((|#3| |#3|) 148 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3469 ((|#3| |#3|) 152 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3479 ((|#3| |#3|) 146 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3467 ((|#3| |#3|) 136 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3483 ((|#3| |#3|) 150 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3471 ((|#3| |#3|) 138 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3484 ((|#3| |#3|) 151 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3472 ((|#3| |#3|) 139 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3482 ((|#3| |#3|) 149 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3470 ((|#3| |#3|) 153 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3480 ((|#3| |#3|) 147 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3468 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-345 (-480))) 47 (|has| |#1| (-309)) ELT))) -(((-230 |#1| |#2| |#3|) (-13 (-891 |#3|) (-10 -7 (IF (|has| |#1| (-309)) (-15 ** (|#3| |#3| (-345 (-480)))) |%noBranch|) (-15 -3926 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3617 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)))) (-38 (-345 (-480))) (-1163 |#1|) (-1134 |#1| |#2|)) (T -230)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-345 (-480))) (-4 *4 (-309)) (-4 *4 (-38 *3)) (-4 *5 (-1163 *4)) (-5 *1 (-230 *4 *5 *2)) (-4 *2 (-1134 *4 *5)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))) -((-2961 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3475 ((|#3| |#3|) 137 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3622 ((|#3| |#3|) 125 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3473 ((|#3| |#3|) 135 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3621 ((|#3| |#3|) 123 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3477 ((|#3| |#3|) 139 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3620 ((|#3| |#3|) 127 T ELT)) (-2944 (((-3 |#3| #1#) |#3| (-689)) 38 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3925 ((|#3| |#3|) 111 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3926 ((|#3| |#3|) 122 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3478 ((|#3| |#3|) 140 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3619 ((|#3| |#3|) 128 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3476 ((|#3| |#3|) 138 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3618 ((|#3| |#3|) 126 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3474 ((|#3| |#3|) 136 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3617 ((|#3| |#3|) 124 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3481 ((|#3| |#3|) 143 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3469 ((|#3| |#3|) 131 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3479 ((|#3| |#3|) 141 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3467 ((|#3| |#3|) 129 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3483 ((|#3| |#3|) 145 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3471 ((|#3| |#3|) 133 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3484 ((|#3| |#3|) 146 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3472 ((|#3| |#3|) 134 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3482 ((|#3| |#3|) 144 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3470 ((|#3| |#3|) 132 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3480 ((|#3| |#3|) 142 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3468 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-345 (-480))) 44 (|has| |#1| (-309)) ELT))) -(((-231 |#1| |#2| |#3| |#4|) (-13 (-891 |#3|) (-10 -7 (IF (|has| |#1| (-309)) (-15 ** (|#3| |#3| (-345 (-480)))) |%noBranch|) (-15 -3926 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3617 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)))) (-38 (-345 (-480))) (-1132 |#1|) (-1155 |#1| |#2|) (-891 |#2|)) (T -231)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-345 (-480))) (-4 *4 (-309)) (-4 *4 (-38 *3)) (-4 *5 (-1132 *4)) (-5 *1 (-231 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5)) (-4 *6 (-891 *5)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4))))) -((-1552 (((-83) $) 20 T ELT)) (-1554 (((-1086) $) 9 T ELT)) (-3552 (((-3 (-441) #1="failed") $) 15 T ELT)) (-3551 (((-3 (-580 $) #1#) $) NIL T ELT)) (-1551 (((-3 (-441) #1#) $) 21 T ELT)) (-1553 (((-3 (-1009) #1#) $) 19 T ELT)) (-3936 (((-83) $) 17 T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1550 (((-83) $) 10 T ELT))) -(((-232) (-13 (-549 (-767)) (-10 -8 (-15 -1554 ((-1086) $)) (-15 -3936 ((-83) $)) (-15 -1553 ((-3 (-1009) #1="failed") $)) (-15 -1552 ((-83) $)) (-15 -1551 ((-3 (-441) #1#) $)) (-15 -1550 ((-83) $)) (-15 -3552 ((-3 (-441) #1#) $)) (-15 -3551 ((-3 (-580 $) #1#) $))))) (T -232)) -((-1554 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-232)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232)))) (-1553 (*1 *2 *1) (|partial| -12 (-5 *2 (-1009)) (-5 *1 (-232)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232)))) (-1551 (*1 *2 *1) (|partial| -12 (-5 *2 (-441)) (-5 *1 (-232)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232)))) (-3552 (*1 *2 *1) (|partial| -12 (-5 *2 (-441)) (-5 *1 (-232)))) (-3551 (*1 *2 *1) (|partial| -12 (-5 *2 (-580 (-232))) (-5 *1 (-232))))) -((-1556 (((-528) $) 10 T ELT)) (-1557 (((-518) $) 8 T ELT)) (-1555 (((-244) $) 12 T ELT)) (-1558 (($ (-518) (-528) (-244)) NIL T ELT)) (-3929 (((-767) $) 19 T ELT))) -(((-233) (-13 (-549 (-767)) (-10 -8 (-15 -1558 ($ (-518) (-528) (-244))) (-15 -1557 ((-518) $)) (-15 -1556 ((-528) $)) (-15 -1555 ((-244) $))))) (T -233)) -((-1558 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-518)) (-5 *3 (-528)) (-5 *4 (-244)) (-5 *1 (-233)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-233)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-233)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-244)) (-5 *1 (-233))))) -((-3693 (($ (-1 (-83) |#2|) $) 24 T ELT)) (-1342 (($ $) 38 T ELT)) (-3388 (($ (-1 (-83) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3389 (($ |#2| $) 34 T ELT) (($ (-1 (-83) |#2|) $) 18 T ELT)) (-2842 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2292 (($ |#2| $ (-480)) 20 T ELT) (($ $ $ (-480)) 22 T ELT)) (-2293 (($ $ (-480)) 11 T ELT) (($ $ (-1137 (-480))) 14 T ELT)) (-3774 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3785 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-580 $)) NIL T ELT))) -(((-234 |#1| |#2|) (-10 -7 (-15 -2842 (|#1| |#1| |#1|)) (-15 -3388 (|#1| |#2| |#1|)) (-15 -2842 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3388 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3774 (|#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| |#2|)) (-15 -2292 (|#1| |#1| |#1| (-480))) (-15 -2292 (|#1| |#2| |#1| (-480))) (-15 -2293 (|#1| |#1| (-1137 (-480)))) (-15 -2293 (|#1| |#1| (-480))) (-15 -3785 (|#1| (-580 |#1|))) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#2| |#1|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -3389 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3693 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3389 (|#1| |#2| |#1|)) (-15 -1342 (|#1| |#1|))) (-235 |#2|) (-1120)) (T -234)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 94 T ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2356 (($ $) 92 (|has| |#1| (-1007)) ELT)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ (-1 (-83) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1007)) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2842 (($ (-1 (-83) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3592 (($ |#1| $ (-480)) 97 T ELT) (($ $ $ (-480)) 96 T ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-1560 (($ $ (-480)) 100 T ELT) (($ $ (-1137 (-480))) 99 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3774 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-235 |#1|) (-111) (-1120)) (T -235)) -((-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)))) (-3774 (*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-480))) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-3592 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-235 *2)) (-4 *2 (-1120)))) (-3592 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-2842 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-1559 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) (-3388 (*1 *1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-1007)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-1007)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-751))))) -(-13 (-590 |t#1|) (-10 -8 (-6 -3979) (-15 -3774 ($ $ |t#1|)) (-15 -3774 ($ $ $)) (-15 -1560 ($ $ (-480))) (-15 -1560 ($ $ (-1137 (-480)))) (-15 -3388 ($ (-1 (-83) |t#1|) $)) (-15 -3592 ($ |t#1| $ (-480))) (-15 -3592 ($ $ $ (-480))) (-15 -2842 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -1559 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1007)) (PROGN (-15 -3388 ($ |t#1| $)) (-15 -2356 ($ $))) |%noBranch|) (IF (|has| |t#1| (-751)) (-15 -2842 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) +(2804812 . 3539125292) +((-1729 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1727 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 44 T ELT)) (-2293 (($ $) 80 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3413 (((-483) (-1 (-85) |#2|) $) 27 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) |#2| $ (-483)) 96 T ELT)) (-2885 (((-583 |#2|) $) 13 T ELT)) (-3512 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2300 (($ |#2| $ (-483)) NIL T ELT) (($ $ $ (-483)) 67 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) 66 T ELT)) (-2301 (($ $ (-483)) 76 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 34 T ELT) (((-694) |#2| $) NIL T ELT)) (-1728 (($ $ $ (-483)) 69 T ELT)) (-3394 (($ $) 68 T ELT)) (-3524 (($ (-583 |#2|)) 73 T ELT)) (-3796 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3940 (((-772) $) 92 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3052 (((-85) $ $) 95 T ELT)) (-2681 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -2681 ((-85) |#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -1728 (|#1| |#1| |#1| (-483))) (-15 -1729 ((-85) |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3782 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3524 (|#1| (-583 |#2|))) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3782 (|#2| |#1| (-483) |#2|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -2885 ((-583 |#2|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3394 (|#1| |#1|))) (-19 |#2|) (-1127)) (T -18)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-19 |#1|) (-113) (-1127)) (T -19)) +NIL +(-13 (-321 |t#1|) (-10 -7 (-6 -3990))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T)) +((-1309 (((-3 $ "failed") $ $) 12 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-483) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -1309 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT))) +(((-21) (-113)) (T -21)) +((-3831 (*1 *1 *1) (-4 *1 (-21))) (-3831 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-588 (-483)) (-10 -8 (-15 -3831 ($ $)) (-15 -3831 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1012) . T) ((-1127) . T)) +((-3183 (((-85) $) 10 T ELT)) (-3718 (($) 15 T CONST)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 -3718 (|#1|) -3946) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT))) +(((-23) (-113)) (T -23)) +((-2656 (*1 *1) (-4 *1 (-23))) (-3718 (*1 *1) (-4 *1 (-23))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694))))) +(-13 (-25) (-10 -8 (-15 -2656 ($) -3946) (-15 -3718 ($) -3946) (-15 -3183 ((-85) $)) (-15 * ($ (-694) $)))) +(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((* (($ (-830) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT))) +(((-25) (-113)) (T -25)) +((-3833 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))) +(-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ (-830) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-1212 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1083 $)) 16 T ELT) (((-583 $) (-1083 $) (-1088)) 20 T ELT)) (-1213 (($ (-857 $)) 30 T ELT) (($ (-1083 $)) 11 T ELT) (($ (-1083 $) (-1088)) 60 T ELT)) (-1214 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1083 $)) 18 T ELT) (((-583 $) (-1083 $) (-1088)) 19 T ELT)) (-3178 (($ (-857 $)) 31 T ELT) (($ (-1083 $)) 13 T ELT) (($ (-1083 $) (-1088)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1212 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1212 ((-583 |#1|) (-1083 |#1|))) (-15 -1212 ((-583 |#1|) (-857 |#1|))) (-15 -1213 (|#1| (-1083 |#1|) (-1088))) (-15 -1213 (|#1| (-1083 |#1|))) (-15 -1213 (|#1| (-857 |#1|))) (-15 -1214 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1214 ((-583 |#1|) (-1083 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -3178 (|#1| (-1083 |#1|) (-1088))) (-15 -3178 (|#1| (-1083 |#1|))) (-15 -3178 (|#1| (-857 |#1|)))) (-27)) (T -26)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1212 (((-583 $) (-857 $)) 96 T ELT) (((-583 $) (-1083 $)) 95 T ELT) (((-583 $) (-1083 $) (-1088)) 94 T ELT)) (-1213 (($ (-857 $)) 99 T ELT) (($ (-1083 $)) 98 T ELT) (($ (-1083 $) (-1088)) 97 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 108 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-1214 (((-583 $) (-857 $)) 102 T ELT) (((-583 $) (-1083 $)) 101 T ELT) (((-583 $) (-1083 $) (-1088)) 100 T ELT)) (-3178 (($ (-857 $)) 105 T ELT) (($ (-1083 $)) 104 T ELT) (($ (-1083 $) (-1088)) 103 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 107 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 106 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-27) (-113)) (T -27)) +((-3178 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1213 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1213 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-1213 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1))))) +(-13 (-311) (-915) (-10 -8 (-15 -3178 ($ (-857 $))) (-15 -3178 ($ (-1083 $))) (-15 -3178 ($ (-1083 $) (-1088))) (-15 -1214 ((-583 $) (-857 $))) (-15 -1214 ((-583 $) (-1083 $))) (-15 -1214 ((-583 $) (-1083 $) (-1088))) (-15 -1213 ($ (-857 $))) (-15 -1213 ($ (-1083 $))) (-15 -1213 ($ (-1083 $) (-1088))) (-15 -1212 ((-583 $) (-857 $))) (-15 -1212 ((-583 $) (-1083 $))) (-15 -1212 ((-583 $) (-1083 $) (-1088))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-1212 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 $) (-1088)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1088)) 45 T ELT)) (-1213 (($ (-857 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1088)) 39 T ELT)) (-1214 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 $) (-1088)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1088)) 47 T ELT)) (-3178 (($ (-857 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1088)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1212 ((-583 |#1|) |#1| (-1088))) (-15 -1213 (|#1| |#1| (-1088))) (-15 -1212 ((-583 |#1|) |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -1214 ((-583 |#1|) |#1| (-1088))) (-15 -3178 (|#1| |#1| (-1088))) (-15 -1214 ((-583 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -1212 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1212 ((-583 |#1|) (-1083 |#1|))) (-15 -1212 ((-583 |#1|) (-857 |#1|))) (-15 -1213 (|#1| (-1083 |#1|) (-1088))) (-15 -1213 (|#1| (-1083 |#1|))) (-15 -1213 (|#1| (-857 |#1|))) (-15 -1214 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1214 ((-583 |#1|) (-1083 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -3178 (|#1| (-1083 |#1|) (-1088))) (-15 -3178 (|#1| (-1083 |#1|))) (-15 -3178 (|#1| (-857 |#1|)))) (-29 |#2|) (-494)) (T -28)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1212 (((-583 $) (-857 $)) 96 T ELT) (((-583 $) (-1083 $)) 95 T ELT) (((-583 $) (-1083 $) (-1088)) 94 T ELT) (((-583 $) $) 146 T ELT) (((-583 $) $ (-1088)) 144 T ELT)) (-1213 (($ (-857 $)) 99 T ELT) (($ (-1083 $)) 98 T ELT) (($ (-1083 $) (-1088)) 97 T ELT) (($ $) 147 T ELT) (($ $ (-1088)) 145 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-1088)) $) 215 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 247 (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1597 (((-583 (-550 $)) $) 178 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-1601 (($ $ (-583 (-550 $)) (-583 $)) 168 T ELT) (($ $ (-583 (-248 $))) 167 T ELT) (($ $ (-248 $)) 166 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 108 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-1214 (((-583 $) (-857 $)) 102 T ELT) (((-583 $) (-1083 $)) 101 T ELT) (((-583 $) (-1083 $) (-1088)) 100 T ELT) (((-583 $) $) 150 T ELT) (((-583 $) $ (-1088)) 148 T ELT)) (-3178 (($ (-857 $)) 105 T ELT) (($ (-1083 $)) 104 T ELT) (($ (-1083 $) (-1088)) 103 T ELT) (($ $) 151 T ELT) (($ $ (-1088)) 149 T ELT)) (-3152 (((-3 (-857 |#1|) #1="failed") $) 266 (|has| |#1| (-961)) ELT) (((-3 (-347 (-857 |#1|)) #1#) $) 249 (|has| |#1| (-494)) ELT) (((-3 |#1| #1#) $) 211 T ELT) (((-3 (-483) #1#) $) 208 (|has| |#1| (-950 (-483))) ELT) (((-3 (-1088) #1#) $) 202 T ELT) (((-3 (-550 $) #1#) $) 153 T ELT) (((-3 (-347 (-483)) #1#) $) 141 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-857 |#1|) $) 265 (|has| |#1| (-961)) ELT) (((-347 (-857 |#1|)) $) 248 (|has| |#1| (-494)) ELT) ((|#1| $) 210 T ELT) (((-483) $) 209 (|has| |#1| (-950 (-483))) ELT) (((-1088) $) 201 T ELT) (((-550 $) $) 152 T ELT) (((-347 (-483)) $) 142 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) 69 T ELT)) (-2275 (((-630 |#1|) (-630 $)) 254 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 253 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 140 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (((-630 (-483)) (-630 $)) 139 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 207 (|has| |#1| (-796 (-327))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 206 (|has| |#1| (-796 (-483))) ELT)) (-2569 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-1596 (((-583 (-86)) $) 179 T ELT)) (-3589 (((-86) (-86)) 180 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) 200 (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 232 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 231 (|has| |#1| (-961)) ELT)) (-3007 (($ $ (-483)) 107 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-1594 (((-1083 $) (-550 $)) 197 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 186 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 176 T ELT)) (-2276 (((-630 |#1|) (-1177 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 138 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (((-630 (-483)) (-1177 $)) 137 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 177 T ELT)) (-2231 (($ (-86) (-583 $)) 185 T ELT) (($ (-86) $) 184 T ELT)) (-2819 (((-3 (-583 $) #3="failed") $) 226 (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #3#) $) 235 (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #3#) $) 229 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $ (-1088)) 234 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $ (-86)) 233 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $) 227 (|has| |#1| (-1024)) ELT)) (-2629 (((-85) $ (-1088)) 183 T ELT) (((-85) $ (-86)) 182 T ELT)) (-2480 (($ $) 86 T ELT)) (-2599 (((-694) $) 175 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 213 T ELT)) (-1793 ((|#1| $) 214 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1595 (((-85) $ (-1088)) 188 T ELT) (((-85) $ $) 187 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-2670 (((-85) $) 199 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-1088) (-694) (-1 $ $)) 239 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 237 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 236 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 225 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 224 (|has| |#1| (-553 (-472))) ELT) (($ $) 223 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) 222 (|has| |#1| (-553 (-472))) ELT) (($ $ (-1088)) 221 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) (-1 $ $)) 196 T ELT) (($ $ (-86) (-1 $ (-583 $))) 195 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 194 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 193 T ELT) (($ $ (-1088) (-1 $ $)) 192 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 191 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 190 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 189 T ELT) (($ $ (-583 $) (-583 $)) 160 T ELT) (($ $ $ $) 159 T ELT) (($ $ (-248 $)) 158 T ELT) (($ $ (-583 (-248 $))) 157 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 156 T ELT) (($ $ (-550 $) $) 155 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-3794 (($ (-86) (-583 $)) 165 T ELT) (($ (-86) $ $ $ $) 164 T ELT) (($ (-86) $ $ $) 163 T ELT) (($ (-86) $ $) 162 T ELT) (($ (-86) $) 161 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1600 (($ $ $) 174 T ELT) (($ $) 173 T ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 260 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 259 (|has| |#1| (-961)) ELT) (($ $ (-1088)) 257 (|has| |#1| (-961)) ELT)) (-2991 (($ $) 242 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 241 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 198 (|has| $ (-961)) ELT)) (-3966 (((-472) $) 270 (|has| |#1| (-553 (-472))) ELT) (($ (-345 $)) 240 (|has| |#1| (-494)) ELT) (((-800 (-327)) $) 205 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-800 (-483)) $) 204 (|has| |#1| (-553 (-800 (-483)))) ELT)) (-3005 (($ $ $) 269 (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) 268 (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-857 |#1|)) 267 (|has| |#1| (-961)) ELT) (($ (-347 (-857 |#1|))) 250 (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) 246 (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) 245 (|has| |#1| (-494)) ELT) (($ (-347 |#1|)) 244 (|has| |#1| (-494)) ELT) (($ (-1037 |#1| (-550 $))) 230 (|has| |#1| (-961)) ELT) (($ |#1|) 212 T ELT) (($ (-1088)) 203 T ELT) (($ (-550 $)) 154 T ELT)) (-2698 (((-632 $) $) 252 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-2586 (($ (-583 $)) 170 T ELT) (($ $) 169 T ELT)) (-2250 (((-85) (-86)) 181 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-1792 (($ (-1088) (-583 $)) 220 T ELT) (($ (-1088) $ $ $ $) 219 T ELT) (($ (-1088) $ $ $) 218 T ELT) (($ (-1088) $ $) 217 T ELT) (($ (-1088) $) 216 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 263 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 262 (|has| |#1| (-961)) ELT) (($ $ (-1088)) 258 (|has| |#1| (-961)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 243 (|has| |#1| (-494)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 106 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 251 (|has| |#1| (-146)) ELT) (($ |#1| $) 143 (|has| |#1| (-961)) ELT))) +(((-29 |#1|) (-113) (-494)) (T -29)) +((-3178 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1214 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1214 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1213 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1212 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1213 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1212 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-361 |t#1|) (-10 -8 (-15 -3178 ($ $)) (-15 -1214 ((-583 $) $)) (-15 -3178 ($ $ (-1088))) (-15 -1214 ((-583 $) $ (-1088))) (-15 -1213 ($ $)) (-15 -1212 ((-583 $) $)) (-15 -1213 ($ $ (-1088))) (-15 -1212 ((-583 $) $ (-1088))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-555 (-483)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1088)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-201) . T) ((-245) . T) ((-257) . T) ((-259 $) . T) ((-253) . T) ((-311) . T) ((-326 |#1|) |has| |#1| (-961)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-361 |#1|) . T) ((-389) . T) ((-410) |has| |#1| (-410)) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-347 (-483))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1088)) |has| |#1| (-961)) ((-809 (-1088)) |has| |#1| (-961)) ((-811 (-1088)) |has| |#1| (-961)) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483))))) ((-950 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1088)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-2892 (((-1000 (-179)) $) NIL T ELT)) (-2893 (((-1000 (-179)) $) NIL T ELT)) (-3129 (($ $ (-179)) 164 T ELT)) (-1215 (($ (-857 (-483)) (-1088) (-1088) (-1000 (-347 (-483))) (-1000 (-347 (-483)))) 103 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3940 (((-772) $) 195 T ELT))) +(((-30) (-13 (-866) (-10 -8 (-15 -1215 ($ (-857 (-483)) (-1088) (-1088) (-1000 (-347 (-483))) (-1000 (-347 (-483))))) (-15 -3129 ($ $ (-179)))))) (T -30)) +((-1215 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-347 (-483)))) (-5 *1 (-30)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-1047) $) 10 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-994) (-10 -8 (-15 -2690 ((-1047) $)) (-15 -3228 ((-1047) $))))) (T -31)) +((-2690 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31))))) +((-3178 ((|#2| (-1083 |#2|) (-1088)) 39 T ELT)) (-3589 (((-86) (-86)) 53 T ELT)) (-1594 (((-1083 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-483))) ELT)) (-1218 ((|#2| |#1| (-483)) 120 (|has| |#1| (-950 (-483))) ELT)) (-1216 ((|#2| (-1083 |#2|) |#2|) 29 T ELT)) (-1217 (((-772) (-583 |#2|)) 87 T ELT)) (-3180 ((|#2| |#2|) 143 (|has| |#1| (-950 (-483))) ELT)) (-2250 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-347 (-483))) 96 (|has| |#1| (-950 (-483))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3178 (|#2| (-1083 |#2|) (-1088))) (-15 -3589 ((-86) (-86))) (-15 -2250 ((-85) (-86))) (-15 -1216 (|#2| (-1083 |#2|) |#2|)) (-15 -1217 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-483))) (PROGN (-15 ** (|#2| |#2| (-347 (-483)))) (-15 -1594 ((-1083 |#2|) (-550 |#2|))) (-15 -3180 (|#2| |#2|)) (-15 -1218 (|#2| |#1| (-483)))) |%noBranch|)) (-494) (-361 |#1|)) (T -32)) +((-1218 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-494)))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-950 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2)) (-4 *2 (-361 *3)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-361 *4)) (-4 *4 (-950 (-483))) (-4 *4 (-494)) (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-950 (-483))) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-494)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1216 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-361 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-494))))) +((-3718 (($) 10 T CONST)) (-1219 (((-85) $ $) 8 T ELT)) (-3397 (((-85) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3718 (|#1|) -3946) (-15 -3397 ((-85) |#1|)) (-15 -1219 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3718 (($) 7 T CONST)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3394 (($ $) 10 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-34) (-113)) (T -34)) +((-1219 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3394 (*1 *1 *1) (-4 *1 (-34))) (-3559 (*1 *1) (-4 *1 (-34))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3718 (*1 *1) (-4 *1 (-34))) (-3951 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-34)) (-5 *2 (-694))))) +(-13 (-1127) (-10 -8 (-15 -1219 ((-85) $ $)) (-15 -3394 ($ $)) (-15 -3559 ($)) (-15 -3397 ((-85) $)) (-15 -3718 ($) -3946) (IF (|has| $ (-6 -3989)) (-15 -3951 ((-694) $)) |%noBranch|))) +(((-13) . T) ((-1127) . T)) +((-3492 (($ $) 11 T ELT)) (-3490 (($ $) 10 T ELT)) (-3494 (($ $) 9 T ELT)) (-3495 (($ $) 8 T ELT)) (-3493 (($ $) 7 T ELT)) (-3491 (($ $) 6 T ELT))) +(((-35) (-113)) (T -35)) +((-3492 (*1 *1 *1) (-4 *1 (-35))) (-3490 (*1 *1 *1) (-4 *1 (-35))) (-3494 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35))) (-3493 (*1 *1 *1) (-4 *1 (-35))) (-3491 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3494 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)))) +((-2564 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3396 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3789 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3791 (($ $) 154 T ELT)) (-3593 (($) 77 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2194 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3990)) ELT) (((-1183) $ (-483) (-483)) 186 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 167 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1727 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3990)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3436 (((-85) $ (-694)) 203 T ELT)) (-3021 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 163 (|has| $ (-6 -3990)) ELT)) (-3780 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3990)) ELT)) (-3783 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3990)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 140 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3989)) ELT)) (-3790 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2227 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 212 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 222 T ELT)) (-3793 (($ $ (-694)) 150 T ELT) (($ $) 148 T ELT)) (-2364 (($ $) 225 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1350 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989)))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 196 T ELT)) (-3437 (((-85) $) 200 T ELT)) (-3413 (((-483) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 217 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 131 T ELT)) (-3023 (((-85) $ $) 139 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3608 (($ (-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3713 (((-85) $ (-694)) 202 T ELT)) (-2196 ((|#1| $) 101 (|has| |#1| (-756)) ELT) (((-483) $) 188 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 204 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2852 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3512 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 100 (|has| |#1| (-756)) ELT) (((-483) $) 189 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 205 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3528 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3710 (((-85) $ (-694)) 201 T ELT)) (-3026 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3521 (((-85) $) 132 T ELT)) (-3237 (((-1071) $) 22 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3792 (($ $ (-694)) 153 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 230 T ELT) (($ $ $ (-483)) 229 T ELT)) (-2300 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 170 T ELT) (($ $ $ (-483)) 169 T ELT)) (-2199 (((-583 |#1|) $) 98 T ELT) (((-583 (-483)) $) 191 T ELT)) (-2200 (((-85) |#1| $) 97 T ELT) (((-85) (-483) $) 192 T ELT)) (-3238 (((-1032) $) 21 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3795 ((|#2| $) 102 (|has| |#1| (-756)) ELT) (($ $ (-694)) 147 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2195 (($ $ |#2|) 103 (|has| $ (-6 -3990)) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3438 (((-85) $) 199 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2201 (((-583 |#2|) $) 96 T ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 194 T ELT) (($ $ (-1144 (-483))) 177 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3025 (((-483) $ $) 137 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1568 (($ $ (-483)) 233 T ELT) (($ $ (-1144 (-483))) 232 T ELT)) (-2301 (($ $ (-483)) 172 T ELT) (($ $ (-1144 (-483))) 171 T ELT)) (-3627 (((-85) $) 135 T ELT)) (-3786 (($ $) 159 T ELT)) (-3784 (($ $) 160 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 158 T ELT)) (-3788 (($ $) 157 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) 213 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472)))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3785 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3796 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-583 $)) 174 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3940 (((-772) $) 17 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3516 (((-583 $) $) 130 T ELT)) (-3024 (((-85) $ $) 138 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1262 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1220 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 206 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2563 (((-85) $ $) 208 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3052 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2680 (((-85) $ $) 207 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2681 (((-85) $ $) 209 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-36 |#1| |#2|) (-113) (-1012) (-1012)) (T -36)) +((-1220 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| -3854 *3) (|:| |entry| *4)))))) +(-13 (-1105 |t#1| |t#2|) (-608 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1220 ((-3 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1144 (-483)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-237 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-321 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-538 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-1012) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1012))) ((-1062 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-1105 |#1| |#2|) . T) ((-1127) . T) ((-1166 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T)) +((-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-38 |#1|) (-113) (-146)) (T -38)) +NIL +(-13 (-961) (-654 |t#1|) (-555 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3412 (((-345 |#1|) |#1|) 41 T ELT)) (-3726 (((-345 |#1|) |#1|) 30 T ELT) (((-345 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1221 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1| (-583 (-48)))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3412 ((-345 |#1|) |#1|)) (-15 -1221 ((-85) |#1|))) (-1153 (-48))) (T -39)) +((-1221 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3412 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|))) NIL T ELT)) (-3324 (((-347 |#2|) $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#2|))) 60 T ELT) (($ (-1177 |#2|) |#2|) 130 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-630 $)) NIL T ELT)) (-1649 (((-1177 $) (-1177 $)) NIL T ELT)) (-3836 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1636 (((-583 (-583 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) NIL T ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) NIL T ELT)) (-1655 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2559 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) NIL T ELT)) (-2829 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3371 (((-694)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) 105 T ELT)) (-3127 (((-347 |#2|) $) NIL T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) NIL (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1222 (((-1183) (-694)) 83 T ELT)) (-1645 (((-630 (-347 |#2|))) 55 T ELT)) (-1647 (((-630 (-347 |#2|))) 48 T ELT)) (-2480 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 131 T ELT)) (-1646 (((-630 (-347 |#2|))) 49 T ELT)) (-1648 (((-630 (-347 |#2|))) 47 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1654 (((-1177 $)) 46 T ELT)) (-3912 (((-1177 $)) 45 T ELT)) (-1653 (((-85) $) NIL T ELT)) (-1652 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3440 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| #1#)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1663 (((-694)) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1640 (((-3 |#2| #1#)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) NIL T ELT) (((-347 |#2|)) 43 T ELT)) (-1762 (((-694) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 54 T ELT)) (-1671 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 |#2|)) $) 61 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 106 T ELT)) (-3966 (((-1177 (-347 |#2|)) $) NIL T ELT) (($ (-1177 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1660 (((-85)) 41 T ELT)) (-1659 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1662 (((-85)) NIL T ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 27 T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| (-347 |#2|) (-311)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-290 |#1| |#2| |#3|) (-10 -7 (-15 -1222 ((-1183) (-694))))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) |#3|) (T -40)) +((-1222 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *2 (-1183)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-347 *5))) (-14 *7 *6)))) +((-1223 ((|#2| |#2|) 47 T ELT)) (-1228 ((|#2| |#2|) 136 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1227 ((|#2| |#2|) 100 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1226 ((|#2| |#2|) 101 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1229 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1225 (((-1083 |#2|) |#2|) 44 T ELT)) (-1224 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1223 (|#2| |#2|)) (-15 -1224 (|#2| |#2|)) (-15 -1224 (|#2| |#2| |#2|)) (-15 -1224 (|#2| |#2| (-583 |#2|))) (-15 -1224 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1225 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-13 (-389) (-950 (-483)))) (IF (|has| |#2| (-361 |#1|)) (PROGN (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-494) (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 |#1| (-550 $)) $)) (-15 -2993 ((-1037 |#1| (-550 $)) $)) (-15 -3940 ($ (-1037 |#1| (-550 $))))))) (T -41)) +((-1229 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)))) (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *5 (-550 $)) $)) (-15 -2993 ((-1037 *5 (-550 $)) $)) (-15 -3940 ($ (-1037 *5 (-550 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1225 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))))) (-1224 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1224 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1224 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1223 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $)))))))))) +((-3726 (((-345 (-1083 |#3|)) (-1083 |#3|) (-583 (-48))) 23 T ELT) (((-345 |#3|) |#3| (-583 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3| (-583 (-48)))) (-15 -3726 ((-345 (-1083 |#3|)) (-1083 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42)) +((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))) +((-1233 (((-694) |#2|) 70 T ELT)) (-1231 (((-694) |#2|) 74 T ELT)) (-1246 (((-583 |#2|)) 37 T ELT)) (-1230 (((-694) |#2|) 73 T ELT)) (-1232 (((-694) |#2|) 69 T ELT)) (-1234 (((-694) |#2|) 72 T ELT)) (-1244 (((-583 (-630 |#1|))) 65 T ELT)) (-1239 (((-583 |#2|)) 60 T ELT)) (-1237 (((-583 |#2|) |#2|) 48 T ELT)) (-1241 (((-583 |#2|)) 62 T ELT)) (-1240 (((-583 |#2|)) 61 T ELT)) (-1243 (((-583 (-630 |#1|))) 53 T ELT)) (-1238 (((-583 |#2|)) 59 T ELT)) (-1236 (((-583 |#2|) |#2|) 47 T ELT)) (-1235 (((-583 |#2|)) 55 T ELT)) (-1245 (((-583 (-630 |#1|))) 66 T ELT)) (-1242 (((-583 |#2|)) 64 T ELT)) (-2008 (((-1177 |#2|) (-1177 |#2|)) 99 (|has| |#1| (-257)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1230 ((-694) |#2|)) (-15 -1231 ((-694) |#2|)) (-15 -1232 ((-694) |#2|)) (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-583 |#2|))) (-15 -1236 ((-583 |#2|) |#2|)) (-15 -1237 ((-583 |#2|) |#2|)) (-15 -1238 ((-583 |#2|))) (-15 -1239 ((-583 |#2|))) (-15 -1240 ((-583 |#2|))) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 (-630 |#1|)))) (-15 -1244 ((-583 (-630 |#1|)))) (-15 -1245 ((-583 (-630 |#1|)))) (-15 -1246 ((-583 |#2|))) (IF (|has| |#1| (-257)) (-15 -2008 ((-1177 |#2|) (-1177 |#2|))) |%noBranch|)) (-494) (-358 |#1|)) (T -43)) +((-2008 (*1 *2 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-43 *3 *4)))) (-1246 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1238 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1235 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) NIL T ELT) (((-1177 (-630 |#1|))) 24 T ELT)) (-1726 (((-1177 $)) 52 T ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL T ELT)) (-1702 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1720 (((-1083 |#1|) $) NIL T ELT)) (-1714 (((-85)) 99 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 14 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 53 T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) 101 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL T ELT)) (-1703 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1721 (((-1083 |#1|) $) NIL T ELT)) (-1715 (((-85)) 98 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) 106 T ELT)) (-1708 (((-85)) 105 T ELT)) (-1710 (((-85)) 107 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) 100 T ELT)) (-3794 ((|#1| $ (-483)) 55 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 48 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 28 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) 95 T ELT)) (-3940 (((-772) $) 71 T ELT) (($ (-1177 |#1|)) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 51 T ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) 91 T ELT)) (-2541 (($ (-630 |#1|) $) 18 T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) 97 T ELT)) (-1716 (((-85)) 92 T ELT)) (-1712 (((-85)) 90 T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1054 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-358 |#1|) (-590 (-1054 |#2| |#1|)) (-10 -8 (-15 -3940 ($ (-1177 |#1|))))) (-311) (-830) (-583 (-1088)) (-1177 (-630 |#1|))) (T -44)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-14 *6 (-1177 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3396 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3789 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT) (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1727 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2905 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 34 (|has| $ (-6 -3990)) ELT)) (-3780 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3783 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2227 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3793 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2364 (($ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3608 (($ (-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-483) $) 39 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2852 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3512 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-483) $) 41 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3528 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) 50 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3792 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2228 (((-583 |#1|) $) 23 T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2300 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT) (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT) (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) 15 T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1463 (($) 14 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1568 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3785 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3796 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1220 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2680 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3951 (((-694) $) 26 (|has| $ (-6 -3989)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1012) (-1012)) (T -45)) +NIL +((-3931 (((-85) $) 12 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-347 (-483)) $) 25 T ELT) (($ $ (-347 (-483))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47)) +((-3169 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2889 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-311))))) +(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3169 (|t#1| $)) (-15 -2890 ($ $)) (-15 -3942 (|t#2| $)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -3931 ((-85) $)) (-15 -2889 ($ |t#1| |t#2|)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-494)) (-6 (-494)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (-6 (-38 (-347 (-483)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1213 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3183 (((-85) $) 9 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1597 (((-583 (-550 $)) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1214 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3178 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 (-483))) (-630 $)) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) NIL T ELT)) (-2406 (((-85) $) 11 T ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2994 (((-1037 (-483) (-550 $)) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (((-1083 $) (-1083 $) (-550 $)) NIL T ELT) (((-1083 $) (-1083 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1594 (((-1083 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-1177 $) $) NIL T ELT) (((-630 (-347 (-483))) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) NIL T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2993 (((-1037 (-483) (-550 $)) $) NIL T ELT)) (-3180 (($ $) NIL (|has| $ (-961)) ELT)) (-3966 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-327)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-550 $))) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2250 (((-85) (-86)) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 6 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-48) (-13 (-253) (-27) (-950 (-483)) (-950 (-347 (-483))) (-580 (-483)) (-933) (-580 (-347 (-483))) (-120) (-553 (-142 (-327))) (-190) (-555 (-1037 (-483) (-550 $))) (-10 -8 (-15 -2994 ((-1037 (-483) (-550 $)) $)) (-15 -2993 ((-1037 (-483) (-550 $)) $)) (-15 -3836 ($ $)) (-15 -3127 ((-1083 $) (-1083 $) (-550 $))) (-15 -3127 ((-1083 $) (-1083 $) (-583 (-550 $)))) (-15 -3127 ($ $ (-550 $))) (-15 -3127 ($ $ (-583 (-550 $))))))) (T -48)) +((-2994 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) (-3836 (*1 *1 *1) (-5 *1 (-48))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1935 (((-583 (-444)) $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-3228 (((-1093) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1012) (-10 -8 (-15 -1935 ((-583 (-444)) $)) (-15 -3228 ((-1093) $))))) (T -49)) +((-1935 (*1 *2 *1) (-12 (-5 *2 (-583 (-444))) (-5 *1 (-49)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 86 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2660 (((-85) $) 31 T ELT)) (-3152 (((-3 |#1| #1#) $) 34 T ELT)) (-3151 ((|#1| $) 35 T ELT)) (-3953 (($ $) 41 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3169 ((|#1| $) 32 T ELT)) (-1452 (($ $) 75 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1451 (((-85) $) 44 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) 73 T ELT)) (-3937 (($ (-583 (-483))) 74 T ELT)) (-3942 (((-694) $) 45 T ELT)) (-3940 (((-772) $) 92 T ELT) (($ (-483)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3671 ((|#1| $ $) 29 T ELT)) (-3121 (((-694)) 72 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 46 T CONST)) (-2662 (($) 17 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3169 (|#1| $)) (-15 -1452 ($ $)) (-15 -3953 ($ $)) (-15 -3671 (|#1| $ $)) (-15 -2405 ($ (-694))) (-15 -3937 ($ (-583 (-483)))) (-15 -1451 ((-85) $)) (-15 -2660 ((-85) $)) (-15 -3942 ((-694) $)) (-15 -3952 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1088))) (T -50)) +((-3169 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) (-3671 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1088)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1247 (((-696) $) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1248 (((-1014) $) 10 T ELT)) (-3940 (((-772) $) 15 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1249 (($ (-1014) (-696)) 16 T ELT)) (-3052 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1012) (-10 -8 (-15 -1249 ($ (-1014) (-696))) (-15 -1248 ((-1014) $)) (-15 -1247 ((-696) $))))) (T -51)) +((-1249 (*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) +((-2660 (((-85) (-51)) 18 T ELT)) (-3152 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3151 ((|#1| (-51)) 21 T ELT)) (-3940 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3940 ((-51) |#1|)) (-15 -3152 ((-3 |#1| "failed") (-51))) (-15 -2660 ((-85) (-51))) (-15 -3151 (|#1| (-51)))) (-1127)) (T -52)) +((-3151 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127)))) (-3152 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127))))) +((-2541 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2541 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53)) +((-2541 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))) +((-1251 ((|#3| |#3| (-583 (-1088))) 44 T ELT)) (-1250 ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1250 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -1250 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1251 (|#3| |#3| (-583 (-1088))))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54)) +((-1251 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-1250 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1012)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-361 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1250 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 13 T ELT)) (-3152 (((-3 (-694) "failed") $) 31 T ELT)) (-3151 (((-694) $) NIL T ELT)) (-2406 (((-85) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) 17 T ELT)) (-3940 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1252 (($) 10 T CONST)) (-3052 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1012) (-950 (-694)) (-10 -8 (-15 -1252 ($) -3946) (-15 -3183 ((-85) $)) (-15 -2406 ((-85) $))))) (T -55)) +((-1252 (*1 *1) (-5 *1 (-55))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1254 (($ $ (-483) |#3|) 60 T ELT)) (-1253 (($ $ (-483) |#4|) 64 T ELT)) (-3107 ((|#3| $ (-483)) 73 T ELT)) (-2885 (((-583 |#2|) $) 41 T ELT)) (-3240 (((-85) |#2| $) 68 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2195 (($ $ |#2|) 46 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3794 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) 29 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 70 T ELT)) (-3394 (($ $) 45 T ELT)) (-3106 ((|#4| $ (-483)) 76 T ELT)) (-3940 (((-772) $) 82 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3052 (((-85) $ $) 67 T ELT)) (-3951 (((-694) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1253 (|#1| |#1| (-483) |#4|)) (-15 -1254 (|#1| |#1| (-483) |#3|)) (-15 -2885 ((-583 |#2|) |#1|)) (-15 -3106 (|#4| |#1| (-483))) (-15 -3107 (|#3| |#1| (-483))) (-15 -3794 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483))) (-15 -2195 (|#1| |#1| |#2|)) (-15 -3240 ((-85) |#2| |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3951 ((-694) |#1|)) (-15 -3394 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1127) (-321 |#2|) (-321 |#2|)) (T -56)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 48 T ELT)) (-1254 (($ $ (-483) |#2|) 46 T ELT)) (-1253 (($ $ (-483) |#3|) 45 T ELT)) (-3718 (($) 7 T CONST)) (-3107 ((|#2| $ (-483)) 50 T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2885 (((-583 |#1|) $) 30 T ELT)) (-3110 (((-694) $) 55 T ELT)) (-3608 (($ (-694) (-694) |#1|) 61 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) 60 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3106 ((|#3| $ (-483)) 49 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1127) (-321 |t#1|) (-321 |t#1|)) (T -57)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3608 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2195 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-694)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-694)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1127)))) (-3108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-3107 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-583 *3)))) (-3782 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1573 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-321 *4)) (-4 *5 (-321 *4)))) (-1253 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *3 (-321 *4)))) (-1946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3952 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))))) +(-13 (-426 |t#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3608 ($ (-694) (-694) |t#1|)) (-15 -2195 ($ $ |t#1|)) (-15 -3114 ((-483) $)) (-15 -3113 ((-483) $)) (-15 -3112 ((-483) $)) (-15 -3111 ((-483) $)) (-15 -3110 ((-694) $)) (-15 -3109 ((-694) $)) (-15 -3794 (|t#1| $ (-483) (-483))) (-15 -3108 (|t#1| $ (-483) (-483))) (-15 -3794 (|t#1| $ (-483) (-483) |t#1|)) (-15 -3107 (|t#2| $ (-483))) (-15 -3106 (|t#3| $ (-483))) (-15 -2885 ((-583 |t#1|) $)) (-15 -3782 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1573 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1254 ($ $ (-483) |t#2|)) (-15 -1253 ($ $ (-483) |t#3|)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -1946 ($ (-1 |t#1| |t#1|) $)) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1255 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3608 (($ (-694) |#1|) 13 T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 10 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1255 ($ (-583 |#1|))) (-15 -1255 ($ (-694) |#1|)))) (-1127)) (T -58)) +((-1255 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3)))) (-1255 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1127))))) +((-3835 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3952 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3835 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3952 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1127) (-1127)) (T -59)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-59 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1254 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 (((-58 |#1|) $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-58 |#1|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3990))) (-1127)) (T -60)) +NIL +((-1257 (((-1177 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1256 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1258 (((-2 (|:| |minor| (-583 (-830))) (|:| -3261 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-311)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1256 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 (-583 (-830))))) |#2| (-830))) (-15 -1257 ((-1177 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-311)) (-15 -1258 ((-2 (|:| |minor| (-583 (-830))) (|:| -3261 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-494) (-600 |#1|)) (T -61)) +((-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3261 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1256 (*1 *2 *3 *4) (-12 (-4 *5 (-494)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 42 T ELT)) (-3718 (($) NIL T CONST)) (-3320 ((|#1| |#1| $) 37 T ELT)) (-3319 ((|#1| $) 35 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) NIL T ELT)) (-3603 (($ |#1| $) 38 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 36 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 20 T ELT)) (-3559 (($) 46 T ELT)) (-3317 (((-694) $) 33 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 19 T ELT)) (-3940 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1259 (($ (-583 |#1|)) 44 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 14 (|has| $ (-6 -3989)) ELT))) +(((-62 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -1259 ($ (-583 |#1|))))) (-1012)) (T -62)) +((-1259 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3))))) +((-3940 (((-772) $) 13 T ELT) (($ (-1093)) 9 T ELT) (((-1093) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3940 ((-1093) |#1|)) (-15 -3940 (|#1| (-1093))) (-15 -3940 ((-772) |#1|))) (-64)) (T -63)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-64) (-113)) (T -64)) +NIL +(-13 (-1012) (-427 (-1093))) +(((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3482 (($ $) 10 T ELT)) (-3483 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|))) (-66)) (T -65)) +NIL +((-3480 (($ $) 11 T ELT)) (-3478 (($ $) 10 T ELT)) (-3482 (($ $) 9 T ELT)) (-3483 (($ $) 8 T ELT)) (-3481 (($ $) 7 T ELT)) (-3479 (($ $) 6 T ELT))) +(((-66) (-113)) (T -66)) +((-3480 (*1 *1 *1) (-4 *1 (-66))) (-3478 (*1 *1 *1) (-4 *1 (-66))) (-3482 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66))) (-3481 (*1 *1 *1) (-4 *1 (-66))) (-3479 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3479 ($ $)) (-15 -3481 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3478 ($ $)) (-15 -3480 ($ $)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1047) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-994) (-10 -8 (-15 -3536 ((-1047) $))))) (T -67)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67))))) +NIL +(((-68) (-113)) (T -68)) +NIL +(-13 (-10 -7 (-6 -3989) (-6 (-3991 "*")) (-6 -3990) (-6 -3986) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3987) (-6 -3981) (-6 -3980) (-6 -3979) (-6 -3978) (-6 -3977) (-6 -3985) (-6 -3988) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3976))) +((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1260 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-483))) 24 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1|) 13 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 8 T CONST)) (-3052 (((-85) $ $) 10 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-410) (-241 |#1| |#1|) (-10 -8 (-15 -1260 ($ (-1 |#1| |#1|))) (-15 -1260 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1260 ($ (-1 |#1| |#1| (-483)))))) (-961)) (T -69)) +((-1260 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1260 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-69 *3))))) +((-1261 (((-345 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-345 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1261 ((-345 |#2|) |#2| |#2|)) (-15 -1261 ((-345 |#2|) |#2| (-583 |#2|)))) (-13 (-389) (-120)) (-1153 |#1|)) (T -70)) +((-1261 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3)))) (-1261 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) 13 T ELT)) (-1262 (((-85) $ $) 14 T ELT)) (-3052 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1262 ((-85) |#1| |#1|)) (-15 -2564 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-72) (-113)) (T -72)) +((-3052 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2564 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1262 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1127) (-10 -8 (-15 -3052 ((-85) $ $)) (-15 -2564 ((-85) $ $)) (-15 -1262 ((-85) $ $)))) +(((-13) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3021 ((|#1| $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1265 (($ $ (-583 |#1|)) 30 T ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 12 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 32 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1264 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1263 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 11 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 13 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) 31 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-694) |#1|) 33 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -1266 ($ (-694) |#1|)) (-15 -1265 ($ $ (-583 |#1|))) (-15 -1264 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1264 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1263 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1263 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1012)) (T -73)) +((-1266 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1012)))) (-1265 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1264 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012)))) (-1264 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2))))) +((-1267 ((|#3| |#2| |#2|) 34 T ELT)) (-1269 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-1268 ((|#3| |#2| |#2|) 36 T ELT)) (-1270 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3991 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1267 (|#3| |#2| |#2|)) (-15 -1268 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3991 "*"))) (PROGN (-15 -1269 (|#1| |#2| |#2|)) (-15 -1270 (|#1| |#2|))) |%noBranch|)) (-961) (-1153 |#1|) (-627 |#1| |#4| |#5|) (-321 |#1|) (-321 |#1|)) (T -74)) +((-1270 (*1 *2 *3) (-12 (|has| *2 (-6 (-3991 #1="*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1269 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3991 #1#))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-1267 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) +((-1273 (($ (-583 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1273 (|#1| (-583 |#2|)))) (-76 |#2|) (-1127)) (T -75)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-76 |#1|) (-113) (-1127)) (T -76)) +((-1273 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-3603 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) +(-13 (-426 |t#1|) (-10 -8 (-6 -3990) (-15 -1273 ($ (-583 |t#1|))) (-15 -1272 (|t#1| $)) (-15 -3603 ($ |t#1| $)) (-15 -1271 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2025 (($ (-347 (-483))) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) +(((-77) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 2)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -2025 ($ (-347 (-483))))))) (T -77)) +((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77))))) +((-1285 (((-583 (-876)) $) 14 T ELT)) (-3536 (((-444) $) 12 T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1274 (($ (-444) (-583 (-876))) 16 T ELT))) +(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3536 ((-444) $)) (-15 -1285 ((-583 (-876)) $)) (-15 -1274 ($ (-444) (-583 (-876))))))) (T -78)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1274 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1275 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1012) (-10 -8 (-15 -1275 ($ (-1 |#1| |#1| |#1|))))) (-1127)) (T -79)) +((-1275 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3))))) +((-3794 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1127)) (T -80)) +NIL +(-13 (|MappingCategory| |t#1| |t#1| |t#1|)) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3316 (($ $ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-1573 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) NIL T ELT)) (-3413 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2885 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) NIL T ELT)) (-2556 (($ $) NIL T ELT)) (-1297 (($ $ $) NIL T ELT)) (-3608 (($ (-694) (-85)) 10 T ELT)) (-1298 (($ $ $) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2604 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL T ELT)) (-1946 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-85) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2195 (($ $ (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) NIL T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1943 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) NIL T ELT)) (-3796 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1766 (($ (-694) (-85)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1766 ($ (-694) (-85)))))) (T -81)) +((-1766 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82)) +NIL +(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3984) (-6 -3983))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1012) . T) ((-1127) . T)) +((-2557 (($ $ $) 12 T ELT)) (-2556 (($ $) 8 T ELT)) (-2558 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2557 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -2556 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2309 (($ $) 8 T ELT)) (-2557 (($ $ $) 9 T ELT)) (-2556 (($ $) 11 T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-2308 (($ $ $) 7 T ELT))) +(((-84) (-113)) (T -84)) +((-2556 (*1 *1 *1) (-4 *1 (-84))) (-2558 (*1 *1 *1 *1) (-4 *1 (-84))) (-2557 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-604) (-10 -8 (-15 -2556 ($ $)) (-15 -2558 ($ $ $)) (-15 -2557 ($ $ $)))) +(((-13) . T) ((-604) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 9 T ELT)) (-3316 (($ $ $) 14 T ELT)) (-2851 (($) 6 T CONST)) (-3131 (((-694)) 23 T ELT)) (-2990 (($) 31 T ELT)) (-2557 (($ $ $) 12 T ELT)) (-2556 (($ $) 8 T ELT)) (-1297 (($ $ $) 15 T ELT)) (-1298 (($ $ $) 16 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 27 T ELT)) (-2849 (($ $ $) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 7 T CONST)) (-2848 (($ $ $) 20 T ELT)) (-3966 (((-472) $) 33 T ELT)) (-3940 (((-772) $) 35 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 13 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 21 T ELT)) (-2308 (($ $ $) 11 T ELT))) +(((-85) (-13 (-752) (-880) (-553 (-472)) (-10 -8 (-15 -3316 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -1297 ($ $ $))))) (T -85)) +((-3316 (*1 *1 *1 *1) (-5 *1 (-85))) (-1298 (*1 *1 *1 *1) (-5 *1 (-85))) (-1297 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1283 (((-85) $) 42 T ELT)) (-1277 (($ $ (-1071) (-696)) 59 T ELT) (($ $ (-444) (-696)) 34 T ELT)) (-1276 (($ $ (-45 (-1071) (-696))) 16 T ELT)) (-2837 (((-3 (-696) "failed") $ (-1071)) 27 T ELT) (((-632 (-696)) $ (-444)) 33 T ELT)) (-1285 (((-45 (-1071) (-696)) $) 15 T ELT)) (-3589 (($ (-1088)) 20 T ELT) (($ (-1088) (-694)) 23 T ELT) (($ (-1088) (-55)) 24 T ELT)) (-1284 (((-85) $) 40 T ELT)) (-1282 (((-85) $) 44 T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ (-1088)) 11 T ELT)) (-2124 (($ $ (-1 (-472) (-583 (-472)))) 65 T ELT) (((-632 (-1 (-472) (-583 (-472)))) $) 69 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1279 (((-85) $ (-444)) 37 T ELT)) (-1281 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3611 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1278 (($ $ (-1071)) 56 T ELT) (($ $ (-444)) 57 T ELT)) (-3394 (($ $) 75 T ELT)) (-1280 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3940 (((-772) $) 61 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2788 (($ $ (-444)) 35 T ELT)) (-2517 (((-55) $) 70 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 88 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-756) (-747 (-1088)) (-10 -8 (-15 -1285 ((-45 (-1071) (-696)) $)) (-15 -3394 ($ $)) (-15 -3589 ($ (-1088))) (-15 -3589 ($ (-1088) (-694))) (-15 -3589 ($ (-1088) (-55))) (-15 -1284 ((-85) $)) (-15 -1283 ((-85) $)) (-15 -1282 ((-85) $)) (-15 -1519 ((-694) $)) (-15 -1519 ($ $ (-694))) (-15 -1281 ($ $ (-1 (-85) $ $))) (-15 -1280 ($ $ (-1 (-85) $ $))) (-15 -3611 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3611 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3611 ($ $ (-1 (-772) (-772)))) (-15 -2124 ($ $ (-1 (-472) (-583 (-472))))) (-15 -2124 ((-632 (-1 (-472) (-583 (-472)))) $)) (-15 -1279 ((-85) $ (-444))) (-15 -2788 ($ $ (-444))) (-15 -1278 ($ $ (-1071))) (-15 -1278 ($ $ (-444))) (-15 -2837 ((-3 (-696) "failed") $ (-1071))) (-15 -2837 ((-632 (-696)) $ (-444))) (-15 -1277 ($ $ (-1071) (-696))) (-15 -1277 ($ $ (-444) (-696))) (-15 -1276 ($ $ (-45 (-1071) (-696))))))) (T -86)) +((-1285 (*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86)))) (-3394 (*1 *1 *1) (-5 *1 (-86))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1282 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-583 (-472)))) (-5 *1 (-86)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-472) (-583 (-472))))) (-5 *1 (-86)))) (-1279 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-2837 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1276 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86))))) +((-2514 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1286 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1287 (((-86) |#1|) 63 T ELT)) (-1288 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2514 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2514 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2514 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2514 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1286 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1286 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1286 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1287 ((-86) |#1|)) (-15 -1288 ((-3 |#1| #1#) (-86)))) (-1012)) (T -87)) +((-1288 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012)))) (-1287 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012)))) (-1286 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-1286 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-1286 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1012))))) +((-1289 (((-483) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1289 ((-483) |#2|))) (-13 (-311) (-950 (-347 (-483)))) (-1153 |#1|)) (T -88)) +((-1289 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-950 (-347 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2608 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) NIL T ELT)) (-2609 (((-483) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-1067 (-483)) $) NIL T ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-779 |#1|) (-483)) (T -89)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT)) (-3151 (((-89 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-89 |#1|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-89 |#1|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-89 |#1|) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-89 |#1|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3952 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-1177 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-89 |#1|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-3125 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-248 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-583 (-248 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-583 (-1088)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) ELT) (($ $ (-1088) (-89 |#1|)) NIL (|has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-89 |#1|) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-89 |#1|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) NIL T ELT)) (-3377 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483)) (T -90)) +((-3764 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3027 (((-583 $) $) 31 T ELT)) (-3023 (((-85) $ $) 36 T ELT)) (-3240 (((-85) |#2| $) 40 T ELT)) (-3026 (((-583 |#2|) $) 25 T ELT)) (-3521 (((-85) $) 18 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3627 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 47 T ELT)) (-3516 (((-583 $) $) 32 T ELT)) (-3052 (((-85) $ $) 38 T ELT)) (-3951 (((-694) $) 50 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3782 (|#1| |#1| #1="right" |#1|)) (-15 -3782 (|#1| |#1| #2="left" |#1|)) (-15 -3794 (|#1| |#1| #1#)) (-15 -3794 (|#1| |#1| #2#)) (-15 -3782 (|#2| |#1| #3="value" |#2|)) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3026 ((-583 |#2|) |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| #3#)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -3240 ((-85) |#2| |#1|)) (-15 -3951 ((-694) |#1|))) (-92 |#2|) (-1127)) (T -91)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3990)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3132 (($ $) 63 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3133 (($ $) 65 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-92 |#1|) (-113) (-1127)) (T -92)) +((-3133 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3132 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1291 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1290 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3133 ($ $)) (-15 -3794 ($ $ "left")) (-15 -3132 ($ $)) (-15 -3794 ($ $ "right")) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3782 ($ $ "left" $)) (-15 -1291 ($ $ $)) (-15 -3782 ($ $ "right" $)) (-15 -1290 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-1294 (((-85) |#1|) 29 T ELT)) (-1293 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1292 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1292 ((-85) |#1|)) (-15 -1292 ((-85) |#1| (-85))) (-15 -1293 ((-694))) (-15 -1293 ((-694) (-694))) (-15 -1294 ((-85) |#1|))) (-1153 (-483))) (T -93)) +((-1294 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1292 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 18 T ELT)) (-3412 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 21 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 23 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 20 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 27 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 22 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1295 (($ |#1| $) 28 T ELT)) (-3603 (($ |#1| $) 15 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 11 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1296 (($ (-583 |#1|)) 16 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -1296 ($ (-583 |#1|))) (-15 -3603 ($ |#1| $)) (-15 -1295 ($ |#1| $)) (-15 -3412 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94)) +((-1296 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1295 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3412 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756))))) +((-2309 (($ $) 13 T ELT)) (-2556 (($ $) 11 T ELT)) (-1297 (($ $ $) 23 T ELT)) (-1298 (($ $ $) 21 T ELT)) (-2307 (($ $ $) 19 T ELT)) (-2308 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1297 (|#1| |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -2556 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-2309 (($ $) 103 T ELT)) (-3316 (($ $ $) 31 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 66 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) 98 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1727 (($ $) 102 (-12 (|has| (-85) (-756)) (|has| $ (-6 -3990))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 97 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) 88 (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) 54 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 38 T CONST)) (-2293 (($ $) 100 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 90 T ELT)) (-1350 (($ $) 68 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3989)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 (((-85) $ (-483) (-85)) 53 (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) 55 T ELT)) (-3413 (((-483) (-85) $ (-483)) 95 (|has| (-85) (-1012)) ELT) (((-483) (-85) $) 94 (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) 93 T ELT)) (-2885 (((-583 (-85)) $) 45 (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) 108 T ELT)) (-2556 (($ $) 106 T ELT)) (-1297 (($ $ $) 32 T ELT)) (-3608 (($ (-694) (-85)) 78 T ELT)) (-1298 (($ $ $) 33 T ELT)) (-2196 (((-483) $) 63 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 23 T ELT)) (-3512 (($ $ $) 96 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2604 (((-583 (-85)) $) 46 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 62 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 22 T ELT)) (-1946 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2300 (($ $ $ (-483)) 87 T ELT) (($ (-85) $ (-483)) 86 T ELT)) (-2199 (((-583 (-483)) $) 60 T ELT)) (-2200 (((-85) (-483) $) 59 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-85) $) 64 (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2195 (($ $ (-85)) 65 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) 52 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) 50 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) 49 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) 34 T ELT)) (-2198 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) 58 T ELT)) (-3397 (((-85) $) 37 T ELT)) (-3559 (($) 36 T ELT)) (-3794 (($ $ (-1144 (-483))) 77 T ELT) (((-85) $ (-483)) 57 T ELT) (((-85) $ (-483) (-85)) 56 T ELT)) (-2301 (($ $ (-1144 (-483))) 85 T ELT) (($ $ (-483)) 84 T ELT)) (-1943 (((-694) (-85) $) 47 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) 99 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 35 T ELT)) (-3966 (((-472) $) 67 (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) 76 T ELT)) (-3796 (($ (-583 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) 107 T ELT)) (-2307 (($ $ $) 105 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-2308 (($ $ $) 104 T ELT)) (-3951 (((-694) $) 39 (|has| $ (-6 -3989)) ELT))) +(((-96) (-113)) (T -96)) +((-1298 (*1 *1 *1 *1) (-4 *1 (-96))) (-1297 (*1 *1 *1 *1) (-4 *1 (-96))) (-3316 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1298 ($ $ $)) (-15 -1297 ($ $ $)) (-15 -3316 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-472)) |has| (-85) (-553 (-472))) ((-241 (-483) (-85)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-85)) . T) ((-259 (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ((-321 (-85)) . T) ((-426 (-85)) . T) ((-538 (-483) (-85)) . T) ((-452 (-85) (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-1946 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3394 (($ $) 16 T ELT)) (-3951 (((-694) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3951 ((-694) |#1|)) (-15 -3394 (|#1| |#1|))) (-98 |#2|) (-1012)) (T -97)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3132 (($ $) 63 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 66 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3133 (($ $) 65 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-98 |#1|) (-113) (-1012)) (T -98)) +((-1299 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012))))) +(-13 (-92 |t#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -1299 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 18 T ELT)) (-3021 ((|#1| $ |#1|) 22 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 23 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 21 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 24 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ |#1| $) 15 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 11 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 20 T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ (-583 |#1|)) 16 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3990) (-15 -1300 ($ (-583 |#1|))) (-15 -3603 ($ |#1| $)))) (-756)) (T -99)) +((-1300 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 31 T ELT)) (-3021 ((|#1| $ |#1|) 33 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 37 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 35 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 24 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 17 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 23 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 26 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 21 T ELT)) (-3559 (($) 13 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1301 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1301 ($ |#1|)) (-15 -1301 ($ $ |#1| $)))) (-1012)) (T -100)) +((-1301 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))) (-1301 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 32 T ELT)) (-3131 (((-694)) 17 T ELT)) (-3718 (($) 9 T CONST)) (-2990 (($) 27 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2006 (((-830) $) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 23 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1302 (($ (-694)) 8 T ELT)) (-3719 (($ $ $) 29 T ELT)) (-3720 (($ $ $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) 31 T ELT)) (-2562 (((-85) $ $) 14 T ELT)) (-2563 (((-85) $ $) 12 T ELT)) (-3052 (((-85) $ $) 10 T ELT)) (-2680 (((-85) $ $) 13 T ELT)) (-2681 (((-85) $ $) 11 T ELT)) (-2308 (($ $ $) 30 T ELT))) +(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1302 ($ (-694))) (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -101)) +((-1302 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3720 (*1 *1 *1 *1) (-5 *1 (-101))) (-3719 (*1 *1 *1 *1) (-5 *1 (-101))) (-3718 (*1 *1) (-5 *1 (-101)))) +((-694) (|%ilt| |#1| 256)) +((-2564 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1727 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-101) (-756))) ELT)) (-2905 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3782 (((-101) $ (-483) (-101)) 26 (|has| $ (-6 -3990)) ELT) (((-101) $ (-1144 (-483)) (-101)) NIL (|has| $ (-6 -3990)) ELT)) (-1303 (((-694) $ (-694)) 35 T ELT)) (-3704 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-3400 (($ (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3989)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-101) $ (-483) (-101)) 25 (|has| $ (-6 -3990)) ELT)) (-3108 (((-101) $ (-483)) 20 T ELT)) (-3413 (((-483) (-1 (-85) (-101)) $) NIL T ELT) (((-483) (-101) $) NIL (|has| (-101) (-1012)) ELT) (((-483) (-101) $ (-483)) NIL (|has| (-101) (-1012)) ELT)) (-2885 (((-583 (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-101)) 14 T ELT)) (-2196 (((-483) $) 27 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3512 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2604 (((-583 (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-2197 (((-483) $) 30 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-1946 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| (-101) (-1012)) ELT)) (-2300 (($ (-101) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| (-101) (-1012)) ELT)) (-3795 (((-101) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2195 (($ $ (-101)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-101)))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-248 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-2201 (((-583 (-101)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 12 T ELT)) (-3794 (((-101) $ (-483) (-101)) NIL T ELT) (((-101) $ (-483)) 23 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-101) (-553 (-472))) ELT)) (-3524 (($ (-583 (-101))) 41 T ELT)) (-3796 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-869 (-101)) $) 36 T ELT) (((-1071) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1304 (((-694) $) 18 T ELT)) (-1305 (($ (-694)) 8 T ELT)) (-1262 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3052 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3951 (((-694) $) 15 (|has| $ (-6 -3989)) ELT))) +(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1071)) (-10 -8 (-15 -1305 ($ (-694))) (-15 -1304 ((-694) $)) (-15 -1303 ((-694) $ (-694))) (-6 -3989)))) (T -102)) +((-1305 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1303 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1306 (($) 6 T CONST)) (-1308 (($) 7 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 14 T ELT)) (-1307 (($) 8 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1012) (-10 -8 (-15 -1308 ($) -3946) (-15 -1307 ($) -3946) (-15 -1306 ($) -3946)))) (T -103)) +((-1308 (*1 *1) (-5 *1 (-103))) (-1307 (*1 *1) (-5 *1 (-103))) (-1306 (*1 *1) (-5 *1 (-103)))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT))) +(((-104) (-113)) (T -104)) +((-1309 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1309 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-1310 (((-1183) $ (-694)) 17 T ELT)) (-3413 (((-694) $) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-105) (-113)) (T -105)) +((-3413 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1310 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1183))))) +(-13 (-1012) (-10 -8 (-15 -3413 ((-694) $)) (-15 -1310 ((-1183) $ (-694))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $))))) (T -106)) +((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-106))))) +((-2564 (((-85) $ $) 49 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3151 (((-694) $) 58 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) 37 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1312 (((-85)) 61 T ELT)) (-1311 (((-85) (-85)) 63 T ELT)) (-2521 (((-85) $) 30 T ELT)) (-1313 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 19 T CONST)) (-1314 (($ (-694)) 21 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) 40 T ELT)) (-3052 (((-85) $ $) 32 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 35 T ELT)) (-3831 (((-3 $ #1#) $ $) 42 T ELT)) (-3833 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3991 "*")) (-15 -3831 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1314 ($ (-694))) (-15 -2521 ((-85) $)) (-15 -1313 ((-85) $)) (-15 -1312 ((-85))) (-15 -1311 ((-85) (-85)))))) (T -107)) +((-3831 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1312 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1311 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1315 (($ (-583 |#3|)) 63 T ELT)) (-3408 (($ $) 125 T ELT) (($ $ (-483) (-483)) 124 T ELT)) (-3718 (($) 20 T ELT)) (-3152 (((-3 |#3| "failed") $) 86 T ELT)) (-3151 ((|#3| $) NIL T ELT)) (-1319 (($ $ (-583 (-483))) 126 T ELT)) (-1316 (((-583 |#3|) $) 58 T ELT)) (-3104 (((-694) $) 68 T ELT)) (-3938 (($ $ $) 120 T ELT)) (-1317 (($) 67 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1318 (($) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ (-483)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-483) (-483)) 73 T ELT) ((|#3| $ (-483) (-483) (-483)) 74 T ELT) ((|#3| $ (-483) (-483) (-483) (-483)) 75 T ELT) ((|#3| $ (-583 (-483))) 76 T ELT)) (-3942 (((-694) $) 69 T ELT)) (-1979 (($ $ (-483) $ (-483)) 121 T ELT) (($ $ (-483) (-483)) 123 T ELT)) (-3940 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1054 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 96 T CONST)) (-2662 (($) 97 T CONST)) (-3052 (((-85) $ $) 107 T ELT)) (-3831 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3833 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-483)) 116 T ELT) (($ (-483) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-402 |#3| (-694)) (-407 (-483) (-694)) (-241 (-483) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1054 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3104 ((-694) $)) (-15 -3794 (|#3| $)) (-15 -3794 (|#3| $ (-483) (-483))) (-15 -3794 (|#3| $ (-483) (-483) (-483))) (-15 -3794 (|#3| $ (-483) (-483) (-483) (-483))) (-15 -3794 (|#3| $ (-583 (-483)))) (-15 -3938 ($ $ $)) (-15 * ($ $ $)) (-15 -1979 ($ $ (-483) $ (-483))) (-15 -1979 ($ $ (-483) (-483))) (-15 -3408 ($ $)) (-15 -3408 ($ $ (-483) (-483))) (-15 -1319 ($ $ (-583 (-483)))) (-15 -1318 ($)) (-15 -1317 ($)) (-15 -1316 ((-583 |#3|) $)) (-15 -1315 ($ (-583 |#3|))) (-15 -3718 ($)))) (-483) (-694) (-146)) (T -108)) +((-3938 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2) (-4 *5 (-146)))) (-3794 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-694)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-483)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1979 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1979 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3408 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1319 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1318 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1317 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)))) (-3718 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))) +((-2411 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3952 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2411 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3952 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-483) (-694) (-146) (-146)) (T -109)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -110)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-994) (-10 -8 (-15 -1423 ((-161) $)) (-15 -3228 ((-583 (-1047)) $))))) (T -111)) +((-1423 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-111))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-552 (-157)))) (T -112)) +NIL +((-1321 (((-583 (-158 (-112))) $) 13 T ELT)) (-1320 (((-583 (-158 (-112))) $) 14 T ELT)) (-1322 (((-583 (-749)) $) 10 T ELT)) (-1479 (((-112) $) 7 T ELT)) (-3940 (((-772) $) 16 T ELT))) +(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1479 ((-112) $)) (-15 -1322 ((-583 (-749)) $)) (-15 -1321 ((-583 (-158 (-112))) $)) (-15 -1320 ((-583 (-158 (-112))) $))))) (T -113)) +((-1479 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3421 (($) 17 T CONST)) (-1799 (($) NIL (|has| (-117) (-317)) ELT)) (-3229 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3231 (($ $ $) NIL T ELT)) (-3230 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-117) (-317)) ELT)) (-3234 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1567 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3399 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3989)) ELT)) (-3400 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2990 (($) NIL (|has| (-117) (-317)) ELT)) (-2885 (((-583 (-117)) $) 65 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-2527 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2853 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-1946 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3423 (($) 18 T CONST)) (-2006 (((-830) $) NIL (|has| (-117) (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 32 T ELT)) (-1271 (((-117) $) 57 T ELT)) (-3603 (($ (-117) $) 55 T ELT)) (-2396 (($ (-830)) NIL (|has| (-117) (-317)) ELT)) (-1325 (($) 16 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1272 (((-117) $) 58 T ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 53 T ELT)) (-1326 (($) 15 T CONST)) (-3232 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1463 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1943 (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-1071) $) 39 T ELT) (((-472) $) NIL (|has| (-117) (-553 (-472))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3524 (($ (-583 (-117))) NIL T ELT)) (-1800 (($ $) 35 (|has| (-117) (-317)) ELT)) (-3940 (((-772) $) 51 T ELT)) (-1327 (($ (-1071)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1801 (((-694) $) NIL T ELT)) (-3235 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 (-117))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1323 (($) 21 T CONST)) (-1324 (($) 20 T CONST)) (-3052 (((-85) $ $) 26 T ELT)) (-3951 (((-694) $) 52 (|has| $ (-6 -3989)) ELT))) +(((-114) (-13 (-1012) (-553 (-1071)) (-366 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1327 ($ (-1071))) (-15 -1327 ($ (-583 (-117)))) (-15 -1326 ($) -3946) (-15 -1325 ($) -3946) (-15 -3421 ($) -3946) (-15 -3423 ($) -3946) (-15 -1324 ($) -3946) (-15 -1323 ($) -3946)))) (T -114)) +((-1327 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1326 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))) (-3421 (*1 *1) (-5 *1 (-114))) (-3423 (*1 *1) (-5 *1 (-114))) (-1324 (*1 *1) (-5 *1 (-114))) (-1323 (*1 *1) (-5 *1 (-114)))) +((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3733 ((|#1| |#3|) 9 T ELT)) (-3734 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| |#3|)) (-15 -3734 (|#3| |#3|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-904 |#1|) (-321 |#2|)) (T -115)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-321 *5)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-321 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-321 *4))))) +((-1366 (($ $ $) 8 T ELT)) (-1364 (($ $) 7 T ELT)) (-3097 (($ $ $) 6 T ELT))) +(((-116) (-113)) (T -116)) +((-1366 (*1 *1 *1 *1) (-4 *1 (-116))) (-1364 (*1 *1 *1) (-4 *1 (-116))) (-3097 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3097 ($ $ $)) (-15 -1364 ($ $)) (-15 -1366 ($ $ $)))) +((-2564 (((-85) $ $) NIL T ELT)) (-1335 (($) 30 T CONST)) (-1330 (((-85) $) 42 T ELT)) (-3421 (($ $) 52 T ELT)) (-1342 (($) 23 T CONST)) (-1515 (($) 21 T CONST)) (-3131 (((-694)) 13 T ELT)) (-2990 (($) 20 T ELT)) (-2575 (($) 22 T CONST)) (-1344 (((-694) $) 17 T ELT)) (-1341 (($) 24 T CONST)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1329 (((-85) $) 44 T ELT)) (-3423 (($ $) 53 T ELT)) (-2006 (((-830) $) 18 T ELT)) (-1339 (($) 26 T CONST)) (-3237 (((-1071) $) 50 T ELT)) (-2396 (($ (-830)) 16 T ELT)) (-1336 (($) 29 T CONST)) (-1332 (((-85) $) 40 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1338 (($) 27 T CONST)) (-1334 (($) 31 T CONST)) (-1333 (((-85) $) 38 T ELT)) (-3940 (((-772) $) 33 T ELT)) (-1343 (($ (-694)) 14 T ELT) (($ (-1071)) 51 T ELT)) (-1340 (($) 25 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1337 (($) 28 T CONST)) (-1328 (((-85) $) 48 T ELT)) (-1331 (((-85) $) 46 T ELT)) (-2562 (((-85) $ $) 11 T ELT)) (-2563 (((-85) $ $) 9 T ELT)) (-3052 (((-85) $ $) 7 T ELT)) (-2680 (((-85) $ $) 10 T ELT)) (-2681 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-752) (-10 -8 (-15 -1344 ((-694) $)) (-15 -1343 ($ (-694))) (-15 -1343 ($ (-1071))) (-15 -1515 ($) -3946) (-15 -2575 ($) -3946) (-15 -1342 ($) -3946) (-15 -1341 ($) -3946) (-15 -1340 ($) -3946) (-15 -1339 ($) -3946) (-15 -1338 ($) -3946) (-15 -1337 ($) -3946) (-15 -1336 ($) -3946) (-15 -1335 ($) -3946) (-15 -1334 ($) -3946) (-15 -3421 ($ $)) (-15 -3423 ($ $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $)) (-15 -1329 ((-85) $)) (-15 -1328 ((-85) $))))) (T -117)) +((-1344 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117)))) (-1515 (*1 *1) (-5 *1 (-117))) (-2575 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-1335 (*1 *1) (-5 *1 (-117))) (-1334 (*1 *1) (-5 *1 (-117))) (-3421 (*1 *1 *1) (-5 *1 (-117))) (-3423 (*1 *1 *1) (-5 *1 (-117))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-2698 (((-632 $) $) 45 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-118) (-113)) (T -118)) +((-2698 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))) +(-13 (-961) (-10 -8 (-15 -2698 ((-632 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2445 ((|#1| (-630 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2445 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119)) +((-2445 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-120) (-113)) (T -120)) +NIL +(-13 (-961)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-1347 (((-2 (|:| -2397 (-694)) (|:| -3948 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-694)) 76 T ELT)) (-1346 (((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1345 (((-2 (|:| -3948 (-347 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1348 ((|#1| |#3| |#3|) 44 T ELT)) (-3762 ((|#3| |#3| (-347 |#2|) (-347 |#2|)) 20 T ELT)) (-1349 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-2 (|:| -3948 (-347 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1346 ((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1347 ((-2 (|:| -2397 (-694)) (|:| -3948 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-694))) (-15 -1348 (|#1| |#3| |#3|)) (-15 -3762 (|#3| |#3| (-347 |#2|) (-347 |#2|))) (-15 -1349 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1132) (-1153 |#1|) (-1153 (-347 |#2|))) (T -121)) +((-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) (|:| |c2| (-347 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))) (-3762 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3)))) (-1348 (*1 *2 *3 *3) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1153 *3)))) (-1346 (*1 *2 *3) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))) (-1345 (*1 *2 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -3948 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5)))))) +((-2700 (((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2700 ((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)))) (-482) (-139 |#1|)) (T -122)) +((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4)) (-4 *4 (-482)) (-5 *1 (-122 *4 *5))))) +((-3704 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1350 (($ $) 44 T ELT)) (-3400 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 18 T ELT) (((-694) |#2| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3951 (((-694) $) 12 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1350 (|#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3704 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3400 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-124 |#2|) (-1127)) (T -123)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 45 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 44 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 53 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-124 |#1|) (-113) (-1127)) (T -124)) +((-3524 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3)))) (-1351 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3836 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3836 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3836 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3400 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-1350 (*1 *1 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012))))) +(-13 (-426 |t#1|) (-10 -8 (-15 -3524 ($ (-583 |t#1|))) (-15 -1351 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3989)) (PROGN (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3400 ($ (-1 (-85) |t#1|) $)) (-15 -3704 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3400 ($ |t#1| $)) (-15 -1350 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 113 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-583 (-830))) 72 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1352 (($ (-830)) 58 T ELT)) (-3905 (((-107)) 23 T ELT)) (-3940 (((-772) $) 88 T ELT) (($ (-483)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3671 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3121 (((-694)) 20 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 48 T CONST)) (-2662 (($) 52 T CONST)) (-3052 (((-85) $ $) 34 T ELT)) (-3943 (($ $ |#2|) NIL T ELT)) (-3831 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3833 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1185 |#2|) (-10 -8 (-15 -1352 ($ (-830))) (-15 -2889 ($ |#2| (-583 (-830)))) (-15 -3671 (|#2| $ (-583 (-830)))) (-15 -3461 ((-3 $ "failed") $)))) (-830) (-311) (-906 |#1| |#2|)) (T -125)) +((-3461 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-311)) (-14 *4 (-906 *2 *3)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) (-14 *5 (-906 *3 *4)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-311)) (-14 *5 (-906 *4 *2)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))) +((-1354 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1353 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836)) 96 T ELT)) (-1507 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483)))) (-15 -1353 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836))) (-15 -1353 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483)))) (-15 -1354 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-854 (-179))))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126)) +((-1507 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1354 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1000 *4)) (|:| |yValues| (-1000 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1507 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3176 (((-583 (-1047)) $) 20 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-994) (-10 -8 (-15 -3176 ((-583 (-1047)) $)) (-15 -3228 ((-1047) $))))) (T -127)) +((-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-127)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127))))) +((-1407 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1407 ((-583 (-142 |#2|)) |#1| |#2|))) (-1153 (-142 (-483))) (-13 (-311) (-755))) (T -128)) +((-1407 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-311) (-755)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1128) $) 13 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1128) $))))) (T -129)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1356 (($) 38 T ELT)) (-3094 (($) 37 T ELT)) (-1355 (((-830)) 43 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2952 (((-483) $) 41 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3093 (($) 39 T ELT)) (-2951 (($ (-483)) 44 T ELT)) (-3940 (((-772) $) 50 T ELT)) (-3092 (($) 40 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-3833 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3833 ($ $ $)) (-15 -3094 ($)) (-15 -1356 ($)) (-15 -3093 ($)) (-15 -3092 ($)) (-15 -2952 ((-483) $)) (-15 -1355 ((-830))) (-15 -2951 ($ (-483)))))) (T -130)) +((-3833 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3094 (*1 *1) (-5 *1 (-130))) (-1356 (*1 *1) (-5 *1 (-130))) (-3093 (*1 *1) (-5 *1 (-130))) (-3092 (*1 *1) (-5 *1 (-130))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) (-1355 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130))))) +((-1369 ((|#2| |#2| (-1003 |#2|)) 98 T ELT) ((|#2| |#2| (-1088)) 75 T ELT)) (-3938 ((|#2| |#2| (-1003 |#2|)) 97 T ELT) ((|#2| |#2| (-1088)) 74 T ELT)) (-1366 ((|#2| |#2| |#2|) 25 T ELT)) (-3589 (((-86) (-86)) 111 T ELT)) (-1363 ((|#2| (-583 |#2|)) 130 T ELT)) (-1360 ((|#2| (-583 |#2|)) 150 T ELT)) (-1359 ((|#2| (-583 |#2|)) 138 T ELT)) (-1357 ((|#2| |#2|) 136 T ELT)) (-1361 ((|#2| (-583 |#2|)) 124 T ELT)) (-1362 ((|#2| (-583 |#2|)) 125 T ELT)) (-1358 ((|#2| (-583 |#2|)) 148 T ELT)) (-1370 ((|#2| |#2| (-1088)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1364 ((|#2| |#2|) 21 T ELT)) (-3097 ((|#2| |#2| |#2|) 24 T ELT)) (-2250 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3097 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -1370 (|#2| |#2| (-1088))) (-15 -1369 (|#2| |#2| (-1088))) (-15 -1369 (|#2| |#2| (-1003 |#2|))) (-15 -3938 (|#2| |#2| (-1088))) (-15 -3938 (|#2| |#2| (-1003 |#2|))) (-15 -1357 (|#2| |#2|)) (-15 -1358 (|#2| (-583 |#2|))) (-15 -1359 (|#2| (-583 |#2|))) (-15 -1360 (|#2| (-583 |#2|))) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|)))) (-494) (-361 |#1|)) (T -131)) +((-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1366 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3097 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-361 *4))))) +((-1368 ((|#1| |#1| |#1|) 66 T ELT)) (-1367 ((|#1| |#1| |#1|) 63 T ELT)) (-1366 ((|#1| |#1| |#1|) 57 T ELT)) (-2886 ((|#1| |#1|) 43 T ELT)) (-1365 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1364 ((|#1| |#1|) 47 T ELT)) (-3097 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3097 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1365 (|#1| |#1| (-583 |#1|))) (-15 -2886 (|#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|))) (-482)) (T -132)) +((-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1366 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-2886 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1365 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2)))) (-1364 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-3097 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) +((-1369 (($ $ (-1088)) 12 T ELT) (($ $ (-1003 $)) 11 T ELT)) (-3938 (($ $ (-1088)) 10 T ELT) (($ $ (-1003 $)) 9 T ELT)) (-1366 (($ $ $) 8 T ELT)) (-1370 (($ $) 14 T ELT) (($ $ (-1088)) 13 T ELT)) (-1364 (($ $) 7 T ELT)) (-3097 (($ $ $) 6 T ELT))) +(((-133) (-113)) (T -133)) +((-1370 (*1 *1 *1) (-4 *1 (-133))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1369 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1370 ($ $)) (-15 -1370 ($ $ (-1088))) (-15 -1369 ($ $ (-1088))) (-15 -1369 ($ $ (-1003 $))) (-15 -3938 ($ $ (-1088))) (-15 -3938 ($ $ (-1003 $))))) +(((-116) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-1371 (($ (-483)) 15 T ELT) (($ $ $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1012) (-10 -8 (-15 -1371 ($ (-483))) (-15 -1371 ($ $ $))))) (T -134)) +((-1371 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134)))) (-1371 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $))))) (T -135)) +((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-135))))) +((-3589 (((-86) (-1088)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3589 ((-86) (-1088))))) (T -136)) +((-3589 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1592 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1592 (|#3| |#3|))) (-961) (-1153 |#1|) (-1153 |#2|)) (T -137)) +((-1592 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1153 *4))))) +((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 222 T ELT)) (-3324 ((|#2| $) 102 T ELT)) (-3486 (($ $) 255 T ELT)) (-3633 (($ $) 249 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 47 T ELT)) (-3484 (($ $) 253 T ELT)) (-3632 (($ $) 247 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2560 (($ $ $) 228 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3836 (($ (-1083 |#2|)) 125 T ELT) (((-3 $ #1#) (-347 (-1083 |#2|))) NIL T ELT)) (-3461 (((-3 $ #1#) $) 213 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 203 T ELT)) (-3019 (((-85) $) 198 T ELT)) (-3018 (((-347 (-483)) $) 201 T ELT)) (-3104 (((-830)) 96 T ELT)) (-2559 (($ $ $) 230 T ELT)) (-1372 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3621 (($) 244 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 192 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 197 T ELT)) (-3127 ((|#2| $) 100 T ELT)) (-2010 (((-1083 |#2|) $) 127 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3936 (($ $) 246 T ELT)) (-3075 (((-1083 |#2|) $) 126 T ELT)) (-2480 (($ $) 206 T ELT)) (-1374 (($) 103 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 95 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 64 T ELT)) (-3460 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3937 (($ $) 245 T ELT)) (-1604 (((-694) $) 225 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 234 T ELT)) (-3751 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3180 (((-1083 |#2|)) 120 T ELT)) (-3485 (($ $) 254 T ELT)) (-3628 (($ $) 248 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) 136 T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 116 T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT) (($ (-1083 |#2|)) NIL T ELT) (((-800 (-483)) $) 183 T ELT) (((-800 (-327)) $) 187 T ELT) (((-142 (-327)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-472) $) 179 T ELT)) (-3005 (($ $) 104 T ELT)) (-3940 (((-772) $) 143 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-2445 (((-1083 |#2|) $) 32 T ELT)) (-3121 (((-694)) 106 T CONST)) (-1262 (((-85) $ $) 13 T ELT)) (-3492 (($ $) 258 T ELT)) (-3480 (($ $) 252 T ELT)) (-3490 (($ $) 256 T ELT)) (-3478 (($ $) 250 T ELT)) (-2232 ((|#2| $) 241 T ELT)) (-3491 (($ $) 257 T ELT)) (-3479 (($ $) 251 T ELT)) (-3377 (($ $) 162 T ELT)) (-3052 (((-85) $ $) 110 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-347 (-483))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3940 (|#1| |#1|)) (-15 -3460 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -2559 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-142 (-179)) |#1|)) (-15 -3966 ((-142 (-327)) |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3621 (|#1|)) (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1#) (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -3020 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -1372 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2232 (|#2| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3005 (|#1| |#1|)) (-15 -1374 (|#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3836 ((-3 |#1| #1#) (-347 (-1083 |#2|)))) (-15 -3075 ((-1083 |#2|) |#1|)) (-15 -3966 (|#1| (-1083 |#2|))) (-15 -3836 (|#1| (-1083 |#2|))) (-15 -3180 ((-1083 |#2|))) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 ((-1083 |#2|) |#1|)) (-15 -3751 (|#2|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -2010 ((-1083 |#2|) |#1|)) (-15 -2445 ((-1083 |#2|) |#1|)) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3127 (|#2| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -3104 ((-830))) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3461 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -1262 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3104 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3751 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3180 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2059 (($ $) 113 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2057 (((-85) $) 115 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-3486 (($ $) 248 (|has| |#1| (-1113)) ELT)) (-3633 (($ $) 231 (|has| |#1| (-1113)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 262 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3769 (($ $) 132 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3965 (((-345 $) $) 133 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3033 (($ $) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 265 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-1605 (((-85) $ $) 123 (|has| |#1| (-257)) ELT)) (-3131 (((-694)) 106 (|has| |#1| (-317)) ELT)) (-3484 (($ $) 247 (|has| |#1| (-1113)) ELT)) (-3632 (($ $) 232 (|has| |#1| (-1113)) ELT)) (-3488 (($ $) 246 (|has| |#1| (-1113)) ELT)) (-3631 (($ $) 233 (|has| |#1| (-1113)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 188 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) 127 (|has| |#1| (-257)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 182 T ELT) (((-630 |#1|) (-630 $)) 181 T ELT)) (-3836 (($ (-1083 |#1|)) 176 T ELT) (((-3 $ "failed") (-347 (-1083 |#1|))) 173 (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 273 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 266 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 268 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 267 (|has| |#1| (-482)) ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 126 (|has| |#1| (-257)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| |#1| (-257)) ELT)) (-2829 (($) 167 (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) 134 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1372 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 269 (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3621 (($) 258 (|has| |#1| (-1113)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 281 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 280 (|has| |#1| (-796 (-327))) ELT)) (-3766 (((-830) $) 170 (|has| |#1| (-298)) ELT) (((-743 (-830)) $) 156 (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 260 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-3127 ((|#1| $) 64 T ELT)) (-3439 (((-632 $) $) 160 (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| |#1| (-257)) ELT)) (-2010 (((-1083 |#1|) $) 57 (|has| |#1| (-311)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 282 T ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-3936 (($ $) 255 (|has| |#1| (-1113)) ELT)) (-3075 (((-1083 |#1|) $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 180 T ELT) (((-630 |#1|) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3440 (($) 161 (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| |#1| (-317)) ELT)) (-1374 (($) 277 T ELT)) (-3638 ((|#1| $) 274 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3139 (($ (-583 $)) 117 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT) (($ $ $) 116 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 264 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 263 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3726 (((-345 $) $) 131 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| |#1| (-257)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 272 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 111 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| |#1| (-257)) ELT)) (-3937 (($ $) 256 (|has| |#1| (-1113)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 288 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 287 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 286 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 285 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 284 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 283 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) 124 (|has| |#1| (-257)) ELT)) (-3794 (($ $ |#1|) 289 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| |#1| (-257)) ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1762 (((-694) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) 147 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) 146 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) 144 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) 154 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 152 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3180 (((-1083 |#1|)) 177 T ELT)) (-3489 (($ $) 245 (|has| |#1| (-1113)) ELT)) (-3630 (($ $) 234 (|has| |#1| (-1113)) ELT)) (-1671 (($) 166 (|has| |#1| (-298)) ELT)) (-3487 (($ $) 244 (|has| |#1| (-1113)) ELT)) (-3629 (($ $) 235 (|has| |#1| (-1113)) ELT)) (-3485 (($ $) 243 (|has| |#1| (-1113)) ELT)) (-3628 (($ $) 236 (|has| |#1| (-1113)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT) (((-1083 |#1|) $) 193 T ELT) (($ (-1083 |#1|)) 175 T ELT) (((-800 (-483)) $) 279 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 278 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-142 (-327)) $) 230 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 229 (|has| |#1| (-933)) ELT) (((-472) $) 228 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 276 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (OR (-2558 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (|has| |#1| (-298))) ELT)) (-1373 (($ |#1| |#1|) 275 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) 110 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2698 (($ $) 162 (|has| |#1| (-298)) ELT) (((-632 $) $) 56 (OR (-2558 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2445 (((-1083 |#1|) $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-3492 (($ $) 254 (|has| |#1| (-1113)) ELT)) (-3480 (($ $) 242 (|has| |#1| (-1113)) ELT)) (-2058 (((-85) $ $) 114 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3490 (($ $) 253 (|has| |#1| (-1113)) ELT)) (-3478 (($ $) 241 (|has| |#1| (-1113)) ELT)) (-3494 (($ $) 252 (|has| |#1| (-1113)) ELT)) (-3482 (($ $) 240 (|has| |#1| (-1113)) ELT)) (-2232 ((|#1| $) 270 (|has| |#1| (-1113)) ELT)) (-3495 (($ $) 251 (|has| |#1| (-1113)) ELT)) (-3483 (($ $) 239 (|has| |#1| (-1113)) ELT)) (-3493 (($ $) 250 (|has| |#1| (-1113)) ELT)) (-3481 (($ $) 238 (|has| |#1| (-1113)) ELT)) (-3491 (($ $) 249 (|has| |#1| (-1113)) ELT)) (-3479 (($ $) 237 (|has| |#1| (-1113)) ELT)) (-3377 (($ $) 271 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 141 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 140 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) 150 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) 149 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) 145 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) 155 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 153 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-347 (-483))) 259 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT) (($ $ $) 257 (|has| |#1| (-1113)) ELT) (($ $ (-483)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-311)) ELT))) +(((-139 |#1|) (-113) (-146)) (T -139)) +((-3127 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1374 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3005 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1373 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483)))))) +(-13 (-661 |t#1| (-1083 |t#1|)) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-340 |t#1|) (-794 |t#1|) (-326 |t#1|) (-146) (-10 -8 (-6 -1373) (-15 -1374 ($)) (-15 -3005 ($ $)) (-15 -1373 ($ |t#1| |t#1|)) (-15 -3638 (|t#1| $)) (-15 -3637 (|t#1| $)) (-15 -3127 (|t#1| $)) (IF (|has| |t#1| (-494)) (PROGN (-6 (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-257)) (-6 (-257)) |%noBranch|) (IF (|has| |t#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |t#1| (-6 -3985)) (-6 -3985) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-327))))) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1113)) (PROGN (-6 (-1113)) (-15 -2232 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -1372 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-257)) (-6 (-821)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-35) |has| |#1| (-1113)) ((-66) |has| |#1| (-1113)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-327))) |has| |#1| (-933)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-553 (-1083 |#1|)) . T) ((-186 $) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-298)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-239) |has| |#1| (-1113)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| (-1083 |#1|)) . T) ((-350 |#1| (-1083 |#1|)) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-430) |has| |#1| (-1113)) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-661 |#1| (-1083 |#1|)) . T) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-257)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-298)) ((-1113) |has| |#1| (-1113)) ((-1116) |has| |#1| (-1113)) ((-1127) . T) ((-1132) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821))))) +((-3726 (((-345 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3726 ((-345 |#2|) |#2|))) (-257) (-1153 (-142 |#1|))) (T -140)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) +((-1377 (((-1047) (-1047) (-246)) 8 T ELT)) (-1375 (((-583 (-632 (-235))) (-1071)) 81 T ELT)) (-1376 (((-632 (-235)) (-1047)) 76 T ELT))) +(((-141) (-13 (-1127) (-10 -7 (-15 -1377 ((-1047) (-1047) (-246))) (-15 -1376 ((-632 (-235)) (-1047))) (-15 -1375 ((-583 (-632 (-235))) (-1071)))))) (T -141)) +((-1377 (*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-246)) (-5 *1 (-141)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 15 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-1779 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3769 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3965 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3033 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-257)) ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3836 (($ (-1083 |#1|)) NIL T ELT) (((-3 $ #1#) (-347 (-1083 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 20 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-257)) ELT)) (-2829 (($) NIL (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1372 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3621 (($) NIL (|has| |#1| (-1113)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#1| (-796 (-327))) ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-298)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 17 T ELT)) (-3007 (($ $ (-483)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-3127 ((|#1| $) 30 T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-257)) ELT)) (-2010 (((-1083 |#1|) $) NIL (|has| |#1| (-311)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3936 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3075 (((-1083 |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3440 (($) NIL (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1374 (($) NIL T ELT)) (-3638 ((|#1| $) 21 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-257)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3726 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-257)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-257)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3751 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1671 (($) NIL (|has| |#1| (-298)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3629 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3628 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT) (($ (-1083 |#1|)) NIL T ELT) (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (((-142 (-327)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 29 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-298))) ELT)) (-1373 (($ |#1| |#1|) 19 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2698 (($ $) NIL (|has| |#1| (-298)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2445 (((-1083 |#1|) $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2232 ((|#1| $) NIL (|has| |#1| (-1113)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3377 (($ $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-347 (-483))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT) (($ $ $) NIL (|has| |#1| (-1113)) ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT))) +(((-142 |#1|) (-139 |#1|) (-146)) (T -142)) +NIL +((-3952 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3952 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-3966 (((-800 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-800 |#1|) |#3|))) (-1012) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-3966 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1012)) (-4 *3 (-139 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1379 (((-85) $) 9 T ELT)) (-1378 (((-85) $ (-85)) 11 T ELT)) (-3608 (($) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3394 (($ $) 14 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-3696 (((-85) $) 8 T ELT)) (-3855 (((-85) $ (-85)) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1012) (-10 -8 (-15 -3608 ($)) (-15 -3696 ((-85) $)) (-15 -1379 ((-85) $)) (-15 -3855 ((-85) $ (-85))) (-15 -1378 ((-85) $ (-85))) (-15 -3394 ($ $))))) (T -145)) +((-3608 (*1 *1) (-5 *1 (-145))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3855 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1378 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3394 (*1 *1 *1) (-5 *1 (-145)))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-146) (-113)) (T -146)) +NIL +(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3991 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-1697 (($ $) 6 T ELT))) +(((-147) (-113)) (T -147)) +((-1697 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1697 ($ $)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#1| $) 79 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-1384 (($ $) 21 T ELT)) (-1388 (($ |#1| (-1067 |#1|)) 48 T ELT)) (-3461 (((-3 $ #1#) $) 123 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1385 (((-1067 |#1|) $) 86 T ELT)) (-1387 (((-1067 |#1|) $) 83 T ELT)) (-1386 (((-1067 |#1|) $) 84 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1381 (((-1067 |#1|) $) 93 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3763 (($ $ (-483)) 96 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1380 (((-1067 |#1|) $) 94 T ELT)) (-1382 (((-1067 (-347 |#1|)) $) 14 T ELT)) (-2612 (($ (-347 |#1|)) 17 T ELT) (($ |#1| (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-2887 (($ $) 98 T ELT)) (-3940 (((-772) $) 139 T ELT) (($ (-483)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-347 |#1|)) 36 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) 67 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-1383 (((-1067 (-347 |#1|)) $) 20 T ELT)) (-2656 (($) 103 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 35 T ELT)) (-3943 (($ $ $) 121 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3833 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-347 |#1|) $) 117 T ELT) (($ $ (-347 |#1|)) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-347 |#1|)) (-311) (-10 -8 (-15 -2612 ($ (-347 |#1|))) (-15 -2612 ($ |#1| (-1067 |#1|) (-1067 |#1|))) (-15 -1388 ($ |#1| (-1067 |#1|))) (-15 -1387 ((-1067 |#1|) $)) (-15 -1386 ((-1067 |#1|) $)) (-15 -1385 ((-1067 |#1|) $)) (-15 -3124 (|#1| $)) (-15 -1384 ($ $)) (-15 -1383 ((-1067 (-347 |#1|)) $)) (-15 -1382 ((-1067 (-347 |#1|)) $)) (-15 -1381 ((-1067 |#1|) $)) (-15 -1380 ((-1067 |#1|) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $)))) (-257)) (T -148)) +((-2612 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) (-2612 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1388 (*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3124 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1384 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-2887 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))) +((-1389 (($ (-78) $) 15 T ELT)) (-3216 (((-632 (-78)) (-444) $) 14 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1390 (((-583 (-78)) $) 8 T ELT))) +(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1390 ((-583 (-78)) $)) (-15 -1389 ($ (-78) $)) (-15 -3216 ((-632 (-78)) (-444) $))))) (T -149)) +((-1390 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3216 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))) +((-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1399 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1392 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1400 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1398 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1640 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1393 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1391 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1391 ((-854 |#1|) (-854 |#1|))) (-15 -1392 ((-854 |#1|) (-854 |#1|))) (-15 -1393 ((-854 |#1|) (-854 |#1|))) (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1640 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1398 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1399 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1400 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-311) (-1113) (-915))) (T -150)) +((-1404 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3))))) +((-2445 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2445 (|#2| |#3|))) (-146) (-1153 |#1|) (-661 |#1| |#2|)) (T -151)) +((-2445 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2))))) +((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1012) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1406 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1405 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2073 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1405 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2073 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2073 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1406 ((-583 |#1|) (-583 |#1|) |#1|))) (-257)) (T -153)) +((-1406 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-257)) (-5 *1 (-153 *4)))) (-2073 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) (-1405 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -154)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))) +((-1415 (((-2 (|:| |start| |#2|) (|:| -1776 (-345 |#2|))) |#2|) 66 T ELT)) (-1414 ((|#1| |#1|) 58 T ELT)) (-1413 (((-142 |#1|) |#2|) 94 T ELT)) (-1412 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1411 ((|#2| |#2|) 91 T ELT)) (-1410 (((-345 |#2|) |#2| |#1|) 119 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3127 ((|#1| |#2|) 118 T ELT)) (-1409 ((|#2| |#2|) 131 T ELT)) (-3726 (((-345 |#2|) |#2|) 154 T ELT) (((-345 |#2|) |#2| |#1|) 33 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1408 (((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1407 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1407 ((-583 (-142 |#1|)) |#2|)) (-15 -1407 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1408 ((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2| (-85))) (-15 -1408 ((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2|)) (-15 -3726 ((-345 |#2|) |#2| |#1| (-85))) (-15 -3726 ((-345 |#2|) |#2| |#1|)) (-15 -3726 ((-345 |#2|) |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -3127 (|#1| |#2|)) (-15 -1410 ((-345 |#2|) |#2| |#1| (-85))) (-15 -1410 ((-345 |#2|) |#2| |#1|)) (-15 -1411 (|#2| |#2|)) (-15 -1412 (|#1| |#2| |#1|)) (-15 -1412 (|#1| |#2|)) (-15 -1413 ((-142 |#1|) |#2|)) (-15 -1414 (|#1| |#1|)) (-15 -1415 ((-2 (|:| |start| |#2|) (|:| -1776 (-345 |#2|))) |#2|))) (-13 (-311) (-755)) (-1153 (-142 |#1|))) (T -155)) +((-1415 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1776 (-345 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1414 (*1 *2 *2) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1413 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-755))) (-4 *3 (-1153 *2)))) (-1412 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1412 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3127 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3726 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1408 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1408 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-755))) (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5))))) (-1407 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1407 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) +((-1416 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1417 (((-694) |#2|) 18 T ELT)) (-1418 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1416 ((-3 |#2| "failed") |#2|)) (-15 -1417 ((-694) |#2|)) (-15 -1418 (|#2| |#2| |#2|))) (-1127) (-616 |#1|)) (T -156)) +((-1418 (*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-1127)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1416 (*1 *2 *2) (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) 10 T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1419 (((-632 $) (-444)) 17 T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 12 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1419 ((-632 $) (-444)))))) (T -157)) +((-1419 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1479 ((|#1| $) 7 T ELT)) (-3940 (((-772) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1420 (((-583 (-1093)) $) 10 T ELT)) (-3052 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1012) (-10 -8 (-15 -1479 (|#1| $)) (-15 -1420 ((-583 (-1093)) $)))) (-160)) (T -158)) +((-1479 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1421 (((-583 (-774)) $) 16 T ELT)) (-1423 (((-161) $) 8 T ELT)) (-1422 (((-583 (-85)) $) 13 T ELT)) (-2517 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1421 ((-583 (-774)) |#1|)) (-15 -1422 ((-583 (-85)) |#1|)) (-15 -1423 ((-161) |#1|)) (-15 -2517 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1421 (((-583 (-774)) $) 22 T ELT)) (-3536 (((-444) $) 19 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1423 (((-161) $) 24 T ELT)) (-2629 (((-85) $ (-444)) 17 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1422 (((-583 (-85)) $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2517 (((-55) $) 18 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-160) (-113)) (T -160)) +((-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) +(-13 (-747 (-444)) (-10 -8 (-15 -1423 ((-161) $)) (-15 -1422 ((-583 (-85)) $)) (-15 -1421 ((-583 (-774)) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-444)) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3940 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1012) (-10 -8 (-15 -9 ($) -3946) (-15 -8 ($) -3946) (-15 -7 ($) -3946)))) (T -161)) +((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) +((-3636 ((|#2| |#2|) 28 T ELT)) (-3639 (((-85) |#2|) 19 T ELT)) (-3637 (((-264 |#1|) |#2|) 12 T ELT)) (-3638 (((-264 |#1|) |#2|) 14 T ELT)) (-3634 ((|#2| |#2| (-1088)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3640 (((-142 (-264 |#1|)) |#2|) 10 T ELT)) (-3635 ((|#2| |#2| (-1088)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1088))) (-15 -3635 (|#2| |#2|)) (-15 -3635 (|#2| |#2| (-1088))) (-15 -3637 ((-264 |#1|) |#2|)) (-15 -3638 ((-264 |#1|) |#2|)) (-15 -3639 ((-85) |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3640 ((-142 (-264 |#1|)) |#2|))) (-13 (-494) (-950 (-483))) (-13 (-27) (-1113) (-361 (-142 |#1|)))) (T -162)) +((-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-142 (-264 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3638 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3))))))) +((-1427 (((-1177 (-630 (-857 |#1|))) (-1177 (-630 |#1|))) 26 T ELT)) (-3940 (((-1177 (-630 (-347 (-857 |#1|)))) (-1177 (-630 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1427 ((-1177 (-630 (-857 |#1|))) (-1177 (-630 |#1|)))) (-15 -3940 ((-1177 (-630 (-347 (-857 |#1|)))) (-1177 (-630 |#1|))))) (-146)) (T -163)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-630 (-347 (-857 *4))))) (-5 *1 (-163 *4)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) +((-1435 (((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 93 T ELT)) (-1437 (((-1090 (-347 (-483))) (-583 (-483)) (-583 (-483))) 106 T ELT)) (-1428 (((-1090 (-347 (-483))) (-830)) 54 T ELT)) (-3848 (((-1090 (-347 (-483))) (-830)) 79 T ELT)) (-3762 (((-347 (-483)) (-1090 (-347 (-483)))) 89 T ELT)) (-1429 (((-1090 (-347 (-483))) (-830)) 37 T ELT)) (-1432 (((-1090 (-347 (-483))) (-830)) 66 T ELT)) (-1431 (((-1090 (-347 (-483))) (-830)) 61 T ELT)) (-1434 (((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 87 T ELT)) (-2887 (((-1090 (-347 (-483))) (-830)) 29 T ELT)) (-1433 (((-347 (-483)) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 91 T ELT)) (-1430 (((-1090 (-347 (-483))) (-830)) 35 T ELT)) (-1436 (((-1090 (-347 (-483))) (-583 (-830))) 100 T ELT))) +(((-164) (-10 -7 (-15 -2887 ((-1090 (-347 (-483))) (-830))) (-15 -1428 ((-1090 (-347 (-483))) (-830))) (-15 -1429 ((-1090 (-347 (-483))) (-830))) (-15 -1430 ((-1090 (-347 (-483))) (-830))) (-15 -1431 ((-1090 (-347 (-483))) (-830))) (-15 -1432 ((-1090 (-347 (-483))) (-830))) (-15 -3848 ((-1090 (-347 (-483))) (-830))) (-15 -1433 ((-347 (-483)) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -1434 ((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -3762 ((-347 (-483)) (-1090 (-347 (-483))))) (-15 -1435 ((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -1436 ((-1090 (-347 (-483))) (-583 (-830)))) (-15 -1437 ((-1090 (-347 (-483))) (-583 (-483)) (-583 (-483)))))) (T -164)) +((-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +((-1439 (((-345 (-1083 (-483))) (-483)) 38 T ELT)) (-1438 (((-583 (-1083 (-483))) (-483)) 33 T ELT)) (-2797 (((-1083 (-483)) (-483)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1438 ((-583 (-1083 (-483))) (-483))) (-15 -2797 ((-1083 (-483)) (-483))) (-15 -1439 ((-345 (-1083 (-483))) (-483))))) (T -165)) +((-1439 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483)))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-583 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1440 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3108 ((|#2| $ (-694)) 10 T ELT)) (-3608 (($) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 23 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3608 ($)) (-15 -3108 (|#2| $ (-694))) (-15 -1440 (|#2| $ (-694) |#2|)))) (-830) (-1012)) (T -166)) +((-3608 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1012)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1440 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1961 (((-1183) $) 36 T ELT) (((-1183) $ (-830) (-830)) 40 T ELT)) (-3794 (($ $ (-902)) 19 T ELT) (((-203 (-1071)) $ (-1088)) 15 T ELT)) (-3611 (((-1183) $) 34 T ELT)) (-3940 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $ $) 26 T ELT)) (-3833 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1012) (-555 (-583 |#1|)) (-10 -8 (-15 -3794 ($ $ (-902))) (-15 -3794 ((-203 (-1071)) $ (-1088))) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $)) (-15 -1961 ((-1183) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))) (T -167)) +((-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ *3)) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3833 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3831 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $))))))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $))))))) (-1961 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $)))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 10 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2847 (($ (-577 |#1|)) 11 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2847 ($ (-577 |#1|))))) (-583 (-1088))) (T -168)) +((-2847 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-168 *3))))) +((-1441 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1441 (|#2| |#4| (-1 |#2| |#2|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -169)) +((-1441 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1153 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6))))) +((-1445 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1444 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2367 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|)))) 79 T ELT)) (-1443 (((-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))) |#2|) 72 T ELT)) (-1446 (((-85) |#2|) 70 T ELT)) (-3727 (((-345 |#2|) |#2|) 92 T ELT)) (-3726 (((-345 |#2|) |#2|) 91 T ELT)) (-2368 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1442 (((-2 (|:| |cont| |#1|) (|:| -1776 (-583 (-2 (|:| |irr| |#2|) (|:| -2391 (-483)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3726 ((-345 |#2|) |#2|)) (-15 -3727 ((-345 |#2|) |#2|)) (-15 -1442 ((-2 (|:| |cont| |#1|) (|:| -1776 (-583 (-2 (|:| |irr| |#2|) (|:| -2391 (-483)))))) |#2| (-85))) (-15 -1443 ((-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))) |#2|)) (-15 -2367 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))))) (-15 -2368 (|#2| |#2| (-694) |#2|)) (-15 -1444 (|#2| |#2| (-694) |#2|)) (-15 -1445 (|#2| |#2| (-694) |#2|)) (-15 -1446 ((-85) |#2|))) (-298) (-1153 |#1|)) (T -170)) +((-1446 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-1444 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2368 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *5)))) (-4 *5 (-1153 *4)) (-4 *4 (-298)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-1447 (($ (-347 (-483))) 9 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) +(((-171) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 10)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -1447 ($ (-347 (-483))))))) (T -171)) +((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171)))) (-1447 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3173 (((-420) $) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-994) (-10 -8 (-15 -3173 ((-420) $)) (-15 -3314 ((-1027) $)) (-15 -3228 ((-1047) $))))) (T -172)) +((-3173 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172))))) +((-3806 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-750 |#2|)) (-1071)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-750 |#2|))) 25 T ELT)) (-1448 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3806 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-750 |#2|)))) (-15 -3806 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-750 |#2|)) (-1071))) (-15 -1448 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -173)) +((-1448 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1088)) (-5 *6 (-85)) (-4 *7 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-1113) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-750 *3))) (-5 *5 (-1071)) (-4 *3 (-13 (-1113) (-871) (-29 *6))) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-750 *3))) (-4 *3 (-13 (-1113) (-871) (-29 *5))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3806 (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))) (-1071)) 49 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))) (-1071)) 50 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))) (-1071))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))) (-1071)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (T -174)) +((-3806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-750 (-347 (-857 *6))))) (-5 *5 (-1071)) (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-750 (-347 (-857 *5))))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1003 (-750 (-264 *6)))) (-5 *5 (-1071)) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1003 (-750 (-264 *5)))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3836 (((-2 (|:| -2000 (-1083 |#1|)) (|:| |deg| (-830))) (-1083 |#1|)) 26 T ELT)) (-3957 (((-583 (-264 |#2|)) (-264 |#2|) (-830)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3836 ((-2 (|:| -2000 (-1083 |#1|)) (|:| |deg| (-830))) (-1083 |#1|))) (-15 -3957 ((-583 (-264 |#2|)) (-264 |#2|) (-830)))) (-961) (-494)) (T -175)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-494)) (-5 *2 (-583 (-264 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-961)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2000 (-1083 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1492 ((|#1| $) NIL T ELT)) (-3318 ((|#1| $) 31 T ELT)) (-3718 (($) NIL T CONST)) (-2998 (($ $) NIL T ELT)) (-2293 (($ $) 40 T ELT)) (-3320 ((|#1| |#1| $) NIL T ELT)) (-3319 ((|#1| $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3827 (((-694) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) NIL T ELT)) (-1490 ((|#1| |#1| $) 36 T ELT)) (-1489 ((|#1| |#1| $) 38 T ELT)) (-3603 (($ |#1| $) NIL T ELT)) (-2599 (((-694) $) 34 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) NIL T ELT)) (-1488 ((|#1| $) 32 T ELT)) (-1487 ((|#1| $) 30 T ELT)) (-1272 ((|#1| $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| |#1| $) NIL T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) NIL T ELT)) (-2999 ((|#1| $) NIL T ELT)) (-1493 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3317 (((-694) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1491 ((|#1| $) 14 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-2996 ((|#1| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1493 ($ (-583 |#1|))))) (-1012)) (T -176)) +((-1493 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1450 (($ (-264 |#1|)) 24 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2660 (((-85) $) NIL T ELT)) (-3152 (((-3 (-264 |#1|) #1#) $) NIL T ELT)) (-3151 (((-264 |#1|) $) NIL T ELT)) (-3953 (($ $) 32 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3952 (($ (-1 (-264 |#1|) (-264 |#1|)) $) NIL T ELT)) (-3169 (((-264 |#1|) $) NIL T ELT)) (-1452 (($ $) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1451 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) NIL T ELT)) (-1449 (($ $) 33 T ELT)) (-3942 (((-483) $) NIL T ELT)) (-3940 (((-772) $) 65 T ELT) (($ (-483)) NIL T ELT) (($ (-264 |#1|)) NIL T ELT)) (-3671 (((-264 |#1|) $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 26 T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) 29 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-264 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-560 (-264 |#1|)) (-950 (-264 |#1|)) (-10 -8 (-15 -3169 ((-264 |#1|) $)) (-15 -1452 ($ $)) (-15 -3953 ($ $)) (-15 -3671 ((-264 |#1|) $ $)) (-15 -2405 ($ (-694))) (-15 -1451 ((-85) $)) (-15 -2660 ((-85) $)) (-15 -3942 ((-483) $)) (-15 -3952 ($ (-1 (-264 |#1|) (-264 |#1|)) $)) (-15 -1450 ($ (-264 |#1|))) (-15 -1449 ($ $)))) (-13 (-961) (-756)) (-583 (-1088))) (T -177)) +((-3169 (*1 *2 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088))))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088))))) (-3671 (*1 *2 *1 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088))))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088))))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088)))))) +((-1453 (((-85) (-1071)) 26 T ELT)) (-1454 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1455 (((-3 (-85) #1#) (-1083 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1088) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1453 ((-85) (-1071))) (-15 -1454 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1455 ((-3 (-85) #1#) (-857 |#1|) (-1088) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1455 ((-3 (-85) #1#) (-1083 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-29 |#1|))) (T -178)) +((-1455 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1113) (-29 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *5 *6)))) (-1455 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1088)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1454 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1113) (-29 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *6 *4)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 86 T ELT)) (-3124 (((-483) $) 18 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3765 (($ $) NIL T ELT)) (-3486 (($ $) 73 T ELT)) (-3633 (($ $) 61 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) 52 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3484 (($ $) 71 T ELT)) (-3632 (($ $) 59 T ELT)) (-3617 (((-483) $) 83 T ELT)) (-3488 (($ $) 76 T ELT)) (-3631 (($ $) 63 T ELT)) (-3718 (($) NIL T CONST)) (-3122 (($ $) NIL T ELT)) (-3152 (((-3 (-483) #1#) $) 116 T ELT) (((-3 (-347 (-483)) #1#) $) 113 T ELT)) (-3151 (((-483) $) 114 T ELT) (((-347 (-483)) $) 111 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 91 T ELT)) (-1741 (((-347 (-483)) $ (-694)) 106 T ELT) (((-347 (-483)) $ (-694) (-694)) 105 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1765 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 107 T ELT)) (-3621 (($) 31 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL T ELT)) (-3766 (((-483) $) 25 T ELT)) (-2406 (((-85) $) 87 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (($ $) NIL T ELT)) (-3182 (((-85) $) 85 T ELT)) (-1456 (((-85) $) 140 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) 49 T ELT) (($) 21 (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-2853 (($ $ $) 48 T ELT) (($) 20 (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-1767 (((-483) $) 10 T ELT)) (-1740 (($ $) 16 T ELT)) (-1739 (($ $) 53 T ELT)) (-3936 (($ $) 58 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-1764 (((-830) (-483)) NIL (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) 89 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL T ELT)) (-3125 (($ $) NIL T ELT)) (-3249 (($ (-483) (-483)) NIL T ELT) (($ (-483) (-483) (-830)) 98 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2397 (((-483) $) 11 T ELT)) (-1738 (($) 30 T ELT)) (-3937 (($ $) 57 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-3752 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1763 (((-830) (-483)) NIL (|has| $ (-6 -3980)) ELT)) (-3489 (($ $) 74 T ELT)) (-3630 (($ $) 64 T ELT)) (-3487 (($ $) 75 T ELT)) (-3629 (($ $) 62 T ELT)) (-3485 (($ $) 72 T ELT)) (-3628 (($ $) 60 T ELT)) (-3966 (((-327) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-327)) $) NIL T ELT) (((-472) $) 38 T ELT)) (-3940 (((-772) $) 35 T ELT) (($ (-483)) 56 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) 56 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (($ $) NIL T ELT)) (-1766 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-830)) 7 T ELT)) (-3492 (($ $) 79 T ELT)) (-3480 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 77 T ELT)) (-3478 (($ $) 65 T ELT)) (-3494 (($ $) 82 T ELT)) (-3482 (($ $) 70 T ELT)) (-3495 (($ $) 80 T ELT)) (-3483 (($ $) 68 T ELT)) (-3493 (($ $) 81 T ELT)) (-3481 (($ $) 69 T ELT)) (-3491 (($ $) 78 T ELT)) (-3479 (($ $) 66 T ELT)) (-3377 (($ $) 108 T ELT)) (-2656 (($) 27 T CONST)) (-2662 (($) 28 T CONST)) (-3381 (($ $) 95 T ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3378 (($ $ $) 97 T ELT)) (-2562 (((-85) $ $) 42 T ELT)) (-2563 (((-85) $ $) 40 T ELT)) (-3052 (((-85) $ $) 50 T ELT)) (-2680 (((-85) $ $) 41 T ELT)) (-2681 (((-85) $ $) 39 T ELT)) (-3943 (($ $ $) 29 T ELT) (($ $ (-483)) 51 T ELT)) (-3831 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3833 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 54 T ELT) (($ $ (-347 (-483))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-179) (-13 (-344) (-190) (-1113) (-553 (-472)) (-10 -8 (-15 -3943 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -1738 ($)) (-15 -1740 ($ $)) (-15 -1739 ($ $)) (-15 -3480 ($ $ $)) (-15 -3381 ($ $)) (-15 -3378 ($ $ $)) (-15 -1741 ((-347 (-483)) $ (-694))) (-15 -1741 ((-347 (-483)) $ (-694) (-694))) (-15 -1456 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179)))) (-1738 (*1 *1) (-5 *1 (-179))) (-1740 (*1 *1 *1) (-5 *1 (-179))) (-1739 (*1 *1 *1) (-5 *1 (-179))) (-3480 (*1 *1 *1 *1) (-5 *1 (-179))) (-3381 (*1 *1 *1) (-5 *1 (-179))) (-3378 (*1 *1 *1 *1) (-5 *1 (-179))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3380 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1457 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1458 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3379 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3383 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3382 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3384 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3386 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3381 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3378 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3381 ((-179) (-179))) (-15 -3381 ((-142 (-179)) (-142 (-179)))) (-15 -3378 ((-179) (-179) (-179))) (-15 -3378 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1457 ((-179) (-179))) (-15 -1457 ((-142 (-179)) (-142 (-179)))) (-15 -3379 ((-179) (-179))) (-15 -3379 ((-142 (-179)) (-142 (-179)))) (-15 -3380 ((-179) (-694) (-179))) (-15 -3380 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3382 ((-179) (-179) (-179))) (-15 -3382 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179))) (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -1458 ((-179) (-179) (-179))) (-15 -1458 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) NIL T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3867 (($ |#1| |#1| |#1|) 33 T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) NIL T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3841 (($ |#1| |#1| |#1|) 32 T ELT)) (-3327 (($ (-694) |#1|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3107 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-1459 (($ |#1|) 31 T ELT)) (-1460 (($ |#1|) 30 T ELT)) (-1461 (($ |#1|) 29 T ELT)) (-3104 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-1177 |#1|)) $) NIL (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#1| $) NIL (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) NIL (|has| |#1| (-311)) ELT)) (-1462 (($) 12 T ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) NIL (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3940 (($ (-1177 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) 15 T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-181 |#1|) (-13 (-627 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1462 ($)) (-15 -1461 ($ |#1|)) (-15 -1460 ($ |#1|)) (-15 -1459 ($ |#1|)) (-15 -3841 ($ |#1| |#1| |#1|)) (-15 -3867 ($ |#1| |#1| |#1|)))) (-13 (-311) (-1113))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113))) (-5 *1 (-181 *3)))) (-1462 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1460 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1459 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-3841 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-3867 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))) +((-1567 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3399 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3052 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -1567 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -1463 (|#1| (-583 |#2|))) (-15 -1463 (|#1|))) (-183 |#2|) (-1012)) (T -182)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-183 |#1|) (-113) (-1012)) (T -183)) +NIL +(-13 (-193 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-1 |#1| |#1|) (-694)) 63 T ELT) (($ $ (-1 |#1| |#1|)) 62 T ELT) (($ $ (-1088)) 61 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 59 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 58 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 57 (|has| |#1| (-811 (-1088))) ELT) (($ $) 53 (|has| |#1| (-189)) ELT) (($ $ (-694)) 51 (|has| |#1| (-189)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1088)) 60 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 56 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 55 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 54 (|has| |#1| (-811 (-1088))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-694)) 50 (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-184 |#1|) (-113) (-961)) (T -184)) +NIL +(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2665 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2665 (|#2| |#1|))) (-186 |#2|) (-1127)) (T -185)) +NIL +((-3752 ((|#1| $) 7 T ELT)) (-2665 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1127)) (T -186)) +((-3752 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127))))) +(-13 (-1127) (-10 -8 (-15 -3752 (|t#1| $)) (-15 -2665 (|t#1| $)))) +(((-13) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 42 T ELT) (($ $) 40 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-187 |#1|) (-113) (-961)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-3752 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2665 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-694))) (-15 -2665 (|#1| |#1|)) (-15 -3752 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3752 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2665 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT))) +(((-189) (-113)) (T -189)) +((-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2665 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))) +(-13 (-186 $) (-10 -8 (-15 -3752 ($ $ (-694))) (-15 -2665 ($ $ (-694))))) +(((-186 $) . T) ((-13) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 48 T ELT) (($ $) 46 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-694)) 49 T ELT) (($ $) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-190) (-113)) (T -190)) +NIL +(-13 (-961) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-3718 (($) 30 T CONST)) (-3461 (((-3 $ "failed") $) 35 T ELT)) (-3181 (((-85) $) 28 T ELT)) (-2406 (((-85) $) 37 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2662 (($) 38 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 36 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 40 T ELT))) +(((-191) (-113)) (T -191)) +NIL +(-13 (-716) (-1059)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-1463 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3394 (($ $) 14 T ELT)) (-3524 (($ (-583 |#2|)) 10 T ELT)) (-3940 (((-772) $) 21 T ELT))) +(((-192 |#1| |#2|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 -1463 (|#1| (-583 |#2|))) (-15 -1463 (|#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -3394 (|#1| |#1|))) (-193 |#2|) (-1012)) (T -192)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-193 |#1|) (-113) (-1012)) (T -193)) +((-1463 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3)))) (-3399 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) (-4 *3 (-1012)))) (-1567 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) (-4 *3 (-1012))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1463 ($)) (-15 -1463 ($ (-583 |t#1|))) (IF (|has| $ (-6 -3989)) (PROGN (-15 -3399 ($ |t#1| $)) (-15 -3399 ($ (-1 (-85) |t#1|) $)) (-15 -1567 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-1464 (((-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694))))) (-248 (-857 (-483)))) 42 T ELT))) +(((-194) (-10 -7 (-15 -1464 ((-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694))))) (-248 (-857 (-483))))))) (T -194)) +((-1464 (*1 *2 *3) (-12 (-5 *3 (-248 (-857 (-483)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694)))))) (-5 *1 (-194))))) +((-3131 (((-694)) 56 T ELT)) (-2275 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3905 (((-107)) 62 T ELT)) (-3752 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-483)) 12 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 15 T CONST)) (-3943 (($ $ |#3|) 59 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3940 ((-772) |#1|)) (-15 -3121 ((-694)) -3946) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2275 ((-630 |#3|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 |#1|) (-1177 |#1|))) (-15 -3131 ((-694))) (-15 -3943 (|#1| |#1| |#3|)) (-15 -3905 ((-107))) (-15 -3940 ((-1177 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1127)) (T -195)) +((-3905 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3131 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3121 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) +((-2564 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) 134 (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) 130 (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3131 (((-694)) 119 (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) 56 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 75 (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) 72 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) 74 (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) 71 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 70 (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) 116 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 115 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 114 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 113 (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ "failed") $) 93 (|has| |#2| (-961)) ELT)) (-2990 (($) 122 (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 55 T ELT)) (-3181 (((-85) $) 129 (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) 91 (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 123 (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 124 (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2006 (((-830) $) 121 (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) 118 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 117 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 112 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) 111 (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-2396 (($ (-830)) 120 (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) 46 (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ (-483) |#2|) 54 T ELT) ((|#2| $ (-483)) 53 T ELT)) (-3830 ((|#2| $ $) 133 (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) 135 T ELT)) (-3905 (((-107)) 132 (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) 109 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 107 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 103 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) 102 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) 101 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) 99 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 97 (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-1177 |#2|) $) 136 T ELT) (($ (-483)) 76 (OR (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) 73 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 68 (|has| |#2| (-1012)) ELT) (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) 94 (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2656 (($) 79 (|has| |#2| (-23)) CONST)) (-2662 (($) 90 (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) 110 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 108 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 106 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) 105 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) 104 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) 100 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 95 (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) 125 (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) 127 (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) 126 (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 128 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) 131 (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 92 (|has| |#2| (-961)) ELT) (($ $ (-830)) 88 (|has| |#2| (-961)) ELT)) (* (($ $ $) 89 (|has| |#2| (-961)) ELT) (($ $ |#2|) 87 (|has| |#2| (-663)) ELT) (($ |#2| $) 86 (|has| |#2| (-663)) ELT) (($ (-483) $) 83 (|has| |#2| (-21)) ELT) (($ (-694) $) 81 (|has| |#2| (-23)) ELT) (($ (-830) $) 78 (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-196 |#1| |#2|) (-113) (-694) (-1127)) (T -196)) +((-1465 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1127)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-961))))) +(-13 (-538 (-483) |t#2|) (-552 (-1177 |t#2|)) (-10 -8 (-6 -3989) (-15 -1465 ($ (-1177 |t#2|))) (IF (|has| |t#2| (-1012)) (-6 (-352 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-326 |t#2|)) (-15 -3701 ($ (-830))) (-15 -3830 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3986)) (-6 -3986) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-311)) (-6 (-1185 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ((-555 (-483)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012)))) ((-555 |#2|) |has| |#2| (-1012)) ((-552 (-772)) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1177 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-483) |#2|) . T) ((-243 (-483) |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-317) |has| |#2| (-317)) ((-326 |#2|) |has| |#2| (-961)) ((-352 |#2|) |has| |#2| (-1012)) ((-426 |#2|) . T) ((-538 (-483) |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-588 (-483)) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-580 (-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-311)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1088)) OR (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) ((-809 (-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) ((-811 (-1088)) OR (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) ((-950 (-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ((-950 (-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ((-950 |#2|) |has| |#2| (-1012)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-969) |has| |#2| (-961)) ((-1024) |has| |#2| (-961)) ((-1059) |has| |#2| (-961)) ((-1012) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1127) . T) ((-1185 |#2|) |has| |#2| (-311))) +((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 29 (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 57 T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) 14 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) 20 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) 21 T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) 18 T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) 9 T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 12 (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) 37 (|has| |#2| (-23)) CONST)) (-2662 (($) 41 (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1127)) (T -197)) +NIL +((-3835 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3836 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3952 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) +(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3835 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3836 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3952 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1127) (-1127)) (T -198)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) +((-1469 (((-483) (-583 (-1071))) 36 T ELT) (((-483) (-1071)) 29 T ELT)) (-1468 (((-1183) (-583 (-1071))) 40 T ELT) (((-1183) (-1071)) 39 T ELT)) (-1466 (((-1071)) 16 T ELT)) (-1467 (((-1071) (-483) (-1071)) 23 T ELT)) (-3767 (((-583 (-1071)) (-583 (-1071)) (-483) (-1071)) 37 T ELT) (((-1071) (-1071) (-483) (-1071)) 35 T ELT)) (-2616 (((-583 (-1071)) (-583 (-1071))) 15 T ELT) (((-583 (-1071)) (-1071)) 11 T ELT))) +(((-199) (-10 -7 (-15 -2616 ((-583 (-1071)) (-1071))) (-15 -2616 ((-583 (-1071)) (-583 (-1071)))) (-15 -1466 ((-1071))) (-15 -1467 ((-1071) (-483) (-1071))) (-15 -3767 ((-1071) (-1071) (-483) (-1071))) (-15 -3767 ((-583 (-1071)) (-583 (-1071)) (-483) (-1071))) (-15 -1468 ((-1183) (-1071))) (-15 -1468 ((-1183) (-583 (-1071)))) (-15 -1469 ((-483) (-1071))) (-15 -1469 ((-483) (-583 (-1071)))))) (T -199)) +((-1469 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-483)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199)))) (-3767 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199)))) (-3767 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1467 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1466 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071))))) +((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-483)) $) 25 T ELT) (($ $ (-347 (-483))) NIL T ELT))) +(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 53 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 57 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 54 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-483)) $) 56 T ELT) (($ $ (-347 (-483))) 55 T ELT))) +(((-201) (-113)) (T -201)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483)))) (-2480 (*1 *1 *1) (-4 *1 (-201)))) +(-13 (-245) (-38 (-347 (-483))) (-10 -8 (-15 ** ($ $ (-483))) (-15 -2480 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-245) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-654 (-347 (-483))) . T) ((-663) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3791 (($ $) 63 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1471 (($ $ $) 59 (|has| $ (-6 -3990)) ELT)) (-1470 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-1473 (($ $) 62 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1472 (($ $) 61 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 65 T ELT)) (-3173 (($ $) 64 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3785 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-202 |#1|) (-113) (-1127)) (T -202)) +((-3792 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1470 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3792 (|t#1| $)) (-15 -3173 ($ $)) (-15 -3791 ($ $)) (-15 -1473 ($ $)) (-15 -1472 ($ $)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3785 ($ $ $)) (-15 -1471 ($ $ $)) (-15 -1470 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3793 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2364 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 7 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3528 (($ |#1|) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) ((|#1| $ (-483) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1474 (($ (-583 |#1|)) 22 T ELT)) (-3627 (((-85) $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3940 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 14 (|has| $ (-6 -3989)) ELT))) +(((-203 |#1|) (-13 (-608 |#1|) (-427 (-583 |#1|)) (-10 -8 (-15 -1474 ($ (-583 |#1|))) (-15 -3794 ($ $ "unique")) (-15 -3794 ($ $ "sort")) (-15 -3794 ((-694) $ "count")))) (-756)) (T -203)) +((-1474 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))) +((-1475 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT))) +(((-204 |#1|) (-10 -7 (-15 -1475 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-317) (-10 -7 (-15 ** (|#1| |#1| (-483)))))) (T -204)) +((-1475 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-317) (-10 -7 (-15 ** (*3 *3 (-483)))))) (-5 *1 (-204 *3))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 55 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 53 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 52 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 51 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-694)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 54 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 50 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 49 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 48 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-205 |#1|) (-113) (-961)) (T -205)) +NIL +(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1088))) (-6 (-808 |t#1| (-1088))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1088)) |has| |#1| (-811 (-1088))) ((-808 |#1| (-1088)) |has| |#1| (-811 (-1088))) ((-811 (-1088)) |has| |#1| (-811 (-1088))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-197 (-3951 |#1|) (-694)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-197 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-197 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-197 (-3951 |#1|) (-694)) (-197 (-3951 |#1|) (-694))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-197 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-197 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3951 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961)) (T -206)) +((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1088))) (-4 *4 (-961))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1476 (((-1183) $) 17 T ELT)) (-1478 (((-158 (-208)) $) 11 T ELT)) (-1477 (($ (-158 (-208))) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1479 (((-208) $) 7 T ELT)) (-3940 (((-772) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT))) +(((-207) (-13 (-1012) (-10 -8 (-15 -1479 ((-208) $)) (-15 -1478 ((-158 (-208)) $)) (-15 -1477 ($ (-158 (-208)))) (-15 -1476 ((-1183) $))))) (T -207)) +((-1479 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1480 (((-281) $) 7 T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1480 ((-281) $))))) (T -208)) +((-1480 (*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 (((-1093) $ (-694)) 14 T ELT)) (-3940 (((-772) $) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT)) (-3951 (((-694) $) 11 T ELT))) +(((-209) (-13 (-1012) (-241 (-694) (-1093)) (-10 -8 (-15 -3951 ((-694) $))))) (T -209)) +((-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3701 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#4| (-317)) ELT)) (-3782 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-3151 ((|#4| $) NIL (|has| |#4| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1177 |#4|))) (-630 $) (-1177 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2990 (($) NIL (|has| |#4| (-317)) ELT)) (-1573 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#4| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-2885 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2604 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-1946 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#4| (-317)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1177 |#4|))) (-1177 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1177 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#4| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#4| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-2201 (((-583 |#4|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#4| $ (-483) |#4|) NIL T ELT) ((|#4| $ (-483)) 12 T ELT)) (-3830 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1465 (($ (-1177 |#4|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#4| (-311)) ELT)) (-3752 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1943 (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1012)) ELT) (((-772) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-3121 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL (|has| |#4| (-961)) CONST)) (-2665 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3943 (($ $ |#4|) NIL (|has| |#4| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3701 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#3| (-317)) ELT)) (-3782 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-3151 ((|#3| $) NIL (|has| |#3| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2990 (($) NIL (|has| |#3| (-317)) ELT)) (-1573 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#3| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#3| (-317)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#3| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#3| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2201 (((-583 |#3|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) 11 T ELT)) (-3830 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1465 (($ (-1177 |#3|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3752 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1943 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-772) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-3121 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL (|has| |#3| (-961)) CONST)) (-2665 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211)) +NIL +((-1485 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1519 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1481 (($ $) 76 T ELT)) (-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3766 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1520 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1483 ((|#4| $) 69 T ELT)) (-1484 (((-85) $) 67 T ELT)) (-1482 (($ $) 75 T ELT)) (-3762 (($ $ (-583 (-248 $))) 111 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3752 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1486 (((-583 |#3|) $) 86 T ELT)) (-3942 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3762 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#3| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#3| |#1|)) (-15 -1520 ((-1 |#1| (-694)) |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1483 (|#4| |#1|)) (-15 -1484 ((-85) |#1|)) (-15 -1519 ((-694) |#1| |#3|)) (-15 -1485 ((-583 (-694)) |#1| |#3|)) (-15 -1519 ((-694) |#1|)) (-15 -1485 ((-583 (-694)) |#1|)) (-15 -3942 ((-694) |#1| |#3|)) (-15 -3766 ((-694) |#1|)) (-15 -3766 ((-694) |#1| |#3|)) (-15 -1486 ((-583 |#3|) |#1|)) (-15 -1520 ((-1 |#1| (-694)) |#3|)) (-15 -3940 (|#1| |#3|)) (-15 -3152 ((-3 |#3| #1="failed") |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3942 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3942 ((-694) |#1| |#4|)) (-15 -3940 (|#1| |#4|)) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#4| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3942 (|#5| |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| (-583 |#4|))) (-15 -3752 (|#1| |#1| |#4| (-694))) (-15 -3752 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1485 (((-583 (-694)) $) 249 T ELT) (((-583 (-694)) $ |#2|) 247 T ELT)) (-1519 (((-694) $) 248 T ELT) (((-694) $ |#2|) 246 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-1481 (($ $) 242 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 |#2| #2#) $) 256 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT) ((|#2| $) 257 T ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| |#4| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ |#2|) 252 T ELT) (((-694) $) 251 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#4|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-2816 ((|#4| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-1622 (($ (-1 |#4| |#4|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1520 (((-1 $ (-694)) |#2|) 254 T ELT) (((-1 $ (-694)) $) 241 (|has| |#1| (-190)) ELT)) (-3078 (((-3 |#3| #3="failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1483 ((|#3| $) 244 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1484 (((-85) $) 245 T ELT)) (-2819 (((-3 (-583 $) #3#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #3#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #3#) $) 124 T ELT)) (-1482 (($ $) 243 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT) (($ $ |#2| $) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 239 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 238 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 237 (|has| |#1| (-190)) ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 236 (|has| |#1| (-189)) ELT) (($ $ (-694)) 234 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 232 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 230 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 229 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 228 (|has| |#1| (-811 (-1088))) ELT)) (-1486 (((-583 |#2|) $) 253 T ELT)) (-3942 ((|#4| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT) (((-694) $ |#2|) 250 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ |#2|) 255 T ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#4|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT) (($ $ (-1 |#1| |#1|)) 259 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 258 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-694)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 231 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 227 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 226 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 225 (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) +(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213)) +((-1520 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1485 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1519 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1481 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1520 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))) +(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1520 ((-1 $ (-694)) |t#2|)) (-15 -1486 ((-583 |t#2|) $)) (-15 -3766 ((-694) $ |t#2|)) (-15 -3766 ((-694) $)) (-15 -3942 ((-694) $ |t#2|)) (-15 -1485 ((-583 (-694)) $)) (-15 -1519 ((-694) $)) (-15 -1485 ((-583 (-694)) $ |t#2|)) (-15 -1519 ((-694) $ |t#2|)) (-15 -1484 ((-85) $)) (-15 -1483 (|t#3| $)) (-15 -1482 ($ $)) (-15 -1481 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-452 |t#2| |t#1|)) (-6 (-452 |t#2| $)) (-6 (-259 $)) (-15 -1520 ((-1 $ (-694)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#4|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#2| |#1|) |has| |#1| (-190)) ((-452 |#2| $) |has| |#1| (-190)) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-806 $ |#3|) . T) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-809 |#3|) . T) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821))) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1492 ((|#1| $) 58 T ELT)) (-3318 ((|#1| $) 48 T ELT)) (-3718 (($) 7 T CONST)) (-2998 (($ $) 64 T ELT)) (-2293 (($ $) 52 T ELT)) (-3320 ((|#1| |#1| $) 50 T ELT)) (-3319 ((|#1| $) 49 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3827 (((-694) $) 65 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-1490 ((|#1| |#1| $) 56 T ELT)) (-1489 ((|#1| |#1| $) 55 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-2599 (((-694) $) 59 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 66 T ELT)) (-1488 ((|#1| $) 54 T ELT)) (-1487 ((|#1| $) 53 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3000 ((|#1| |#1| $) 62 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2999 ((|#1| $) 63 T ELT)) (-1493 (($) 61 T ELT) (($ (-583 |#1|)) 60 T ELT)) (-3317 (((-694) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1491 ((|#1| $) 57 T ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-2996 ((|#1| $) 67 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-214 |#1|) (-113) (-1127)) (T -214)) +((-1493 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1490 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1489 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-2293 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(-13 (-1033 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1493 ($)) (-15 -1493 ($ (-583 |t#1|))) (-15 -2599 ((-694) $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -1490 (|t#1| |t#1| $)) (-15 -1489 (|t#1| |t#1| $)) (-15 -1488 (|t#1| $)) (-15 -1487 (|t#1| $)) (-15 -2293 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-908 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1033 |#1|) . T) ((-1127) . T)) +((-1494 (((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327))) 75 T ELT) (((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 74 T ELT) (((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327))) 65 T ELT) (((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 64 T ELT) (((-1045 (-179)) (-789 |#1|) (-1003 (-327))) 56 T ELT) (((-1045 (-179)) (-789 |#1|) (-1003 (-327)) (-583 (-221))) 55 T ELT)) (-1501 (((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327))) 78 T ELT) (((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 77 T ELT) (((-1181) |#1| (-1003 (-327)) (-1003 (-327))) 68 T ELT) (((-1181) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 67 T ELT) (((-1181) (-789 |#1|) (-1003 (-327))) 60 T ELT) (((-1181) (-789 |#1|) (-1003 (-327)) (-583 (-221))) 59 T ELT) (((-1180) (-787 |#1|) (-1003 (-327))) 47 T ELT) (((-1180) (-787 |#1|) (-1003 (-327)) (-583 (-221))) 46 T ELT) (((-1180) |#1| (-1003 (-327))) 38 T ELT) (((-1180) |#1| (-1003 (-327)) (-583 (-221))) 36 T ELT))) +(((-215 |#1|) (-10 -7 (-15 -1501 ((-1180) |#1| (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) |#1| (-1003 (-327)))) (-15 -1501 ((-1180) (-787 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-787 |#1|) (-1003 (-327)))) (-15 -1501 ((-1181) (-789 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-789 |#1|) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) (-789 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-789 |#1|) (-1003 (-327)))) (-15 -1501 ((-1181) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) |#1| (-1003 (-327)) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)))) (-15 -1501 ((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327))))) (-13 (-553 (-472)) (-1012))) (T -215)) +((-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012)))))) +((-1495 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1494 (((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327))) 178 T ELT) (((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 176 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 181 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 177 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 169 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 168 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327))) 150 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221))) 148 T ELT) (((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327))) 149 T ELT) (((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 146 T ELT)) (-1501 (((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327))) 180 T ELT) (((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 179 T ELT) (((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 183 T ELT) (((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 182 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 171 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 170 T ELT) (((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327))) 156 T ELT) (((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221))) 155 T ELT) (((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327))) 154 T ELT) (((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 153 T ELT) (((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327))) 118 T ELT) (((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 117 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-327))) 112 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-327)) (-583 (-221))) 110 T ELT))) +(((-216) (-10 -7 (-15 -1501 ((-1180) (-1 (-179) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-1 (-179) (-179)) (-1000 (-327)))) (-15 -1501 ((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1501 ((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1501 ((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)))) (-15 -1495 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) +((-1495 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216))))) +((-1501 (((-1180) (-248 |#2|) (-1088) (-1088) (-583 (-221))) 102 T ELT))) +(((-217 |#1| |#2|) (-10 -7 (-15 -1501 ((-1180) (-248 |#2|) (-1088) (-1088) (-583 (-221))))) (-13 (-494) (-756) (-950 (-483))) (-361 |#1|)) (T -217)) +((-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-1088)) (-5 *5 (-583 (-221))) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-756) (-950 (-483)))) (-5 *2 (-1180)) (-5 *1 (-217 *6 *7))))) +((-1498 (((-483) (-483)) 71 T ELT)) (-1499 (((-483) (-483)) 72 T ELT)) (-1500 (((-179) (-179)) 73 T ELT)) (-1497 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179))) 70 T ELT)) (-1496 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85)) 68 T ELT))) +(((-218) (-10 -7 (-15 -1496 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85))) (-15 -1497 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -1498 ((-483) (-483))) (-15 -1499 ((-483) (-483))) (-15 -1500 ((-179) (-179))))) (T -218)) +((-1500 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *2 (-1181)) (-5 *1 (-218)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218))))) +((-3940 (((-1003 (-327)) (-1003 (-264 |#1|))) 16 T ELT))) +(((-219 |#1|) (-10 -7 (-15 -3940 ((-1003 (-327)) (-1003 (-264 |#1|))))) (-13 (-756) (-494) (-553 (-327)))) (T -219)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-1003 (-264 *4))) (-4 *4 (-13 (-756) (-494) (-553 (-327)))) (-5 *2 (-1003 (-327))) (-5 *1 (-219 *4))))) +((-1501 (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1180) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1180) (-583 (-854 (-179)))) 17 T ELT) (((-1180) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1180) (-583 (-179)) (-583 (-179))) 21 T ELT))) +(((-220) (-10 -7 (-15 -1501 ((-1180) (-583 (-179)) (-583 (-179)))) (-15 -1501 ((-1180) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1501 ((-1180) (-583 (-854 (-179))))) (-15 -1501 ((-1180) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1501 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1501 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220)) +((-1501 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1180)) (-5 *1 (-220))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3875 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1514 (($ (-830)) 81 T ELT)) (-1513 (($ (-830)) 80 T ELT)) (-1769 (($ (-583 (-327))) 87 T ELT)) (-1517 (($ (-327)) 66 T ELT)) (-1516 (($ (-830)) 82 T ELT)) (-1510 (($ (-85)) 33 T ELT)) (-3877 (($ (-1071)) 28 T ELT)) (-1509 (($ (-1071)) 29 T ELT)) (-1515 (($ (-1045 (-179))) 76 T ELT)) (-1925 (($ (-583 (-1000 (-327)))) 72 T ELT)) (-1503 (($ (-583 (-1000 (-327)))) 68 T ELT) (($ (-583 (-1000 (-347 (-483))))) 71 T ELT)) (-1506 (($ (-327)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1502 (((-85) (-583 $) (-1088)) 100 T ELT)) (-1518 (((-3 (-51) "failed") (-583 $) (-1088)) 102 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1505 (($ (-327)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3219 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2262 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1504 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3940 (((-772) $) 93 T ELT)) (-1507 (($ (-85)) 34 T ELT) (($ (-583 (-1000 (-327)))) 60 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1920 (($ (-85)) 35 T ELT)) (-3052 (((-85) $ $) 97 T ELT))) +(((-221) (-13 (-1012) (-10 -8 (-15 -1920 ($ (-85))) (-15 -1507 ($ (-85))) (-15 -3875 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3877 ($ (-1071))) (-15 -1509 ($ (-1071))) (-15 -1510 ($ (-85))) (-15 -1507 ($ (-583 (-1000 (-327))))) (-15 -3219 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1506 ($ (-327))) (-15 -1506 ($ (-783))) (-15 -1505 ($ (-327))) (-15 -1505 ($ (-783))) (-15 -1504 ($ (-1 (-179) (-179)))) (-15 -1504 ($ (-1 (-179) (-179) (-179)))) (-15 -1504 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1517 ($ (-327))) (-15 -1503 ($ (-583 (-1000 (-327))))) (-15 -1503 ($ (-583 (-1000 (-347 (-483)))))) (-15 -1925 ($ (-583 (-1000 (-327))))) (-15 -1515 ($ (-1045 (-179)))) (-15 -1513 ($ (-830))) (-15 -1514 ($ (-830))) (-15 -1516 ($ (-830))) (-15 -2262 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1769 ($ (-583 (-327)))) (-15 -1518 ((-3 (-51) "failed") (-583 $) (-1088))) (-15 -1502 ((-85) (-583 $) (-1088)))))) (T -221)) +((-1920 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-347 (-483))))) (-5 *1 (-221)))) (-1925 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-221)))) (-1518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221))))) +((-3875 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1514 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1513 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3845 (((-583 (-327)) (-583 (-221)) (-583 (-327))) 68 T ELT)) (-1517 (((-327) (-583 (-221)) (-327)) 57 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1510 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3877 (((-1071) (-583 (-221)) (-1071)) 19 T ELT)) (-1509 (((-1071) (-583 (-221)) (-1071)) 26 T ELT)) (-1515 (((-1045 (-179)) (-583 (-221))) 46 T ELT)) (-1925 (((-583 (-1000 (-327))) (-583 (-221)) (-583 (-1000 (-327)))) 40 T ELT)) (-1511 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1512 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2262 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1508 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1920 (((-85) (-583 (-221)) (-85)) 13 T ELT))) +(((-222) (-10 -7 (-15 -1920 ((-85) (-583 (-221)) (-85))) (-15 -1508 ((-85) (-583 (-221)) (-85))) (-15 -3875 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3877 ((-1071) (-583 (-221)) (-1071))) (-15 -1509 ((-1071) (-583 (-221)) (-1071))) (-15 -1510 ((-85) (-583 (-221)) (-85))) (-15 -1511 ((-783) (-583 (-221)) (-783))) (-15 -1512 ((-783) (-583 (-221)) (-783))) (-15 -1925 ((-583 (-1000 (-327))) (-583 (-221)) (-583 (-1000 (-327))))) (-15 -1513 ((-830) (-583 (-221)) (-830))) (-15 -1514 ((-830) (-583 (-221)) (-830))) (-15 -1515 ((-1045 (-179)) (-583 (-221)))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-327) (-583 (-221)) (-327))) (-15 -2262 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3845 ((-583 (-327)) (-583 (-221)) (-583 (-327)))))) (T -222)) +((-3845 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-327))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2262 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1925 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3875 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1920 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +((-1518 (((-3 |#1| "failed") (-583 (-221)) (-1088)) 17 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1518 ((-3 |#1| "failed") (-583 (-221)) (-1088)))) (-1127)) (T -223)) +((-1518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2)) (-4 *2 (-1127))))) +((-3752 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2665 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -2665 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -2665 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2665 (|#1| |#1| (-583 (-1088)))) (-15 -2665 (|#1| |#1| (-1088) (-694))) (-15 -2665 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2665 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2665 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1127)) (T -224)) +NIL +((-3752 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 16 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 15 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 14 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088)) 12 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2665 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 19 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 18 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 17 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088)) 13 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-225 |#1|) (-113) (-1127)) (T -225)) +((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127))))) +(-13 (-1127) (-10 -8 (-15 -3752 ($ $ (-1 |t#1| |t#1|))) (-15 -3752 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2665 ($ $ (-1 |t#1| |t#1|))) (-15 -2665 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1088))) (-6 (-811 (-1088))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1088)) |has| |#1| (-811 (-1088))) ((-811 (-1088)) |has| |#1| (-811 (-1088))) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-3079 (((-1083 $) $ |#3|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 23 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3750 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 |#3|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ELT)) (-3766 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) |#3|) NIL T ELT) (($ (-1083 $) |#3|) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) NIL T ELT)) (-2816 (((-468 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1622 (($ (-1 (-468 |#3|) (-468 |#3|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 |#3| #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 ((|#3| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 |#2|) $) NIL T ELT)) (-3942 (((-468 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#1| |#2|)) 32 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-468 |#3|)) (-950 (-1037 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226)) +NIL +((-1519 (((-694) $) 37 T ELT)) (-3152 (((-3 |#2| "failed") $) 22 T ELT)) (-3151 ((|#2| $) 33 T ELT)) (-3752 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3052 (((-85) $ $) 26 T ELT)) (-2681 (((-85) $ $) 36 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -1519 ((-694) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| "failed") |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -2681 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1519 (((-694) $) 26 T ELT)) (-3825 ((|#1| $) 27 T ELT)) (-3152 (((-3 |#1| "failed") $) 31 T ELT)) (-3151 ((|#1| $) 32 T ELT)) (-3766 (((-694) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-1520 (($ |#1| (-694)) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2665 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT))) +(((-228 |#1|) (-113) (-756)) (T -228)) +((-1520 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) +(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1520 ($ |t#1| (-694))) (-15 -3766 ((-694) $)) (-15 -3825 (|t#1| $)) (-15 -1519 ((-694) $)))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1522 (((-583 (-483)) $) 28 T ELT)) (-3942 (((-694) $) 26 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ (-583 (-483))) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1521 (($ (-694)) 29 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 18 T ELT))) +(((-229) (-13 (-756) (-10 -8 (-15 -3940 ($ (-583 (-483)))) (-15 -3942 ((-694) $)) (-15 -1522 ((-583 (-483)) $)) (-15 -1521 ($ (-694)))))) (T -229)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) +((-3486 ((|#2| |#2|) 77 T ELT)) (-3633 ((|#2| |#2|) 65 T ELT)) (-1551 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3484 ((|#2| |#2|) 75 T ELT)) (-3632 ((|#2| |#2|) 63 T ELT)) (-3488 ((|#2| |#2|) 79 T ELT)) (-3631 ((|#2| |#2|) 67 T ELT)) (-3621 ((|#2|) 46 T ELT)) (-3589 (((-86) (-86)) 97 T ELT)) (-3936 ((|#2| |#2|) 61 T ELT)) (-1552 (((-85) |#2|) 146 T ELT)) (-1541 ((|#2| |#2|) 193 T ELT)) (-1529 ((|#2| |#2|) 169 T ELT)) (-1524 ((|#2|) 59 T ELT)) (-1523 ((|#2|) 58 T ELT)) (-1539 ((|#2| |#2|) 189 T ELT)) (-1527 ((|#2| |#2|) 165 T ELT)) (-1543 ((|#2| |#2|) 197 T ELT)) (-1531 ((|#2| |#2|) 173 T ELT)) (-1526 ((|#2| |#2|) 161 T ELT)) (-1525 ((|#2| |#2|) 163 T ELT)) (-1544 ((|#2| |#2|) 199 T ELT)) (-1532 ((|#2| |#2|) 175 T ELT)) (-1542 ((|#2| |#2|) 195 T ELT)) (-1530 ((|#2| |#2|) 171 T ELT)) (-1540 ((|#2| |#2|) 191 T ELT)) (-1528 ((|#2| |#2|) 167 T ELT)) (-1547 ((|#2| |#2|) 205 T ELT)) (-1535 ((|#2| |#2|) 181 T ELT)) (-1545 ((|#2| |#2|) 201 T ELT)) (-1533 ((|#2| |#2|) 177 T ELT)) (-1549 ((|#2| |#2|) 209 T ELT)) (-1537 ((|#2| |#2|) 185 T ELT)) (-1550 ((|#2| |#2|) 211 T ELT)) (-1538 ((|#2| |#2|) 187 T ELT)) (-1548 ((|#2| |#2|) 207 T ELT)) (-1536 ((|#2| |#2|) 183 T ELT)) (-1546 ((|#2| |#2|) 203 T ELT)) (-1534 ((|#2| |#2|) 179 T ELT)) (-3937 ((|#2| |#2|) 62 T ELT)) (-3489 ((|#2| |#2|) 80 T ELT)) (-3630 ((|#2| |#2|) 68 T ELT)) (-3487 ((|#2| |#2|) 78 T ELT)) (-3629 ((|#2| |#2|) 66 T ELT)) (-3485 ((|#2| |#2|) 76 T ELT)) (-3628 ((|#2| |#2|) 64 T ELT)) (-2250 (((-85) (-86)) 95 T ELT)) (-3492 ((|#2| |#2|) 83 T ELT)) (-3480 ((|#2| |#2|) 71 T ELT)) (-3490 ((|#2| |#2|) 81 T ELT)) (-3478 ((|#2| |#2|) 69 T ELT)) (-3494 ((|#2| |#2|) 85 T ELT)) (-3482 ((|#2| |#2|) 73 T ELT)) (-3495 ((|#2| |#2|) 86 T ELT)) (-3483 ((|#2| |#2|) 74 T ELT)) (-3493 ((|#2| |#2|) 84 T ELT)) (-3481 ((|#2| |#2|) 72 T ELT)) (-3491 ((|#2| |#2|) 82 T ELT)) (-3479 ((|#2| |#2|) 70 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -3937 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1523 (|#2|)) (-15 -1524 (|#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1552 ((-85) |#2|))) (-494) (-13 (-361 |#1|) (-915))) (T -230)) +((-1552 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-361 *4) (-915))))) (-1551 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-361 *4) (-915))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1524 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-1523 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-361 *3) (-915))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-361 *4) (-915))))) (-3621 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) +((-1555 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1088)) 151 T ELT)) (-1557 ((|#2| (-347 (-483)) |#2|) 49 T ELT)) (-1556 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1553 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1088)) 143 T ELT)) (-1554 ((|#2| |#2| (-1088)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2439 ((|#2| |#2| (-1088)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2439 (|#2| |#2|)) (-15 -2439 (|#2| |#2| (-1088))) (-15 -1553 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1088))) (-15 -1554 (|#2| |#2|)) (-15 -1554 (|#2| |#2| (-1088))) (-15 -1555 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1088))) (-15 -1556 (|#2| |#2| (-550 |#2|))) (-15 -1557 (|#2| (-347 (-483)) |#2|))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -231)) +((-1557 (*1 *2 *3 *2) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-1556 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)))) (-1555 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1088)) (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *5 *2)))) (-1554 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2439 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3)))))) +((-2971 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3486 ((|#3| |#3|) 142 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3633 ((|#3| |#3|) 132 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3484 ((|#3| |#3|) 140 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3632 ((|#3| |#3|) 130 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3488 ((|#3| |#3|) 144 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3631 ((|#3| |#3|) 134 T ELT)) (-2954 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3936 ((|#3| |#3|) 129 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3937 ((|#3| |#3|) 128 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3489 ((|#3| |#3|) 145 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3630 ((|#3| |#3|) 135 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3487 ((|#3| |#3|) 143 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3629 ((|#3| |#3|) 133 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3485 ((|#3| |#3|) 141 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3628 ((|#3| |#3|) 131 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3492 ((|#3| |#3|) 148 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3480 ((|#3| |#3|) 152 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3490 ((|#3| |#3|) 146 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3478 ((|#3| |#3|) 136 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3494 ((|#3| |#3|) 150 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3482 ((|#3| |#3|) 138 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3495 ((|#3| |#3|) 151 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3483 ((|#3| |#3|) 139 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3493 ((|#3| |#3|) 149 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3481 ((|#3| |#3|) 153 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3491 ((|#3| |#3|) 147 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3479 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-347 (-483))) 47 (|has| |#1| (-311)) ELT))) +(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-483)))) |%noBranch|) (-15 -3937 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)))) (-38 (-347 (-483))) (-1170 |#1|) (-1141 |#1| |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4))))) +((-2971 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3486 ((|#3| |#3|) 137 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3633 ((|#3| |#3|) 125 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3484 ((|#3| |#3|) 135 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3632 ((|#3| |#3|) 123 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3488 ((|#3| |#3|) 139 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3631 ((|#3| |#3|) 127 T ELT)) (-2954 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3936 ((|#3| |#3|) 111 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3937 ((|#3| |#3|) 122 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3489 ((|#3| |#3|) 140 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3630 ((|#3| |#3|) 128 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3487 ((|#3| |#3|) 138 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3629 ((|#3| |#3|) 126 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3485 ((|#3| |#3|) 136 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3628 ((|#3| |#3|) 124 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3492 ((|#3| |#3|) 143 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3480 ((|#3| |#3|) 131 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3490 ((|#3| |#3|) 141 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3478 ((|#3| |#3|) 129 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3494 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3482 ((|#3| |#3|) 133 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3495 ((|#3| |#3|) 146 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3483 ((|#3| |#3|) 134 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3493 ((|#3| |#3|) 144 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3481 ((|#3| |#3|) 132 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3491 ((|#3| |#3|) 142 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3479 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-347 (-483))) 44 (|has| |#1| (-311)) ELT))) +(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-483)))) |%noBranch|) (-15 -3937 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)))) (-38 (-347 (-483))) (-1139 |#1|) (-1162 |#1| |#2|) (-896 |#2|)) (T -233)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-896 *5)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))) +((-1560 (((-85) $) 20 T ELT)) (-1562 (((-1093) $) 9 T ELT)) (-3563 (((-3 (-444) #1="failed") $) 15 T ELT)) (-3562 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1559 (((-3 (-444) #1#) $) 21 T ELT)) (-1561 (((-3 (-1014) #1#) $) 19 T ELT)) (-3947 (((-85) $) 17 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1558 (((-85) $) 10 T ELT))) +(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1562 ((-1093) $)) (-15 -3947 ((-85) $)) (-15 -1561 ((-3 (-1014) #1="failed") $)) (-15 -1560 ((-85) $)) (-15 -1559 ((-3 (-444) #1#) $)) (-15 -1558 ((-85) $)) (-15 -3563 ((-3 (-444) #1#) $)) (-15 -3562 ((-3 (-583 $) #1#) $))))) (T -234)) +((-1562 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1559 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3563 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-3562 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))) +((-1564 (((-531) $) 10 T ELT)) (-1565 (((-521) $) 8 T ELT)) (-1563 (((-246) $) 12 T ELT)) (-1566 (($ (-521) (-531) (-246)) NIL T ELT)) (-3940 (((-772) $) 19 T ELT))) +(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1566 ($ (-521) (-531) (-246))) (-15 -1565 ((-521) $)) (-15 -1564 ((-531) $)) (-15 -1563 ((-246) $))))) (T -235)) +((-1566 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-246)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235))))) +((-3704 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1350 (($ $) 38 T ELT)) (-3399 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3400 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2852 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2300 (($ |#2| $ (-483)) 20 T ELT) (($ $ $ (-483)) 22 T ELT)) (-2301 (($ $ (-483)) 11 T ELT) (($ $ (-1144 (-483))) 14 T ELT)) (-3785 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3796 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT))) +(((-236 |#1| |#2|) (-10 -7 (-15 -2852 (|#1| |#1| |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -2852 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3400 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3704 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -1350 (|#1| |#1|))) (-237 |#2|) (-1127)) (T -236)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 92 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1012)) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2852 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3603 (($ |#1| $ (-483)) 97 T ELT) (($ $ $ (-483)) 96 T ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1568 (($ $ (-483)) 100 T ELT) (($ $ (-1144 (-483))) 99 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-237 |#1|) (-113) (-1127)) (T -237)) +((-3785 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-1568 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1568 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3603 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3603 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-2852 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1567 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3399 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))) +(-13 (-593 |t#1|) (-10 -8 (-6 -3990) (-15 -3785 ($ $ |t#1|)) (-15 -3785 ($ $ $)) (-15 -1568 ($ $ (-483))) (-15 -1568 ($ $ (-1144 (-483)))) (-15 -3399 ($ (-1 (-85) |t#1|) $)) (-15 -3603 ($ |t#1| $ (-483))) (-15 -3603 ($ $ $ (-483))) (-15 -2852 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1567 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3399 ($ |t#1| $)) (-15 -2364 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2852 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) ((** (($ $ $) 10 T ELT))) -(((-236 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-237)) (T -236)) -NIL -((-3925 (($ $) 6 T ELT)) (-3926 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) -(((-237) (-111)) (T -237)) -((** (*1 *1 *1 *1) (-4 *1 (-237))) (-3926 (*1 *1 *1) (-4 *1 (-237))) (-3925 (*1 *1 *1) (-4 *1 (-237)))) -(-13 (-10 -8 (-15 -3925 ($ $)) (-15 -3926 ($ $)) (-15 ** ($ $ $)))) -((-1564 (((-580 (-1060 |#1|)) (-1060 |#1|) |#1|) 35 T ELT)) (-1561 ((|#2| |#2| |#1|) 39 T ELT)) (-1563 ((|#2| |#2| |#1|) 41 T ELT)) (-1562 ((|#2| |#2| |#1|) 40 T ELT))) -(((-238 |#1| |#2|) (-10 -7 (-15 -1561 (|#2| |#2| |#1|)) (-15 -1562 (|#2| |#2| |#1|)) (-15 -1563 (|#2| |#2| |#1|)) (-15 -1564 ((-580 (-1060 |#1|)) (-1060 |#1|) |#1|))) (-309) (-1163 |#1|)) (T -238)) -((-1564 (*1 *2 *3 *4) (-12 (-4 *4 (-309)) (-5 *2 (-580 (-1060 *4))) (-5 *1 (-238 *4 *5)) (-5 *3 (-1060 *4)) (-4 *5 (-1163 *4)))) (-1563 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3)))) (-1562 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3)))) (-1561 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3))))) -((-3783 ((|#2| $ |#1|) 6 T ELT))) -(((-239 |#1| |#2|) (-111) (-1120) (-1120)) (T -239)) -((-3783 (*1 *2 *1 *3) (-12 (-4 *1 (-239 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3783 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1120) . T)) -((-1565 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3098 ((|#3| $ |#2|) 10 T ELT))) -(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -1565 (|#3| |#1| |#2| |#3|)) (-15 -3098 (|#3| |#1| |#2|))) (-241 |#2| |#3|) (-1007) (-1120)) (T -240)) -NIL -((-3771 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3979)) ELT)) (-1565 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) 11 T ELT)) (-3783 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-241 |#1| |#2|) (-111) (-1007) (-1120)) (T -241)) -((-3783 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) (-3098 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) (-3771 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) (-1565 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120))))) -(-13 (-239 |t#1| |t#2|) (-10 -8 (-15 -3783 (|t#2| $ |t#1| |t#2|)) (-15 -3098 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3771 (|t#2| $ |t#1| |t#2|)) (-15 -1565 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-239 |#1| |#2|) . T) ((-13) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 37 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 44 T ELT)) (-2051 (($ $) 41 T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) 35 T ELT)) (-3825 (($ |#2| |#3|) 18 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2600 ((|#3| $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 19 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2390 (((-3 $ #1#) $ $) NIL T ELT)) (-1596 (((-689) $) 36 T ELT)) (-3783 ((|#2| $ |#2|) 46 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 23 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 31 T CONST)) (-2652 (($) 39 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-242 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-255) (-239 |#2| |#2|) (-10 -8 (-15 -2600 (|#3| $)) (-15 -3929 (|#2| $)) (-15 -3825 ($ |#2| |#3|)) (-15 -2390 ((-3 $ #1="failed") $ $)) (-15 -3450 ((-3 $ #1#) $)) (-15 -2470 ($ $)))) (-144) (-1146 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -242)) -((-3450 (*1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2600 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-242 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1146 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3929 (*1 *2 *1) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-242 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3825 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-242 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1146 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2390 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2470 (*1 *1 *1) (-12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-243) (-111)) (T -243)) -NIL -(-13 (-956) (-80 $ $) (-10 -7 (-6 -3971))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-1573 (((-580 (-991)) $) 10 T ELT)) (-1571 (($ (-441) (-441) (-1009) $) 19 T ELT)) (-1569 (($ (-441) (-580 (-871)) $) 23 T ELT)) (-1567 (($) 25 T ELT)) (-1572 (((-629 (-1009)) (-441) (-441) $) 18 T ELT)) (-1570 (((-580 (-871)) (-441) $) 22 T ELT)) (-3548 (($) 7 T ELT)) (-1568 (($) 24 T ELT)) (-3929 (((-767) $) 29 T ELT)) (-1566 (($) 26 T ELT))) -(((-244) (-13 (-549 (-767)) (-10 -8 (-15 -3548 ($)) (-15 -1573 ((-580 (-991)) $)) (-15 -1572 ((-629 (-1009)) (-441) (-441) $)) (-15 -1571 ($ (-441) (-441) (-1009) $)) (-15 -1570 ((-580 (-871)) (-441) $)) (-15 -1569 ($ (-441) (-580 (-871)) $)) (-15 -1568 ($)) (-15 -1567 ($)) (-15 -1566 ($))))) (T -244)) -((-3548 (*1 *1) (-5 *1 (-244))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-580 (-991))) (-5 *1 (-244)))) (-1572 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-1009))) (-5 *1 (-244)))) (-1571 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1009)) (-5 *1 (-244)))) (-1570 (*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-580 (-871))) (-5 *1 (-244)))) (-1569 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-871))) (-5 *1 (-244)))) (-1568 (*1 *1) (-5 *1 (-244))) (-1567 (*1 *1) (-5 *1 (-244))) (-1566 (*1 *1) (-5 *1 (-244)))) -((-1577 (((-580 (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |geneigvec| (-580 (-627 (-345 (-852 |#1|))))))) (-627 (-345 (-852 |#1|)))) 103 T ELT)) (-1576 (((-580 (-627 (-345 (-852 |#1|)))) (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 |#1|)))))) (-627 (-345 (-852 |#1|)))) 98 T ELT) (((-580 (-627 (-345 (-852 |#1|)))) (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|))) (-627 (-345 (-852 |#1|))) (-689) (-689)) 42 T ELT)) (-1578 (((-580 (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 |#1|))))))) (-627 (-345 (-852 |#1|)))) 100 T ELT)) (-1575 (((-580 (-627 (-345 (-852 |#1|)))) (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|))) (-627 (-345 (-852 |#1|)))) 76 T ELT)) (-1574 (((-580 (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (-627 (-345 (-852 |#1|)))) 75 T ELT)) (-2435 (((-852 |#1|) (-627 (-345 (-852 |#1|)))) 56 T ELT) (((-852 |#1|) (-627 (-345 (-852 |#1|))) (-1081)) 57 T ELT))) -(((-245 |#1|) (-10 -7 (-15 -2435 ((-852 |#1|) (-627 (-345 (-852 |#1|))) (-1081))) (-15 -2435 ((-852 |#1|) (-627 (-345 (-852 |#1|))))) (-15 -1574 ((-580 (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (-627 (-345 (-852 |#1|))))) (-15 -1575 ((-580 (-627 (-345 (-852 |#1|)))) (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|))) (-627 (-345 (-852 |#1|))))) (-15 -1576 ((-580 (-627 (-345 (-852 |#1|)))) (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|))) (-627 (-345 (-852 |#1|))) (-689) (-689))) (-15 -1576 ((-580 (-627 (-345 (-852 |#1|)))) (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 |#1|)))))) (-627 (-345 (-852 |#1|))))) (-15 -1577 ((-580 (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |geneigvec| (-580 (-627 (-345 (-852 |#1|))))))) (-627 (-345 (-852 |#1|))))) (-15 -1578 ((-580 (-2 (|:| |eigval| (-3 (-345 (-852 |#1|)) (-1071 (-1081) (-852 |#1|)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 |#1|))))))) (-627 (-345 (-852 |#1|)))))) (-387)) (T -245)) -((-1578 (*1 *2 *3) (-12 (-4 *4 (-387)) (-5 *2 (-580 (-2 (|:| |eigval| (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 *4)))))))) (-5 *1 (-245 *4)) (-5 *3 (-627 (-345 (-852 *4)))))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-387)) (-5 *2 (-580 (-2 (|:| |eigval| (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4)))) (|:| |geneigvec| (-580 (-627 (-345 (-852 *4)))))))) (-5 *1 (-245 *4)) (-5 *3 (-627 (-345 (-852 *4)))))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-345 (-852 *5)) (-1071 (-1081) (-852 *5)))) (|:| |eigmult| (-689)) (|:| |eigvec| (-580 *4)))) (-4 *5 (-387)) (-5 *2 (-580 (-627 (-345 (-852 *5))))) (-5 *1 (-245 *5)) (-5 *4 (-627 (-345 (-852 *5)))))) (-1576 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-345 (-852 *6)) (-1071 (-1081) (-852 *6)))) (-5 *5 (-689)) (-4 *6 (-387)) (-5 *2 (-580 (-627 (-345 (-852 *6))))) (-5 *1 (-245 *6)) (-5 *4 (-627 (-345 (-852 *6)))))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-345 (-852 *5)) (-1071 (-1081) (-852 *5)))) (-4 *5 (-387)) (-5 *2 (-580 (-627 (-345 (-852 *5))))) (-5 *1 (-245 *5)) (-5 *4 (-627 (-345 (-852 *5)))))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-852 *4)))) (-4 *4 (-387)) (-5 *2 (-580 (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4))))) (-5 *1 (-245 *4)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-852 *4)))) (-5 *2 (-852 *4)) (-5 *1 (-245 *4)) (-4 *4 (-387)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-345 (-852 *5)))) (-5 *4 (-1081)) (-5 *2 (-852 *5)) (-5 *1 (-245 *5)) (-4 *5 (-387))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3173 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1584 (($ $) 12 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1593 (($ $ $) 95 (|has| |#1| (-251)) ELT)) (-3707 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-660))) CONST)) (-1582 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1580 (((-3 $ #1#) $) 62 (|has| |#1| (-660)) ELT)) (-3511 ((|#1| $) 11 T ELT)) (-3450 (((-3 $ #1#) $) 60 (|has| |#1| (-660)) ELT)) (-2398 (((-83) $) NIL (|has| |#1| (-660)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3512 ((|#1| $) 10 T ELT)) (-1583 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1581 (((-3 $ #1#) $) 61 (|has| |#1| (-660)) ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2470 (($ $) 64 (OR (|has| |#1| (-309)) (|has| |#1| (-408))) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1579 (((-580 $) $) 85 (|has| |#1| (-491)) ELT)) (-3751 (($ $ $) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 $)) 28 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-1081) |#1|) 17 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 21 (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-3211 (($ |#1| |#1|) 9 T ELT)) (-3894 (((-105)) 90 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 87 (|has| |#1| (-804 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-804 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-804 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-804 (-1081))) ELT)) (-2995 (($ $ $) NIL (|has| |#1| (-408)) ELT)) (-2421 (($ $ $) NIL (|has| |#1| (-408)) ELT)) (-3929 (($ (-480)) NIL (|has| |#1| (-956)) ELT) (((-83) $) 37 (|has| |#1| (-1007)) ELT) (((-767) $) 36 (|has| |#1| (-1007)) ELT)) (-3111 (((-689)) 67 (|has| |#1| (-956)) CONST)) (-1255 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-2646 (($) 47 (|has| |#1| (-21)) CONST)) (-2652 (($) 57 (|has| |#1| (-660)) CONST)) (-2655 (($ $ (-1081)) NIL (|has| |#1| (-804 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-804 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-804 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-804 (-1081))) ELT)) (-3042 (($ |#1| |#1|) 8 T ELT) (((-83) $ $) 32 (|has| |#1| (-1007)) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) 92 (OR (|has| |#1| (-309)) (|has| |#1| (-408))) ELT)) (-3820 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3822 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-480)) NIL (|has| |#1| (-408)) ELT) (($ $ (-689)) NIL (|has| |#1| (-660)) ELT) (($ $ (-825)) NIL (|has| |#1| (-1017)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1017)) ELT) (($ |#1| $) 54 (|has| |#1| (-1017)) ELT) (($ $ $) 53 (|has| |#1| (-1017)) ELT) (($ (-480) $) 70 (|has| |#1| (-21)) ELT) (($ (-689) $) NIL (|has| |#1| (-21)) ELT) (($ (-825) $) NIL (|has| |#1| (-25)) ELT))) -(((-246 |#1|) (-13 (-1120) (-10 -8 (-15 -3042 ($ |#1| |#1|)) (-15 -3211 ($ |#1| |#1|)) (-15 -1584 ($ $)) (-15 -3512 (|#1| $)) (-15 -3511 (|#1| $)) (-15 -3941 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-449 (-1081) |#1|)) (-6 (-449 (-1081) |#1|)) |%noBranch|) (IF (|has| |#1| (-1007)) (PROGN (-6 (-1007)) (-6 (-549 (-83))) (IF (|has| |#1| (-257 |#1|)) (PROGN (-15 -3751 ($ $ $)) (-15 -3751 ($ $ (-580 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3822 ($ |#1| $)) (-15 -3822 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1583 ($ $)) (-15 -1582 ($ $)) (-15 -3820 ($ |#1| $)) (-15 -3820 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1017)) (PROGN (-6 (-1017)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-660)) (PROGN (-6 (-660)) (-15 -1581 ((-3 $ #1="failed") $)) (-15 -1580 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-408)) (PROGN (-6 (-408)) (-15 -1581 ((-3 $ #1#) $)) (-15 -1580 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-956)) (PROGN (-6 (-956)) (-6 (-80 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-651 |#1|)) |%noBranch|) (IF (|has| |#1| (-491)) (-15 -1579 ((-580 $) $)) |%noBranch|) (IF (|has| |#1| (-804 (-1081))) (-6 (-804 (-1081))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-6 (-1178 |#1|)) (-15 -3932 ($ $ $)) (-15 -2470 ($ $))) |%noBranch|) (IF (|has| |#1| (-251)) (-15 -1593 ($ $ $)) |%noBranch|))) (-1120)) (T -246)) -((-3042 (*1 *1 *2 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) (-3211 (*1 *1 *2 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) (-1584 (*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) (-3512 (*1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) (-3511 (*1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-246 *3)))) (-3751 (*1 *1 *1 *1) (-12 (-4 *2 (-257 *2)) (-4 *2 (-1007)) (-4 *2 (-1120)) (-5 *1 (-246 *2)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-246 *3))) (-4 *3 (-257 *3)) (-4 *3 (-1007)) (-4 *3 (-1120)) (-5 *1 (-246 *3)))) (-3822 (*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-3822 (*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-1583 (*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1582 (*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-3820 (*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1581 (*1 *1 *1) (|partial| -12 (-5 *1 (-246 *2)) (-4 *2 (-660)) (-4 *2 (-1120)))) (-1580 (*1 *1 *1) (|partial| -12 (-5 *1 (-246 *2)) (-4 *2 (-660)) (-4 *2 (-1120)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-580 (-246 *3))) (-5 *1 (-246 *3)) (-4 *3 (-491)) (-4 *3 (-1120)))) (-1593 (*1 *1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-251)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1017)) (-4 *2 (-1120)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1017)) (-4 *2 (-1120)))) (-3932 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-246 *2)) (-4 *2 (-309)) (-4 *2 (-1120))) (-12 (-5 *1 (-246 *2)) (-4 *2 (-408)) (-4 *2 (-1120))))) (-2470 (*1 *1 *1) (OR (-12 (-5 *1 (-246 *2)) (-4 *2 (-309)) (-4 *2 (-1120))) (-12 (-5 *1 (-246 *2)) (-4 *2 (-408)) (-4 *2 (-1120)))))) -((-3941 (((-246 |#2|) (-1 |#2| |#1|) (-246 |#1|)) 14 T ELT))) -(((-247 |#1| |#2|) (-10 -7 (-15 -3941 ((-246 |#2|) (-1 |#2| |#1|) (-246 |#1|)))) (-1120) (-1120)) (T -247)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-246 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-246 *6)) (-5 *1 (-247 *5 *6))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) NIL T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-248 |#1| |#2|) (-13 (-1098 |#1| |#2|) (-10 -7 (-6 -3978))) (-1007) (-1007)) (T -248)) -NIL -((-1585 (((-259) (-1064) (-580 (-1064))) 17 T ELT) (((-259) (-1064) (-1064)) 16 T ELT) (((-259) (-580 (-1064))) 15 T ELT) (((-259) (-1064)) 14 T ELT))) -(((-249) (-10 -7 (-15 -1585 ((-259) (-1064))) (-15 -1585 ((-259) (-580 (-1064)))) (-15 -1585 ((-259) (-1064) (-1064))) (-15 -1585 ((-259) (-1064) (-580 (-1064)))))) (T -249)) -((-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-1064))) (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249)))) (-1585 (*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-259)) (-5 *1 (-249)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249))))) -((-1589 (((-580 (-547 $)) $) 27 T ELT)) (-1593 (($ $ (-246 $)) 78 T ELT) (($ $ (-580 (-246 $))) 140 T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT)) (-3142 (((-3 (-547 $) #1="failed") $) 128 T ELT)) (-3141 (((-547 $) $) 127 T ELT)) (-2559 (($ $) 17 T ELT) (($ (-580 $)) 54 T ELT)) (-1588 (((-580 (-84)) $) 35 T ELT)) (-3578 (((-84) (-84)) 89 T ELT)) (-2659 (((-83) $) 151 T ELT)) (-3941 (($ (-1 $ $) (-547 $)) 87 T ELT)) (-1591 (((-3 (-547 $) #1#) $) 95 T ELT)) (-2223 (($ (-84) $) 59 T ELT) (($ (-84) (-580 $)) 111 T ELT)) (-2619 (((-83) $ (-84)) 133 T ELT) (((-83) $ (-1081)) 132 T ELT)) (-2589 (((-689) $) 44 T ELT)) (-1587 (((-83) $ $) 57 T ELT) (((-83) $ (-1081)) 49 T ELT)) (-2660 (((-83) $) 149 T ELT)) (-3751 (($ $ (-547 $) $) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT) (($ $ (-580 (-246 $))) 138 T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) 81 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-1081) (-1 $ (-580 $))) 67 T ELT) (($ $ (-1081) (-1 $ $)) 72 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) 80 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) 83 T ELT) (($ $ (-84) (-1 $ (-580 $))) 68 T ELT) (($ $ (-84) (-1 $ $)) 74 T ELT)) (-3783 (($ (-84) $) 60 T ELT) (($ (-84) $ $) 61 T ELT) (($ (-84) $ $ $) 62 T ELT) (($ (-84) $ $ $ $) 63 T ELT) (($ (-84) (-580 $)) 124 T ELT)) (-1592 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2576 (($ $) 15 T ELT) (($ (-580 $)) 53 T ELT)) (-2242 (((-83) (-84)) 21 T ELT))) -(((-250 |#1|) (-10 -7 (-15 -2659 ((-83) |#1|)) (-15 -2660 ((-83) |#1|)) (-15 -3751 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3751 (|#1| |#1| (-84) (-1 |#1| (-580 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-84)) (-580 (-1 |#1| (-580 |#1|))))) (-15 -3751 (|#1| |#1| (-580 (-84)) (-580 (-1 |#1| |#1|)))) (-15 -3751 (|#1| |#1| (-1081) (-1 |#1| |#1|))) (-15 -3751 (|#1| |#1| (-1081) (-1 |#1| (-580 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-1 |#1| (-580 |#1|))))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-1 |#1| |#1|)))) (-15 -1587 ((-83) |#1| (-1081))) (-15 -1587 ((-83) |#1| |#1|)) (-15 -3941 (|#1| (-1 |#1| |#1|) (-547 |#1|))) (-15 -2223 (|#1| (-84) (-580 |#1|))) (-15 -2223 (|#1| (-84) |#1|)) (-15 -2619 ((-83) |#1| (-1081))) (-15 -2619 ((-83) |#1| (-84))) (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 -1588 ((-580 (-84)) |#1|)) (-15 -1589 ((-580 (-547 |#1|)) |#1|)) (-15 -1591 ((-3 (-547 |#1|) #1="failed") |#1|)) (-15 -2589 ((-689) |#1|)) (-15 -1592 (|#1| |#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -2559 (|#1| (-580 |#1|))) (-15 -2559 (|#1| |#1|)) (-15 -2576 (|#1| (-580 |#1|))) (-15 -2576 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-580 (-547 |#1|)) (-580 |#1|))) (-15 -1593 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -1593 (|#1| |#1| (-246 |#1|))) (-15 -3783 (|#1| (-84) (-580 |#1|))) (-15 -3783 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1|)) (-15 -3751 (|#1| |#1| (-580 |#1|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| (-246 |#1|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-547 |#1|)) (-580 |#1|))) (-15 -3751 (|#1| |#1| (-547 |#1|) |#1|)) (-15 -3142 ((-3 (-547 |#1|) #1#) |#1|)) (-15 -3141 ((-547 |#1|) |#1|))) (-251)) (T -250)) -((-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-250 *3)) (-4 *3 (-251)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-250 *4)) (-4 *4 (-251))))) -((-2554 (((-83) $ $) 7 T ELT)) (-1589 (((-580 (-547 $)) $) 42 T ELT)) (-1593 (($ $ (-246 $)) 54 T ELT) (($ $ (-580 (-246 $))) 53 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 52 T ELT)) (-3142 (((-3 (-547 $) "failed") $) 67 T ELT)) (-3141 (((-547 $) $) 68 T ELT)) (-2559 (($ $) 49 T ELT) (($ (-580 $)) 48 T ELT)) (-1588 (((-580 (-84)) $) 41 T ELT)) (-3578 (((-84) (-84)) 40 T ELT)) (-2659 (((-83) $) 20 (|has| $ (-945 (-480))) ELT)) (-1586 (((-1076 $) (-547 $)) 23 (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) 34 T ELT)) (-1591 (((-3 (-547 $) "failed") $) 44 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1590 (((-580 (-547 $)) $) 43 T ELT)) (-2223 (($ (-84) $) 36 T ELT) (($ (-84) (-580 $)) 35 T ELT)) (-2619 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1081)) 37 T ELT)) (-2589 (((-689) $) 45 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1587 (((-83) $ $) 33 T ELT) (((-83) $ (-1081)) 32 T ELT)) (-2660 (((-83) $) 21 (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-547 $) $) 65 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 64 T ELT) (($ $ (-580 (-246 $))) 63 T ELT) (($ $ (-246 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-580 $) (-580 $)) 60 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) 31 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) 30 T ELT) (($ $ (-1081) (-1 $ (-580 $))) 29 T ELT) (($ $ (-1081) (-1 $ $)) 28 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) 27 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-580 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT)) (-3783 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-580 $)) 55 T ELT)) (-1592 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3170 (($ $) 22 (|has| $ (-956)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-547 $)) 66 T ELT)) (-2576 (($ $) 51 T ELT) (($ (-580 $)) 50 T ELT)) (-2242 (((-83) (-84)) 39 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-251) (-111)) (T -251)) -((-3783 (*1 *1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-3783 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-3783 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-3783 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 *1)) (-4 *1 (-251)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-246 *1)) (-4 *1 (-251)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-246 *1))) (-4 *1 (-251)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-547 *1))) (-5 *3 (-580 *1)) (-4 *1 (-251)))) (-2576 (*1 *1 *1) (-4 *1 (-251))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-251)))) (-2559 (*1 *1 *1) (-4 *1 (-251))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-251)))) (-1592 (*1 *1 *1) (-4 *1 (-251))) (-1592 (*1 *1 *1 *1) (-4 *1 (-251))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-689)))) (-1591 (*1 *2 *1) (|partial| -12 (-5 *2 (-547 *1)) (-4 *1 (-251)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-580 (-547 *1))) (-4 *1 (-251)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-580 (-547 *1))) (-4 *1 (-251)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-580 (-84))))) (-3578 (*1 *2 *2) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-2242 (*1 *2 *3) (-12 (-4 *1 (-251)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2619 (*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2619 (*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-1081)) (-5 *2 (-83)))) (-2223 (*1 *1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) (-2223 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 *1)) (-4 *1 (-251)))) (-3941 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-547 *1)) (-4 *1 (-251)))) (-1587 (*1 *2 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-83)))) (-1587 (*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-1081)) (-5 *2 (-83)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-1 *1 *1))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1 *1 (-580 *1))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1 *1 *1)) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 (-1 *1 *1))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-580 *1))) (-4 *1 (-251)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-251)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-547 *1)) (-4 *1 (-956)) (-4 *1 (-251)) (-5 *2 (-1076 *1)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-956)) (-4 *1 (-251)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-945 (-480))) (-4 *1 (-251)) (-5 *2 (-83)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-945 (-480))) (-4 *1 (-251)) (-5 *2 (-83))))) -(-13 (-1007) (-945 (-547 $)) (-449 (-547 $) $) (-257 $) (-10 -8 (-15 -3783 ($ (-84) $)) (-15 -3783 ($ (-84) $ $)) (-15 -3783 ($ (-84) $ $ $)) (-15 -3783 ($ (-84) $ $ $ $)) (-15 -3783 ($ (-84) (-580 $))) (-15 -1593 ($ $ (-246 $))) (-15 -1593 ($ $ (-580 (-246 $)))) (-15 -1593 ($ $ (-580 (-547 $)) (-580 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-580 $))) (-15 -2559 ($ $)) (-15 -2559 ($ (-580 $))) (-15 -1592 ($ $)) (-15 -1592 ($ $ $)) (-15 -2589 ((-689) $)) (-15 -1591 ((-3 (-547 $) "failed") $)) (-15 -1590 ((-580 (-547 $)) $)) (-15 -1589 ((-580 (-547 $)) $)) (-15 -1588 ((-580 (-84)) $)) (-15 -3578 ((-84) (-84))) (-15 -2242 ((-83) (-84))) (-15 -2619 ((-83) $ (-84))) (-15 -2619 ((-83) $ (-1081))) (-15 -2223 ($ (-84) $)) (-15 -2223 ($ (-84) (-580 $))) (-15 -3941 ($ (-1 $ $) (-547 $))) (-15 -1587 ((-83) $ $)) (-15 -1587 ((-83) $ (-1081))) (-15 -3751 ($ $ (-580 (-1081)) (-580 (-1 $ $)))) (-15 -3751 ($ $ (-580 (-1081)) (-580 (-1 $ (-580 $))))) (-15 -3751 ($ $ (-1081) (-1 $ (-580 $)))) (-15 -3751 ($ $ (-1081) (-1 $ $))) (-15 -3751 ($ $ (-580 (-84)) (-580 (-1 $ $)))) (-15 -3751 ($ $ (-580 (-84)) (-580 (-1 $ (-580 $))))) (-15 -3751 ($ $ (-84) (-1 $ (-580 $)))) (-15 -3751 ($ $ (-84) (-1 $ $))) (IF (|has| $ (-956)) (PROGN (-15 -1586 ((-1076 $) (-547 $))) (-15 -3170 ($ $))) |%noBranch|) (IF (|has| $ (-945 (-480))) (PROGN (-15 -2660 ((-83) $)) (-15 -2659 ((-83) $))) |%noBranch|))) -(((-72) . T) ((-552 (-547 $)) . T) ((-549 (-767)) . T) ((-257 $) . T) ((-449 (-547 $) $) . T) ((-449 $ $) . T) ((-13) . T) ((-945 (-547 $)) . T) ((-1007) . T) ((-1120) . T)) -((-3941 ((|#2| (-1 |#2| |#1|) (-1064) (-547 |#1|)) 18 T ELT))) -(((-252 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| (-1 |#2| |#1|) (-1064) (-547 |#1|)))) (-251) (-1120)) (T -252)) -((-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1064)) (-5 *5 (-547 *6)) (-4 *6 (-251)) (-4 *2 (-1120)) (-5 *1 (-252 *6 *2))))) -((-3941 ((|#2| (-1 |#2| |#1|) (-547 |#1|)) 17 T ELT))) -(((-253 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| (-1 |#2| |#1|) (-547 |#1|)))) (-251) (-251)) (T -253)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-547 *5)) (-4 *5 (-251)) (-4 *2 (-251)) (-5 *1 (-253 *5 *2))))) -((-1597 (((-83) $ $) 14 T ELT)) (-2550 (($ $ $) 18 T ELT)) (-2549 (($ $ $) 17 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 50 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 67 T ELT)) (-3129 (($ $ $) 25 T ELT) (($ (-580 $)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3449 (((-3 $ #1#) $ $) 21 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 55 T ELT))) -(((-254 |#1|) (-10 -7 (-15 -1594 ((-3 (-580 |#1|) #1="failed") (-580 |#1|) |#1|)) (-15 -1595 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1595 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2397 |#1|)) |#1| |#1|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -1597 ((-83) |#1| |#1|)) (-15 -2726 ((-629 (-580 |#1|)) (-580 |#1|) |#1|)) (-15 -2727 ((-2 (|:| -3937 (-580 |#1|)) (|:| -2397 |#1|)) (-580 |#1|))) (-15 -3129 (|#1| (-580 |#1|))) (-15 -3129 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1| |#1|))) (-255)) (T -254)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1594 (((-3 (-580 $) "failed") (-580 $) $) 66 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-255) (-111)) (T -255)) -((-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-255)) (-5 *2 (-83)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-255)) (-5 *2 (-689)))) (-2865 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-255)))) (-2549 (*1 *1 *1 *1) (-4 *1 (-255))) (-2550 (*1 *1 *1 *1) (-4 *1 (-255))) (-1595 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) (-4 *1 (-255)))) (-1595 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-255)))) (-1594 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-580 *1)) (-4 *1 (-255))))) -(-13 (-827) (-10 -8 (-15 -1597 ((-83) $ $)) (-15 -1596 ((-689) $)) (-15 -2865 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -2549 ($ $ $)) (-15 -2550 ($ $ $)) (-15 -1595 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $)) (-15 -1595 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1594 ((-3 (-580 $) "failed") (-580 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3751 (($ $ (-580 |#2|) (-580 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-246 |#2|)) 11 T ELT) (($ $ (-580 (-246 |#2|))) NIL T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3751 (|#1| |#1| (-580 (-246 |#2|)))) (-15 -3751 (|#1| |#1| (-246 |#2|))) (-15 -3751 (|#1| |#1| |#2| |#2|)) (-15 -3751 (|#1| |#1| (-580 |#2|) (-580 |#2|)))) (-257 |#2|) (-1007)) (T -256)) -NIL -((-3751 (($ $ (-580 |#1|) (-580 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-246 |#1|)) 13 T ELT) (($ $ (-580 (-246 |#1|))) 12 T ELT))) -(((-257 |#1|) (-111) (-1007)) (T -257)) -((-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-246 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1007)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-246 *3))) (-4 *1 (-257 *3)) (-4 *3 (-1007))))) -(-13 (-449 |t#1| |t#1|) (-10 -8 (-15 -3751 ($ $ (-246 |t#1|))) (-15 -3751 ($ $ (-580 (-246 |t#1|)))))) -(((-449 |#1| |#1|) . T)) -((-3751 ((|#1| (-1 |#1| (-480)) (-1083 (-345 (-480)))) 26 T ELT))) -(((-258 |#1|) (-10 -7 (-15 -3751 (|#1| (-1 |#1| (-480)) (-1083 (-345 (-480)))))) (-38 (-345 (-480)))) (T -258)) -((-3751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-480))) (-5 *4 (-1083 (-345 (-480)))) (-5 *1 (-258 *2)) (-4 *2 (-38 (-345 (-480))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 7 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 9 T ELT))) -(((-259) (-1007)) (T -259)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3489 (((-480) $) 13 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 10 T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-260) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $)) (-15 -3489 ((-480) $))))) (T -260)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-260)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-260))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 60 T ELT)) (-3114 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-1157 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-480))) ELT) (((-3 (-1151 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3141 (((-1157 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1081) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-480))) ELT) (((-1151 |#2| |#3| |#4|) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-1157 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1170 (-1157 |#1| |#2| |#3| |#4|)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-1157 |#1| |#2| |#3| |#4|)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-1157 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3428 (((-629 $) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-3941 (($ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3767 (((-3 (-745 |#2|) #1#) $) 80 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-1157 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1170 (-1157 |#1| |#2| |#3| |#4|)))) (-1170 $) $) NIL T ELT) (((-627 (-1157 |#1| |#2| |#3| |#4|)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-255)) ELT)) (-3115 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-1157 |#1| |#2| |#3| |#4|)) (-580 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-246 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-580 (-246 (-1157 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-257 (-1157 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-580 (-1081)) (-580 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-449 (-1081) (-1157 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1081) (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-449 (-1081) (-1157 |#1| |#2| |#3| |#4|))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-239 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-1157 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-928)) ELT) (((-177) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-1157 |#1| |#2| |#3| |#4|) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-1157 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1081)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-945 (-1081))) ELT) (($ (-1151 |#2| |#3| |#4|)) 37 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1157 |#1| |#2| |#3| |#4|) (-816))) (|has| (-1157 |#1| |#2| |#3| |#4|) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-751)) ELT)) (-3932 (($ $ $) 35 T ELT) (($ (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-1157 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1157 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-261 |#1| |#2| |#3| |#4|) (-13 (-899 (-1157 |#1| |#2| |#3| |#4|)) (-945 (-1151 |#2| |#3| |#4|)) (-10 -8 (-15 -3767 ((-3 (-745 |#2|) "failed") $)) (-15 -3929 ($ (-1151 |#2| |#3| |#4|))))) (-13 (-945 (-480)) (-577 (-480)) (-387)) (-13 (-27) (-1106) (-359 |#1|)) (-1081) |#2|) (T -261)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4) (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) (-5 *1 (-261 *3 *4 *5 *6)))) (-3767 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) (-5 *2 (-745 *4)) (-5 *1 (-261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4)))) -((-2554 (((-83) $ $) NIL T ELT)) (-1205 (((-580 $) $ (-1081)) NIL (|has| |#1| (-491)) ELT) (((-580 $) $) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-1076 $) (-1081)) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-1076 $)) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-852 $)) NIL (|has| |#1| (-491)) ELT)) (-1206 (($ $ (-1081)) NIL (|has| |#1| (-491)) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-1076 $) (-1081)) NIL (|has| |#1| (-491)) ELT) (($ (-1076 $)) NIL (|has| |#1| (-491)) ELT) (($ (-852 $)) NIL (|has| |#1| (-491)) ELT)) (-3173 (((-83) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (-3067 (((-580 (-1081)) $) 365 T ELT)) (-3069 (((-345 (-1076 $)) $ (-547 $)) NIL (|has| |#1| (-491)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-1589 (((-580 (-547 $)) $) NIL T ELT)) (-3475 (($ $) 170 (|has| |#1| (-491)) ELT)) (-3622 (($ $) 146 (|has| |#1| (-491)) ELT)) (-1361 (($ $ (-998 $)) 231 (|has| |#1| (-491)) ELT) (($ $ (-1081)) 227 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (-1593 (($ $ (-246 $)) NIL T ELT) (($ $ (-580 (-246 $))) 383 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 438 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 305 (-12 (|has| |#1| (-387)) (|has| |#1| (-491))) ELT)) (-3758 (($ $) NIL (|has| |#1| (-491)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-491)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-491)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3473 (($ $) 166 (|has| |#1| (-491)) ELT)) (-3621 (($ $) 142 (|has| |#1| (-491)) ELT)) (-1598 (($ $ (-480)) 68 (|has| |#1| (-491)) ELT)) (-3477 (($ $) 174 (|has| |#1| (-491)) ELT)) (-3620 (($ $) 150 (|has| |#1| (-491)) ELT)) (-3707 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) (|has| |#1| (-1017))) CONST)) (-1207 (((-580 $) $ (-1081)) NIL (|has| |#1| (-491)) ELT) (((-580 $) $) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-1076 $) (-1081)) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-1076 $)) NIL (|has| |#1| (-491)) ELT) (((-580 $) (-852 $)) NIL (|has| |#1| (-491)) ELT)) (-3168 (($ $ (-1081)) NIL (|has| |#1| (-491)) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-1076 $) (-1081)) 133 (|has| |#1| (-491)) ELT) (($ (-1076 $)) NIL (|has| |#1| (-491)) ELT) (($ (-852 $)) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 (-547 $) #1#) $) 18 T ELT) (((-3 (-1081) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-852 |#1|)) #1#) $) NIL (|has| |#1| (-491)) ELT) (((-3 (-852 |#1|) #1#) $) NIL (|has| |#1| (-956)) ELT) (((-3 (-345 (-480)) #1#) $) 48 (OR (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3141 (((-547 $) $) 12 T ELT) (((-1081) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-852 |#1|)) $) NIL (|has| |#1| (-491)) ELT) (((-852 |#1|) $) NIL (|has| |#1| (-956)) ELT) (((-345 (-480)) $) 316 (OR (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-2267 (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 124 (|has| |#1| (-956)) ELT) (((-627 |#1|) (-627 $)) 114 (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT)) (-3825 (($ $) 95 (|has| |#1| (-491)) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#1| (-1017)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3927 (($ $ (-998 $)) 235 (|has| |#1| (-491)) ELT) (($ $ (-1081)) 233 (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-491)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3369 (($ $ $) 201 (|has| |#1| (-491)) ELT)) (-3610 (($) 136 (|has| |#1| (-491)) ELT)) (-1358 (($ $ $) 221 (|has| |#1| (-491)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 389 (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 396 (|has| |#1| (-791 (-325))) ELT)) (-2559 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1588 (((-580 (-84)) $) NIL T ELT)) (-3578 (((-84) (-84)) 275 T ELT)) (-2398 (((-83) $) 27 (|has| |#1| (-1017)) ELT)) (-2659 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-2982 (($ $) 73 (|has| |#1| (-956)) ELT)) (-2984 (((-1030 |#1| (-547 $)) $) 90 (|has| |#1| (-956)) ELT)) (-1599 (((-83) $) 49 (|has| |#1| (-491)) ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-491)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-491)) ELT)) (-1586 (((-1076 $) (-547 $)) 276 (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) 434 T ELT)) (-1591 (((-3 (-547 $) #1#) $) NIL T ELT)) (-3925 (($ $) 140 (|has| |#1| (-491)) ELT)) (-2245 (($ $) 246 (|has| |#1| (-491)) ELT)) (-2268 (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL (|has| |#1| (-956)) ELT) (((-627 |#1|) (-1170 $)) NIL (|has| |#1| (-956)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-491)) ELT) (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1590 (((-580 (-547 $)) $) 51 T ELT)) (-2223 (($ (-84) $) NIL T ELT) (($ (-84) (-580 $)) 439 T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL (|has| |#1| (-1017)) ELT)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -2389 (-480))) #1#) $) NIL (|has| |#1| (-956)) ELT)) (-2808 (((-3 (-580 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1783 (((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2810 (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $) NIL (|has| |#1| (-1017)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $ (-84)) NIL (|has| |#1| (-956)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $ (-1081)) NIL (|has| |#1| (-956)) ELT)) (-2619 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1081)) 53 T ELT)) (-2470 (($ $) NIL (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT)) (-2818 (($ $ (-1081)) 250 (|has| |#1| (-491)) ELT) (($ $ (-998 $)) 252 (|has| |#1| (-491)) ELT)) (-2589 (((-689) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) 45 T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 298 (|has| |#1| (-491)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-491)) ELT) (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-1587 (((-83) $ $) NIL T ELT) (((-83) $ (-1081)) NIL T ELT)) (-1362 (($ $ (-1081)) 225 (|has| |#1| (-491)) ELT) (($ $) 223 (|has| |#1| (-491)) ELT)) (-1356 (($ $) 217 (|has| |#1| (-491)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 303 (-12 (|has| |#1| (-387)) (|has| |#1| (-491))) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-491)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-491)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-491)) ELT)) (-3926 (($ $) 138 (|has| |#1| (-491)) ELT)) (-2660 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-547 $) $) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) 433 T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-1081) (-1 $ (-580 $))) NIL T ELT) (($ $ (-1081) (-1 $ $)) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) 376 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-580 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-550 (-469))) ELT) (($ $) NIL (|has| |#1| (-550 (-469))) ELT) (($ $ (-84) $ (-1081)) 363 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-84)) (-580 $) (-1081)) 362 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ $))) NIL (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ (-580 $)))) NIL (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689) (-1 $ (-580 $))) NIL (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689) (-1 $ $)) NIL (|has| |#1| (-956)) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-491)) ELT)) (-2243 (($ $) 238 (|has| |#1| (-491)) ELT)) (-3783 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-580 $)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-1592 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2244 (($ $) 248 (|has| |#1| (-491)) ELT)) (-3368 (($ $) 199 (|has| |#1| (-491)) ELT)) (-3741 (($ $ (-1081)) NIL (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-956)) ELT)) (-2981 (($ $) 74 (|has| |#1| (-491)) ELT)) (-2983 (((-1030 |#1| (-547 $)) $) 92 (|has| |#1| (-491)) ELT)) (-3170 (($ $) 314 (|has| $ (-956)) ELT)) (-3478 (($ $) 176 (|has| |#1| (-491)) ELT)) (-3619 (($ $) 152 (|has| |#1| (-491)) ELT)) (-3476 (($ $) 172 (|has| |#1| (-491)) ELT)) (-3618 (($ $) 148 (|has| |#1| (-491)) ELT)) (-3474 (($ $) 168 (|has| |#1| (-491)) ELT)) (-3617 (($ $) 144 (|has| |#1| (-491)) ELT)) (-3955 (((-795 (-480)) $) NIL (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| |#1| (-550 (-795 (-325)))) ELT) (($ (-343 $)) NIL (|has| |#1| (-491)) ELT) (((-469) $) 360 (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $ $) NIL (|has| |#1| (-408)) ELT)) (-2421 (($ $ $) NIL (|has| |#1| (-408)) ELT)) (-3929 (((-767) $) 432 T ELT) (($ (-547 $)) 423 T ELT) (($ (-1081)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480)))) ELT) (($ (-1030 |#1| (-547 $))) 94 (|has| |#1| (-956)) ELT) (($ (-345 |#1|)) NIL (|has| |#1| (-491)) ELT) (($ (-852 (-345 |#1|))) NIL (|has| |#1| (-491)) ELT) (($ (-345 (-852 (-345 |#1|)))) NIL (|has| |#1| (-491)) ELT) (($ (-345 (-852 |#1|))) NIL (|has| |#1| (-491)) ELT) (($ (-852 |#1|)) NIL (|has| |#1| (-956)) ELT) (($ (-480)) 36 (OR (|has| |#1| (-945 (-480))) (|has| |#1| (-956))) ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-491)) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL (|has| |#1| (-956)) CONST)) (-2576 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3087 (($ $ $) 219 (|has| |#1| (-491)) ELT)) (-3372 (($ $ $) 205 (|has| |#1| (-491)) ELT)) (-3374 (($ $ $) 209 (|has| |#1| (-491)) ELT)) (-3371 (($ $ $) 203 (|has| |#1| (-491)) ELT)) (-3373 (($ $ $) 207 (|has| |#1| (-491)) ELT)) (-2242 (((-83) (-84)) 10 T ELT)) (-1255 (((-83) $ $) 85 T ELT)) (-3481 (($ $) 182 (|has| |#1| (-491)) ELT)) (-3469 (($ $) 158 (|has| |#1| (-491)) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) 178 (|has| |#1| (-491)) ELT)) (-3467 (($ $) 154 (|has| |#1| (-491)) ELT)) (-3483 (($ $) 186 (|has| |#1| (-491)) ELT)) (-3471 (($ $) 162 (|has| |#1| (-491)) ELT)) (-1784 (($ (-1081) $) NIL T ELT) (($ (-1081) $ $) NIL T ELT) (($ (-1081) $ $ $) NIL T ELT) (($ (-1081) $ $ $ $) NIL T ELT) (($ (-1081) (-580 $)) NIL T ELT)) (-3376 (($ $) 213 (|has| |#1| (-491)) ELT)) (-3375 (($ $) 211 (|has| |#1| (-491)) ELT)) (-3484 (($ $) 188 (|has| |#1| (-491)) ELT)) (-3472 (($ $) 164 (|has| |#1| (-491)) ELT)) (-3482 (($ $) 184 (|has| |#1| (-491)) ELT)) (-3470 (($ $) 160 (|has| |#1| (-491)) ELT)) (-3480 (($ $) 180 (|has| |#1| (-491)) ELT)) (-3468 (($ $) 156 (|has| |#1| (-491)) ELT)) (-3366 (($ $) 191 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) CONST)) (-2247 (($ $) 242 (|has| |#1| (-491)) ELT)) (-2652 (($) 25 (|has| |#1| (-1017)) CONST)) (-3370 (($ $) 193 (|has| |#1| (-491)) ELT) (($ $ $) 195 (|has| |#1| (-491)) ELT)) (-2248 (($ $) 240 (|has| |#1| (-491)) ELT)) (-2655 (($ $ (-1081)) NIL (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-956)) ELT)) (-2246 (($ $) 244 (|has| |#1| (-491)) ELT)) (-3367 (($ $ $) 197 (|has| |#1| (-491)) ELT)) (-3042 (((-83) $ $) 87 T ELT)) (-3932 (($ (-1030 |#1| (-547 $)) (-1030 |#1| (-547 $))) 105 (|has| |#1| (-491)) ELT) (($ $ $) 44 (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT)) (-3820 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (-3822 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-491)) ELT) (($ $ (-345 (-480))) 311 (|has| |#1| (-491)) ELT) (($ $ (-480)) 79 (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT) (($ $ (-689)) 75 (|has| |#1| (-1017)) ELT) (($ $ (-825)) 83 (|has| |#1| (-1017)) ELT)) (* (($ (-345 (-480)) $) NIL (|has| |#1| (-491)) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-491)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT) (($ |#1| $) NIL (|has| |#1| (-956)) ELT) (($ $ $) 38 (|has| |#1| (-1017)) ELT) (($ (-480) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT) (($ (-689) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT) (($ (-825) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956)))) ELT))) -(((-262 |#1|) (-13 (-359 |#1|) (-10 -8 (IF (|has| |#1| (-491)) (PROGN (-6 (-29 |#1|)) (-6 (-1106)) (-6 (-131)) (-6 (-566)) (-6 (-1044)) (-15 -3825 ($ $)) (-15 -1599 ((-83) $)) (-15 -1598 ($ $ (-480))) (IF (|has| |#1| (-387)) (PROGN (-15 -2692 ((-343 (-1076 $)) (-1076 $))) (-15 -2693 ((-343 (-1076 $)) (-1076 $)))) |%noBranch|) (IF (|has| |#1| (-945 (-480))) (-6 (-945 (-48))) |%noBranch|)) |%noBranch|))) (-1007)) (T -262)) -((-3825 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-491)) (-4 *2 (-1007)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-262 *3)) (-4 *3 (-491)) (-4 *3 (-1007)))) (-1598 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-262 *3)) (-4 *3 (-491)) (-4 *3 (-1007)))) (-2692 (*1 *2 *3) (-12 (-5 *2 (-343 (-1076 *1))) (-5 *1 (-262 *4)) (-5 *3 (-1076 *1)) (-4 *4 (-387)) (-4 *4 (-491)) (-4 *4 (-1007)))) (-2693 (*1 *2 *3) (-12 (-5 *2 (-343 (-1076 *1))) (-5 *1 (-262 *4)) (-5 *3 (-1076 *1)) (-4 *4 (-387)) (-4 *4 (-491)) (-4 *4 (-1007))))) -((-3941 (((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)) 13 T ELT))) -(((-263 |#1| |#2|) (-10 -7 (-15 -3941 ((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)))) (-1007) (-1007)) (T -263)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6))))) -((-3712 (((-51) |#2| (-246 |#2|) (-689)) 40 T ELT) (((-51) |#2| (-246 |#2|)) 32 T ELT) (((-51) |#2| (-689)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1081)) 26 T ELT)) (-3801 (((-51) |#2| (-246 |#2|) (-345 (-480))) 59 T ELT) (((-51) |#2| (-246 |#2|)) 56 T ELT) (((-51) |#2| (-345 (-480))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1081)) 55 T ELT)) (-3765 (((-51) |#2| (-246 |#2|) (-345 (-480))) 54 T ELT) (((-51) |#2| (-246 |#2|)) 51 T ELT) (((-51) |#2| (-345 (-480))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1081)) 50 T ELT)) (-3762 (((-51) |#2| (-246 |#2|) (-480)) 47 T ELT) (((-51) |#2| (-246 |#2|)) 44 T ELT) (((-51) |#2| (-480)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1081)) 43 T ELT))) -(((-264 |#1| |#2|) (-10 -7 (-15 -3712 ((-51) (-1081))) (-15 -3712 ((-51) |#2|)) (-15 -3712 ((-51) |#2| (-689))) (-15 -3712 ((-51) |#2| (-246 |#2|))) (-15 -3712 ((-51) |#2| (-246 |#2|) (-689))) (-15 -3762 ((-51) (-1081))) (-15 -3762 ((-51) |#2|)) (-15 -3762 ((-51) |#2| (-480))) (-15 -3762 ((-51) |#2| (-246 |#2|))) (-15 -3762 ((-51) |#2| (-246 |#2|) (-480))) (-15 -3765 ((-51) (-1081))) (-15 -3765 ((-51) |#2|)) (-15 -3765 ((-51) |#2| (-345 (-480)))) (-15 -3765 ((-51) |#2| (-246 |#2|))) (-15 -3765 ((-51) |#2| (-246 |#2|) (-345 (-480)))) (-15 -3801 ((-51) (-1081))) (-15 -3801 ((-51) |#2|)) (-15 -3801 ((-51) |#2| (-345 (-480)))) (-15 -3801 ((-51) |#2| (-246 |#2|))) (-15 -3801 ((-51) |#2| (-246 |#2|) (-345 (-480))))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -264)) -((-3801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-246 *3)) (-5 *5 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-345 (-480))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) (-3765 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-246 *3)) (-5 *5 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *4 (-345 (-480))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-3765 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-945 *5) (-577 *5))) (-5 *5 (-480)) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-4 *5 (-13 (-387) (-945 *4) (-577 *4))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-246 *3)) (-5 *5 (-689)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4)))))) -((-1600 (((-51) |#2| (-84) (-246 |#2|) (-580 |#2|)) 89 T ELT) (((-51) |#2| (-84) (-246 |#2|) (-246 |#2|)) 85 T ELT) (((-51) |#2| (-84) (-246 |#2|) |#2|) 87 T ELT) (((-51) (-246 |#2|) (-84) (-246 |#2|) |#2|) 88 T ELT) (((-51) (-580 |#2|) (-580 (-84)) (-246 |#2|) (-580 (-246 |#2|))) 81 T ELT) (((-51) (-580 |#2|) (-580 (-84)) (-246 |#2|) (-580 |#2|)) 83 T ELT) (((-51) (-580 (-246 |#2|)) (-580 (-84)) (-246 |#2|) (-580 |#2|)) 84 T ELT) (((-51) (-580 (-246 |#2|)) (-580 (-84)) (-246 |#2|) (-580 (-246 |#2|))) 82 T ELT) (((-51) (-246 |#2|) (-84) (-246 |#2|) (-580 |#2|)) 90 T ELT) (((-51) (-246 |#2|) (-84) (-246 |#2|) (-246 |#2|)) 86 T ELT))) -(((-265 |#1| |#2|) (-10 -7 (-15 -1600 ((-51) (-246 |#2|) (-84) (-246 |#2|) (-246 |#2|))) (-15 -1600 ((-51) (-246 |#2|) (-84) (-246 |#2|) (-580 |#2|))) (-15 -1600 ((-51) (-580 (-246 |#2|)) (-580 (-84)) (-246 |#2|) (-580 (-246 |#2|)))) (-15 -1600 ((-51) (-580 (-246 |#2|)) (-580 (-84)) (-246 |#2|) (-580 |#2|))) (-15 -1600 ((-51) (-580 |#2|) (-580 (-84)) (-246 |#2|) (-580 |#2|))) (-15 -1600 ((-51) (-580 |#2|) (-580 (-84)) (-246 |#2|) (-580 (-246 |#2|)))) (-15 -1600 ((-51) (-246 |#2|) (-84) (-246 |#2|) |#2|)) (-15 -1600 ((-51) |#2| (-84) (-246 |#2|) |#2|)) (-15 -1600 ((-51) |#2| (-84) (-246 |#2|) (-246 |#2|))) (-15 -1600 ((-51) |#2| (-84) (-246 |#2|) (-580 |#2|)))) (-13 (-491) (-550 (-469))) (-359 |#1|)) (T -265)) -((-1600 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-5 *6 (-580 *3)) (-4 *3 (-359 *7)) (-4 *7 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *7 *3)))) (-1600 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-4 *3 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *3)))) (-1600 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-4 *3 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *3)))) (-1600 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-246 *5)) (-5 *4 (-84)) (-4 *5 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *5)))) (-1600 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 (-84))) (-5 *6 (-580 (-246 *8))) (-4 *8 (-359 *7)) (-5 *5 (-246 *8)) (-4 *7 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *7 *8)))) (-1600 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-580 *7)) (-5 *4 (-580 (-84))) (-5 *5 (-246 *7)) (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *7)))) (-1600 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-580 (-246 *8))) (-5 *4 (-580 (-84))) (-5 *5 (-246 *8)) (-5 *6 (-580 *8)) (-4 *8 (-359 *7)) (-4 *7 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *7 *8)))) (-1600 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-580 (-246 *7))) (-5 *4 (-580 (-84))) (-5 *5 (-246 *7)) (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *7)))) (-1600 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-246 *7)) (-5 *4 (-84)) (-5 *5 (-580 *7)) (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *7)))) (-1600 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-246 *6)) (-5 *4 (-84)) (-4 *6 (-359 *5)) (-4 *5 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *5 *6))))) -((-1602 (((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-177) (-480) (-1064)) 67 T ELT) (((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-177) (-480)) 68 T ELT) (((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-1 (-177) (-177)) (-480) (-1064)) 64 T ELT) (((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-1 (-177) (-177)) (-480)) 65 T ELT)) (-1601 (((-1 (-177) (-177)) (-177)) 66 T ELT))) -(((-266) (-10 -7 (-15 -1601 ((-1 (-177) (-177)) (-177))) (-15 -1602 ((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-1 (-177) (-177)) (-480))) (-15 -1602 ((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-1 (-177) (-177)) (-480) (-1064))) (-15 -1602 ((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-177) (-480))) (-15 -1602 ((-1116 (-833)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-177) (-480) (-1064))))) (T -266)) -((-1602 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) (-5 *6 (-177)) (-5 *7 (-480)) (-5 *8 (-1064)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) (-1602 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) (-5 *6 (-177)) (-5 *7 (-480)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) (-1602 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) (-5 *6 (-480)) (-5 *7 (-1064)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) (-1602 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) (-5 *6 (-480)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-266)) (-5 *3 (-177))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 26 T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) NIL T ELT) (($ $ (-345 (-480)) (-345 (-480))) NIL T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) 20 T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) 36 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-3171 (((-83) $) NIL T ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) NIL T ELT) (((-345 (-480)) $ (-345 (-480))) 16 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-345 (-480))) NIL T ELT) (($ $ (-988) (-345 (-480))) NIL T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-1603 (((-345 (-480)) $) 17 T ELT)) (-3076 (($ (-1151 |#1| |#2| |#3|)) 11 T ELT)) (-2389 (((-1151 |#1| |#2| |#3|) $) 12 T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) NIL T ELT) (($ $ $) NIL (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3931 (((-345 (-480)) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 10 T ELT)) (-3929 (((-767) $) 42 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) 34 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 28 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 37 T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-267 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-711) (-10 -8 (-15 -3076 ($ (-1151 |#1| |#2| |#3|))) (-15 -2389 ((-1151 |#1| |#2| |#3|) $)) (-15 -1603 ((-345 (-480)) $)))) (-309) (-1081) |#1|) (T -267)) -((-3076 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-309)) (-14 *4 (-1081)) (-14 *5 *3) (-5 *1 (-267 *3 *4 *5)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-267 *3 *4 *5)) (-4 *3 (-309)) (-14 *4 (-1081)) (-14 *5 *3))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-267 *3 *4 *5)) (-4 *3 (-309)) (-14 *4 (-1081)) (-14 *5 *3)))) -((-2997 (((-2 (|:| -2389 (-689)) (|:| -3937 |#1|) (|:| |radicand| (-580 |#1|))) (-343 |#1|) (-689)) 35 T ELT)) (-3925 (((-580 (-2 (|:| -3937 (-689)) (|:| |logand| |#1|))) (-343 |#1|)) 40 T ELT))) -(((-268 |#1|) (-10 -7 (-15 -2997 ((-2 (|:| -2389 (-689)) (|:| -3937 |#1|) (|:| |radicand| (-580 |#1|))) (-343 |#1|) (-689))) (-15 -3925 ((-580 (-2 (|:| -3937 (-689)) (|:| |logand| |#1|))) (-343 |#1|)))) (-491)) (T -268)) -((-3925 (*1 *2 *3) (-12 (-5 *3 (-343 *4)) (-4 *4 (-491)) (-5 *2 (-580 (-2 (|:| -3937 (-689)) (|:| |logand| *4)))) (-5 *1 (-268 *4)))) (-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-343 *5)) (-4 *5 (-491)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *5) (|:| |radicand| (-580 *5)))) (-5 *1 (-268 *5)) (-5 *4 (-689))))) -((-3067 (((-580 |#2|) (-1076 |#4|)) 45 T ELT)) (-1608 ((|#3| (-480)) 48 T ELT)) (-1606 (((-1076 |#4|) (-1076 |#3|)) 30 T ELT)) (-1607 (((-1076 |#4|) (-1076 |#4|) (-480)) 67 T ELT)) (-1605 (((-1076 |#3|) (-1076 |#4|)) 21 T ELT)) (-3931 (((-580 (-689)) (-1076 |#4|) (-580 |#2|)) 41 T ELT)) (-1604 (((-1076 |#3|) (-1076 |#4|) (-580 |#2|) (-580 |#3|)) 35 T ELT))) -(((-269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1604 ((-1076 |#3|) (-1076 |#4|) (-580 |#2|) (-580 |#3|))) (-15 -3931 ((-580 (-689)) (-1076 |#4|) (-580 |#2|))) (-15 -3067 ((-580 |#2|) (-1076 |#4|))) (-15 -1605 ((-1076 |#3|) (-1076 |#4|))) (-15 -1606 ((-1076 |#4|) (-1076 |#3|))) (-15 -1607 ((-1076 |#4|) (-1076 |#4|) (-480))) (-15 -1608 (|#3| (-480)))) (-712) (-751) (-956) (-856 |#3| |#1| |#2|)) (T -269)) -((-1608 (*1 *2 *3) (-12 (-5 *3 (-480)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-956)) (-5 *1 (-269 *4 *5 *2 *6)) (-4 *6 (-856 *2 *4 *5)))) (-1607 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *7)) (-5 *3 (-480)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-5 *1 (-269 *4 *5 *6 *7)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1076 *6)) (-4 *6 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-1076 *7)) (-5 *1 (-269 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-1076 *7)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-5 *2 (-1076 *6)) (-5 *1 (-269 *4 *5 *6 *7)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1076 *7)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-5 *2 (-580 *5)) (-5 *1 (-269 *4 *5 *6 *7)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *8)) (-5 *4 (-580 *6)) (-4 *6 (-751)) (-4 *8 (-856 *7 *5 *6)) (-4 *5 (-712)) (-4 *7 (-956)) (-5 *2 (-580 (-689))) (-5 *1 (-269 *5 *6 *7 *8)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-5 *5 (-580 *8)) (-4 *7 (-751)) (-4 *8 (-956)) (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) (-5 *2 (-1076 *8)) (-5 *1 (-269 *6 *7 *8 *9))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 19 T ELT)) (-3757 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-480)))) $) 21 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2287 ((|#1| $ (-480)) NIL T ELT)) (-1611 (((-480) $ (-480)) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2278 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1610 (($ (-1 (-480) (-480)) $) 11 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1609 (($ $ $) NIL (|has| (-480) (-711)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3660 (((-480) |#1| $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 30 (|has| |#1| (-751)) ELT)) (-3820 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3822 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ (-480)) NIL T ELT) (($ (-480) |#1|) 28 T ELT))) -(((-270 |#1|) (-13 (-21) (-651 (-480)) (-271 |#1| (-480)) (-10 -7 (IF (|has| |#1| (-751)) (-6 (-751)) |%noBranch|))) (-1007)) (T -270)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3757 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|))) $) 33 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3121 (((-689) $) 34 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| "failed") $) 38 T ELT)) (-3141 ((|#1| $) 39 T ELT)) (-2287 ((|#1| $ (-480)) 31 T ELT)) (-1611 ((|#2| $ (-480)) 32 T ELT)) (-2278 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1610 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1609 (($ $ $) 27 (|has| |#2| (-711)) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3660 ((|#2| |#1| $) 30 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-271 |#1| |#2|) (-111) (-1007) (-102)) (T -271)) -((-3822 (*1 *1 *2 *1) (-12 (-4 *1 (-271 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-102)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-102)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)) (-5 *2 (-689)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)) (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))))) (-1611 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-271 *4 *2)) (-4 *4 (-1007)) (-4 *2 (-102)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-271 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1007)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-102)))) (-1610 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)))) (-1609 (*1 *1 *1 *1) (-12 (-4 *1 (-271 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-102)) (-4 *3 (-711))))) -(-13 (-102) (-945 |t#1|) (-10 -8 (-15 -3822 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3121 ((-689) $)) (-15 -3757 ((-580 (-2 (|:| |gen| |t#1|) (|:| -3926 |t#2|))) $)) (-15 -1611 (|t#2| $ (-480))) (-15 -2287 (|t#1| $ (-480))) (-15 -3660 (|t#2| |t#1| $)) (-15 -1610 ($ (-1 |t#2| |t#2|) $)) (-15 -2278 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-711)) (-15 -1609 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-13) . T) ((-945 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-689)))) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2287 ((|#1| $ (-480)) NIL T ELT)) (-1611 (((-689) $ (-480)) NIL T ELT)) (-2278 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1610 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1609 (($ $ $) NIL (|has| (-689) (-711)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3660 (((-689) |#1| $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-689) |#1|) NIL T ELT))) -(((-272 |#1|) (-271 |#1| (-689)) (-1007)) (T -272)) -NIL -((-3486 (($ $) 72 T ELT)) (-1613 (($ $ |#2| |#3| $) 14 T ELT)) (-1614 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1786 (((-83) $) 42 T ELT)) (-1785 ((|#2| $) 44 T ELT)) (-3449 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2803 ((|#2| $) 68 T ELT)) (-3800 (((-580 |#2|) $) 56 T ELT)) (-1612 (($ $ $ (-689)) 37 T ELT)) (-3932 (($ $ |#2|) 60 T ELT))) -(((-273 |#1| |#2| |#3|) (-10 -7 (-15 -3486 (|#1| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3449 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1612 (|#1| |#1| |#1| (-689))) (-15 -1613 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1614 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3800 ((-580 |#2|) |#1|)) (-15 -1785 (|#2| |#1|)) (-15 -1786 ((-83) |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3932 (|#1| |#1| |#2|))) (-274 |#2| |#3|) (-956) (-711)) (T -273)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 107 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 105 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 102 T ELT)) (-3141 (((-480) $) 106 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 104 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 103 T ELT)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3486 (($ $) 91 (|has| |#1| (-387)) ELT)) (-1613 (($ $ |#1| |#2| $) 95 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2406 (((-689) $) 98 T ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| |#2|) 79 T ELT)) (-2806 ((|#2| $) 97 T ELT)) (-1614 (($ (-1 |#2| |#2|) $) 96 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 101 T ELT)) (-1785 ((|#1| $) 100 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ |#1|) 93 (|has| |#1| (-491)) ELT)) (-3931 ((|#2| $) 82 T ELT)) (-2803 ((|#1| $) 92 (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 67 (|has| |#1| (-491)) ELT) (($ |#1|) 65 T ELT) (($ (-345 (-480))) 75 (OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ELT)) (-3800 (((-580 |#1|) $) 99 T ELT)) (-3660 ((|#1| $ |#2|) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1612 (($ $ $ (-689)) 94 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-274 |#1| |#2|) (-111) (-956) (-711)) (T -274)) -((-1786 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-83)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-580 *3)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-689)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)))) (-1613 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) (-1612 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-4 *3 (-144)))) (-3449 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *2 (-491)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)) (-4 *2 (-387)))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *2 (-387))))) -(-13 (-47 |t#1| |t#2|) (-350 |t#1|) (-10 -8 (-15 -1786 ((-83) $)) (-15 -1785 (|t#1| $)) (-15 -3800 ((-580 |t#1|) $)) (-15 -2406 ((-689) $)) (-15 -2806 (|t#2| $)) (-15 -1614 ($ (-1 |t#2| |t#2|) $)) (-15 -1613 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-144)) (-15 -1612 ($ $ $ (-689))) |%noBranch|) (IF (|has| |t#1| (-491)) (-15 -3449 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-387)) (PROGN (-15 -2803 (|t#1| $)) (-15 -3486 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-243) |has| |#1| (-491)) ((-350 |#1|) . T) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-1974 (((-83) (-83)) NIL T ELT)) (-3771 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-2356 (($ $) NIL (|has| |#1| (-1007)) ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) NIL (|has| |#1| (-1007)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-1975 (($ $ (-480)) NIL T ELT)) (-1976 (((-689) $) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3592 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1977 (($ (-580 |#1|)) NIL T ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1560 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3774 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-275 |#1|) (-13 (-19 |#1|) (-235 |#1|) (-10 -8 (-15 -1977 ($ (-580 |#1|))) (-15 -1976 ((-689) $)) (-15 -1975 ($ $ (-480))) (-15 -1974 ((-83) (-83))))) (-1120)) (T -275)) -((-1977 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-275 *3)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-275 *3)) (-4 *3 (-1120)))) (-1975 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-275 *3)) (-4 *3 (-1120)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-275 *3)) (-4 *3 (-1120))))) -((-3915 (((-83) $) 47 T ELT)) (-3912 (((-689)) 23 T ELT)) (-3313 ((|#2| $) 51 T ELT) (($ $ (-825)) 123 T ELT)) (-3121 (((-689)) 124 T ELT)) (-1781 (($ (-1170 |#2|)) 20 T ELT)) (-1999 (((-83) $) 136 T ELT)) (-3117 ((|#2| $) 53 T ELT) (($ $ (-825)) 120 T ELT)) (-2002 (((-1076 |#2|) $) NIL T ELT) (((-1076 $) $ (-825)) 111 T ELT)) (-1616 (((-1076 |#2|) $) 95 T ELT)) (-1615 (((-1076 |#2|) $) 91 T ELT) (((-3 (-1076 |#2|) "failed") $ $) 88 T ELT)) (-1617 (($ $ (-1076 |#2|)) 58 T ELT)) (-3913 (((-738 (-825))) 30 T ELT) (((-825)) 48 T ELT)) (-3894 (((-105)) 27 T ELT)) (-3931 (((-738 (-825)) $) 32 T ELT) (((-825) $) 139 T ELT)) (-1618 (($) 130 T ELT)) (-3209 (((-1170 |#2|) $) NIL T ELT) (((-627 |#2|) (-1170 $)) 42 T ELT)) (-2688 (($ $) NIL T ELT) (((-629 $) $) 100 T ELT)) (-3916 (((-83) $) 45 T ELT))) -(((-276 |#1| |#2|) (-10 -7 (-15 -2688 ((-629 |#1|) |#1|)) (-15 -3121 ((-689))) (-15 -2688 (|#1| |#1|)) (-15 -1615 ((-3 (-1076 |#2|) "failed") |#1| |#1|)) (-15 -1615 ((-1076 |#2|) |#1|)) (-15 -1616 ((-1076 |#2|) |#1|)) (-15 -1617 (|#1| |#1| (-1076 |#2|))) (-15 -1999 ((-83) |#1|)) (-15 -1618 (|#1|)) (-15 -3313 (|#1| |#1| (-825))) (-15 -3117 (|#1| |#1| (-825))) (-15 -2002 ((-1076 |#1|) |#1| (-825))) (-15 -3313 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3931 ((-825) |#1|)) (-15 -3913 ((-825))) (-15 -2002 ((-1076 |#2|) |#1|)) (-15 -1781 (|#1| (-1170 |#2|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1|)) (-15 -3912 ((-689))) (-15 -3913 ((-738 (-825)))) (-15 -3931 ((-738 (-825)) |#1|)) (-15 -3915 ((-83) |#1|)) (-15 -3916 ((-83) |#1|)) (-15 -3894 ((-105)))) (-277 |#2|) (-309)) (T -276)) -((-3894 (*1 *2) (-12 (-4 *4 (-309)) (-5 *2 (-105)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) (-3913 (*1 *2) (-12 (-4 *4 (-309)) (-5 *2 (-738 (-825))) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) (-3912 (*1 *2) (-12 (-4 *4 (-309)) (-5 *2 (-689)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) (-3913 (*1 *2) (-12 (-4 *4 (-309)) (-5 *2 (-825)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) (-3121 (*1 *2) (-12 (-4 *4 (-309)) (-5 *2 (-689)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-3915 (((-83) $) 112 T ELT)) (-3912 (((-689)) 108 T ELT)) (-3313 ((|#1| $) 160 T ELT) (($ $ (-825)) 157 (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 142 (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3121 (((-689)) 132 (|has| |#1| (-315)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| "failed") $) 119 T ELT)) (-3141 ((|#1| $) 120 T ELT)) (-1781 (($ (-1170 |#1|)) 166 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 148 (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2980 (($) 129 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-2819 (($) 144 (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) 145 (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) 105 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) 87 T ELT)) (-3755 (((-825) $) 147 (|has| |#1| (-315)) ELT) (((-738 (-825)) $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2001 (($) 155 (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) 154 (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) 161 T ELT) (($ $ (-825)) 158 (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) 133 (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-2002 (((-1076 |#1|) $) 165 T ELT) (((-1076 $) $ (-825)) 159 (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) 130 (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) 151 (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) 150 (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) "failed") $ $) 149 (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) 152 (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3429 (($) 134 (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) 131 (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) 111 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2397 (($) 153 (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 141 (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-3913 (((-738 (-825))) 109 T ELT) (((-825)) 163 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-1754 (((-689) $) 146 (|has| |#1| (-315)) ELT) (((-3 (-689) "failed") $ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) 117 T ELT)) (-3741 (($ $ (-689)) 137 (|has| |#1| (-315)) ELT) (($ $) 135 (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) 110 T ELT) (((-825) $) 162 T ELT)) (-3170 (((-1076 |#1|)) 164 T ELT)) (-1663 (($) 143 (|has| |#1| (-315)) ELT)) (-1618 (($) 156 (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) 168 T ELT) (((-627 |#1|) (-1170 $)) 167 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 140 (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2688 (($ $) 139 (|has| |#1| (-315)) ELT) (((-629 $) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 170 T ELT) (((-1170 $) (-825)) 169 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3916 (((-83) $) 113 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3911 (($ $) 107 (|has| |#1| (-315)) ELT) (($ $ (-689)) 106 (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) 138 (|has| |#1| (-315)) ELT) (($ $) 136 (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) -(((-277 |#1|) (-111) (-309)) (T -277)) -((-2000 (*1 *2) (-12 (-4 *3 (-309)) (-5 *2 (-1170 *1)) (-4 *1 (-277 *3)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-825)) (-4 *4 (-309)) (-5 *2 (-1170 *1)) (-4 *1 (-277 *4)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1170 *3)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-277 *4)) (-4 *4 (-309)) (-5 *2 (-627 *4)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-309)) (-4 *1 (-277 *3)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1076 *3)))) (-3170 (*1 *2) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1076 *3)))) (-3913 (*1 *2) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-825)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-825)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-309)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-309)))) (-2002 (*1 *2 *1 *3) (-12 (-5 *3 (-825)) (-4 *4 (-315)) (-4 *4 (-309)) (-5 *2 (-1076 *1)) (-4 *1 (-277 *4)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)))) (-1618 (*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309)))) (-2001 (*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-83)))) (-2397 (*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-315)) (-4 *1 (-277 *3)) (-4 *3 (-309)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-1076 *3)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-1076 *3)))) (-1615 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-1076 *3))))) -(-13 (-1189 |t#1|) (-945 |t#1|) (-10 -8 (-15 -2000 ((-1170 $))) (-15 -2000 ((-1170 $) (-825))) (-15 -3209 ((-1170 |t#1|) $)) (-15 -3209 ((-627 |t#1|) (-1170 $))) (-15 -1781 ($ (-1170 |t#1|))) (-15 -2002 ((-1076 |t#1|) $)) (-15 -3170 ((-1076 |t#1|))) (-15 -3913 ((-825))) (-15 -3931 ((-825) $)) (-15 -3117 (|t#1| $)) (-15 -3313 (|t#1| $)) (IF (|has| |t#1| (-315)) (PROGN (-6 (-296)) (-15 -2002 ((-1076 $) $ (-825))) (-15 -3117 ($ $ (-825))) (-15 -3313 ($ $ (-825))) (-15 -1618 ($)) (-15 -2001 ($)) (-15 -1999 ((-83) $)) (-15 -2397 ($)) (-15 -1617 ($ $ (-1076 |t#1|))) (-15 -1616 ((-1076 |t#1|) $)) (-15 -1615 ((-1076 |t#1|) $)) (-15 -1615 ((-3 (-1076 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-315)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-184 $) |has| |#1| (-315)) ((-188) |has| |#1| (-315)) ((-187) |has| |#1| (-315)) ((-199) . T) ((-243) . T) ((-255) . T) ((-1189 |#1|) . T) ((-309) . T) ((-340) OR (|has| |#1| (-315)) (|has| |#1| (-116))) ((-315) |has| |#1| (-315)) ((-296) |has| |#1| (-315)) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 |#1|) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-945 |#1|) . T) ((-958 (-345 (-480))) . T) ((-958 |#1|) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| |#1| (-315)) ((-1120) . T) ((-1125) . T) ((-1178 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-1619 (((-83) $) 13 T ELT)) (-3621 (($ |#1|) 10 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3617 (($ |#1|) 12 T ELT)) (-3929 (((-767) $) 19 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2224 ((|#1| $) 14 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 21 T ELT))) -(((-278 |#1|) (-13 (-751) (-10 -8 (-15 -3621 ($ |#1|)) (-15 -3617 ($ |#1|)) (-15 -1619 ((-83) $)) (-15 -2224 (|#1| $)))) (-751)) (T -278)) -((-3621 (*1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751)))) (-3617 (*1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-278 *3)) (-4 *3 (-751)))) (-2224 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1620 (((-441) $) 20 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1621 (((-864 (-689)) $) 18 T ELT)) (-1623 (((-207) $) 7 T ELT)) (-3929 (((-767) $) 26 T ELT)) (-2194 (((-864 (-156 (-110))) $) 16 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1622 (((-580 (-777 (-1086) (-689))) $) 12 T ELT)) (-3042 (((-83) $ $) 22 T ELT))) -(((-279) (-13 (-1007) (-10 -8 (-15 -1623 ((-207) $)) (-15 -1622 ((-580 (-777 (-1086) (-689))) $)) (-15 -1621 ((-864 (-689)) $)) (-15 -2194 ((-864 (-156 (-110))) $)) (-15 -1620 ((-441) $))))) (T -279)) -((-1623 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-279)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-580 (-777 (-1086) (-689)))) (-5 *1 (-279)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-864 (-689))) (-5 *1 (-279)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-864 (-156 (-110)))) (-5 *1 (-279)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-279))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3825 (($ $) 34 T ELT)) (-1626 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1624 (((-1170 |#4|) $) 133 T ELT)) (-1958 (((-351 |#2| (-345 |#2|) |#3| |#4|) $) 32 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (((-3 |#4| #1#) $) 37 T ELT)) (-1625 (((-1170 |#4|) $) 125 T ELT)) (-1627 (($ (-351 |#2| (-345 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-480)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3418 (((-2 (|:| -2324 (-351 |#2| (-345 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3929 (((-767) $) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 15 T CONST)) (-3042 (((-83) $ $) 21 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 26 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 24 T ELT))) -(((-280 |#1| |#2| |#3| |#4|) (-13 (-283 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1625 ((-1170 |#4|) $)) (-15 -1624 ((-1170 |#4|) $)))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -280)) -((-1625 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-1170 *6)) (-5 *1 (-280 *3 *4 *5 *6)) (-4 *6 (-288 *3 *4 *5)))) (-1624 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-1170 *6)) (-5 *1 (-280 *3 *4 *5 *6)) (-4 *6 (-288 *3 *4 *5))))) -((-3941 (((-280 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-280 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-281 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3941 ((-280 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-280 |#1| |#2| |#3| |#4|)))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|) (-309) (-1146 |#5|) (-1146 (-345 |#6|)) (-288 |#5| |#6| |#7|)) (T -281)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-280 *5 *6 *7 *8)) (-4 *5 (-309)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) (-4 *9 (-309)) (-4 *10 (-1146 *9)) (-4 *11 (-1146 (-345 *10))) (-5 *2 (-280 *9 *10 *11 *12)) (-5 *1 (-281 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-288 *9 *10 *11))))) -((-1626 (((-83) $) 14 T ELT))) -(((-282 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1626 ((-83) |#1|))) (-283 |#2| |#3| |#4| |#5|) (-309) (-1146 |#2|) (-1146 (-345 |#3|)) (-288 |#2| |#3| |#4|)) (T -282)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3825 (($ $) 34 T ELT)) (-1626 (((-83) $) 33 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1958 (((-351 |#2| (-345 |#2|) |#3| |#4|) $) 40 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2397 (((-3 |#4| "failed") $) 32 T ELT)) (-1627 (($ (-351 |#2| (-345 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-480)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3418 (((-2 (|:| -2324 (-351 |#2| (-345 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT))) -(((-283 |#1| |#2| |#3| |#4|) (-111) (-309) (-1146 |t#1|) (-1146 (-345 |t#2|)) (-288 |t#1| |t#2| |t#3|)) (T -283)) -((-1958 (*1 *2 *1) (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-5 *2 (-351 *4 (-345 *4) *5 *6)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-351 *4 (-345 *4) *5 *6)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-4 *3 (-309)) (-4 *1 (-283 *3 *4 *5 *6)))) (-1627 (*1 *1 *2) (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *1 (-283 *3 *4 *5 *2)) (-4 *2 (-288 *3 *4 *5)))) (-1627 (*1 *1 *2 *2) (-12 (-4 *2 (-309)) (-4 *3 (-1146 *2)) (-4 *4 (-1146 (-345 *3))) (-4 *1 (-283 *2 *3 *4 *5)) (-4 *5 (-288 *2 *3 *4)))) (-1627 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-480)) (-4 *2 (-309)) (-4 *4 (-1146 *2)) (-4 *5 (-1146 (-345 *4))) (-4 *1 (-283 *2 *4 *5 *6)) (-4 *6 (-288 *2 *4 *5)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-5 *2 (-2 (|:| -2324 (-351 *4 (-345 *4) *5 *6)) (|:| |principalPart| *6))))) (-3825 (*1 *1 *1) (-12 (-4 *1 (-283 *2 *3 *4 *5)) (-4 *2 (-309)) (-4 *3 (-1146 *2)) (-4 *4 (-1146 (-345 *3))) (-4 *5 (-288 *2 *3 *4)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-5 *2 (-83)))) (-2397 (*1 *2 *1) (|partial| -12 (-4 *1 (-283 *3 *4 *5 *2)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *2 (-288 *3 *4 *5)))) (-1627 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-309)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) (-4 *1 (-283 *4 *3 *5 *2)) (-4 *2 (-288 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1958 ((-351 |t#2| (-345 |t#2|) |t#3| |t#4|) $)) (-15 -1627 ($ (-351 |t#2| (-345 |t#2|) |t#3| |t#4|))) (-15 -1627 ($ |t#4|)) (-15 -1627 ($ |t#1| |t#1|)) (-15 -1627 ($ |t#1| |t#1| (-480))) (-15 -3418 ((-2 (|:| -2324 (-351 |t#2| (-345 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3825 ($ $)) (-15 -1626 ((-83) $)) (-15 -2397 ((-3 |t#4| "failed") $)) (-15 -1627 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-1007) . T) ((-1120) . T)) -((-3751 (($ $ (-1081) |#2|) NIL T ELT) (($ $ (-580 (-1081)) (-580 |#2|)) 20 T ELT) (($ $ (-580 (-246 |#2|))) 15 T ELT) (($ $ (-246 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL T ELT)) (-3783 (($ $ |#2|) 11 T ELT))) -(((-284 |#1| |#2|) (-10 -7 (-15 -3783 (|#1| |#1| |#2|)) (-15 -3751 (|#1| |#1| (-580 |#2|) (-580 |#2|))) (-15 -3751 (|#1| |#1| |#2| |#2|)) (-15 -3751 (|#1| |#1| (-246 |#2|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#2|)))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 |#2|))) (-15 -3751 (|#1| |#1| (-1081) |#2|))) (-285 |#2|) (-1007)) (T -284)) -NIL -((-3941 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3751 (($ $ (-1081) |#1|) 17 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 16 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 15 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) 14 (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 12 (|has| |#1| (-257 |#1|)) ELT)) (-3783 (($ $ |#1|) 11 (|has| |#1| (-239 |#1| |#1|)) ELT))) -(((-285 |#1|) (-111) (-1007)) (T -285)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1007))))) -(-13 (-10 -8 (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-239 |t#1| |t#1|)) (-6 (-239 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-257 |t#1|)) (-6 (-257 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-449 (-1081) |t#1|)) (-6 (-449 (-1081) |t#1|)) |%noBranch|))) -(((-239 |#1| $) |has| |#1| (-239 |#1| |#1|)) ((-257 |#1|) |has| |#1| (-257 |#1|)) ((-449 (-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((-449 |#1| |#1|) |has| |#1| (-257 |#1|)) ((-13) |has| |#1| (-239 |#1| |#1|)) ((-1120) |has| |#1| (-239 |#1| |#1|))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-812 |#1|) #1#) $) NIL T ELT)) (-3141 (((-812 |#1|) $) NIL T ELT)) (-1781 (($ (-1170 (-812 |#1|))) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1669 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT) (($ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1999 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3117 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 (-812 |#1|)) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1998 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1616 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1615 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-1076 (-812 |#1|)) #1#) $ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1617 (($ $ (-1076 (-812 |#1|))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-812 |#1|) (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 (-812 |#1|))) NIL T ELT)) (-1663 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1618 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3209 (((-1170 (-812 |#1|)) $) NIL T ELT) (((-627 (-812 |#1|)) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-812 |#1|)) NIL T ELT)) (-2688 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-629 $) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT) (($ (-812 |#1|) $) NIL T ELT))) -(((-286 |#1| |#2|) (-277 (-812 |#1|)) (-825) (-825)) (T -286)) -NIL -((-1636 (((-2 (|:| |num| (-1170 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1781 (($ (-1170 (-345 |#3|)) (-1170 $)) NIL T ELT) (($ (-1170 (-345 |#3|))) NIL T ELT) (($ (-1170 |#3|) |#3|) 172 T ELT)) (-1641 (((-1170 $) (-1170 $)) 156 T ELT)) (-1628 (((-580 (-580 |#2|))) 126 T ELT)) (-1653 (((-83) |#2| |#2|) 76 T ELT)) (-3486 (($ $) 148 T ELT)) (-3360 (((-689)) 171 T ELT)) (-1642 (((-1170 $) (-1170 $)) 219 T ELT)) (-1629 (((-580 (-852 |#2|)) (-1081)) 115 T ELT)) (-1645 (((-83) $) 168 T ELT)) (-1644 (((-83) $) 27 T ELT) (((-83) $ |#2|) 31 T ELT) (((-83) $ |#3|) 223 T ELT)) (-1631 (((-3 |#3| #1="failed")) 52 T ELT)) (-1655 (((-689)) 183 T ELT)) (-3783 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1632 (((-3 |#3| #1#)) 71 T ELT)) (-3741 (($ $ (-1 (-345 |#3|) (-345 |#3|))) NIL T ELT) (($ $ (-1 (-345 |#3|) (-345 |#3|)) (-689)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-1643 (((-1170 $) (-1170 $)) 162 T ELT)) (-1630 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1654 (((-83)) 34 T ELT))) -(((-287 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -1628 ((-580 (-580 |#2|)))) (-15 -1629 ((-580 (-852 |#2|)) (-1081))) (-15 -1630 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1631 ((-3 |#3| #1="failed"))) (-15 -1632 ((-3 |#3| #1#))) (-15 -3783 (|#2| |#1| |#2| |#2|)) (-15 -3486 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1644 ((-83) |#1| |#3|)) (-15 -1644 ((-83) |#1| |#2|)) (-15 -1781 (|#1| (-1170 |#3|) |#3|)) (-15 -1636 ((-2 (|:| |num| (-1170 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1641 ((-1170 |#1|) (-1170 |#1|))) (-15 -1642 ((-1170 |#1|) (-1170 |#1|))) (-15 -1643 ((-1170 |#1|) (-1170 |#1|))) (-15 -1644 ((-83) |#1|)) (-15 -1645 ((-83) |#1|)) (-15 -1653 ((-83) |#2| |#2|)) (-15 -1654 ((-83))) (-15 -1655 ((-689))) (-15 -3360 ((-689))) (-15 -3741 (|#1| |#1| (-1 (-345 |#3|) (-345 |#3|)) (-689))) (-15 -3741 (|#1| |#1| (-1 (-345 |#3|) (-345 |#3|)))) (-15 -1781 (|#1| (-1170 (-345 |#3|)))) (-15 -1781 (|#1| (-1170 (-345 |#3|)) (-1170 |#1|)))) (-288 |#2| |#3| |#4|) (-1125) (-1146 |#2|) (-1146 (-345 |#3|))) (T -287)) -((-3360 (*1 *2) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-689)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) (-1655 (*1 *2) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-689)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) (-1654 (*1 *2) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-83)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) (-1653 (*1 *2 *3 *3) (-12 (-4 *3 (-1125)) (-4 *5 (-1146 *3)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-83)) (-5 *1 (-287 *4 *3 *5 *6)) (-4 *4 (-288 *3 *5 *6)))) (-1632 (*1 *2) (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *3 (-288 *4 *2 *5)))) (-1631 (*1 *2) (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *3 (-288 *4 *2 *5)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *5 (-1125)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-5 *2 (-580 (-852 *5))) (-5 *1 (-287 *4 *5 *6 *7)) (-4 *4 (-288 *5 *6 *7)))) (-1628 (*1 *2) (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-580 (-580 *4))) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1636 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 112 (|has| (-345 |#2|) (-309)) ELT)) (-2051 (($ $) 113 (|has| (-345 |#2|) (-309)) ELT)) (-2049 (((-83) $) 115 (|has| (-345 |#2|) (-309)) ELT)) (-1771 (((-627 (-345 |#2|)) (-1170 $)) 59 T ELT) (((-627 (-345 |#2|))) 75 T ELT)) (-3313 (((-345 |#2|) $) 65 T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 165 (|has| (-345 |#2|) (-296)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 132 (|has| (-345 |#2|) (-309)) ELT)) (-3954 (((-343 $) $) 133 (|has| (-345 |#2|) (-309)) ELT)) (-1597 (((-83) $ $) 123 (|has| (-345 |#2|) (-309)) ELT)) (-3121 (((-689)) 106 (|has| (-345 |#2|) (-315)) ELT)) (-1650 (((-83)) 240 T ELT)) (-1649 (((-83) |#1|) 239 T ELT) (((-83) |#2|) 238 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 192 (|has| (-345 |#2|) (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 190 (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-3 (-345 |#2|) #1#) $) 187 T ELT)) (-3141 (((-480) $) 191 (|has| (-345 |#2|) (-945 (-480))) ELT) (((-345 (-480)) $) 189 (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-345 |#2|) $) 188 T ELT)) (-1781 (($ (-1170 (-345 |#2|)) (-1170 $)) 61 T ELT) (($ (-1170 (-345 |#2|))) 78 T ELT) (($ (-1170 |#2|) |#2|) 222 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| (-345 |#2|) (-296)) ELT)) (-2550 (($ $ $) 127 (|has| (-345 |#2|) (-309)) ELT)) (-1770 (((-627 (-345 |#2|)) $ (-1170 $)) 66 T ELT) (((-627 (-345 |#2|)) $) 73 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 184 (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 183 (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-627 $) (-1170 $)) 182 T ELT) (((-627 (-345 |#2|)) (-627 $)) 181 T ELT)) (-1641 (((-1170 $) (-1170 $)) 228 T ELT)) (-3825 (($ |#3|) 176 T ELT) (((-3 $ "failed") (-345 |#3|)) 173 (|has| (-345 |#2|) (-309)) ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-1628 (((-580 (-580 |#1|))) 209 (|has| |#1| (-315)) ELT)) (-1653 (((-83) |#1| |#1|) 244 T ELT)) (-3094 (((-825)) 67 T ELT)) (-2980 (($) 109 (|has| (-345 |#2|) (-315)) ELT)) (-1648 (((-83)) 237 T ELT)) (-1647 (((-83) |#1|) 236 T ELT) (((-83) |#2|) 235 T ELT)) (-2549 (($ $ $) 126 (|has| (-345 |#2|) (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 121 (|has| (-345 |#2|) (-309)) ELT)) (-3486 (($ $) 215 T ELT)) (-2819 (($) 167 (|has| (-345 |#2|) (-296)) ELT)) (-1669 (((-83) $) 168 (|has| (-345 |#2|) (-296)) ELT)) (-1753 (($ $ (-689)) 159 (|has| (-345 |#2|) (-296)) ELT) (($ $) 158 (|has| (-345 |#2|) (-296)) ELT)) (-3706 (((-83) $) 134 (|has| (-345 |#2|) (-309)) ELT)) (-3755 (((-825) $) 170 (|has| (-345 |#2|) (-296)) ELT) (((-738 (-825)) $) 156 (|has| (-345 |#2|) (-296)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-3360 (((-689)) 247 T ELT)) (-1642 (((-1170 $) (-1170 $)) 229 T ELT)) (-3117 (((-345 |#2|) $) 64 T ELT)) (-1629 (((-580 (-852 |#1|)) (-1081)) 210 (|has| |#1| (-309)) ELT)) (-3428 (((-629 $) $) 160 (|has| (-345 |#2|) (-296)) ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 130 (|has| (-345 |#2|) (-309)) ELT)) (-2002 ((|#3| $) 57 (|has| (-345 |#2|) (-309)) ELT)) (-1998 (((-825) $) 108 (|has| (-345 |#2|) (-315)) ELT)) (-3065 ((|#3| $) 174 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 186 (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 185 (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-1170 $) $) 180 T ELT) (((-627 (-345 |#2|)) (-1170 $)) 179 T ELT)) (-1880 (($ (-580 $)) 119 (|has| (-345 |#2|) (-309)) ELT) (($ $ $) 118 (|has| (-345 |#2|) (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1637 (((-627 (-345 |#2|))) 224 T ELT)) (-1639 (((-627 (-345 |#2|))) 226 T ELT)) (-2470 (($ $) 135 (|has| (-345 |#2|) (-309)) ELT)) (-1634 (($ (-1170 |#2|) |#2|) 220 T ELT)) (-1638 (((-627 (-345 |#2|))) 225 T ELT)) (-1640 (((-627 (-345 |#2|))) 227 T ELT)) (-1633 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 219 T ELT)) (-1635 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) 221 T ELT)) (-1646 (((-1170 $)) 233 T ELT)) (-3901 (((-1170 $)) 234 T ELT)) (-1645 (((-83) $) 232 T ELT)) (-1644 (((-83) $) 231 T ELT) (((-83) $ |#1|) 218 T ELT) (((-83) $ |#2|) 217 T ELT)) (-3429 (($) 161 (|has| (-345 |#2|) (-296)) CONST)) (-2388 (($ (-825)) 107 (|has| (-345 |#2|) (-315)) ELT)) (-1631 (((-3 |#2| "failed")) 212 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1655 (((-689)) 246 T ELT)) (-2397 (($) 178 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 120 (|has| (-345 |#2|) (-309)) ELT)) (-3129 (($ (-580 $)) 117 (|has| (-345 |#2|) (-309)) ELT) (($ $ $) 116 (|has| (-345 |#2|) (-309)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 164 (|has| (-345 |#2|) (-296)) ELT)) (-3715 (((-343 $) $) 131 (|has| (-345 |#2|) (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| (-345 |#2|) (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 128 (|has| (-345 |#2|) (-309)) ELT)) (-3449 (((-3 $ "failed") $ $) 111 (|has| (-345 |#2|) (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 122 (|has| (-345 |#2|) (-309)) ELT)) (-1596 (((-689) $) 124 (|has| (-345 |#2|) (-309)) ELT)) (-3783 ((|#1| $ |#1| |#1|) 214 T ELT)) (-1632 (((-3 |#2| "failed")) 213 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 125 (|has| (-345 |#2|) (-309)) ELT)) (-3740 (((-345 |#2|) (-1170 $)) 60 T ELT) (((-345 |#2|)) 74 T ELT)) (-1754 (((-689) $) 169 (|has| (-345 |#2|) (-296)) ELT) (((-3 (-689) "failed") $ $) 157 (|has| (-345 |#2|) (-296)) ELT)) (-3741 (($ $ (-1 (-345 |#2|) (-345 |#2|))) 143 (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) 142 (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 |#2| |#2|)) 216 T ELT) (($ $ (-580 (-1081)) (-580 (-689))) 148 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-1081) (-689)) 147 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-580 (-1081))) 146 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-1081)) 144 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-689)) 154 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-187))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-188))) (-2548 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) 152 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-187))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-188))) (-2548 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-2396 (((-627 (-345 |#2|)) (-1170 $) (-1 (-345 |#2|) (-345 |#2|))) 172 (|has| (-345 |#2|) (-309)) ELT)) (-3170 ((|#3|) 177 T ELT)) (-1663 (($) 166 (|has| (-345 |#2|) (-296)) ELT)) (-3209 (((-1170 (-345 |#2|)) $ (-1170 $)) 63 T ELT) (((-627 (-345 |#2|)) (-1170 $) (-1170 $)) 62 T ELT) (((-1170 (-345 |#2|)) $) 80 T ELT) (((-627 (-345 |#2|)) (-1170 $)) 79 T ELT)) (-3955 (((-1170 (-345 |#2|)) $) 77 T ELT) (($ (-1170 (-345 |#2|))) 76 T ELT) ((|#3| $) 193 T ELT) (($ |#3|) 175 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 163 (|has| (-345 |#2|) (-296)) ELT)) (-1643 (((-1170 $) (-1170 $)) 230 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 |#2|)) 50 T ELT) (($ (-345 (-480))) 105 (OR (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-945 (-345 (-480))))) ELT) (($ $) 110 (|has| (-345 |#2|) (-309)) ELT)) (-2688 (($ $) 162 (|has| (-345 |#2|) (-296)) ELT) (((-629 $) $) 56 (|has| (-345 |#2|) (-116)) ELT)) (-2435 ((|#3| $) 58 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1652 (((-83)) 243 T ELT)) (-1651 (((-83) |#1|) 242 T ELT) (((-83) |#2|) 241 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 81 T ELT)) (-2050 (((-83) $ $) 114 (|has| (-345 |#2|) (-309)) ELT)) (-1630 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 211 T ELT)) (-1654 (((-83)) 245 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 (-345 |#2|) (-345 |#2|))) 141 (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) 140 (|has| (-345 |#2|) (-309)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 151 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-1081) (-689)) 150 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-580 (-1081))) 149 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-1081)) 145 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-2548 (|has| (-345 |#2|) (-806 (-1081))) (|has| (-345 |#2|) (-309)))) ELT) (($ $ (-689)) 155 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-187))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-188))) (-2548 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) 153 (OR (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-187))) (-2548 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-188))) (-2548 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 139 (|has| (-345 |#2|) (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 136 (|has| (-345 |#2|) (-309)) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 |#2|)) 52 T ELT) (($ (-345 |#2|) $) 51 T ELT) (($ (-345 (-480)) $) 138 (|has| (-345 |#2|) (-309)) ELT) (($ $ (-345 (-480))) 137 (|has| (-345 |#2|) (-309)) ELT))) -(((-288 |#1| |#2| |#3|) (-111) (-1125) (-1146 |t#1|) (-1146 (-345 |t#2|))) (T -288)) -((-3360 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-689)))) (-1655 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-689)))) (-1654 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1653 (*1 *2 *3 *3) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1652 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1651 (*1 *2 *3) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1651 (*1 *2 *3) (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) (-1650 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) (-1648 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1647 (*1 *2 *3) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1647 (*1 *2 *3) (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) (-3901 (*1 *2) (-12 (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)))) (-1646 (*1 *2) (-12 (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4))))) (-1639 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4))))) (-1638 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4))))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-2 (|:| |num| (-1170 *4)) (|:| |den| *4))))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1146 *4)) (-4 *4 (-1125)) (-4 *1 (-288 *4 *3 *5)) (-4 *5 (-1146 (-345 *3))))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-2 (|:| |num| (-1170 *4)) (|:| |den| *4))))) (-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1146 *4)) (-4 *4 (-1125)) (-4 *1 (-288 *4 *3 *5)) (-4 *5 (-1146 (-345 *3))))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-288 *4 *5 *6)) (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5))))) (-1644 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) (-1644 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-288 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-1146 *2)) (-4 *4 (-1146 (-345 *3))))) (-3783 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-288 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-1146 *2)) (-4 *4 (-1146 (-345 *3))))) (-1632 (*1 *2) (|partial| -12 (-4 *1 (-288 *3 *2 *4)) (-4 *3 (-1125)) (-4 *4 (-1146 (-345 *2))) (-4 *2 (-1146 *3)))) (-1631 (*1 *2) (|partial| -12 (-4 *1 (-288 *3 *2 *4)) (-4 *3 (-1125)) (-4 *4 (-1146 (-345 *2))) (-4 *2 (-1146 *3)))) (-1630 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-1125)) (-4 *6 (-1146 (-345 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-288 *4 *5 *6)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *1 (-288 *4 *5 *6)) (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-4 *4 (-309)) (-5 *2 (-580 (-852 *4))))) (-1628 (*1 *2) (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) (-4 *3 (-315)) (-5 *2 (-580 (-580 *3)))))) -(-13 (-658 (-345 |t#2|) |t#3|) (-10 -8 (-15 -3360 ((-689))) (-15 -1655 ((-689))) (-15 -1654 ((-83))) (-15 -1653 ((-83) |t#1| |t#1|)) (-15 -1652 ((-83))) (-15 -1651 ((-83) |t#1|)) (-15 -1651 ((-83) |t#2|)) (-15 -1650 ((-83))) (-15 -1649 ((-83) |t#1|)) (-15 -1649 ((-83) |t#2|)) (-15 -1648 ((-83))) (-15 -1647 ((-83) |t#1|)) (-15 -1647 ((-83) |t#2|)) (-15 -3901 ((-1170 $))) (-15 -1646 ((-1170 $))) (-15 -1645 ((-83) $)) (-15 -1644 ((-83) $)) (-15 -1643 ((-1170 $) (-1170 $))) (-15 -1642 ((-1170 $) (-1170 $))) (-15 -1641 ((-1170 $) (-1170 $))) (-15 -1640 ((-627 (-345 |t#2|)))) (-15 -1639 ((-627 (-345 |t#2|)))) (-15 -1638 ((-627 (-345 |t#2|)))) (-15 -1637 ((-627 (-345 |t#2|)))) (-15 -1636 ((-2 (|:| |num| (-1170 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1781 ($ (-1170 |t#2|) |t#2|)) (-15 -1635 ((-2 (|:| |num| (-1170 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1634 ($ (-1170 |t#2|) |t#2|)) (-15 -1633 ((-2 (|:| |num| (-627 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1644 ((-83) $ |t#1|)) (-15 -1644 ((-83) $ |t#2|)) (-15 -3741 ($ $ (-1 |t#2| |t#2|))) (-15 -3486 ($ $)) (-15 -3783 (|t#1| $ |t#1| |t#1|)) (-15 -1632 ((-3 |t#2| "failed"))) (-15 -1631 ((-3 |t#2| "failed"))) (-15 -1630 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-309)) (-15 -1629 ((-580 (-852 |t#1|)) (-1081))) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -1628 ((-580 (-580 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-38 (-345 |#2|)) . T) ((-38 $) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-80 (-345 |#2|) (-345 |#2|)) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-116))) ((-118) |has| (-345 |#2|) (-118)) ((-552 (-345 (-480))) OR (|has| (-345 |#2|) (-945 (-345 (-480)))) (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-552 (-345 |#2|)) . T) ((-552 (-480)) . T) ((-552 $) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-549 (-767)) . T) ((-144) . T) ((-550 |#3|) . T) ((-184 $) OR (|has| (-345 |#2|) (-296)) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309)))) ((-182 (-345 |#2|)) |has| (-345 |#2|) (-309)) ((-188) OR (|has| (-345 |#2|) (-296)) (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309)))) ((-187) OR (|has| (-345 |#2|) (-296)) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309)))) ((-223 (-345 |#2|)) |has| (-345 |#2|) (-309)) ((-199) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-243) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-255) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-309) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-340) |has| (-345 |#2|) (-296)) ((-315) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-315))) ((-296) |has| (-345 |#2|) (-296)) ((-317 (-345 |#2|) |#3|) . T) ((-348 (-345 |#2|) |#3|) . T) ((-324 (-345 |#2|)) . T) ((-350 (-345 |#2|)) . T) ((-387) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-491) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-585 (-345 |#2|)) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-587 (-345 |#2|)) . T) ((-587 (-480)) |has| (-345 |#2|) (-577 (-480))) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-579 (-345 |#2|)) . T) ((-579 $) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-577 (-345 |#2|)) . T) ((-577 (-480)) |has| (-345 |#2|) (-577 (-480))) ((-651 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-651 (-345 |#2|)) . T) ((-651 $) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-658 (-345 |#2|) |#3|) . T) ((-660) . T) ((-801 $ (-1081)) OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081))))) ((-804 (-1081)) -12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) ((-806 (-1081)) OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081))))) ((-827) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-945 (-345 (-480))) |has| (-345 |#2|) (-945 (-345 (-480)))) ((-945 (-345 |#2|)) . T) ((-945 (-480)) |has| (-345 |#2|) (-945 (-480))) ((-958 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-958 (-345 |#2|)) . T) ((-958 $) . T) ((-963 (-345 (-480))) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309))) ((-963 (-345 |#2|)) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| (-345 |#2|) (-296)) ((-1120) . T) ((-1125) OR (|has| (-345 |#2|) (-296)) (|has| (-345 |#2|) (-309)))) -((-3941 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-289 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3941 (|#8| (-1 |#5| |#1|) |#4|))) (-1125) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|) (-1125) (-1146 |#5|) (-1146 (-345 |#6|)) (-288 |#5| |#6| |#7|)) (T -289)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1125)) (-4 *8 (-1125)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *9 (-1146 *8)) (-4 *2 (-288 *8 *9 *10)) (-5 *1 (-289 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-288 *5 *6 *7)) (-4 *10 (-1146 (-345 *9)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-812 |#1|) #1#) $) NIL T ELT)) (-3141 (((-812 |#1|) $) NIL T ELT)) (-1781 (($ (-1170 (-812 |#1|))) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1669 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT) (($ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1999 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3117 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 (-812 |#1|)) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1998 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1616 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1615 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-1076 (-812 |#1|)) #1#) $ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1617 (($ $ (-1076 (-812 |#1|))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-812 |#1|) (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1656 (((-864 (-1025))) NIL T ELT)) (-2397 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 (-812 |#1|))) NIL T ELT)) (-1663 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1618 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3209 (((-1170 (-812 |#1|)) $) NIL T ELT) (((-627 (-812 |#1|)) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-812 |#1|)) NIL T ELT)) (-2688 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-629 $) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT) (($ (-812 |#1|) $) NIL T ELT))) -(((-290 |#1| |#2|) (-13 (-277 (-812 |#1|)) (-10 -7 (-15 -1656 ((-864 (-1025)))))) (-825) (-825)) (T -290)) -((-1656 (*1 *2) (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-290 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 58 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 56 (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 139 T ELT)) (-3141 ((|#1| $) 111 T ELT)) (-1781 (($ (-1170 |#1|)) 128 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) 122 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) 155 (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) 65 (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) 60 (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) 62 T ELT)) (-2001 (($) 157 (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) 115 T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) 165 (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) NIL (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) NIL (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 172 T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) 94 (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) 142 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1656 (((-864 (-1025))) 57 T ELT)) (-2397 (($) 153 (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 117 (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) 88 T ELT) (((-825)) 89 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) 156 (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) 149 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 |#1|)) 120 T ELT)) (-1663 (($) 154 (|has| |#1| (-315)) ELT)) (-1618 (($) 162 (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) 76 T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) 168 T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) 150 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 141 T ELT) (((-1170 $) (-825)) 96 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) 66 T CONST)) (-2652 (($) 101 T CONST)) (-3911 (($ $) 105 (|has| |#1| (-315)) ELT) (($ $ (-689)) NIL (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) 64 T ELT)) (-3932 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3820 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 84 T ELT)) (** (($ $ (-825)) 174 T ELT) (($ $ (-689)) 175 T ELT) (($ $ (-480)) 173 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-291 |#1| |#2|) (-13 (-277 |#1|) (-10 -7 (-15 -1656 ((-864 (-1025)))))) (-296) (-1076 |#1|)) (T -291)) -((-1656 (*1 *2) (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-291 *3 *4)) (-4 *3 (-296)) (-14 *4 (-1076 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-1781 (($ (-1170 |#1|)) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) NIL (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) NIL (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1656 (((-864 (-1025))) NIL T ELT)) (-2397 (($) NIL (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 |#1|)) NIL T ELT)) (-1663 (($) NIL (|has| |#1| (-315)) ELT)) (-1618 (($) NIL (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| |#1| (-315)) ELT) (($ $ (-689)) NIL (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-292 |#1| |#2|) (-13 (-277 |#1|) (-10 -7 (-15 -1656 ((-864 (-1025)))))) (-296) (-825)) (T -292)) -((-1656 (*1 *2) (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-292 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825))))) -((-1666 (((-689) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) 61 T ELT)) (-1657 (((-864 (-1025)) (-1076 |#1|)) 112 T ELT)) (-1658 (((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) (-1076 |#1|)) 103 T ELT)) (-1659 (((-627 |#1|) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) 113 T ELT)) (-1660 (((-3 (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) "failed") (-825)) 13 T ELT)) (-1661 (((-3 (-1076 |#1|) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) (-825)) 18 T ELT))) -(((-293 |#1|) (-10 -7 (-15 -1657 ((-864 (-1025)) (-1076 |#1|))) (-15 -1658 ((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) (-1076 |#1|))) (-15 -1659 ((-627 |#1|) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))))) (-15 -1666 ((-689) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))))) (-15 -1660 ((-3 (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) "failed") (-825))) (-15 -1661 ((-3 (-1076 |#1|) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) (-825)))) (-296)) (T -293)) -((-1661 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-3 (-1076 *4) (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025))))))) (-5 *1 (-293 *4)) (-4 *4 (-296)))) (-1660 (*1 *2 *3) (|partial| -12 (-5 *3 (-825)) (-5 *2 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) (-5 *1 (-293 *4)) (-4 *4 (-296)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) (-4 *4 (-296)) (-5 *2 (-689)) (-5 *1 (-293 *4)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) (-4 *4 (-296)) (-5 *2 (-627 *4)) (-5 *1 (-293 *4)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) (-5 *1 (-293 *4)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-864 (-1025))) (-5 *1 (-293 *4))))) -((-3929 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-294 |#1| |#2| |#3|) (-10 -7 (-15 -3929 (|#3| |#1|)) (-15 -3929 (|#1| |#3|))) (-277 |#2|) (-296) (-277 |#2|)) (T -294)) -((-3929 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *2 (-277 *4)) (-5 *1 (-294 *2 *4 *3)) (-4 *3 (-277 *4)))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *2 (-277 *4)) (-5 *1 (-294 *3 *4 *2)) (-4 *3 (-277 *4))))) -((-1669 (((-83) $) 65 T ELT)) (-3755 (((-738 (-825)) $) 26 T ELT) (((-825) $) 69 T ELT)) (-3428 (((-629 $) $) 21 T ELT)) (-3429 (($) 9 T CONST)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 120 T ELT)) (-1754 (((-3 (-689) #1="failed") $ $) 98 T ELT) (((-689) $) 84 T ELT)) (-3741 (($ $) 8 T ELT) (($ $ (-689)) NIL T ELT)) (-1663 (($) 58 T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 41 T ELT)) (-2688 (((-629 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-295 |#1|) (-10 -7 (-15 -3755 ((-825) |#1|)) (-15 -1754 ((-689) |#1|)) (-15 -1669 ((-83) |#1|)) (-15 -1663 (|#1|)) (-15 -2689 ((-3 (-1170 |#1|) #1="failed") (-627 |#1|))) (-15 -2688 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -3429 (|#1|) -3935) (-15 -3428 ((-629 |#1|) |#1|)) (-15 -1754 ((-3 (-689) #1#) |#1| |#1|)) (-15 -3755 ((-738 (-825)) |#1|)) (-15 -2688 ((-629 |#1|) |#1|)) (-15 -2694 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)))) (-296)) (T -295)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 111 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3121 (((-689)) 121 T ELT)) (-3707 (($) 22 T CONST)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 105 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2980 (($) 124 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-2819 (($) 109 T ELT)) (-1669 (((-83) $) 108 T ELT)) (-1753 (($ $) 95 T ELT) (($ $ (-689)) 94 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-3755 (((-738 (-825)) $) 97 T ELT) (((-825) $) 106 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3428 (((-629 $) $) 120 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-1998 (((-825) $) 123 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3429 (($) 119 T CONST)) (-2388 (($ (-825)) 122 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 112 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-1754 (((-3 (-689) "failed") $ $) 96 T ELT) (((-689) $) 107 T ELT)) (-3741 (($ $) 118 T ELT) (($ $ (-689)) 116 T ELT)) (-1663 (($) 110 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 113 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT)) (-2688 (((-629 $) $) 98 T ELT) (($ $) 114 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $) 117 T ELT) (($ $ (-689)) 115 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-296) (-111)) (T -296)) -((-2688 (*1 *1 *1) (-4 *1 (-296))) (-2689 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-296)) (-5 *2 (-1170 *1)))) (-1665 (*1 *2) (-12 (-4 *1 (-296)) (-5 *2 (-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-480)) (-5 *2 (-1093 (-825) (-689))))) (-1663 (*1 *1) (-4 *1 (-296))) (-2819 (*1 *1) (-4 *1 (-296))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-83)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-689)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-825)))) (-1662 (*1 *2) (-12 (-4 *1 (-296)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-340) (-315) (-1057) (-188) (-10 -8 (-15 -2688 ($ $)) (-15 -2689 ((-3 (-1170 $) "failed") (-627 $))) (-15 -1665 ((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480)))))) (-15 -1664 ((-1093 (-825) (-689)) (-480))) (-15 -1663 ($)) (-15 -2819 ($)) (-15 -1669 ((-83) $)) (-15 -1754 ((-689) $)) (-15 -3755 ((-825) $)) (-15 -1662 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-340) . T) ((-315) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) . T) ((-1120) . T) ((-1125) . T)) -((-3902 (((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|) 55 T ELT)) (-3901 (((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 53 T ELT))) -(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3901 ((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))) (-15 -3902 ((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|))) (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $)))) (-1146 |#1|) (-348 |#1| |#2|)) (T -297)) -((-3902 (*1 *2 *3) (-12 (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-297 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-3901 (*1 *2) (-12 (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-297 *3 *4 *5)) (-4 *5 (-348 *3 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1666 (((-689)) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-812 |#1|) #1#) $) NIL T ELT)) (-3141 (((-812 |#1|) $) NIL T ELT)) (-1781 (($ (-1170 (-812 |#1|))) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1669 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT) (($ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1999 (((-83) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3117 (((-812 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 (-812 |#1|)) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1998 (((-825) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1616 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1615 (((-1076 (-812 |#1|)) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-1076 (-812 |#1|)) #1#) $ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1617 (($ $ (-1076 (-812 |#1|))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-812 |#1|) (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1668 (((-1170 (-580 (-2 (|:| -3385 (-812 |#1|)) (|:| -2388 (-1025)))))) NIL T ELT)) (-1667 (((-627 (-812 |#1|))) NIL T ELT)) (-2397 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 (-812 |#1|))) NIL T ELT)) (-1663 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-1618 (($) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3209 (((-1170 (-812 |#1|)) $) NIL T ELT) (((-627 (-812 |#1|)) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-812 |#1|)) NIL T ELT)) (-2688 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (((-629 $) $) NIL (OR (|has| (-812 |#1|) (-116)) (|has| (-812 |#1|) (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| (-812 |#1|) (-315)) ELT) (($ $) NIL (|has| (-812 |#1|) (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-812 |#1|)) NIL T ELT) (($ (-812 |#1|) $) NIL T ELT))) -(((-298 |#1| |#2|) (-13 (-277 (-812 |#1|)) (-10 -7 (-15 -1668 ((-1170 (-580 (-2 (|:| -3385 (-812 |#1|)) (|:| -2388 (-1025))))))) (-15 -1667 ((-627 (-812 |#1|)))) (-15 -1666 ((-689))))) (-825) (-825)) (T -298)) -((-1668 (*1 *2) (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 (-812 *3)) (|:| -2388 (-1025)))))) (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) (-1667 (*1 *2) (-12 (-5 *2 (-627 (-812 *3))) (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) (-1666 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825))))) -((-2554 (((-83) $ $) 72 T ELT)) (-3173 (((-83) $) 87 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) 105 T ELT) (($ $ (-825)) 103 (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 168 (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1666 (((-689)) 102 T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) 185 (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 126 T ELT)) (-3141 ((|#1| $) 104 T ELT)) (-1781 (($ (-1170 |#1|)) 70 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) 180 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) 169 (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) 112 (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) 198 (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) 107 T ELT) (($ $ (-825)) 106 (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) 212 T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) 146 (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) 86 (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) 83 (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) 95 (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) 82 (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 216 T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) 148 (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) 122 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1668 (((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) 96 T ELT)) (-1667 (((-627 |#1|)) 100 T ELT)) (-2397 (($) 109 (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 171 (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) 172 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) 74 T ELT)) (-3170 (((-1076 |#1|)) 173 T ELT)) (-1663 (($) 145 (|has| |#1| (-315)) ELT)) (-1618 (($) NIL (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) 120 T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) 138 T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) 178 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 195 T ELT) (((-1170 $) (-825)) 115 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) 184 T CONST)) (-2652 (($) 159 T CONST)) (-3911 (($ $) 121 (|has| |#1| (-315)) ELT) (($ $ (-689)) 113 (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) 206 T ELT)) (-3932 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3820 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3822 (($ $ $) 202 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 151 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-299 |#1| |#2|) (-13 (-277 |#1|) (-10 -7 (-15 -1668 ((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))))) (-15 -1667 ((-627 |#1|))) (-15 -1666 ((-689))))) (-296) (-3 (-1076 |#1|) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))))) (T -299)) -((-1668 (*1 *2) (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025)))))) (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) (-14 *4 (-3 (-1076 *3) *2)))) (-1667 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) (-14 *4 (-3 (-1076 *3) (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025))))))))) (-1666 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) (-14 *4 (-3 (-1076 *3) (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025)))))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1666 (((-689)) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-1781 (($ (-1170 |#1|)) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) NIL (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) NIL (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1668 (((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025)))))) NIL T ELT)) (-1667 (((-627 |#1|)) NIL T ELT)) (-2397 (($) NIL (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 |#1|)) NIL T ELT)) (-1663 (($) NIL (|has| |#1| (-315)) ELT)) (-1618 (($) NIL (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| |#1| (-315)) ELT) (($ $ (-689)) NIL (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-300 |#1| |#2|) (-13 (-277 |#1|) (-10 -7 (-15 -1668 ((-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))))) (-15 -1667 ((-627 |#1|))) (-15 -1666 ((-689))))) (-296) (-825)) (T -300)) -((-1668 (*1 *2) (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025)))))) (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825)))) (-1667 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825)))) (-1666 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 130 (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) 156 (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 104 T ELT)) (-3141 ((|#1| $) 101 T ELT)) (-1781 (($ (-1170 |#1|)) 96 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) 93 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) 52 (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) 131 (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) 85 (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) 48 T ELT) (($ $ (-825)) 53 (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) 76 T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) 108 (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) NIL (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) NIL (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) 106 (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) 158 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) 45 (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 125 (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) 155 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) 68 T ELT)) (-3170 (((-1076 |#1|)) 99 T ELT)) (-1663 (($) 136 (|has| |#1| (-315)) ELT)) (-1618 (($) NIL (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) 64 T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) 154 T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) 160 T CONST)) (-1255 (((-83) $ $) 162 T ELT)) (-2000 (((-1170 $)) 120 T ELT) (((-1170 $) (-825)) 59 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) 122 T CONST)) (-2652 (($) 40 T CONST)) (-3911 (($ $) 79 (|has| |#1| (-315)) ELT) (($ $ (-689)) NIL (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) 118 T ELT)) (-3932 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3820 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3822 (($ $ $) 114 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 54 T ELT) (($ $ (-480)) 139 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-301 |#1| |#2|) (-277 |#1|) (-296) (-1076 |#1|)) (T -301)) -NIL -((-1684 (((-864 (-1076 |#1|)) (-1076 |#1|)) 49 T ELT)) (-2980 (((-1076 |#1|) (-825) (-825)) 159 T ELT) (((-1076 |#1|) (-825)) 155 T ELT)) (-1669 (((-83) (-1076 |#1|)) 110 T ELT)) (-1671 (((-825) (-825)) 85 T ELT)) (-1672 (((-825) (-825)) 94 T ELT)) (-1670 (((-825) (-825)) 83 T ELT)) (-1999 (((-83) (-1076 |#1|)) 114 T ELT)) (-1679 (((-3 (-1076 |#1|) #1="failed") (-1076 |#1|)) 139 T ELT)) (-1682 (((-3 (-1076 |#1|) #1#) (-1076 |#1|)) 144 T ELT)) (-1681 (((-3 (-1076 |#1|) #1#) (-1076 |#1|)) 143 T ELT)) (-1680 (((-3 (-1076 |#1|) #1#) (-1076 |#1|)) 142 T ELT)) (-1678 (((-3 (-1076 |#1|) #1#) (-1076 |#1|)) 134 T ELT)) (-1683 (((-1076 |#1|) (-1076 |#1|)) 71 T ELT)) (-1674 (((-1076 |#1|) (-825)) 149 T ELT)) (-1677 (((-1076 |#1|) (-825)) 152 T ELT)) (-1676 (((-1076 |#1|) (-825)) 151 T ELT)) (-1675 (((-1076 |#1|) (-825)) 150 T ELT)) (-1673 (((-1076 |#1|) (-825)) 147 T ELT))) -(((-302 |#1|) (-10 -7 (-15 -1669 ((-83) (-1076 |#1|))) (-15 -1999 ((-83) (-1076 |#1|))) (-15 -1670 ((-825) (-825))) (-15 -1671 ((-825) (-825))) (-15 -1672 ((-825) (-825))) (-15 -1673 ((-1076 |#1|) (-825))) (-15 -1674 ((-1076 |#1|) (-825))) (-15 -1675 ((-1076 |#1|) (-825))) (-15 -1676 ((-1076 |#1|) (-825))) (-15 -1677 ((-1076 |#1|) (-825))) (-15 -1678 ((-3 (-1076 |#1|) #1="failed") (-1076 |#1|))) (-15 -1679 ((-3 (-1076 |#1|) #1#) (-1076 |#1|))) (-15 -1680 ((-3 (-1076 |#1|) #1#) (-1076 |#1|))) (-15 -1681 ((-3 (-1076 |#1|) #1#) (-1076 |#1|))) (-15 -1682 ((-3 (-1076 |#1|) #1#) (-1076 |#1|))) (-15 -2980 ((-1076 |#1|) (-825))) (-15 -2980 ((-1076 |#1|) (-825) (-825))) (-15 -1683 ((-1076 |#1|) (-1076 |#1|))) (-15 -1684 ((-864 (-1076 |#1|)) (-1076 |#1|)))) (-296)) (T -302)) -((-1684 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-864 (-1076 *4))) (-5 *1 (-302 *4)) (-5 *3 (-1076 *4)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-2980 (*1 *2 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1682 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-1681 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-1680 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-1679 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-1678 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-302 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-302 *4))))) -((-1685 ((|#1| (-1076 |#2|)) 60 T ELT))) -(((-303 |#1| |#2|) (-10 -7 (-15 -1685 (|#1| (-1076 |#2|)))) (-13 (-340) (-10 -7 (-15 -3929 (|#1| |#2|)) (-15 -1998 ((-825) |#1|)) (-15 -2000 ((-1170 |#1|) (-825))) (-15 -3911 (|#1| |#1|)))) (-296)) (T -303)) -((-1685 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-4 *2 (-13 (-340) (-10 -7 (-15 -3929 (*2 *4)) (-15 -1998 ((-825) *2)) (-15 -2000 ((-1170 *2) (-825))) (-15 -3911 (*2 *2))))) (-5 *1 (-303 *2 *4))))) -((-2690 (((-3 (-580 |#3|) "failed") (-580 |#3|) |#3|) 40 T ELT))) -(((-304 |#1| |#2| |#3|) (-10 -7 (-15 -2690 ((-3 (-580 |#3|) "failed") (-580 |#3|) |#3|))) (-296) (-1146 |#1|) (-1146 |#2|)) (T -304)) -((-2690 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-296)) (-5 *1 (-304 *4 *5 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| |#1| (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-1781 (($ (-1170 |#1|)) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| |#1| (-315)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| |#1| (-315)) ELT)) (-1999 (((-83) $) NIL (|has| |#1| (-315)) ELT)) (-3117 ((|#1| $) NIL T ELT) (($ $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 |#1|) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| |#1| (-315)) ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-1616 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT)) (-1615 (((-1076 |#1|) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-1076 |#1|) #1#) $ $) NIL (|has| |#1| (-315)) ELT)) (-1617 (($ $ (-1076 |#1|)) NIL (|has| |#1| (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| |#1| (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) NIL (|has| |#1| (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| |#1| (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 |#1|)) NIL T ELT)) (-1663 (($) NIL (|has| |#1| (-315)) ELT)) (-1618 (($) NIL (|has| |#1| (-315)) ELT)) (-3209 (((-1170 |#1|) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2688 (($ $) NIL (|has| |#1| (-315)) ELT) (((-629 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| |#1| (-315)) ELT) (($ $ (-689)) NIL (|has| |#1| (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| |#1| (-315)) ELT) (($ $) NIL (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-305 |#1| |#2|) (-277 |#1|) (-296) (-825)) (T -305)) -NIL -((-2237 (((-83) (-580 (-852 |#1|))) 41 T ELT)) (-2239 (((-580 (-852 |#1|)) (-580 (-852 |#1|))) 53 T ELT)) (-2238 (((-3 (-580 (-852 |#1|)) "failed") (-580 (-852 |#1|))) 48 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -2237 ((-83) (-580 (-852 |#1|)))) (-15 -2238 ((-3 (-580 (-852 |#1|)) "failed") (-580 (-852 |#1|)))) (-15 -2239 ((-580 (-852 |#1|)) (-580 (-852 |#1|))))) (-387) (-580 (-1081))) (T -306)) -((-2239 (*1 *2 *2) (-12 (-5 *2 (-580 (-852 *3))) (-4 *3 (-387)) (-5 *1 (-306 *3 *4)) (-14 *4 (-580 (-1081))))) (-2238 (*1 *2 *2) (|partial| -12 (-5 *2 (-580 (-852 *3))) (-4 *3 (-387)) (-5 *1 (-306 *3 *4)) (-14 *4 (-580 (-1081))))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-387)) (-5 *2 (-83)) (-5 *1 (-306 *4 *5)) (-14 *5 (-580 (-1081)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) 17 T ELT)) (-2287 ((|#1| $ (-480)) NIL T ELT)) (-2288 (((-480) $ (-480)) NIL T ELT)) (-2278 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2279 (($ (-1 (-480) (-480)) $) 26 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 28 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1768 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-480)))) $) 30 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 7 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT) (($ |#1| (-480)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-307 |#1|) (-13 (-408) (-945 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-480))) (-15 -3121 ((-689) $)) (-15 -2288 ((-480) $ (-480))) (-15 -2287 (|#1| $ (-480))) (-15 -2279 ($ (-1 (-480) (-480)) $)) (-15 -2278 ($ (-1 |#1| |#1|) $)) (-15 -1768 ((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-480)))) $)))) (-1007)) (T -307)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-1007)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-1007)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-307 *2)) (-4 *2 (-1007)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) (-2288 (*1 *2 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-307 *2)) (-4 *2 (-1007)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-480) (-480))) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-307 *3)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 (-480))))) (-5 *1 (-307 *3)) (-4 *3 (-1007))))) -((-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 13 T ELT)) (-2051 (($ $) 14 T ELT)) (-3954 (((-343 $) $) 31 T ELT)) (-3706 (((-83) $) 27 T ELT)) (-2470 (($ $) 19 T ELT)) (-3129 (($ $ $) 22 T ELT) (($ (-580 $)) NIL T ELT)) (-3715 (((-343 $) $) 32 T ELT)) (-3449 (((-3 $ "failed") $ $) 21 T ELT)) (-1596 (((-689) $) 25 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 36 T ELT)) (-2050 (((-83) $ $) 16 T ELT)) (-3932 (($ $ $) 34 T ELT))) -(((-308 |#1|) (-10 -7 (-15 -3932 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -3706 ((-83) |#1|)) (-15 -3954 ((-343 |#1|) |#1|)) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -2865 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -1596 ((-689) |#1|)) (-15 -3129 (|#1| (-580 |#1|))) (-15 -3129 (|#1| |#1| |#1|)) (-15 -2050 ((-83) |#1| |#1|)) (-15 -2051 (|#1| |#1|)) (-15 -2052 ((-2 (|:| -1761 |#1|) (|:| -3965 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#1|))) (-309)) (T -308)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-309) (-111)) (T -309)) -((-3932 (*1 *1 *1 *1) (-4 *1 (-309)))) -(-13 (-255) (-1125) (-199) (-10 -8 (-15 -3932 ($ $ $)) (-6 -3976) (-6 -3970))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-1686 ((|#1| $ |#1|) 35 T ELT)) (-1690 (($ $ (-1064)) 23 T ELT)) (-3602 (((-3 |#1| "failed") $) 34 T ELT)) (-1687 ((|#1| $) 32 T ELT)) (-1691 (($ (-333)) 22 T ELT) (($ (-333) (-1064)) 21 T ELT)) (-3525 (((-333) $) 25 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1688 (((-1064) $) 26 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT)) (-1689 (($ $) 24 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 19 T ELT))) -(((-310 |#1|) (-13 (-311 (-333) |#1|) (-10 -8 (-15 -3602 ((-3 |#1| "failed") $)))) (-1007)) (T -310)) -((-3602 (*1 *2 *1) (|partial| -12 (-5 *1 (-310 *2)) (-4 *2 (-1007))))) -((-2554 (((-83) $ $) 7 T ELT)) (-1686 ((|#2| $ |#2|) 17 T ELT)) (-1690 (($ $ (-1064)) 22 T ELT)) (-1687 ((|#2| $) 18 T ELT)) (-1691 (($ |#1|) 24 T ELT) (($ |#1| (-1064)) 23 T ELT)) (-3525 ((|#1| $) 20 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1688 (((-1064) $) 19 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1689 (($ $) 21 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-311 |#1| |#2|) (-111) (-1007) (-1007)) (T -311)) -((-1691 (*1 *1 *2) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *3 (-1064)) (-4 *1 (-311 *2 *4)) (-4 *2 (-1007)) (-4 *4 (-1007)))) (-1690 (*1 *1 *1 *2) (-12 (-5 *2 (-1064)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-1689 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-1007)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-1064)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) (-1686 (*1 *2 *1 *2) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) -(-13 (-1007) (-10 -8 (-15 -1691 ($ |t#1|)) (-15 -1691 ($ |t#1| (-1064))) (-15 -1690 ($ $ (-1064))) (-15 -1689 ($ $)) (-15 -3525 (|t#1| $)) (-15 -1688 ((-1064) $)) (-15 -1687 (|t#2| $)) (-15 -1686 (|t#2| $ |t#2|)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3208 (((-1170 (-627 |#2|)) (-1170 $)) 67 T ELT)) (-1777 (((-627 |#2|) (-1170 $)) 139 T ELT)) (-1716 ((|#2| $) 36 T ELT)) (-1775 (((-627 |#2|) $ (-1170 $)) 142 T ELT)) (-2392 (((-3 $ #1="failed") $) 89 T ELT)) (-1714 ((|#2| $) 39 T ELT)) (-1694 (((-1076 |#2|) $) 98 T ELT)) (-1779 ((|#2| (-1170 $)) 122 T ELT)) (-1712 (((-1076 |#2|) $) 32 T ELT)) (-1706 (((-83)) 116 T ELT)) (-1781 (($ (-1170 |#2|) (-1170 $)) 132 T ELT)) (-3450 (((-3 $ #1#) $) 93 T ELT)) (-1699 (((-83)) 111 T ELT)) (-1697 (((-83)) 106 T ELT)) (-1701 (((-83)) 58 T ELT)) (-1778 (((-627 |#2|) (-1170 $)) 137 T ELT)) (-1717 ((|#2| $) 35 T ELT)) (-1776 (((-627 |#2|) $ (-1170 $)) 141 T ELT)) (-2393 (((-3 $ #1#) $) 87 T ELT)) (-1715 ((|#2| $) 38 T ELT)) (-1695 (((-1076 |#2|) $) 97 T ELT)) (-1780 ((|#2| (-1170 $)) 120 T ELT)) (-1713 (((-1076 |#2|) $) 30 T ELT)) (-1707 (((-83)) 115 T ELT)) (-1698 (((-83)) 108 T ELT)) (-1700 (((-83)) 56 T ELT)) (-1702 (((-83)) 103 T ELT)) (-1705 (((-83)) 117 T ELT)) (-3209 (((-1170 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) 128 T ELT)) (-1711 (((-83)) 113 T ELT)) (-1696 (((-580 (-1170 |#2|))) 102 T ELT)) (-1709 (((-83)) 114 T ELT)) (-1710 (((-83)) 112 T ELT)) (-1708 (((-83)) 51 T ELT)) (-1704 (((-83)) 118 T ELT))) -(((-312 |#1| |#2|) (-10 -7 (-15 -1694 ((-1076 |#2|) |#1|)) (-15 -1695 ((-1076 |#2|) |#1|)) (-15 -1696 ((-580 (-1170 |#2|)))) (-15 -2392 ((-3 |#1| #1="failed") |#1|)) (-15 -2393 ((-3 |#1| #1#) |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1|)) (-15 -1697 ((-83))) (-15 -1698 ((-83))) (-15 -1699 ((-83))) (-15 -1700 ((-83))) (-15 -1701 ((-83))) (-15 -1702 ((-83))) (-15 -1704 ((-83))) (-15 -1705 ((-83))) (-15 -1706 ((-83))) (-15 -1707 ((-83))) (-15 -1708 ((-83))) (-15 -1709 ((-83))) (-15 -1710 ((-83))) (-15 -1711 ((-83))) (-15 -1712 ((-1076 |#2|) |#1|)) (-15 -1713 ((-1076 |#2|) |#1|)) (-15 -1777 ((-627 |#2|) (-1170 |#1|))) (-15 -1778 ((-627 |#2|) (-1170 |#1|))) (-15 -1779 (|#2| (-1170 |#1|))) (-15 -1780 (|#2| (-1170 |#1|))) (-15 -1781 (|#1| (-1170 |#2|) (-1170 |#1|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1| (-1170 |#1|))) (-15 -1714 (|#2| |#1|)) (-15 -1715 (|#2| |#1|)) (-15 -1716 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1775 ((-627 |#2|) |#1| (-1170 |#1|))) (-15 -1776 ((-627 |#2|) |#1| (-1170 |#1|))) (-15 -3208 ((-1170 (-627 |#2|)) (-1170 |#1|)))) (-313 |#2|) (-144)) (T -312)) -((-1711 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1702 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1701 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1700 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1699 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1698 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-1696 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-580 (-1170 *4))) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1761 (((-3 $ "failed")) 47 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3208 (((-1170 (-627 |#1|)) (-1170 $)) 88 T ELT)) (-1718 (((-1170 $)) 91 T ELT)) (-3707 (($) 22 T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) "failed")) 50 (|has| |#1| (-491)) ELT)) (-1692 (((-3 $ "failed")) 48 (|has| |#1| (-491)) ELT)) (-1777 (((-627 |#1|) (-1170 $)) 75 T ELT)) (-1716 ((|#1| $) 84 T ELT)) (-1775 (((-627 |#1|) $ (-1170 $)) 86 T ELT)) (-2392 (((-3 $ "failed") $) 55 (|has| |#1| (-491)) ELT)) (-2395 (($ $ (-825)) 36 T ELT)) (-1714 ((|#1| $) 82 T ELT)) (-1694 (((-1076 |#1|) $) 52 (|has| |#1| (-491)) ELT)) (-1779 ((|#1| (-1170 $)) 77 T ELT)) (-1712 (((-1076 |#1|) $) 73 T ELT)) (-1706 (((-83)) 67 T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) 79 T ELT)) (-3450 (((-3 $ "failed") $) 57 (|has| |#1| (-491)) ELT)) (-3094 (((-825)) 90 T ELT)) (-1703 (((-83)) 64 T ELT)) (-2419 (($ $ (-825)) 43 T ELT)) (-1699 (((-83)) 60 T ELT)) (-1697 (((-83)) 58 T ELT)) (-1701 (((-83)) 62 T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) "failed")) 51 (|has| |#1| (-491)) ELT)) (-1693 (((-3 $ "failed")) 49 (|has| |#1| (-491)) ELT)) (-1778 (((-627 |#1|) (-1170 $)) 76 T ELT)) (-1717 ((|#1| $) 85 T ELT)) (-1776 (((-627 |#1|) $ (-1170 $)) 87 T ELT)) (-2393 (((-3 $ "failed") $) 56 (|has| |#1| (-491)) ELT)) (-2394 (($ $ (-825)) 37 T ELT)) (-1715 ((|#1| $) 83 T ELT)) (-1695 (((-1076 |#1|) $) 53 (|has| |#1| (-491)) ELT)) (-1780 ((|#1| (-1170 $)) 78 T ELT)) (-1713 (((-1076 |#1|) $) 74 T ELT)) (-1707 (((-83)) 68 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1698 (((-83)) 59 T ELT)) (-1700 (((-83)) 61 T ELT)) (-1702 (((-83)) 63 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1705 (((-83)) 66 T ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 81 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 80 T ELT)) (-1881 (((-580 (-852 |#1|)) (-1170 $)) 89 T ELT)) (-2421 (($ $ $) 33 T ELT)) (-1711 (((-83)) 72 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-1696 (((-580 (-1170 |#1|))) 54 (|has| |#1| (-491)) ELT)) (-2422 (($ $ $ $) 34 T ELT)) (-1709 (((-83)) 70 T ELT)) (-2420 (($ $ $) 32 T ELT)) (-1710 (((-83)) 71 T ELT)) (-1708 (((-83)) 69 T ELT)) (-1704 (((-83)) 65 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 38 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-313 |#1|) (-111) (-144)) (T -313)) -((-1718 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1170 *1)) (-4 *1 (-313 *3)))) (-3094 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-825)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-580 (-852 *4))))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-1170 (-627 *4))))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-1170 *4)))) (-3209 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1170 *1)) (-4 *4 (-144)) (-4 *1 (-313 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *2)) (-4 *2 (-144)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-1076 *3)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-1076 *3)))) (-1711 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1710 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1709 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1708 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1707 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1706 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1705 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1704 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1703 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1702 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1701 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1700 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1699 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1698 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1697 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-3450 (*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) (-2393 (*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) (-2392 (*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) (-1696 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) (-5 *2 (-580 (-1170 *3))))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) (-5 *2 (-1076 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) (-5 *2 (-1076 *3)))) (-1896 (*1 *2) (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2000 (-580 *1)))) (-4 *1 (-313 *3)))) (-1895 (*1 *2) (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2000 (-580 *1)))) (-4 *1 (-313 *3)))) (-1693 (*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144)))) (-1692 (*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144)))) (-1761 (*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144))))) -(-13 (-678 |t#1|) (-10 -8 (-15 -1718 ((-1170 $))) (-15 -3094 ((-825))) (-15 -1881 ((-580 (-852 |t#1|)) (-1170 $))) (-15 -3208 ((-1170 (-627 |t#1|)) (-1170 $))) (-15 -1776 ((-627 |t#1|) $ (-1170 $))) (-15 -1775 ((-627 |t#1|) $ (-1170 $))) (-15 -1717 (|t#1| $)) (-15 -1716 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -1714 (|t#1| $)) (-15 -3209 ((-1170 |t#1|) $ (-1170 $))) (-15 -3209 ((-627 |t#1|) (-1170 $) (-1170 $))) (-15 -1781 ($ (-1170 |t#1|) (-1170 $))) (-15 -1780 (|t#1| (-1170 $))) (-15 -1779 (|t#1| (-1170 $))) (-15 -1778 ((-627 |t#1|) (-1170 $))) (-15 -1777 ((-627 |t#1|) (-1170 $))) (-15 -1713 ((-1076 |t#1|) $)) (-15 -1712 ((-1076 |t#1|) $)) (-15 -1711 ((-83))) (-15 -1710 ((-83))) (-15 -1709 ((-83))) (-15 -1708 ((-83))) (-15 -1707 ((-83))) (-15 -1706 ((-83))) (-15 -1705 ((-83))) (-15 -1704 ((-83))) (-15 -1703 ((-83))) (-15 -1702 ((-83))) (-15 -1701 ((-83))) (-15 -1700 ((-83))) (-15 -1699 ((-83))) (-15 -1698 ((-83))) (-15 -1697 ((-83))) (IF (|has| |t#1| (-491)) (PROGN (-15 -3450 ((-3 $ "failed") $)) (-15 -2393 ((-3 $ "failed") $)) (-15 -2392 ((-3 $ "failed") $)) (-15 -1696 ((-580 (-1170 |t#1|)))) (-15 -1695 ((-1076 |t#1|) $)) (-15 -1694 ((-1076 |t#1|) $)) (-15 -1896 ((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) "failed"))) (-15 -1895 ((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) "failed"))) (-15 -1693 ((-3 $ "failed"))) (-15 -1692 ((-3 $ "failed"))) (-15 -1761 ((-3 $ "failed"))) (-6 -3975)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-654) . T) ((-678 |#1|) . T) ((-680) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2980 (($) 15 T ELT))) -(((-314 |#1|) (-10 -7 (-15 -2980 (|#1|))) (-315)) (T -314)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3121 (((-689)) 20 T ELT)) (-2980 (($) 17 T ELT)) (-1998 (((-825) $) 18 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2388 (($ (-825)) 19 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-315) (-111)) (T -315)) -((-3121 (*1 *2) (-12 (-4 *1 (-315)) (-5 *2 (-689)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-315)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-825)))) (-2980 (*1 *1) (-4 *1 (-315)))) -(-13 (-1007) (-10 -8 (-15 -3121 ((-689))) (-15 -2388 ($ (-825))) (-15 -1998 ((-825) $)) (-15 -2980 ($)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-1771 (((-627 |#2|) (-1170 $)) 45 T ELT)) (-1781 (($ (-1170 |#2|) (-1170 $)) 39 T ELT)) (-1770 (((-627 |#2|) $ (-1170 $)) 47 T ELT)) (-3740 ((|#2| (-1170 $)) 13 T ELT)) (-3209 (((-1170 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) 27 T ELT))) -(((-316 |#1| |#2| |#3|) (-10 -7 (-15 -1771 ((-627 |#2|) (-1170 |#1|))) (-15 -3740 (|#2| (-1170 |#1|))) (-15 -1781 (|#1| (-1170 |#2|) (-1170 |#1|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1| (-1170 |#1|))) (-15 -1770 ((-627 |#2|) |#1| (-1170 |#1|)))) (-317 |#2| |#3|) (-144) (-1146 |#2|)) (T -316)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1771 (((-627 |#1|) (-1170 $)) 59 T ELT)) (-3313 ((|#1| $) 65 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-1781 (($ (-1170 |#1|) (-1170 $)) 61 T ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) 66 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3094 (((-825)) 67 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3117 ((|#1| $) 64 T ELT)) (-2002 ((|#2| $) 57 (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3740 ((|#1| (-1170 $)) 60 T ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 63 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 62 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2688 (((-629 $) $) 56 (|has| |#1| (-116)) ELT)) (-2435 ((|#2| $) 58 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-317 |#1| |#2|) (-111) (-144) (-1146 |t#1|)) (T -317)) -((-3094 (*1 *2) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-825)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *4)))) (-3209 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1170 *1)) (-4 *4 (-144)) (-4 *1 (-317 *4 *5)) (-4 *5 (-1146 *4)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *2 *4)) (-4 *4 (-1146 *2)) (-4 *2 (-144)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-144)) (-4 *3 (-309)) (-4 *2 (-1146 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3094 ((-825))) (-15 -1770 ((-627 |t#1|) $ (-1170 $))) (-15 -3313 (|t#1| $)) (-15 -3117 (|t#1| $)) (-15 -3209 ((-1170 |t#1|) $ (-1170 $))) (-15 -3209 ((-627 |t#1|) (-1170 $) (-1170 $))) (-15 -1781 ($ (-1170 |t#1|) (-1170 $))) (-15 -3740 (|t#1| (-1170 $))) (-15 -1771 ((-627 |t#1|) (-1170 $))) (-15 -2435 (|t#2| $)) (IF (|has| |t#1| (-309)) (-15 -2002 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-660) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-1721 (((-83) (-1 (-83) |#2| |#2|) $) NIL T ELT) (((-83) $) 18 T ELT)) (-1719 (($ (-1 (-83) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2895 (($ (-1 (-83) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2286 (($ $) 25 T ELT)) (-3402 (((-480) (-1 (-83) |#2|) $) NIL T ELT) (((-480) |#2| $) 11 T ELT) (((-480) |#2| $ (-480)) NIL T ELT)) (-3501 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-318 |#1| |#2|) (-10 -7 (-15 -1719 (|#1| |#1|)) (-15 -1719 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1721 ((-83) |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -3501 (|#1| |#1| |#1|)) (-15 -3402 ((-480) |#2| |#1| (-480))) (-15 -3402 ((-480) |#2| |#1|)) (-15 -3402 ((-480) (-1 (-83) |#2|) |#1|)) (-15 -1721 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -2895 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3501 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|))) (-319 |#2|) (-1120)) (T -318)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3979)) ELT) (($ $) 97 (-12 (|has| |#1| (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 99 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 109 T ELT)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) 106 T ELT) (((-480) |#1| $) 105 (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) 104 (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 91 (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 92 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 100 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 93 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 95 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) 94 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 96 (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-319 |#1|) (-111) (-1120)) (T -319)) -((-3501 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)))) (-2895 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) (-1721 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-319 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-319 *4)) (-4 *4 (-1120)) (-5 *2 (-480)))) (-3402 (*1 *2 *3 *1) (-12 (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-480)))) (-3402 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)))) (-3501 (*1 *1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-751)) (-5 *2 (-83)))) (-1720 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-480)) (|has| *1 (-6 -3979)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) (-2285 (*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-319 *2)) (-4 *2 (-1120)))) (-1719 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3979)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) (-1719 (*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751))))) -(-13 (-590 |t#1|) (-10 -8 (-6 -3978) (-15 -3501 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -2286 ($ $)) (-15 -2895 ($ (-1 (-83) |t#1| |t#1|) $)) (-15 -1721 ((-83) (-1 (-83) |t#1| |t#1|) $)) (-15 -3402 ((-480) (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1007)) (PROGN (-15 -3402 ((-480) |t#1| $)) (-15 -3402 ((-480) |t#1| $ (-480)))) |%noBranch|) (IF (|has| |t#1| (-751)) (PROGN (-6 (-751)) (-15 -3501 ($ $ $)) (-15 -2895 ($ $)) (-15 -1721 ((-83) $))) |%noBranch|) (IF (|has| $ (-6 -3979)) (PROGN (-15 -1720 ($ $ $ (-480))) (-15 -2285 ($ $)) (-15 -1719 ($ (-1 (-83) |t#1| |t#1|) $)) (IF (|has| |t#1| (-751)) (-15 -1719 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-1007) OR (|has| |#1| (-1007)) (|has| |#1| (-751))) ((-1120) . T)) -((-3824 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3825 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3941 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3825 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3824 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1120) (-319 |#1|) (-1120) (-319 |#3|)) (T -320)) -((-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-319 *5)) (-5 *1 (-320 *6 *4 *5 *2)) (-4 *4 (-319 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-320 *5 *4 *2 *6)) (-4 *4 (-319 *5)) (-4 *6 (-319 *2)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-319 *6)) (-5 *1 (-320 *5 *4 *6 *2)) (-4 *4 (-319 *5))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3917 (((-580 |#1|) $) 42 T ELT)) (-3930 (($ $ (-689)) 43 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3922 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 46 T ELT)) (-3919 (($ $) 44 T ELT)) (-3923 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 47 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3751 (($ $ |#1| $) 41 T ELT) (($ $ (-580 |#1|) (-580 $)) 40 T ELT)) (-3931 (((-689) $) 48 T ELT)) (-3513 (($ $ $) 39 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1186 |#1| |#2|) $) 50 T ELT) (((-1195 |#1| |#2|) $) 49 T ELT)) (-3937 ((|#2| (-1195 |#1| |#2|) $) 52 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-1722 (($ (-611 |#1|)) 45 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#2|) 38 (|has| |#2| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-321 |#1| |#2|) (-111) (-751) (-144)) (T -321)) -((-3937 (*1 *2 *3 *1) (-12 (-5 *3 (-1195 *4 *2)) (-4 *1 (-321 *4 *2)) (-4 *4 (-751)) (-4 *2 (-144)))) (-3929 (*1 *1 *2) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-1186 *3 *4)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-1195 *3 *4)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-689)))) (-3923 (*1 *2 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3922 (*1 *2 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-4 *1 (-321 *3 *4)) (-4 *4 (-144)))) (-3919 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-580 *3)))) (-3751 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-751)) (-4 *5 (-144))))) -(-13 (-571 |t#2|) (-10 -8 (-15 -3937 (|t#2| (-1195 |t#1| |t#2|) $)) (-15 -3929 ($ |t#1|)) (-15 -3929 ((-1186 |t#1| |t#2|) $)) (-15 -3929 ((-1195 |t#1| |t#2|) $)) (-15 -3931 ((-689) $)) (-15 -3923 ((-1195 |t#1| |t#2|) (-1195 |t#1| |t#2|) $)) (-15 -3922 ((-1195 |t#1| |t#2|) (-1195 |t#1| |t#2|) $)) (-15 -1722 ($ (-611 |t#1|))) (-15 -3919 ($ $)) (-15 -3930 ($ $ (-689))) (-15 -3917 ((-580 |t#1|) $)) (-15 -3751 ($ $ |t#1| $)) (-15 -3751 ($ $ (-580 |t#1|) (-580 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#2|) . T) ((-587 |#2|) . T) ((-571 |#2|) . T) ((-579 |#2|) . T) ((-651 |#2|) . T) ((-958 |#2|) . T) ((-963 |#2|) . T) ((-1007) . T) ((-1120) . T)) -((-1725 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 40 T ELT)) (-1723 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 13 T ELT)) (-1724 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 33 T ELT))) -(((-322 |#1| |#2|) (-10 -7 (-15 -1723 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1724 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1725 (|#2| (-1 (-83) |#1| |#1|) |#2|))) (-1120) (-13 (-319 |#1|) (-10 -7 (-6 -3979)))) (T -322)) -((-1725 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979)))))) (-1724 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979)))))) (-1723 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979))))))) -((-2267 (((-627 |#2|) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 22 T ELT) (((-627 (-480)) (-627 $)) 14 T ELT))) -(((-323 |#1| |#2|) (-10 -7 (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-627 |#2|) (-627 |#1|)))) (-324 |#2|) (-956)) (T -323)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2267 (((-627 |#1|) (-627 $)) 35 T ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 34 T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 46 (|has| |#1| (-577 (-480))) ELT) (((-627 (-480)) (-627 $)) 45 (|has| |#1| (-577 (-480))) ELT)) (-2268 (((-627 |#1|) (-1170 $)) 37 T ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 36 T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 44 (|has| |#1| (-577 (-480))) ELT) (((-627 (-480)) (-1170 $)) 43 (|has| |#1| (-577 (-480))) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-324 |#1|) (-111) (-956)) (T -324)) -NIL -(-13 (-577 |t#1|) (-10 -7 (IF (|has| |t#1| (-577 (-480))) (-6 (-577 (-480))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 16 T ELT)) (-3114 (((-480) $) 44 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3754 (($ $) 120 T ELT)) (-3475 (($ $) 81 T ELT)) (-3622 (($ $) 72 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-3023 (($ $) 28 T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3473 (($ $) 79 T ELT)) (-3621 (($ $) 67 T ELT)) (-3606 (((-480) $) 60 T ELT)) (-2427 (($ $ (-480)) 55 T ELT)) (-3477 (($ $) NIL T ELT)) (-3620 (($ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3112 (($ $) 122 T ELT)) (-3142 (((-3 (-480) #1#) $) 217 T ELT) (((-3 (-345 (-480)) #1#) $) 213 T ELT)) (-3141 (((-480) $) 215 T ELT) (((-345 (-480)) $) 211 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1734 (((-480) $ $) 110 T ELT)) (-3450 (((-3 $ #1#) $) 125 T ELT)) (-1733 (((-345 (-480)) $ (-689)) 218 T ELT) (((-345 (-480)) $ (-689) (-689)) 210 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-1757 (((-825)) 106 T ELT) (((-825) (-825)) 107 (|has| $ (-6 -3969)) ELT)) (-3171 (((-83) $) 38 T ELT)) (-3610 (($) 22 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL T ELT)) (-1726 (((-1176) (-689)) 177 T ELT)) (-1727 (((-1176)) 182 T ELT) (((-1176) (-689)) 183 T ELT)) (-1729 (((-1176)) 184 T ELT) (((-1176) (-689)) 185 T ELT)) (-1728 (((-1176)) 180 T ELT) (((-1176) (-689)) 181 T ELT)) (-3755 (((-480) $) 50 T ELT)) (-2398 (((-83) $) 21 T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-2429 (($ $) 32 T ELT)) (-3117 (($ $) NIL T ELT)) (-3172 (((-83) $) 18 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL (-12 (-2546 (|has| $ (-6 -3961))) (-2546 (|has| $ (-6 -3969)))) ELT)) (-2843 (($ $ $) NIL T ELT) (($) NIL (-12 (-2546 (|has| $ (-6 -3961))) (-2546 (|has| $ (-6 -3969)))) ELT)) (-1759 (((-480) $) 112 T ELT)) (-1732 (($) 90 T ELT) (($ $) 97 T ELT)) (-1731 (($) 96 T ELT) (($ $) 98 T ELT)) (-3925 (($ $) 84 T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 127 T ELT)) (-1756 (((-825) (-480)) 27 (|has| $ (-6 -3969)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) 41 T ELT)) (-3115 (($ $) 119 T ELT)) (-3239 (($ (-480) (-480)) 115 T ELT) (($ (-480) (-480) (-825)) 116 T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2389 (((-480) $) 113 T ELT)) (-1730 (($) 99 T ELT)) (-3926 (($ $) 78 T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2601 (((-825)) 108 T ELT) (((-825) (-825)) 109 (|has| $ (-6 -3969)) ELT)) (-3741 (($ $) 126 T ELT) (($ $ (-689)) NIL T ELT)) (-1755 (((-825) (-480)) 31 (|has| $ (-6 -3969)) ELT)) (-3478 (($ $) NIL T ELT)) (-3619 (($ $) NIL T ELT)) (-3476 (($ $) NIL T ELT)) (-3618 (($ $) NIL T ELT)) (-3474 (($ $) 80 T ELT)) (-3617 (($ $) 71 T ELT)) (-3955 (((-325) $) 202 T ELT) (((-177) $) 204 T ELT) (((-795 (-325)) $) NIL T ELT) (((-1064) $) 188 T ELT) (((-469) $) 200 T ELT) (($ (-177)) 209 T ELT)) (-3929 (((-767) $) 192 T ELT) (($ (-480)) 214 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-480)) 214 T ELT) (($ (-345 (-480))) NIL T ELT) (((-177) $) 205 T ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (($ $) 121 T ELT)) (-1758 (((-825)) 42 T ELT) (((-825) (-825)) 62 (|has| $ (-6 -3969)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (((-825)) 111 T ELT)) (-3481 (($ $) 87 T ELT)) (-3469 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3479 (($ $) 85 T ELT)) (-3467 (($ $) 20 T ELT)) (-3483 (($ $) NIL T ELT)) (-3471 (($ $) NIL T ELT)) (-3484 (($ $) NIL T ELT)) (-3472 (($ $) NIL T ELT)) (-3482 (($ $) NIL T ELT)) (-3470 (($ $) NIL T ELT)) (-3480 (($ $) 86 T ELT)) (-3468 (($ $) 33 T ELT)) (-3366 (($ $) 39 T ELT)) (-2646 (($) 17 T CONST)) (-2652 (($) 24 T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2552 (((-83) $ $) 189 T ELT)) (-2553 (((-83) $ $) 26 T ELT)) (-3042 (((-83) $ $) 37 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 43 T ELT)) (-3932 (($ $ $) 29 T ELT) (($ $ (-480)) 23 T ELT)) (-3820 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3822 (($ $ $) 54 T ELT)) (** (($ $ (-825)) 65 T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 91 T ELT) (($ $ (-345 (-480))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-825) $) 61 T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-325) (-13 (-342) (-188) (-550 (-1064)) (-549 (-177)) (-1106) (-550 (-469)) (-554 (-177)) (-10 -8 (-15 -3932 ($ $ (-480))) (-15 ** ($ $ $)) (-15 -2429 ($ $)) (-15 -1734 ((-480) $ $)) (-15 -2427 ($ $ (-480))) (-15 -1733 ((-345 (-480)) $ (-689))) (-15 -1733 ((-345 (-480)) $ (-689) (-689))) (-15 -1732 ($)) (-15 -1731 ($)) (-15 -1730 ($)) (-15 -3469 ($ $ $)) (-15 -1732 ($ $)) (-15 -1731 ($ $)) (-15 -1729 ((-1176))) (-15 -1729 ((-1176) (-689))) (-15 -1728 ((-1176))) (-15 -1728 ((-1176) (-689))) (-15 -1727 ((-1176))) (-15 -1727 ((-1176) (-689))) (-15 -1726 ((-1176) (-689))) (-6 -3969) (-6 -3961)))) (T -325)) -((** (*1 *1 *1 *1) (-5 *1 (-325))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-325)))) (-2429 (*1 *1 *1) (-5 *1 (-325))) (-1734 (*1 *2 *1 *1) (-12 (-5 *2 (-480)) (-5 *1 (-325)))) (-2427 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-325)))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-325)))) (-1733 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-325)))) (-1732 (*1 *1) (-5 *1 (-325))) (-1731 (*1 *1) (-5 *1 (-325))) (-1730 (*1 *1) (-5 *1 (-325))) (-3469 (*1 *1 *1 *1) (-5 *1 (-325))) (-1732 (*1 *1 *1) (-5 *1 (-325))) (-1731 (*1 *1 *1) (-5 *1 (-325))) (-1729 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) (-1728 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) (-1727 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325))))) -((-1735 (((-580 (-246 (-852 (-140 |#1|)))) (-246 (-345 (-852 (-140 (-480))))) |#1|) 52 T ELT) (((-580 (-246 (-852 (-140 |#1|)))) (-345 (-852 (-140 (-480)))) |#1|) 51 T ELT) (((-580 (-580 (-246 (-852 (-140 |#1|))))) (-580 (-246 (-345 (-852 (-140 (-480)))))) |#1|) 48 T ELT) (((-580 (-580 (-246 (-852 (-140 |#1|))))) (-580 (-345 (-852 (-140 (-480))))) |#1|) 42 T ELT)) (-1736 (((-580 (-580 (-140 |#1|))) (-580 (-345 (-852 (-140 (-480))))) (-580 (-1081)) |#1|) 30 T ELT) (((-580 (-140 |#1|)) (-345 (-852 (-140 (-480)))) |#1|) 18 T ELT))) -(((-326 |#1|) (-10 -7 (-15 -1735 ((-580 (-580 (-246 (-852 (-140 |#1|))))) (-580 (-345 (-852 (-140 (-480))))) |#1|)) (-15 -1735 ((-580 (-580 (-246 (-852 (-140 |#1|))))) (-580 (-246 (-345 (-852 (-140 (-480)))))) |#1|)) (-15 -1735 ((-580 (-246 (-852 (-140 |#1|)))) (-345 (-852 (-140 (-480)))) |#1|)) (-15 -1735 ((-580 (-246 (-852 (-140 |#1|)))) (-246 (-345 (-852 (-140 (-480))))) |#1|)) (-15 -1736 ((-580 (-140 |#1|)) (-345 (-852 (-140 (-480)))) |#1|)) (-15 -1736 ((-580 (-580 (-140 |#1|))) (-580 (-345 (-852 (-140 (-480))))) (-580 (-1081)) |#1|))) (-13 (-309) (-750))) (T -326)) -((-1736 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-345 (-852 (-140 (-480)))))) (-5 *4 (-580 (-1081))) (-5 *2 (-580 (-580 (-140 *5)))) (-5 *1 (-326 *5)) (-4 *5 (-13 (-309) (-750))))) (-1736 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 (-140 (-480))))) (-5 *2 (-580 (-140 *4))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-246 (-345 (-852 (-140 (-480)))))) (-5 *2 (-580 (-246 (-852 (-140 *4))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 (-140 (-480))))) (-5 *2 (-580 (-246 (-852 (-140 *4))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-246 (-345 (-852 (-140 (-480))))))) (-5 *2 (-580 (-580 (-246 (-852 (-140 *4)))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 (-140 (-480)))))) (-5 *2 (-580 (-580 (-246 (-852 (-140 *4)))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750)))))) -((-3556 (((-580 (-246 (-852 |#1|))) (-246 (-345 (-852 (-480)))) |#1|) 47 T ELT) (((-580 (-246 (-852 |#1|))) (-345 (-852 (-480))) |#1|) 46 T ELT) (((-580 (-580 (-246 (-852 |#1|)))) (-580 (-246 (-345 (-852 (-480))))) |#1|) 43 T ELT) (((-580 (-580 (-246 (-852 |#1|)))) (-580 (-345 (-852 (-480)))) |#1|) 37 T ELT)) (-1737 (((-580 |#1|) (-345 (-852 (-480))) |#1|) 20 T ELT) (((-580 (-580 |#1|)) (-580 (-345 (-852 (-480)))) (-580 (-1081)) |#1|) 30 T ELT))) -(((-327 |#1|) (-10 -7 (-15 -3556 ((-580 (-580 (-246 (-852 |#1|)))) (-580 (-345 (-852 (-480)))) |#1|)) (-15 -3556 ((-580 (-580 (-246 (-852 |#1|)))) (-580 (-246 (-345 (-852 (-480))))) |#1|)) (-15 -3556 ((-580 (-246 (-852 |#1|))) (-345 (-852 (-480))) |#1|)) (-15 -3556 ((-580 (-246 (-852 |#1|))) (-246 (-345 (-852 (-480)))) |#1|)) (-15 -1737 ((-580 (-580 |#1|)) (-580 (-345 (-852 (-480)))) (-580 (-1081)) |#1|)) (-15 -1737 ((-580 |#1|) (-345 (-852 (-480))) |#1|))) (-13 (-750) (-309))) (T -327)) -((-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 (-480)))) (-5 *2 (-580 *4)) (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) (-1737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-345 (-852 (-480))))) (-5 *4 (-580 (-1081))) (-5 *2 (-580 (-580 *5))) (-5 *1 (-327 *5)) (-4 *5 (-13 (-750) (-309))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-246 (-345 (-852 (-480))))) (-5 *2 (-580 (-246 (-852 *4)))) (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 (-480)))) (-5 *2 (-580 (-246 (-852 *4)))) (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-246 (-345 (-852 (-480)))))) (-5 *2 (-580 (-580 (-246 (-852 *4))))) (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 (-480))))) (-5 *2 (-580 (-580 (-246 (-852 *4))))) (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-2879 (($ |#1| |#2|) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1973 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 34 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 12 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-328 |#1| |#2|) (-13 (-80 |#1| |#1|) (-444 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-144)) (-6 (-651 |#1|)) |%noBranch|))) (-956) (-754)) (T -328)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) 29 T ELT)) (-3141 ((|#2| $) 31 T ELT)) (-3942 (($ $) NIL T ELT)) (-2406 (((-689) $) 13 T ELT)) (-2807 (((-580 $) $) 23 T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ |#2| |#1|) 21 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1738 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2880 ((|#2| $) 18 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3800 (((-580 |#1|) $) 20 T ELT)) (-3660 ((|#1| $ |#2|) 54 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 32 T CONST)) (-2651 (((-580 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-329 |#1| |#2|) (-13 (-330 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-956) (-751)) (T -329)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-329 *3 *2)) (-4 *3 (-956)) (-4 *2 (-751))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#2| "failed") $) 54 T ELT)) (-3141 ((|#2| $) 55 T ELT)) (-3942 (($ $) 40 T ELT)) (-2406 (((-689) $) 44 T ELT)) (-2807 (((-580 $) $) 45 T ELT)) (-3920 (((-83) $) 48 T ELT)) (-3921 (($ |#2| |#1|) 49 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1738 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2880 ((|#2| $) 43 T ELT)) (-3159 ((|#1| $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3800 (((-580 |#1|) $) 46 T ELT)) (-3660 ((|#1| $ |#2|) 51 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2651 (((-580 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-330 |#1| |#2|) (-111) (-956) (-1007)) (T -330)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1007)))) (-3660 (*1 *2 *1 *3) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-956)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)))) (-3921 (*1 *1 *2 *3) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1007)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-83)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-580 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-580 *3)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-330 *3 *4)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-689)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1007)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-956)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1007))))) -(-13 (-80 |t#1| |t#1|) (-945 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3660 (|t#1| $ |t#2|)) (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (-15 -3921 ($ |t#2| |t#1|)) (-15 -3920 ((-83) $)) (-15 -2651 ((-580 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3800 ((-580 |t#1|) $)) (-15 -2807 ((-580 $) $)) (-15 -2406 ((-689) $)) (-15 -2880 (|t#2| $)) (-15 -3159 (|t#1| $)) (-15 -1738 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3942 ($ $)) (IF (|has| |t#1| (-144)) (-6 (-651 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 |#2|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-945 |#2|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3121 (((-689) $) 40 T ELT)) (-3707 (($) 23 T CONST)) (-3922 (((-3 $ "failed") $ $) 43 T ELT)) (-3142 (((-3 |#1| "failed") $) 51 T ELT)) (-3141 ((|#1| $) 52 T ELT)) (-3450 (((-3 $ "failed") $) 20 T ELT)) (-1739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2398 (((-83) $) 22 T ELT)) (-2287 ((|#1| $ (-480)) 37 T ELT)) (-2288 (((-689) $ (-480)) 38 T ELT)) (-2517 (($ $ $) 29 (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) 30 (|has| |#1| (-751)) ELT)) (-2278 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2279 (($ (-1 (-689) (-689)) $) 36 T ELT)) (-3923 (((-3 $ "failed") $ $) 44 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1740 (($ $ $) 45 T ELT)) (-1741 (($ $ $) 46 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1768 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-689)))) $) 39 T ELT)) (-2865 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 24 T CONST)) (-2552 (((-83) $ $) 31 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 33 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 32 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 34 (|has| |#1| (-751)) ELT)) (** (($ $ (-825)) 17 T ELT) (($ $ (-689)) 21 T ELT) (($ |#1| (-689)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-331 |#1|) (-111) (-1007)) (T -331)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-1741 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-1740 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-3923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-3922 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-2865 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1007)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-331 *3)))) (-1739 (*1 *2 *1 *1) (-12 (-4 *3 (-1007)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-331 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-1007)) (-5 *2 (-689)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-1007)) (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 (-689))))))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-331 *4)) (-4 *4 (-1007)) (-5 *2 (-689)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-331 *2)) (-4 *2 (-1007)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-689) (-689))) (-4 *1 (-331 *3)) (-4 *3 (-1007)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1007))))) -(-13 (-660) (-945 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-689))) (-15 -1741 ($ $ $)) (-15 -1740 ($ $ $)) (-15 -3923 ((-3 $ "failed") $ $)) (-15 -3922 ((-3 $ "failed") $ $)) (-15 -2865 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3121 ((-689) $)) (-15 -1768 ((-580 (-2 (|:| |gen| |t#1|) (|:| -3926 (-689)))) $)) (-15 -2288 ((-689) $ (-480))) (-15 -2287 (|t#1| $ (-480))) (-15 -2279 ($ (-1 (-689) (-689)) $)) (-15 -2278 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-751)) (-6 (-751)) |%noBranch|))) -(((-72) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-13) . T) ((-660) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-945 |#1|) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689) $) 74 T ELT)) (-3707 (($) NIL T CONST)) (-3922 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-1739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2398 (((-83) $) 17 T ELT)) (-2287 ((|#1| $ (-480)) NIL T ELT)) (-2288 (((-689) $ (-480)) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2278 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2279 (($ (-1 (-689) (-689)) $) 37 T ELT)) (-3923 (((-3 $ #1#) $ $) 60 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1740 (($ $ $) 28 T ELT)) (-1741 (($ $ $) 26 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1768 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-689)))) $) 34 T ELT)) (-2865 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3929 (((-767) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 7 T CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 83 (|has| |#1| (-751)) ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ |#1| (-689)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-332 |#1|) (-331 |#1|) (-1007)) (T -332)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-1742 (((-83) $) 25 T ELT)) (-1743 (((-83) $) 22 T ELT)) (-3597 (($ (-1064) (-1064) (-1064)) 26 T ELT)) (-3525 (((-1064) $) 16 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1747 (($ (-1064) (-1064) (-1064)) 14 T ELT)) (-1745 (((-1064) $) 17 T ELT)) (-1744 (((-83) $) 18 T ELT)) (-1746 (((-1064) $) 15 T ELT)) (-3929 (((-767) $) 12 T ELT) (($ (-1064)) 13 T ELT) (((-1064) $) 9 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 7 T ELT))) -(((-333) (-334)) (T -333)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-1742 (((-83) $) 20 T ELT)) (-1743 (((-83) $) 21 T ELT)) (-3597 (($ (-1064) (-1064) (-1064)) 19 T ELT)) (-3525 (((-1064) $) 24 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1747 (($ (-1064) (-1064) (-1064)) 26 T ELT)) (-1745 (((-1064) $) 23 T ELT)) (-1744 (((-83) $) 22 T ELT)) (-1746 (((-1064) $) 25 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-1064)) 28 T ELT) (((-1064) $) 27 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-334) (-111)) (T -334)) -((-1747 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1064)) (-4 *1 (-334)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83)))) (-3597 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1064)) (-4 *1 (-334))))) -(-13 (-1007) (-425 (-1064)) (-10 -8 (-15 -1747 ($ (-1064) (-1064) (-1064))) (-15 -1746 ((-1064) $)) (-15 -3525 ((-1064) $)) (-15 -1745 ((-1064) $)) (-15 -1744 ((-83) $)) (-15 -1743 ((-83) $)) (-15 -1742 ((-83) $)) (-15 -3597 ($ (-1064) (-1064) (-1064))))) -(((-72) . T) ((-552 (-1064)) . T) ((-549 (-767)) . T) ((-549 (-1064)) . T) ((-425 (-1064)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-1748 (((-767) $) 64 T ELT)) (-3707 (($) NIL T CONST)) (-2395 (($ $ (-825)) NIL T ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($ (-689)) 38 T ELT)) (-3894 (((-689)) 18 T ELT)) (-1749 (((-767) $) 66 T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-2646 (($) 24 T CONST)) (-3042 (((-83) $ $) 41 T ELT)) (-3820 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3822 (($ $ $) 51 T ELT)) (** (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-335 |#1| |#2| |#3|) (-13 (-678 |#3|) (-10 -8 (-15 -3894 ((-689))) (-15 -1749 ((-767) $)) (-15 -1748 ((-767) $)) (-15 -2397 ($ (-689))))) (-689) (-689) (-144)) (T -335)) -((-3894 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 (-689)) (-14 *4 (-689)) (-4 *5 (-144)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 (-689)) (-14 *4 (-689)) (-4 *5 (-144)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144))))) -((-3755 (((-689) (-280 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-336 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-689) (-280 |#1| |#2| |#3| |#4|)))) (-13 (-315) (-309)) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -336)) -((-3755 (*1 *2 *3) (-12 (-5 *3 (-280 *4 *5 *6 *7)) (-4 *4 (-13 (-315) (-309))) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-4 *7 (-288 *4 *5 *6)) (-5 *2 (-689)) (-5 *1 (-336 *4 *5 *6 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1751 ((|#2| $) 38 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1752 (($ (-345 |#2|)) 93 T ELT)) (-1750 (((-580 (-2 (|:| -2389 (-689)) (|:| -3756 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3741 (($ $ (-689)) 36 T ELT) (($ $) 34 T ELT)) (-3955 (((-345 |#2|) $) 49 T ELT)) (-3513 (($ (-580 (-2 (|:| -2389 (-689)) (|:| -3756 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3929 (((-767) $) 131 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2655 (($ $ (-689)) 37 T ELT) (($ $) 35 T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3822 (($ |#2| $) 41 T ELT))) -(((-337 |#1| |#2|) (-13 (-1007) (-187) (-550 (-345 |#2|)) (-10 -8 (-15 -3822 ($ |#2| $)) (-15 -1752 ($ (-345 |#2|))) (-15 -1751 (|#2| $)) (-15 -1750 ((-580 (-2 (|:| -2389 (-689)) (|:| -3756 |#2|) (|:| |num| |#2|))) $)) (-15 -3513 ($ (-580 (-2 (|:| -2389 (-689)) (|:| -3756 |#2|) (|:| |num| |#2|))))))) (-13 (-309) (-118)) (-1146 |#1|)) (T -337)) -((-3822 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-309) (-118))) (-5 *1 (-337 *3 *2)) (-4 *2 (-1146 *3)))) (-1752 (*1 *1 *2) (-12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-13 (-309) (-118))) (-5 *1 (-337 *3 *4)))) (-1751 (*1 *2 *1) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-337 *3 *2)) (-4 *3 (-13 (-309) (-118))))) (-1750 (*1 *2 *1) (-12 (-4 *3 (-13 (-309) (-118))) (-5 *2 (-580 (-2 (|:| -2389 (-689)) (|:| -3756 *4) (|:| |num| *4)))) (-5 *1 (-337 *3 *4)) (-4 *4 (-1146 *3)))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| -2389 (-689)) (|:| -3756 *4) (|:| |num| *4)))) (-4 *4 (-1146 *3)) (-4 *3 (-13 (-309) (-118))) (-5 *1 (-337 *3 *4))))) -((-2554 (((-83) $ $) 10 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 16 (|has| |#1| (-791 (-325))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 15 (|has| |#1| (-791 (-480))) ELT)) (-3227 (((-1064) $) 14 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT)) (-3228 (((-1025) $) 13 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT)) (-3929 (((-767) $) 12 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT)) (-1255 (((-83) $ $) 11 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT)) (-3042 (((-83) $ $) 9 (OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ELT))) -(((-338 |#1|) (-111) (-1120)) (T -338)) -NIL -(-13 (-1120) (-10 -7 (IF (|has| |t#1| (-791 (-480))) (-6 (-791 (-480))) |%noBranch|) (IF (|has| |t#1| (-791 (-325))) (-6 (-791 (-325))) |%noBranch|))) -(((-72) OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ((-549 (-767)) OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ((-13) . T) ((-791 (-325)) |has| |#1| (-791 (-325))) ((-791 (-480)) |has| |#1| (-791 (-480))) ((-1007) OR (|has| |#1| (-791 (-480))) (|has| |#1| (-791 (-325)))) ((-1120) . T)) -((-1753 (($ $) 10 T ELT) (($ $ (-689)) 12 T ELT))) -(((-339 |#1|) (-10 -7 (-15 -1753 (|#1| |#1| (-689))) (-15 -1753 (|#1| |#1|))) (-340)) (T -339)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-1753 (($ $) 95 T ELT) (($ $ (-689)) 94 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-3755 (((-738 (-825)) $) 97 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-1754 (((-3 (-689) "failed") $ $) 96 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT)) (-2688 (((-629 $) $) 98 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-340) (-111)) (T -340)) -((-3755 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-738 (-825))))) (-1754 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340)) (-5 *2 (-689)))) (-1753 (*1 *1 *1) (-4 *1 (-340))) (-1753 (*1 *1 *1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-689))))) -(-13 (-309) (-116) (-10 -8 (-15 -3755 ((-738 (-825)) $)) (-15 -1754 ((-3 (-689) "failed") $ $)) (-15 -1753 ($ $)) (-15 -1753 ($ $ (-689))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-3239 (($ (-480) (-480)) 11 T ELT) (($ (-480) (-480) (-825)) NIL T ELT)) (-2601 (((-825)) 19 T ELT) (((-825) (-825)) NIL T ELT))) -(((-341 |#1|) (-10 -7 (-15 -2601 ((-825) (-825))) (-15 -2601 ((-825))) (-15 -3239 (|#1| (-480) (-480) (-825))) (-15 -3239 (|#1| (-480) (-480)))) (-342)) (T -341)) -((-2601 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-341 *3)) (-4 *3 (-342)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-341 *3)) (-4 *3 (-342))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3114 (((-480) $) 106 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-3754 (($ $) 104 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-3023 (($ $) 114 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3606 (((-480) $) 131 T ELT)) (-3707 (($) 22 T CONST)) (-3112 (($ $) 103 T ELT)) (-3142 (((-3 (-480) #1="failed") $) 119 T ELT) (((-3 (-345 (-480)) #1#) $) 116 T ELT)) (-3141 (((-480) $) 120 T ELT) (((-345 (-480)) $) 117 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-1757 (((-825)) 147 T ELT) (((-825) (-825)) 144 (|has| $ (-6 -3969)) ELT)) (-3171 (((-83) $) 129 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 110 T ELT)) (-3755 (((-480) $) 153 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 113 T ELT)) (-3117 (($ $) 109 T ELT)) (-3172 (((-83) $) 130 T ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 66 T ELT)) (-2517 (($ $ $) 123 T ELT) (($) 141 (-12 (-2546 (|has| $ (-6 -3969))) (-2546 (|has| $ (-6 -3961)))) ELT)) (-2843 (($ $ $) 124 T ELT) (($) 140 (-12 (-2546 (|has| $ (-6 -3969))) (-2546 (|has| $ (-6 -3961)))) ELT)) (-1759 (((-480) $) 150 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-1756 (((-825) (-480)) 143 (|has| $ (-6 -3969)) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3113 (($ $) 105 T ELT)) (-3115 (($ $) 107 T ELT)) (-3239 (($ (-480) (-480)) 155 T ELT) (($ (-480) (-480) (-825)) 154 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-2389 (((-480) $) 151 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-2601 (((-825)) 148 T ELT) (((-825) (-825)) 145 (|has| $ (-6 -3969)) ELT)) (-1755 (((-825) (-480)) 142 (|has| $ (-6 -3969)) ELT)) (-3955 (((-325) $) 122 T ELT) (((-177) $) 121 T ELT) (((-795 (-325)) $) 111 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ (-480)) 118 T ELT) (($ (-345 (-480))) 115 T ELT)) (-3111 (((-689)) 38 T CONST)) (-3116 (($ $) 108 T ELT)) (-1758 (((-825)) 149 T ELT) (((-825) (-825)) 146 (|has| $ (-6 -3969)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2680 (((-825)) 152 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3366 (($ $) 132 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 125 T ELT)) (-2553 (((-83) $ $) 127 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 126 T ELT)) (-2671 (((-83) $ $) 128 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT) (($ $ (-345 (-480))) 112 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-342) (-111)) (T -342)) -((-3239 (*1 *1 *2 *2) (-12 (-5 *2 (-480)) (-4 *1 (-342)))) (-3239 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-825)) (-4 *1 (-342)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480)))) (-2680 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480)))) (-1758 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) (-2601 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) (-1757 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-480)) (|has| *1 (-6 -3969)) (-4 *1 (-342)) (-5 *2 (-825)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-480)) (|has| *1 (-6 -3969)) (-4 *1 (-342)) (-5 *2 (-825)))) (-2517 (*1 *1) (-12 (-4 *1 (-342)) (-2546 (|has| *1 (-6 -3969))) (-2546 (|has| *1 (-6 -3961))))) (-2843 (*1 *1) (-12 (-4 *1 (-342)) (-2546 (|has| *1 (-6 -3969))) (-2546 (|has| *1 (-6 -3961)))))) -(-13 (-967) (-10 -8 (-6 -3753) (-15 -3239 ($ (-480) (-480))) (-15 -3239 ($ (-480) (-480) (-825))) (-15 -3755 ((-480) $)) (-15 -2680 ((-825))) (-15 -2389 ((-480) $)) (-15 -1759 ((-480) $)) (-15 -1758 ((-825))) (-15 -2601 ((-825))) (-15 -1757 ((-825))) (IF (|has| $ (-6 -3969)) (PROGN (-15 -1758 ((-825) (-825))) (-15 -2601 ((-825) (-825))) (-15 -1757 ((-825) (-825))) (-15 -1756 ((-825) (-480))) (-15 -1755 ((-825) (-480)))) |%noBranch|) (IF (|has| $ (-6 -3961)) |%noBranch| (IF (|has| $ (-6 -3969)) |%noBranch| (PROGN (-15 -2517 ($)) (-15 -2843 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-550 (-177)) . T) ((-550 (-325)) . T) ((-550 (-795 (-325))) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-750) . T) ((-751) . T) ((-754) . T) ((-791 (-325)) . T) ((-827) . T) ((-910) . T) ((-928) . T) ((-967) . T) ((-945 (-345 (-480))) . T) ((-945 (-480)) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 59 T ELT)) (-1760 (($ $) 77 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 189 T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) 48 T ELT)) (-1761 ((|#1| $) 16 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-1125)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-1125)) ELT)) (-1763 (($ |#1| (-480)) 42 T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 73 T ELT)) (-3450 (((-3 $ #1#) $) 163 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 84 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 80 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 82 (|has| |#1| (-479)) ELT)) (-1764 (($ |#1| (-480)) 44 T ELT)) (-3706 (((-83) $) 209 (|has| |#1| (-1125)) ELT)) (-2398 (((-83) $) 61 T ELT)) (-1823 (((-689) $) 51 T ELT)) (-1765 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-480)) 174 T ELT)) (-2287 ((|#1| $ (-480)) 173 T ELT)) (-1766 (((-480) $ (-480)) 172 T ELT)) (-1769 (($ |#1| (-480)) 41 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1820 (($ |#1| (-580 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-480))))) 78 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1767 (($ |#1| (-480)) 43 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) 190 (|has| |#1| (-387)) ELT)) (-1762 (($ |#1| (-480) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1768 (((-580 (-2 (|:| -3715 |#1|) (|:| -2389 (-480)))) $) 72 T ELT)) (-1941 (((-580 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-480)))) $) 12 T ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-1125)) ELT)) (-3449 (((-3 $ #1#) $ $) 175 T ELT)) (-2389 (((-480) $) 166 T ELT)) (-3946 ((|#1| $) 74 T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 99 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 105 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) $) NIL (|has| |#1| (-449 (-1081) $)) ELT) (($ $ (-580 (-1081)) (-580 $)) 106 (|has| |#1| (-449 (-1081) $)) ELT) (($ $ (-580 (-246 $))) 102 (|has| |#1| (-257 $)) ELT) (($ $ (-246 $)) NIL (|has| |#1| (-257 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-257 $)) ELT) (($ $ (-580 $) (-580 $)) NIL (|has| |#1| (-257 $)) ELT)) (-3783 (($ $ |#1|) 91 (|has| |#1| (-239 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-239 $ $)) ELT)) (-3741 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3955 (((-469) $) 39 (|has| |#1| (-550 (-469))) ELT) (((-325) $) 112 (|has| |#1| (-928)) ELT) (((-177) $) 118 (|has| |#1| (-928)) ELT)) (-3929 (((-767) $) 145 T ELT) (($ (-480)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT)) (-3111 (((-689)) 66 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 53 T CONST)) (-2652 (($) 52 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 158 T ELT)) (-3820 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 179 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 124 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-343 |#1|) (-13 (-491) (-182 |#1|) (-38 |#1|) (-285 |#1|) (-350 |#1|) (-10 -8 (-15 -3946 (|#1| $)) (-15 -2389 ((-480) $)) (-15 -1820 ($ |#1| (-580 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-480)))))) (-15 -1941 ((-580 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-480)))) $)) (-15 -1769 ($ |#1| (-480))) (-15 -1768 ((-580 (-2 (|:| -3715 |#1|) (|:| -2389 (-480)))) $)) (-15 -1767 ($ |#1| (-480))) (-15 -1766 ((-480) $ (-480))) (-15 -2287 (|#1| $ (-480))) (-15 -1765 ((-3 #1# #2# #3# #4#) $ (-480))) (-15 -1823 ((-689) $)) (-15 -1764 ($ |#1| (-480))) (-15 -1763 ($ |#1| (-480))) (-15 -1762 ($ |#1| (-480) (-3 #1# #2# #3# #4#))) (-15 -1761 (|#1| $)) (-15 -1760 ($ $)) (-15 -3941 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-387)) (-6 (-387)) |%noBranch|) (IF (|has| |#1| (-928)) (-6 (-928)) |%noBranch|) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-239 $ $)) (-6 (-239 $ $)) |%noBranch|) (IF (|has| |#1| (-257 $)) (-6 (-257 $)) |%noBranch|) (IF (|has| |#1| (-449 (-1081) $)) (-6 (-449 (-1081) $)) |%noBranch|))) (-491)) (T -343)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-491)) (-5 *1 (-343 *3)))) (-3946 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-343 *3)) (-4 *3 (-491)))) (-1820 (*1 *1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-480))))) (-4 *2 (-491)) (-5 *1 (-343 *2)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-480))))) (-5 *1 (-343 *3)) (-4 *3 (-491)))) (-1769 (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| -3715 *3) (|:| -2389 (-480))))) (-5 *1 (-343 *3)) (-4 *3 (-491)))) (-1767 (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1766 (*1 *2 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-343 *3)) (-4 *3 (-491)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-343 *4)) (-4 *4 (-491)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-343 *3)) (-4 *3 (-491)))) (-1764 (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1763 (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1762 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1761 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-343 *3)) (-4 *3 (-479)) (-4 *3 (-491)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-343 *3)) (-4 *3 (-479)) (-4 *3 (-491)))) (-3010 (*1 *2 *1) (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-343 *3)) (-4 *3 (-479)) (-4 *3 (-491))))) -((-3941 (((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)) 20 T ELT))) -(((-344 |#1| |#2|) (-10 -7 (-15 -3941 ((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)))) (-491) (-491)) (T -344)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-491)) (-4 *6 (-491)) (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 13 T ELT)) (-3114 ((|#1| $) 21 (|has| |#1| (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| |#1| (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1081) #1#) $) NIL (|has| |#1| (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) 54 (|has| |#1| (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT)) (-3141 ((|#1| $) 15 T ELT) (((-1081) $) NIL (|has| |#1| (-945 (-1081))) ELT) (((-345 (-480)) $) 51 (|has| |#1| (-945 (-480))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) 32 T ELT)) (-2980 (($) NIL (|has| |#1| (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| |#1| (-791 (-325))) ELT)) (-2398 (((-83) $) 38 T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 ((|#1| $) 55 T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-1057)) ELT)) (-3172 (((-83) $) 22 (|has| |#1| (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| |#1| (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 82 T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| |#1| (-255)) ELT)) (-3115 ((|#1| $) 26 (|has| |#1| (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 133 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 128 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ |#1|) NIL (|has| |#1| (-239 |#1| |#1|)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 ((|#1| $) 57 T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| |#1| (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT) (((-325) $) NIL (|has| |#1| (-928)) ELT) (((-177) $) NIL (|has| |#1| (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 112 (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1081)) NIL (|has| |#1| (-945 (-1081))) ELT)) (-2688 (((-629 $) $) 92 (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 93 T CONST)) (-3116 ((|#1| $) 24 (|has| |#1| (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| |#1| (-735)) ELT)) (-2646 (($) 28 T CONST)) (-2652 (($) 8 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 48 T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3932 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3820 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3822 (($ $ $) 35 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 122 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-345 |#1|) (-13 (-899 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3965)) (IF (|has| |#1| (-387)) (IF (|has| |#1| (-6 -3976)) (-6 -3965) |%noBranch|) |%noBranch|) |%noBranch|))) (-491)) (T -345)) -NIL -((-3941 (((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)) 13 T ELT))) -(((-346 |#1| |#2|) (-10 -7 (-15 -3941 ((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)))) (-491) (-491)) (T -346)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-491)) (-4 *6 (-491)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6))))) -((-1771 (((-627 |#2|) (-1170 $)) NIL T ELT) (((-627 |#2|)) 18 T ELT)) (-1781 (($ (-1170 |#2|) (-1170 $)) NIL T ELT) (($ (-1170 |#2|)) 24 T ELT)) (-1770 (((-627 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) $) 40 T ELT)) (-2002 ((|#3| $) 69 T ELT)) (-3740 ((|#2| (-1170 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3209 (((-1170 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#2|) $) 22 T ELT) (((-627 |#2|) (-1170 $)) 38 T ELT)) (-3955 (((-1170 |#2|) $) 11 T ELT) (($ (-1170 |#2|)) 13 T ELT)) (-2435 ((|#3| $) 55 T ELT))) -(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -1770 ((-627 |#2|) |#1|)) (-15 -3740 (|#2|)) (-15 -1771 ((-627 |#2|))) (-15 -3955 (|#1| (-1170 |#2|))) (-15 -3955 ((-1170 |#2|) |#1|)) (-15 -1781 (|#1| (-1170 |#2|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1|)) (-15 -2002 (|#3| |#1|)) (-15 -2435 (|#3| |#1|)) (-15 -1771 ((-627 |#2|) (-1170 |#1|))) (-15 -3740 (|#2| (-1170 |#1|))) (-15 -1781 (|#1| (-1170 |#2|) (-1170 |#1|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1| (-1170 |#1|))) (-15 -1770 ((-627 |#2|) |#1| (-1170 |#1|)))) (-348 |#2| |#3|) (-144) (-1146 |#2|)) (T -347)) -((-1771 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)) (-5 *1 (-347 *3 *4 *5)) (-4 *3 (-348 *4 *5)))) (-3740 (*1 *2) (-12 (-4 *4 (-1146 *2)) (-4 *2 (-144)) (-5 *1 (-347 *3 *2 *4)) (-4 *3 (-348 *2 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1771 (((-627 |#1|) (-1170 $)) 59 T ELT) (((-627 |#1|)) 75 T ELT)) (-3313 ((|#1| $) 65 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-1781 (($ (-1170 |#1|) (-1170 $)) 61 T ELT) (($ (-1170 |#1|)) 78 T ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) 66 T ELT) (((-627 |#1|) $) 73 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3094 (((-825)) 67 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3117 ((|#1| $) 64 T ELT)) (-2002 ((|#2| $) 57 (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3740 ((|#1| (-1170 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 63 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 62 T ELT) (((-1170 |#1|) $) 80 T ELT) (((-627 |#1|) (-1170 $)) 79 T ELT)) (-3955 (((-1170 |#1|) $) 77 T ELT) (($ (-1170 |#1|)) 76 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2688 (((-629 $) $) 56 (|has| |#1| (-116)) ELT)) (-2435 ((|#2| $) 58 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 81 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-348 |#1| |#2|) (-111) (-144) (-1146 |t#1|)) (T -348)) -((-2000 (*1 *2) (-12 (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-1170 *1)) (-4 *1 (-348 *3 *4)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-1170 *3)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-348 *3 *4)) (-4 *4 (-1146 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-1170 *3)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-348 *3 *4)) (-4 *4 (-1146 *3)))) (-1771 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-627 *3)))) (-3740 (*1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-627 *3))))) -(-13 (-317 |t#1| |t#2|) (-10 -8 (-15 -2000 ((-1170 $))) (-15 -3209 ((-1170 |t#1|) $)) (-15 -3209 ((-627 |t#1|) (-1170 $))) (-15 -1781 ($ (-1170 |t#1|))) (-15 -3955 ((-1170 |t#1|) $)) (-15 -3955 ($ (-1170 |t#1|))) (-15 -1771 ((-627 |t#1|))) (-15 -3740 (|t#1|)) (-15 -1770 ((-627 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-317 |#1| |#2|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-660) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3142 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) 27 T ELT) (((-3 (-480) #1#) $) 19 T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) 24 T ELT) (((-480) $) 14 T ELT)) (-3929 (($ |#2|) NIL T ELT) (($ (-345 (-480))) 22 T ELT) (($ (-480)) 11 T ELT))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| (-480))) (-15 -3142 ((-3 (-480) #1="failed") |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3929 (|#1| |#2|))) (-350 |#2|) (-1120)) (T -349)) -NIL -((-3142 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-345 (-480)) #1#) $) 16 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) 13 (|has| |#1| (-945 (-480))) ELT)) (-3141 ((|#1| $) 8 T ELT) (((-345 (-480)) $) 17 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) 14 (|has| |#1| (-945 (-480))) ELT)) (-3929 (($ |#1|) 6 T ELT) (($ (-345 (-480))) 15 (|has| |#1| (-945 (-345 (-480)))) ELT) (($ (-480)) 12 (|has| |#1| (-945 (-480))) ELT))) -(((-350 |#1|) (-111) (-1120)) (T -350)) -NIL -(-13 (-945 |t#1|) (-10 -7 (IF (|has| |t#1| (-945 (-480))) (-6 (-945 (-480))) |%noBranch|) (IF (|has| |t#1| (-945 (-345 (-480)))) (-6 (-945 (-345 (-480)))) |%noBranch|))) -(((-552 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-552 (-480)) |has| |#1| (-945 (-480))) ((-552 |#1|) . T) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-1772 ((|#4| (-689) (-1170 |#4|)) 55 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2984 (((-1170 |#4|) $) 15 T ELT)) (-3117 ((|#2| $) 53 T ELT)) (-1773 (($ $) 156 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 103 T ELT)) (-1958 (($ (-1170 |#4|)) 102 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2983 ((|#1| $) 16 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) 147 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 |#4|) $) 140 T ELT)) (-2652 (($) 11 T CONST)) (-3042 (((-83) $ $) 39 T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-351 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -1958 ($ (-1170 |#4|))) (-15 -2000 ((-1170 |#4|) $)) (-15 -3117 (|#2| $)) (-15 -2984 ((-1170 |#4|) $)) (-15 -2983 (|#1| $)) (-15 -1773 ($ $)) (-15 -1772 (|#4| (-689) (-1170 |#4|))))) (-255) (-899 |#1|) (-1146 |#2|) (-13 (-348 |#2| |#3|) (-945 |#2|))) (T -351)) -((-1958 (*1 *1 *2) (-12 (-5 *2 (-1170 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-4 *3 (-255)) (-5 *1 (-351 *3 *4 *5 *6)))) (-2000 (*1 *2 *1) (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))))) (-3117 (*1 *2 *1) (-12 (-4 *4 (-1146 *2)) (-4 *2 (-899 *3)) (-5 *1 (-351 *3 *2 *4 *5)) (-4 *3 (-255)) (-4 *5 (-13 (-348 *2 *4) (-945 *2))))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-899 *2)) (-4 *4 (-1146 *3)) (-4 *2 (-255)) (-5 *1 (-351 *2 *3 *4 *5)) (-4 *5 (-13 (-348 *3 *4) (-945 *3))))) (-1773 (*1 *1 *1) (-12 (-4 *2 (-255)) (-4 *3 (-899 *2)) (-4 *4 (-1146 *3)) (-5 *1 (-351 *2 *3 *4 *5)) (-4 *5 (-13 (-348 *3 *4) (-945 *3))))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-689)) (-5 *4 (-1170 *2)) (-4 *5 (-255)) (-4 *6 (-899 *5)) (-4 *2 (-13 (-348 *6 *7) (-945 *6))) (-5 *1 (-351 *5 *6 *7 *2)) (-4 *7 (-1146 *6))))) -((-3941 (((-351 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-351 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-352 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3941 ((-351 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-351 |#1| |#2| |#3| |#4|)))) (-255) (-899 |#1|) (-1146 |#2|) (-13 (-348 |#2| |#3|) (-945 |#2|)) (-255) (-899 |#5|) (-1146 |#6|) (-13 (-348 |#6| |#7|) (-945 |#6|))) (T -352)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-351 *5 *6 *7 *8)) (-4 *5 (-255)) (-4 *6 (-899 *5)) (-4 *7 (-1146 *6)) (-4 *8 (-13 (-348 *6 *7) (-945 *6))) (-4 *9 (-255)) (-4 *10 (-899 *9)) (-4 *11 (-1146 *10)) (-5 *2 (-351 *9 *10 *11 *12)) (-5 *1 (-352 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-348 *10 *11) (-945 *10)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3117 ((|#2| $) 69 T ELT)) (-1774 (($ (-1170 |#4|)) 27 T ELT) (($ (-351 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-945 |#2|)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 37 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 |#4|) $) 28 T ELT)) (-2652 (($) 26 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-353 |#1| |#2| |#3| |#4| |#5|) (-13 (-660) (-10 -8 (-15 -2000 ((-1170 |#4|) $)) (-15 -3117 (|#2| $)) (-15 -1774 ($ (-1170 |#4|))) (IF (|has| |#4| (-945 |#2|)) (-15 -1774 ($ (-351 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-255) (-899 |#1|) (-1146 |#2|) (-348 |#2| |#3|) (-1170 |#4|)) (T -353)) -((-2000 (*1 *2 *1) (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) (-5 *1 (-353 *3 *4 *5 *6 *7)) (-4 *6 (-348 *4 *5)) (-14 *7 *2))) (-3117 (*1 *2 *1) (-12 (-4 *4 (-1146 *2)) (-4 *2 (-899 *3)) (-5 *1 (-353 *3 *2 *4 *5 *6)) (-4 *3 (-255)) (-4 *5 (-348 *2 *4)) (-14 *6 (-1170 *5)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-1170 *6)) (-4 *6 (-348 *4 *5)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-4 *3 (-255)) (-5 *1 (-353 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-351 *3 *4 *5 *6)) (-4 *6 (-945 *4)) (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-4 *6 (-348 *4 *5)) (-14 *7 (-1170 *6)) (-5 *1 (-353 *3 *4 *5 *6 *7))))) -((-3941 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-354 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#3| (-1 |#4| |#2|) |#1|))) (-356 |#2|) (-144) (-356 |#4|) (-144)) (T -354)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-356 *6)) (-5 *1 (-354 *4 *5 *2 *6)) (-4 *4 (-356 *5))))) -((-1761 (((-3 $ #1="failed")) 99 T ELT)) (-3208 (((-1170 (-627 |#2|)) (-1170 $)) NIL T ELT) (((-1170 (-627 |#2|))) 104 T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) 97 T ELT)) (-1692 (((-3 $ #1#)) 96 T ELT)) (-1777 (((-627 |#2|) (-1170 $)) NIL T ELT) (((-627 |#2|)) 115 T ELT)) (-1775 (((-627 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) $) 123 T ELT)) (-1889 (((-1076 (-852 |#2|))) 64 T ELT)) (-1779 ((|#2| (-1170 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1781 (($ (-1170 |#2|) (-1170 $)) NIL T ELT) (($ (-1170 |#2|)) 125 T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) 95 T ELT)) (-1693 (((-3 $ #1#)) 87 T ELT)) (-1778 (((-627 |#2|) (-1170 $)) NIL T ELT) (((-627 |#2|)) 113 T ELT)) (-1776 (((-627 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) $) 121 T ELT)) (-1893 (((-1076 (-852 |#2|))) 63 T ELT)) (-1780 ((|#2| (-1170 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3209 (((-1170 |#2|) $ (-1170 $)) NIL T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#2|) $) 124 T ELT) (((-627 |#2|) (-1170 $)) 133 T ELT)) (-3955 (((-1170 |#2|) $) 109 T ELT) (($ (-1170 |#2|)) 111 T ELT)) (-1881 (((-580 (-852 |#2|)) (-1170 $)) NIL T ELT) (((-580 (-852 |#2|))) 107 T ELT)) (-2531 (($ (-627 |#2|) $) 103 T ELT))) -(((-355 |#1| |#2|) (-10 -7 (-15 -2531 (|#1| (-627 |#2|) |#1|)) (-15 -1889 ((-1076 (-852 |#2|)))) (-15 -1893 ((-1076 (-852 |#2|)))) (-15 -1775 ((-627 |#2|) |#1|)) (-15 -1776 ((-627 |#2|) |#1|)) (-15 -1777 ((-627 |#2|))) (-15 -1778 ((-627 |#2|))) (-15 -1779 (|#2|)) (-15 -1780 (|#2|)) (-15 -3955 (|#1| (-1170 |#2|))) (-15 -3955 ((-1170 |#2|) |#1|)) (-15 -1781 (|#1| (-1170 |#2|))) (-15 -1881 ((-580 (-852 |#2|)))) (-15 -3208 ((-1170 (-627 |#2|)))) (-15 -3209 ((-627 |#2|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1|)) (-15 -1761 ((-3 |#1| #1="failed"))) (-15 -1692 ((-3 |#1| #1#))) (-15 -1693 ((-3 |#1| #1#))) (-15 -1895 ((-3 (-2 (|:| |particular| |#1|) (|:| -2000 (-580 |#1|))) #1#))) (-15 -1896 ((-3 (-2 (|:| |particular| |#1|) (|:| -2000 (-580 |#1|))) #1#))) (-15 -1777 ((-627 |#2|) (-1170 |#1|))) (-15 -1778 ((-627 |#2|) (-1170 |#1|))) (-15 -1779 (|#2| (-1170 |#1|))) (-15 -1780 (|#2| (-1170 |#1|))) (-15 -1781 (|#1| (-1170 |#2|) (-1170 |#1|))) (-15 -3209 ((-627 |#2|) (-1170 |#1|) (-1170 |#1|))) (-15 -3209 ((-1170 |#2|) |#1| (-1170 |#1|))) (-15 -1775 ((-627 |#2|) |#1| (-1170 |#1|))) (-15 -1776 ((-627 |#2|) |#1| (-1170 |#1|))) (-15 -3208 ((-1170 (-627 |#2|)) (-1170 |#1|))) (-15 -1881 ((-580 (-852 |#2|)) (-1170 |#1|)))) (-356 |#2|) (-144)) (T -355)) -((-3208 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1170 (-627 *4))) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-580 (-852 *4))) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4)))) (-1780 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-355 *3 *2)) (-4 *3 (-356 *2)))) (-1779 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-355 *3 *2)) (-4 *3 (-356 *2)))) (-1778 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-627 *4)) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4)))) (-1777 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-627 *4)) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4)))) (-1893 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1076 (-852 *4))) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1076 (-852 *4))) (-5 *1 (-355 *3 *4)) (-4 *3 (-356 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1761 (((-3 $ #1="failed")) 47 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3208 (((-1170 (-627 |#1|)) (-1170 $)) 88 T ELT) (((-1170 (-627 |#1|))) 114 T ELT)) (-1718 (((-1170 $)) 91 T ELT)) (-3707 (($) 22 T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) 50 (|has| |#1| (-491)) ELT)) (-1692 (((-3 $ #1#)) 48 (|has| |#1| (-491)) ELT)) (-1777 (((-627 |#1|) (-1170 $)) 75 T ELT) (((-627 |#1|)) 106 T ELT)) (-1716 ((|#1| $) 84 T ELT)) (-1775 (((-627 |#1|) $ (-1170 $)) 86 T ELT) (((-627 |#1|) $) 104 T ELT)) (-2392 (((-3 $ #1#) $) 55 (|has| |#1| (-491)) ELT)) (-1889 (((-1076 (-852 |#1|))) 102 (|has| |#1| (-309)) ELT)) (-2395 (($ $ (-825)) 36 T ELT)) (-1714 ((|#1| $) 82 T ELT)) (-1694 (((-1076 |#1|) $) 52 (|has| |#1| (-491)) ELT)) (-1779 ((|#1| (-1170 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1712 (((-1076 |#1|) $) 73 T ELT)) (-1706 (((-83)) 67 T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) 79 T ELT) (($ (-1170 |#1|)) 112 T ELT)) (-3450 (((-3 $ #1#) $) 57 (|has| |#1| (-491)) ELT)) (-3094 (((-825)) 90 T ELT)) (-1703 (((-83)) 64 T ELT)) (-2419 (($ $ (-825)) 43 T ELT)) (-1699 (((-83)) 60 T ELT)) (-1697 (((-83)) 58 T ELT)) (-1701 (((-83)) 62 T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) 51 (|has| |#1| (-491)) ELT)) (-1693 (((-3 $ #1#)) 49 (|has| |#1| (-491)) ELT)) (-1778 (((-627 |#1|) (-1170 $)) 76 T ELT) (((-627 |#1|)) 107 T ELT)) (-1717 ((|#1| $) 85 T ELT)) (-1776 (((-627 |#1|) $ (-1170 $)) 87 T ELT) (((-627 |#1|) $) 105 T ELT)) (-2393 (((-3 $ #1#) $) 56 (|has| |#1| (-491)) ELT)) (-1893 (((-1076 (-852 |#1|))) 103 (|has| |#1| (-309)) ELT)) (-2394 (($ $ (-825)) 37 T ELT)) (-1715 ((|#1| $) 83 T ELT)) (-1695 (((-1076 |#1|) $) 53 (|has| |#1| (-491)) ELT)) (-1780 ((|#1| (-1170 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1713 (((-1076 |#1|) $) 74 T ELT)) (-1707 (((-83)) 68 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1698 (((-83)) 59 T ELT)) (-1700 (((-83)) 61 T ELT)) (-1702 (((-83)) 63 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1705 (((-83)) 66 T ELT)) (-3783 ((|#1| $ (-480)) 118 T ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 81 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 80 T ELT) (((-1170 |#1|) $) 116 T ELT) (((-627 |#1|) (-1170 $)) 115 T ELT)) (-3955 (((-1170 |#1|) $) 111 T ELT) (($ (-1170 |#1|)) 110 T ELT)) (-1881 (((-580 (-852 |#1|)) (-1170 $)) 89 T ELT) (((-580 (-852 |#1|))) 113 T ELT)) (-2421 (($ $ $) 33 T ELT)) (-1711 (((-83)) 72 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 117 T ELT)) (-1696 (((-580 (-1170 |#1|))) 54 (|has| |#1| (-491)) ELT)) (-2422 (($ $ $ $) 34 T ELT)) (-1709 (((-83)) 70 T ELT)) (-2531 (($ (-627 |#1|) $) 101 T ELT)) (-2420 (($ $ $) 32 T ELT)) (-1710 (((-83)) 71 T ELT)) (-1708 (((-83)) 69 T ELT)) (-1704 (((-83)) 65 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 38 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-356 |#1|) (-111) (-144)) (T -356)) -((-2000 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1170 *1)) (-4 *1 (-356 *3)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 *3)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-356 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) (-3208 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 (-627 *3))))) (-1881 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-580 (-852 *3))))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-356 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 *3)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-356 *3)))) (-1780 (*1 *2) (-12 (-4 *1 (-356 *2)) (-4 *2 (-144)))) (-1779 (*1 *2) (-12 (-4 *1 (-356 *2)) (-4 *2 (-144)))) (-1778 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3)))) (-1777 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3)))) (-1893 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-4 *3 (-309)) (-5 *2 (-1076 (-852 *3))))) (-1889 (*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-4 *3 (-309)) (-5 *2 (-1076 (-852 *3))))) (-2531 (*1 *1 *2 *1) (-12 (-5 *2 (-627 *3)) (-4 *1 (-356 *3)) (-4 *3 (-144))))) -(-13 (-313 |t#1|) (-239 (-480) |t#1|) (-10 -8 (-15 -2000 ((-1170 $))) (-15 -3209 ((-1170 |t#1|) $)) (-15 -3209 ((-627 |t#1|) (-1170 $))) (-15 -3208 ((-1170 (-627 |t#1|)))) (-15 -1881 ((-580 (-852 |t#1|)))) (-15 -1781 ($ (-1170 |t#1|))) (-15 -3955 ((-1170 |t#1|) $)) (-15 -3955 ($ (-1170 |t#1|))) (-15 -1780 (|t#1|)) (-15 -1779 (|t#1|)) (-15 -1778 ((-627 |t#1|))) (-15 -1777 ((-627 |t#1|))) (-15 -1776 ((-627 |t#1|) $)) (-15 -1775 ((-627 |t#1|) $)) (IF (|has| |t#1| (-309)) (PROGN (-15 -1893 ((-1076 (-852 |t#1|)))) (-15 -1889 ((-1076 (-852 |t#1|))))) |%noBranch|) (-15 -2531 ($ (-627 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-239 (-480) |#1|) . T) ((-313 |#1|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-654) . T) ((-678 |#1|) . T) ((-680) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-3119 (((-343 |#1|) (-343 |#1|) (-1 (-343 |#1|) |#1|)) 28 T ELT)) (-1782 (((-343 |#1|) (-343 |#1|) (-343 |#1|)) 17 T ELT))) -(((-357 |#1|) (-10 -7 (-15 -3119 ((-343 |#1|) (-343 |#1|) (-1 (-343 |#1|) |#1|))) (-15 -1782 ((-343 |#1|) (-343 |#1|) (-343 |#1|)))) (-491)) (T -357)) -((-1782 (*1 *2 *2 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-491)) (-5 *1 (-357 *3)))) (-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-343 *4) *4)) (-4 *4 (-491)) (-5 *2 (-343 *4)) (-5 *1 (-357 *4))))) -((-3067 (((-580 (-1081)) $) 81 T ELT)) (-3069 (((-345 (-1076 $)) $ (-547 $)) 313 T ELT)) (-1593 (($ $ (-246 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) 277 T ELT)) (-3142 (((-3 (-547 $) #1="failed") $) NIL T ELT) (((-3 (-1081) #1#) $) 84 T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-345 (-852 |#2|)) #1#) $) 363 T ELT) (((-3 (-852 |#2|) #1#) $) 275 T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3141 (((-547 $) $) NIL T ELT) (((-1081) $) 28 T ELT) (((-480) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-345 (-852 |#2|)) $) 345 T ELT) (((-852 |#2|) $) 272 T ELT) (((-345 (-480)) $) NIL T ELT)) (-3578 (((-84) (-84)) 47 T ELT)) (-2982 (($ $) 99 T ELT)) (-1591 (((-3 (-547 $) #1#) $) 268 T ELT)) (-1590 (((-580 (-547 $)) $) 269 T ELT)) (-2809 (((-3 (-580 $) #1#) $) 287 T ELT)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -2389 (-480))) #1#) $) 294 T ELT)) (-2808 (((-3 (-580 $) #1#) $) 285 T ELT)) (-1783 (((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 $))) #1#) $) 304 T ELT)) (-2810 (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $ (-84)) 255 T ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) #1#) $ (-1081)) 257 T ELT)) (-1786 (((-83) $) 17 T ELT)) (-1785 ((|#2| $) 19 T ELT)) (-3751 (($ $ (-547 $) $) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) 276 T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) 109 T ELT) (($ $ (-1081) (-1 $ (-580 $))) NIL T ELT) (($ $ (-1081) (-1 $ $)) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-580 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1081)) 62 T ELT) (($ $ (-580 (-1081))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-84) $ (-1081)) 65 T ELT) (($ $ (-580 (-84)) (-580 $) (-1081)) 72 T ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ $))) 120 T ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ (-580 $)))) 282 T ELT) (($ $ (-1081) (-689) (-1 $ (-580 $))) 105 T ELT) (($ $ (-1081) (-689) (-1 $ $)) 104 T ELT)) (-3783 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-580 $)) 119 T ELT)) (-3741 (($ $ (-1081)) 278 T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-2981 (($ $) 324 T ELT)) (-3955 (((-795 (-480)) $) 297 T ELT) (((-795 (-325)) $) 301 T ELT) (($ (-343 $)) 359 T ELT) (((-469) $) NIL T ELT)) (-3929 (((-767) $) 279 T ELT) (($ (-547 $)) 93 T ELT) (($ (-1081)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1030 |#2| (-547 $))) NIL T ELT) (($ (-345 |#2|)) 329 T ELT) (($ (-852 (-345 |#2|))) 368 T ELT) (($ (-345 (-852 (-345 |#2|)))) 341 T ELT) (($ (-345 (-852 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-852 |#2|)) 216 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) 373 T ELT)) (-3111 (((-689)) 88 T CONST)) (-2242 (((-83) (-84)) 42 T ELT)) (-1784 (($ (-1081) $) 31 T ELT) (($ (-1081) $ $) 32 T ELT) (($ (-1081) $ $ $) 33 T ELT) (($ (-1081) $ $ $ $) 34 T ELT) (($ (-1081) (-580 $)) 39 T ELT)) (* (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-825) $) NIL T ELT))) -(((-358 |#1| |#2|) (-10 -7 (-15 * (|#1| (-825) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3142 ((-3 (-345 (-480)) #1="failed") |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3929 (|#1| (-480))) (-15 -3111 ((-689)) -3935) (-15 * (|#1| |#2| |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3929 (|#1| (-852 |#2|))) (-15 -3142 ((-3 (-852 |#2|) #1#) |#1|)) (-15 -3141 ((-852 |#2|) |#1|)) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 * (|#1| |#1| |#2|)) (-15 -3929 (|#1| |#1|)) (-15 * (|#1| |#1| (-345 (-480)))) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 -3929 (|#1| (-345 (-852 |#2|)))) (-15 -3142 ((-3 (-345 (-852 |#2|)) #1#) |#1|)) (-15 -3141 ((-345 (-852 |#2|)) |#1|)) (-15 -3069 ((-345 (-1076 |#1|)) |#1| (-547 |#1|))) (-15 -3929 (|#1| (-345 (-852 (-345 |#2|))))) (-15 -3929 (|#1| (-852 (-345 |#2|)))) (-15 -3929 (|#1| (-345 |#2|))) (-15 -2981 (|#1| |#1|)) (-15 -3955 (|#1| (-343 |#1|))) (-15 -3751 (|#1| |#1| (-1081) (-689) (-1 |#1| |#1|))) (-15 -3751 (|#1| |#1| (-1081) (-689) (-1 |#1| (-580 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-689)) (-580 (-1 |#1| (-580 |#1|))))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-689)) (-580 (-1 |#1| |#1|)))) (-15 -2811 ((-3 (-2 (|:| |val| |#1|) (|:| -2389 (-480))) #1#) |#1|)) (-15 -2810 ((-3 (-2 (|:| |var| (-547 |#1|)) (|:| -2389 (-480))) #1#) |#1| (-1081))) (-15 -2810 ((-3 (-2 (|:| |var| (-547 |#1|)) (|:| -2389 (-480))) #1#) |#1| (-84))) (-15 -2982 (|#1| |#1|)) (-15 -3929 (|#1| (-1030 |#2| (-547 |#1|)))) (-15 -1783 ((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 |#1|))) #1#) |#1|)) (-15 -2808 ((-3 (-580 |#1|) #1#) |#1|)) (-15 -2810 ((-3 (-2 (|:| |var| (-547 |#1|)) (|:| -2389 (-480))) #1#) |#1|)) (-15 -2809 ((-3 (-580 |#1|) #1#) |#1|)) (-15 -3751 (|#1| |#1| (-580 (-84)) (-580 |#1|) (-1081))) (-15 -3751 (|#1| |#1| (-84) |#1| (-1081))) (-15 -3751 (|#1| |#1|)) (-15 -3751 (|#1| |#1| (-580 (-1081)))) (-15 -3751 (|#1| |#1| (-1081))) (-15 -1784 (|#1| (-1081) (-580 |#1|))) (-15 -1784 (|#1| (-1081) |#1| |#1| |#1| |#1|)) (-15 -1784 (|#1| (-1081) |#1| |#1| |#1|)) (-15 -1784 (|#1| (-1081) |#1| |#1|)) (-15 -1784 (|#1| (-1081) |#1|)) (-15 -3067 ((-580 (-1081)) |#1|)) (-15 -1785 (|#2| |#1|)) (-15 -1786 ((-83) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -3929 (|#1| (-1081))) (-15 -3142 ((-3 (-1081) #1#) |#1|)) (-15 -3141 ((-1081) |#1|)) (-15 -3751 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3751 (|#1| |#1| (-84) (-1 |#1| (-580 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-84)) (-580 (-1 |#1| (-580 |#1|))))) (-15 -3751 (|#1| |#1| (-580 (-84)) (-580 (-1 |#1| |#1|)))) (-15 -3751 (|#1| |#1| (-1081) (-1 |#1| |#1|))) (-15 -3751 (|#1| |#1| (-1081) (-1 |#1| (-580 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-1 |#1| (-580 |#1|))))) (-15 -3751 (|#1| |#1| (-580 (-1081)) (-580 (-1 |#1| |#1|)))) (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 -1590 ((-580 (-547 |#1|)) |#1|)) (-15 -1591 ((-3 (-547 |#1|) #1#) |#1|)) (-15 -1593 (|#1| |#1| (-580 (-547 |#1|)) (-580 |#1|))) (-15 -1593 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -1593 (|#1| |#1| (-246 |#1|))) (-15 -3783 (|#1| (-84) (-580 |#1|))) (-15 -3783 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1| |#1|)) (-15 -3783 (|#1| (-84) |#1|)) (-15 -3751 (|#1| |#1| (-580 |#1|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| (-246 |#1|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -3751 (|#1| |#1| (-580 (-547 |#1|)) (-580 |#1|))) (-15 -3751 (|#1| |#1| (-547 |#1|) |#1|)) (-15 -3929 (|#1| (-547 |#1|))) (-15 -3142 ((-3 (-547 |#1|) #1#) |#1|)) (-15 -3141 ((-547 |#1|) |#1|)) (-15 -3929 ((-767) |#1|))) (-359 |#2|) (-1007)) (T -358)) -((-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *4 (-1007)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-358 *4 *5)) (-4 *4 (-359 *5)))) (-3111 (*1 *2) (-12 (-4 *4 (-1007)) (-5 *2 (-689)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 129 (|has| |#1| (-25)) ELT)) (-3067 (((-580 (-1081)) $) 220 T ELT)) (-3069 (((-345 (-1076 $)) $ (-547 $)) 188 (|has| |#1| (-491)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 160 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 161 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 163 (|has| |#1| (-491)) ELT)) (-1589 (((-580 (-547 $)) $) 42 T ELT)) (-1301 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1593 (($ $ (-246 $)) 54 T ELT) (($ $ (-580 (-246 $))) 53 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 52 T ELT)) (-3758 (($ $) 180 (|has| |#1| (-491)) ELT)) (-3954 (((-343 $) $) 181 (|has| |#1| (-491)) ELT)) (-1597 (((-83) $ $) 171 (|has| |#1| (-491)) ELT)) (-3707 (($) 117 (OR (|has| |#1| (-1017)) (|has| |#1| (-25))) CONST)) (-3142 (((-3 (-547 $) #1="failed") $) 67 T ELT) (((-3 (-1081) #1#) $) 233 T ELT) (((-3 (-480) #1#) $) 227 (|has| |#1| (-945 (-480))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-345 (-852 |#1|)) #1#) $) 186 (|has| |#1| (-491)) ELT) (((-3 (-852 |#1|) #1#) $) 136 (|has| |#1| (-956)) ELT) (((-3 (-345 (-480)) #1#) $) 111 (OR (-12 (|has| |#1| (-945 (-480))) (|has| |#1| (-491))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3141 (((-547 $) $) 68 T ELT) (((-1081) $) 234 T ELT) (((-480) $) 226 (|has| |#1| (-945 (-480))) ELT) ((|#1| $) 225 T ELT) (((-345 (-852 |#1|)) $) 187 (|has| |#1| (-491)) ELT) (((-852 |#1|) $) 137 (|has| |#1| (-956)) ELT) (((-345 (-480)) $) 112 (OR (-12 (|has| |#1| (-945 (-480))) (|has| |#1| (-491))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2550 (($ $ $) 175 (|has| |#1| (-491)) ELT)) (-2267 (((-627 (-480)) (-627 $)) 153 (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 152 (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 151 (|has| |#1| (-956)) ELT) (((-627 |#1|) (-627 $)) 150 (|has| |#1| (-956)) ELT)) (-3450 (((-3 $ "failed") $) 119 (|has| |#1| (-1017)) ELT)) (-2549 (($ $ $) 174 (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 169 (|has| |#1| (-491)) ELT)) (-3706 (((-83) $) 182 (|has| |#1| (-491)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 229 (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 228 (|has| |#1| (-791 (-325))) ELT)) (-2559 (($ $) 49 T ELT) (($ (-580 $)) 48 T ELT)) (-1588 (((-580 (-84)) $) 41 T ELT)) (-3578 (((-84) (-84)) 40 T ELT)) (-2398 (((-83) $) 118 (|has| |#1| (-1017)) ELT)) (-2659 (((-83) $) 20 (|has| $ (-945 (-480))) ELT)) (-2982 (($ $) 203 (|has| |#1| (-956)) ELT)) (-2984 (((-1030 |#1| (-547 $)) $) 204 (|has| |#1| (-956)) ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 178 (|has| |#1| (-491)) ELT)) (-1586 (((-1076 $) (-547 $)) 23 (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) 34 T ELT)) (-1591 (((-3 (-547 $) "failed") $) 44 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 155 (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 154 (-2548 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 149 (|has| |#1| (-956)) ELT) (((-627 |#1|) (-1170 $)) 148 (|has| |#1| (-956)) ELT)) (-1880 (($ (-580 $)) 167 (|has| |#1| (-491)) ELT) (($ $ $) 166 (|has| |#1| (-491)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-1590 (((-580 (-547 $)) $) 43 T ELT)) (-2223 (($ (-84) $) 36 T ELT) (($ (-84) (-580 $)) 35 T ELT)) (-2809 (((-3 (-580 $) "failed") $) 209 (|has| |#1| (-1017)) ELT)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -2389 (-480))) "failed") $) 200 (|has| |#1| (-956)) ELT)) (-2808 (((-3 (-580 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1783 (((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2810 (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $) 208 (|has| |#1| (-1017)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $ (-84)) 202 (|has| |#1| (-956)) ELT) (((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $ (-1081)) 201 (|has| |#1| (-956)) ELT)) (-2619 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1081)) 37 T ELT)) (-2470 (($ $) 121 (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT)) (-2589 (((-689) $) 45 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 222 T ELT)) (-1785 ((|#1| $) 221 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 168 (|has| |#1| (-491)) ELT)) (-3129 (($ (-580 $)) 165 (|has| |#1| (-491)) ELT) (($ $ $) 164 (|has| |#1| (-491)) ELT)) (-1587 (((-83) $ $) 33 T ELT) (((-83) $ (-1081)) 32 T ELT)) (-3715 (((-343 $) $) 179 (|has| |#1| (-491)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-491)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 176 (|has| |#1| (-491)) ELT)) (-3449 (((-3 $ "failed") $ $) 159 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 170 (|has| |#1| (-491)) ELT)) (-2660 (((-83) $) 21 (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-547 $) $) 65 T ELT) (($ $ (-580 (-547 $)) (-580 $)) 64 T ELT) (($ $ (-580 (-246 $))) 63 T ELT) (($ $ (-246 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-580 $) (-580 $)) 60 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) 31 T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) 30 T ELT) (($ $ (-1081) (-1 $ (-580 $))) 29 T ELT) (($ $ (-1081) (-1 $ $)) 28 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) 27 T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-580 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT) (($ $ (-1081)) 214 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-1081))) 213 (|has| |#1| (-550 (-469))) ELT) (($ $) 212 (|has| |#1| (-550 (-469))) ELT) (($ $ (-84) $ (-1081)) 211 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-84)) (-580 $) (-1081)) 210 (|has| |#1| (-550 (-469))) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ $))) 199 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ (-580 $)))) 198 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689) (-1 $ (-580 $))) 197 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689) (-1 $ $)) 196 (|has| |#1| (-956)) ELT)) (-1596 (((-689) $) 172 (|has| |#1| (-491)) ELT)) (-3783 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-580 $)) 55 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 173 (|has| |#1| (-491)) ELT)) (-1592 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3741 (($ $ (-1081)) 146 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) 144 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) 143 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 142 (|has| |#1| (-956)) ELT)) (-2981 (($ $) 193 (|has| |#1| (-491)) ELT)) (-2983 (((-1030 |#1| (-547 $)) $) 194 (|has| |#1| (-491)) ELT)) (-3170 (($ $) 22 (|has| $ (-956)) ELT)) (-3955 (((-795 (-480)) $) 231 (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) 230 (|has| |#1| (-550 (-795 (-325)))) ELT) (($ (-343 $)) 195 (|has| |#1| (-491)) ELT) (((-469) $) 113 (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $ $) 124 (|has| |#1| (-408)) ELT)) (-2421 (($ $ $) 125 (|has| |#1| (-408)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-547 $)) 66 T ELT) (($ (-1081)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1030 |#1| (-547 $))) 205 (|has| |#1| (-956)) ELT) (($ (-345 |#1|)) 191 (|has| |#1| (-491)) ELT) (($ (-852 (-345 |#1|))) 190 (|has| |#1| (-491)) ELT) (($ (-345 (-852 (-345 |#1|)))) 189 (|has| |#1| (-491)) ELT) (($ (-345 (-852 |#1|))) 185 (|has| |#1| (-491)) ELT) (($ $) 158 (|has| |#1| (-491)) ELT) (($ (-852 |#1|)) 135 (|has| |#1| (-956)) ELT) (($ (-345 (-480))) 110 (OR (|has| |#1| (-491)) (-12 (|has| |#1| (-945 (-480))) (|has| |#1| (-491))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ (-480)) 109 (OR (|has| |#1| (-956)) (|has| |#1| (-945 (-480)))) ELT)) (-2688 (((-629 $) $) 156 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 138 (|has| |#1| (-956)) CONST)) (-2576 (($ $) 51 T ELT) (($ (-580 $)) 50 T ELT)) (-2242 (((-83) (-84)) 39 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 162 (|has| |#1| (-491)) ELT)) (-1784 (($ (-1081) $) 219 T ELT) (($ (-1081) $ $) 218 T ELT) (($ (-1081) $ $ $) 217 T ELT) (($ (-1081) $ $ $ $) 216 T ELT) (($ (-1081) (-580 $)) 215 T ELT)) (-2646 (($) 128 (|has| |#1| (-25)) CONST)) (-2652 (($) 116 (|has| |#1| (-1017)) CONST)) (-2655 (($ $ (-1081)) 145 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081))) 141 (|has| |#1| (-956)) ELT) (($ $ (-1081) (-689)) 140 (|has| |#1| (-956)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 139 (|has| |#1| (-956)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ (-1030 |#1| (-547 $)) (-1030 |#1| (-547 $))) 192 (|has| |#1| (-491)) ELT) (($ $ $) 122 (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT)) (-3820 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-480)) 123 (OR (|has| |#1| (-408)) (|has| |#1| (-491))) ELT) (($ $ (-689)) 120 (|has| |#1| (-1017)) ELT) (($ $ (-825)) 115 (|has| |#1| (-1017)) ELT)) (* (($ (-345 (-480)) $) 184 (|has| |#1| (-491)) ELT) (($ $ (-345 (-480))) 183 (|has| |#1| (-491)) ELT) (($ $ |#1|) 157 (|has| |#1| (-144)) ELT) (($ |#1| $) 147 (|has| |#1| (-956)) ELT) (($ (-480) $) 132 (|has| |#1| (-21)) ELT) (($ (-689) $) 130 (|has| |#1| (-25)) ELT) (($ (-825) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1017)) ELT))) -(((-359 |#1|) (-111) (-1007)) (T -359)) -((-1786 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-5 *2 (-580 (-1081))))) (-1784 (*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) (-1784 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) (-1784 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) (-1784 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-580 *1)) (-4 *1 (-359 *4)) (-4 *4 (-1007)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-4 *3 (-550 (-469))))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-1081))) (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-4 *3 (-550 (-469))))) (-3751 (*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-550 (-469))))) (-3751 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1081)) (-4 *1 (-359 *4)) (-4 *4 (-1007)) (-4 *4 (-550 (-469))))) (-3751 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 *1)) (-5 *4 (-1081)) (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-550 (-469))))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-359 *3)))) (-2810 (*1 *2 *1) (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-1007)) (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *3)))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-359 *3)))) (-1783 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1007)) (-5 *2 (-2 (|:| -3937 (-480)) (|:| |var| (-547 *1)))) (-4 *1 (-359 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1030 *3 (-547 *1))) (-4 *3 (-956)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *3 (-1007)) (-5 *2 (-1030 *3 (-547 *1))) (-4 *1 (-359 *3)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-956)))) (-2810 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-4 *4 (-956)) (-4 *4 (-1007)) (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *4)))) (-2810 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1081)) (-4 *4 (-956)) (-4 *4 (-1007)) (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *4)))) (-2811 (*1 *2 *1) (|partial| -12 (-4 *3 (-956)) (-4 *3 (-1007)) (-5 *2 (-2 (|:| |val| *1) (|:| -2389 (-480)))) (-4 *1 (-359 *3)))) (-3751 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-689))) (-5 *4 (-580 (-1 *1 *1))) (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) (-3751 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-689))) (-5 *4 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) (-3751 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *4 (-1 *1 (-580 *1))) (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) (-3751 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *4 (-1 *1 *1)) (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-343 *1)) (-4 *1 (-359 *3)) (-4 *3 (-491)) (-4 *3 (-1007)))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-491)) (-4 *3 (-1007)) (-5 *2 (-1030 *3 (-547 *1))) (-4 *1 (-359 *3)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-491)))) (-3932 (*1 *1 *2 *2) (-12 (-5 *2 (-1030 *3 (-547 *1))) (-4 *3 (-491)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-491)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-852 (-345 *3))) (-4 *3 (-491)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-345 (-852 (-345 *3)))) (-4 *3 (-491)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-547 *1)) (-4 *1 (-359 *4)) (-4 *4 (-1007)) (-4 *4 (-491)) (-5 *2 (-345 (-1076 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-4 *3 (-1017))))) -(-13 (-251) (-945 (-1081)) (-789 |t#1|) (-338 |t#1|) (-350 |t#1|) (-10 -8 (-15 -1786 ((-83) $)) (-15 -1785 (|t#1| $)) (-15 -3067 ((-580 (-1081)) $)) (-15 -1784 ($ (-1081) $)) (-15 -1784 ($ (-1081) $ $)) (-15 -1784 ($ (-1081) $ $ $)) (-15 -1784 ($ (-1081) $ $ $ $)) (-15 -1784 ($ (-1081) (-580 $))) (IF (|has| |t#1| (-550 (-469))) (PROGN (-6 (-550 (-469))) (-15 -3751 ($ $ (-1081))) (-15 -3751 ($ $ (-580 (-1081)))) (-15 -3751 ($ $)) (-15 -3751 ($ $ (-84) $ (-1081))) (-15 -3751 ($ $ (-580 (-84)) (-580 $) (-1081)))) |%noBranch|) (IF (|has| |t#1| (-1017)) (PROGN (-6 (-660)) (-15 ** ($ $ (-689))) (-15 -2809 ((-3 (-580 $) "failed") $)) (-15 -2810 ((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-408)) (-6 (-408)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2808 ((-3 (-580 $) "failed") $)) (-15 -1783 ((-3 (-2 (|:| -3937 (-480)) (|:| |var| (-547 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-956)) (PROGN (-6 (-956)) (-6 (-945 (-852 |t#1|))) (-6 (-804 (-1081))) (-6 (-324 |t#1|)) (-15 -3929 ($ (-1030 |t#1| (-547 $)))) (-15 -2984 ((-1030 |t#1| (-547 $)) $)) (-15 -2982 ($ $)) (-15 -2810 ((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $ (-84))) (-15 -2810 ((-3 (-2 (|:| |var| (-547 $)) (|:| -2389 (-480))) "failed") $ (-1081))) (-15 -2811 ((-3 (-2 (|:| |val| $) (|:| -2389 (-480))) "failed") $)) (-15 -3751 ($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ $)))) (-15 -3751 ($ $ (-580 (-1081)) (-580 (-689)) (-580 (-1 $ (-580 $))))) (-15 -3751 ($ $ (-1081) (-689) (-1 $ (-580 $)))) (-15 -3751 ($ $ (-1081) (-689) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491)) (PROGN (-6 (-309)) (-6 (-945 (-345 (-852 |t#1|)))) (-15 -3955 ($ (-343 $))) (-15 -2983 ((-1030 |t#1| (-547 $)) $)) (-15 -2981 ($ $)) (-15 -3932 ($ (-1030 |t#1| (-547 $)) (-1030 |t#1| (-547 $)))) (-15 -3929 ($ (-345 |t#1|))) (-15 -3929 ($ (-852 (-345 |t#1|)))) (-15 -3929 ($ (-345 (-852 (-345 |t#1|))))) (-15 -3069 ((-345 (-1076 $)) $ (-547 $))) (IF (|has| |t#1| (-945 (-480))) (-6 (-945 (-345 (-480)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-345 (-480))) |has| |#1| (-491)) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-491)) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) |has| |#1| (-491)) ((-102) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-491))) ((-552 (-345 (-852 |#1|))) |has| |#1| (-491)) ((-552 (-480)) OR (|has| |#1| (-956)) (|has| |#1| (-945 (-480))) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-552 (-547 $)) . T) ((-552 (-852 |#1|)) |has| |#1| (-956)) ((-552 (-1081)) . T) ((-552 |#1|) . T) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) |has| |#1| (-491)) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-550 (-795 (-325))) |has| |#1| (-550 (-795 (-325)))) ((-550 (-795 (-480))) |has| |#1| (-550 (-795 (-480)))) ((-199) |has| |#1| (-491)) ((-243) |has| |#1| (-491)) ((-255) |has| |#1| (-491)) ((-257 $) . T) ((-251) . T) ((-309) |has| |#1| (-491)) ((-324 |#1|) |has| |#1| (-956)) ((-338 |#1|) . T) ((-350 |#1|) . T) ((-387) |has| |#1| (-491)) ((-408) |has| |#1| (-408)) ((-449 (-547 $) $) . T) ((-449 $ $) . T) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-491)) ((-585 (-480)) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-585 |#1|) OR (|has| |#1| (-956)) (|has| |#1| (-144))) ((-585 $) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-587 (-345 (-480))) |has| |#1| (-491)) ((-587 (-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ((-587 |#1|) OR (|has| |#1| (-956)) (|has| |#1| (-144))) ((-587 $) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-579 (-345 (-480))) |has| |#1| (-491)) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-577 (-480)) -12 (|has| |#1| (-577 (-480))) (|has| |#1| (-956))) ((-577 |#1|) |has| |#1| (-956)) ((-651 (-345 (-480))) |has| |#1| (-491)) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) OR (|has| |#1| (-1017)) (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-408)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-801 $ (-1081)) |has| |#1| (-956)) ((-804 (-1081)) |has| |#1| (-956)) ((-806 (-1081)) |has| |#1| (-956)) ((-791 (-325)) |has| |#1| (-791 (-325))) ((-791 (-480)) |has| |#1| (-791 (-480))) ((-789 |#1|) . T) ((-827) |has| |#1| (-491)) ((-945 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (-12 (|has| |#1| (-491)) (|has| |#1| (-945 (-480))))) ((-945 (-345 (-852 |#1|))) |has| |#1| (-491)) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 (-547 $)) . T) ((-945 (-852 |#1|)) |has| |#1| (-956)) ((-945 (-1081)) . T) ((-945 |#1|) . T) ((-958 (-345 (-480))) |has| |#1| (-491)) ((-958 |#1|) |has| |#1| (-144)) ((-958 $) |has| |#1| (-491)) ((-963 (-345 (-480))) |has| |#1| (-491)) ((-963 |#1|) |has| |#1| (-144)) ((-963 $) |has| |#1| (-491)) ((-956) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-964) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-408)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1052) OR (|has| |#1| (-956)) (|has| |#1| (-491)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1007) . T) ((-1120) . T) ((-1125) |has| |#1| (-491))) -((-3941 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-360 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#3| |#1|) |#2|))) (-956) (-359 |#1|) (-956) (-359 |#3|)) (T -360)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-359 *6)) (-5 *1 (-360 *5 *4 *6 *2)) (-4 *4 (-359 *5))))) -((-1790 ((|#2| |#2|) 182 T ELT)) (-1787 (((-3 (|:| |%expansion| (-261 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83)) 60 T ELT))) -(((-361 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 ((-3 (|:| |%expansion| (-261 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83))) (-15 -1790 (|#2| |#2|))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|)) (-1081) |#2|) (T -361)) -((-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-361 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-359 *3))) (-14 *4 (-1081)) (-14 *5 *2))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (|:| |%expansion| (-261 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) (-5 *1 (-361 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-14 *6 (-1081)) (-14 *7 *3)))) -((-1790 ((|#2| |#2|) 105 T ELT)) (-1788 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83) (-1064)) 52 T ELT)) (-1789 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83) (-1064)) 169 T ELT))) -(((-362 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83) (-1064))) (-15 -1789 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064))))) |#2| (-83) (-1064))) (-15 -1790 (|#2| |#2|))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|) (-10 -8 (-15 -3929 ($ |#3|)))) (-750) (-13 (-1149 |#2| |#3|) (-309) (-1106) (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $)))) (-891 |#4|) (-1081)) (T -362)) -((-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-4 *2 (-13 (-27) (-1106) (-359 *3) (-10 -8 (-15 -3929 ($ *4))))) (-4 *4 (-750)) (-4 *5 (-13 (-1149 *2 *4) (-309) (-1106) (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) (-5 *1 (-362 *3 *2 *4 *5 *6 *7)) (-4 *6 (-891 *5)) (-14 *7 (-1081)))) (-1789 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-4 *3 (-13 (-27) (-1106) (-359 *6) (-10 -8 (-15 -3929 ($ *7))))) (-4 *7 (-750)) (-4 *8 (-13 (-1149 *3 *7) (-309) (-1106) (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) (-5 *1 (-362 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1064)) (-4 *9 (-891 *8)) (-14 *10 (-1081)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-4 *3 (-13 (-27) (-1106) (-359 *6) (-10 -8 (-15 -3929 ($ *7))))) (-4 *7 (-750)) (-4 *8 (-13 (-1149 *3 *7) (-309) (-1106) (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) (-5 *1 (-362 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1064)) (-4 *9 (-891 *8)) (-14 *10 (-1081))))) -((-1791 (($) 51 T ELT)) (-3219 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3221 (($ $ $) 46 T ELT)) (-3220 (((-83) $ $) 35 T ELT)) (-3121 (((-689)) 55 T ELT)) (-3224 (($ (-580 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2980 (($) 66 T ELT)) (-3226 (((-83) $ $) 15 T ELT)) (-2517 ((|#2| $) 77 T ELT)) (-2843 ((|#2| $) 75 T ELT)) (-1998 (((-825) $) 70 T ELT)) (-3223 (($ $ $) 42 T ELT)) (-2388 (($ (-825)) 60 T ELT)) (-3222 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL T ELT) (((-689) |#2| $) 31 T ELT)) (-3513 (($ (-580 |#2|)) 27 T ELT)) (-1792 (($ $) 53 T ELT)) (-3929 (((-767) $) 40 T ELT)) (-1793 (((-689) $) 24 T ELT)) (-3225 (($ (-580 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3042 (((-83) $ $) 19 T ELT))) -(((-363 |#1| |#2|) (-10 -7 (-15 -3121 ((-689))) (-15 -2388 (|#1| (-825))) (-15 -1998 ((-825) |#1|)) (-15 -2980 (|#1|)) (-15 -2517 (|#2| |#1|)) (-15 -2843 (|#2| |#1|)) (-15 -1791 (|#1|)) (-15 -1792 (|#1| |#1|)) (-15 -1793 ((-689) |#1|)) (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3226 ((-83) |#1| |#1|)) (-15 -3225 (|#1|)) (-15 -3225 (|#1| (-580 |#2|))) (-15 -3224 (|#1|)) (-15 -3224 (|#1| (-580 |#2|))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1| |#2|)) (-15 -3221 (|#1| |#1| |#1|)) (-15 -3220 ((-83) |#1| |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1| |#2|)) (-15 -3219 (|#1| |#2| |#1|)) (-15 -3513 (|#1| (-580 |#2|))) (-15 -1935 ((-689) |#2| |#1|)) (-15 -1935 ((-689) (-1 (-83) |#2|) |#1|))) (-364 |#2|) (-1007)) (T -363)) -((-3121 (*1 *2) (-12 (-4 *4 (-1007)) (-5 *2 (-689)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) -((-2554 (((-83) $ $) 19 T ELT)) (-1791 (($) 71 (|has| |#1| (-315)) ELT)) (-3219 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3221 (($ $ $) 82 T ELT)) (-3220 (((-83) $ $) 83 T ELT)) (-3121 (((-689)) 65 (|has| |#1| (-315)) ELT)) (-3224 (($ (-580 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2980 (($) 68 (|has| |#1| (-315)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) 74 T ELT)) (-2517 ((|#1| $) 69 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2843 ((|#1| $) 70 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1998 (((-825) $) 67 (|has| |#1| (-315)) ELT)) (-3227 (((-1064) $) 22 T ELT)) (-3223 (($ $ $) 79 T ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-2388 (($ (-825)) 66 (|has| |#1| (-315)) ELT)) (-3228 (((-1025) $) 21 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3222 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-1792 (($ $) 72 (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) 17 T ELT)) (-1793 (((-689) $) 73 T ELT)) (-3225 (($ (-580 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1255 (((-83) $ $) 20 T ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 T ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-364 |#1|) (-111) (-1007)) (T -364)) -((-1793 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1007)) (-5 *2 (-689)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-315)))) (-1791 (*1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-315)) (-4 *2 (-1007)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-751)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-751))))) -(-13 (-181 |t#1|) (-1005 |t#1|) (-10 -8 (-6 -3978) (-15 -1793 ((-689) $)) (IF (|has| |t#1| (-315)) (PROGN (-6 (-315)) (-15 -1792 ($ $)) (-15 -1791 ($))) |%noBranch|) (IF (|has| |t#1| (-751)) (PROGN (-15 -2843 (|t#1| $)) (-15 -2517 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-549 (-767)) . T) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-181 |#1|) . T) ((-191 |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-315) |has| |#1| (-315)) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1005 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-3824 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3825 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3941 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3825 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3824 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1007) (-364 |#1|) (-1007) (-364 |#3|)) (T -365)) -((-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1007)) (-4 *5 (-1007)) (-4 *2 (-364 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-364 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1007)) (-4 *2 (-1007)) (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) -((-1794 (((-515 |#2|) |#2| (-1081)) 36 T ELT)) (-2088 (((-515 |#2|) |#2| (-1081)) 21 T ELT)) (-2137 ((|#2| |#2| (-1081)) 26 T ELT))) -(((-366 |#1| |#2|) (-10 -7 (-15 -2088 ((-515 |#2|) |#2| (-1081))) (-15 -1794 ((-515 |#2|) |#2| (-1081))) (-15 -2137 (|#2| |#2| (-1081)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-29 |#1|))) (T -366)) -((-2137 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4))))) (-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5))))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1796 (($ |#2| |#1|) 37 T ELT)) (-1795 (($ |#2| |#1|) 35 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-278 |#2|)) 25 T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 10 T CONST)) (-2652 (($) 16 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 36 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-367 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3965)) (IF (|has| |#1| (-6 -3965)) (-6 -3965) |%noBranch|) |%noBranch|) (-15 -3929 ($ |#1|)) (-15 -3929 ($ (-278 |#2|))) (-15 -1796 ($ |#2| |#1|)) (-15 -1795 ($ |#2| |#1|)))) (-13 (-144) (-38 (-345 (-480)))) (-13 (-751) (-21))) (T -367)) -((-3929 (*1 *1 *2) (-12 (-5 *1 (-367 *2 *3)) (-4 *2 (-13 (-144) (-38 (-345 (-480))))) (-4 *3 (-13 (-751) (-21))))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-278 *4)) (-4 *4 (-13 (-751) (-21))) (-5 *1 (-367 *3 *4)) (-4 *3 (-13 (-144) (-38 (-345 (-480))))))) (-1796 (*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-144) (-38 (-345 (-480))))) (-4 *2 (-13 (-751) (-21))))) (-1795 (*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-144) (-38 (-345 (-480))))) (-4 *2 (-13 (-751) (-21)))))) -((-3795 (((-3 |#2| (-580 |#2|)) |#2| (-1081)) 115 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -3795 ((-3 |#2| (-580 |#2|)) |#2| (-1081)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-866) (-29 |#1|))) (T -368)) -((-3795 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 *3 (-580 *3))) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1106) (-866) (-29 *5)))))) -((-3369 ((|#2| |#2| |#2|) 31 T ELT)) (-3578 (((-84) (-84)) 43 T ELT)) (-1798 ((|#2| |#2|) 63 T ELT)) (-1797 ((|#2| |#2|) 66 T ELT)) (-3368 ((|#2| |#2|) 30 T ELT)) (-3372 ((|#2| |#2| |#2|) 33 T ELT)) (-3374 ((|#2| |#2| |#2|) 35 T ELT)) (-3371 ((|#2| |#2| |#2|) 32 T ELT)) (-3373 ((|#2| |#2| |#2|) 34 T ELT)) (-2242 (((-83) (-84)) 41 T ELT)) (-3376 ((|#2| |#2|) 37 T ELT)) (-3375 ((|#2| |#2|) 36 T ELT)) (-3366 ((|#2| |#2|) 25 T ELT)) (-3370 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3367 ((|#2| |#2| |#2|) 29 T ELT))) -(((-369 |#1| |#2|) (-10 -7 (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 -3366 (|#2| |#2|)) (-15 -3370 (|#2| |#2|)) (-15 -3370 (|#2| |#2| |#2|)) (-15 -3367 (|#2| |#2| |#2|)) (-15 -3368 (|#2| |#2|)) (-15 -3369 (|#2| |#2| |#2|)) (-15 -3371 (|#2| |#2| |#2|)) (-15 -3372 (|#2| |#2| |#2|)) (-15 -3373 (|#2| |#2| |#2|)) (-15 -3374 (|#2| |#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -1798 (|#2| |#2|))) (-491) (-359 |#1|)) (T -369)) -((-1798 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-1797 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3374 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3373 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3372 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3371 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3369 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3370 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3370 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-369 *3 *4)) (-4 *4 (-359 *3)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-369 *4 *5)) (-4 *5 (-359 *4))))) -((-2819 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1076 |#2|)) (|:| |pol2| (-1076 |#2|)) (|:| |prim| (-1076 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-580 (-1076 |#2|))) (|:| |prim| (-1076 |#2|))) (-580 |#2|)) 65 T ELT))) -(((-370 |#1| |#2|) (-10 -7 (-15 -2819 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-580 (-1076 |#2|))) (|:| |prim| (-1076 |#2|))) (-580 |#2|))) (IF (|has| |#2| (-27)) (-15 -2819 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1076 |#2|)) (|:| |pol2| (-1076 |#2|)) (|:| |prim| (-1076 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-491) (-118)) (-359 |#1|)) (T -370)) -((-2819 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-491) (-118))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1076 *3)) (|:| |pol2| (-1076 *3)) (|:| |prim| (-1076 *3)))) (-5 *1 (-370 *4 *3)) (-4 *3 (-27)) (-4 *3 (-359 *4)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-580 *5)) (-4 *5 (-359 *4)) (-4 *4 (-13 (-491) (-118))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-580 (-1076 *5))) (|:| |prim| (-1076 *5)))) (-5 *1 (-370 *4 *5))))) -((-1800 (((-1176)) 18 T ELT)) (-1799 (((-1076 (-345 (-480))) |#2| (-547 |#2|)) 40 T ELT) (((-345 (-480)) |#2|) 27 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -1799 ((-345 (-480)) |#2|)) (-15 -1799 ((-1076 (-345 (-480))) |#2| (-547 |#2|))) (-15 -1800 ((-1176)))) (-13 (-491) (-945 (-480))) (-359 |#1|)) (T -371)) -((-1800 (*1 *2) (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *2 (-1176)) (-5 *1 (-371 *3 *4)) (-4 *4 (-359 *3)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-547 *3)) (-4 *3 (-359 *5)) (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-371 *5 *3)))) (-1799 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-345 (-480))) (-5 *1 (-371 *4 *3)) (-4 *3 (-359 *4))))) -((-3628 (((-83) $) 33 T ELT)) (-1801 (((-83) $) 35 T ELT)) (-3244 (((-83) $) 36 T ELT)) (-1803 (((-83) $) 39 T ELT)) (-1805 (((-83) $) 34 T ELT)) (-1804 (((-83) $) 38 T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1064)) 32 T ELT) (($ (-1081)) 30 T ELT) (((-1081) $) 24 T ELT) (((-1009) $) 23 T ELT)) (-1802 (((-83) $) 37 T ELT)) (-3042 (((-83) $ $) 17 T ELT))) -(((-372) (-13 (-549 (-767)) (-10 -8 (-15 -3929 ($ (-1064))) (-15 -3929 ($ (-1081))) (-15 -3929 ((-1081) $)) (-15 -3929 ((-1009) $)) (-15 -3628 ((-83) $)) (-15 -1805 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -1804 ((-83) $)) (-15 -1803 ((-83) $)) (-15 -1802 ((-83) $)) (-15 -1801 ((-83) $)) (-15 -3042 ((-83) $ $))))) (T -372)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-372)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-372)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-1805 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-3042 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -((-1807 (((-3 (-343 (-1076 (-345 (-480)))) #1="failed") |#3|) 71 T ELT)) (-1806 (((-343 |#3|) |#3|) 34 T ELT)) (-1809 (((-3 (-343 (-1076 (-48))) #1#) |#3|) 29 (|has| |#2| (-945 (-48))) ELT)) (-1808 (((-3 (|:| |overq| (-1076 (-345 (-480)))) (|:| |overan| (-1076 (-48))) (|:| -2625 (-83))) |#3|) 37 T ELT))) -(((-373 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-343 |#3|) |#3|)) (-15 -1807 ((-3 (-343 (-1076 (-345 (-480)))) #1="failed") |#3|)) (-15 -1808 ((-3 (|:| |overq| (-1076 (-345 (-480)))) (|:| |overan| (-1076 (-48))) (|:| -2625 (-83))) |#3|)) (IF (|has| |#2| (-945 (-48))) (-15 -1809 ((-3 (-343 (-1076 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-491) (-945 (-480))) (-359 |#1|) (-1146 |#2|)) (T -373)) -((-1809 (*1 *2 *3) (|partial| -12 (-4 *5 (-945 (-48))) (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) (-5 *2 (-343 (-1076 (-48)))) (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5)))) (-1808 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) (-5 *2 (-3 (|:| |overq| (-1076 (-345 (-480)))) (|:| |overan| (-1076 (-48))) (|:| -2625 (-83)))) (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5)))) (-1807 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) (-5 *2 (-343 (-1076 (-345 (-480))))) (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) (-5 *2 (-343 *3)) (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1819 (((-3 (|:| |fst| (-372)) (|:| -3893 #1="void")) $) 11 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1816 (($) 35 T ELT)) (-1813 (($) 41 T ELT)) (-1814 (($) 37 T ELT)) (-1811 (($) 39 T ELT)) (-1815 (($) 36 T ELT)) (-1812 (($) 38 T ELT)) (-1810 (($) 40 T ELT)) (-1817 (((-83) $) 8 T ELT)) (-1818 (((-580 (-852 (-480))) $) 19 T ELT)) (-3513 (($ (-3 (|:| |fst| (-372)) (|:| -3893 #1#)) (-580 (-1081)) (-83)) 29 T ELT) (($ (-3 (|:| |fst| (-372)) (|:| -3893 #1#)) (-580 (-852 (-480))) (-83)) 30 T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-372)) 32 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-374) (-13 (-1007) (-10 -8 (-15 -3929 ($ (-372))) (-15 -1819 ((-3 (|:| |fst| (-372)) (|:| -3893 #1="void")) $)) (-15 -1818 ((-580 (-852 (-480))) $)) (-15 -1817 ((-83) $)) (-15 -3513 ($ (-3 (|:| |fst| (-372)) (|:| -3893 #1#)) (-580 (-1081)) (-83))) (-15 -3513 ($ (-3 (|:| |fst| (-372)) (|:| -3893 #1#)) (-580 (-852 (-480))) (-83))) (-15 -1816 ($)) (-15 -1815 ($)) (-15 -1814 ($)) (-15 -1813 ($)) (-15 -1812 ($)) (-15 -1811 ($)) (-15 -1810 ($))))) (T -374)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-374)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1="void"))) (-5 *1 (-374)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-580 (-852 (-480)))) (-5 *1 (-374)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-374)))) (-3513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *3 (-580 (-1081))) (-5 *4 (-83)) (-5 *1 (-374)))) (-3513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *3 (-580 (-852 (-480)))) (-5 *4 (-83)) (-5 *1 (-374)))) (-1816 (*1 *1) (-5 *1 (-374))) (-1815 (*1 *1) (-5 *1 (-374))) (-1814 (*1 *1) (-5 *1 (-374))) (-1813 (*1 *1) (-5 *1 (-374))) (-1812 (*1 *1) (-5 *1 (-374))) (-1811 (*1 *1) (-5 *1 (-374))) (-1810 (*1 *1) (-5 *1 (-374)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3525 (((-1081) $) 8 T ELT)) (-3227 (((-1064) $) 17 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 14 T ELT))) -(((-375 |#1|) (-13 (-1007) (-10 -8 (-15 -3525 ((-1081) $)))) (-1081)) (T -375)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-375 *3)) (-14 *3 *2)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3303 (((-1020) $) 7 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 9 T ELT))) -(((-376) (-13 (-1007) (-10 -8 (-15 -3303 ((-1020) $))))) (T -376)) -((-3303 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-376))))) -((-1825 (((-83)) 18 T ELT)) (-1826 (((-83) (-83)) 19 T ELT)) (-1827 (((-83)) 14 T ELT)) (-1828 (((-83) (-83)) 15 T ELT)) (-1830 (((-83)) 16 T ELT)) (-1831 (((-83) (-83)) 17 T ELT)) (-1822 (((-825) (-825)) 22 T ELT) (((-825)) 21 T ELT)) (-1823 (((-689) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480))))) 52 T ELT)) (-1821 (((-825) (-825)) 24 T ELT) (((-825)) 23 T ELT)) (-1824 (((-2 (|:| -2564 (-480)) (|:| -1768 (-580 |#1|))) |#1|) 94 T ELT)) (-1820 (((-343 |#1|) (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480))))))) 176 T ELT)) (-3717 (((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83)) 209 T ELT)) (-3716 (((-343 |#1|) |#1| (-689) (-689)) 224 T ELT) (((-343 |#1|) |#1| (-580 (-689)) (-689)) 221 T ELT) (((-343 |#1|) |#1| (-580 (-689))) 223 T ELT) (((-343 |#1|) |#1| (-689)) 222 T ELT) (((-343 |#1|) |#1|) 220 T ELT)) (-1842 (((-3 |#1| #1="failed") (-825) |#1| (-580 (-689)) (-689) (-83)) 226 T ELT) (((-3 |#1| #1#) (-825) |#1| (-580 (-689)) (-689)) 227 T ELT) (((-3 |#1| #1#) (-825) |#1| (-580 (-689))) 229 T ELT) (((-3 |#1| #1#) (-825) |#1| (-689)) 228 T ELT) (((-3 |#1| #1#) (-825) |#1|) 230 T ELT)) (-3715 (((-343 |#1|) |#1| (-689) (-689)) 219 T ELT) (((-343 |#1|) |#1| (-580 (-689)) (-689)) 215 T ELT) (((-343 |#1|) |#1| (-580 (-689))) 217 T ELT) (((-343 |#1|) |#1| (-689)) 216 T ELT) (((-343 |#1|) |#1|) 214 T ELT)) (-1829 (((-83) |#1|) 43 T ELT)) (-1841 (((-670 (-689)) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480))))) 99 T ELT)) (-1832 (((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83) (-1003 (-689)) (-689)) 213 T ELT))) -(((-377 |#1|) (-10 -7 (-15 -1820 ((-343 |#1|) (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))))) (-15 -1841 ((-670 (-689)) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))))) (-15 -1821 ((-825))) (-15 -1821 ((-825) (-825))) (-15 -1822 ((-825))) (-15 -1822 ((-825) (-825))) (-15 -1823 ((-689) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))))) (-15 -1824 ((-2 (|:| -2564 (-480)) (|:| -1768 (-580 |#1|))) |#1|)) (-15 -1825 ((-83))) (-15 -1826 ((-83) (-83))) (-15 -1827 ((-83))) (-15 -1828 ((-83) (-83))) (-15 -1829 ((-83) |#1|)) (-15 -1830 ((-83))) (-15 -1831 ((-83) (-83))) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3715 ((-343 |#1|) |#1| (-689))) (-15 -3715 ((-343 |#1|) |#1| (-580 (-689)))) (-15 -3715 ((-343 |#1|) |#1| (-580 (-689)) (-689))) (-15 -3715 ((-343 |#1|) |#1| (-689) (-689))) (-15 -3716 ((-343 |#1|) |#1|)) (-15 -3716 ((-343 |#1|) |#1| (-689))) (-15 -3716 ((-343 |#1|) |#1| (-580 (-689)))) (-15 -3716 ((-343 |#1|) |#1| (-580 (-689)) (-689))) (-15 -3716 ((-343 |#1|) |#1| (-689) (-689))) (-15 -1842 ((-3 |#1| #1="failed") (-825) |#1|)) (-15 -1842 ((-3 |#1| #1#) (-825) |#1| (-689))) (-15 -1842 ((-3 |#1| #1#) (-825) |#1| (-580 (-689)))) (-15 -1842 ((-3 |#1| #1#) (-825) |#1| (-580 (-689)) (-689))) (-15 -1842 ((-3 |#1| #1#) (-825) |#1| (-580 (-689)) (-689) (-83))) (-15 -3717 ((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83))) (-15 -1832 ((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83) (-1003 (-689)) (-689)))) (-1146 (-480))) (T -377)) -((-1832 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-83)) (-5 *5 (-1003 (-689))) (-5 *6 (-689)) (-5 *2 (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1842 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *6 (-83)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) (-1842 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) (-1842 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) (-1842 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-825)) (-5 *4 (-689)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) (-1842 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-825)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) (-3716 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3716 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-689))) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-689))) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1830 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1829 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1827 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1825 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1824 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2564 (-480)) (|:| -1768 (-580 *3)))) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3715 *4) (|:| -3931 (-480))))) (-4 *4 (-1146 (-480))) (-5 *2 (-689)) (-5 *1 (-377 *4)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1822 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1821 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3715 *4) (|:| -3931 (-480))))) (-4 *4 (-1146 (-480))) (-5 *2 (-670 (-689))) (-5 *1 (-377 *4)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| *4) (|:| -2383 (-480))))))) (-4 *4 (-1146 (-480))) (-5 *2 (-343 *4)) (-5 *1 (-377 *4))))) -((-1836 (((-480) |#2|) 52 T ELT) (((-480) |#2| (-689)) 51 T ELT)) (-1835 (((-480) |#2|) 64 T ELT)) (-1837 ((|#3| |#2|) 26 T ELT)) (-3117 ((|#3| |#2| (-825)) 15 T ELT)) (-3816 ((|#3| |#2|) 16 T ELT)) (-1838 ((|#3| |#2|) 9 T ELT)) (-2589 ((|#3| |#2|) 10 T ELT)) (-1834 ((|#3| |#2| (-825)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1833 (((-480) |#2|) 66 T ELT))) -(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1833 ((-480) |#2|)) (-15 -1834 (|#3| |#2|)) (-15 -1834 (|#3| |#2| (-825))) (-15 -1835 ((-480) |#2|)) (-15 -1836 ((-480) |#2| (-689))) (-15 -1836 ((-480) |#2|)) (-15 -3117 (|#3| |#2| (-825))) (-15 -1837 (|#3| |#2|)) (-15 -1838 (|#3| |#2|)) (-15 -2589 (|#3| |#2|)) (-15 -3816 (|#3| |#2|))) (-956) (-1146 |#1|) (-13 (-342) (-945 |#1|) (-309) (-1106) (-237))) (T -378)) -((-3816 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) (-2589 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-4 *5 (-956)) (-4 *2 (-13 (-342) (-945 *5) (-309) (-1106) (-237))) (-5 *1 (-378 *5 *3 *2)) (-4 *3 (-1146 *5)))) (-1836 (*1 *2 *3) (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237))))) (-1836 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *5 *3 *6)) (-4 *3 (-1146 *5)) (-4 *6 (-13 (-342) (-945 *5) (-309) (-1106) (-237))))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237))))) (-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-4 *5 (-956)) (-4 *2 (-13 (-342) (-945 *5) (-309) (-1106) (-237))) (-5 *1 (-378 *5 *3 *2)) (-4 *3 (-1146 *5)))) (-1834 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237)))))) -((-3337 ((|#2| (-1170 |#1|)) 42 T ELT)) (-1840 ((|#2| |#2| |#1|) 58 T ELT)) (-1839 ((|#2| |#2| |#1|) 49 T ELT)) (-2286 ((|#2| |#2|) 44 T ELT)) (-3158 (((-83) |#2|) 32 T ELT)) (-1843 (((-580 |#2|) (-825) (-343 |#2|)) 21 T ELT)) (-1842 ((|#2| (-825) (-343 |#2|)) 25 T ELT)) (-1841 (((-670 (-689)) (-343 |#2|)) 29 T ELT))) -(((-379 |#1| |#2|) (-10 -7 (-15 -3158 ((-83) |#2|)) (-15 -3337 (|#2| (-1170 |#1|))) (-15 -2286 (|#2| |#2|)) (-15 -1839 (|#2| |#2| |#1|)) (-15 -1840 (|#2| |#2| |#1|)) (-15 -1841 ((-670 (-689)) (-343 |#2|))) (-15 -1842 (|#2| (-825) (-343 |#2|))) (-15 -1843 ((-580 |#2|) (-825) (-343 |#2|)))) (-956) (-1146 |#1|)) (T -379)) -((-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-343 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-956)) (-5 *2 (-580 *6)) (-5 *1 (-379 *5 *6)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-343 *2)) (-4 *2 (-1146 *5)) (-5 *1 (-379 *5 *2)) (-4 *5 (-956)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-343 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-956)) (-5 *2 (-670 (-689))) (-5 *1 (-379 *4 *5)))) (-1840 (*1 *2 *2 *3) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3)))) (-1839 (*1 *2 *2 *3) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-956)) (-4 *2 (-1146 *4)) (-5 *1 (-379 *4 *2)))) (-3158 (*1 *2 *3) (-12 (-4 *4 (-956)) (-5 *2 (-83)) (-5 *1 (-379 *4 *3)) (-4 *3 (-1146 *4))))) -((-1846 (((-689)) 59 T ELT)) (-1850 (((-689)) 29 (|has| |#1| (-342)) ELT) (((-689) (-689)) 28 (|has| |#1| (-342)) ELT)) (-1849 (((-480) |#1|) 25 (|has| |#1| (-342)) ELT)) (-1848 (((-480) |#1|) 27 (|has| |#1| (-342)) ELT)) (-1845 (((-689)) 58 T ELT) (((-689) (-689)) 57 T ELT)) (-1844 ((|#1| (-689) (-480)) 37 T ELT)) (-1847 (((-1176)) 61 T ELT))) -(((-380 |#1|) (-10 -7 (-15 -1844 (|#1| (-689) (-480))) (-15 -1845 ((-689) (-689))) (-15 -1845 ((-689))) (-15 -1846 ((-689))) (-15 -1847 ((-1176))) (IF (|has| |#1| (-342)) (PROGN (-15 -1848 ((-480) |#1|)) (-15 -1849 ((-480) |#1|)) (-15 -1850 ((-689) (-689))) (-15 -1850 ((-689)))) |%noBranch|)) (-956)) (T -380)) -((-1850 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956)))) (-1849 (*1 *2 *3) (-12 (-5 *2 (-480)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956)))) (-1848 (*1 *2 *3) (-12 (-5 *2 (-480)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956)))) (-1847 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-380 *3)) (-4 *3 (-956)))) (-1846 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956)))) (-1845 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-689)) (-5 *4 (-480)) (-5 *1 (-380 *2)) (-4 *2 (-956))))) -((-1851 (((-580 (-480)) (-480)) 76 T ELT)) (-3706 (((-83) (-140 (-480))) 84 T ELT)) (-3715 (((-343 (-140 (-480))) (-140 (-480))) 75 T ELT))) -(((-381) (-10 -7 (-15 -3715 ((-343 (-140 (-480))) (-140 (-480)))) (-15 -1851 ((-580 (-480)) (-480))) (-15 -3706 ((-83) (-140 (-480)))))) (T -381)) -((-3706 (*1 *2 *3) (-12 (-5 *3 (-140 (-480))) (-5 *2 (-83)) (-5 *1 (-381)))) (-1851 (*1 *2 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-381)) (-5 *3 (-480)))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 (-140 (-480)))) (-5 *1 (-381)) (-5 *3 (-140 (-480)))))) -((-2932 ((|#4| |#4| (-580 |#4|)) 20 (|has| |#1| (-309)) ELT)) (-2239 (((-580 |#4|) (-580 |#4|) (-1064) (-1064)) 46 T ELT) (((-580 |#4|) (-580 |#4|) (-1064)) 45 T ELT) (((-580 |#4|) (-580 |#4|)) 34 T ELT))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2239 ((-580 |#4|) (-580 |#4|))) (-15 -2239 ((-580 |#4|) (-580 |#4|) (-1064))) (-15 -2239 ((-580 |#4|) (-580 |#4|) (-1064) (-1064))) (IF (|has| |#1| (-309)) (-15 -2932 (|#4| |#4| (-580 |#4|))) |%noBranch|)) (-387) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -382)) -((-2932 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-309)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *2)))) (-2239 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *7)))) (-2239 (*1 *2 *2 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *7)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-382 *3 *4 *5 *6))))) -((-1852 ((|#4| |#4| (-580 |#4|)) 82 T ELT)) (-1853 (((-580 |#4|) (-580 |#4|) (-1064) (-1064)) 22 T ELT) (((-580 |#4|) (-580 |#4|) (-1064)) 21 T ELT) (((-580 |#4|) (-580 |#4|)) 13 T ELT))) -(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1852 (|#4| |#4| (-580 |#4|))) (-15 -1853 ((-580 |#4|) (-580 |#4|))) (-15 -1853 ((-580 |#4|) (-580 |#4|) (-1064))) (-15 -1853 ((-580 |#4|) (-580 |#4|) (-1064) (-1064)))) (-255) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -383)) -((-1853 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-255)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1853 (*1 *2 *2 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-255)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1852 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-255)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *2))))) -((-1855 (((-580 (-580 |#4|)) (-580 |#4|) (-83)) 90 T ELT) (((-580 (-580 |#4|)) (-580 |#4|)) 89 T ELT) (((-580 (-580 |#4|)) (-580 |#4|) (-580 |#4|) (-83)) 83 T ELT) (((-580 (-580 |#4|)) (-580 |#4|) (-580 |#4|)) 84 T ELT)) (-1854 (((-580 (-580 |#4|)) (-580 |#4|) (-83)) 56 T ELT) (((-580 (-580 |#4|)) (-580 |#4|)) 78 T ELT))) -(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1854 ((-580 (-580 |#4|)) (-580 |#4|))) (-15 -1854 ((-580 (-580 |#4|)) (-580 |#4|) (-83))) (-15 -1855 ((-580 (-580 |#4|)) (-580 |#4|) (-580 |#4|))) (-15 -1855 ((-580 (-580 |#4|)) (-580 |#4|) (-580 |#4|) (-83))) (-15 -1855 ((-580 (-580 |#4|)) (-580 |#4|))) (-15 -1855 ((-580 (-580 |#4|)) (-580 |#4|) (-83)))) (-13 (-255) (-118)) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -384)) -((-1855 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) (-5 *3 (-580 *8)))) (-1855 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-1855 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) (-5 *3 (-580 *8)))) (-1855 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) (-5 *3 (-580 *8)))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) -((-1879 (((-689) |#4|) 12 T ELT)) (-1867 (((-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|))) |#4| (-689) (-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|)))) 39 T ELT)) (-1869 (((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1868 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1857 ((|#4| |#4| (-580 |#4|)) 54 T ELT)) (-1865 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-580 |#4|)) 96 T ELT)) (-1872 (((-1176) |#4|) 59 T ELT)) (-1875 (((-1176) (-580 |#4|)) 69 T ELT)) (-1873 (((-480) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-480) (-480) (-480)) 66 T ELT)) (-1876 (((-1176) (-480)) 110 T ELT)) (-1870 (((-580 |#4|) (-580 |#4|)) 104 T ELT)) (-1878 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|)) |#4| (-689)) 31 T ELT)) (-1871 (((-480) |#4|) 109 T ELT)) (-1866 ((|#4| |#4|) 37 T ELT)) (-1858 (((-580 |#4|) (-580 |#4|) (-480) (-480)) 74 T ELT)) (-1874 (((-480) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-480) (-480) (-480) (-480)) 123 T ELT)) (-1877 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1859 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1864 (((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1863 (((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1860 (((-83) |#2| |#2|) 75 T ELT)) (-1862 (((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1861 (((-83) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1856 ((|#4| |#4| (-580 |#4|)) 97 T ELT))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 (|#4| |#4| (-580 |#4|))) (-15 -1857 (|#4| |#4| (-580 |#4|))) (-15 -1858 ((-580 |#4|) (-580 |#4|) (-480) (-480))) (-15 -1859 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1860 ((-83) |#2| |#2|)) (-15 -1861 ((-83) |#2| |#2| |#2| |#2|)) (-15 -1862 ((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1863 ((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1864 ((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1865 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-580 |#4|))) (-15 -1866 (|#4| |#4|)) (-15 -1867 ((-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|))) |#4| (-689) (-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|))))) (-15 -1868 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1869 ((-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-580 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1870 ((-580 |#4|) (-580 |#4|))) (-15 -1871 ((-480) |#4|)) (-15 -1872 ((-1176) |#4|)) (-15 -1873 ((-480) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-480) (-480) (-480))) (-15 -1874 ((-480) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-480) (-480) (-480) (-480))) (-15 -1875 ((-1176) (-580 |#4|))) (-15 -1876 ((-1176) (-480))) (-15 -1877 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1878 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-689)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-689)) (|:| -1992 |#4|)) |#4| (-689))) (-15 -1879 ((-689) |#4|))) (-387) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -385)) -((-1879 (*1 *2 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-689)) (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6)))) (-1878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-689)) (|:| -1992 *4))) (-5 *5 (-689)) (-4 *4 (-856 *6 *7 *8)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-385 *6 *7 *8 *4)))) (-1877 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-712)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-480)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1176)) (-5 *1 (-385 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1176)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1874 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-689)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-712)) (-4 *4 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *7 (-751)) (-5 *1 (-385 *5 *6 *7 *4)))) (-1873 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-689)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-712)) (-4 *4 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *7 (-751)) (-5 *1 (-385 *5 *6 *7 *4)))) (-1872 (*1 *2 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1176)) (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-480)) (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1869 (*1 *2 *2 *2) (-12 (-5 *2 (-580 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-689)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-712)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-712)) (-4 *2 (-856 *4 *5 *6)) (-5 *1 (-385 *4 *5 *6 *2)) (-4 *4 (-387)) (-4 *6 (-751)))) (-1867 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 *3)))) (-5 *4 (-689)) (-4 *3 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-385 *5 *6 *7 *3)))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *2)) (-4 *2 (-856 *3 *4 *5)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-385 *5 *6 *7 *3)))) (-1864 (*1 *2 *3 *2) (-12 (-5 *2 (-580 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-689)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-712)) (-4 *6 (-856 *4 *3 *5)) (-4 *4 (-387)) (-4 *5 (-751)) (-5 *1 (-385 *4 *3 *5 *6)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-580 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-689)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-712)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1862 (*1 *2 *3 *2) (-12 (-5 *2 (-580 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-712)) (-4 *3 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *3)))) (-1861 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-387)) (-4 *3 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-385 *4 *3 *5 *6)) (-4 *6 (-856 *4 *3 *5)))) (-1860 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *3 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-385 *4 *3 *5 *6)) (-4 *6 (-856 *4 *3 *5)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-712)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1858 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-480)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1857 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *2)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *2))))) -((-1880 (($ $ $) 14 T ELT) (($ (-580 $)) 21 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 45 T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) 22 T ELT))) -(((-386 |#1|) (-10 -7 (-15 -2694 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -1880 (|#1| (-580 |#1|))) (-15 -1880 (|#1| |#1| |#1|)) (-15 -3129 (|#1| (-580 |#1|))) (-15 -3129 (|#1| |#1| |#1|))) (-387)) (T -386)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-387) (-111)) (T -387)) -((-3129 (*1 *1 *1 *1) (-4 *1 (-387))) (-3129 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-387)))) (-1880 (*1 *1 *1 *1) (-4 *1 (-387))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-387)))) (-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-387))))) -(-13 (-491) (-10 -8 (-15 -3129 ($ $ $)) (-15 -3129 ($ (-580 $))) (-15 -1880 ($ $ $)) (-15 -1880 ($ (-580 $))) (-15 -2694 ((-1076 $) (-1076 $) (-1076 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1761 (((-3 $ #1="failed")) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-3208 (((-1170 (-627 (-345 (-852 |#1|)))) (-1170 $)) NIL T ELT) (((-1170 (-627 (-345 (-852 |#1|))))) NIL T ELT)) (-1718 (((-1170 $)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL T ELT)) (-1692 (((-3 $ #1#)) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1777 (((-627 (-345 (-852 |#1|))) (-1170 $)) NIL T ELT) (((-627 (-345 (-852 |#1|)))) NIL T ELT)) (-1716 (((-345 (-852 |#1|)) $) NIL T ELT)) (-1775 (((-627 (-345 (-852 |#1|))) $ (-1170 $)) NIL T ELT) (((-627 (-345 (-852 |#1|))) $) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1889 (((-1076 (-852 (-345 (-852 |#1|))))) NIL (|has| (-345 (-852 |#1|)) (-309)) ELT) (((-1076 (-345 (-852 |#1|)))) 89 (|has| |#1| (-491)) ELT)) (-2395 (($ $ (-825)) NIL T ELT)) (-1714 (((-345 (-852 |#1|)) $) NIL T ELT)) (-1694 (((-1076 (-345 (-852 |#1|))) $) 87 (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1779 (((-345 (-852 |#1|)) (-1170 $)) NIL T ELT) (((-345 (-852 |#1|))) NIL T ELT)) (-1712 (((-1076 (-345 (-852 |#1|))) $) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-1781 (($ (-1170 (-345 (-852 |#1|))) (-1170 $)) 111 T ELT) (($ (-1170 (-345 (-852 |#1|)))) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-3094 (((-825)) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL T ELT)) (-1693 (((-3 $ #1#)) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1778 (((-627 (-345 (-852 |#1|))) (-1170 $)) NIL T ELT) (((-627 (-345 (-852 |#1|)))) NIL T ELT)) (-1717 (((-345 (-852 |#1|)) $) NIL T ELT)) (-1776 (((-627 (-345 (-852 |#1|))) $ (-1170 $)) NIL T ELT) (((-627 (-345 (-852 |#1|))) $) NIL T ELT)) (-2393 (((-3 $ #1#) $) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1893 (((-1076 (-852 (-345 (-852 |#1|))))) NIL (|has| (-345 (-852 |#1|)) (-309)) ELT) (((-1076 (-345 (-852 |#1|)))) 88 (|has| |#1| (-491)) ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-1715 (((-345 (-852 |#1|)) $) NIL T ELT)) (-1695 (((-1076 (-345 (-852 |#1|))) $) 84 (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-1780 (((-345 (-852 |#1|)) (-1170 $)) NIL T ELT) (((-345 (-852 |#1|))) NIL T ELT)) (-1713 (((-1076 (-345 (-852 |#1|))) $) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1883 (((-345 (-852 |#1|)) $ $) 75 (|has| |#1| (-491)) ELT)) (-1887 (((-345 (-852 |#1|)) $) 74 (|has| |#1| (-491)) ELT)) (-1886 (((-345 (-852 |#1|)) $) 101 (|has| |#1| (-491)) ELT)) (-1888 (((-1076 (-345 (-852 |#1|))) $) 93 (|has| |#1| (-491)) ELT)) (-1882 (((-345 (-852 |#1|))) 76 (|has| |#1| (-491)) ELT)) (-1885 (((-345 (-852 |#1|)) $ $) 64 (|has| |#1| (-491)) ELT)) (-1891 (((-345 (-852 |#1|)) $) 63 (|has| |#1| (-491)) ELT)) (-1890 (((-345 (-852 |#1|)) $) 100 (|has| |#1| (-491)) ELT)) (-1892 (((-1076 (-345 (-852 |#1|))) $) 92 (|has| |#1| (-491)) ELT)) (-1884 (((-345 (-852 |#1|))) 73 (|has| |#1| (-491)) ELT)) (-1894 (($) 107 T ELT) (($ (-1081)) 115 T ELT) (($ (-1170 (-1081))) 114 T ELT) (($ (-1170 $)) 102 T ELT) (($ (-1081) (-1170 $)) 113 T ELT) (($ (-1170 (-1081)) (-1170 $)) 112 T ELT)) (-1705 (((-83)) NIL T ELT)) (-3783 (((-345 (-852 |#1|)) $ (-480)) NIL T ELT)) (-3209 (((-1170 (-345 (-852 |#1|))) $ (-1170 $)) 104 T ELT) (((-627 (-345 (-852 |#1|))) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 (-345 (-852 |#1|))) $) 44 T ELT) (((-627 (-345 (-852 |#1|))) (-1170 $)) NIL T ELT)) (-3955 (((-1170 (-345 (-852 |#1|))) $) NIL T ELT) (($ (-1170 (-345 (-852 |#1|)))) 41 T ELT)) (-1881 (((-580 (-852 (-345 (-852 |#1|)))) (-1170 $)) NIL T ELT) (((-580 (-852 (-345 (-852 |#1|))))) NIL T ELT) (((-580 (-852 |#1|)) (-1170 $)) 105 (|has| |#1| (-491)) ELT) (((-580 (-852 |#1|))) 106 (|has| |#1| (-491)) ELT)) (-2421 (($ $ $) NIL T ELT)) (-1711 (((-83)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-1170 (-345 (-852 |#1|)))) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 66 T ELT)) (-1696 (((-580 (-1170 (-345 (-852 |#1|))))) NIL (|has| (-345 (-852 |#1|)) (-491)) ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-2531 (($ (-627 (-345 (-852 |#1|))) $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-2646 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-345 (-852 |#1|))) NIL T ELT) (($ (-345 (-852 |#1|)) $) NIL T ELT) (($ (-1047 |#2| (-345 (-852 |#1|))) $) NIL T ELT))) -(((-388 |#1| |#2| |#3| |#4|) (-13 (-356 (-345 (-852 |#1|))) (-587 (-1047 |#2| (-345 (-852 |#1|)))) (-10 -8 (-15 -3929 ($ (-1170 (-345 (-852 |#1|))))) (-15 -1896 ((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1="failed"))) (-15 -1895 ((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#))) (-15 -1894 ($)) (-15 -1894 ($ (-1081))) (-15 -1894 ($ (-1170 (-1081)))) (-15 -1894 ($ (-1170 $))) (-15 -1894 ($ (-1081) (-1170 $))) (-15 -1894 ($ (-1170 (-1081)) (-1170 $))) (IF (|has| |#1| (-491)) (PROGN (-15 -1893 ((-1076 (-345 (-852 |#1|))))) (-15 -1892 ((-1076 (-345 (-852 |#1|))) $)) (-15 -1891 ((-345 (-852 |#1|)) $)) (-15 -1890 ((-345 (-852 |#1|)) $)) (-15 -1889 ((-1076 (-345 (-852 |#1|))))) (-15 -1888 ((-1076 (-345 (-852 |#1|))) $)) (-15 -1887 ((-345 (-852 |#1|)) $)) (-15 -1886 ((-345 (-852 |#1|)) $)) (-15 -1885 ((-345 (-852 |#1|)) $ $)) (-15 -1884 ((-345 (-852 |#1|)))) (-15 -1883 ((-345 (-852 |#1|)) $ $)) (-15 -1882 ((-345 (-852 |#1|)))) (-15 -1881 ((-580 (-852 |#1|)) (-1170 $))) (-15 -1881 ((-580 (-852 |#1|))))) |%noBranch|))) (-144) (-825) (-580 (-1081)) (-1170 (-627 |#1|))) (T -388)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1170 (-345 (-852 *3)))) (-4 *3 (-144)) (-14 *6 (-1170 (-627 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))))) (-1896 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-388 *3 *4 *5 *6)) (|:| -2000 (-580 (-388 *3 *4 *5 *6))))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1895 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-388 *3 *4 *5 *6)) (|:| -2000 (-580 (-388 *3 *4 *5 *6))))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1894 (*1 *1) (-12 (-5 *1 (-388 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-825)) (-14 *4 (-580 (-1081))) (-14 *5 (-1170 (-627 *2))))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 *2)) (-14 *6 (-1170 (-627 *3))))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-1170 (-1081))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-1170 (-388 *3 *4 *5 *6))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1894 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1170 (-388 *4 *5 *6 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-825)) (-14 *6 (-580 *2)) (-14 *7 (-1170 (-627 *4))))) (-1894 (*1 *1 *2 *3) (-12 (-5 *2 (-1170 (-1081))) (-5 *3 (-1170 (-388 *4 *5 *6 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-825)) (-14 *6 (-580 (-1081))) (-14 *7 (-1170 (-627 *4))))) (-1893 (*1 *2) (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1889 (*1 *2) (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1885 (*1 *2 *1 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1884 (*1 *2) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1883 (*1 *2 *1 *1) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1882 (*1 *2) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1170 (-388 *4 *5 *6 *7))) (-5 *2 (-580 (-852 *4))) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-491)) (-4 *4 (-144)) (-14 *5 (-825)) (-14 *6 (-580 (-1081))) (-14 *7 (-1170 (-627 *4))))) (-1881 (*1 *2) (-12 (-5 *2 (-580 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 19 T ELT)) (-3067 (((-580 (-768 |#1|)) $) 88 T ELT)) (-3069 (((-1076 $) $ (-768 |#1|)) 53 T ELT) (((-1076 |#2|) $) 140 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-491)) ELT)) (-2805 (((-689) $) 28 T ELT) (((-689) $ (-580 (-768 |#1|))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#2| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-3141 ((|#2| $) 49 T ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-768 |#1|) $) NIL T ELT)) (-3739 (($ $ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1926 (($ $ (-580 (-480))) 95 T ELT)) (-3942 (($ $) 81 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-816)) ELT)) (-1613 (($ $ |#2| |#3| $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) 66 T ELT)) (-3070 (($ (-1076 |#2|) (-768 |#1|)) 145 T ELT) (($ (-1076 $) (-768 |#1|)) 59 T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) 69 T ELT)) (-2879 (($ |#2| |#3|) 36 T ELT) (($ $ (-768 |#1|) (-689)) 38 T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-768 |#1|)) NIL T ELT)) (-2806 ((|#3| $) NIL T ELT) (((-689) $ (-768 |#1|)) 57 T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) 64 T ELT)) (-1614 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3068 (((-3 (-768 |#1|) #1#) $) 46 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#2| $) 48 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-768 |#1|)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) 47 T ELT)) (-1785 ((|#2| $) 138 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) 151 (|has| |#2| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-768 |#1|) |#2|) 102 T ELT) (($ $ (-580 (-768 |#1|)) (-580 |#2|)) 108 T ELT) (($ $ (-768 |#1|) $) 100 T ELT) (($ $ (-580 (-768 |#1|)) (-580 $)) 126 T ELT)) (-3740 (($ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3741 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) 60 T ELT)) (-3931 ((|#3| $) 80 T ELT) (((-689) $ (-768 |#1|)) 43 T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) 63 T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-768 |#1|) (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#2| $) 147 (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3929 (((-767) $) 175 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-768 |#1|)) 40 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#2| (-491)) ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ |#3|) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 32 T CONST)) (-2655 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) 77 (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 133 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 131 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-389 |#1| |#2| |#3|) (-13 (-856 |#2| |#3| (-768 |#1|)) (-10 -8 (-15 -1926 ($ $ (-580 (-480)))))) (-580 (-1081)) (-956) (-194 (-3940 |#1|) (-689))) (T -389)) -((-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-14 *3 (-580 (-1081))) (-5 *1 (-389 *3 *4 *5)) (-4 *4 (-956)) (-4 *5 (-194 (-3940 *3) (-689)))))) -((-1900 (((-83) |#1| (-580 |#2|)) 90 T ELT)) (-1898 (((-3 (-1170 (-580 |#2|)) #1="failed") (-689) |#1| (-580 |#2|)) 99 T ELT)) (-1899 (((-3 (-580 |#2|) #1#) |#2| |#1| (-1170 (-580 |#2|))) 101 T ELT)) (-2025 ((|#2| |#2| |#1|) 35 T ELT)) (-1897 (((-689) |#2| (-580 |#2|)) 26 T ELT))) -(((-390 |#1| |#2|) (-10 -7 (-15 -2025 (|#2| |#2| |#1|)) (-15 -1897 ((-689) |#2| (-580 |#2|))) (-15 -1898 ((-3 (-1170 (-580 |#2|)) #1="failed") (-689) |#1| (-580 |#2|))) (-15 -1899 ((-3 (-580 |#2|) #1#) |#2| |#1| (-1170 (-580 |#2|)))) (-15 -1900 ((-83) |#1| (-580 |#2|)))) (-255) (-1146 |#1|)) (T -390)) -((-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *5)) (-4 *5 (-1146 *3)) (-4 *3 (-255)) (-5 *2 (-83)) (-5 *1 (-390 *3 *5)))) (-1899 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170 (-580 *3))) (-4 *4 (-255)) (-5 *2 (-580 *3)) (-5 *1 (-390 *4 *3)) (-4 *3 (-1146 *4)))) (-1898 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-689)) (-4 *4 (-255)) (-4 *6 (-1146 *4)) (-5 *2 (-1170 (-580 *6))) (-5 *1 (-390 *4 *6)) (-5 *5 (-580 *6)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-255)) (-5 *2 (-689)) (-5 *1 (-390 *5 *3)))) (-2025 (*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-5 *1 (-390 *3 *2)) (-4 *2 (-1146 *3))))) -((-3715 (((-343 |#5|) |#5|) 24 T ELT))) -(((-391 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3715 ((-343 |#5|) |#5|))) (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081))))) (-712) (-491) (-491) (-856 |#4| |#2| |#1|)) (T -391)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081)))))) (-4 *5 (-712)) (-4 *7 (-491)) (-5 *2 (-343 *3)) (-5 *1 (-391 *4 *5 *6 *7 *3)) (-4 *6 (-491)) (-4 *3 (-856 *7 *5 *4))))) -((-2686 ((|#3|) 43 T ELT)) (-2694 (((-1076 |#4|) (-1076 |#4|) (-1076 |#4|)) 34 T ELT))) -(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 ((-1076 |#4|) (-1076 |#4|) (-1076 |#4|))) (-15 -2686 (|#3|))) (-712) (-751) (-816) (-856 |#3| |#1| |#2|)) (T -392)) -((-2686 (*1 *2) (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-816)) (-5 *1 (-392 *3 *4 *2 *5)) (-4 *5 (-856 *2 *3 *4)))) (-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-816)) (-5 *1 (-392 *3 *4 *5 *6))))) -((-3715 (((-343 (-1076 |#1|)) (-1076 |#1|)) 43 T ELT))) -(((-393 |#1|) (-10 -7 (-15 -3715 ((-343 (-1076 |#1|)) (-1076 |#1|)))) (-255)) (T -393)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-255)) (-5 *2 (-343 (-1076 *4))) (-5 *1 (-393 *4)) (-5 *3 (-1076 *4))))) -((-3712 (((-51) |#2| (-1081) (-246 |#2|) (-1137 (-689))) 44 T ELT) (((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-689))) 43 T ELT) (((-51) |#2| (-1081) (-246 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-480)) (-246 |#2|)) 29 T ELT)) (-3801 (((-51) |#2| (-1081) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480))) 88 T ELT) (((-51) (-1 |#2| (-345 (-480))) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480))) 87 T ELT) (((-51) |#2| (-1081) (-246 |#2|) (-1137 (-480))) 86 T ELT) (((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-480))) 85 T ELT) (((-51) |#2| (-1081) (-246 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-480)) (-246 |#2|)) 79 T ELT)) (-3765 (((-51) |#2| (-1081) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480))) 74 T ELT) (((-51) (-1 |#2| (-345 (-480))) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480))) 72 T ELT)) (-3762 (((-51) |#2| (-1081) (-246 |#2|) (-1137 (-480))) 51 T ELT) (((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-480))) 50 T ELT))) -(((-394 |#1| |#2|) (-10 -7 (-15 -3712 ((-51) (-1 |#2| (-480)) (-246 |#2|))) (-15 -3712 ((-51) |#2| (-1081) (-246 |#2|))) (-15 -3712 ((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-689)))) (-15 -3712 ((-51) |#2| (-1081) (-246 |#2|) (-1137 (-689)))) (-15 -3762 ((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-480)))) (-15 -3762 ((-51) |#2| (-1081) (-246 |#2|) (-1137 (-480)))) (-15 -3765 ((-51) (-1 |#2| (-345 (-480))) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480)))) (-15 -3765 ((-51) |#2| (-1081) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480)))) (-15 -3801 ((-51) (-1 |#2| (-480)) (-246 |#2|))) (-15 -3801 ((-51) |#2| (-1081) (-246 |#2|))) (-15 -3801 ((-51) (-1 |#2| (-480)) (-246 |#2|) (-1137 (-480)))) (-15 -3801 ((-51) |#2| (-1081) (-246 |#2|) (-1137 (-480)))) (-15 -3801 ((-51) (-1 |#2| (-345 (-480))) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480)))) (-15 -3801 ((-51) |#2| (-1081) (-246 |#2|) (-1137 (-345 (-480))) (-345 (-480))))) (-13 (-491) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -394)) -((-3801 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-345 (-480)))) (-5 *7 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *8))) (-4 *8 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *8 *3)))) (-3801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-345 (-480)))) (-5 *4 (-246 *8)) (-5 *5 (-1137 (-345 (-480)))) (-5 *6 (-345 (-480))) (-4 *8 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *7 *8)))) (-3801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *7 *3)))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-480))) (-4 *7 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *6 *7)))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *6 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-480))) (-5 *4 (-246 *6)) (-4 *6 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *5 *6)))) (-3765 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-345 (-480)))) (-5 *7 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *8))) (-4 *8 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *8 *3)))) (-3765 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-345 (-480)))) (-5 *4 (-246 *8)) (-5 *5 (-1137 (-345 (-480)))) (-5 *6 (-345 (-480))) (-4 *8 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *7 *8)))) (-3762 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *7 *3)))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-480))) (-4 *7 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *6 *7)))) (-3712 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-689))) (-4 *3 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *7 *3)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-689))) (-4 *7 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *6 *7)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *6 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-480))) (-5 *4 (-246 *6)) (-4 *6 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) (-5 *1 (-394 *5 *6))))) -((-2025 ((|#2| |#2| |#1|) 15 T ELT)) (-1902 (((-580 |#2|) |#2| (-580 |#2|) |#1| (-825)) 82 T ELT)) (-1901 (((-2 (|:| |plist| (-580 |#2|)) (|:| |modulo| |#1|)) |#2| (-580 |#2|) |#1| (-825)) 71 T ELT))) -(((-395 |#1| |#2|) (-10 -7 (-15 -1901 ((-2 (|:| |plist| (-580 |#2|)) (|:| |modulo| |#1|)) |#2| (-580 |#2|) |#1| (-825))) (-15 -1902 ((-580 |#2|) |#2| (-580 |#2|) |#1| (-825))) (-15 -2025 (|#2| |#2| |#1|))) (-255) (-1146 |#1|)) (T -395)) -((-2025 (*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1146 *3)))) (-1902 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-580 *3)) (-5 *5 (-825)) (-4 *3 (-1146 *4)) (-4 *4 (-255)) (-5 *1 (-395 *4 *3)))) (-1901 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-825)) (-4 *5 (-255)) (-4 *3 (-1146 *5)) (-5 *2 (-2 (|:| |plist| (-580 *3)) (|:| |modulo| *5))) (-5 *1 (-395 *5 *3)) (-5 *4 (-580 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 28 T ELT)) (-3690 (($ |#3|) 25 T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) 32 T ELT)) (-1903 (($ |#2| |#4| $) 33 T ELT)) (-2879 (($ |#2| (-647 |#3| |#4| |#5|)) 24 T ELT)) (-2880 (((-647 |#3| |#4| |#5|) $) 15 T ELT)) (-1905 ((|#3| $) 19 T ELT)) (-1906 ((|#4| $) 17 T ELT)) (-3159 ((|#2| $) 29 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1904 (($ |#2| |#3| |#4|) 26 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 36 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 34 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-396 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-651 |#6|) (-651 |#2|) (-10 -8 (-15 -3159 (|#2| $)) (-15 -2880 ((-647 |#3| |#4| |#5|) $)) (-15 -1906 (|#4| $)) (-15 -1905 (|#3| $)) (-15 -3942 ($ $)) (-15 -2879 ($ |#2| (-647 |#3| |#4| |#5|))) (-15 -3690 ($ |#3|)) (-15 -1904 ($ |#2| |#3| |#4|)) (-15 -1903 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-580 (-1081)) (-144) (-751) (-194 (-3940 |#1|) (-689)) (-1 (-83) (-2 (|:| -2388 |#3|) (|:| -2389 |#4|)) (-2 (|:| -2388 |#3|) (|:| -2389 |#4|))) (-856 |#2| |#4| (-768 |#1|))) (T -396)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *6 (-194 (-3940 *3) (-689))) (-14 *7 (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) (-2 (|:| -2388 *5) (|:| -2389 *6)))) (-5 *1 (-396 *3 *4 *5 *6 *7 *2)) (-4 *5 (-751)) (-4 *2 (-856 *4 *6 (-768 *3))))) (-3159 (*1 *2 *1) (-12 (-14 *3 (-580 (-1081))) (-4 *5 (-194 (-3940 *3) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *4) (|:| -2389 *5)) (-2 (|:| -2388 *4) (|:| -2389 *5)))) (-4 *2 (-144)) (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *4 (-751)) (-4 *7 (-856 *2 *5 (-768 *3))))) (-2880 (*1 *2 *1) (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *6 (-194 (-3940 *3) (-689))) (-14 *7 (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) (-2 (|:| -2388 *5) (|:| -2389 *6)))) (-5 *2 (-647 *5 *6 *7)) (-5 *1 (-396 *3 *4 *5 *6 *7 *8)) (-4 *5 (-751)) (-4 *8 (-856 *4 *6 (-768 *3))))) (-1906 (*1 *2 *1) (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-14 *6 (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *2)) (-2 (|:| -2388 *5) (|:| -2389 *2)))) (-4 *2 (-194 (-3940 *3) (-689))) (-5 *1 (-396 *3 *4 *5 *2 *6 *7)) (-4 *5 (-751)) (-4 *7 (-856 *4 *2 (-768 *3))))) (-1905 (*1 *2 *1) (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *5 (-194 (-3940 *3) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *5)) (-2 (|:| -2388 *2) (|:| -2389 *5)))) (-4 *2 (-751)) (-5 *1 (-396 *3 *4 *2 *5 *6 *7)) (-4 *7 (-856 *4 *5 (-768 *3))))) (-3942 (*1 *1 *1) (-12 (-14 *2 (-580 (-1081))) (-4 *3 (-144)) (-4 *5 (-194 (-3940 *2) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *4) (|:| -2389 *5)) (-2 (|:| -2388 *4) (|:| -2389 *5)))) (-5 *1 (-396 *2 *3 *4 *5 *6 *7)) (-4 *4 (-751)) (-4 *7 (-856 *3 *5 (-768 *2))))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-647 *5 *6 *7)) (-4 *5 (-751)) (-4 *6 (-194 (-3940 *4) (-689))) (-14 *7 (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) (-2 (|:| -2388 *5) (|:| -2389 *6)))) (-14 *4 (-580 (-1081))) (-4 *2 (-144)) (-5 *1 (-396 *4 *2 *5 *6 *7 *8)) (-4 *8 (-856 *2 *6 (-768 *4))))) (-3690 (*1 *1 *2) (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *5 (-194 (-3940 *3) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *5)) (-2 (|:| -2388 *2) (|:| -2389 *5)))) (-5 *1 (-396 *3 *4 *2 *5 *6 *7)) (-4 *2 (-751)) (-4 *7 (-856 *4 *5 (-768 *3))))) (-1904 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-580 (-1081))) (-4 *2 (-144)) (-4 *4 (-194 (-3940 *5) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *3) (|:| -2389 *4)) (-2 (|:| -2388 *3) (|:| -2389 *4)))) (-5 *1 (-396 *5 *2 *3 *4 *6 *7)) (-4 *3 (-751)) (-4 *7 (-856 *2 *4 (-768 *5))))) (-1903 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-580 (-1081))) (-4 *2 (-144)) (-4 *3 (-194 (-3940 *4) (-689))) (-14 *6 (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *3)) (-2 (|:| -2388 *5) (|:| -2389 *3)))) (-5 *1 (-396 *4 *2 *5 *3 *6 *7)) (-4 *5 (-751)) (-4 *7 (-856 *2 *3 (-768 *4)))))) -((-1907 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-397 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1907 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-712) (-751) (-491) (-856 |#3| |#1| |#2|) (-13 (-945 (-345 (-480))) (-309) (-10 -8 (-15 -3929 ($ |#4|)) (-15 -2984 (|#4| $)) (-15 -2983 (|#4| $))))) (T -397)) -((-1907 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-751)) (-4 *5 (-712)) (-4 *6 (-491)) (-4 *7 (-856 *6 *5 *3)) (-5 *1 (-397 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-945 (-345 (-480))) (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3067 (((-580 |#3|) $) 41 T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3693 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1="failed") (-580 |#4|)) 49 T ELT)) (-3141 (($ (-580 |#4|)) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3389 (($ |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#4|) $) 18 (|has| $ (-6 -3978)) ELT)) (-3165 ((|#3| $) 47 T ELT)) (-2594 (((-580 |#4|) $) 14 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 26 (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2900 (((-580 |#3|) $) NIL T ELT)) (-2899 (((-83) |#3| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1343 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 39 T ELT)) (-3548 (($) 17 T ELT)) (-1935 (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 16 T ELT)) (-3955 (((-469) $) NIL (|has| |#4| (-550 (-469))) ELT) (($ (-580 |#4|)) 51 T ELT)) (-3513 (($ (-580 |#4|)) 13 T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-2898 (($ $ |#3|) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3929 (((-767) $) 38 T ELT) (((-580 |#4|) $) 50 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 30 T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-398 |#1| |#2| |#3| |#4|) (-13 (-884 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3955 ($ (-580 |#4|))) (-6 -3978) (-6 -3979))) (-956) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -398)) -((-3955 (*1 *1 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-398 *3 *4 *5 *6))))) -((-2646 (($) 11 T CONST)) (-2652 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-399 |#1| |#2| |#3|) (-10 -7 (-15 -2652 (|#1|) -3935) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2646 (|#1|) -3935)) (-400 |#2| |#3|) (-144) (-23)) (T -399)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3142 (((-3 |#1| "failed") $) 30 T ELT)) (-3141 ((|#1| $) 31 T ELT)) (-3927 (($ $ $) 27 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3931 ((|#2| $) 23 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 22 T CONST)) (-2652 (($) 28 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-400 |#1| |#2|) (-111) (-144) (-23)) (T -400)) -((-2652 (*1 *1) (-12 (-4 *1 (-400 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3927 (*1 *1 *1 *1) (-12 (-4 *1 (-400 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) -(-13 (-405 |t#1| |t#2|) (-945 |t#1|) (-10 -8 (-15 -2652 ($) -3935) (-15 -3927 ($ $ $)))) -(((-72) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-405 |#1| |#2|) . T) ((-13) . T) ((-945 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-1908 (((-1170 (-1170 (-480))) (-1170 (-1170 (-480))) (-825)) 26 T ELT)) (-1909 (((-1170 (-1170 (-480))) (-825)) 21 T ELT))) -(((-401) (-10 -7 (-15 -1908 ((-1170 (-1170 (-480))) (-1170 (-1170 (-480))) (-825))) (-15 -1909 ((-1170 (-1170 (-480))) (-825))))) (T -401)) -((-1909 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1170 (-1170 (-480)))) (-5 *1 (-401)))) (-1908 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 (-1170 (-480)))) (-5 *3 (-825)) (-5 *1 (-401))))) -((-2756 (((-480) (-480)) 32 T ELT) (((-480)) 24 T ELT)) (-2760 (((-480) (-480)) 28 T ELT) (((-480)) 20 T ELT)) (-2758 (((-480) (-480)) 30 T ELT) (((-480)) 22 T ELT)) (-1911 (((-83) (-83)) 14 T ELT) (((-83)) 12 T ELT)) (-1910 (((-83) (-83)) 13 T ELT) (((-83)) 11 T ELT)) (-1912 (((-83) (-83)) 26 T ELT) (((-83)) 17 T ELT))) -(((-402) (-10 -7 (-15 -1910 ((-83))) (-15 -1911 ((-83))) (-15 -1910 ((-83) (-83))) (-15 -1911 ((-83) (-83))) (-15 -1912 ((-83))) (-15 -2758 ((-480))) (-15 -2760 ((-480))) (-15 -2756 ((-480))) (-15 -1912 ((-83) (-83))) (-15 -2758 ((-480) (-480))) (-15 -2760 ((-480) (-480))) (-15 -2756 ((-480) (-480))))) (T -402)) -((-2756 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) (-2756 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-2760 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-2758 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) (-1912 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) (-1911 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) (-1911 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) (-1910 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3834 (((-580 (-325)) $) 34 T ELT) (((-580 (-325)) $ (-580 (-325))) 145 T ELT)) (-1917 (((-580 (-995 (-325))) $) 16 T ELT) (((-580 (-995 (-325))) $ (-580 (-995 (-325)))) 142 T ELT)) (-1914 (((-580 (-580 (-849 (-177)))) (-580 (-580 (-849 (-177)))) (-580 (-778))) 58 T ELT)) (-1918 (((-580 (-580 (-849 (-177)))) $) 137 T ELT)) (-3689 (((-1176) $ (-849 (-177)) (-778)) 162 T ELT)) (-1919 (($ $) 136 T ELT) (($ (-580 (-580 (-849 (-177))))) 148 T ELT) (($ (-580 (-580 (-849 (-177)))) (-580 (-778)) (-580 (-778)) (-580 (-825))) 147 T ELT) (($ (-580 (-580 (-849 (-177)))) (-580 (-778)) (-580 (-778)) (-580 (-825)) (-580 (-219))) 149 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3843 (((-480) $) 110 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1920 (($) 146 T ELT)) (-1913 (((-580 (-177)) (-580 (-580 (-849 (-177))))) 89 T ELT)) (-1916 (((-1176) $ (-580 (-849 (-177))) (-778) (-778) (-825)) 154 T ELT) (((-1176) $ (-849 (-177))) 156 T ELT) (((-1176) $ (-849 (-177)) (-778) (-778) (-825)) 155 T ELT)) (-3929 (((-767) $) 168 T ELT) (($ (-580 (-580 (-849 (-177))))) 163 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1915 (((-1176) $ (-849 (-177))) 161 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-403) (-13 (-1007) (-10 -8 (-15 -1920 ($)) (-15 -1919 ($ $)) (-15 -1919 ($ (-580 (-580 (-849 (-177)))))) (-15 -1919 ($ (-580 (-580 (-849 (-177)))) (-580 (-778)) (-580 (-778)) (-580 (-825)))) (-15 -1919 ($ (-580 (-580 (-849 (-177)))) (-580 (-778)) (-580 (-778)) (-580 (-825)) (-580 (-219)))) (-15 -1918 ((-580 (-580 (-849 (-177)))) $)) (-15 -3843 ((-480) $)) (-15 -1917 ((-580 (-995 (-325))) $)) (-15 -1917 ((-580 (-995 (-325))) $ (-580 (-995 (-325))))) (-15 -3834 ((-580 (-325)) $)) (-15 -3834 ((-580 (-325)) $ (-580 (-325)))) (-15 -1916 ((-1176) $ (-580 (-849 (-177))) (-778) (-778) (-825))) (-15 -1916 ((-1176) $ (-849 (-177)))) (-15 -1916 ((-1176) $ (-849 (-177)) (-778) (-778) (-825))) (-15 -1915 ((-1176) $ (-849 (-177)))) (-15 -3689 ((-1176) $ (-849 (-177)) (-778))) (-15 -3929 ($ (-580 (-580 (-849 (-177)))))) (-15 -3929 ((-767) $)) (-15 -1914 ((-580 (-580 (-849 (-177)))) (-580 (-580 (-849 (-177)))) (-580 (-778)))) (-15 -1913 ((-580 (-177)) (-580 (-580 (-849 (-177))))))))) (T -403)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-403)))) (-1920 (*1 *1) (-5 *1 (-403))) (-1919 (*1 *1 *1) (-5 *1 (-403))) (-1919 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403)))) (-1919 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) (-5 *4 (-580 (-825))) (-5 *1 (-403)))) (-1919 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) (-5 *4 (-580 (-825))) (-5 *5 (-580 (-219))) (-5 *1 (-403)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-403)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-403)))) (-1917 (*1 *2 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-403)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-403)))) (-3834 (*1 *2 *1 *2) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-403)))) (-1916 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *4 (-778)) (-5 *5 (-825)) (-5 *2 (-1176)) (-5 *1 (-403)))) (-1916 (*1 *2 *1 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-403)))) (-1916 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-849 (-177))) (-5 *4 (-778)) (-5 *5 (-825)) (-5 *2 (-1176)) (-5 *1 (-403)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-403)))) (-3689 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849 (-177))) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-403)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403)))) (-1914 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) (-5 *1 (-403)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-580 (-177))) (-5 *1 (-403))))) -((-3820 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|))) (-405 |#2| |#3|) (-144) (-23)) (T -404)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3931 ((|#2| $) 23 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 22 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-405 |#1| |#2|) (-111) (-144) (-23)) (T -405)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) (-2646 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3820 (*1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3820 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) -(-13 (-1007) (-10 -8 (-15 -3931 (|t#2| $)) (-15 -2646 ($) -3935) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3820 ($ $)) (-15 -3822 ($ $ $)) (-15 -3820 ($ $ $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-1922 (((-3 (-580 (-416 |#1| |#2|)) "failed") (-580 (-416 |#1| |#2|)) (-580 (-768 |#1|))) 135 T ELT)) (-1921 (((-580 (-580 (-204 |#1| |#2|))) (-580 (-204 |#1| |#2|)) (-580 (-768 |#1|))) 132 T ELT)) (-1923 (((-2 (|:| |dpolys| (-580 (-204 |#1| |#2|))) (|:| |coords| (-580 (-480)))) (-580 (-204 |#1| |#2|)) (-580 (-768 |#1|))) 87 T ELT))) -(((-406 |#1| |#2| |#3|) (-10 -7 (-15 -1921 ((-580 (-580 (-204 |#1| |#2|))) (-580 (-204 |#1| |#2|)) (-580 (-768 |#1|)))) (-15 -1922 ((-3 (-580 (-416 |#1| |#2|)) "failed") (-580 (-416 |#1| |#2|)) (-580 (-768 |#1|)))) (-15 -1923 ((-2 (|:| |dpolys| (-580 (-204 |#1| |#2|))) (|:| |coords| (-580 (-480)))) (-580 (-204 |#1| |#2|)) (-580 (-768 |#1|))))) (-580 (-1081)) (-387) (-387)) (T -406)) -((-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-768 *5))) (-14 *5 (-580 (-1081))) (-4 *6 (-387)) (-5 *2 (-2 (|:| |dpolys| (-580 (-204 *5 *6))) (|:| |coords| (-580 (-480))))) (-5 *1 (-406 *5 *6 *7)) (-5 *3 (-580 (-204 *5 *6))) (-4 *7 (-387)))) (-1922 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-416 *4 *5))) (-5 *3 (-580 (-768 *4))) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *1 (-406 *4 *5 *6)) (-4 *6 (-387)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-768 *5))) (-14 *5 (-580 (-1081))) (-4 *6 (-387)) (-5 *2 (-580 (-580 (-204 *5 *6)))) (-5 *1 (-406 *5 *6 *7)) (-5 *3 (-580 (-204 *5 *6))) (-4 *7 (-387))))) -((-3450 (((-3 $ "failed") $) 11 T ELT)) (-2995 (($ $ $) 22 T ELT)) (-2421 (($ $ $) 23 T ELT)) (-3932 (($ $ $) 9 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 21 T ELT))) -(((-407 |#1|) (-10 -7 (-15 -2421 (|#1| |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-480))) (-15 -3932 (|#1| |#1| |#1|)) (-15 -3450 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-689))) (-15 ** (|#1| |#1| (-825)))) (-408)) (T -407)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3707 (($) 23 T CONST)) (-3450 (((-3 $ "failed") $) 20 T ELT)) (-2398 (((-83) $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 30 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2995 (($ $ $) 27 T ELT)) (-2421 (($ $ $) 26 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 24 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 29 T ELT)) (** (($ $ (-825)) 17 T ELT) (($ $ (-689)) 21 T ELT) (($ $ (-480)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-408) (-111)) (T -408)) -((-2470 (*1 *1 *1) (-4 *1 (-408))) (-3932 (*1 *1 *1 *1) (-4 *1 (-408))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-480)))) (-2995 (*1 *1 *1 *1) (-4 *1 (-408))) (-2421 (*1 *1 *1 *1) (-4 *1 (-408)))) -(-13 (-660) (-10 -8 (-15 -2470 ($ $)) (-15 -3932 ($ $ $)) (-15 ** ($ $ (-480))) (-6 -3975) (-15 -2995 ($ $ $)) (-15 -2421 ($ $ $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-660) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 18 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) NIL T ELT) (($ $ (-345 (-480)) (-345 (-480))) NIL T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) NIL T ELT) (((-345 (-480)) $ (-345 (-480))) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-345 (-480))) NIL T ELT) (($ $ (-988) (-345 (-480))) NIL T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) 29 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 35 (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 30 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) NIL T ELT) (($ $ $) NIL (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 28 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) 16 T ELT)) (-3931 (((-345 (-480)) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1167 |#2|)) NIL T ELT) (($ (-1151 |#1| |#2| |#3|)) 9 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 21 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-409 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-801 $ (-1167 |#2|)) (-10 -8 (-15 -3929 ($ (-1167 |#2|))) (-15 -3929 ($ (-1151 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -409)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-409 *3 *4 *5)) (-4 *3 (-956)) (-14 *5 *3))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) (-5 *1 (-409 *3 *4 *5)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-409 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) NIL T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-410 |#1| |#2| |#3| |#4|) (-1098 |#1| |#2|) (-1007) (-1007) (-1098 |#1| |#2|) |#2|) (T -410)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) NIL T ELT)) (-3665 (((-580 $) (-580 |#4|)) NIL T ELT)) (-3067 (((-580 |#3|) $) NIL T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3693 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1#) (-580 |#4|)) NIL T ELT)) (-3141 (($ (-580 |#4|)) NIL T ELT)) (-3782 (((-3 $ #1#) $) 45 T ELT)) (-3668 ((|#4| |#4| $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3389 (($ |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 ((|#4| |#4| $) NIL T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) NIL T ELT)) (-2875 (((-580 |#4|) $) 18 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 19 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2900 (((-580 |#3|) $) NIL T ELT)) (-2899 (((-83) |#3| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3781 (((-3 |#4| #1#) $) 42 T ELT)) (-3680 (((-580 |#4|) $) NIL T ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3682 (((-83) $ $) NIL T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-3 |#4| #1#) $) 40 T ELT)) (-1343 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3752 (($ $ |#4|) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 17 T ELT)) (-3548 (($) 14 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-1935 (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 13 T ELT)) (-3955 (((-469) $) NIL (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 22 T ELT)) (-2896 (($ $ |#3|) 49 T ELT)) (-2898 (($ $ |#3|) 51 T ELT)) (-3667 (($ $) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3929 (((-767) $) 35 T ELT) (((-580 |#4|) $) 46 T ELT)) (-3661 (((-689) $) NIL (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) NIL T ELT)) (-3916 (((-83) |#3| $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-411 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2| |#3| |#4|) (-491) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -411)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3610 (($) 17 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3955 (((-325) $) 21 T ELT) (((-177) $) 24 T ELT) (((-345 (-1076 (-480))) $) 18 T ELT) (((-469) $) 53 T ELT)) (-3929 (((-767) $) 51 T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (((-177) $) 23 T ELT) (((-325) $) 20 T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 37 T CONST)) (-2652 (($) 8 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-412) (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))) (-928) (-549 (-177)) (-549 (-325)) (-550 (-345 (-1076 (-480)))) (-550 (-469)) (-10 -8 (-15 -3610 ($))))) (T -412)) -((-3610 (*1 *1) (-5 *1 (-412)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 (((-1040) $) 12 T ELT)) (-3512 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-413) (-13 (-989) (-10 -8 (-15 -3512 ((-1040) $)) (-15 -3511 ((-1040) $))))) (T -413)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-413)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-413))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) 13 T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 19 T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 11 (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) 15 (|has| $ (-6 -3978)) ELT))) -(((-414 |#1| |#2| |#3|) (-13 (-1098 |#1| |#2|) (-10 -7 (-6 -3978))) (-1007) (-1007) (-1064)) (T -414)) -NIL -((-1924 (((-480) (-480) (-480)) 19 T ELT)) (-1925 (((-83) (-480) (-480) (-480) (-480)) 28 T ELT)) (-3440 (((-1170 (-580 (-480))) (-689) (-689)) 42 T ELT))) -(((-415) (-10 -7 (-15 -1924 ((-480) (-480) (-480))) (-15 -1925 ((-83) (-480) (-480) (-480) (-480))) (-15 -3440 ((-1170 (-580 (-480))) (-689) (-689))))) (T -415)) -((-3440 (*1 *2 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1170 (-580 (-480)))) (-5 *1 (-415)))) (-1925 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-83)) (-5 *1 (-415)))) (-1924 (*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-415))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-768 |#1|)) $) NIL T ELT)) (-3069 (((-1076 $) $ (-768 |#1|)) NIL T ELT) (((-1076 |#2|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-768 |#1|))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#2| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-768 |#1|) $) NIL T ELT)) (-3739 (($ $ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1926 (($ $ (-580 (-480))) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-816)) ELT)) (-1613 (($ $ |#2| (-417 (-3940 |#1|) (-689)) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#2|) (-768 |#1|)) NIL T ELT) (($ (-1076 $) (-768 |#1|)) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-417 (-3940 |#1|) (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-768 |#1|)) NIL T ELT)) (-2806 (((-417 (-3940 |#1|) (-689)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-1614 (($ (-1 (-417 (-3940 |#1|) (-689)) (-417 (-3940 |#1|) (-689))) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3068 (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-768 |#1|)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#2| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-768 |#1|) |#2|) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 |#2|)) NIL T ELT) (($ $ (-768 |#1|) $) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 $)) NIL T ELT)) (-3740 (($ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3741 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3931 (((-417 (-3940 |#1|) (-689)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-768 |#1|) (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#2| $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-768 |#1|)) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#2| (-491)) ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-417 (-3940 |#1|) (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-416 |#1| |#2|) (-13 (-856 |#2| (-417 (-3940 |#1|) (-689)) (-768 |#1|)) (-10 -8 (-15 -1926 ($ $ (-580 (-480)))))) (-580 (-1081)) (-956)) (T -416)) -((-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-416 *3 *4)) (-14 *3 (-580 (-1081))) (-4 *4 (-956))))) -((-2554 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3173 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3690 (($ (-825)) NIL (|has| |#2| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) NIL (|has| |#2| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3121 (((-689)) NIL (|has| |#2| (-315)) ELT)) (-3771 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1007)) ELT)) (-3141 (((-480) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) ((|#2| $) NIL (|has| |#2| (-1007)) ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-956)) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#2| (-956)) ELT)) (-2980 (($) NIL (|has| |#2| (-315)) ELT)) (-1565 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ (-480)) 11 T ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-712)) ELT)) (-2875 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#2| (-956)) ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-2594 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-1938 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#2| (-315)) ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-1170 $)) NIL (|has| |#2| (-956)) ELT)) (-3227 (((-1064) $) NIL (|has| |#2| (-1007)) ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#2| (-315)) ELT)) (-3228 (((-1025) $) NIL (|has| |#2| (-1007)) ELT)) (-3784 ((|#2| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ (-480) |#2|) NIL T ELT) ((|#2| $ (-480)) NIL T ELT)) (-3819 ((|#2| $ $) NIL (|has| |#2| (-956)) ELT)) (-1457 (($ (-1170 |#2|)) NIL T ELT)) (-3894 (((-105)) NIL (|has| |#2| (-309)) ELT)) (-3741 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#2|) $) NIL T ELT) (($ (-480)) NIL (OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (($ |#2|) NIL (|has| |#2| (-1007)) ELT) (((-767) $) NIL (|has| |#2| (-549 (-767))) ELT)) (-3111 (((-689)) NIL (|has| |#2| (-956)) CONST)) (-1255 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) NIL (|has| |#2| (-23)) CONST)) (-2652 (($) NIL (|has| |#2| (-956)) CONST)) (-2655 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2671 (((-83) $ $) 17 (|has| |#2| (-751)) ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-689)) NIL (|has| |#2| (-956)) ELT) (($ $ (-825)) NIL (|has| |#2| (-956)) ELT)) (* (($ $ $) NIL (|has| |#2| (-956)) ELT) (($ $ |#2|) NIL (|has| |#2| (-660)) ELT) (($ |#2| $) NIL (|has| |#2| (-660)) ELT) (($ (-480) $) NIL (|has| |#2| (-21)) ELT) (($ (-689) $) NIL (|has| |#2| (-23)) ELT) (($ (-825) $) NIL (|has| |#2| (-25)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-417 |#1| |#2|) (-194 |#1| |#2|) (-689) (-712)) (T -417)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-1927 (((-580 (-780)) $) 16 T ELT)) (-3525 (((-441) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1928 (($ (-441) (-580 (-780))) 12 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 23 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-418) (-13 (-989) (-10 -8 (-15 -1928 ($ (-441) (-580 (-780)))) (-15 -3525 ((-441) $)) (-15 -1927 ((-580 (-780)) $))))) (T -418)) -((-1928 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-780))) (-5 *1 (-418)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-418)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-580 (-780))) (-5 *1 (-418))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3707 (($) NIL T CONST)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2842 (($ $ $) 48 T ELT)) (-3501 (($ $ $) 47 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2843 ((|#1| $) 40 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 41 T ELT)) (-3592 (($ |#1| $) 18 T ELT)) (-1929 (($ (-580 |#1|)) 19 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 34 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 11 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 45 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 29 (|has| $ (-6 -3978)) ELT))) -(((-419 |#1|) (-13 (-876 |#1|) (-10 -8 (-15 -1929 ($ (-580 |#1|))))) (-751)) (T -419)) -((-1929 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-419 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3825 (($ $) 71 T ELT)) (-1626 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1958 (((-351 |#2| (-345 |#2|) |#3| |#4|) $) 45 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (((-3 |#4| #1#) $) 117 T ELT)) (-1627 (($ (-351 |#2| (-345 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-480)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3418 (((-2 (|:| -2324 (-351 |#2| (-345 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3929 (((-767) $) 110 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 32 T CONST)) (-3042 (((-83) $ $) 121 T ELT)) (-3820 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 72 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 77 T ELT))) -(((-420 |#1| |#2| |#3| |#4|) (-283 |#1| |#2| |#3| |#4|) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -420)) -NIL -((-1933 (((-480) (-580 (-480))) 53 T ELT)) (-1930 ((|#1| (-580 |#1|)) 94 T ELT)) (-1932 (((-580 |#1|) (-580 |#1|)) 95 T ELT)) (-1931 (((-580 |#1|) (-580 |#1|)) 97 T ELT)) (-3129 ((|#1| (-580 |#1|)) 96 T ELT)) (-2803 (((-580 (-480)) (-580 |#1|)) 56 T ELT))) -(((-421 |#1|) (-10 -7 (-15 -3129 (|#1| (-580 |#1|))) (-15 -1930 (|#1| (-580 |#1|))) (-15 -1931 ((-580 |#1|) (-580 |#1|))) (-15 -1932 ((-580 |#1|) (-580 |#1|))) (-15 -2803 ((-580 (-480)) (-580 |#1|))) (-15 -1933 ((-480) (-580 (-480))))) (-1146 (-480))) (T -421)) -((-1933 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-480)) (-5 *1 (-421 *4)) (-4 *4 (-1146 *2)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-1146 (-480))) (-5 *2 (-580 (-480))) (-5 *1 (-421 *4)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1146 (-480))) (-5 *1 (-421 *3)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1146 (-480))) (-5 *1 (-421 *3)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-421 *2)) (-4 *2 (-1146 (-480))))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-421 *2)) (-4 *2 (-1146 (-480)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-480) $) NIL (|has| (-480) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-480) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-3141 (((-480) $) NIL T ELT) (((-1081) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-480) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-480) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-480) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-480) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| (-480) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-3941 (($ (-1 (-480) (-480)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-480) (-1057)) CONST)) (-1934 (($ (-345 (-480))) 9 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-480) (-255)) ELT) (((-345 (-480)) $) NIL T ELT)) (-3115 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-480)) (-580 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-480) (-480)) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-246 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-246 (-480)))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-1081)) (-580 (-480))) NIL (|has| (-480) (-449 (-1081) (-480))) ELT) (($ $ (-1081) (-480)) NIL (|has| (-480) (-449 (-1081) (-480))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-480)) NIL (|has| (-480) (-239 (-480) (-480))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-480) $) NIL T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-480) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-480) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-480) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-480) (-928)) ELT) (((-177) $) NIL (|has| (-480) (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-480) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 8 T ELT) (($ (-480)) NIL T ELT) (($ (-1081)) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL T ELT) (((-912 16) $) 10 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-480) (-816))) (|has| (-480) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-480) $) NIL (|has| (-480) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| (-480) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3932 (($ $ $) NIL T ELT) (($ (-480) (-480)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ (-480)) NIL T ELT))) -(((-422) (-13 (-899 (-480)) (-549 (-345 (-480))) (-549 (-912 16)) (-10 -8 (-15 -3113 ((-345 (-480)) $)) (-15 -1934 ($ (-345 (-480))))))) (T -422)) -((-3113 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-422)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-422))))) -((-2594 (((-580 |#2|) $) 31 T ELT)) (-3230 (((-83) |#2| $) 39 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 26 T ELT)) (-3751 (($ $ (-580 (-246 |#2|))) 13 T ELT) (($ $ (-246 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 30 T ELT) (((-689) |#2| $) 37 T ELT)) (-3929 (((-767) $) 45 T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3042 (((-83) $ $) 35 T ELT)) (-3940 (((-689) $) 18 T ELT))) -(((-423 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3751 (|#1| |#1| (-580 |#2|) (-580 |#2|))) (-15 -3751 (|#1| |#1| |#2| |#2|)) (-15 -3751 (|#1| |#1| (-246 |#2|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#2|)))) (-15 -3230 ((-83) |#2| |#1|)) (-15 -1935 ((-689) |#2| |#1|)) (-15 -2594 ((-580 |#2|) |#1|)) (-15 -1935 ((-689) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3940 ((-689) |#1|))) (-424 |#2|) (-1120)) (T -423)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3707 (($) 7 T CONST)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-424 |#1|) (-111) (-1120)) (T -424)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-424 *3)) (-4 *3 (-1120)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3979)) (-4 *1 (-424 *3)) (-4 *3 (-1120)))) (-1937 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-1936 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) (-4 *4 (-1120)) (-5 *2 (-689)))) (-2875 (*1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-5 *2 (-580 *3)))) (-2594 (*1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-5 *2 (-580 *3)))) (-1935 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-689)))) (-3230 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-549 (-767))) (-6 (-549 (-767))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |t#1| (-1007)) (IF (|has| |t#1| (-257 |t#1|)) (-6 (-257 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3979)) (-15 -1938 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3978)) (PROGN (-15 -1937 ((-83) (-1 (-83) |t#1|) $)) (-15 -1936 ((-83) (-1 (-83) |t#1|) $)) (-15 -1935 ((-689) (-1 (-83) |t#1|) $)) (-15 -2875 ((-580 |t#1|) $)) (-15 -2594 ((-580 |t#1|) $)) (IF (|has| |t#1| (-1007)) (PROGN (-15 -1935 ((-689) |t#1| $)) (-15 -3230 ((-83) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-3929 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-425 |#1|) (-111) (-1120)) (T -425)) -NIL -(-13 (-549 |t#1|) (-552 |t#1|)) -(((-552 |#1|) . T) ((-549 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1939 (($ (-1064)) 8 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 15 T ELT) (((-1064) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 11 T ELT))) -(((-426) (-13 (-1007) (-549 (-1064)) (-10 -8 (-15 -1939 ($ (-1064)))))) (T -426)) -((-1939 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-426))))) -((-3475 (($ $) 15 T ELT)) (-3473 (($ $) 24 T ELT)) (-3477 (($ $) 12 T ELT)) (-3478 (($ $) 10 T ELT)) (-3476 (($ $) 17 T ELT)) (-3474 (($ $) 22 T ELT))) -(((-427 |#1|) (-10 -7 (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|))) (-428)) (T -427)) -NIL -((-3475 (($ $) 11 T ELT)) (-3473 (($ $) 10 T ELT)) (-3477 (($ $) 9 T ELT)) (-3478 (($ $) 8 T ELT)) (-3476 (($ $) 7 T ELT)) (-3474 (($ $) 6 T ELT))) -(((-428) (-111)) (T -428)) -((-3475 (*1 *1 *1) (-4 *1 (-428))) (-3473 (*1 *1 *1) (-4 *1 (-428))) (-3477 (*1 *1 *1) (-4 *1 (-428))) (-3478 (*1 *1 *1) (-4 *1 (-428))) (-3476 (*1 *1 *1) (-4 *1 (-428))) (-3474 (*1 *1 *1) (-4 *1 (-428)))) -(-13 (-10 -8 (-15 -3474 ($ $)) (-15 -3476 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3473 ($ $)) (-15 -3475 ($ $)))) -((-3715 (((-343 |#4|) |#4| (-1 (-343 |#2|) |#2|)) 54 T ELT))) -(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4| (-1 (-343 |#2|) |#2|)))) (-309) (-1146 |#1|) (-13 (-309) (-118) (-658 |#1| |#2|)) (-1146 |#3|)) (T -429)) -((-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-4 *7 (-13 (-309) (-118) (-658 *5 *6))) (-5 *2 (-343 *3)) (-5 *1 (-429 *5 *6 *7 *3)) (-4 *3 (-1146 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1205 (((-580 $) (-1076 $) (-1081)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-852 $)) NIL T ELT)) (-1206 (($ (-1076 $) (-1081)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-852 $)) NIL T ELT)) (-3173 (((-83) $) 39 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1940 (((-83) $ $) 72 T ELT)) (-1589 (((-580 (-547 $)) $) 49 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1593 (($ $ (-246 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-3023 (($ $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1207 (((-580 $) (-1076 $) (-1081)) NIL T ELT) (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-852 $)) NIL T ELT)) (-3168 (($ (-1076 $) (-1081)) NIL T ELT) (($ (-1076 $)) NIL T ELT) (($ (-852 $)) NIL T ELT)) (-3142 (((-3 (-547 $) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3141 (((-547 $) $) NIL T ELT) (((-480) $) NIL T ELT) (((-345 (-480)) $) 54 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-345 (-480)))) (|:| |vec| (-1170 (-345 (-480))))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-345 (-480))) (-627 $)) NIL T ELT)) (-3825 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2559 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1588 (((-580 (-84)) $) NIL T ELT)) (-3578 (((-84) (-84)) NIL T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2659 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-2984 (((-1030 (-480) (-547 $)) $) 37 T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-3117 (((-1076 $) (-1076 $) (-547 $)) 86 T ELT) (((-1076 $) (-1076 $) (-580 (-547 $))) 61 T ELT) (($ $ (-547 $)) 75 T ELT) (($ $ (-580 (-547 $))) 76 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-1586 (((-1076 $) (-547 $)) 73 (|has| $ (-956)) ELT)) (-3941 (($ (-1 $ $) (-547 $)) NIL T ELT)) (-1591 (((-3 (-547 $) #1#) $) NIL T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-345 (-480)))) (|:| |vec| (-1170 (-345 (-480))))) (-1170 $) $) NIL T ELT) (((-627 (-345 (-480))) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1590 (((-580 (-547 $)) $) NIL T ELT)) (-2223 (($ (-84) $) NIL T ELT) (($ (-84) (-580 $)) NIL T ELT)) (-2619 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1081)) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-2589 (((-689) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1587 (((-83) $ $) NIL T ELT) (((-83) $ (-1081)) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2660 (((-83) $) NIL (|has| $ (-945 (-480))) ELT)) (-3751 (($ $ (-547 $) $) NIL T ELT) (($ $ (-580 (-547 $)) (-580 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-1081) (-1 $ (-580 $))) NIL T ELT) (($ $ (-1081) (-1 $ $)) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ $))) NIL T ELT) (($ $ (-580 (-84)) (-580 (-1 $ (-580 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-580 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-580 $)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1592 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3741 (($ $) 36 T ELT) (($ $ (-689)) NIL T ELT)) (-2983 (((-1030 (-480) (-547 $)) $) 20 T ELT)) (-3170 (($ $) NIL (|has| $ (-956)) ELT)) (-3955 (((-325) $) 100 T ELT) (((-177) $) 108 T ELT) (((-140 (-325)) $) 116 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-547 $)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-1030 (-480) (-547 $))) 21 T ELT)) (-3111 (((-689)) NIL T CONST)) (-2576 (($ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-2242 (((-83) (-84)) 92 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 10 T CONST)) (-2652 (($) 22 T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3042 (((-83) $ $) 24 T ELT)) (-3932 (($ $ $) 44 T ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-345 (-480))) NIL T ELT) (($ $ (-480)) 47 T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT)) (* (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-480) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-825) $) NIL T ELT))) -(((-430) (-13 (-251) (-27) (-945 (-480)) (-945 (-345 (-480))) (-577 (-480)) (-928) (-577 (-345 (-480))) (-118) (-550 (-140 (-325))) (-188) (-552 (-1030 (-480) (-547 $))) (-10 -8 (-15 -2984 ((-1030 (-480) (-547 $)) $)) (-15 -2983 ((-1030 (-480) (-547 $)) $)) (-15 -3825 ($ $)) (-15 -1940 ((-83) $ $)) (-15 -3117 ((-1076 $) (-1076 $) (-547 $))) (-15 -3117 ((-1076 $) (-1076 $) (-580 (-547 $)))) (-15 -3117 ($ $ (-547 $))) (-15 -3117 ($ $ (-580 (-547 $))))))) (T -430)) -((-2984 (*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-430)))) (-5 *1 (-430)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-430)))) (-5 *1 (-430)))) (-3825 (*1 *1 *1) (-5 *1 (-430))) (-1940 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-430)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 (-430))) (-5 *3 (-547 (-430))) (-5 *1 (-430)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 (-430))) (-5 *3 (-580 (-547 (-430)))) (-5 *1 (-430)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-547 (-430))) (-5 *1 (-430)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-547 (-430)))) (-5 *1 (-430))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 43 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 39 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 38 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 22 T ELT)) (-2188 (((-480) $) 18 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) 40 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) 16 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 20 T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) 42 T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 14 T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 25 T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 12 (|has| $ (-6 -3978)) ELT))) -(((-431 |#1| |#2|) (-19 |#1|) (-1120) (-480)) (T -431)) -NIL -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-1247 (($ $ (-480) (-431 |#1| |#3|)) NIL T ELT)) (-1246 (($ $ (-480) (-431 |#1| |#2|)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3097 (((-431 |#1| |#3|) $ (-480)) NIL T ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-3098 ((|#1| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3100 (((-689) $) NIL T ELT)) (-3597 (($ (-689) (-689) |#1|) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) (-480)) NIL T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3096 (((-431 |#1| |#2|) $ (-480)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-432 |#1| |#2| |#3|) (-57 |#1| (-431 |#1| |#3|) (-431 |#1| |#2|)) (-1120) (-480) (-480)) (T -432)) -NIL -((-1942 (((-580 (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-689) (-689)) 32 T ELT)) (-1941 (((-580 (-1076 |#1|)) |#1| (-689) (-689) (-689)) 43 T ELT)) (-2065 (((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-580 |#3|) (-580 (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-689)) 107 T ELT))) -(((-433 |#1| |#2| |#3|) (-10 -7 (-15 -1941 ((-580 (-1076 |#1|)) |#1| (-689) (-689) (-689))) (-15 -1942 ((-580 (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-689) (-689))) (-15 -2065 ((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-580 |#3|) (-580 (-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-689)))) (-296) (-1146 |#1|) (-1146 |#2|)) (T -433)) -((-2065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 (-2 (|:| -2000 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7))))) (-5 *5 (-689)) (-4 *8 (-1146 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-296)) (-5 *2 (-2 (|:| -2000 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7)))) (-5 *1 (-433 *6 *7 *8)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-689)) (-4 *5 (-296)) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-2 (|:| -2000 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6))))) (-5 *1 (-433 *5 *6 *7)) (-5 *3 (-2 (|:| -2000 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6)))) (-4 *7 (-1146 *6)))) (-1941 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-689)) (-4 *3 (-296)) (-4 *5 (-1146 *3)) (-5 *2 (-580 (-1076 *3))) (-5 *1 (-433 *3 *5 *6)) (-4 *6 (-1146 *5))))) -((-1948 (((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 70 T ELT)) (-1943 ((|#1| (-627 |#1|) |#1| (-689)) 24 T ELT)) (-1945 (((-689) (-689) (-689)) 34 T ELT)) (-1947 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 50 T ELT)) (-1946 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 58 T ELT) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 55 T ELT)) (-1944 ((|#1| (-627 |#1|) (-627 |#1|) |#1| (-480)) 28 T ELT)) (-3312 ((|#1| (-627 |#1|)) 18 T ELT))) -(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -3312 (|#1| (-627 |#1|))) (-15 -1943 (|#1| (-627 |#1|) |#1| (-689))) (-15 -1944 (|#1| (-627 |#1|) (-627 |#1|) |#1| (-480))) (-15 -1945 ((-689) (-689) (-689))) (-15 -1946 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1946 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -1947 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1948 ((-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2000 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))))) (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $)))) (-1146 |#1|) (-348 |#1| |#2|)) (T -434)) -((-1948 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-1946 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-1946 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-1945 (*1 *2 *2 *2) (-12 (-5 *2 (-689)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) (-1944 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-480)) (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *5 (-1146 *2)) (-5 *1 (-434 *2 *5 *6)) (-4 *6 (-348 *2 *5)))) (-1943 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-689)) (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *5 (-1146 *2)) (-5 *1 (-434 *2 *5 *6)) (-4 *6 (-348 *2 *5)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *4 (-1146 *2)) (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-5 *1 (-434 *2 *4 *5)) (-4 *5 (-348 *2 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 44 T ELT)) (-3305 (($ $ $) 41 T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) NIL (|has| (-83) (-751)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1719 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-751))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) NIL (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3771 (((-83) $ (-1137 (-480)) (-83)) NIL (|has| $ (-6 -3979)) ELT) (((-83) $ (-480) (-83)) 43 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-3389 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-3825 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-1565 (((-83) $ (-480) (-83)) NIL (|has| $ (-6 -3979)) ELT)) (-3098 (((-83) $ (-480)) NIL T ELT)) (-3402 (((-480) (-83) $ (-480)) NIL (|has| (-83) (-1007)) ELT) (((-480) (-83) $) NIL (|has| (-83) (-1007)) ELT) (((-480) (-1 (-83) (-83)) $) NIL T ELT)) (-2875 (((-580 (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2547 (($ $ $) 39 T ELT)) (-2546 (($ $) NIL T ELT)) (-1289 (($ $ $) NIL T ELT)) (-3597 (($ (-689) (-83)) 27 T ELT)) (-1290 (($ $ $) NIL T ELT)) (-2188 (((-480) $) 8 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL T ELT)) (-3501 (($ $ $) NIL (|has| (-83) (-751)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2594 (((-580 (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL T ELT)) (-1938 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-83) (-83) (-83)) $ $) 36 T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2292 (($ $ $ (-480)) NIL T ELT) (($ (-83) $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-83) $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2187 (($ $ (-83)) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-83)) (-580 (-83))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-246 (-83))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT) (($ $ (-580 (-246 (-83)))) NIL (-12 (|has| (-83) (-257 (-83))) (|has| (-83) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT)) (-2193 (((-580 (-83)) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 29 T ELT)) (-3783 (($ $ (-1137 (-480))) NIL T ELT) (((-83) $ (-480)) 22 T ELT) (((-83) $ (-480) (-83)) NIL T ELT)) (-2293 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-1935 (((-689) (-83) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-1007))) ELT) (((-689) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 30 T ELT)) (-3955 (((-469) $) NIL (|has| (-83) (-550 (-469))) ELT)) (-3513 (($ (-580 (-83))) NIL T ELT)) (-3785 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3929 (((-767) $) 26 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2548 (($ $ $) 37 T ELT)) (-2299 (($ $ $) 46 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 31 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 32 T ELT)) (-2300 (($ $ $) 45 T ELT)) (-3940 (((-689) $) 13 (|has| $ (-6 -3978)) ELT))) -(((-435 |#1|) (-94) (-480)) (T -435)) -NIL -((-1950 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1076 |#4|)) 35 T ELT)) (-1949 (((-1076 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1076 |#4|)) 22 T ELT)) (-1951 (((-3 (-627 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-627 (-1076 |#4|))) 46 T ELT)) (-1952 (((-1076 (-1076 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1949 (|#2| (-1 |#1| |#4|) (-1076 |#4|))) (-15 -1949 ((-1076 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1950 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1076 |#4|))) (-15 -1951 ((-3 (-627 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-627 (-1076 |#4|)))) (-15 -1952 ((-1076 (-1076 |#4|)) (-1 |#4| |#1|) |#3|))) (-956) (-1146 |#1|) (-1146 |#2|) (-956)) (T -436)) -((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *6 (-1146 *5)) (-5 *2 (-1076 (-1076 *7))) (-5 *1 (-436 *5 *6 *4 *7)) (-4 *4 (-1146 *6)))) (-1951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-627 (-1076 *8))) (-4 *5 (-956)) (-4 *8 (-956)) (-4 *6 (-1146 *5)) (-5 *2 (-627 *6)) (-5 *1 (-436 *5 *6 *7 *8)) (-4 *7 (-1146 *6)))) (-1950 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1076 *7)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *2 (-1146 *5)) (-5 *1 (-436 *5 *2 *6 *7)) (-4 *6 (-1146 *2)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *4 (-1146 *5)) (-5 *2 (-1076 *7)) (-5 *1 (-436 *5 *4 *6 *7)) (-4 *6 (-1146 *4)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1076 *7)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *2 (-1146 *5)) (-5 *1 (-436 *5 *2 *6 *7)) (-4 *6 (-1146 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1953 (((-1176) $) 25 T ELT)) (-3783 (((-1064) $ (-1081)) 30 T ELT)) (-3600 (((-1176) $) 20 T ELT)) (-3929 (((-767) $) 27 T ELT) (($ (-1064)) 26 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 12 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 10 T ELT))) -(((-437) (-13 (-751) (-552 (-1064)) (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) (-15 -1953 ((-1176) $))))) (T -437)) -((-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1064)) (-5 *1 (-437)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437))))) -((-3724 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3722 ((|#1| |#4|) 10 T ELT)) (-3723 ((|#3| |#4|) 17 T ELT))) -(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3722 (|#1| |#4|)) (-15 -3723 (|#3| |#4|)) (-15 -3724 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-491) (-899 |#1|) (-319 |#1|) (-319 |#2|)) (T -438)) -((-3724 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-438 *4 *5 *6 *3)) (-4 *6 (-319 *4)) (-4 *3 (-319 *5)))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) (-4 *2 (-319 *4)) (-5 *1 (-438 *4 *5 *2 *3)) (-4 *3 (-319 *5)))) (-3722 (*1 *2 *3) (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-438 *2 *4 *5 *3)) (-4 *5 (-319 *2)) (-4 *3 (-319 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1963 (((-83) $ (-580 |#3|)) 127 T ELT) (((-83) $) 128 T ELT)) (-3173 (((-83) $) 178 T ELT)) (-1955 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-580 |#3|)) 122 T ELT)) (-1954 (((-1071 (-580 (-852 |#1|)) (-580 (-246 (-852 |#1|)))) (-580 |#4|)) 171 (|has| |#3| (-550 (-1081))) ELT)) (-1962 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2398 (((-83) $) 177 T ELT)) (-1959 (($ $) 132 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3223 (($ $ $) 99 T ELT) (($ (-580 $)) 101 T ELT)) (-1964 (((-83) |#4| $) 130 T ELT)) (-1965 (((-83) $ $) 82 T ELT)) (-1958 (($ (-580 |#4|)) 106 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1957 (($ (-580 |#4|)) 175 T ELT)) (-1956 (((-83) $) 176 T ELT)) (-2239 (($ $) 85 T ELT)) (-2681 (((-580 |#4|) $) 73 T ELT)) (-1961 (((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-580 |#3|)) NIL T ELT)) (-1966 (((-83) |#4| $) 89 T ELT)) (-3894 (((-480) $ (-580 |#3|)) 134 T ELT) (((-480) $) 135 T ELT)) (-3929 (((-767) $) 174 T ELT) (($ (-580 |#4|)) 102 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1960 (($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3042 (((-83) $ $) 84 T ELT)) (-3822 (($ $ $) 109 T ELT)) (** (($ $ (-689)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-439 |#1| |#2| |#3| |#4|) (-13 (-1007) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-689))) (-15 -3822 ($ $ $)) (-15 -2398 ((-83) $)) (-15 -3173 ((-83) $)) (-15 -1966 ((-83) |#4| $)) (-15 -1965 ((-83) $ $)) (-15 -1964 ((-83) |#4| $)) (-15 -1963 ((-83) $ (-580 |#3|))) (-15 -1963 ((-83) $)) (-15 -3223 ($ $ $)) (-15 -3223 ($ (-580 $))) (-15 -1962 ($ $ $)) (-15 -1962 ($ $ |#4|)) (-15 -2239 ($ $)) (-15 -1961 ((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-580 |#3|))) (-15 -1960 ($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)))) (-15 -3894 ((-480) $ (-580 |#3|))) (-15 -3894 ((-480) $)) (-15 -1959 ($ $)) (-15 -1958 ($ (-580 |#4|))) (-15 -1957 ($ (-580 |#4|))) (-15 -1956 ((-83) $)) (-15 -2681 ((-580 |#4|) $)) (-15 -3929 ($ (-580 |#4|))) (-15 -1955 ($ $ |#4|)) (-15 -1955 ($ $ |#4| (-580 |#3|))) (IF (|has| |#3| (-550 (-1081))) (-15 -1954 ((-1071 (-580 (-852 |#1|)) (-580 (-246 (-852 |#1|)))) (-580 |#4|))) |%noBranch|))) (-309) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -439)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-3173 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-1966 (*1 *2 *3 *1) (-12 (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6)))) (-1965 (*1 *2 *1 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-1964 (*1 *2 *3 *1) (-12 (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6)))) (-1963 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6)))) (-1963 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-3223 (*1 *1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-580 (-439 *3 *4 *5 *6))) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-1962 (*1 *1 *1 *2) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-856 *3 *4 *5)))) (-2239 (*1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) (-5 *2 (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4)) (|:| |genIdeal| (-439 *4 *5 *6 *7)))) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3)) (|:| |genIdeal| (-439 *3 *4 *5 *6)))) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) (-5 *2 (-480)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-480)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-1959 (*1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)))) (-1956 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-2681 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *6)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)))) (-1955 (*1 *1 *1 *2) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-856 *3 *4 *5)))) (-1955 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) (-5 *1 (-439 *4 *5 *6 *2)) (-4 *2 (-856 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *5 *6)) (-4 *6 (-550 (-1081))) (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1071 (-580 (-852 *4)) (-580 (-246 (-852 *4))))) (-5 *1 (-439 *4 *5 *6 *7))))) -((-1967 (((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) 178 T ELT)) (-1968 (((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) 179 T ELT)) (-1969 (((-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) 129 T ELT)) (-3706 (((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) NIL T ELT)) (-1970 (((-580 (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) 181 T ELT)) (-1971 (((-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-580 (-768 |#1|))) 197 T ELT))) -(((-440 |#1| |#2|) (-10 -7 (-15 -1967 ((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))))) (-15 -1968 ((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))))) (-15 -3706 ((-83) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))))) (-15 -1969 ((-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))))) (-15 -1970 ((-580 (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480))))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))))) (-15 -1971 ((-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-439 (-345 (-480)) (-195 |#2| (-689)) (-768 |#1|) (-204 |#1| (-345 (-480)))) (-580 (-768 |#1|))))) (-580 (-1081)) (-689)) (T -440)) -((-1971 (*1 *2 *2 *3) (-12 (-5 *2 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) (-5 *3 (-580 (-768 *4))) (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *1 (-440 *4 *5)))) (-1970 (*1 *2 *3) (-12 (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-580 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480)))))) (-5 *1 (-440 *4 *5)) (-5 *3 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-439 (-345 (-480)) (-195 *4 (-689)) (-768 *3) (-204 *3 (-345 (-480))))) (-14 *3 (-580 (-1081))) (-14 *4 (-689)) (-5 *1 (-440 *3 *4)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1972 (($) 6 T ELT)) (-3929 (((-767) $) 10 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-441) (-13 (-1007) (-10 -8 (-15 -1972 ($))))) (T -441)) -((-1972 (*1 *1) (-5 *1 (-441)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) 12 T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-2879 (($ |#1| |#2|) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1973 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 16 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 26 T ELT))) -(((-442 |#1| |#2|) (-13 (-21) (-444 |#1| |#2|)) (-21) (-754)) (T -442)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 17 T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) 14 T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) 44 T ELT)) (-2879 (($ |#1| |#2|) 41 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1973 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) 45 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 13 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) 31 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) 40 T ELT))) -(((-443 |#1| |#2|) (-13 (-23) (-444 |#1| |#2|)) (-23) (-754)) (T -443)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) 15 T ELT)) (-3942 (($ $) 16 T ELT)) (-2879 (($ |#1| |#2|) 19 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1973 ((|#2| $) 17 T ELT)) (-3159 ((|#1| $) 18 T ELT)) (-3227 (((-1064) $) 14 (-12 (|has| |#2| (-1007)) (|has| |#1| (-1007))) ELT)) (-3228 (((-1025) $) 13 (-12 (|has| |#2| (-1007)) (|has| |#1| (-1007))) ELT)) (-3929 (((-767) $) 12 (-12 (|has| |#2| (-1007)) (|has| |#1| (-1007))) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-444 |#1| |#2|) (-111) (-72) (-754)) (T -444)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-444 *3 *4)) (-4 *3 (-72)) (-4 *4 (-754)))) (-2879 (*1 *1 *2 *3) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-72)) (-4 *3 (-754)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *3 (-754)) (-4 *2 (-72)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-72)) (-4 *2 (-754)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-72)) (-4 *3 (-754)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-444 *3 *4)) (-4 *3 (-72)) (-4 *4 (-754)) (-5 *2 (-580 (-777 *4 *3)))))) -(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1007)) (IF (|has| |t#2| (-1007)) (-6 (-1007)) |%noBranch|) |%noBranch|) (-15 -3941 ($ (-1 |t#1| |t#1|) $)) (-15 -2879 ($ |t#1| |t#2|)) (-15 -3159 (|t#1| $)) (-15 -1973 (|t#2| $)) (-15 -3942 ($ $)) (-15 -3757 ((-580 (-777 |t#2| |t#1|)) $)))) -(((-72) . T) ((-549 (-767)) -12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ((-13) . T) ((-1007) -12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) 36 T ELT)) (-3942 (($ $) 33 T ELT)) (-2879 (($ |#1| |#2|) 30 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1973 ((|#2| $) 35 T ELT)) (-3159 ((|#1| $) 34 T ELT)) (-3227 (((-1064) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3228 (((-1025) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3929 (((-767) $) 28 (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 21 T ELT))) -(((-445 |#1| |#2|) (-444 |#1| |#2|) (-72) (-754)) (T -445)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2879 (($ |#1| |#2|) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1973 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 23 T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT))) -(((-446 |#1| |#2|) (-13 (-711) (-444 |#1| |#2|)) (-711) (-754)) (T -446)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 |#2| |#1|)) $) NIL T ELT)) (-2469 (($ $ $) 24 T ELT)) (-1301 (((-3 $ "failed") $ $) 20 T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2879 (($ |#1| |#2|) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1973 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT))) -(((-447 |#1| |#2|) (-13 (-712) (-444 |#1| |#2|)) (-712) (-751)) (T -447)) -NIL -((-3751 (($ $ (-580 |#2|) (-580 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3751 (|#1| |#1| |#2| |#3|)) (-15 -3751 (|#1| |#1| (-580 |#2|) (-580 |#3|)))) (-449 |#2| |#3|) (-1007) (-1120)) (T -448)) -NIL -((-3751 (($ $ (-580 |#1|) (-580 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-449 |#1| |#2|) (-111) (-1007) (-1120)) (T -449)) -((-3751 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 *5)) (-4 *1 (-449 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1120)))) (-3751 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1120))))) -(-13 (-10 -8 (-15 -3751 ($ $ |t#1| |t#2|)) (-15 -3751 ($ $ (-580 |t#1|) (-580 |t#2|))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 17 T ELT)) (-3757 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|))) $) 19 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2287 ((|#1| $ (-480)) 24 T ELT)) (-1611 ((|#2| $ (-480)) 22 T ELT)) (-2278 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1610 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1609 (($ $ $) 55 (|has| |#2| (-711)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3660 ((|#2| |#1| $) 51 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 11 T CONST)) (-3042 (((-83) $ $) 30 T ELT)) (-3822 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-450 |#1| |#2| |#3|) (-271 |#1| |#2|) (-1007) (-102) |#2|) (T -450)) -NIL -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-1974 (((-83) (-83)) 32 T ELT)) (-3771 ((|#1| $ (-480) |#1|) 42 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 79 T ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-2356 (($ $) 83 (|has| |#1| (-1007)) ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) NIL (|has| |#1| (-1007)) ELT) (($ (-1 (-83) |#1|) $) 66 T ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-1975 (($ $ (-480)) 19 T ELT)) (-1976 (((-689) $) 13 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 31 T ELT)) (-2188 (((-480) $) 29 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 57 T ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) 28 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3592 (($ $ $ (-480)) 75 T ELT) (($ |#1| $ (-480)) 59 T ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1977 (($ (-580 |#1|)) 43 T ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) 24 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 62 T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 21 T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) 55 T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1560 (($ $ (-1137 (-480))) 73 T ELT) (($ $ (-480)) 67 T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) 63 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 53 T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3774 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 22 (|has| $ (-6 -3978)) ELT))) -(((-451 |#1| |#2|) (-13 (-19 |#1|) (-235 |#1|) (-10 -8 (-15 -1977 ($ (-580 |#1|))) (-15 -1976 ((-689) $)) (-15 -1975 ($ $ (-480))) (-15 -1974 ((-83) (-83))))) (-1120) (-480)) (T -451)) -((-1977 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-451 *3 *4)) (-14 *4 (-480)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-480)))) (-1975 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-480))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1979 (((-1040) $) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1978 (((-1040) $) 14 T ELT)) (-3905 (((-1040) $) 10 T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-452) (-13 (-989) (-10 -8 (-15 -3905 ((-1040) $)) (-15 -1979 ((-1040) $)) (-15 -1978 ((-1040) $))))) (T -452)) -((-3905 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (((-513 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-513 |#1|) #1#) $) NIL T ELT)) (-3141 (((-513 |#1|) $) NIL T ELT)) (-1781 (($ (-1170 (-513 |#1|))) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-513 |#1|) (-315)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1669 (((-83) $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1753 (($ $ (-689)) NIL (OR (|has| (-513 |#1|) (-116)) (|has| (-513 |#1|) (-315))) ELT) (($ $) NIL (OR (|has| (-513 |#1|) (-116)) (|has| (-513 |#1|) (-315))) ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-825) $) NIL (|has| (-513 |#1|) (-315)) ELT) (((-738 (-825)) $) NIL (OR (|has| (-513 |#1|) (-116)) (|has| (-513 |#1|) (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1999 (((-83) $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3117 (((-513 |#1|) $) NIL T ELT) (($ $ (-825)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 (-513 |#1|)) $) NIL T ELT) (((-1076 $) $ (-825)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1998 (((-825) $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1616 (((-1076 (-513 |#1|)) $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1615 (((-1076 (-513 |#1|)) $) NIL (|has| (-513 |#1|) (-315)) ELT) (((-3 (-1076 (-513 |#1|)) #1#) $ $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1617 (($ $ (-1076 (-513 |#1|))) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-513 |#1|) (-315)) CONST)) (-2388 (($ (-825)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-738 (-825))) NIL T ELT) (((-825)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-689) $) NIL (|has| (-513 |#1|) (-315)) ELT) (((-3 (-689) #1#) $ $) NIL (OR (|has| (-513 |#1|) (-116)) (|has| (-513 |#1|) (-315))) ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $ (-689)) NIL (|has| (-513 |#1|) (-315)) ELT) (($ $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3931 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-3170 (((-1076 (-513 |#1|))) NIL T ELT)) (-1663 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-1618 (($) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3209 (((-1170 (-513 |#1|)) $) NIL T ELT) (((-627 (-513 |#1|)) (-1170 $)) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-513 |#1|)) NIL T ELT)) (-2688 (($ $) NIL (|has| (-513 |#1|) (-315)) ELT) (((-629 $) $) NIL (OR (|has| (-513 |#1|) (-116)) (|has| (-513 |#1|) (-315))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT) (((-1170 $) (-825)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $) NIL (|has| (-513 |#1|) (-315)) ELT) (($ $ (-689)) NIL (|has| (-513 |#1|) (-315)) ELT)) (-2655 (($ $ (-689)) NIL (|has| (-513 |#1|) (-315)) ELT) (($ $) NIL (|has| (-513 |#1|) (-315)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT) (($ $ (-513 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-513 |#1|)) NIL T ELT) (($ (-513 |#1|) $) NIL T ELT))) -(((-453 |#1| |#2|) (-277 (-513 |#1|)) (-825) (-825)) (T -453)) -NIL -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) 51 T ELT)) (-1247 (($ $ (-480) |#4|) NIL T ELT)) (-1246 (($ $ (-480) |#5|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3097 ((|#4| $ (-480)) NIL T ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) 50 T ELT)) (-3098 ((|#1| $ (-480) (-480)) 45 T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3100 (((-689) $) 33 T ELT)) (-3597 (($ (-689) (-689) |#1|) 30 T ELT)) (-3099 (((-689) $) 38 T ELT)) (-3104 (((-480) $) 31 T ELT)) (-3102 (((-480) $) 32 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) 37 T ELT)) (-3101 (((-480) $) 39 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3227 (((-1064) $) 55 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 16 T ELT)) (-3548 (($) 18 T ELT)) (-3783 ((|#1| $ (-480) (-480)) 48 T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3096 ((|#5| $ (-480)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-454 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1120) (-480) (-480) (-319 |#1|) (-319 |#1|)) (T -454)) -NIL -((-3095 ((|#4| |#4|) 38 T ELT)) (-3094 (((-689) |#4|) 45 T ELT)) (-3093 (((-689) |#4|) 46 T ELT)) (-3092 (((-580 |#3|) |#4|) 57 (|has| |#3| (-6 -3979)) ELT)) (-3573 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1980 ((|#4| |#4|) 61 T ELT)) (-3311 ((|#1| |#4|) 60 T ELT))) -(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3095 (|#4| |#4|)) (-15 -3094 ((-689) |#4|)) (-15 -3093 ((-689) |#4|)) (IF (|has| |#3| (-6 -3979)) (-15 -3092 ((-580 |#3|) |#4|)) |%noBranch|) (-15 -3311 (|#1| |#4|)) (-15 -1980 (|#4| |#4|)) (-15 -3573 ((-3 |#4| "failed") |#4|))) (-309) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|)) (T -455)) -((-3573 (*1 *2 *2) (|partial| -12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1980 (*1 *2 *2) (-12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-309)) (-5 *1 (-455 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) (-3092 (*1 *2 *3) (-12 (|has| *6 (-6 -3979)) (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-580 *6)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) -((-3095 ((|#8| |#4|) 20 T ELT)) (-3092 (((-580 |#3|) |#4|) 29 (|has| |#7| (-6 -3979)) ELT)) (-3573 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-456 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3095 (|#8| |#4|)) (-15 -3573 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3979)) (-15 -3092 ((-580 |#3|) |#4|)) |%noBranch|)) (-491) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|) (-899 |#1|) (-319 |#5|) (-319 |#5|) (-624 |#5| |#6| |#7|)) (T -456)) -((-3092 (*1 *2 *3) (-12 (|has| *9 (-6 -3979)) (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-4 *7 (-899 *4)) (-4 *8 (-319 *7)) (-4 *9 (-319 *7)) (-5 *2 (-580 *6)) (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-624 *4 *5 *6)) (-4 *10 (-624 *7 *8 *9)))) (-3573 (*1 *2 *3) (|partial| -12 (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-4 *7 (-899 *4)) (-4 *2 (-624 *7 *8 *9)) (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6)) (-4 *8 (-319 *7)) (-4 *9 (-319 *7)))) (-3095 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-4 *7 (-899 *4)) (-4 *2 (-624 *7 *8 *9)) (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6)) (-4 *8 (-319 *7)) (-4 *9 (-319 *7))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689) (-689)) NIL T ELT)) (-2338 (($ $ $) NIL T ELT)) (-3397 (($ (-533 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2337 (($ $ (-480) (-480)) 21 T ELT)) (-2336 (($ $ (-480) (-480)) NIL T ELT)) (-2335 (($ $ (-480) (-480) (-480) (-480)) NIL T ELT)) (-2340 (($ $) NIL T ELT)) (-3108 (((-83) $) NIL T ELT)) (-2334 (($ $ (-480) (-480) $) NIL T ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480)) $) NIL T ELT)) (-1247 (($ $ (-480) (-533 |#1| |#3|)) NIL T ELT)) (-1246 (($ $ (-480) (-533 |#1| |#2|)) NIL T ELT)) (-3316 (($ (-689) |#1|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) 30 (|has| |#1| (-255)) ELT)) (-3097 (((-533 |#1| |#3|) $ (-480)) NIL T ELT)) (-3094 (((-689) $) 33 (|has| |#1| (-491)) ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) NIL T ELT)) (-3098 ((|#1| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3093 (((-689) $) 35 (|has| |#1| (-491)) ELT)) (-3092 (((-580 (-533 |#1| |#2|)) $) 38 (|has| |#1| (-491)) ELT)) (-3100 (((-689) $) NIL T ELT)) (-3597 (($ (-689) (-689) |#1|) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3310 ((|#1| $) 28 (|has| |#1| (-6 (-3980 #1="*"))) ELT)) (-3104 (((-480) $) 10 T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) 13 T ELT)) (-3101 (((-480) $) NIL T ELT)) (-3109 (($ (-580 (-580 |#1|))) NIL T ELT) (($ (-689) (-689) (-1 |#1| (-480) (-480))) NIL T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3577 (((-580 (-580 |#1|)) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3573 (((-3 $ #2="failed") $) 42 (|has| |#1| (-309)) ELT)) (-2339 (($ $ $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-3449 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) (-480)) NIL T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480))) NIL T ELT)) (-3315 (($ (-580 |#1|)) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3311 ((|#1| $) 26 (|has| |#1| (-6 (-3980 #1#))) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3096 (((-533 |#1| |#2|) $ (-480)) NIL T ELT)) (-3929 (($ (-533 |#1| |#2|)) NIL T ELT) (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-480) $) NIL T ELT) (((-533 |#1| |#2|) $ (-533 |#1| |#2|)) NIL T ELT) (((-533 |#1| |#3|) (-533 |#1| |#3|) $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-457 |#1| |#2| |#3|) (-624 |#1| (-533 |#1| |#3|) (-533 |#1| |#2|)) (-956) (-480) (-480)) (T -457)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1981 (((-580 (-1121)) $) 14 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT) (($ (-580 (-1121))) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-458) (-13 (-989) (-10 -8 (-15 -3929 ($ (-580 (-1121)))) (-15 -1981 ((-580 (-1121)) $))))) (T -458)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-458)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-458))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1982 (((-1040) $) 15 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3433 (((-441) $) 12 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 22 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-459) (-13 (-989) (-10 -8 (-15 -3433 ((-441) $)) (-15 -1982 ((-1040) $))))) (T -459)) -((-3433 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-459)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-459))))) -((-1988 (((-629 (-1129)) $) 15 T ELT)) (-1984 (((-629 (-1127)) $) 38 T ELT)) (-1986 (((-629 (-1126)) $) 29 T ELT)) (-1989 (((-629 (-484)) $) 12 T ELT)) (-1985 (((-629 (-482)) $) 42 T ELT)) (-1987 (((-629 (-481)) $) 33 T ELT)) (-1983 (((-689) $ (-100)) 54 T ELT))) -(((-460 |#1|) (-10 -7 (-15 -1983 ((-689) |#1| (-100))) (-15 -1984 ((-629 (-1127)) |#1|)) (-15 -1985 ((-629 (-482)) |#1|)) (-15 -1986 ((-629 (-1126)) |#1|)) (-15 -1987 ((-629 (-481)) |#1|)) (-15 -1988 ((-629 (-1129)) |#1|)) (-15 -1989 ((-629 (-484)) |#1|))) (-461)) (T -460)) -NIL -((-1988 (((-629 (-1129)) $) 12 T ELT)) (-1984 (((-629 (-1127)) $) 8 T ELT)) (-1986 (((-629 (-1126)) $) 10 T ELT)) (-1989 (((-629 (-484)) $) 13 T ELT)) (-1985 (((-629 (-482)) $) 9 T ELT)) (-1987 (((-629 (-481)) $) 11 T ELT)) (-1983 (((-689) $ (-100)) 7 T ELT)) (-1990 (((-629 (-99)) $) 14 T ELT)) (-1689 (($ $) 6 T ELT))) -(((-461) (-111)) (T -461)) -((-1990 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-99))))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-484))))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1129))))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-481))))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1126))))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-482))))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1127))))) (-1983 (*1 *2 *1 *3) (-12 (-4 *1 (-461)) (-5 *3 (-100)) (-5 *2 (-689))))) -(-13 (-145) (-10 -8 (-15 -1990 ((-629 (-99)) $)) (-15 -1989 ((-629 (-484)) $)) (-15 -1988 ((-629 (-1129)) $)) (-15 -1987 ((-629 (-481)) $)) (-15 -1986 ((-629 (-1126)) $)) (-15 -1985 ((-629 (-482)) $)) (-15 -1984 ((-629 (-1127)) $)) (-15 -1983 ((-689) $ (-100))))) -(((-145) . T)) -((-1993 (((-1076 |#1|) (-689)) 114 T ELT)) (-3313 (((-1170 |#1|) (-1170 |#1|) (-825)) 107 T ELT)) (-1991 (((-1176) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) |#1|) 122 T ELT)) (-1995 (((-1170 |#1|) (-1170 |#1|) (-689)) 53 T ELT)) (-2980 (((-1170 |#1|) (-825)) 109 T ELT)) (-1997 (((-1170 |#1|) (-1170 |#1|) (-480)) 30 T ELT)) (-1992 (((-1076 |#1|) (-1170 |#1|)) 115 T ELT)) (-2001 (((-1170 |#1|) (-825)) 136 T ELT)) (-1999 (((-83) (-1170 |#1|)) 119 T ELT)) (-3117 (((-1170 |#1|) (-1170 |#1|) (-825)) 99 T ELT)) (-2002 (((-1076 |#1|) (-1170 |#1|)) 130 T ELT)) (-1998 (((-825) (-1170 |#1|)) 95 T ELT)) (-2470 (((-1170 |#1|) (-1170 |#1|)) 38 T ELT)) (-2388 (((-1170 |#1|) (-825) (-825)) 139 T ELT)) (-1996 (((-1170 |#1|) (-1170 |#1|) (-1025) (-1025)) 29 T ELT)) (-1994 (((-1170 |#1|) (-1170 |#1|) (-689) (-1025)) 54 T ELT)) (-2000 (((-1170 (-1170 |#1|)) (-825)) 135 T ELT)) (-3932 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 120 T ELT)) (** (((-1170 |#1|) (-1170 |#1|) (-480)) 67 T ELT)) (* (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 31 T ELT))) -(((-462 |#1|) (-10 -7 (-15 -1991 ((-1176) (-1170 (-580 (-2 (|:| -3385 |#1|) (|:| -2388 (-1025))))) |#1|)) (-15 -2980 ((-1170 |#1|) (-825))) (-15 -2388 ((-1170 |#1|) (-825) (-825))) (-15 -1992 ((-1076 |#1|) (-1170 |#1|))) (-15 -1993 ((-1076 |#1|) (-689))) (-15 -1994 ((-1170 |#1|) (-1170 |#1|) (-689) (-1025))) (-15 -1995 ((-1170 |#1|) (-1170 |#1|) (-689))) (-15 -1996 ((-1170 |#1|) (-1170 |#1|) (-1025) (-1025))) (-15 -1997 ((-1170 |#1|) (-1170 |#1|) (-480))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-480))) (-15 * ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3932 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3117 ((-1170 |#1|) (-1170 |#1|) (-825))) (-15 -3313 ((-1170 |#1|) (-1170 |#1|) (-825))) (-15 -2470 ((-1170 |#1|) (-1170 |#1|))) (-15 -1998 ((-825) (-1170 |#1|))) (-15 -1999 ((-83) (-1170 |#1|))) (-15 -2000 ((-1170 (-1170 |#1|)) (-825))) (-15 -2001 ((-1170 |#1|) (-825))) (-15 -2002 ((-1076 |#1|) (-1170 |#1|)))) (-296)) (T -462)) -((-2002 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1170 (-1170 *4))) (-5 *1 (-462 *4)) (-4 *4 (-296)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-462 *4)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-825)) (-5 *1 (-462 *4)))) (-2470 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-825)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-825)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-3932 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-480)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-480)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-1996 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1025)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-1995 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) (-1994 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1170 *5)) (-5 *3 (-689)) (-5 *4 (-1025)) (-4 *5 (-296)) (-5 *1 (-462 *5)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4)))) (-2388 (*1 *2 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) (-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) (-4 *4 (-296)) (-5 *2 (-1176)) (-5 *1 (-462 *4))))) -((-1988 (((-629 (-1129)) $) NIL T ELT)) (-1984 (((-629 (-1127)) $) NIL T ELT)) (-1986 (((-629 (-1126)) $) NIL T ELT)) (-1989 (((-629 (-484)) $) NIL T ELT)) (-1985 (((-629 (-482)) $) NIL T ELT)) (-1987 (((-629 (-481)) $) NIL T ELT)) (-1983 (((-689) $ (-100)) NIL T ELT)) (-1990 (((-629 (-99)) $) 26 T ELT)) (-2003 (((-1025) $ (-1025)) 31 T ELT)) (-3402 (((-1025) $) 30 T ELT)) (-2544 (((-83) $) 20 T ELT)) (-2005 (($ (-333)) 14 T ELT) (($ (-1064)) 16 T ELT)) (-2004 (((-83) $) 27 T ELT)) (-3929 (((-767) $) 34 T ELT)) (-1689 (($ $) 28 T ELT))) -(((-463) (-13 (-461) (-549 (-767)) (-10 -8 (-15 -2005 ($ (-333))) (-15 -2005 ($ (-1064))) (-15 -2004 ((-83) $)) (-15 -2544 ((-83) $)) (-15 -3402 ((-1025) $)) (-15 -2003 ((-1025) $ (-1025)))))) (T -463)) -((-2005 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-463)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-463)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-463)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-463)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1025)) (-5 *1 (-463)))) (-2003 (*1 *2 *1 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-463))))) -((-2007 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2006 (((-1 |#1| |#1|)) 10 T ELT))) -(((-464 |#1|) (-10 -7 (-15 -2006 ((-1 |#1| |#1|))) (-15 -2007 ((-1 |#1| |#1|) |#1|))) (-13 (-660) (-25))) (T -464)) -((-2007 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-464 *3)) (-4 *3 (-13 (-660) (-25))))) (-2006 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-464 *3)) (-4 *3 (-13 (-660) (-25)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 |#1| (-689))) $) NIL T ELT)) (-2469 (($ $ $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2879 (($ (-689) |#1|) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3941 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-1973 ((|#1| $) NIL T ELT)) (-3159 (((-689) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 28 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT))) -(((-465 |#1|) (-13 (-712) (-444 (-689) |#1|)) (-751)) (T -465)) -NIL -((-2009 (((-580 |#2|) (-1076 |#1|) |#3|) 98 T ELT)) (-2010 (((-580 (-2 (|:| |outval| |#2|) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-343 (-1076 |#1|)) (-1076 |#1|))) 114 T ELT)) (-2008 (((-1076 |#1|) (-627 |#1|)) 110 T ELT))) -(((-466 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-1076 |#1|) (-627 |#1|))) (-15 -2009 ((-580 |#2|) (-1076 |#1|) |#3|)) (-15 -2010 ((-580 (-2 (|:| |outval| |#2|) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-343 (-1076 |#1|)) (-1076 |#1|))))) (-309) (-309) (-13 (-309) (-750))) (T -466)) -((-2010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-343 (-1076 *6)) (-1076 *6))) (-4 *6 (-309)) (-5 *2 (-580 (-2 (|:| |outval| *7) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 *7)))))) (-5 *1 (-466 *6 *7 *4)) (-4 *7 (-309)) (-4 *4 (-13 (-309) (-750))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *5)) (-4 *5 (-309)) (-5 *2 (-580 *6)) (-5 *1 (-466 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750))))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-309)) (-5 *2 (-1076 *4)) (-5 *1 (-466 *4 *5 *6)) (-4 *5 (-309)) (-4 *6 (-13 (-309) (-750)))))) -((-2541 (((-629 (-1129)) $ (-1129)) NIL T ELT)) (-2542 (((-629 (-484)) $ (-484)) NIL T ELT)) (-2540 (((-689) $ (-100)) 39 T ELT)) (-2543 (((-629 (-99)) $ (-99)) 40 T ELT)) (-1988 (((-629 (-1129)) $) NIL T ELT)) (-1984 (((-629 (-1127)) $) NIL T ELT)) (-1986 (((-629 (-1126)) $) NIL T ELT)) (-1989 (((-629 (-484)) $) NIL T ELT)) (-1985 (((-629 (-482)) $) NIL T ELT)) (-1987 (((-629 (-481)) $) NIL T ELT)) (-1983 (((-689) $ (-100)) 35 T ELT)) (-1990 (((-629 (-99)) $) 37 T ELT)) (-2425 (((-83) $) 27 T ELT)) (-2426 (((-629 $) (-511) (-860)) 18 T ELT) (((-629 $) (-426) (-860)) 24 T ELT)) (-3929 (((-767) $) 48 T ELT)) (-1689 (($ $) 42 T ELT))) -(((-467) (-13 (-686 (-511)) (-549 (-767)) (-10 -8 (-15 -2426 ((-629 $) (-426) (-860)))))) (T -467)) -((-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-426)) (-5 *4 (-860)) (-5 *2 (-629 (-467))) (-5 *1 (-467))))) -((-2513 (((-745 (-480))) 12 T ELT)) (-2512 (((-745 (-480))) 14 T ELT)) (-2500 (((-738 (-480))) 9 T ELT))) -(((-468) (-10 -7 (-15 -2500 ((-738 (-480)))) (-15 -2513 ((-745 (-480)))) (-15 -2512 ((-745 (-480)))))) (T -468)) -((-2512 (*1 *2) (-12 (-5 *2 (-745 (-480))) (-5 *1 (-468)))) (-2513 (*1 *2) (-12 (-5 *2 (-745 (-480))) (-5 *1 (-468)))) (-2500 (*1 *2) (-12 (-5 *2 (-738 (-480))) (-5 *1 (-468))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2014 (((-1064) $) 55 T ELT)) (-3245 (((-83) $) 51 T ELT)) (-3241 (((-1081) $) 52 T ELT)) (-3246 (((-83) $) 49 T ELT)) (-3518 (((-1064) $) 50 T ELT)) (-2013 (($ (-1064)) 56 T ELT)) (-3248 (((-83) $) NIL T ELT)) (-3250 (((-83) $) NIL T ELT)) (-3247 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2016 (($ $ (-580 (-1081))) 21 T ELT)) (-2019 (((-51) $) 23 T ELT)) (-3244 (((-83) $) NIL T ELT)) (-3240 (((-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2371 (($ $ (-580 (-1081)) (-1081)) 73 T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3239 (((-177) $) NIL T ELT)) (-2015 (($ $) 44 T ELT)) (-3238 (((-767) $) NIL T ELT)) (-3251 (((-83) $ $) NIL T ELT)) (-3783 (($ $ (-480)) NIL T ELT) (($ $ (-580 (-480))) NIL T ELT)) (-3242 (((-580 $) $) 30 T ELT)) (-2012 (((-1081) (-580 $)) 57 T ELT)) (-3955 (($ (-1064)) NIL T ELT) (($ (-1081)) 19 T ELT) (($ (-480)) 8 T ELT) (($ (-177)) 28 T ELT) (($ (-767)) NIL T ELT) (($ (-580 $)) 65 T ELT) (((-1009) $) 12 T ELT) (($ (-1009)) 13 T ELT)) (-2011 (((-1081) (-1081) (-580 $)) 60 T ELT)) (-3929 (((-767) $) 54 T ELT)) (-3236 (($ $) 59 T ELT)) (-3237 (($ $) 58 T ELT)) (-2017 (($ $ (-580 $)) 66 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3249 (((-83) $) 29 T ELT)) (-2646 (($) 9 T CONST)) (-2652 (($) 11 T CONST)) (-3042 (((-83) $ $) 74 T ELT)) (-3932 (($ $ $) 82 T ELT)) (-3822 (($ $ $) 75 T ELT)) (** (($ $ (-689)) 81 T ELT) (($ $ (-480)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3940 (((-480) $) NIL T ELT))) -(((-469) (-13 (-1010 (-1064) (-1081) (-480) (-177) (-767)) (-550 (-1009)) (-10 -8 (-15 -2019 ((-51) $)) (-15 -3955 ($ (-1009))) (-15 -2017 ($ $ (-580 $))) (-15 -2371 ($ $ (-580 (-1081)) (-1081))) (-15 -2016 ($ $ (-580 (-1081)))) (-15 -3822 ($ $ $)) (-15 * ($ $ $)) (-15 -3932 ($ $ $)) (-15 ** ($ $ (-689))) (-15 ** ($ $ (-480))) (-15 -2646 ($) -3935) (-15 -2652 ($) -3935) (-15 -2015 ($ $)) (-15 -2014 ((-1064) $)) (-15 -2013 ($ (-1064))) (-15 -2012 ((-1081) (-580 $))) (-15 -2011 ((-1081) (-1081) (-580 $)))))) (T -469)) -((-2019 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-469)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-469)))) (-2017 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-469))) (-5 *1 (-469)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-1081)) (-5 *1 (-469)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-469)))) (-3822 (*1 *1 *1 *1) (-5 *1 (-469))) (* (*1 *1 *1 *1) (-5 *1 (-469))) (-3932 (*1 *1 *1 *1) (-5 *1 (-469))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-469)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-469)))) (-2646 (*1 *1) (-5 *1 (-469))) (-2652 (*1 *1) (-5 *1 (-469))) (-2015 (*1 *1 *1) (-5 *1 (-469))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-469)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-469)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-580 (-469))) (-5 *2 (-1081)) (-5 *1 (-469)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-580 (-469))) (-5 *1 (-469))))) -((-2018 (((-469) (-1081)) 15 T ELT)) (-2019 ((|#1| (-469)) 20 T ELT))) -(((-470 |#1|) (-10 -7 (-15 -2018 ((-469) (-1081))) (-15 -2019 (|#1| (-469)))) (-1120)) (T -470)) -((-2019 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *1 (-470 *2)) (-4 *2 (-1120)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-469)) (-5 *1 (-470 *4)) (-4 *4 (-1120))))) -((-3436 ((|#2| |#2|) 17 T ELT)) (-3434 ((|#2| |#2|) 13 T ELT)) (-3437 ((|#2| |#2| (-480) (-480)) 20 T ELT)) (-3435 ((|#2| |#2|) 15 T ELT))) -(((-471 |#1| |#2|) (-10 -7 (-15 -3434 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3437 (|#2| |#2| (-480) (-480)))) (-13 (-491) (-118)) (-1163 |#1|)) (T -471)) -((-3437 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-480)) (-4 *4 (-13 (-491) (-118))) (-5 *1 (-471 *4 *2)) (-4 *2 (-1163 *4)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3))))) -((-2022 (((-580 (-246 (-852 |#2|))) (-580 |#2|) (-580 (-1081))) 32 T ELT)) (-2020 (((-580 |#2|) (-852 |#1|) |#3|) 54 T ELT) (((-580 |#2|) (-1076 |#1|) |#3|) 53 T ELT)) (-2021 (((-580 (-580 |#2|)) (-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081)) |#3|) 106 T ELT))) -(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-580 |#2|) (-1076 |#1|) |#3|)) (-15 -2020 ((-580 |#2|) (-852 |#1|) |#3|)) (-15 -2021 ((-580 (-580 |#2|)) (-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081)) |#3|)) (-15 -2022 ((-580 (-246 (-852 |#2|))) (-580 |#2|) (-580 (-1081))))) (-387) (-309) (-13 (-309) (-750))) (T -472)) -((-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-1081))) (-4 *6 (-309)) (-5 *2 (-580 (-246 (-852 *6)))) (-5 *1 (-472 *5 *6 *7)) (-4 *5 (-387)) (-4 *7 (-13 (-309) (-750))))) (-2021 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) (-4 *6 (-387)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-472 *6 *7 *5)) (-4 *7 (-309)) (-4 *5 (-13 (-309) (-750))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-852 *5)) (-4 *5 (-387)) (-5 *2 (-580 *6)) (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *5)) (-4 *5 (-387)) (-5 *2 (-580 *6)) (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750)))))) -((-2025 ((|#2| |#2| |#1|) 17 T ELT)) (-2023 ((|#2| (-580 |#2|)) 30 T ELT)) (-2024 ((|#2| (-580 |#2|)) 51 T ELT))) -(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2023 (|#2| (-580 |#2|))) (-15 -2024 (|#2| (-580 |#2|))) (-15 -2025 (|#2| |#2| |#1|))) (-255) (-1146 |#1|) |#1| (-1 |#1| |#1| (-689))) (T -473)) -((-2025 (*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-689))) (-5 *1 (-473 *3 *2 *4 *5)) (-4 *2 (-1146 *3)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-473 *4 *2 *5 *6)) (-4 *4 (-255)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-689))))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-473 *4 *2 *5 *6)) (-4 *4 (-255)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-689)))))) -((-3715 (((-343 (-1076 |#4|)) (-1076 |#4|) (-1 (-343 (-1076 |#3|)) (-1076 |#3|))) 90 T ELT) (((-343 |#4|) |#4| (-1 (-343 (-1076 |#3|)) (-1076 |#3|))) 213 T ELT))) -(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4| (-1 (-343 (-1076 |#3|)) (-1076 |#3|)))) (-15 -3715 ((-343 (-1076 |#4|)) (-1076 |#4|) (-1 (-343 (-1076 |#3|)) (-1076 |#3|))))) (-751) (-712) (-13 (-255) (-118)) (-856 |#3| |#2| |#1|)) (T -474)) -((-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-343 (-1076 *7)) (-1076 *7))) (-4 *7 (-13 (-255) (-118))) (-4 *5 (-751)) (-4 *6 (-712)) (-4 *8 (-856 *7 *6 *5)) (-5 *2 (-343 (-1076 *8))) (-5 *1 (-474 *5 *6 *7 *8)) (-5 *3 (-1076 *8)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-343 (-1076 *7)) (-1076 *7))) (-4 *7 (-13 (-255) (-118))) (-4 *5 (-751)) (-4 *6 (-712)) (-5 *2 (-343 *3)) (-5 *1 (-474 *5 *6 *7 *3)) (-4 *3 (-856 *7 *6 *5))))) -((-3436 ((|#4| |#4|) 74 T ELT)) (-3434 ((|#4| |#4|) 70 T ELT)) (-3437 ((|#4| |#4| (-480) (-480)) 76 T ELT)) (-3435 ((|#4| |#4|) 72 T ELT))) -(((-475 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3434 (|#4| |#4|)) (-15 -3435 (|#4| |#4|)) (-15 -3436 (|#4| |#4|)) (-15 -3437 (|#4| |#4| (-480) (-480)))) (-13 (-309) (-315) (-550 (-480))) (-1146 |#1|) (-658 |#1| |#2|) (-1163 |#3|)) (T -475)) -((-3437 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-480)) (-4 *4 (-13 (-309) (-315) (-550 *3))) (-4 *5 (-1146 *4)) (-4 *6 (-658 *4 *5)) (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-1163 *6)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5))))) -((-3436 ((|#2| |#2|) 27 T ELT)) (-3434 ((|#2| |#2|) 23 T ELT)) (-3437 ((|#2| |#2| (-480) (-480)) 29 T ELT)) (-3435 ((|#2| |#2|) 25 T ELT))) -(((-476 |#1| |#2|) (-10 -7 (-15 -3434 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3437 (|#2| |#2| (-480) (-480)))) (-13 (-309) (-315) (-550 (-480))) (-1163 |#1|)) (T -476)) -((-3437 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-480)) (-4 *4 (-13 (-309) (-315) (-550 *3))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1163 *4)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1163 *3)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1163 *3)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1163 *3))))) -((-2026 (((-3 (-480) #1="failed") |#2| |#1| (-1 (-3 (-480) #1#) |#1|)) 18 T ELT) (((-3 (-480) #1#) |#2| |#1| (-480) (-1 (-3 (-480) #1#) |#1|)) 14 T ELT) (((-3 (-480) #1#) |#2| (-480) (-1 (-3 (-480) #1#) |#1|)) 30 T ELT))) -(((-477 |#1| |#2|) (-10 -7 (-15 -2026 ((-3 (-480) #1="failed") |#2| (-480) (-1 (-3 (-480) #1#) |#1|))) (-15 -2026 ((-3 (-480) #1#) |#2| |#1| (-480) (-1 (-3 (-480) #1#) |#1|))) (-15 -2026 ((-3 (-480) #1#) |#2| |#1| (-1 (-3 (-480) #1#) |#1|)))) (-956) (-1146 |#1|)) (T -477)) -((-2026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-480) #1="failed") *4)) (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-477 *4 *3)) (-4 *3 (-1146 *4)))) (-2026 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-480) #1#) *4)) (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-477 *4 *3)) (-4 *3 (-1146 *4)))) (-2026 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-480) #1#) *5)) (-4 *5 (-956)) (-5 *2 (-480)) (-5 *1 (-477 *5 *3)) (-4 *3 (-1146 *5))))) -((-2035 (($ $ $) 87 T ELT)) (-3954 (((-343 $) $) 50 T ELT)) (-3142 (((-3 (-480) #1="failed") $) 62 T ELT)) (-3141 (((-480) $) 40 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 80 T ELT)) (-3009 (((-83) $) 24 T ELT)) (-3008 (((-345 (-480)) $) 78 T ELT)) (-3706 (((-83) $) 53 T ELT)) (-2028 (($ $ $ $) 94 T ELT)) (-1358 (($ $ $) 60 T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 75 T ELT)) (-3428 (((-629 $) $) 70 T ELT)) (-2032 (($ $) 22 T ELT)) (-2027 (($ $ $) 92 T ELT)) (-3429 (($) 63 T CONST)) (-1356 (($ $) 56 T ELT)) (-3715 (((-343 $) $) 48 T ELT)) (-2660 (((-83) $) 15 T ELT)) (-1596 (((-689) $) 30 T ELT)) (-3741 (($ $) 11 T ELT) (($ $ (-689)) NIL T ELT)) (-3383 (($ $) 16 T ELT)) (-3955 (((-480) $) NIL T ELT) (((-469) $) 39 T ELT) (((-795 (-480)) $) 43 T ELT) (((-325) $) 33 T ELT) (((-177) $) 36 T ELT)) (-3111 (((-689)) 9 T CONST)) (-2037 (((-83) $ $) 19 T ELT)) (-3087 (($ $ $) 58 T ELT))) -(((-478 |#1|) (-10 -7 (-15 -2027 (|#1| |#1| |#1|)) (-15 -2028 (|#1| |#1| |#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -3010 ((-3 (-345 (-480)) #1="failed") |#1|)) (-15 -3008 ((-345 (-480)) |#1|)) (-15 -3009 ((-83) |#1|)) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2037 ((-83) |#1| |#1|)) (-15 -2660 ((-83) |#1|)) (-15 -3429 (|#1|) -3935) (-15 -3428 ((-629 |#1|) |#1|)) (-15 -3955 ((-177) |#1|)) (-15 -3955 ((-325) |#1|)) (-15 -1358 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -3087 (|#1| |#1| |#1|)) (-15 -2782 ((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|))) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3955 ((-480) |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -1596 ((-689) |#1|)) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3954 ((-343 |#1|) |#1|)) (-15 -3706 ((-83) |#1|)) (-15 -3111 ((-689)) -3935)) (-479)) (T -478)) -((-3111 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-478 *3)) (-4 *3 (-479))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-2035 (($ $ $) 100 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2030 (($ $ $ $) 89 T ELT)) (-3758 (($ $) 64 T ELT)) (-3954 (((-343 $) $) 65 T ELT)) (-1597 (((-83) $ $) 143 T ELT)) (-3606 (((-480) $) 132 T ELT)) (-2427 (($ $ $) 103 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) "failed") $) 124 T ELT)) (-3141 (((-480) $) 125 T ELT)) (-2550 (($ $ $) 147 T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 122 T ELT) (((-627 (-480)) (-627 $)) 121 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3010 (((-3 (-345 (-480)) "failed") $) 97 T ELT)) (-3009 (((-83) $) 99 T ELT)) (-3008 (((-345 (-480)) $) 98 T ELT)) (-2980 (($) 96 T ELT) (($ $) 95 T ELT)) (-2549 (($ $ $) 146 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 141 T ELT)) (-3706 (((-83) $) 66 T ELT)) (-2028 (($ $ $ $) 87 T ELT)) (-2036 (($ $ $) 101 T ELT)) (-3171 (((-83) $) 134 T ELT)) (-1358 (($ $ $) 112 T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 115 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2659 (((-83) $) 107 T ELT)) (-3428 (((-629 $) $) 109 T ELT)) (-3172 (((-83) $) 133 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 150 T ELT)) (-2029 (($ $ $ $) 88 T ELT)) (-2517 (($ $ $) 140 T ELT)) (-2843 (($ $ $) 139 T ELT)) (-2032 (($ $) 91 T ELT)) (-3816 (($ $) 104 T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 120 T ELT) (((-627 (-480)) (-1170 $)) 119 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2027 (($ $ $) 86 T ELT)) (-3429 (($) 108 T CONST)) (-2034 (($ $) 93 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1356 (($ $) 113 T ELT)) (-3715 (((-343 $) $) 63 T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 149 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 148 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 142 T ELT)) (-2660 (((-83) $) 106 T ELT)) (-1596 (((-689) $) 144 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 145 T ELT)) (-3741 (($ $) 130 T ELT) (($ $ (-689)) 128 T ELT)) (-2033 (($ $) 92 T ELT)) (-3383 (($ $) 94 T ELT)) (-3955 (((-480) $) 126 T ELT) (((-469) $) 117 T ELT) (((-795 (-480)) $) 116 T ELT) (((-325) $) 111 T ELT) (((-177) $) 110 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-480)) 123 T ELT)) (-3111 (((-689)) 38 T CONST)) (-2037 (((-83) $ $) 102 T ELT)) (-3087 (($ $ $) 114 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2680 (($) 105 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2031 (($ $ $ $) 90 T ELT)) (-3366 (($ $) 131 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $) 129 T ELT) (($ $ (-689)) 127 T ELT)) (-2552 (((-83) $ $) 138 T ELT)) (-2553 (((-83) $ $) 136 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 137 T ELT)) (-2671 (((-83) $ $) 135 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-480) $) 118 T ELT))) -(((-479) (-111)) (T -479)) -((-2659 (*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) (-2680 (*1 *1) (-4 *1 (-479))) (-3816 (*1 *1 *1) (-4 *1 (-479))) (-2427 (*1 *1 *1 *1) (-4 *1 (-479))) (-2037 (*1 *2 *1 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) (-2036 (*1 *1 *1 *1) (-4 *1 (-479))) (-2035 (*1 *1 *1 *1) (-4 *1 (-479))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-345 (-480))))) (-3010 (*1 *2 *1) (|partial| -12 (-4 *1 (-479)) (-5 *2 (-345 (-480))))) (-2980 (*1 *1) (-4 *1 (-479))) (-2980 (*1 *1 *1) (-4 *1 (-479))) (-3383 (*1 *1 *1) (-4 *1 (-479))) (-2034 (*1 *1 *1) (-4 *1 (-479))) (-2033 (*1 *1 *1) (-4 *1 (-479))) (-2032 (*1 *1 *1) (-4 *1 (-479))) (-2031 (*1 *1 *1 *1 *1) (-4 *1 (-479))) (-2030 (*1 *1 *1 *1 *1) (-4 *1 (-479))) (-2029 (*1 *1 *1 *1 *1) (-4 *1 (-479))) (-2028 (*1 *1 *1 *1 *1) (-4 *1 (-479))) (-2027 (*1 *1 *1 *1) (-4 *1 (-479)))) -(-13 (-1125) (-255) (-735) (-188) (-550 (-480)) (-945 (-480)) (-577 (-480)) (-550 (-469)) (-550 (-795 (-480))) (-791 (-480)) (-114) (-928) (-118) (-1057) (-10 -8 (-15 -2659 ((-83) $)) (-15 -2660 ((-83) $)) (-6 -3977) (-15 -2680 ($)) (-15 -3816 ($ $)) (-15 -2427 ($ $ $)) (-15 -2037 ((-83) $ $)) (-15 -2036 ($ $ $)) (-15 -2035 ($ $ $)) (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $)) (-15 -2980 ($)) (-15 -2980 ($ $)) (-15 -3383 ($ $)) (-15 -2034 ($ $)) (-15 -2033 ($ $)) (-15 -2032 ($ $)) (-15 -2031 ($ $ $ $)) (-15 -2030 ($ $ $ $)) (-15 -2029 ($ $ $ $)) (-15 -2028 ($ $ $ $)) (-15 -2027 ($ $ $)) (-6 -3976))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-114) . T) ((-144) . T) ((-550 (-177)) . T) ((-550 (-325)) . T) ((-550 (-469)) . T) ((-550 (-480)) . T) ((-550 (-795 (-480))) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-243) . T) ((-255) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-480)) . T) ((-587 $) . T) ((-579 $) . T) ((-577 (-480)) . T) ((-651 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-735) . T) ((-750) . T) ((-751) . T) ((-754) . T) ((-791 (-480)) . T) ((-827) . T) ((-928) . T) ((-945 (-480)) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) . T) ((-1120) . T) ((-1125) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 8 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 77 T ELT)) (-2051 (($ $) 78 T ELT)) (-2049 (((-83) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2030 (($ $ $ $) 32 T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL T ELT)) (-2427 (($ $ $) 71 T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL T ELT)) (-2550 (($ $ $) 33 T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 54 T ELT) (((-627 (-480)) (-627 $)) 50 T ELT)) (-3450 (((-3 $ #1#) $) 74 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3009 (((-83) $) NIL T ELT)) (-3008 (((-345 (-480)) $) NIL T ELT)) (-2980 (($) 56 T ELT) (($ $) 57 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2028 (($ $ $ $) NIL T ELT)) (-2036 (($ $ $) 47 T ELT)) (-3171 (((-83) $) 22 T ELT)) (-1358 (($ $ $) NIL T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL T ELT)) (-2398 (((-83) $) 9 T ELT)) (-2659 (((-83) $) 64 T ELT)) (-3428 (((-629 $) $) NIL T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2029 (($ $ $ $) 34 T ELT)) (-2517 (($ $ $) 67 T ELT)) (-2843 (($ $ $) 66 T ELT)) (-2032 (($ $) NIL T ELT)) (-3816 (($ $) 29 T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) 46 T ELT)) (-2027 (($ $ $) NIL T ELT)) (-3429 (($) NIL T CONST)) (-2034 (($ $) 15 T ELT)) (-3228 (((-1025) $) 19 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 109 T ELT)) (-3129 (($ $ $) 75 T ELT) (($ (-580 $)) NIL T ELT)) (-1356 (($ $) NIL T ELT)) (-3715 (((-343 $) $) 95 T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) 93 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2660 (((-83) $) 65 T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 69 T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2033 (($ $) 17 T ELT)) (-3383 (($ $) 13 T ELT)) (-3955 (((-480) $) 28 T ELT) (((-469) $) 43 T ELT) (((-795 (-480)) $) NIL T ELT) (((-325) $) 37 T ELT) (((-177) $) 40 T ELT)) (-3929 (((-767) $) 26 T ELT) (($ (-480)) 27 T ELT) (($ $) NIL T ELT) (($ (-480)) 27 T ELT)) (-3111 (((-689)) NIL T CONST)) (-2037 (((-83) $ $) NIL T ELT)) (-3087 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (($) 12 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2031 (($ $ $ $) 31 T ELT)) (-3366 (($ $) 55 T ELT)) (-2646 (($) 10 T CONST)) (-2652 (($) 11 T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2552 (((-83) $ $) 30 T ELT)) (-2553 (((-83) $ $) 58 T ELT)) (-3042 (((-83) $ $) 7 T ELT)) (-2670 (((-83) $ $) 59 T ELT)) (-2671 (((-83) $ $) 20 T ELT)) (-3820 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3822 (($ $ $) 14 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 63 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-480) $) 61 T ELT))) -(((-480) (-13 (-479) (-10 -7 (-6 -3965) (-6 -3970) (-6 -3966)))) (T -480)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-481) (-13 (-747) (-10 -8 (-15 -3707 ($) -3935)))) (T -481)) -((-3707 (*1 *1) (-5 *1 (-481)))) -((-480) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-482) (-13 (-747) (-10 -8 (-15 -3707 ($) -3935)))) (T -482)) -((-3707 (*1 *1) (-5 *1 (-482)))) -((-480) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-483) (-13 (-747) (-10 -8 (-15 -3707 ($) -3935)))) (T -483)) -((-3707 (*1 *1) (-5 *1 (-483)))) -((-480) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-484) (-13 (-747) (-10 -8 (-15 -3707 ($) -3935)))) (T -484)) -((-3707 (*1 *1) (-5 *1 (-484)))) -((-480) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) NIL T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-485 |#1| |#2| |#3|) (-13 (-1098 |#1| |#2|) (-10 -7 (-6 -3978))) (-1007) (-1007) (-13 (-1098 |#1| |#2|) (-10 -7 (-6 -3978)))) (T -485)) -NIL -((-2038 (((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) (-1 (-1076 |#2|) (-1076 |#2|))) 50 T ELT))) -(((-486 |#1| |#2|) (-10 -7 (-15 -2038 ((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) (-1 (-1076 |#2|) (-1076 |#2|))))) (-491) (-13 (-27) (-359 |#1|))) (T -486)) -((-2038 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-547 *3)) (-5 *5 (-1 (-1076 *3) (-1076 *3))) (-4 *3 (-13 (-27) (-359 *6))) (-4 *6 (-491)) (-5 *2 (-515 *3)) (-5 *1 (-486 *6 *3))))) -((-2040 (((-515 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2041 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2039 (((-515 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-487 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2039 ((-515 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2040 ((-515 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2041 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-491) (-945 (-480))) (-13 (-27) (-359 |#1|)) (-1146 |#2|) (-1146 (-345 |#3|)) (-288 |#2| |#3| |#4|)) (T -487)) -((-2041 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-27) (-359 *4))) (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *7 (-1146 (-345 *6))) (-5 *1 (-487 *4 *5 *6 *7 *2)) (-4 *2 (-288 *5 *6 *7)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-13 (-27) (-359 *5))) (-4 *5 (-13 (-491) (-945 (-480)))) (-4 *8 (-1146 (-345 *7))) (-5 *2 (-515 *3)) (-5 *1 (-487 *5 *6 *7 *8 *3)) (-4 *3 (-288 *6 *7 *8)))) (-2039 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-13 (-27) (-359 *5))) (-4 *5 (-13 (-491) (-945 (-480)))) (-4 *8 (-1146 (-345 *7))) (-5 *2 (-515 *3)) (-5 *1 (-487 *5 *6 *7 *8 *3)) (-4 *3 (-288 *6 *7 *8))))) -((-2044 (((-83) (-480) (-480)) 12 T ELT)) (-2042 (((-480) (-480)) 7 T ELT)) (-2043 (((-480) (-480) (-480)) 10 T ELT))) -(((-488) (-10 -7 (-15 -2042 ((-480) (-480))) (-15 -2043 ((-480) (-480) (-480))) (-15 -2044 ((-83) (-480) (-480))))) (T -488)) -((-2044 (*1 *2 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-83)) (-5 *1 (-488)))) (-2043 (*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-488)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-488))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2590 ((|#1| $) 75 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-3475 (($ $) 105 T ELT)) (-3622 (($ $) 88 T ELT)) (-2469 ((|#1| $) 76 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3023 (($ $) 87 T ELT)) (-3473 (($ $) 104 T ELT)) (-3621 (($ $) 89 T ELT)) (-3477 (($ $) 103 T ELT)) (-3620 (($ $) 90 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) "failed") $) 83 T ELT)) (-3141 (((-480) $) 84 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2047 (($ |#1| |#1|) 80 T ELT)) (-3171 (((-83) $) 74 T ELT)) (-3610 (($) 115 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 86 T ELT)) (-3172 (((-83) $) 73 T ELT)) (-2517 (($ $ $) 116 T ELT)) (-2843 (($ $ $) 117 T ELT)) (-3925 (($ $) 112 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2048 (($ |#1| |#1|) 81 T ELT) (($ |#1|) 79 T ELT) (($ (-345 (-480))) 78 T ELT)) (-2046 ((|#1| $) 77 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-3926 (($ $) 113 T ELT)) (-3478 (($ $) 102 T ELT)) (-3619 (($ $) 91 T ELT)) (-3476 (($ $) 101 T ELT)) (-3618 (($ $) 92 T ELT)) (-3474 (($ $) 100 T ELT)) (-3617 (($ $) 93 T ELT)) (-2045 (((-83) $ |#1|) 72 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-480)) 82 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 111 T ELT)) (-3469 (($ $) 99 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3479 (($ $) 110 T ELT)) (-3467 (($ $) 98 T ELT)) (-3483 (($ $) 109 T ELT)) (-3471 (($ $) 97 T ELT)) (-3484 (($ $) 108 T ELT)) (-3472 (($ $) 96 T ELT)) (-3482 (($ $) 107 T ELT)) (-3470 (($ $) 95 T ELT)) (-3480 (($ $) 106 T ELT)) (-3468 (($ $) 94 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 118 T ELT)) (-2553 (((-83) $ $) 120 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 119 T ELT)) (-2671 (((-83) $ $) 121 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ $) 114 T ELT) (($ $ (-345 (-480))) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-489 |#1|) (-111) (-13 (-342) (-1106))) (T -489)) -((-2048 (*1 *1 *2 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-2047 (*1 *1 *2 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-2048 (*1 *1 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-2590 (*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83)))) (-2045 (*1 *2 *1 *3) (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83))))) -(-13 (-387) (-751) (-1106) (-910) (-945 (-480)) (-10 -8 (-6 -3753) (-15 -2048 ($ |t#1| |t#1|)) (-15 -2047 ($ |t#1| |t#1|)) (-15 -2048 ($ |t#1|)) (-15 -2048 ($ (-345 (-480)))) (-15 -2046 (|t#1| $)) (-15 -2469 (|t#1| $)) (-15 -2590 (|t#1| $)) (-15 -3171 ((-83) $)) (-15 -3172 ((-83) $)) (-15 -2045 ((-83) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-237) . T) ((-243) . T) ((-387) . T) ((-428) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-751) . T) ((-754) . T) ((-910) . T) ((-945 (-480)) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) . T) ((-1109) . T) ((-1120) . T)) -((-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 9 T ELT)) (-2051 (($ $) 11 T ELT)) (-2049 (((-83) $) 20 T ELT)) (-3450 (((-3 $ "failed") $) 16 T ELT)) (-2050 (((-83) $ $) 22 T ELT))) -(((-490 |#1|) (-10 -7 (-15 -2049 ((-83) |#1|)) (-15 -2050 ((-83) |#1| |#1|)) (-15 -2051 (|#1| |#1|)) (-15 -2052 ((-2 (|:| -1761 |#1|) (|:| -3965 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3450 ((-3 |#1| "failed") |#1|))) (-491)) (T -490)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-491) (-111)) (T -491)) -((-3449 (*1 *1 *1 *1) (|partial| -4 *1 (-491))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1761 *1) (|:| -3965 *1) (|:| |associate| *1))) (-4 *1 (-491)))) (-2051 (*1 *1 *1) (-4 *1 (-491))) (-2050 (*1 *2 *1 *1) (-12 (-4 *1 (-491)) (-5 *2 (-83)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-491)) (-5 *2 (-83))))) -(-13 (-144) (-38 $) (-243) (-10 -8 (-15 -3449 ((-3 $ "failed") $ $)) (-15 -2052 ((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $)) (-15 -2051 ($ $)) (-15 -2050 ((-83) $ $)) (-15 -2049 ((-83) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2054 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1081) (-580 |#2|)) 38 T ELT)) (-2056 (((-515 |#2|) |#2| (-1081)) 63 T ELT)) (-2055 (((-3 |#2| #1#) |#2| (-1081)) 156 T ELT)) (-2057 (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1081) (-547 |#2|) (-580 (-547 |#2|))) 159 T ELT)) (-2053 (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1081) |#2|) 41 T ELT))) -(((-492 |#1| |#2|) (-10 -7 (-15 -2053 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1081) |#2|)) (-15 -2054 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1081) (-580 |#2|))) (-15 -2055 ((-3 |#2| #1#) |#2| (-1081))) (-15 -2056 ((-515 |#2|) |#2| (-1081))) (-15 -2057 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1081) (-547 |#2|) (-580 (-547 |#2|))))) (-13 (-387) (-118) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -492)) -((-2057 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1081)) (-5 *6 (-580 (-547 *3))) (-5 *5 (-547 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *7))) (-4 *7 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-492 *7 *3)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-492 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-492 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-2054 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-492 *6 *3)))) (-2053 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-492 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) -((-3954 (((-343 |#1|) |#1|) 17 T ELT)) (-3715 (((-343 |#1|) |#1|) 32 T ELT)) (-2059 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2058 (((-343 |#1|) |#1|) 59 T ELT))) -(((-493 |#1|) (-10 -7 (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3954 ((-343 |#1|) |#1|)) (-15 -2058 ((-343 |#1|) |#1|)) (-15 -2059 ((-3 |#1| "failed") |#1|))) (-479)) (T -493)) -((-2059 (*1 *2 *2) (|partial| -12 (-5 *1 (-493 *2)) (-4 *2 (-479)))) (-2058 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479)))) (-3954 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479)))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479))))) -((-3069 (((-1076 (-345 (-1076 |#2|))) |#2| (-547 |#2|) (-547 |#2|) (-1076 |#2|)) 35 T ELT)) (-2062 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|) |#2| (-1076 |#2|)) 115 T ELT)) (-2060 (((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|))) 85 T ELT) (((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) |#2| (-1076 |#2|)) 55 T ELT)) (-2061 (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-547 |#2|) (-547 |#2|) |#2| (-547 |#2|) |#2| (-345 (-1076 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-547 |#2|) (-547 |#2|) |#2| |#2| (-1076 |#2|)) 114 T ELT)) (-2063 (((-3 |#2| #1#) |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081)) (-547 |#2|) |#2| (-345 (-1076 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081)) |#2| (-1076 |#2|)) 116 T ELT)) (-2064 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|))) 133 (|has| |#3| (-597 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) |#2| (-1076 |#2|)) 132 (|has| |#3| (-597 |#2|)) ELT)) (-3070 ((|#2| (-1076 (-345 (-1076 |#2|))) (-547 |#2|) |#2|) 53 T ELT)) (-3065 (((-1076 (-345 (-1076 |#2|))) (-1076 |#2|) (-547 |#2|)) 34 T ELT))) -(((-494 |#1| |#2| |#3|) (-10 -7 (-15 -2060 ((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) |#2| (-1076 |#2|))) (-15 -2060 ((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|)))) (-15 -2061 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-547 |#2|) (-547 |#2|) |#2| |#2| (-1076 |#2|))) (-15 -2061 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-547 |#2|) (-547 |#2|) |#2| (-547 |#2|) |#2| (-345 (-1076 |#2|)))) (-15 -2062 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|) |#2| (-1076 |#2|))) (-15 -2062 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|)))) (-15 -2063 ((-3 |#2| #1#) |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081)) |#2| (-1076 |#2|))) (-15 -2063 ((-3 |#2| #1#) |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081)) (-547 |#2|) |#2| (-345 (-1076 |#2|)))) (-15 -3069 ((-1076 (-345 (-1076 |#2|))) |#2| (-547 |#2|) (-547 |#2|) (-1076 |#2|))) (-15 -3070 (|#2| (-1076 (-345 (-1076 |#2|))) (-547 |#2|) |#2|)) (-15 -3065 ((-1076 (-345 (-1076 |#2|))) (-1076 |#2|) (-547 |#2|))) (IF (|has| |#3| (-597 |#2|)) (PROGN (-15 -2064 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) |#2| (-1076 |#2|))) (-15 -2064 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) (-547 |#2|) |#2| (-345 (-1076 |#2|))))) |%noBranch|)) (-13 (-387) (-945 (-480)) (-118) (-577 (-480))) (-13 (-359 |#1|) (-27) (-1106)) (-1007)) (T -494)) -((-2064 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-547 *4)) (-5 *6 (-345 (-1076 *4))) (-4 *4 (-13 (-359 *7) (-27) (-1106))) (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) (-5 *1 (-494 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007)))) (-2064 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-547 *4)) (-5 *6 (-1076 *4)) (-4 *4 (-13 (-359 *7) (-27) (-1106))) (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2000 (-580 *4)))) (-5 *1 (-494 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-547 *6)) (-4 *6 (-13 (-359 *5) (-27) (-1106))) (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-1076 (-345 (-1076 *6)))) (-5 *1 (-494 *5 *6 *7)) (-5 *3 (-1076 *6)) (-4 *7 (-1007)))) (-3070 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1076 (-345 (-1076 *2)))) (-5 *4 (-547 *2)) (-4 *2 (-13 (-359 *5) (-27) (-1106))) (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *1 (-494 *5 *2 *6)) (-4 *6 (-1007)))) (-3069 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-1076 (-345 (-1076 *3)))) (-5 *1 (-494 *6 *3 *7)) (-5 *5 (-1076 *3)) (-4 *7 (-1007)))) (-2063 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-547 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1081))) (-5 *5 (-345 (-1076 *2))) (-4 *2 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *1 (-494 *6 *2 *7)) (-4 *7 (-1007)))) (-2063 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-547 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1081))) (-5 *5 (-1076 *2)) (-4 *2 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *1 (-494 *6 *2 *7)) (-4 *7 (-1007)))) (-2062 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) (-5 *6 (-345 (-1076 *3))) (-4 *3 (-13 (-359 *7) (-27) (-1106))) (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-494 *7 *3 *8)) (-4 *8 (-1007)))) (-2062 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) (-5 *6 (-1076 *3)) (-4 *3 (-13 (-359 *7) (-27) (-1106))) (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-494 *7 *3 *8)) (-4 *8 (-1007)))) (-2061 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-345 (-1076 *3))) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007)))) (-2061 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-1076 *3)) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007)))) (-2060 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-547 *3)) (-5 *5 (-345 (-1076 *3))) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007)))) (-2060 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-547 *3)) (-5 *5 (-1076 *3)) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007))))) -((-2074 (((-480) (-480) (-689)) 87 T ELT)) (-2073 (((-480) (-480)) 85 T ELT)) (-2072 (((-480) (-480)) 82 T ELT)) (-2071 (((-480) (-480)) 89 T ELT)) (-2791 (((-480) (-480) (-480)) 67 T ELT)) (-2070 (((-480) (-480) (-480)) 64 T ELT)) (-2069 (((-345 (-480)) (-480)) 29 T ELT)) (-2068 (((-480) (-480)) 34 T ELT)) (-2067 (((-480) (-480)) 76 T ELT)) (-2788 (((-480) (-480)) 47 T ELT)) (-2066 (((-580 (-480)) (-480)) 81 T ELT)) (-2065 (((-480) (-480) (-480) (-480) (-480)) 60 T ELT)) (-2784 (((-345 (-480)) (-480)) 56 T ELT))) -(((-495) (-10 -7 (-15 -2784 ((-345 (-480)) (-480))) (-15 -2065 ((-480) (-480) (-480) (-480) (-480))) (-15 -2066 ((-580 (-480)) (-480))) (-15 -2788 ((-480) (-480))) (-15 -2067 ((-480) (-480))) (-15 -2068 ((-480) (-480))) (-15 -2069 ((-345 (-480)) (-480))) (-15 -2070 ((-480) (-480) (-480))) (-15 -2791 ((-480) (-480) (-480))) (-15 -2071 ((-480) (-480))) (-15 -2072 ((-480) (-480))) (-15 -2073 ((-480) (-480))) (-15 -2074 ((-480) (-480) (-689))))) (T -495)) -((-2074 (*1 *2 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-689)) (-5 *1 (-495)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2791 (*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2070 (*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-495)) (-5 *3 (-480)))) (-2068 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2788 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2066 (*1 *2 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-495)) (-5 *3 (-480)))) (-2065 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-495)) (-5 *3 (-480))))) -((-2075 (((-2 (|:| |answer| |#4|) (|:| -2123 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2075 ((-2 (|:| |answer| |#4|) (|:| -2123 |#4|)) |#4| (-1 |#2| |#2|)))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -496)) -((-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-4 *7 (-1146 (-345 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2123 *3))) (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-288 *5 *6 *7))))) -((-2075 (((-2 (|:| |answer| (-345 |#2|)) (|:| -2123 (-345 |#2|)) (|:| |specpart| (-345 |#2|)) (|:| |polypart| |#2|)) (-345 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-497 |#1| |#2|) (-10 -7 (-15 -2075 ((-2 (|:| |answer| (-345 |#2|)) (|:| -2123 (-345 |#2|)) (|:| |specpart| (-345 |#2|)) (|:| |polypart| |#2|)) (-345 |#2|) (-1 |#2| |#2|)))) (-309) (-1146 |#1|)) (T -497)) -((-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| |answer| (-345 *6)) (|:| -2123 (-345 *6)) (|:| |specpart| (-345 *6)) (|:| |polypart| *6))) (-5 *1 (-497 *5 *6)) (-5 *3 (-345 *6))))) -((-2078 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|)) 195 T ELT)) (-2076 (((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|)) 97 T ELT)) (-2077 (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-547 |#2|) (-547 |#2|) |#2|) 191 T ELT)) (-2079 (((-3 |#2| #1#) |#2| |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081))) 200 T ELT)) (-2080 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) (-1081)) 209 (|has| |#3| (-597 |#2|)) ELT))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2076 ((-515 |#2|) |#2| (-547 |#2|) (-547 |#2|))) (-15 -2077 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-547 |#2|) (-547 |#2|) |#2|)) (-15 -2078 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-547 |#2|) (-547 |#2|) (-580 |#2|))) (-15 -2079 ((-3 |#2| #1#) |#2| |#2| |#2| (-547 |#2|) (-547 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1081)))) (IF (|has| |#3| (-597 |#2|)) (-15 -2080 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2000 (-580 |#2|))) |#3| |#2| (-547 |#2|) (-547 |#2|) (-1081))) |%noBranch|)) (-13 (-387) (-945 (-480)) (-118) (-577 (-480))) (-13 (-359 |#1|) (-27) (-1106)) (-1007)) (T -498)) -((-2080 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-547 *4)) (-5 *6 (-1081)) (-4 *4 (-13 (-359 *7) (-27) (-1106))) (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007)))) (-2079 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-547 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1081))) (-4 *2 (-13 (-359 *5) (-27) (-1106))) (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1007)))) (-2078 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) (-4 *3 (-13 (-359 *6) (-27) (-1106))) (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1007)))) (-2077 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *5) (-27) (-1106))) (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3 *6)) (-4 *6 (-1007)))) (-2076 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *5) (-27) (-1106))) (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) (-5 *1 (-498 *5 *3 *6)) (-4 *6 (-1007))))) -((-2081 (((-2 (|:| -2326 |#2|) (|:| |nconst| |#2|)) |#2| (-1081)) 64 T ELT)) (-2083 (((-3 |#2| #1="failed") |#2| (-1081) (-745 |#2|) (-745 |#2|)) 174 (-12 (|has| |#2| (-1044)) (|has| |#1| (-550 (-795 (-480)))) (|has| |#1| (-791 (-480)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1081)) 145 (-12 (|has| |#2| (-566)) (|has| |#1| (-550 (-795 (-480)))) (|has| |#1| (-791 (-480)))) ELT)) (-2082 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1081)) 156 (-12 (|has| |#2| (-566)) (|has| |#1| (-550 (-795 (-480)))) (|has| |#1| (-791 (-480)))) ELT))) -(((-499 |#1| |#2|) (-10 -7 (-15 -2081 ((-2 (|:| -2326 |#2|) (|:| |nconst| |#2|)) |#2| (-1081))) (IF (|has| |#1| (-550 (-795 (-480)))) (IF (|has| |#1| (-791 (-480))) (PROGN (IF (|has| |#2| (-566)) (PROGN (-15 -2082 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1081))) (-15 -2083 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1081)))) |%noBranch|) (IF (|has| |#2| (-1044)) (-15 -2083 ((-3 |#2| #1#) |#2| (-1081) (-745 |#2|) (-745 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-945 (-480)) (-387) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -499)) -((-2083 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1081)) (-5 *4 (-745 *2)) (-4 *2 (-1044)) (-4 *2 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-550 (-795 (-480)))) (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) (-5 *1 (-499 *5 *2)))) (-2083 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-550 (-795 (-480)))) (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-499 *5 *3)) (-4 *3 (-566)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-550 (-795 (-480)))) (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-499 *5 *3)) (-4 *3 (-566)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-2081 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) (-5 *2 (-2 (|:| -2326 *3) (|:| |nconst| *3))) (-5 *1 (-499 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) -((-2086 (((-3 (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|)))))) #1="failed") (-345 |#2|) (-580 (-345 |#2|))) 41 T ELT)) (-3795 (((-515 (-345 |#2|)) (-345 |#2|)) 28 T ELT)) (-2084 (((-3 (-345 |#2|) #1#) (-345 |#2|)) 17 T ELT)) (-2085 (((-3 (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-345 |#2|)) 48 T ELT))) -(((-500 |#1| |#2|) (-10 -7 (-15 -3795 ((-515 (-345 |#2|)) (-345 |#2|))) (-15 -2084 ((-3 (-345 |#2|) #1="failed") (-345 |#2|))) (-15 -2085 ((-3 (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-345 |#2|))) (-15 -2086 ((-3 (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|)))))) #1#) (-345 |#2|) (-580 (-345 |#2|))))) (-13 (-309) (-118) (-945 (-480))) (-1146 |#1|)) (T -500)) -((-2086 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-580 (-345 *6))) (-5 *3 (-345 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *5 *6)))) (-2085 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| -2124 (-345 *5)) (|:| |coeff| (-345 *5)))) (-5 *1 (-500 *4 *5)) (-5 *3 (-345 *5)))) (-2084 (*1 *2 *2) (|partial| -12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-13 (-309) (-118) (-945 (-480)))) (-5 *1 (-500 *3 *4)))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) (-5 *2 (-515 (-345 *5))) (-5 *1 (-500 *4 *5)) (-5 *3 (-345 *5))))) -((-2087 (((-3 (-480) "failed") |#1|) 14 T ELT)) (-3244 (((-83) |#1|) 13 T ELT)) (-3240 (((-480) |#1|) 9 T ELT))) -(((-501 |#1|) (-10 -7 (-15 -3240 ((-480) |#1|)) (-15 -3244 ((-83) |#1|)) (-15 -2087 ((-3 (-480) "failed") |#1|))) (-945 (-480))) (T -501)) -((-2087 (*1 *2 *3) (|partial| -12 (-5 *2 (-480)) (-5 *1 (-501 *3)) (-4 *3 (-945 *2)))) (-3244 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-501 *3)) (-4 *3 (-945 (-480))))) (-3240 (*1 *2 *3) (-12 (-5 *2 (-480)) (-5 *1 (-501 *3)) (-4 *3 (-945 *2))))) -((-2090 (((-3 (-2 (|:| |mainpart| (-345 (-852 |#1|))) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 (-852 |#1|))) (|:| |logand| (-345 (-852 |#1|))))))) #1="failed") (-345 (-852 |#1|)) (-1081) (-580 (-345 (-852 |#1|)))) 48 T ELT)) (-2088 (((-515 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-1081)) 28 T ELT)) (-2089 (((-3 (-345 (-852 |#1|)) #1#) (-345 (-852 |#1|)) (-1081)) 23 T ELT)) (-2091 (((-3 (-2 (|:| -2124 (-345 (-852 |#1|))) (|:| |coeff| (-345 (-852 |#1|)))) #1#) (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|))) 35 T ELT))) -(((-502 |#1|) (-10 -7 (-15 -2088 ((-515 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-1081))) (-15 -2089 ((-3 (-345 (-852 |#1|)) #1="failed") (-345 (-852 |#1|)) (-1081))) (-15 -2090 ((-3 (-2 (|:| |mainpart| (-345 (-852 |#1|))) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 (-852 |#1|))) (|:| |logand| (-345 (-852 |#1|))))))) #1#) (-345 (-852 |#1|)) (-1081) (-580 (-345 (-852 |#1|))))) (-15 -2091 ((-3 (-2 (|:| -2124 (-345 (-852 |#1|))) (|:| |coeff| (-345 (-852 |#1|)))) #1#) (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|))))) (-13 (-491) (-945 (-480)) (-118))) (T -502)) -((-2091 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-118))) (-5 *2 (-2 (|:| -2124 (-345 (-852 *5))) (|:| |coeff| (-345 (-852 *5))))) (-5 *1 (-502 *5)) (-5 *3 (-345 (-852 *5))))) (-2090 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 (-345 (-852 *6)))) (-5 *3 (-345 (-852 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6)))) (-2089 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-345 (-852 *4))) (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-118))) (-5 *1 (-502 *4)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-118))) (-5 *2 (-515 (-345 (-852 *5)))) (-5 *1 (-502 *5)) (-5 *3 (-345 (-852 *5)))))) -((-2554 (((-83) $ $) 77 T ELT)) (-3173 (((-83) $) 49 T ELT)) (-2590 ((|#1| $) 39 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) 81 T ELT)) (-3475 (($ $) 142 T ELT)) (-3622 (($ $) 120 T ELT)) (-2469 ((|#1| $) 37 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $) NIL T ELT)) (-3473 (($ $) 144 T ELT)) (-3621 (($ $) 116 T ELT)) (-3477 (($ $) 146 T ELT)) (-3620 (($ $) 124 T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) 95 T ELT)) (-3141 (((-480) $) 97 T ELT)) (-3450 (((-3 $ #1#) $) 80 T ELT)) (-2047 (($ |#1| |#1|) 35 T ELT)) (-3171 (((-83) $) 44 T ELT)) (-3610 (($) 106 T ELT)) (-2398 (((-83) $) 56 T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-3172 (((-83) $) 46 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3925 (($ $) 108 T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2048 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-345 (-480))) 94 T ELT)) (-2046 ((|#1| $) 36 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) 83 T ELT) (($ (-580 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) 82 T ELT)) (-3926 (($ $) 110 T ELT)) (-3478 (($ $) 150 T ELT)) (-3619 (($ $) 122 T ELT)) (-3476 (($ $) 152 T ELT)) (-3618 (($ $) 126 T ELT)) (-3474 (($ $) 148 T ELT)) (-3617 (($ $) 118 T ELT)) (-2045 (((-83) $ |#1|) 42 T ELT)) (-3929 (((-767) $) 102 T ELT) (($ (-480)) 85 T ELT) (($ $) NIL T ELT) (($ (-480)) 85 T ELT)) (-3111 (((-689)) 104 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 164 T ELT)) (-3469 (($ $) 132 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3479 (($ $) 162 T ELT)) (-3467 (($ $) 128 T ELT)) (-3483 (($ $) 160 T ELT)) (-3471 (($ $) 140 T ELT)) (-3484 (($ $) 158 T ELT)) (-3472 (($ $) 138 T ELT)) (-3482 (($ $) 156 T ELT)) (-3470 (($ $) 134 T ELT)) (-3480 (($ $) 154 T ELT)) (-3468 (($ $) 130 T ELT)) (-2646 (($) 30 T CONST)) (-2652 (($) 10 T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 50 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 48 T ELT)) (-3820 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3822 (($ $ $) 53 T ELT)) (** (($ $ (-825)) 73 T ELT) (($ $ (-689)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-345 (-480))) 166 T ELT)) (* (($ (-825) $) 67 T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-503 |#1|) (-489 |#1|) (-13 (-342) (-1106))) (T -503)) -NIL -((-2690 (((-3 (-580 (-1076 (-480))) "failed") (-580 (-1076 (-480))) (-1076 (-480))) 27 T ELT))) -(((-504) (-10 -7 (-15 -2690 ((-3 (-580 (-1076 (-480))) "failed") (-580 (-1076 (-480))) (-1076 (-480)))))) (T -504)) -((-2690 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 (-480)))) (-5 *3 (-1076 (-480))) (-5 *1 (-504))))) -((-2092 (((-580 (-547 |#2|)) (-580 (-547 |#2|)) (-1081)) 19 T ELT)) (-2095 (((-580 (-547 |#2|)) (-580 |#2|) (-1081)) 23 T ELT)) (-3219 (((-580 (-547 |#2|)) (-580 (-547 |#2|)) (-580 (-547 |#2|))) 11 T ELT)) (-2096 ((|#2| |#2| (-1081)) 59 (|has| |#1| (-491)) ELT)) (-2097 ((|#2| |#2| (-1081)) 87 (-12 (|has| |#2| (-237)) (|has| |#1| (-387))) ELT)) (-2094 (((-547 |#2|) (-547 |#2|) (-580 (-547 |#2|)) (-1081)) 25 T ELT)) (-2093 (((-547 |#2|) (-580 (-547 |#2|))) 24 T ELT)) (-2098 (((-515 |#2|) |#2| (-1081) (-1 (-515 |#2|) |#2| (-1081)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1081))) 115 (-12 (|has| |#2| (-237)) (|has| |#2| (-566)) (|has| |#2| (-945 (-1081))) (|has| |#1| (-550 (-795 (-480)))) (|has| |#1| (-387)) (|has| |#1| (-791 (-480)))) ELT))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2092 ((-580 (-547 |#2|)) (-580 (-547 |#2|)) (-1081))) (-15 -2093 ((-547 |#2|) (-580 (-547 |#2|)))) (-15 -2094 ((-547 |#2|) (-547 |#2|) (-580 (-547 |#2|)) (-1081))) (-15 -3219 ((-580 (-547 |#2|)) (-580 (-547 |#2|)) (-580 (-547 |#2|)))) (-15 -2095 ((-580 (-547 |#2|)) (-580 |#2|) (-1081))) (IF (|has| |#1| (-491)) (-15 -2096 (|#2| |#2| (-1081))) |%noBranch|) (IF (|has| |#1| (-387)) (IF (|has| |#2| (-237)) (PROGN (-15 -2097 (|#2| |#2| (-1081))) (IF (|has| |#1| (-550 (-795 (-480)))) (IF (|has| |#1| (-791 (-480))) (IF (|has| |#2| (-566)) (IF (|has| |#2| (-945 (-1081))) (-15 -2098 ((-515 |#2|) |#2| (-1081) (-1 (-515 |#2|) |#2| (-1081)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1081)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1007) (-359 |#1|)) (T -505)) -((-2098 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-515 *3) *3 (-1081))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1081))) (-4 *3 (-237)) (-4 *3 (-566)) (-4 *3 (-945 *4)) (-4 *3 (-359 *7)) (-5 *4 (-1081)) (-4 *7 (-550 (-795 (-480)))) (-4 *7 (-387)) (-4 *7 (-791 (-480))) (-4 *7 (-1007)) (-5 *2 (-515 *3)) (-5 *1 (-505 *7 *3)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-387)) (-4 *4 (-1007)) (-5 *1 (-505 *4 *2)) (-4 *2 (-237)) (-4 *2 (-359 *4)))) (-2096 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-4 *4 (-1007)) (-5 *1 (-505 *4 *2)) (-4 *2 (-359 *4)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-1081)) (-4 *6 (-359 *5)) (-4 *5 (-1007)) (-5 *2 (-580 (-547 *6))) (-5 *1 (-505 *5 *6)))) (-3219 (*1 *2 *2 *2) (-12 (-5 *2 (-580 (-547 *4))) (-4 *4 (-359 *3)) (-4 *3 (-1007)) (-5 *1 (-505 *3 *4)))) (-2094 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-580 (-547 *6))) (-5 *4 (-1081)) (-5 *2 (-547 *6)) (-4 *6 (-359 *5)) (-4 *5 (-1007)) (-5 *1 (-505 *5 *6)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-580 (-547 *5))) (-4 *4 (-1007)) (-5 *2 (-547 *5)) (-5 *1 (-505 *4 *5)) (-4 *5 (-359 *4)))) (-2092 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-547 *5))) (-5 *3 (-1081)) (-4 *5 (-359 *4)) (-4 *4 (-1007)) (-5 *1 (-505 *4 *5))))) -((-2101 (((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-580 |#1|) #1="failed") (-480) |#1| |#1|)) 199 T ELT)) (-2104 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|))))))) (|:| |a0| |#1|)) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-580 (-345 |#2|))) 174 T ELT)) (-2107 (((-3 (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|)))))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-580 (-345 |#2|))) 171 T ELT)) (-2108 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2099 (((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2106 (((-3 (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-345 |#2|)) 202 T ELT)) (-2102 (((-3 (-2 (|:| |answer| (-345 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-345 |#2|)) 205 T ELT)) (-2110 (((-2 (|:| |ir| (-515 (-345 |#2|))) (|:| |specpart| (-345 |#2|)) (|:| |polypart| |#2|)) (-345 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2111 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2105 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|))))))) (|:| |a0| |#1|)) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|) (-580 (-345 |#2|))) 178 T ELT)) (-2109 (((-3 (-559 |#1| |#2|) #1#) (-559 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|)) 166 T ELT)) (-2100 (((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|)) 189 T ELT)) (-2103 (((-3 (-2 (|:| |answer| (-345 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|) (-345 |#2|)) 210 T ELT))) -(((-506 |#1| |#2|) (-10 -7 (-15 -2099 ((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2100 ((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|))) (-15 -2101 ((-2 (|:| |answer| (-515 (-345 |#2|))) (|:| |a0| |#1|)) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-580 |#1|) #1#) (-480) |#1| |#1|))) (-15 -2102 ((-3 (-2 (|:| |answer| (-345 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-345 |#2|))) (-15 -2103 ((-3 (-2 (|:| |answer| (-345 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|) (-345 |#2|))) (-15 -2104 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|))))))) (|:| |a0| |#1|)) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-580 (-345 |#2|)))) (-15 -2105 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|))))))) (|:| |a0| |#1|)) #1#) (-345 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|) (-580 (-345 |#2|)))) (-15 -2106 ((-3 (-2 (|:| -2124 (-345 |#2|)) (|:| |coeff| (-345 |#2|))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-345 |#2|))) (-15 -2107 ((-3 (-2 (|:| |mainpart| (-345 |#2|)) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| (-345 |#2|)) (|:| |logand| (-345 |#2|)))))) #1#) (-345 |#2|) (-1 |#2| |#2|) (-580 (-345 |#2|)))) (-15 -2108 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2109 ((-3 (-559 |#1| |#2|) #1#) (-559 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3122 |#1|) (|:| |sol?| (-83))) (-480) |#1|))) (-15 -2110 ((-2 (|:| |ir| (-515 (-345 |#2|))) (|:| |specpart| (-345 |#2|)) (|:| |polypart| |#2|)) (-345 |#2|) (-1 |#2| |#2|))) (-15 -2111 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-309) (-1146 |#1|)) (T -506)) -((-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-506 *5 *3)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| |ir| (-515 (-345 *6))) (|:| |specpart| (-345 *6)) (|:| |polypart| *6))) (-5 *1 (-506 *5 *6)) (-5 *3 (-345 *6)))) (-2109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-559 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3122 *4) (|:| |sol?| (-83))) (-480) *4)) (-4 *4 (-309)) (-4 *5 (-1146 *4)) (-5 *1 (-506 *4 *5)))) (-2108 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-309)) (-5 *1 (-506 *4 *2)) (-4 *2 (-1146 *4)))) (-2107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-580 (-345 *7))) (-4 *7 (-1146 *6)) (-5 *3 (-345 *7)) (-4 *6 (-309)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6 *7)))) (-2106 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| -2124 (-345 *6)) (|:| |coeff| (-345 *6)))) (-5 *1 (-506 *5 *6)) (-5 *3 (-345 *6)))) (-2105 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3122 *7) (|:| |sol?| (-83))) (-480) *7)) (-5 *6 (-580 (-345 *8))) (-4 *7 (-309)) (-4 *8 (-1146 *7)) (-5 *3 (-345 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-506 *7 *8)))) (-2104 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2124 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-580 (-345 *8))) (-4 *7 (-309)) (-4 *8 (-1146 *7)) (-5 *3 (-345 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-506 *7 *8)))) (-2103 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3122 *6) (|:| |sol?| (-83))) (-480) *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-345 *7)) (|:| |a0| *6)) (-2 (|:| -2124 (-345 *7)) (|:| |coeff| (-345 *7))) "failed")) (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7)))) (-2102 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2124 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-345 *7)) (|:| |a0| *6)) (-2 (|:| -2124 (-345 *7)) (|:| |coeff| (-345 *7))) "failed")) (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7)))) (-2101 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-580 *6) "failed") (-480) *6 *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7)))) (-2100 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3122 *6) (|:| |sol?| (-83))) (-480) *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2124 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) -((-2112 (((-3 |#2| "failed") |#2| (-1081) (-1081)) 10 T ELT))) -(((-507 |#1| |#2|) (-10 -7 (-15 -2112 ((-3 |#2| "failed") |#2| (-1081) (-1081)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-866) (-1044) (-29 |#1|))) (T -507)) -((-2112 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-507 *4 *2)) (-4 *2 (-13 (-1106) (-866) (-1044) (-29 *4)))))) -((-2541 (((-629 (-1129)) $ (-1129)) 27 T ELT)) (-2542 (((-629 (-484)) $ (-484)) 26 T ELT)) (-2540 (((-689) $ (-100)) 28 T ELT)) (-2543 (((-629 (-99)) $ (-99)) 25 T ELT)) (-1988 (((-629 (-1129)) $) 12 T ELT)) (-1984 (((-629 (-1127)) $) 8 T ELT)) (-1986 (((-629 (-1126)) $) 10 T ELT)) (-1989 (((-629 (-484)) $) 13 T ELT)) (-1985 (((-629 (-482)) $) 9 T ELT)) (-1987 (((-629 (-481)) $) 11 T ELT)) (-1983 (((-689) $ (-100)) 7 T ELT)) (-1990 (((-629 (-99)) $) 14 T ELT)) (-1689 (($ $) 6 T ELT))) -(((-508) (-111)) (T -508)) -NIL -(-13 (-461) (-765)) -(((-145) . T) ((-461) . T) ((-765) . T)) -((-2541 (((-629 (-1129)) $ (-1129)) NIL T ELT)) (-2542 (((-629 (-484)) $ (-484)) NIL T ELT)) (-2540 (((-689) $ (-100)) NIL T ELT)) (-2543 (((-629 (-99)) $ (-99)) NIL T ELT)) (-1988 (((-629 (-1129)) $) NIL T ELT)) (-1984 (((-629 (-1127)) $) NIL T ELT)) (-1986 (((-629 (-1126)) $) NIL T ELT)) (-1989 (((-629 (-484)) $) NIL T ELT)) (-1985 (((-629 (-482)) $) NIL T ELT)) (-1987 (((-629 (-481)) $) NIL T ELT)) (-1983 (((-689) $ (-100)) NIL T ELT)) (-1990 (((-629 (-99)) $) NIL T ELT)) (-2544 (((-83) $) NIL T ELT)) (-2113 (($ (-333)) 14 T ELT) (($ (-1064)) 16 T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1689 (($ $) NIL T ELT))) -(((-509) (-13 (-508) (-549 (-767)) (-10 -8 (-15 -2113 ($ (-333))) (-15 -2113 ($ (-1064))) (-15 -2544 ((-83) $))))) (T -509)) -((-2113 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-509)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-509)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-509))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3443 (($) 7 T CONST)) (-3227 (((-1064) $) NIL T ELT)) (-2116 (($) 6 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 15 T ELT)) (-2114 (($) 9 T CONST)) (-2115 (($) 8 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 11 T ELT))) -(((-510) (-13 (-1007) (-10 -8 (-15 -2116 ($) -3935) (-15 -3443 ($) -3935) (-15 -2115 ($) -3935) (-15 -2114 ($) -3935)))) (T -510)) -((-2116 (*1 *1) (-5 *1 (-510))) (-3443 (*1 *1) (-5 *1 (-510))) (-2115 (*1 *1) (-5 *1 (-510))) (-2114 (*1 *1) (-5 *1 (-510)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2117 (((-629 $) (-426)) 23 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2119 (($ (-1064)) 16 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 33 T ELT)) (-2118 (((-164 4 (-99)) $) 24 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 26 T ELT))) -(((-511) (-13 (-1007) (-10 -8 (-15 -2119 ($ (-1064))) (-15 -2118 ((-164 4 (-99)) $)) (-15 -2117 ((-629 $) (-426)))))) (T -511)) -((-2119 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-511)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-511)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-426)) (-5 *2 (-629 (-511))) (-5 *1 (-511))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $ (-480)) 73 T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2597 (($ (-1076 (-480)) (-480)) 79 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 64 T ELT)) (-2598 (($ $) 43 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3755 (((-689) $) 16 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2600 (((-480)) 37 T ELT)) (-2599 (((-480) $) 41 T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3752 (($ $ (-480)) 24 T ELT)) (-3449 (((-3 $ #1#) $ $) 70 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) 17 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-2601 (((-1060 (-480)) $) 19 T ELT)) (-2877 (($ $) 26 T ELT)) (-3929 (((-767) $) 100 T ELT) (($ (-480)) 59 T ELT) (($ $) NIL T ELT)) (-3111 (((-689)) 15 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-480) $ (-480)) 46 T ELT)) (-2646 (($) 44 T CONST)) (-2652 (($) 21 T CONST)) (-3042 (((-83) $ $) 51 T ELT)) (-3820 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3822 (($ $ $) 57 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-512 |#1| |#2|) (-774 |#1|) (-480) (-83)) (T -512)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 30 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (($ $ (-825)) NIL (|has| $ (-315)) ELT) (($ $) NIL T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 59 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 $ #1#) $) 95 T ELT)) (-3141 (($ $) 94 T ELT)) (-1781 (($ (-1170 $)) 93 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 47 T ELT)) (-2980 (($) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) 61 T ELT)) (-1669 (((-83) $) NIL T ELT)) (-1753 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) 49 (|has| $ (-315)) ELT)) (-1999 (((-83) $) NIL (|has| $ (-315)) ELT)) (-3117 (($ $ (-825)) NIL (|has| $ (-315)) ELT) (($ $) NIL T ELT)) (-3428 (((-629 $) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 $) $ (-825)) NIL (|has| $ (-315)) ELT) (((-1076 $) $) 104 T ELT)) (-1998 (((-825) $) 67 T ELT)) (-1616 (((-1076 $) $) NIL (|has| $ (-315)) ELT)) (-1615 (((-3 (-1076 $) #1#) $ $) NIL (|has| $ (-315)) ELT) (((-1076 $) $) NIL (|has| $ (-315)) ELT)) (-1617 (($ $ (-1076 $)) NIL (|has| $ (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL T CONST)) (-2388 (($ (-825)) 60 T ELT)) (-3914 (((-83) $) 87 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) 28 (|has| $ (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 54 T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-825)) 86 T ELT) (((-738 (-825))) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-3 (-689) #1#) $ $) NIL T ELT) (((-689) $) NIL T ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3931 (((-825) $) 85 T ELT) (((-738 (-825)) $) NIL T ELT)) (-3170 (((-1076 $)) 102 T ELT)) (-1663 (($) 66 T ELT)) (-1618 (($) 50 (|has| $ (-315)) ELT)) (-3209 (((-627 $) (-1170 $)) NIL T ELT) (((-1170 $) $) 91 T ELT)) (-3955 (((-480) $) 42 T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) 45 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT)) (-2688 (((-629 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3111 (((-689)) 51 T CONST)) (-1255 (((-83) $ $) 107 T ELT)) (-2000 (((-1170 $) (-825)) 97 T ELT) (((-1170 $)) 96 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) 31 T CONST)) (-2652 (($) 27 T CONST)) (-3911 (($ $ (-689)) NIL (|has| $ (-315)) ELT) (($ $) NIL (|has| $ (-315)) ELT)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 34 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-513 |#1|) (-13 (-296) (-277 $) (-550 (-480))) (-825)) (T -513)) -NIL -((-2120 (((-1176) (-1064)) 10 T ELT))) -(((-514) (-10 -7 (-15 -2120 ((-1176) (-1064))))) (T -514)) -((-2120 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-514))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 77 T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2124 ((|#1| $) 30 T ELT)) (-2122 (((-580 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2125 (($ |#1| (-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 |#1|)) (|:| |logand| (-1076 |#1|)))) (-580 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2123 (((-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 |#1|)) (|:| |logand| (-1076 |#1|)))) $) 31 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2818 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1081)) 49 (|has| |#1| (-945 (-1081))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2121 (((-83) $) 35 T ELT)) (-3741 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1081)) 90 (|has| |#1| (-804 (-1081))) ELT)) (-3929 (((-767) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 18 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 86 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 16 T ELT) (($ (-345 (-480)) $) 41 T ELT) (($ $ (-345 (-480))) NIL T ELT))) -(((-515 |#1|) (-13 (-651 (-345 (-480))) (-945 |#1|) (-10 -8 (-15 -2125 ($ |#1| (-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 |#1|)) (|:| |logand| (-1076 |#1|)))) (-580 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2124 (|#1| $)) (-15 -2123 ((-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 |#1|)) (|:| |logand| (-1076 |#1|)))) $)) (-15 -2122 ((-580 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2121 ((-83) $)) (-15 -2818 ($ |#1| |#1|)) (-15 -3741 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-804 (-1081))) (-15 -3741 (|#1| $ (-1081))) |%noBranch|) (IF (|has| |#1| (-945 (-1081))) (-15 -2818 ($ |#1| (-1081))) |%noBranch|))) (-309)) (T -515)) -((-2125 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 *2)) (|:| |logand| (-1076 *2))))) (-5 *4 (-580 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-309)) (-5 *1 (-515 *2)))) (-2124 (*1 *2 *1) (-12 (-5 *1 (-515 *2)) (-4 *2 (-309)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 *3)) (|:| |logand| (-1076 *3))))) (-5 *1 (-515 *3)) (-4 *3 (-309)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-515 *3)) (-4 *3 (-309)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-515 *3)) (-4 *3 (-309)))) (-2818 (*1 *1 *2 *2) (-12 (-5 *1 (-515 *2)) (-4 *2 (-309)))) (-3741 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-515 *2)) (-4 *2 (-309)))) (-3741 (*1 *2 *1 *3) (-12 (-4 *2 (-309)) (-4 *2 (-804 *3)) (-5 *1 (-515 *2)) (-5 *3 (-1081)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *1 (-515 *2)) (-4 *2 (-945 *3)) (-4 *2 (-309))))) -((-3941 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-515 |#2|) (-1 |#2| |#1|) (-515 |#1|)) 30 T ELT))) -(((-516 |#1| |#2|) (-10 -7 (-15 -3941 ((-515 |#2|) (-1 |#2| |#1|) (-515 |#1|))) (-15 -3941 ((-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2124 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3941 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3941 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-309) (-309)) (T -516)) -((-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-309)) (-4 *6 (-309)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-516 *5 *6)))) (-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-309)) (-4 *2 (-309)) (-5 *1 (-516 *5 *2)))) (-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2124 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-309)) (-4 *6 (-309)) (-5 *2 (-2 (|:| -2124 *6) (|:| |coeff| *6))) (-5 *1 (-516 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-515 *5)) (-4 *5 (-309)) (-4 *6 (-309)) (-5 *2 (-515 *6)) (-5 *1 (-516 *5 *6))))) -((-3401 (((-515 |#2|) (-515 |#2|)) 42 T ELT)) (-3946 (((-580 |#2|) (-515 |#2|)) 44 T ELT)) (-2136 ((|#2| (-515 |#2|)) 50 T ELT))) -(((-517 |#1| |#2|) (-10 -7 (-15 -3401 ((-515 |#2|) (-515 |#2|))) (-15 -3946 ((-580 |#2|) (-515 |#2|))) (-15 -2136 (|#2| (-515 |#2|)))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-29 |#1|) (-1106))) (T -517)) -((-2136 (*1 *2 *3) (-12 (-5 *3 (-515 *2)) (-4 *2 (-13 (-29 *4) (-1106))) (-5 *1 (-517 *4 *2)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-515 *5)) (-4 *5 (-13 (-29 *4) (-1106))) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-580 *5)) (-5 *1 (-517 *4 *5)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-515 *4)) (-4 *4 (-13 (-29 *3) (-1106))) (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-517 *3 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2128 (($ (-441) (-528)) 14 T ELT)) (-2126 (($ (-441) (-528) $) 16 T ELT)) (-2127 (($ (-441) (-528)) 15 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-1086)) 7 T ELT) (((-1086) $) 6 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-518) (-13 (-1007) (-425 (-1086)) (-10 -8 (-15 -2128 ($ (-441) (-528))) (-15 -2127 ($ (-441) (-528))) (-15 -2126 ($ (-441) (-528) $))))) (T -518)) -((-2128 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518)))) (-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518)))) (-2126 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518))))) -((-2132 (((-83) |#1|) 16 T ELT)) (-2133 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2130 (((-2 (|:| -2680 |#1|) (|:| -2389 (-689))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-689)) 18 T ELT)) (-2129 (((-83) |#1| (-689)) 19 T ELT)) (-2134 ((|#1| |#1|) 41 T ELT)) (-2131 ((|#1| |#1| (-689)) 44 T ELT))) -(((-519 |#1|) (-10 -7 (-15 -2129 ((-83) |#1| (-689))) (-15 -2130 ((-3 |#1| #1="failed") |#1| (-689))) (-15 -2130 ((-2 (|:| -2680 |#1|) (|:| -2389 (-689))) |#1|)) (-15 -2131 (|#1| |#1| (-689))) (-15 -2132 ((-83) |#1|)) (-15 -2133 ((-3 |#1| #1#) |#1|)) (-15 -2134 (|#1| |#1|))) (-479)) (T -519)) -((-2134 (*1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-479)))) (-2133 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-479)))) (-2132 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-519 *3)) (-4 *3 (-479)))) (-2131 (*1 *2 *2 *3) (-12 (-5 *3 (-689)) (-5 *1 (-519 *2)) (-4 *2 (-479)))) (-2130 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2680 *3) (|:| -2389 (-689)))) (-5 *1 (-519 *3)) (-4 *3 (-479)))) (-2130 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-689)) (-5 *1 (-519 *2)) (-4 *2 (-479)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-5 *2 (-83)) (-5 *1 (-519 *3)) (-4 *3 (-479))))) -((-2135 (((-1076 |#1|) (-825)) 44 T ELT))) -(((-520 |#1|) (-10 -7 (-15 -2135 ((-1076 |#1|) (-825)))) (-296)) (T -520)) -((-2135 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-520 *4)) (-4 *4 (-296))))) -((-3401 (((-515 (-345 (-852 |#1|))) (-515 (-345 (-852 |#1|)))) 27 T ELT)) (-3795 (((-3 (-262 |#1|) (-580 (-262 |#1|))) (-345 (-852 |#1|)) (-1081)) 33 (|has| |#1| (-118)) ELT)) (-3946 (((-580 (-262 |#1|)) (-515 (-345 (-852 |#1|)))) 19 T ELT)) (-2137 (((-262 |#1|) (-345 (-852 |#1|)) (-1081)) 31 (|has| |#1| (-118)) ELT)) (-2136 (((-262 |#1|) (-515 (-345 (-852 |#1|)))) 21 T ELT))) -(((-521 |#1|) (-10 -7 (-15 -3401 ((-515 (-345 (-852 |#1|))) (-515 (-345 (-852 |#1|))))) (-15 -3946 ((-580 (-262 |#1|)) (-515 (-345 (-852 |#1|))))) (-15 -2136 ((-262 |#1|) (-515 (-345 (-852 |#1|))))) (IF (|has| |#1| (-118)) (PROGN (-15 -3795 ((-3 (-262 |#1|) (-580 (-262 |#1|))) (-345 (-852 |#1|)) (-1081))) (-15 -2137 ((-262 |#1|) (-345 (-852 |#1|)) (-1081)))) |%noBranch|)) (-13 (-387) (-945 (-480)) (-577 (-480)))) (T -521)) -((-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-118)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-262 *5)) (-5 *1 (-521 *5)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-118)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (-262 *5) (-580 (-262 *5)))) (-5 *1 (-521 *5)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-515 (-345 (-852 *4)))) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-262 *4)) (-5 *1 (-521 *4)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-515 (-345 (-852 *4)))) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-580 (-262 *4))) (-5 *1 (-521 *4)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-515 (-345 (-852 *3)))) (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-521 *3))))) -((-2139 (((-580 (-627 (-480))) (-580 (-825)) (-580 (-808 (-480)))) 80 T ELT) (((-580 (-627 (-480))) (-580 (-825))) 81 T ELT) (((-627 (-480)) (-580 (-825)) (-808 (-480))) 74 T ELT)) (-2138 (((-689) (-580 (-825))) 71 T ELT))) -(((-522) (-10 -7 (-15 -2138 ((-689) (-580 (-825)))) (-15 -2139 ((-627 (-480)) (-580 (-825)) (-808 (-480)))) (-15 -2139 ((-580 (-627 (-480))) (-580 (-825)))) (-15 -2139 ((-580 (-627 (-480))) (-580 (-825)) (-580 (-808 (-480))))))) (T -522)) -((-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-825))) (-5 *4 (-580 (-808 (-480)))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-522)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-522)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-825))) (-5 *4 (-808 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-522)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-689)) (-5 *1 (-522))))) -((-3198 (((-580 |#5|) |#5| (-83)) 97 T ELT)) (-2140 (((-83) |#5| (-580 |#5|)) 34 T ELT))) -(((-523 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3198 ((-580 |#5|) |#5| (-83))) (-15 -2140 ((-83) |#5| (-580 |#5|)))) (-13 (-255) (-118)) (-712) (-751) (-971 |#1| |#2| |#3|) (-1014 |#1| |#2| |#3| |#4|)) (T -523)) -((-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-1014 *5 *6 *7 *8)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-523 *5 *6 *7 *8 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-580 *3)) (-5 *1 (-523 *5 *6 *7 *8 *3)) (-4 *3 (-1014 *5 *6 *7 *8))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 (((-1040) $) 12 T ELT)) (-3512 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-524) (-13 (-989) (-10 -8 (-15 -3512 ((-1040) $)) (-15 -3511 ((-1040) $))))) (T -524)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-524)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-524))))) -((-3515 (((-2 (|:| |num| |#4|) (|:| |den| (-480))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-480))) |#4| |#2| (-995 |#4|)) 32 T ELT))) -(((-525 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3515 ((-2 (|:| |num| |#4|) (|:| |den| (-480))) |#4| |#2| (-995 |#4|))) (-15 -3515 ((-2 (|:| |num| |#4|) (|:| |den| (-480))) |#4| |#2|))) (-712) (-751) (-491) (-856 |#3| |#1| |#2|)) (T -525)) -((-3515 (*1 *2 *3 *4) (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-491)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-480)))) (-5 *1 (-525 *5 *4 *6 *3)) (-4 *3 (-856 *6 *5 *4)))) (-3515 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-995 *3)) (-4 *3 (-856 *7 *6 *4)) (-4 *6 (-712)) (-4 *4 (-751)) (-4 *7 (-491)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-480)))) (-5 *1 (-525 *6 *4 *7 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 71 T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-480)) 58 T ELT) (($ $ (-480) (-480)) 59 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) 65 T ELT)) (-2171 (($ $) 109 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2169 (((-767) (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) (-934 (-745 (-480))) (-1081) |#1| (-345 (-480))) 232 T ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) 36 T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2878 (((-83) $) NIL T ELT)) (-3755 (((-480) $) 63 T ELT) (((-480) $ (-480)) 64 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3760 (($ $ (-825)) 83 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 80 T ELT)) (-3920 (((-83) $) 26 T ELT)) (-2879 (($ |#1| (-480)) 22 T ELT) (($ $ (-988) (-480)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-480))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2175 (($ (-934 (-745 (-480))) (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) 13 T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3795 (($ $) 120 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2172 (((-3 $ #1#) $ $ (-83)) 108 T ELT)) (-2170 (($ $ $) 116 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2173 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) 15 T ELT)) (-2174 (((-934 (-745 (-480))) $) 14 T ELT)) (-3752 (($ $ (-480)) 47 T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT)) (-3783 ((|#1| $ (-480)) 62 T ELT) (($ $ $) NIL (|has| (-480) (-1017)) ELT)) (-3741 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT)) (-3931 (((-480) $) NIL T ELT)) (-2877 (($ $) 48 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) 29 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ |#1|) 28 (|has| |#1| (-144)) ELT)) (-3660 ((|#1| $ (-480)) 61 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 39 T CONST)) (-3756 ((|#1| $) NIL T ELT)) (-2150 (($ $) 192 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2162 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2152 (($ $) 189 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2164 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2148 (($ $) 194 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2160 (($ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2167 (($ $ (-345 (-480))) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2168 (($ $ |#1|) 128 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2165 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2166 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2147 (($ $) 195 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2159 (($ $) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2149 (($ $) 193 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2161 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2151 (($ $) 190 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2163 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2144 (($ $) 200 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2156 (($ $) 180 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2146 (($ $) 197 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2158 (($ $) 176 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2142 (($ $) 204 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2154 (($ $) 184 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2141 (($ $) 206 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2153 (($ $) 186 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2143 (($ $) 202 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2155 (($ $) 182 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2145 (($ $) 199 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2157 (($ $) 178 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3753 ((|#1| $ (-480)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-2646 (($) 30 T CONST)) (-2652 (($) 40 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT)) (-3042 (((-83) $ $) 73 T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3822 (($ $ $) 88 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 111 T ELT)) (* (($ (-825) $) 98 T ELT) (($ (-689) $) 96 T ELT) (($ (-480) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-526 |#1|) (-13 (-1149 |#1| (-480)) (-10 -8 (-15 -2175 ($ (-934 (-745 (-480))) (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))))) (-15 -2174 ((-934 (-745 (-480))) $)) (-15 -2173 ((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $)) (-15 -3801 ($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))))) (-15 -3920 ((-83) $)) (-15 -3798 ($ (-1 |#1| (-480)) $)) (-15 -2172 ((-3 $ "failed") $ $ (-83))) (-15 -2171 ($ $)) (-15 -2170 ($ $ $)) (-15 -2169 ((-767) (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) (-934 (-745 (-480))) (-1081) |#1| (-345 (-480)))) (IF (|has| |#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $)) (-15 -2168 ($ $ |#1|)) (-15 -2167 ($ $ (-345 (-480)))) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $)) (-15 -2148 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $)) (-15 -2143 ($ $)) (-15 -2142 ($ $)) (-15 -2141 ($ $))) |%noBranch|))) (-956)) (T -526)) -((-3920 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-956)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-934 (-745 (-480)))) (-5 *3 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *4)))) (-4 *4 (-956)) (-5 *1 (-526 *4)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-934 (-745 (-480)))) (-5 *1 (-526 *3)) (-4 *3 (-956)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-5 *1 (-526 *3)) (-4 *3 (-956)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-4 *3 (-956)) (-5 *1 (-526 *3)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *3 (-956)) (-5 *1 (-526 *3)))) (-2172 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-956)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-956)))) (-2170 (*1 *1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-956)))) (-2169 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *6)))) (-5 *4 (-934 (-745 (-480)))) (-5 *5 (-1081)) (-5 *7 (-345 (-480))) (-4 *6 (-956)) (-5 *2 (-767)) (-5 *1 (-526 *6)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-526 *3)) (-4 *3 (-38 *2)) (-4 *3 (-956)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2146 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2142 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 62 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3801 (($ (-1060 |#1|)) 9 T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) 44 T ELT)) (-2878 (((-83) $) 56 T ELT)) (-3755 (((-689) $) 61 T ELT) (((-689) $ (-689)) 60 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) 46 (|has| |#1| (-491)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-1060 |#1|) $) 25 T ELT)) (-3111 (((-689)) 55 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 10 T CONST)) (-2652 (($) 14 T CONST)) (-3042 (((-83) $ $) 24 T ELT)) (-3820 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3822 (($ $ $) 27 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 53 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-480)) 38 T ELT))) -(((-527 |#1|) (-13 (-956) (-80 |#1| |#1|) (-10 -8 (-15 -3800 ((-1060 |#1|) $)) (-15 -3801 ($ (-1060 |#1|))) (-15 -2878 ((-83) $)) (-15 -3755 ((-689) $)) (-15 -3755 ((-689) $ (-689))) (-15 * ($ $ (-480))) (IF (|has| |#1| (-491)) (-6 (-491)) |%noBranch|))) (-956)) (T -527)) -((-3800 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-527 *3)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) (-3755 (*1 *2 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-527 *3)) (-4 *3 (-956))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2178 (($) 8 T CONST)) (-2179 (($) 7 T CONST)) (-2176 (($ $ (-580 $)) 16 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2180 (($) 6 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-1086)) 15 T ELT) (((-1086) $) 10 T ELT)) (-2177 (($) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-528) (-13 (-1007) (-425 (-1086)) (-10 -8 (-15 -2180 ($) -3935) (-15 -2179 ($) -3935) (-15 -2178 ($) -3935) (-15 -2177 ($) -3935) (-15 -2176 ($ $ (-580 $)))))) (T -528)) -((-2180 (*1 *1) (-5 *1 (-528))) (-2179 (*1 *1) (-5 *1 (-528))) (-2178 (*1 *1) (-5 *1 (-528))) (-2177 (*1 *1) (-5 *1 (-528))) (-2176 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-528))) (-5 *1 (-528))))) -((-3941 (((-532 |#2|) (-1 |#2| |#1|) (-532 |#1|)) 15 T ELT))) -(((-529 |#1| |#2|) (-13 (-1120) (-10 -7 (-15 -3941 ((-532 |#2|) (-1 |#2| |#1|) (-532 |#1|))))) (-1120) (-1120)) (T -529)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-532 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-532 *6)) (-5 *1 (-529 *5 *6))))) -((-3941 (((-1060 |#3|) (-1 |#3| |#1| |#2|) (-532 |#1|) (-1060 |#2|)) 20 T ELT) (((-1060 |#3|) (-1 |#3| |#1| |#2|) (-1060 |#1|) (-532 |#2|)) 19 T ELT) (((-532 |#3|) (-1 |#3| |#1| |#2|) (-532 |#1|) (-532 |#2|)) 18 T ELT))) -(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-532 |#3|) (-1 |#3| |#1| |#2|) (-532 |#1|) (-532 |#2|))) (-15 -3941 ((-1060 |#3|) (-1 |#3| |#1| |#2|) (-1060 |#1|) (-532 |#2|))) (-15 -3941 ((-1060 |#3|) (-1 |#3| |#1| |#2|) (-532 |#1|) (-1060 |#2|)))) (-1120) (-1120) (-1120)) (T -530)) -((-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-532 *6)) (-5 *5 (-1060 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) (-5 *1 (-530 *6 *7 *8)))) (-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1060 *6)) (-5 *5 (-532 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) (-5 *1 (-530 *6 *7 *8)))) (-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-532 *6)) (-5 *5 (-532 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-532 *8)) (-5 *1 (-530 *6 *7 *8))))) -((-2185 ((|#3| |#3| (-580 (-547 |#3|)) (-580 (-1081))) 57 T ELT)) (-2184 (((-140 |#2|) |#3|) 122 T ELT)) (-2181 ((|#3| (-140 |#2|)) 46 T ELT)) (-2182 ((|#2| |#3|) 21 T ELT)) (-2183 ((|#3| |#2|) 35 T ELT))) -(((-531 |#1| |#2| |#3|) (-10 -7 (-15 -2181 (|#3| (-140 |#2|))) (-15 -2182 (|#2| |#3|)) (-15 -2183 (|#3| |#2|)) (-15 -2184 ((-140 |#2|) |#3|)) (-15 -2185 (|#3| |#3| (-580 (-547 |#3|)) (-580 (-1081))))) (-491) (-13 (-359 |#1|) (-910) (-1106)) (-13 (-359 (-140 |#1|)) (-910) (-1106))) (T -531)) -((-2185 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-580 (-547 *2))) (-5 *4 (-580 (-1081))) (-4 *2 (-13 (-359 (-140 *5)) (-910) (-1106))) (-4 *5 (-491)) (-5 *1 (-531 *5 *6 *2)) (-4 *6 (-13 (-359 *5) (-910) (-1106))))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-140 *5)) (-5 *1 (-531 *4 *5 *3)) (-4 *5 (-13 (-359 *4) (-910) (-1106))) (-4 *3 (-13 (-359 (-140 *4)) (-910) (-1106))))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *2 (-13 (-359 (-140 *4)) (-910) (-1106))) (-5 *1 (-531 *4 *3 *2)) (-4 *3 (-13 (-359 *4) (-910) (-1106))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *2 (-13 (-359 *4) (-910) (-1106))) (-5 *1 (-531 *4 *2 *3)) (-4 *3 (-13 (-359 (-140 *4)) (-910) (-1106))))) (-2181 (*1 *2 *3) (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-359 *4) (-910) (-1106))) (-4 *4 (-491)) (-4 *2 (-13 (-359 (-140 *4)) (-910) (-1106))) (-5 *1 (-531 *4 *5 *2))))) -((-3693 (($ (-1 (-83) |#1|) $) 19 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3440 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3439 (($ (-1 (-83) |#1|) $) 15 T ELT)) (-3438 (($ (-1 (-83) |#1|) $) 17 T ELT)) (-3513 (((-1060 |#1|) $) 20 T ELT)) (-3929 (((-767) $) 25 T ELT))) -(((-532 |#1|) (-13 (-549 (-767)) (-10 -8 (-15 -3941 ($ (-1 |#1| |#1|) $)) (-15 -3439 ($ (-1 (-83) |#1|) $)) (-15 -3438 ($ (-1 (-83) |#1|) $)) (-15 -3693 ($ (-1 (-83) |#1|) $)) (-15 -3440 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ((-1060 |#1|) $)))) (-1120)) (T -532)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) (-3693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) (-3440 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-532 *3)) (-4 *3 (-1120))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689)) NIL (|has| |#1| (-23)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3818 (((-627 |#1|) $ $) NIL (|has| |#1| (-956)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3819 ((|#1| $ $) NIL (|has| |#1| (-956)) ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3817 (($ $ $) NIL (|has| |#1| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3820 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-480) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-660)) ELT) (($ $ |#1|) NIL (|has| |#1| (-660)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-533 |#1| |#2|) (-1169 |#1|) (-1120) (-480)) (T -533)) -NIL -((-2186 (((-1176) $ |#2| |#2|) 35 T ELT)) (-2188 ((|#2| $) 23 T ELT)) (-2189 ((|#2| $) 21 T ELT)) (-1938 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3941 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3784 ((|#3| $) 26 T ELT)) (-2187 (($ $ |#3|) 33 T ELT)) (-2190 (((-83) |#3| $) 17 T ELT)) (-2193 (((-580 |#3|) $) 15 T ELT)) (-3783 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -2186 ((-1176) |#1| |#2| |#2|)) (-15 -2187 (|#1| |#1| |#3|)) (-15 -3784 (|#3| |#1|)) (-15 -2188 (|#2| |#1|)) (-15 -2189 (|#2| |#1|)) (-15 -2190 ((-83) |#3| |#1|)) (-15 -2193 ((-580 |#3|) |#1|)) (-15 -3783 (|#3| |#1| |#2|)) (-15 -3783 (|#3| |#1| |#2| |#3|)) (-15 -1938 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3941 (|#1| (-1 |#3| |#3|) |#1|))) (-535 |#2| |#3|) (-1007) (-1120)) (T -534)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-2186 (((-1176) $ |#1| |#1|) 44 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-1565 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) 55 T ELT)) (-2875 (((-580 |#2|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) 47 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#2|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 ((|#1| $) 48 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#2| (-1007)) ELT)) (-2191 (((-580 |#1|) $) 50 T ELT)) (-2192 (((-83) |#1| $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#2| (-1007)) ELT)) (-3784 ((|#2| $) 46 (|has| |#1| (-751)) ELT)) (-2187 (($ $ |#2|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) 26 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) 25 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 23 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) 28 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#2| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-535 |#1| |#2|) (-111) (-1007) (-1120)) (T -535)) -((-2193 (*1 *2 *1) (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-580 *4)))) (-2192 (*1 *2 *3 *1) (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-580 *3)))) (-2190 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-535 *4 *3)) (-4 *4 (-1007)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-535 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1007)) (-4 *2 (-751)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-535 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1007)) (-4 *2 (-751)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-535 *3 *2)) (-4 *3 (-1007)) (-4 *3 (-751)) (-4 *2 (-1120)))) (-2187 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-535 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) (-2186 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-1176))))) -(-13 (-424 |t#2|) (-241 |t#1| |t#2|) (-10 -8 (-15 -2193 ((-580 |t#2|) $)) (-15 -2192 ((-83) |t#1| $)) (-15 -2191 ((-580 |t#1|) $)) (IF (|has| |t#2| (-1007)) (IF (|has| $ (-6 -3978)) (-15 -2190 ((-83) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-751)) (PROGN (-15 -2189 (|t#1| $)) (-15 -2188 (|t#1| $)) (-15 -3784 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3979)) (PROGN (-15 -2187 ($ $ |t#2|)) (-15 -2186 ((-1176) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1007)) (|has| |#2| (-72))) ((-549 (-767)) OR (|has| |#2| (-1007)) (|has| |#2| (-549 (-767)))) ((-239 |#1| |#2|) . T) ((-241 |#1| |#2|) . T) ((-257 |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-424 |#2|) . T) ((-449 |#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-13) . T) ((-1007) |has| |#2| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT) (((-1121) $) 15 T ELT) (($ (-580 (-1121))) 14 T ELT)) (-2194 (((-580 (-1121)) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-536) (-13 (-989) (-549 (-1121)) (-10 -8 (-15 -3929 ($ (-580 (-1121)))) (-15 -2194 ((-580 (-1121)) $))))) (T -536)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-536)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-536))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1761 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-3208 (((-1170 (-627 |#1|))) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 (-627 |#1|)) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1718 (((-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3707 (($) NIL T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1692 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1777 (((-627 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1716 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1775 (((-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2392 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1889 (((-1076 (-852 |#1|))) NIL (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-309))) ELT)) (-2395 (($ $ (-825)) NIL T ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1694 (((-1076 |#1|) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1779 ((|#1|) NIL (|has| |#2| (-356 |#1|)) ELT) ((|#1| (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1712 (((-1076 |#1|) $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1781 (($ (-1170 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (($ (-1170 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3450 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-3094 (((-825)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1703 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-1699 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1697 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1693 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1778 (((-627 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1717 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1776 (((-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2393 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1893 (((-1076 (-852 |#1|))) NIL (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-309))) ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1695 (((-1076 |#1|) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1780 ((|#1|) NIL (|has| |#2| (-356 |#1|)) ELT) ((|#1| (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1713 (((-1076 |#1|) $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1707 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1698 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1705 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3783 ((|#1| $ (-480)) NIL (|has| |#2| (-356 |#1|)) ELT)) (-3209 (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT) (((-1170 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3955 (($ (-1170 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT)) (-1881 (((-580 (-852 |#1|))) NIL (|has| |#2| (-356 |#1|)) ELT) (((-580 (-852 |#1|)) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2421 (($ $ $) NIL T ELT)) (-1711 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3929 (((-767) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL (|has| |#2| (-356 |#1|)) ELT)) (-1696 (((-580 (-1170 |#1|))) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2531 (($ (-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1708 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1704 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2646 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) 24 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-537 |#1| |#2|) (-13 (-678 |#1|) (-549 |#2|) (-10 -8 (-15 -3929 ($ |#2|)) (IF (|has| |#2| (-356 |#1|)) (-6 (-356 |#1|)) |%noBranch|) (IF (|has| |#2| (-313 |#1|)) (-6 (-313 |#1|)) |%noBranch|))) (-144) (-678 |#1|)) (T -537)) -((-3929 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-537 *3 *2)) (-4 *2 (-678 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-99)) 6 T ELT) (((-99) $) 7 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-538) (-13 (-1007) (-425 (-99)))) (T -538)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2196 (($) 10 T CONST)) (-2218 (($) 8 T CONST)) (-2195 (($) 11 T CONST)) (-2214 (($) 9 T CONST)) (-2211 (($) 12 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-539) (-13 (-1007) (-601) (-10 -8 (-15 -2218 ($) -3935) (-15 -2214 ($) -3935) (-15 -2196 ($) -3935) (-15 -2195 ($) -3935) (-15 -2211 ($) -3935)))) (T -539)) -((-2218 (*1 *1) (-5 *1 (-539))) (-2214 (*1 *1) (-5 *1 (-539))) (-2196 (*1 *1) (-5 *1 (-539))) (-2195 (*1 *1) (-5 *1 (-539))) (-2211 (*1 *1) (-5 *1 (-539)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2207 (($) 11 T CONST)) (-2201 (($) 17 T CONST)) (-2197 (($) 21 T CONST)) (-2199 (($) 19 T CONST)) (-2204 (($) 14 T CONST)) (-2198 (($) 20 T CONST)) (-2206 (($) 12 T CONST)) (-2205 (($) 13 T CONST)) (-2200 (($) 18 T CONST)) (-2203 (($) 15 T CONST)) (-2202 (($) 16 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (((-99) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-540) (-13 (-1007) (-549 (-99)) (-10 -8 (-15 -2207 ($) -3935) (-15 -2206 ($) -3935) (-15 -2205 ($) -3935) (-15 -2204 ($) -3935) (-15 -2203 ($) -3935) (-15 -2202 ($) -3935) (-15 -2201 ($) -3935) (-15 -2200 ($) -3935) (-15 -2199 ($) -3935) (-15 -2198 ($) -3935) (-15 -2197 ($) -3935)))) (T -540)) -((-2207 (*1 *1) (-5 *1 (-540))) (-2206 (*1 *1) (-5 *1 (-540))) (-2205 (*1 *1) (-5 *1 (-540))) (-2204 (*1 *1) (-5 *1 (-540))) (-2203 (*1 *1) (-5 *1 (-540))) (-2202 (*1 *1) (-5 *1 (-540))) (-2201 (*1 *1) (-5 *1 (-540))) (-2200 (*1 *1) (-5 *1 (-540))) (-2199 (*1 *1) (-5 *1 (-540))) (-2198 (*1 *1) (-5 *1 (-540))) (-2197 (*1 *1) (-5 *1 (-540)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2209 (($) 13 T CONST)) (-2208 (($) 14 T CONST)) (-2215 (($) 11 T CONST)) (-2218 (($) 8 T CONST)) (-2216 (($) 10 T CONST)) (-2217 (($) 9 T CONST)) (-2214 (($) 12 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-541) (-13 (-1007) (-601) (-10 -8 (-15 -2218 ($) -3935) (-15 -2217 ($) -3935) (-15 -2216 ($) -3935) (-15 -2215 ($) -3935) (-15 -2214 ($) -3935) (-15 -2209 ($) -3935) (-15 -2208 ($) -3935)))) (T -541)) -((-2218 (*1 *1) (-5 *1 (-541))) (-2217 (*1 *1) (-5 *1 (-541))) (-2216 (*1 *1) (-5 *1 (-541))) (-2215 (*1 *1) (-5 *1 (-541))) (-2214 (*1 *1) (-5 *1 (-541))) (-2209 (*1 *1) (-5 *1 (-541))) (-2208 (*1 *1) (-5 *1 (-541)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2213 (($) 13 T CONST)) (-2210 (($) 16 T CONST)) (-2215 (($) 11 T CONST)) (-2218 (($) 8 T CONST)) (-2216 (($) 10 T CONST)) (-2217 (($) 9 T CONST)) (-2212 (($) 14 T CONST)) (-2214 (($) 12 T CONST)) (-2211 (($) 15 T CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-542) (-13 (-1007) (-601) (-10 -8 (-15 -2218 ($) -3935) (-15 -2217 ($) -3935) (-15 -2216 ($) -3935) (-15 -2215 ($) -3935) (-15 -2214 ($) -3935) (-15 -2213 ($) -3935) (-15 -2212 ($) -3935) (-15 -2211 ($) -3935) (-15 -2210 ($) -3935)))) (T -542)) -((-2218 (*1 *1) (-5 *1 (-542))) (-2217 (*1 *1) (-5 *1 (-542))) (-2216 (*1 *1) (-5 *1 (-542))) (-2215 (*1 *1) (-5 *1 (-542))) (-2214 (*1 *1) (-5 *1 (-542))) (-2213 (*1 *1) (-5 *1 (-542))) (-2212 (*1 *1) (-5 *1 (-542))) (-2211 (*1 *1) (-5 *1 (-542))) (-2210 (*1 *1) (-5 *1 (-542)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 19 T ELT) (($ (-538)) 12 T ELT) (((-538) $) 11 T ELT) (($ (-99)) NIL T ELT) (((-99) $) 14 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-543) (-13 (-1007) (-425 (-538)) (-425 (-99)))) (T -543)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-1686 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) 40 T ELT)) (-3582 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2186 (((-1176) $ (-1064) (-1064)) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ (-1064) |#1|) 50 T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#1| #1="failed") (-1064) $) 53 T ELT)) (-3707 (($) NIL T CONST)) (-1690 (($ $ (-1064)) 25 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-3388 (((-3 |#1| #1#) (-1064) $) 54 T ELT) (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3389 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-3825 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-1687 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1565 ((|#1| $ (-1064) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-1064)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2259 (($ $) 55 T ELT)) (-1691 (($ (-333)) 23 T ELT) (($ (-333) (-1064)) 22 T ELT)) (-3525 (((-333) $) 41 T ELT)) (-2188 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (((-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-2189 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2220 (((-580 (-1064)) $) 46 T ELT)) (-2221 (((-83) (-1064) $) NIL T ELT)) (-1688 (((-1064) $) 42 T ELT)) (-1264 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2191 (((-580 (-1064)) $) NIL T ELT)) (-2192 (((-83) (-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 ((|#1| $) NIL (|has| (-1064) (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-580 (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 44 T ELT)) (-3783 ((|#1| $ (-1064) |#1|) NIL T ELT) ((|#1| $ (-1064)) 49 T ELT)) (-1455 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (((-689) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (((-689) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-3929 (((-767) $) 21 T ELT)) (-1689 (($ $) 26 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1266 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 20 T ELT)) (-3940 (((-689) $) 48 (|has| $ (-6 -3978)) ELT))) -(((-544 |#1|) (-13 (-311 (-333) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) (-1098 (-1064) |#1|) (-10 -8 (-6 -3978) (-15 -2259 ($ $)))) (-1007)) (T -544)) -((-2259 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-1007))))) -((-3230 (((-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2220 (((-580 |#2|) $) 20 T ELT)) (-2221 (((-83) |#2| $) 12 T ELT))) -(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-580 |#2|) |#1|)) (-15 -2221 ((-83) |#2| |#1|)) (-15 -3230 ((-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|))) (-546 |#2| |#3|) (-1007) (-1007)) (T -545)) -NIL -((-2554 (((-83) $ $) 19 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 62 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3978)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-2220 (((-580 |#1|) $) 67 T ELT)) (-2221 (((-83) |#1| $) 68 T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3929 (((-767) $) 17 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-546 |#1| |#2|) (-111) (-1007) (-1007)) (T -546)) -((-2221 (*1 *2 *3 *1) (-12 (-4 *1 (-546 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-83)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-546 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-580 *3)))) (-3388 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-546 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) (-2219 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-546 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) -(-13 (-181 (-2 (|:| -3843 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2221 ((-83) |t#1| $)) (-15 -2220 ((-580 |t#1|) $)) (-15 -3388 ((-3 |t#2| "failed") |t#1| $)) (-15 -2219 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ((-549 (-767)) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767)))) ((-122 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-550 (-469)) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ((-181 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-191 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-424 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-449 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-13) . T) ((-1007) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2222 (((-3 (-1081) "failed") $) 46 T ELT)) (-1302 (((-1176) $ (-689)) 22 T ELT)) (-3402 (((-689) $) 20 T ELT)) (-3578 (((-84) $) 9 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2223 (($ (-84) (-580 |#1|) (-689)) 32 T ELT) (($ (-1081)) 33 T ELT)) (-2619 (((-83) $ (-84)) 15 T ELT) (((-83) $ (-1081)) 13 T ELT)) (-2589 (((-689) $) 17 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3955 (((-795 (-480)) $) 99 (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) 106 (|has| |#1| (-550 (-795 (-325)))) ELT) (((-469) $) 92 (|has| |#1| (-550 (-469))) ELT)) (-3929 (((-767) $) 74 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2224 (((-580 |#1|) $) 19 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 51 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 53 T ELT))) -(((-547 |#1|) (-13 (-103) (-751) (-789 |#1|) (-10 -8 (-15 -3578 ((-84) $)) (-15 -2224 ((-580 |#1|) $)) (-15 -2589 ((-689) $)) (-15 -2223 ($ (-84) (-580 |#1|) (-689))) (-15 -2223 ($ (-1081))) (-15 -2222 ((-3 (-1081) "failed") $)) (-15 -2619 ((-83) $ (-84))) (-15 -2619 ((-83) $ (-1081))) (IF (|has| |#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|))) (-1007)) (T -547)) -((-3578 (*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) (-2223 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-84)) (-5 *3 (-580 *5)) (-5 *4 (-689)) (-4 *5 (-1007)) (-5 *1 (-547 *5)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) (-2222 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) (-2619 (*1 *2 *1 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-547 *4)) (-4 *4 (-1007)))) (-2619 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-83)) (-5 *1 (-547 *4)) (-4 *4 (-1007))))) -((-2225 (((-547 |#2|) |#1|) 17 T ELT)) (-2226 (((-3 |#1| "failed") (-547 |#2|)) 21 T ELT))) -(((-548 |#1| |#2|) (-10 -7 (-15 -2225 ((-547 |#2|) |#1|)) (-15 -2226 ((-3 |#1| "failed") (-547 |#2|)))) (-1007) (-1007)) (T -548)) -((-2226 (*1 *2 *3) (|partial| -12 (-5 *3 (-547 *4)) (-4 *4 (-1007)) (-4 *2 (-1007)) (-5 *1 (-548 *2 *4)))) (-2225 (*1 *2 *3) (-12 (-5 *2 (-547 *4)) (-5 *1 (-548 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -((-3929 ((|#1| $) 6 T ELT))) -(((-549 |#1|) (-111) (-1120)) (T -549)) -((-3929 (*1 *2 *1) (-12 (-4 *1 (-549 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -3929 (|t#1| $)))) -((-3955 ((|#1| $) 6 T ELT))) -(((-550 |#1|) (-111) (-1120)) (T -550)) -((-3955 (*1 *2 *1) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -3955 (|t#1| $)))) -((-2227 (((-3 (-1076 (-345 |#2|)) #1="failed") (-345 |#2|) (-345 |#2|) (-345 |#2|) (-1 (-343 |#2|) |#2|)) 15 T ELT) (((-3 (-1076 (-345 |#2|)) #1#) (-345 |#2|) (-345 |#2|) (-345 |#2|)) 16 T ELT))) -(((-551 |#1| |#2|) (-10 -7 (-15 -2227 ((-3 (-1076 (-345 |#2|)) #1="failed") (-345 |#2|) (-345 |#2|) (-345 |#2|))) (-15 -2227 ((-3 (-1076 (-345 |#2|)) #1#) (-345 |#2|) (-345 |#2|) (-345 |#2|) (-1 (-343 |#2|) |#2|)))) (-13 (-118) (-27) (-945 (-480)) (-945 (-345 (-480)))) (-1146 |#1|)) (T -551)) -((-2227 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-118) (-27) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-1076 (-345 *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-345 *6)))) (-2227 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-118) (-27) (-945 (-480)) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-1076 (-345 *5))) (-5 *1 (-551 *4 *5)) (-5 *3 (-345 *5))))) -((-3929 (($ |#1|) 6 T ELT))) -(((-552 |#1|) (-111) (-1120)) (T -552)) -((-3929 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -3929 ($ |t#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-2228 (($) 11 T CONST)) (-2841 (($) 13 T CONST)) (-3121 (((-689)) 36 T ELT)) (-2980 (($) NIL T ELT)) (-2547 (($ $ $) 25 T ELT)) (-2546 (($ $) 23 T ELT)) (-1998 (((-825) $) 43 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 42 T ELT)) (-2839 (($ $ $) 26 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2840 (($) 9 T CONST)) (-2838 (($ $ $) 27 T ELT)) (-3929 (((-767) $) 34 T ELT)) (-3549 (((-83) $ (|[\|\|]| -2840)) 20 T ELT) (((-83) $ (|[\|\|]| -2228)) 22 T ELT) (((-83) $ (|[\|\|]| -2841)) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2548 (($ $ $) 24 T ELT)) (-2299 (($ $ $) NIL T ELT)) (-3042 (((-83) $ $) 16 T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-553) (-13 (-875) (-315) (-10 -8 (-15 -2228 ($) -3935) (-15 -3549 ((-83) $ (|[\|\|]| -2840))) (-15 -3549 ((-83) $ (|[\|\|]| -2228))) (-15 -3549 ((-83) $ (|[\|\|]| -2841)))))) (T -553)) -((-2228 (*1 *1) (-5 *1 (-553))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2840)) (-5 *2 (-83)) (-5 *1 (-553)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2228)) (-5 *2 (-83)) (-5 *1 (-553)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2841)) (-5 *2 (-83)) (-5 *1 (-553))))) -((-3955 (($ |#1|) 6 T ELT))) -(((-554 |#1|) (-111) (-1120)) (T -554)) -((-3955 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -3955 ($ |t#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| |#1| (-750)) ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2984 ((|#1| $) 13 T ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2983 ((|#3| $) 15 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3111 (((-689)) 20 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| |#1| (-750)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) 12 T CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3932 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-555 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-750)) (-6 (-750)) |%noBranch|) (-15 -3932 ($ $ |#3|)) (-15 -3932 ($ |#1| |#3|)) (-15 -2984 (|#1| $)) (-15 -2983 (|#3| $)))) (-38 |#2|) (-144) (|SubsetCategory| (-660) |#2|)) (T -555)) -((-3932 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-555 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-660) *4)))) (-3932 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-555 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-660) *4)))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-555 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-660) *3)))) (-2983 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-660) *4)) (-5 *1 (-555 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#2|)) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-557 |#2|) (-956)) (T -556)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 47 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 48 T ELT))) -(((-557 |#1|) (-111) (-956)) (T -557)) -((-3929 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-956))))) -(-13 (-956) (-587 |t#1|) (-10 -8 (-15 -3929 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-660) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2229 ((|#2| |#2| (-1081) (-1081)) 16 T ELT))) -(((-558 |#1| |#2|) (-10 -7 (-15 -2229 (|#2| |#2| (-1081) (-1081)))) (-13 (-255) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-866) (-29 |#1|))) (T -558)) -((-2229 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-558 *4 *2)) (-4 *2 (-13 (-1106) (-866) (-29 *4)))))) -((-2554 (((-83) $ $) 64 T ELT)) (-3173 (((-83) $) 58 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-2230 ((|#1| $) 55 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3734 (((-2 (|:| -1751 $) (|:| -1750 (-345 |#2|))) (-345 |#2|)) 111 (|has| |#1| (-309)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) 27 T ELT)) (-3450 (((-3 $ #1#) $) 88 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3755 (((-480) $) 22 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) 40 T ELT)) (-2879 (($ |#1| (-480)) 24 T ELT)) (-3159 ((|#1| $) 57 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) 101 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ #1#) $ $) 93 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-1596 (((-689) $) 115 (|has| |#1| (-309)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 114 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3931 (((-480) $) 38 T ELT)) (-3955 (((-345 |#2|) $) 47 T ELT)) (-3929 (((-767) $) 69 T ELT) (($ (-480)) 35 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3660 ((|#1| $ (-480)) 72 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 32 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 9 T CONST)) (-2652 (($) 14 T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 21 T ELT)) (-3820 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 90 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-559 |#1| |#2|) (-13 (-182 |#2|) (-491) (-550 (-345 |#2|)) (-350 |#1|) (-945 |#2|) (-10 -8 (-15 -3920 ((-83) $)) (-15 -3931 ((-480) $)) (-15 -3755 ((-480) $)) (-15 -3942 ($ $)) (-15 -3159 (|#1| $)) (-15 -2230 (|#1| $)) (-15 -3660 (|#1| $ (-480))) (-15 -2879 ($ |#1| (-480))) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-6 (-255)) (-15 -3734 ((-2 (|:| -1751 $) (|:| -1750 (-345 |#2|))) (-345 |#2|)))) |%noBranch|))) (-491) (-1146 |#1|)) (T -559)) -((-3920 (*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-83)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) (-3931 (*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-480)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) (-3755 (*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-480)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) (-3942 (*1 *1 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2)))) (-2230 (*1 *2 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *2 (-491)) (-5 *1 (-559 *2 *4)) (-4 *4 (-1146 *2)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-4 *2 (-491)) (-5 *1 (-559 *2 *4)) (-4 *4 (-1146 *2)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *4 (-491)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| -1751 (-559 *4 *5)) (|:| -1750 (-345 *5)))) (-5 *1 (-559 *4 *5)) (-5 *3 (-345 *5))))) -((-3665 (((-580 |#6|) (-580 |#4|) (-83)) 54 T ELT)) (-2231 ((|#6| |#6|) 48 T ELT))) -(((-560 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2231 (|#6| |#6|)) (-15 -3665 ((-580 |#6|) (-580 |#4|) (-83)))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|) (-1014 |#1| |#2| |#3| |#4|)) (T -560)) -((-3665 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 *10)) (-5 *1 (-560 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *10 (-1014 *5 *6 *7 *8)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *1 (-560 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *2 (-1014 *3 *4 *5 *6))))) -((-2232 (((-83) |#3| (-689) (-580 |#3|)) 30 T ELT)) (-2233 (((-3 (-2 (|:| |polfac| (-580 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-580 (-1076 |#3|)))) "failed") |#3| (-580 (-1076 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1768 (-580 (-2 (|:| |irr| |#4|) (|:| -2383 (-480)))))) (-580 |#3|) (-580 |#1|) (-580 |#3|)) 68 T ELT))) -(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2232 ((-83) |#3| (-689) (-580 |#3|))) (-15 -2233 ((-3 (-2 (|:| |polfac| (-580 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-580 (-1076 |#3|)))) "failed") |#3| (-580 (-1076 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1768 (-580 (-2 (|:| |irr| |#4|) (|:| -2383 (-480)))))) (-580 |#3|) (-580 |#1|) (-580 |#3|)))) (-751) (-712) (-255) (-856 |#3| |#2| |#1|)) (T -561)) -((-2233 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1768 (-580 (-2 (|:| |irr| *10) (|:| -2383 (-480))))))) (-5 *6 (-580 *3)) (-5 *7 (-580 *8)) (-4 *8 (-751)) (-4 *3 (-255)) (-4 *10 (-856 *3 *9 *8)) (-4 *9 (-712)) (-5 *2 (-2 (|:| |polfac| (-580 *10)) (|:| |correct| *3) (|:| |corrfact| (-580 (-1076 *3))))) (-5 *1 (-561 *8 *9 *3 *10)) (-5 *4 (-580 (-1076 *3))))) (-2232 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-689)) (-5 *5 (-580 *3)) (-4 *3 (-255)) (-4 *6 (-751)) (-4 *7 (-712)) (-5 *2 (-83)) (-5 *1 (-561 *6 *7 *3 *8)) (-4 *8 (-856 *3 *7 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 (((-1040) $) 12 T ELT)) (-3512 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-562) (-13 (-989) (-10 -8 (-15 -3512 ((-1040) $)) (-15 -3511 ((-1040) $))))) (T -562)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-562)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-562))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3917 (((-580 |#1|) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3919 (($ $) 77 T ELT)) (-3925 (((-603 |#1| |#2|) $) 60 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 81 T ELT)) (-2234 (((-580 (-246 |#2|)) $ $) 42 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3926 (($ (-603 |#1| |#2|)) 56 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) 66 T ELT) (((-1186 |#1| |#2|) $) NIL T ELT) (((-1191 |#1| |#2|) $) 74 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 61 T CONST)) (-2235 (((-580 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2236 (((-580 (-603 |#1| |#2|)) (-580 |#1|)) 73 T ELT)) (-2651 (((-580 (-2 (|:| |k| (-798 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3042 (((-83) $ $) 62 T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-563 |#1| |#2| |#3|) (-13 (-408) (-10 -8 (-15 -3926 ($ (-603 |#1| |#2|))) (-15 -3925 ((-603 |#1| |#2|) $)) (-15 -2651 ((-580 (-2 (|:| |k| (-798 |#1|)) (|:| |c| |#2|))) $)) (-15 -3929 ((-1186 |#1| |#2|) $)) (-15 -3929 ((-1191 |#1| |#2|) $)) (-15 -3919 ($ $)) (-15 -3917 ((-580 |#1|) $)) (-15 -2236 ((-580 (-603 |#1| |#2|)) (-580 |#1|))) (-15 -2235 ((-580 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $)) (-15 -2234 ((-580 (-246 |#2|)) $ $)))) (-751) (-13 (-144) (-651 (-345 (-480)))) (-825)) (T -563)) -((-3926 (*1 *1 *2) (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-5 *1 (-563 *3 *4 *5)) (-14 *5 (-825)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-603 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |k| (-798 *3)) (|:| |c| *4)))) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-563 *2 *3 *4)) (-4 *2 (-751)) (-4 *3 (-13 (-144) (-651 (-345 (-480))))) (-14 *4 (-825)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-751)) (-5 *2 (-580 (-603 *4 *5))) (-5 *1 (-563 *4 *5 *6)) (-4 *5 (-13 (-144) (-651 (-345 (-480))))) (-14 *6 (-825)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |k| (-611 *3)) (|:| |c| *4)))) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) (-2234 (*1 *2 *1 *1) (-12 (-5 *2 (-580 (-246 *4))) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825))))) -((-3665 (((-580 (-1051 |#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|)))) (-580 (-698 |#1| (-768 |#2|))) (-83)) 103 T ELT) (((-580 (-953 |#1| |#2|)) (-580 (-698 |#1| (-768 |#2|))) (-83)) 77 T ELT)) (-2237 (((-83) (-580 (-698 |#1| (-768 |#2|)))) 26 T ELT)) (-2241 (((-580 (-1051 |#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|)))) (-580 (-698 |#1| (-768 |#2|))) (-83)) 102 T ELT)) (-2240 (((-580 (-953 |#1| |#2|)) (-580 (-698 |#1| (-768 |#2|))) (-83)) 76 T ELT)) (-2239 (((-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|)))) 30 T ELT)) (-2238 (((-3 (-580 (-698 |#1| (-768 |#2|))) "failed") (-580 (-698 |#1| (-768 |#2|)))) 29 T ELT))) -(((-564 |#1| |#2|) (-10 -7 (-15 -2237 ((-83) (-580 (-698 |#1| (-768 |#2|))))) (-15 -2238 ((-3 (-580 (-698 |#1| (-768 |#2|))) "failed") (-580 (-698 |#1| (-768 |#2|))))) (-15 -2239 ((-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|))))) (-15 -2240 ((-580 (-953 |#1| |#2|)) (-580 (-698 |#1| (-768 |#2|))) (-83))) (-15 -2241 ((-580 (-1051 |#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|)))) (-580 (-698 |#1| (-768 |#2|))) (-83))) (-15 -3665 ((-580 (-953 |#1| |#2|)) (-580 (-698 |#1| (-768 |#2|))) (-83))) (-15 -3665 ((-580 (-1051 |#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|)))) (-580 (-698 |#1| (-768 |#2|))) (-83)))) (-387) (-580 (-1081))) (T -564)) -((-3665 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-1051 *5 (-465 (-768 *6)) (-768 *6) (-698 *5 (-768 *6))))) (-5 *1 (-564 *5 *6)))) (-3665 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-564 *5 *6)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-1051 *5 (-465 (-768 *6)) (-768 *6) (-698 *5 (-768 *6))))) (-5 *1 (-564 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-564 *5 *6)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-580 (-698 *3 (-768 *4)))) (-4 *3 (-387)) (-14 *4 (-580 (-1081))) (-5 *1 (-564 *3 *4)))) (-2238 (*1 *2 *2) (|partial| -12 (-5 *2 (-580 (-698 *3 (-768 *4)))) (-4 *3 (-387)) (-14 *4 (-580 (-1081))) (-5 *1 (-564 *3 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-580 (-698 *4 (-768 *5)))) (-4 *4 (-387)) (-14 *5 (-580 (-1081))) (-5 *2 (-83)) (-5 *1 (-564 *4 *5))))) -((-3578 (((-84) (-84)) 88 T ELT)) (-2245 ((|#2| |#2|) 28 T ELT)) (-2818 ((|#2| |#2| (-998 |#2|)) 84 T ELT) ((|#2| |#2| (-1081)) 50 T ELT)) (-2243 ((|#2| |#2|) 27 T ELT)) (-2244 ((|#2| |#2|) 29 T ELT)) (-2242 (((-83) (-84)) 33 T ELT)) (-2247 ((|#2| |#2|) 24 T ELT)) (-2248 ((|#2| |#2|) 26 T ELT)) (-2246 ((|#2| |#2|) 25 T ELT))) -(((-565 |#1| |#2|) (-10 -7 (-15 -2242 ((-83) (-84))) (-15 -3578 ((-84) (-84))) (-15 -2248 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2818 (|#2| |#2| (-1081))) (-15 -2818 (|#2| |#2| (-998 |#2|)))) (-491) (-13 (-359 |#1|) (-910) (-1106))) (T -565)) -((-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-359 *4) (-910) (-1106))) (-4 *4 (-491)) (-5 *1 (-565 *4 *2)))) (-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-359 *4) (-910) (-1106))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) (-4 *2 (-13 (-359 *3) (-910) (-1106))))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-565 *3 *4)) (-4 *4 (-13 (-359 *3) (-910) (-1106))))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-565 *4 *5)) (-4 *5 (-13 (-359 *4) (-910) (-1106)))))) -((-3475 (($ $) 38 T ELT)) (-3622 (($ $) 21 T ELT)) (-3473 (($ $) 37 T ELT)) (-3621 (($ $) 22 T ELT)) (-3477 (($ $) 36 T ELT)) (-3620 (($ $) 23 T ELT)) (-3610 (($) 48 T ELT)) (-3925 (($ $) 45 T ELT)) (-2245 (($ $) 17 T ELT)) (-2818 (($ $ (-998 $)) 7 T ELT) (($ $ (-1081)) 6 T ELT)) (-3926 (($ $) 46 T ELT)) (-2243 (($ $) 15 T ELT)) (-2244 (($ $) 16 T ELT)) (-3478 (($ $) 35 T ELT)) (-3619 (($ $) 24 T ELT)) (-3476 (($ $) 34 T ELT)) (-3618 (($ $) 25 T ELT)) (-3474 (($ $) 33 T ELT)) (-3617 (($ $) 26 T ELT)) (-3481 (($ $) 44 T ELT)) (-3469 (($ $) 32 T ELT)) (-3479 (($ $) 43 T ELT)) (-3467 (($ $) 31 T ELT)) (-3483 (($ $) 42 T ELT)) (-3471 (($ $) 30 T ELT)) (-3484 (($ $) 41 T ELT)) (-3472 (($ $) 29 T ELT)) (-3482 (($ $) 40 T ELT)) (-3470 (($ $) 28 T ELT)) (-3480 (($ $) 39 T ELT)) (-3468 (($ $) 27 T ELT)) (-2247 (($ $) 19 T ELT)) (-2248 (($ $) 20 T ELT)) (-2246 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-566) (-111)) (T -566)) -((-2248 (*1 *1 *1) (-4 *1 (-566))) (-2247 (*1 *1 *1) (-4 *1 (-566))) (-2246 (*1 *1 *1) (-4 *1 (-566))) (-2245 (*1 *1 *1) (-4 *1 (-566))) (-2244 (*1 *1 *1) (-4 *1 (-566))) (-2243 (*1 *1 *1) (-4 *1 (-566)))) -(-13 (-866) (-1106) (-10 -8 (-15 -2248 ($ $)) (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)))) -(((-35) . T) ((-66) . T) ((-237) . T) ((-428) . T) ((-866) . T) ((-1106) . T) ((-1109) . T)) -((-2258 (((-416 |#1| |#2|) (-204 |#1| |#2|)) 65 T ELT)) (-2251 (((-580 (-204 |#1| |#2|)) (-580 (-416 |#1| |#2|))) 90 T ELT)) (-2252 (((-416 |#1| |#2|) (-580 (-416 |#1| |#2|)) (-768 |#1|)) 92 T ELT) (((-416 |#1| |#2|) (-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|)) (-768 |#1|)) 91 T ELT)) (-2249 (((-2 (|:| |gblist| (-580 (-204 |#1| |#2|))) (|:| |gvlist| (-580 (-480)))) (-580 (-416 |#1| |#2|))) 136 T ELT)) (-2256 (((-580 (-416 |#1| |#2|)) (-768 |#1|) (-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|))) 105 T ELT)) (-2250 (((-2 (|:| |glbase| (-580 (-204 |#1| |#2|))) (|:| |glval| (-580 (-480)))) (-580 (-204 |#1| |#2|))) 147 T ELT)) (-2254 (((-1170 |#2|) (-416 |#1| |#2|) (-580 (-416 |#1| |#2|))) 70 T ELT)) (-2253 (((-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|))) 47 T ELT)) (-2257 (((-204 |#1| |#2|) (-204 |#1| |#2|) (-580 (-204 |#1| |#2|))) 61 T ELT)) (-2255 (((-204 |#1| |#2|) (-580 |#2|) (-204 |#1| |#2|) (-580 (-204 |#1| |#2|))) 113 T ELT))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2249 ((-2 (|:| |gblist| (-580 (-204 |#1| |#2|))) (|:| |gvlist| (-580 (-480)))) (-580 (-416 |#1| |#2|)))) (-15 -2250 ((-2 (|:| |glbase| (-580 (-204 |#1| |#2|))) (|:| |glval| (-580 (-480)))) (-580 (-204 |#1| |#2|)))) (-15 -2251 ((-580 (-204 |#1| |#2|)) (-580 (-416 |#1| |#2|)))) (-15 -2252 ((-416 |#1| |#2|) (-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|)) (-768 |#1|))) (-15 -2252 ((-416 |#1| |#2|) (-580 (-416 |#1| |#2|)) (-768 |#1|))) (-15 -2253 ((-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|)))) (-15 -2254 ((-1170 |#2|) (-416 |#1| |#2|) (-580 (-416 |#1| |#2|)))) (-15 -2255 ((-204 |#1| |#2|) (-580 |#2|) (-204 |#1| |#2|) (-580 (-204 |#1| |#2|)))) (-15 -2256 ((-580 (-416 |#1| |#2|)) (-768 |#1|) (-580 (-416 |#1| |#2|)) (-580 (-416 |#1| |#2|)))) (-15 -2257 ((-204 |#1| |#2|) (-204 |#1| |#2|) (-580 (-204 |#1| |#2|)))) (-15 -2258 ((-416 |#1| |#2|) (-204 |#1| |#2|)))) (-580 (-1081)) (-387)) (T -567)) -((-2258 (*1 *2 *3) (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *2 (-416 *4 *5)) (-5 *1 (-567 *4 *5)))) (-2257 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-204 *4 *5))) (-5 *2 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *1 (-567 *4 *5)))) (-2256 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-580 (-416 *4 *5))) (-5 *3 (-768 *4)) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *1 (-567 *4 *5)))) (-2255 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-204 *5 *6))) (-4 *6 (-387)) (-5 *2 (-204 *5 *6)) (-14 *5 (-580 (-1081))) (-5 *1 (-567 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-416 *5 *6))) (-5 *3 (-416 *5 *6)) (-14 *5 (-580 (-1081))) (-4 *6 (-387)) (-5 *2 (-1170 *6)) (-5 *1 (-567 *5 *6)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-580 (-416 *3 *4))) (-14 *3 (-580 (-1081))) (-4 *4 (-387)) (-5 *1 (-567 *3 *4)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-416 *5 *6))) (-5 *4 (-768 *5)) (-14 *5 (-580 (-1081))) (-5 *2 (-416 *5 *6)) (-5 *1 (-567 *5 *6)) (-4 *6 (-387)))) (-2252 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-580 (-416 *5 *6))) (-5 *4 (-768 *5)) (-14 *5 (-580 (-1081))) (-5 *2 (-416 *5 *6)) (-5 *1 (-567 *5 *6)) (-4 *6 (-387)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-580 (-416 *4 *5))) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *2 (-580 (-204 *4 *5))) (-5 *1 (-567 *4 *5)))) (-2250 (*1 *2 *3) (-12 (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *2 (-2 (|:| |glbase| (-580 (-204 *4 *5))) (|:| |glval| (-580 (-480))))) (-5 *1 (-567 *4 *5)) (-5 *3 (-580 (-204 *4 *5))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-580 (-416 *4 *5))) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *2 (-2 (|:| |gblist| (-580 (-204 *4 *5))) (|:| |gvlist| (-580 (-480))))) (-5 *1 (-567 *4 *5))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL T ELT)) (-2186 (((-1176) $ (-1064) (-1064)) NIL (|has| $ (-6 -3979)) ELT)) (-3771 (((-51) $ (-1064) (-51)) NIL T ELT) (((-51) $ (-1081) (-51)) 16 T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 (-51) #1="failed") (-1064) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 (-51) #1#) (-1064) $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 (((-51) $ (-1064) (-51)) NIL (|has| $ (-6 -3979)) ELT)) (-3098 (((-51) $ (-1064)) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2259 (($ $) NIL T ELT)) (-2188 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-51) (-1007))) ELT)) (-2189 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2260 (($ (-333)) 8 T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-51) (-1007)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT)) (-2220 (((-580 (-1064)) $) NIL T ELT)) (-2221 (((-83) (-1064) $) NIL T ELT)) (-1264 (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL T ELT)) (-2191 (((-580 (-1064)) $) NIL T ELT)) (-2192 (((-83) (-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-51) (-1007)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT)) (-3784 (((-51) $) NIL (|has| (-1064) (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) #1#) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2187 (($ $ (-51)) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (($ $ (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (($ $ (-580 (-51)) (-580 (-51))) NIL (-12 (|has| (-51) (-257 (-51))) (|has| (-51) (-1007))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-257 (-51))) (|has| (-51) (-1007))) ELT) (($ $ (-246 (-51))) NIL (-12 (|has| (-51) (-257 (-51))) (|has| (-51) (-1007))) ELT) (($ $ (-580 (-246 (-51)))) NIL (-12 (|has| (-51) (-257 (-51))) (|has| (-51) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-51) (-1007))) ELT)) (-2193 (((-580 (-51)) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 (((-51) $ (-1064)) NIL T ELT) (((-51) $ (-1064) (-51)) NIL T ELT) (((-51) $ (-1081)) 14 T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-1007))) ELT) (((-689) (-51) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-51) (-1007))) ELT) (((-689) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-549 (-767))) (|has| (-51) (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| (-51))) (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-568) (-13 (-1098 (-1064) (-51)) (-239 (-1081) (-51)) (-10 -8 (-15 -2260 ($ (-333))) (-15 -2259 ($ $)) (-15 -3771 ((-51) $ (-1081) (-51)))))) (T -568)) -((-2260 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-568)))) (-2259 (*1 *1 *1) (-5 *1 (-568))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1081)) (-5 *1 (-568))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1761 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-3208 (((-1170 (-627 |#1|))) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 (-627 |#1|)) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1718 (((-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3707 (($) NIL T CONST)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1692 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1777 (((-627 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1716 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1775 (((-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2392 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1889 (((-1076 (-852 |#1|))) NIL (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-309))) ELT)) (-2395 (($ $ (-825)) NIL T ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1694 (((-1076 |#1|) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1779 ((|#1|) NIL (|has| |#2| (-356 |#1|)) ELT) ((|#1| (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1712 (((-1076 |#1|) $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1781 (($ (-1170 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (($ (-1170 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3450 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-3094 (((-825)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1703 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-1699 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1697 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1693 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1778 (((-627 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1717 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1776 (((-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2393 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1893 (((-1076 (-852 |#1|))) NIL (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-309))) ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1695 (((-1076 |#1|) $) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-1780 ((|#1|) NIL (|has| |#2| (-356 |#1|)) ELT) ((|#1| (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1713 (((-1076 |#1|) $) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1707 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1698 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1705 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3783 ((|#1| $ (-480)) NIL (|has| |#2| (-356 |#1|)) ELT)) (-3209 (((-627 |#1|) (-1170 $)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT) (((-627 |#1|) (-1170 $) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT) (((-1170 |#1|) $ (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3955 (($ (-1170 |#1|)) NIL (|has| |#2| (-356 |#1|)) ELT) (((-1170 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT)) (-1881 (((-580 (-852 |#1|))) NIL (|has| |#2| (-356 |#1|)) ELT) (((-580 (-852 |#1|)) (-1170 $)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2421 (($ $ $) NIL T ELT)) (-1711 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-3929 (((-767) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL (|has| |#2| (-356 |#1|)) ELT)) (-1696 (((-580 (-1170 |#1|))) NIL (OR (-12 (|has| |#2| (-313 |#1|)) (|has| |#1| (-491))) (-12 (|has| |#2| (-356 |#1|)) (|has| |#1| (-491)))) ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2531 (($ (-627 |#1|) $) NIL (|has| |#2| (-356 |#1|)) ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1708 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-1704 (((-83)) NIL (|has| |#2| (-313 |#1|)) ELT)) (-2646 (($) 18 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) 19 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-569 |#1| |#2|) (-13 (-678 |#1|) (-549 |#2|) (-10 -8 (-15 -3929 ($ |#2|)) (IF (|has| |#2| (-356 |#1|)) (-6 (-356 |#1|)) |%noBranch|) (IF (|has| |#2| (-313 |#1|)) (-6 (-313 |#1|)) |%noBranch|))) (-144) (-678 |#1|)) (T -569)) -((-3929 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-569 *3 *2)) (-4 *2 (-678 *3))))) -((-3932 (($ $ |#2|) 10 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -3932 (|#1| |#1| |#2|))) (-571 |#2|) (-144)) (T -570)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3513 (($ $ $) 39 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 38 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-571 |#1|) (-111) (-144)) (T -571)) -((-3513 (*1 *1 *1 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-144)))) (-3932 (*1 *1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-144)) (-4 *2 (-309))))) -(-13 (-651 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3513 ($ $ $)) (IF (|has| |t#1| (-309)) (-15 -3932 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2262 (((-3 (-745 |#2|) #1="failed") |#2| (-246 |#2|) (-1064)) 105 T ELT) (((-3 (-745 |#2|) (-2 (|:| |leftHandLimit| (-3 (-745 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-745 |#2|) #1#))) #1#) |#2| (-246 (-745 |#2|))) 130 T ELT)) (-2261 (((-3 (-738 |#2|) #1#) |#2| (-246 (-738 |#2|))) 135 T ELT))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2262 ((-3 (-745 |#2|) (-2 (|:| |leftHandLimit| (-3 (-745 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-745 |#2|) #1#))) #1#) |#2| (-246 (-745 |#2|)))) (-15 -2261 ((-3 (-738 |#2|) #1#) |#2| (-246 (-738 |#2|)))) (-15 -2262 ((-3 (-745 |#2|) #1#) |#2| (-246 |#2|) (-1064)))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -572)) -((-2262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-246 *3)) (-5 *5 (-1064)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-745 *3)) (-5 *1 (-572 *6 *3)))) (-2261 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-246 (-738 *3))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-738 *3)) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-246 (-745 *3))) (-4 *3 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-3 (-745 *3) (-2 (|:| |leftHandLimit| (-3 (-745 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-745 *3) #1#))) "failed")) (-5 *1 (-572 *5 *3))))) -((-2262 (((-3 (-745 (-345 (-852 |#1|))) #1="failed") (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|))) (-1064)) 86 T ELT) (((-3 (-745 (-345 (-852 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#))) #1#) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|)))) 20 T ELT) (((-3 (-745 (-345 (-852 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#))) #1#) (-345 (-852 |#1|)) (-246 (-745 (-852 |#1|)))) 35 T ELT)) (-2261 (((-738 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|)))) 23 T ELT) (((-738 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-246 (-738 (-852 |#1|)))) 43 T ELT))) -(((-573 |#1|) (-10 -7 (-15 -2262 ((-3 (-745 (-345 (-852 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#))) #1#) (-345 (-852 |#1|)) (-246 (-745 (-852 |#1|))))) (-15 -2262 ((-3 (-745 (-345 (-852 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-745 (-345 (-852 |#1|))) #1#))) #1#) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|))))) (-15 -2261 ((-738 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-246 (-738 (-852 |#1|))))) (-15 -2261 ((-738 (-345 (-852 |#1|))) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|))))) (-15 -2262 ((-3 (-745 (-345 (-852 |#1|))) #1#) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|))) (-1064)))) (-387)) (T -573)) -((-2262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-246 (-345 (-852 *6)))) (-5 *5 (-1064)) (-5 *3 (-345 (-852 *6))) (-4 *6 (-387)) (-5 *2 (-745 *3)) (-5 *1 (-573 *6)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-246 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-387)) (-5 *2 (-738 *3)) (-5 *1 (-573 *5)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-246 (-738 (-852 *5)))) (-4 *5 (-387)) (-5 *2 (-738 (-345 (-852 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-345 (-852 *5))))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-246 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-387)) (-5 *2 (-3 (-745 *3) (-2 (|:| |leftHandLimit| (-3 (-745 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-745 *3) #1#))) #2="failed")) (-5 *1 (-573 *5)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-246 (-745 (-852 *5)))) (-4 *5 (-387)) (-5 *2 (-3 (-745 (-345 (-852 *5))) (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 *5))) #1#)) (|:| |rightHandLimit| (-3 (-745 (-345 (-852 *5))) #1#))) #2#)) (-5 *1 (-573 *5)) (-5 *3 (-345 (-852 *5)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 11 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2837 (($ (-166 |#1|)) 12 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-768 |#1|)) 7 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-574 |#1|) (-13 (-747) (-552 (-768 |#1|)) (-10 -8 (-15 -2837 ($ (-166 |#1|))))) (-580 (-1081))) (T -574)) -((-2837 (*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-580 (-1081))) (-5 *1 (-574 *3))))) -((-2265 (((-3 (-1170 (-345 |#1|)) #1="failed") (-1170 |#2|) |#2|) 64 (-2546 (|has| |#1| (-309))) ELT) (((-3 (-1170 |#1|) #1#) (-1170 |#2|) |#2|) 49 (|has| |#1| (-309)) ELT)) (-2263 (((-83) (-1170 |#2|)) 33 T ELT)) (-2264 (((-3 (-1170 |#1|) #1#) (-1170 |#2|)) 40 T ELT))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2263 ((-83) (-1170 |#2|))) (-15 -2264 ((-3 (-1170 |#1|) #1="failed") (-1170 |#2|))) (IF (|has| |#1| (-309)) (-15 -2265 ((-3 (-1170 |#1|) #1#) (-1170 |#2|) |#2|)) (-15 -2265 ((-3 (-1170 (-345 |#1|)) #1#) (-1170 |#2|) |#2|)))) (-491) (-13 (-956) (-577 |#1|))) (T -575)) -((-2265 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 *5))) (-2546 (-4 *5 (-309))) (-4 *5 (-491)) (-5 *2 (-1170 (-345 *5))) (-5 *1 (-575 *5 *4)))) (-2265 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 *5))) (-4 *5 (-309)) (-4 *5 (-491)) (-5 *2 (-1170 *5)) (-5 *1 (-575 *5 *4)))) (-2264 (*1 *2 *3) (|partial| -12 (-5 *3 (-1170 *5)) (-4 *5 (-13 (-956) (-577 *4))) (-4 *4 (-491)) (-5 *2 (-1170 *4)) (-5 *1 (-575 *4 *5)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1170 *5)) (-4 *5 (-13 (-956) (-577 *4))) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-575 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3757 (((-580 (-777 (-574 |#2|) |#1|)) $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-2879 (($ |#1| (-574 |#2|)) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2266 (($ (-580 |#1|)) 25 T ELT)) (-1973 (((-574 |#2|) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3894 (((-105)) 16 T ELT)) (-3209 (((-1170 |#1|) $) 44 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-574 |#2|)) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 20 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 17 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-576 |#1| |#2|) (-13 (-1178 |#1|) (-552 (-574 |#2|)) (-444 |#1| (-574 |#2|)) (-10 -8 (-15 -2266 ($ (-580 |#1|))) (-15 -3209 ((-1170 |#1|) $)))) (-309) (-580 (-1081))) (T -576)) -((-2266 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-309)) (-5 *1 (-576 *3 *4)) (-14 *4 (-580 (-1081))))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-309)) (-14 *4 (-580 (-1081)))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2267 (((-627 |#1|) (-627 $)) 35 T ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 34 T ELT)) (-2268 (((-627 |#1|) (-1170 $)) 37 T ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 36 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-577 |#1|) (-111) (-956)) (T -577)) -((-2268 (*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) (-5 *2 (-627 *4)))) (-2268 (*1 *2 *3 *1) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) (-5 *2 (-2 (|:| |mat| (-627 *4)) (|:| |vec| (-1170 *4)))))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) (-5 *2 (-627 *4)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *1)) (-5 *4 (-1170 *1)) (-4 *1 (-577 *5)) (-4 *5 (-956)) (-5 *2 (-2 (|:| |mat| (-627 *5)) (|:| |vec| (-1170 *5))))))) -(-13 (-587 |t#1|) (-10 -8 (-15 -2268 ((-627 |t#1|) (-1170 $))) (-15 -2268 ((-2 (|:| |mat| (-627 |t#1|)) (|:| |vec| (-1170 |t#1|))) (-1170 $) $)) (-15 -2267 ((-627 |t#1|) (-627 $))) (-15 -2267 ((-2 (|:| |mat| (-627 |t#1|)) (|:| |vec| (-1170 |t#1|))) (-627 $) (-1170 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2269 (($ (-580 |#1|)) 23 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#1| $ (-576 |#1| |#2|)) 46 T ELT)) (-3894 (((-105)) 13 T ELT)) (-3209 (((-1170 |#1|) $) 42 T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 18 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 14 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-578 |#1| |#2|) (-13 (-1178 |#1|) (-239 (-576 |#1| |#2|) |#1|) (-10 -8 (-15 -2269 ($ (-580 |#1|))) (-15 -3209 ((-1170 |#1|) $)))) (-309) (-580 (-1081))) (T -578)) -((-2269 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-309)) (-5 *1 (-578 *3 *4)) (-14 *4 (-580 (-1081))))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-578 *3 *4)) (-4 *3 (-309)) (-14 *4 (-580 (-1081)))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-579 |#1|) (-111) (-1017)) (T -579)) -NIL -(-13 (-585 |t#1|) (-958 |t#1|)) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 |#1|) . T) ((-958 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) NIL T ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3780 (($ $) NIL T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 71 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) NIL (|has| |#1| (-751)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1719 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT) (($ (-1 (-83) |#1| |#1|) $) 68 (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3425 (((-83) $ (-689)) NIL T ELT)) (-3011 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 26 (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 24 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-2272 (($ $ $) 77 (|has| |#1| (-1007)) ELT)) (-2271 (($ $ $) 78 (|has| |#1| (-1007)) ELT)) (-2270 (($ $ $) 81 (|has| |#1| (-1007)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) 31 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 32 T ELT)) (-3782 (($ $) 21 T ELT) (($ $ (-689)) 36 T ELT)) (-2356 (($ $) 66 (|has| |#1| (-1007)) ELT)) (-1342 (($ $) 76 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) NIL (|has| |#1| (-1007)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3389 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3426 (((-83) $) NIL T ELT)) (-3402 (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) (-1 (-83) |#1|) $) NIL T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2274 (((-83) $) 9 T ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-2275 (($) 7 T CONST)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-3702 (((-83) $ (-689)) NIL T ELT)) (-2188 (((-480) $) 35 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 69 T ELT)) (-3501 (($ $ $) NIL (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 64 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ |#1|) NIL T ELT)) (-3699 (((-83) $ (-689)) NIL T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) 62 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3592 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2292 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 16 T ELT) (($ $ (-689)) NIL T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3427 (((-83) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 15 T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) 20 T ELT)) (-3548 (($) 19 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT) ((|#1| $ (-480)) 80 T ELT) ((|#1| $ (-480) |#1|) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-1560 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-2293 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-3616 (((-83) $) 39 T ELT)) (-3775 (($ $) NIL T ELT)) (-3773 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) NIL T ELT)) (-3777 (($ $) 44 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 40 T ELT)) (-3955 (((-469) $) 89 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 29 T ELT)) (-3444 (($ |#1| $) 10 T ELT)) (-3774 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3785 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-580 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3929 (((-767) $) 54 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2273 (($ $ $) 11 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 58 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 13 (|has| $ (-6 -3978)) ELT))) -(((-580 |#1|) (-13 (-605 |#1|) (-10 -8 (-15 -2275 ($) -3935) (-15 -2274 ((-83) $)) (-15 -3444 ($ |#1| $)) (-15 -2273 ($ $ $)) (IF (|has| |#1| (-1007)) (PROGN (-15 -2272 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2270 ($ $ $))) |%noBranch|))) (-1120)) (T -580)) -((-2275 (*1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-580 *3)) (-4 *3 (-1120)))) (-3444 (*1 *1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120)))) (-2273 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120)))) (-2271 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120)))) (-2270 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120))))) -((-3824 (((-580 |#2|) (-1 |#2| |#1| |#2|) (-580 |#1|) |#2|) 16 T ELT)) (-3825 ((|#2| (-1 |#2| |#1| |#2|) (-580 |#1|) |#2|) 18 T ELT)) (-3941 (((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)) 13 T ELT))) -(((-581 |#1| |#2|) (-10 -7 (-15 -3824 ((-580 |#2|) (-1 |#2| |#1| |#2|) (-580 |#1|) |#2|)) (-15 -3825 (|#2| (-1 |#2| |#1| |#2|) (-580 |#1|) |#2|)) (-15 -3941 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)))) (-1120) (-1120)) (T -581)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-580 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-581 *5 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-580 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-580 *5)) (-5 *1 (-581 *6 *5))))) -((-3405 ((|#2| (-580 |#1|) (-580 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-580 |#1|) (-580 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|) |#2|) 17 T ELT) ((|#2| (-580 |#1|) (-580 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|)) 12 T ELT))) -(((-582 |#1| |#2|) (-10 -7 (-15 -3405 ((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|))) (-15 -3405 (|#2| (-580 |#1|) (-580 |#2|) |#1|)) (-15 -3405 ((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|) |#2|)) (-15 -3405 (|#2| (-580 |#1|) (-580 |#2|) |#1| |#2|)) (-15 -3405 ((-1 |#2| |#1|) (-580 |#1|) (-580 |#2|) (-1 |#2| |#1|))) (-15 -3405 (|#2| (-580 |#1|) (-580 |#2|) |#1| (-1 |#2| |#1|)))) (-1007) (-1120)) (T -582)) -((-3405 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1007)) (-4 *2 (-1120)) (-5 *1 (-582 *5 *2)))) (-3405 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-580 *5)) (-5 *4 (-580 *6)) (-4 *5 (-1007)) (-4 *6 (-1120)) (-5 *1 (-582 *5 *6)))) (-3405 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-4 *5 (-1007)) (-4 *2 (-1120)) (-5 *1 (-582 *5 *2)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 *5)) (-4 *6 (-1007)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *6)) (-5 *1 (-582 *6 *5)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-4 *5 (-1007)) (-4 *2 (-1120)) (-5 *1 (-582 *5 *2)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *6)) (-4 *5 (-1007)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-582 *5 *6))))) -((-3941 (((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|)) 21 T ELT))) -(((-583 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|)))) (-1120) (-1120) (-1120)) (T -583)) -((-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-580 *8)) (-5 *1 (-583 *6 *7 *8))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 11 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-584 |#1|) (-13 (-989) (-549 |#1|)) (-1007)) (T -584)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-585 |#1|) (-111) (-1017)) (T -585)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-1017))))) -(-13 (-1007) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2276 (($ |#1| |#1| $) 45 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) 61 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2356 (($ $) 47 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) 58 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 60 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 9 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 49 T ELT)) (-3592 (($ |#1| $) 30 T ELT) (($ |#1| $ (-689)) 44 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1265 ((|#1| $) 52 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 23 T ELT)) (-3548 (($) 29 T ELT)) (-2277 (((-83) $) 56 T ELT)) (-2355 (((-580 (-2 (|:| |entry| |#1|) (|:| -1935 (-689)))) $) 69 T ELT)) (-1455 (($) 26 T ELT) (($ (-580 |#1|)) 19 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 65 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 20 T ELT)) (-3955 (((-469) $) 36 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3929 (((-767) $) 14 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 24 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 71 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 17 (|has| $ (-6 -3978)) ELT))) -(((-586 |#1|) (-13 (-631 |#1|) (-10 -8 (-6 -3978) (-15 -2277 ((-83) $)) (-15 -2276 ($ |#1| |#1| $)))) (-1007)) (T -586)) -((-2277 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-586 *3)) (-4 *3 (-1007)))) (-2276 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1007))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-587 |#1|) (-111) (-964)) (T -587)) -NIL -(-13 (-21) (-585 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689) $) 17 T ELT)) (-2283 (($ $ |#1|) 68 T ELT)) (-2285 (($ $) 39 T ELT)) (-2286 (($ $) 37 T ELT)) (-3142 (((-3 |#1| "failed") $) 60 T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2281 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3516 (((-767) $ (-1 (-767) (-767) (-767)) (-1 (-767) (-767) (-767)) (-480)) 55 T ELT)) (-2287 ((|#1| $ (-480)) 35 T ELT)) (-2288 ((|#2| $ (-480)) 34 T ELT)) (-2278 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2279 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2284 (($) 13 T ELT)) (-2290 (($ |#1| |#2|) 24 T ELT)) (-2289 (($ (-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|)))) 25 T ELT)) (-2291 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|))) $) 14 T ELT)) (-2282 (($ |#1| $) 69 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2280 (((-83) $ $) 74 T ELT)) (-3929 (((-767) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 27 T ELT))) -(((-588 |#1| |#2| |#3|) (-13 (-1007) (-945 |#1|) (-10 -8 (-15 -3516 ((-767) $ (-1 (-767) (-767) (-767)) (-1 (-767) (-767) (-767)) (-480))) (-15 -2291 ((-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|))) $)) (-15 -2290 ($ |#1| |#2|)) (-15 -2289 ($ (-580 (-2 (|:| |gen| |#1|) (|:| -3926 |#2|))))) (-15 -2288 (|#2| $ (-480))) (-15 -2287 (|#1| $ (-480))) (-15 -2286 ($ $)) (-15 -2285 ($ $)) (-15 -3121 ((-689) $)) (-15 -2284 ($)) (-15 -2283 ($ $ |#1|)) (-15 -2282 ($ |#1| $)) (-15 -2281 ($ |#1| |#2| $)) (-15 -2281 ($ $ $)) (-15 -2280 ((-83) $ $)) (-15 -2279 ($ (-1 |#2| |#2|) $)) (-15 -2278 ($ (-1 |#1| |#1|) $)))) (-1007) (-23) |#2|) (T -588)) -((-3516 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-767) (-767) (-767))) (-5 *4 (-480)) (-5 *2 (-767)) (-5 *1 (-588 *5 *6 *7)) (-4 *5 (-1007)) (-4 *6 (-23)) (-14 *7 *6))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) (-14 *5 *4))) (-2290 (*1 *1 *2 *3) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))) (-4 *3 (-1007)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5)))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *2 (-23)) (-5 *1 (-588 *4 *2 *5)) (-4 *4 (-1007)) (-14 *5 *2))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *2 (-1007)) (-5 *1 (-588 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) (-14 *5 *4))) (-2284 (*1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2283 (*1 *1 *1 *2) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2282 (*1 *1 *2 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2281 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) (-2280 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) (-14 *5 *4))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-588 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2189 (((-480) $) 30 T ELT)) (-2292 (($ |#2| $ (-480)) 26 T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) 12 T ELT)) (-2192 (((-83) (-480) $) 17 T ELT)) (-3785 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT))) -(((-589 |#1| |#2|) (-10 -7 (-15 -2292 (|#1| |#1| |#1| (-480))) (-15 -2292 (|#1| |#2| |#1| (-480))) (-15 -3785 (|#1| (-580 |#1|))) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#2| |#1|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -2189 ((-480) |#1|)) (-15 -2191 ((-580 (-480)) |#1|)) (-15 -2192 ((-83) (-480) |#1|))) (-590 |#2|) (-1120)) (T -589)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-590 |#1|) (-111) (-1120)) (T -590)) -((-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-3785 (*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) (-3785 (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-2293 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-2293 (*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-480))) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-2292 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-590 *2)) (-4 *2 (-1120)))) (-2292 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1137 (-480))) (|has| *1 (-6 -3979)) (-4 *1 (-590 *2)) (-4 *2 (-1120))))) -(-13 (-535 (-480) |t#1|) (-122 |t#1|) (-239 (-1137 (-480)) $) (-10 -8 (-15 -3597 ($ (-689) |t#1|)) (-15 -3785 ($ $ |t#1|)) (-15 -3785 ($ |t#1| $)) (-15 -3785 ($ $ $)) (-15 -3785 ($ (-580 $))) (-15 -3941 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2293 ($ $ (-480))) (-15 -2293 ($ $ (-1137 (-480)))) (-15 -2292 ($ |t#1| $ (-480))) (-15 -2292 ($ $ $ (-480))) (IF (|has| $ (-6 -3979)) (-15 -3771 (|t#1| $ (-1137 (-480)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 15 T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| |#1| (-709)) ELT)) (-3707 (($) NIL T CONST)) (-3171 (((-83) $) NIL (|has| |#1| (-709)) ELT)) (-2984 ((|#1| $) 23 T ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-709)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-709)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-709)) ELT)) (-3227 (((-1064) $) 48 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2983 ((|#3| $) 24 T ELT)) (-3929 (((-767) $) 43 T ELT)) (-1255 (((-83) $ $) 22 T ELT)) (-3366 (($ $) NIL (|has| |#1| (-709)) ELT)) (-2646 (($) 10 T CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-709)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-709)) ELT)) (-3042 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-709)) ELT)) (-2671 (((-83) $ $) 26 (|has| |#1| (-709)) ELT)) (-3932 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3820 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 29 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-591 |#1| |#2| |#3|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-709)) (-6 (-709)) |%noBranch|) (-15 -3932 ($ $ |#3|)) (-15 -3932 ($ |#1| |#3|)) (-15 -2984 (|#1| $)) (-15 -2983 (|#3| $)))) (-651 |#2|) (-144) (|SubsetCategory| (-660) |#2|)) (T -591)) -((-3932 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-591 *3 *4 *2)) (-4 *3 (-651 *4)) (-4 *2 (|SubsetCategory| (-660) *4)))) (-3932 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-591 *2 *4 *3)) (-4 *2 (-651 *4)) (-4 *3 (|SubsetCategory| (-660) *4)))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-651 *3)) (-5 *1 (-591 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-660) *3)))) (-2983 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-660) *4)) (-5 *1 (-591 *3 *4 *2)) (-4 *3 (-651 *4))))) -((-3556 (((-3 |#2| #1="failed") |#3| |#2| (-1081) |#2| (-580 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) #1#) |#3| |#2| (-1081)) 44 T ELT))) -(((-592 |#1| |#2| |#3|) (-10 -7 (-15 -3556 ((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) #1="failed") |#3| |#2| (-1081))) (-15 -3556 ((-3 |#2| #1#) |#3| |#2| (-1081) |#2| (-580 |#2|)))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118)) (-13 (-29 |#1|) (-1106) (-866)) (-597 |#2|)) (T -592)) -((-3556 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-592 *6 *2 *3)) (-4 *3 (-597 *2)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1081)) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-4 *4 (-13 (-29 *6) (-1106) (-866))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2000 (-580 *4)))) (-5 *1 (-592 *6 *4 *3)) (-4 *3 (-597 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2294 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2296 (($ $ $) 28 (|has| |#1| (-309)) ELT)) (-2297 (($ $ (-689)) 31 (|has| |#1| (-309)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2522 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) NIL T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) NIL T ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-3783 ((|#1| $ |#1|) 24 T ELT)) (-2298 (($ $ $) 33 (|has| |#1| (-309)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) NIL T ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2531 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2506 (($ $) NIL T ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 8 T CONST)) (-2655 (($) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-593 |#1| |#2|) (-597 |#1|) (-956) (-1 |#1| |#1|)) (T -593)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2294 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2296 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2297 (($ $ (-689)) NIL (|has| |#1| (-309)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2522 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) NIL T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) NIL T ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-3783 ((|#1| $ |#1|) NIL T ELT)) (-2298 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) NIL T ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2531 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2506 (($ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-594 |#1|) (-597 |#1|) (-188)) (T -594)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2294 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2296 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2297 (($ $ (-689)) NIL (|has| |#1| (-309)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2522 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) NIL T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) NIL T ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-3783 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2298 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) NIL T ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2531 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2506 (($ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-595 |#1| |#2|) (-13 (-597 |#1|) (-239 |#2| |#2|)) (-188) (-13 (-587 |#1|) (-10 -8 (-15 -3741 ($ $))))) (T -595)) -NIL -((-2294 (($ $) 29 T ELT)) (-2506 (($ $) 27 T ELT)) (-2655 (($) 13 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2294 (|#1| |#1|)) (-15 -2506 (|#1| |#1|)) (-15 -2655 (|#1|))) (-597 |#2|) (-956)) (T -596)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2294 (($ $) 94 (|has| |#1| (-309)) ELT)) (-2296 (($ $ $) 96 (|has| |#1| (-309)) ELT)) (-2297 (($ $ (-689)) 95 (|has| |#1| (-309)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2522 (($ $ $) 56 (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) 57 (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) 59 (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) 54 (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 53 (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ #1="failed") $ $) 55 (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 58 (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #2="failed") $) 86 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #2#) $) 83 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #2#) $) 80 T ELT)) (-3141 (((-480) $) 85 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 82 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 81 T ELT)) (-3942 (($ $) 75 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3486 (($ $) 66 (|has| |#1| (-387)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2879 (($ |#1| (-689)) 73 T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 68 (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 69 (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) 77 T ELT)) (-2528 (($ $ $) 63 (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) 64 (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) 52 (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) 61 (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 60 (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) 62 (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 65 (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) 76 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ #1#) $ |#1|) 70 (|has| |#1| (-491)) ELT)) (-3783 ((|#1| $ |#1|) 99 T ELT)) (-2298 (($ $ $) 93 (|has| |#1| (-309)) ELT)) (-3931 (((-689) $) 78 T ELT)) (-2803 ((|#1| $) 67 (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 84 (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) 79 T ELT)) (-3800 (((-580 |#1|) $) 72 T ELT)) (-3660 ((|#1| $ (-689)) 74 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2531 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2506 (($ $) 97 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($) 98 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) -(((-597 |#1|) (-111) (-956)) (T -597)) -((-2655 (*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)))) (-2506 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)))) (-2296 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2297 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-597 *3)) (-4 *3 (-956)) (-4 *3 (-309)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2298 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(-13 (-756 |t#1|) (-239 |t#1| |t#1|) (-10 -8 (-15 -2655 ($)) (-15 -2506 ($ $)) (IF (|has| |t#1| (-309)) (PROGN (-15 -2296 ($ $ $)) (-15 -2297 ($ $ (-689))) (-15 -2294 ($ $)) (-15 -2298 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-239 |#1| |#1|) . T) ((-350 |#1|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-660) . T) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-756 |#1|) . T)) -((-2295 (((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3715 (((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|)) 19 T ELT))) -(((-598 |#1| |#2|) (-10 -7 (-15 -3715 ((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3715 ((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|)))) (-15 -2295 ((-580 (-594 (-345 |#2|))) (-594 (-345 |#2|))))) |%noBranch|)) (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480)))) (-1146 |#1|)) (T -598)) -((-2295 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-594 (-345 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-345 *5))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-594 (-345 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-345 *5))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-594 (-345 *6)))) (-5 *1 (-598 *5 *6)) (-5 *3 (-594 (-345 *6)))))) -((-2296 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2297 ((|#2| |#2| (-689) (-1 |#1| |#1|)) 45 T ELT)) (-2298 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-599 |#1| |#2|) (-10 -7 (-15 -2296 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2297 (|#2| |#2| (-689) (-1 |#1| |#1|))) (-15 -2298 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-309) (-597 |#1|)) (T -599)) -((-2298 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-309)) (-5 *1 (-599 *4 *2)) (-4 *2 (-597 *4)))) (-2297 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-689)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) (-5 *1 (-599 *5 *2)) (-4 *2 (-597 *5)))) (-2296 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-309)) (-5 *1 (-599 *4 *2)) (-4 *2 (-597 *4))))) -((-2299 (($ $ $) 9 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -2299 (|#1| |#1| |#1|))) (-601)) (T -600)) -NIL -((-2301 (($ $) 8 T ELT)) (-2299 (($ $ $) 6 T ELT)) (-2300 (($ $ $) 7 T ELT))) -(((-601) (-111)) (T -601)) -((-2301 (*1 *1 *1) (-4 *1 (-601))) (-2300 (*1 *1 *1 *1) (-4 *1 (-601))) (-2299 (*1 *1 *1 *1) (-4 *1 (-601)))) -(-13 (-1120) (-10 -8 (-15 -2301 ($ $)) (-15 -2300 ($ $ $)) (-15 -2299 ($ $ $)))) -(((-13) . T) ((-1120) . T)) -((-2302 (((-3 (-580 (-1076 |#1|)) "failed") (-580 (-1076 |#1|)) (-1076 |#1|)) 33 T ELT))) -(((-602 |#1|) (-10 -7 (-15 -2302 ((-3 (-580 (-1076 |#1|)) "failed") (-580 (-1076 |#1|)) (-1076 |#1|)))) (-816)) (T -602)) -((-2302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 *4))) (-5 *3 (-1076 *4)) (-4 *4 (-816)) (-5 *1 (-602 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3917 (((-580 |#1|) $) 85 T ELT)) (-3930 (($ $ (-689)) 95 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3922 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 50 T ELT)) (-3142 (((-3 (-611 |#1|) #1#) $) NIL T ELT)) (-3141 (((-611 |#1|) $) NIL T ELT)) (-3942 (($ $) 94 T ELT)) (-2406 (((-689) $) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ (-611 |#1|) |#2|) 70 T ELT)) (-3919 (($ $) 90 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3923 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 49 T ELT)) (-1738 (((-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2880 (((-611 |#1|) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3751 (($ $ |#1| $) 32 T ELT) (($ $ (-580 |#1|) (-580 $)) 34 T ELT)) (-3931 (((-689) $) 92 T ELT)) (-3513 (($ $ $) 20 T ELT) (($ (-611 |#1|) (-611 |#1|)) 79 T ELT) (($ (-611 |#1|) $) 77 T ELT) (($ $ (-611 |#1|)) 78 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1186 |#1| |#2|) $) 60 T ELT) (((-1195 |#1| |#2|) $) 43 T ELT) (($ (-611 |#1|)) 27 T ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-611 |#1|)) NIL T ELT)) (-3937 ((|#2| (-1195 |#1| |#2|) $) 45 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 23 T CONST)) (-2651 (((-580 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3928 (((-3 $ #1#) (-1186 |#1| |#2|)) 62 T ELT)) (-1722 (($ (-611 |#1|)) 14 T ELT)) (-3042 (((-83) $ $) 46 T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 31 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-611 |#1|)) NIL T ELT))) -(((-603 |#1| |#2|) (-13 (-321 |#1| |#2|) (-330 |#2| (-611 |#1|)) (-10 -8 (-15 -3928 ((-3 $ "failed") (-1186 |#1| |#2|))) (-15 -3513 ($ (-611 |#1|) (-611 |#1|))) (-15 -3513 ($ (-611 |#1|) $)) (-15 -3513 ($ $ (-611 |#1|))))) (-751) (-144)) (T -603)) -((-3928 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *1 (-603 *3 *4)))) (-3513 (*1 *1 *2 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144))))) -((-1721 (((-83) $) NIL T ELT) (((-83) (-1 (-83) |#2| |#2|) $) 59 T ELT)) (-1719 (($ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $) 12 T ELT)) (-1559 (($ (-1 (-83) |#2|) $) 29 T ELT)) (-2285 (($ $) 65 T ELT)) (-2356 (($ $) 74 T ELT)) (-3388 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 43 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3402 (((-480) |#2| $ (-480)) 71 T ELT) (((-480) |#2| $) NIL T ELT) (((-480) (-1 (-83) |#2|) $) 54 T ELT)) (-3597 (($ (-689) |#2|) 63 T ELT)) (-2842 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 31 T ELT)) (-3501 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 24 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3517 (($ |#2|) 15 T ELT)) (-3592 (($ $ $ (-480)) 42 T ELT) (($ |#2| $ (-480)) 40 T ELT)) (-1343 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 53 T ELT)) (-1560 (($ $ (-1137 (-480))) 51 T ELT) (($ $ (-480)) 44 T ELT)) (-1720 (($ $ $ (-480)) 70 T ELT)) (-3383 (($ $) 68 T ELT)) (-2671 (((-83) $ $) 76 T ELT))) -(((-604 |#1| |#2|) (-10 -7 (-15 -3517 (|#1| |#2|)) (-15 -1560 (|#1| |#1| (-480))) (-15 -1560 (|#1| |#1| (-1137 (-480)))) (-15 -3388 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3592 (|#1| |#2| |#1| (-480))) (-15 -3592 (|#1| |#1| |#1| (-480))) (-15 -2842 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1559 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3388 (|#1| |#2| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -3501 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1721 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3402 ((-480) (-1 (-83) |#2|) |#1|)) (-15 -3402 ((-480) |#2| |#1|)) (-15 -3402 ((-480) |#2| |#1| (-480))) (-15 -3501 (|#1| |#1| |#1|)) (-15 -1721 ((-83) |#1|)) (-15 -1720 (|#1| |#1| |#1| (-480))) (-15 -2285 (|#1| |#1|)) (-15 -1719 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -2671 ((-83) |#1| |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1343 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3597 (|#1| (-689) |#2|)) (-15 -3941 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3383 (|#1| |#1|))) (-605 |#2|) (-1120)) (T -604)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3778 ((|#1| $) 71 T ELT)) (-3780 (($ $) 73 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 107 (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 58 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) $) 153 (|has| |#1| (-751)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) 147 T ELT)) (-1719 (($ $) 157 (-12 (|has| |#1| (-751)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1| |#1|) $) 156 (|has| $ (-6 -3979)) ELT)) (-2895 (($ $) 152 (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $) 146 T ELT)) (-3425 (((-83) $ (-689)) 90 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 62 (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) 60 (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 127 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) 96 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-3693 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3978)) ELT)) (-3779 ((|#1| $) 72 T ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 155 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 145 T ELT)) (-3782 (($ $) 79 T ELT) (($ $ (-689)) 77 T ELT)) (-2356 (($ $) 142 (|has| |#1| (-1007)) ELT)) (-1342 (($ $) 109 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 141 (|has| |#1| (-1007)) ELT) (($ (-1 (-83) |#1|) $) 136 T ELT)) (-3389 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3978)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1565 ((|#1| $ (-480) |#1|) 95 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 97 T ELT)) (-3426 (((-83) $) 93 T ELT)) (-3402 (((-480) |#1| $ (-480)) 150 (|has| |#1| (-1007)) ELT) (((-480) |#1| $) 149 (|has| |#1| (-1007)) ELT) (((-480) (-1 (-83) |#1|) $) 148 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-3597 (($ (-689) |#1|) 119 T ELT)) (-3702 (((-83) $ (-689)) 91 T ELT)) (-2188 (((-480) $) 105 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 163 (|has| |#1| (-751)) ELT)) (-2842 (($ $ $) 143 (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 139 T ELT)) (-3501 (($ $ $) 151 (|has| |#1| (-751)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 144 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 104 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 162 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3517 (($ |#1|) 133 T ELT)) (-3699 (((-83) $ (-689)) 92 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) 76 T ELT) (($ $ (-689)) 74 T ELT)) (-3592 (($ $ $ (-480)) 138 T ELT) (($ |#1| $ (-480)) 137 T ELT)) (-2292 (($ $ $ (-480)) 126 T ELT) (($ |#1| $ (-480)) 125 T ELT)) (-2191 (((-580 (-480)) $) 102 T ELT)) (-2192 (((-83) (-480) $) 101 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 82 T ELT) (($ $ (-689)) 80 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2187 (($ $ |#1|) 106 (|has| $ (-6 -3979)) ELT)) (-3427 (((-83) $) 94 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 100 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1137 (-480))) 118 T ELT) ((|#1| $ (-480)) 99 T ELT) ((|#1| $ (-480) |#1|) 98 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-1560 (($ $ (-1137 (-480))) 135 T ELT) (($ $ (-480)) 134 T ELT)) (-2293 (($ $ (-1137 (-480))) 124 T ELT) (($ $ (-480)) 123 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-3775 (($ $) 68 T ELT)) (-3773 (($ $) 65 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) 69 T ELT)) (-3777 (($ $) 70 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 154 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 108 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 117 T ELT)) (-3774 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3785 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-580 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 161 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 159 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) 160 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 158 (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-605 |#1|) (-111) (-1120)) (T -605)) -((-3517 (*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1120))))) -(-13 (-1055 |t#1|) (-319 |t#1|) (-235 |t#1|) (-10 -8 (-15 -3517 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-235 |#1|) . T) ((-319 |#1|) . T) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-918 |#1|) . T) ((-1007) OR (|has| |#1| (-1007)) (|has| |#1| (-751))) ((-1055 |#1|) . T) ((-1120) . T) ((-1159 |#1|) . T)) -((-3556 (((-580 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2000 (-580 |#3|)))) |#4| (-580 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2000 (-580 |#3|))) |#4| |#3|) 60 T ELT)) (-3094 (((-689) |#4| |#3|) 18 T ELT)) (-3323 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2303 (((-83) |#4| |#3|) 14 T ELT))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3556 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2000 (-580 |#3|))) |#4| |#3|)) (-15 -3556 ((-580 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2000 (-580 |#3|)))) |#4| (-580 |#3|))) (-15 -3323 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2303 ((-83) |#4| |#3|)) (-15 -3094 ((-689) |#4| |#3|))) (-309) (-13 (-319 |#1|) (-10 -7 (-6 -3979))) (-13 (-319 |#1|) (-10 -7 (-6 -3979))) (-624 |#1| |#2| |#3|)) (T -606)) -((-3094 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-689)) (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-2303 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-83)) (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-3323 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-309)) (-4 *5 (-13 (-319 *4) (-10 -7 (-6 -3979)))) (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979)))) (-5 *1 (-606 *4 *5 *2 *3)) (-4 *3 (-624 *4 *5 *2)))) (-3556 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-4 *7 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-580 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2000 (-580 *7))))) (-5 *1 (-606 *5 *6 *7 *3)) (-5 *4 (-580 *7)) (-4 *3 (-624 *5 *6 *7)))) (-3556 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2000 (-580 *4)))) (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4))))) -((-3556 (((-580 (-2 (|:| |particular| (-3 (-1170 |#1|) #1="failed")) (|:| -2000 (-580 (-1170 |#1|))))) (-580 (-580 |#1|)) (-580 (-1170 |#1|))) 22 T ELT) (((-580 (-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|))))) (-627 |#1|) (-580 (-1170 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|)))) (-580 (-580 |#1|)) (-1170 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|)))) (-627 |#1|) (-1170 |#1|)) 14 T ELT)) (-3094 (((-689) (-627 |#1|) (-1170 |#1|)) 30 T ELT)) (-3323 (((-3 (-1170 |#1|) #1#) (-627 |#1|) (-1170 |#1|)) 24 T ELT)) (-2303 (((-83) (-627 |#1|) (-1170 |#1|)) 27 T ELT))) -(((-607 |#1|) (-10 -7 (-15 -3556 ((-2 (|:| |particular| (-3 (-1170 |#1|) #1="failed")) (|:| -2000 (-580 (-1170 |#1|)))) (-627 |#1|) (-1170 |#1|))) (-15 -3556 ((-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|)))) (-580 (-580 |#1|)) (-1170 |#1|))) (-15 -3556 ((-580 (-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|))))) (-627 |#1|) (-580 (-1170 |#1|)))) (-15 -3556 ((-580 (-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|))))) (-580 (-580 |#1|)) (-580 (-1170 |#1|)))) (-15 -3323 ((-3 (-1170 |#1|) #1#) (-627 |#1|) (-1170 |#1|))) (-15 -2303 ((-83) (-627 |#1|) (-1170 |#1|))) (-15 -3094 ((-689) (-627 |#1|) (-1170 |#1|)))) (-309)) (T -607)) -((-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-5 *2 (-689)) (-5 *1 (-607 *5)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-5 *2 (-83)) (-5 *1 (-607 *5)))) (-3323 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1170 *4)) (-5 *3 (-627 *4)) (-4 *4 (-309)) (-5 *1 (-607 *4)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-580 *5))) (-4 *5 (-309)) (-5 *2 (-580 (-2 (|:| |particular| (-3 (-1170 *5) #1="failed")) (|:| -2000 (-580 (-1170 *5)))))) (-5 *1 (-607 *5)) (-5 *4 (-580 (-1170 *5))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-309)) (-5 *2 (-580 (-2 (|:| |particular| (-3 (-1170 *5) #1#)) (|:| -2000 (-580 (-1170 *5)))))) (-5 *1 (-607 *5)) (-5 *4 (-580 (-1170 *5))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-580 *5))) (-4 *5 (-309)) (-5 *2 (-2 (|:| |particular| (-3 (-1170 *5) #1#)) (|:| -2000 (-580 (-1170 *5))))) (-5 *1 (-607 *5)) (-5 *4 (-1170 *5)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| |particular| (-3 (-1170 *5) #1#)) (|:| -2000 (-580 (-1170 *5))))) (-5 *1 (-607 *5)) (-5 *4 (-1170 *5))))) -((-2304 (((-2 (|:| |particular| (-3 (-1170 (-345 |#4|)) "failed")) (|:| -2000 (-580 (-1170 (-345 |#4|))))) (-580 |#4|) (-580 |#3|)) 51 T ELT))) -(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2304 ((-2 (|:| |particular| (-3 (-1170 (-345 |#4|)) "failed")) (|:| -2000 (-580 (-1170 (-345 |#4|))))) (-580 |#4|) (-580 |#3|)))) (-491) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -608)) -((-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *7)) (-4 *7 (-751)) (-4 *8 (-856 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-5 *2 (-2 (|:| |particular| (-3 (-1170 (-345 *8)) "failed")) (|:| -2000 (-580 (-1170 (-345 *8)))))) (-5 *1 (-608 *5 *6 *7 *8))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1761 (((-3 $ #1="failed")) NIL (|has| |#2| (-491)) ELT)) (-3313 ((|#2| $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-3208 (((-1170 (-627 |#2|))) NIL T ELT) (((-1170 (-627 |#2|)) (-1170 $)) NIL T ELT)) (-3108 (((-83) $) NIL T ELT)) (-1718 (((-1170 $)) 41 T ELT)) (-3316 (($ |#2|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) NIL (|has| |#2| (-255)) ELT)) (-3097 (((-195 |#1| |#2|) $ (-480)) NIL T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (|has| |#2| (-491)) ELT)) (-1692 (((-3 $ #1#)) NIL (|has| |#2| (-491)) ELT)) (-1777 (((-627 |#2|)) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-1716 ((|#2| $) NIL T ELT)) (-1775 (((-627 |#2|) $) NIL T ELT) (((-627 |#2|) $ (-1170 $)) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| |#2| (-491)) ELT)) (-1889 (((-1076 (-852 |#2|))) NIL (|has| |#2| (-309)) ELT)) (-2395 (($ $ (-825)) NIL T ELT)) (-1714 ((|#2| $) NIL T ELT)) (-1694 (((-1076 |#2|) $) NIL (|has| |#2| (-491)) ELT)) (-1779 ((|#2|) NIL T ELT) ((|#2| (-1170 $)) NIL T ELT)) (-1712 (((-1076 |#2|) $) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) ((|#2| $) NIL T ELT)) (-1781 (($ (-1170 |#2|)) NIL T ELT) (($ (-1170 |#2|) (-1170 $)) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3094 (((-689) $) NIL (|has| |#2| (-491)) ELT) (((-825)) 42 T ELT)) (-3098 ((|#2| $ (-480) (-480)) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2419 (($ $ (-825)) NIL T ELT)) (-2875 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-3093 (((-689) $) NIL (|has| |#2| (-491)) ELT)) (-3092 (((-580 (-195 |#1| |#2|)) $) NIL (|has| |#2| (-491)) ELT)) (-3100 (((-689) $) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3310 ((|#2| $) NIL (|has| |#2| (-6 (-3980 #2="*"))) ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-3109 (($ (-580 (-580 |#2|))) NIL T ELT)) (-1938 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3577 (((-580 (-580 |#2|)) $) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-1896 (((-3 (-2 (|:| |particular| $) (|:| -2000 (-580 $))) #1#)) NIL (|has| |#2| (-491)) ELT)) (-1693 (((-3 $ #1#)) NIL (|has| |#2| (-491)) ELT)) (-1778 (((-627 |#2|)) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-1717 ((|#2| $) NIL T ELT)) (-1776 (((-627 |#2|) $) NIL T ELT) (((-627 |#2|) $ (-1170 $)) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2393 (((-3 $ #1#) $) NIL (|has| |#2| (-491)) ELT)) (-1893 (((-1076 (-852 |#2|))) NIL (|has| |#2| (-309)) ELT)) (-2394 (($ $ (-825)) NIL T ELT)) (-1715 ((|#2| $) NIL T ELT)) (-1695 (((-1076 |#2|) $) NIL (|has| |#2| (-491)) ELT)) (-1780 ((|#2|) NIL T ELT) ((|#2| (-1170 $)) NIL T ELT)) (-1713 (((-1076 |#2|) $) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-3573 (((-3 $ #1#) $) NIL (|has| |#2| (-309)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ (-480) (-480) |#2|) NIL T ELT) ((|#2| $ (-480) (-480)) 27 T ELT) ((|#2| $ (-480)) NIL T ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3315 (($ (-580 |#2|)) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3314 (((-195 |#1| |#2|) $) NIL T ELT)) (-3311 ((|#2| $) NIL (|has| |#2| (-6 (-3980 #2#))) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3209 (((-627 |#2|) (-1170 $)) NIL T ELT) (((-1170 |#2|) $) NIL T ELT) (((-627 |#2|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#2|) $ (-1170 $)) 30 T ELT)) (-3955 (($ (-1170 |#2|)) NIL T ELT) (((-1170 |#2|) $) NIL T ELT)) (-1881 (((-580 (-852 |#2|))) NIL T ELT) (((-580 (-852 |#2|)) (-1170 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-1711 (((-83)) NIL T ELT)) (-3096 (((-195 |#1| |#2|) $ (-480)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (($ |#2|) NIL T ELT) (((-627 |#2|) $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 40 T ELT)) (-1696 (((-580 (-1170 |#2|))) NIL (|has| |#2| (-491)) ELT)) (-2422 (($ $ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-2531 (($ (-627 |#2|) $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#2| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-195 |#1| |#2|) $ (-195 |#1| |#2|)) NIL T ELT) (((-195 |#1| |#2|) (-195 |#1| |#2|) $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-609 |#1| |#2|) (-13 (-1028 |#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) (-549 (-627 |#2|)) (-356 |#2|)) (-825) (-144)) (T -609)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3233 (((-580 (-1040)) $) 12 T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-610) (-13 (-989) (-10 -8 (-15 -3233 ((-580 (-1040)) $))))) (T -610)) -((-3233 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-610))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3917 (((-580 |#1|) $) NIL T ELT)) (-3122 (($ $) 62 T ELT)) (-2650 (((-83) $) NIL T ELT)) (-3142 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-2307 (((-3 $ #1#) (-734 |#1|)) 28 T ELT)) (-2309 (((-83) (-734 |#1|)) 18 T ELT)) (-2308 (($ (-734 |#1|)) 29 T ELT)) (-2497 (((-83) $ $) 36 T ELT)) (-3816 (((-825) $) 43 T ELT)) (-3123 (($ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3715 (((-580 $) (-734 |#1|)) 20 T ELT)) (-3929 (((-767) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-734 |#1|) $) 47 T ELT) (((-615 |#1|) $) 52 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2306 (((-58 (-580 $)) (-580 |#1|) (-825)) 67 T ELT)) (-2305 (((-580 $) (-580 |#1|) (-825)) 70 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 63 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 46 T ELT))) -(((-611 |#1|) (-13 (-751) (-945 |#1|) (-10 -8 (-15 -2650 ((-83) $)) (-15 -3123 ($ $)) (-15 -3122 ($ $)) (-15 -3816 ((-825) $)) (-15 -2497 ((-83) $ $)) (-15 -3929 ((-734 |#1|) $)) (-15 -3929 ((-615 |#1|) $)) (-15 -3715 ((-580 $) (-734 |#1|))) (-15 -2309 ((-83) (-734 |#1|))) (-15 -2308 ($ (-734 |#1|))) (-15 -2307 ((-3 $ "failed") (-734 |#1|))) (-15 -3917 ((-580 |#1|) $)) (-15 -2306 ((-58 (-580 $)) (-580 |#1|) (-825))) (-15 -2305 ((-580 $) (-580 |#1|) (-825))))) (-751)) (T -611)) -((-2650 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-3123 (*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-751)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-751)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-2497 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-734 *4)) (-4 *4 (-751)) (-5 *2 (-580 (-611 *4))) (-5 *1 (-611 *4)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-734 *4)) (-4 *4 (-751)) (-5 *2 (-83)) (-5 *1 (-611 *4)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-734 *3)) (-4 *3 (-751)) (-5 *1 (-611 *3)))) (-2307 (*1 *1 *2) (|partial| -12 (-5 *2 (-734 *3)) (-4 *3 (-751)) (-5 *1 (-611 *3)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-825)) (-4 *5 (-751)) (-5 *2 (-58 (-580 (-611 *5)))) (-5 *1 (-611 *5)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-825)) (-4 *5 (-751)) (-5 *2 (-580 (-611 *5))) (-5 *1 (-611 *5))))) -((-3385 ((|#2| $) 100 T ELT)) (-3780 (($ $) 121 T ELT)) (-3425 (((-83) $ (-689)) 35 T ELT)) (-3782 (($ $) 109 T ELT) (($ $ (-689)) 112 T ELT)) (-3426 (((-83) $) 122 T ELT)) (-3017 (((-580 $) $) 96 T ELT)) (-3013 (((-83) $ $) 92 T ELT)) (-3702 (((-83) $ (-689)) 33 T ELT)) (-2188 (((-480) $) 66 T ELT)) (-2189 (((-480) $) 65 T ELT)) (-3699 (((-83) $ (-689)) 31 T ELT)) (-3510 (((-83) $) 98 T ELT)) (-3781 ((|#2| $) 113 T ELT) (($ $ (-689)) 117 T ELT)) (-2292 (($ $ $ (-480)) 83 T ELT) (($ |#2| $ (-480)) 82 T ELT)) (-2191 (((-580 (-480)) $) 64 T ELT)) (-2192 (((-83) (-480) $) 59 T ELT)) (-3784 ((|#2| $) NIL T ELT) (($ $ (-689)) 108 T ELT)) (-3752 (($ $ (-480)) 125 T ELT)) (-3427 (((-83) $) 124 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 42 T ELT)) (-2193 (((-580 |#2|) $) 46 T ELT)) (-3783 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1137 (-480))) 79 T ELT) ((|#2| $ (-480)) 57 T ELT) ((|#2| $ (-480) |#2|) 58 T ELT)) (-3015 (((-480) $ $) 91 T ELT)) (-2293 (($ $ (-1137 (-480))) 78 T ELT) (($ $ (-480)) 72 T ELT)) (-3616 (((-83) $) 87 T ELT)) (-3775 (($ $) 105 T ELT)) (-3776 (((-689) $) 104 T ELT)) (-3777 (($ $) 103 T ELT)) (-3513 (($ (-580 |#2|)) 53 T ELT)) (-2877 (($ $) 126 T ELT)) (-3505 (((-580 $) $) 90 T ELT)) (-3014 (((-83) $ $) 89 T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 41 T ELT)) (-3042 (((-83) $ $) 20 T ELT)) (-3940 (((-689) $) 39 T ELT))) -(((-612 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-480))) (-15 -3425 ((-83) |#1| (-689))) (-15 -3702 ((-83) |#1| (-689))) (-15 -3699 ((-83) |#1| (-689))) (-15 -3426 ((-83) |#1|)) (-15 -3427 ((-83) |#1|)) (-15 -3783 (|#2| |#1| (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480))) (-15 -2193 ((-580 |#2|) |#1|)) (-15 -2192 ((-83) (-480) |#1|)) (-15 -2191 ((-580 (-480)) |#1|)) (-15 -2189 ((-480) |#1|)) (-15 -2188 ((-480) |#1|)) (-15 -3513 (|#1| (-580 |#2|))) (-15 -3783 (|#1| |#1| (-1137 (-480)))) (-15 -2293 (|#1| |#1| (-480))) (-15 -2293 (|#1| |#1| (-1137 (-480)))) (-15 -2292 (|#1| |#2| |#1| (-480))) (-15 -2292 (|#1| |#1| |#1| (-480))) (-15 -3775 (|#1| |#1|)) (-15 -3776 ((-689) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3781 (|#1| |#1| (-689))) (-15 -3783 (|#2| |#1| "last")) (-15 -3781 (|#2| |#1|)) (-15 -3782 (|#1| |#1| (-689))) (-15 -3783 (|#1| |#1| "rest")) (-15 -3782 (|#1| |#1|)) (-15 -3784 (|#1| |#1| (-689))) (-15 -3783 (|#2| |#1| "first")) (-15 -3784 (|#2| |#1|)) (-15 -3013 ((-83) |#1| |#1|)) (-15 -3014 ((-83) |#1| |#1|)) (-15 -3015 ((-480) |#1| |#1|)) (-15 -3616 ((-83) |#1|)) (-15 -3783 (|#2| |#1| "value")) (-15 -3385 (|#2| |#1|)) (-15 -3510 ((-83) |#1|)) (-15 -3017 ((-580 |#1|) |#1|)) (-15 -3505 ((-580 |#1|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3940 ((-689) |#1|))) (-613 |#2|) (-1120)) (T -612)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3778 ((|#1| $) 71 T ELT)) (-3780 (($ $) 73 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 107 (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 58 (|has| $ (-6 -3979)) ELT)) (-3425 (((-83) $ (-689)) 90 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 62 (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) 60 (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 127 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) 96 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 112 T ELT)) (-3779 ((|#1| $) 72 T ELT)) (-3707 (($) 7 T CONST)) (-2311 (($ $) 135 T ELT)) (-3782 (($ $) 79 T ELT) (($ $ (-689)) 77 T ELT)) (-1342 (($ $) 109 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 110 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 113 T ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1565 ((|#1| $ (-480) |#1|) 95 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 97 T ELT)) (-3426 (((-83) $) 93 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2310 (((-689) $) 134 T ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-3597 (($ (-689) |#1|) 119 T ELT)) (-3702 (((-83) $ (-689)) 91 T ELT)) (-2188 (((-480) $) 105 (|has| (-480) (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 104 (|has| (-480) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3699 (((-83) $ (-689)) 92 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-2313 (($ $) 137 T ELT)) (-2314 (((-83) $) 138 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) 76 T ELT) (($ $ (-689)) 74 T ELT)) (-2292 (($ $ $ (-480)) 126 T ELT) (($ |#1| $ (-480)) 125 T ELT)) (-2191 (((-580 (-480)) $) 102 T ELT)) (-2192 (((-83) (-480) $) 101 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-2312 ((|#1| $) 136 T ELT)) (-3784 ((|#1| $) 82 T ELT) (($ $ (-689)) 80 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2187 (($ $ |#1|) 106 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-480)) 133 T ELT)) (-3427 (((-83) $) 94 T ELT)) (-2315 (((-83) $) 139 T ELT)) (-2316 (((-83) $) 140 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 100 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1137 (-480))) 118 T ELT) ((|#1| $ (-480)) 99 T ELT) ((|#1| $ (-480) |#1|) 98 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-2293 (($ $ (-1137 (-480))) 124 T ELT) (($ $ (-480)) 123 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-3775 (($ $) 68 T ELT)) (-3773 (($ $) 65 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) 69 T ELT)) (-3777 (($ $) 70 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 108 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 117 T ELT)) (-3774 (($ $ $) 67 (|has| $ (-6 -3979)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3979)) ELT)) (-3785 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-580 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2877 (($ $) 132 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-613 |#1|) (-111) (-1120)) (T -613)) -((-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) (-3693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) (-2877 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120))))) -(-13 (-1055 |t#1|) (-10 -8 (-15 -3389 ($ (-1 (-83) |t#1|) $)) (-15 -3693 ($ (-1 (-83) |t#1|) $)) (-15 -2316 ((-83) $)) (-15 -2315 ((-83) $)) (-15 -2314 ((-83) $)) (-15 -2313 ($ $)) (-15 -2312 (|t#1| $)) (-15 -2311 ($ $)) (-15 -2310 ((-689) $)) (-15 -3752 ($ $ (-480))) (-15 -2877 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1055 |#1|) . T) ((-1120) . T) ((-1159 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3163 (((-418) $) 15 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 17 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-614) (-13 (-989) (-10 -8 (-15 -3163 ((-418) $)) (-15 -3218 ((-1040) $))))) (T -614)) -((-3163 (*1 *2 *1) (-12 (-5 *2 (-418)) (-5 *1 (-614)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-614))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3917 (((-580 |#1|) $) 15 T ELT)) (-3122 (($ $) 19 T ELT)) (-2650 (((-83) $) 20 T ELT)) (-3142 (((-3 |#1| "failed") $) 23 T ELT)) (-3141 ((|#1| $) 21 T ELT)) (-3782 (($ $) 37 T ELT)) (-3919 (($ $) 25 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-2497 (((-83) $ $) 46 T ELT)) (-3816 (((-825) $) 40 T ELT)) (-3123 (($ $) 18 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 ((|#1| $) 36 T ELT)) (-3929 (((-767) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-734 |#1|) $) 28 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 13 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-615 |#1|) (-13 (-751) (-945 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3929 ((-734 |#1|) $)) (-15 -3784 (|#1| $)) (-15 -3123 ($ $)) (-15 -3816 ((-825) $)) (-15 -2497 ((-83) $ $)) (-15 -3919 ($ $)) (-15 -3782 ($ $)) (-15 -2650 ((-83) $)) (-15 -3122 ($ $)) (-15 -3917 ((-580 |#1|) $)))) (-751)) (T -615)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) (-3784 (*1 *2 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-3123 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) (-2497 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-615 *3)) (-4 *3 (-751))))) -((-2325 ((|#1| (-1 |#1| (-689) |#1|) (-689) |#1|) 11 T ELT)) (-2317 ((|#1| (-1 |#1| |#1|) (-689) |#1|) 9 T ELT))) -(((-616 |#1|) (-10 -7 (-15 -2317 (|#1| (-1 |#1| |#1|) (-689) |#1|)) (-15 -2325 (|#1| (-1 |#1| (-689) |#1|) (-689) |#1|))) (-1007)) (T -616)) -((-2325 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-689) *2)) (-5 *4 (-689)) (-4 *2 (-1007)) (-5 *1 (-616 *2)))) (-2317 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-689)) (-4 *2 (-1007)) (-5 *1 (-616 *2))))) -((-2319 ((|#2| |#1| |#2|) 9 T ELT)) (-2318 ((|#1| |#1| |#2|) 8 T ELT))) -(((-617 |#1| |#2|) (-10 -7 (-15 -2318 (|#1| |#1| |#2|)) (-15 -2319 (|#2| |#1| |#2|))) (-1007) (-1007)) (T -617)) -((-2319 (*1 *2 *3 *2) (-12 (-5 *1 (-617 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) (-2318 (*1 *2 *2 *3) (-12 (-5 *1 (-617 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) -((-2320 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2320 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1007) (-1007) (-1007)) (T -618)) -((-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)) (-5 *1 (-618 *5 *6 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3302 (((-1121) $) 22 T ELT)) (-3301 (((-580 (-1121)) $) 20 T ELT)) (-2321 (($ (-580 (-1121)) (-1121)) 15 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 30 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT) (((-1121) $) 23 T ELT) (($ (-1020)) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-619) (-13 (-989) (-549 (-1121)) (-10 -8 (-15 -3929 ($ (-1020))) (-15 -2321 ($ (-580 (-1121)) (-1121))) (-15 -3301 ((-580 (-1121)) $)) (-15 -3302 ((-1121) $))))) (T -619)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-619)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-580 (-1121))) (-5 *3 (-1121)) (-5 *1 (-619)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-619)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-619))))) -((-2325 (((-1 |#1| (-689) |#1|) (-1 |#1| (-689) |#1|)) 26 T ELT)) (-2322 (((-1 |#1|) |#1|) 8 T ELT)) (-2324 ((|#1| |#1|) 19 T ELT)) (-2323 (((-580 |#1|) (-1 (-580 |#1|) (-580 |#1|)) (-480)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3929 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-689)) 23 T ELT))) -(((-620 |#1|) (-10 -7 (-15 -2322 ((-1 |#1|) |#1|)) (-15 -3929 ((-1 |#1|) |#1|)) (-15 -2323 (|#1| (-1 |#1| |#1|))) (-15 -2323 ((-580 |#1|) (-1 (-580 |#1|) (-580 |#1|)) (-480))) (-15 -2324 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-689))) (-15 -2325 ((-1 |#1| (-689) |#1|) (-1 |#1| (-689) |#1|)))) (-1007)) (T -620)) -((-2325 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-689) *3)) (-4 *3 (-1007)) (-5 *1 (-620 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *4 (-1007)) (-5 *1 (-620 *4)))) (-2324 (*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1007)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-580 *5) (-580 *5))) (-5 *4 (-480)) (-5 *2 (-580 *5)) (-5 *1 (-620 *5)) (-4 *5 (-1007)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1007)))) (-3929 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1007)))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1007))))) -((-2328 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2327 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3935 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2326 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-621 |#1| |#2|) (-10 -7 (-15 -2326 ((-1 |#2| |#1|) |#2|)) (-15 -2327 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3935 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2328 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1007) (-1007)) (T -621)) -((-2328 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1007)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)) (-4 *4 (-1007)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-5 *2 (-1 *5)) (-5 *1 (-621 *4 *5)))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1007)) (-4 *3 (-1007))))) -((-2333 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2329 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2330 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2331 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2332 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2329 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2330 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2331 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2332 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2333 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1007) (-1007) (-1007)) (T -622)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-1 *7 *5)) (-5 *1 (-622 *5 *6 *7)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1007)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1007)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1007)) (-4 *4 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6))))) -((-3821 (($ (-689) (-689)) 42 T ELT)) (-2338 (($ $ $) 73 T ELT)) (-3397 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3106 (((-83) $) 36 T ELT)) (-2337 (($ $ (-480) (-480)) 84 T ELT)) (-2336 (($ $ (-480) (-480)) 85 T ELT)) (-2335 (($ $ (-480) (-480) (-480) (-480)) 90 T ELT)) (-2340 (($ $) 71 T ELT)) (-3108 (((-83) $) 15 T ELT)) (-2334 (($ $ (-480) (-480) $) 91 T ELT)) (-3771 ((|#2| $ (-480) (-480) |#2|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480)) $) 89 T ELT)) (-3316 (($ (-689) |#2|) 55 T ELT)) (-3109 (($ (-580 (-580 |#2|))) 51 T ELT) (($ (-689) (-689) (-1 |#2| (-480) (-480))) 53 T ELT)) (-3577 (((-580 (-580 |#2|)) $) 80 T ELT)) (-2339 (($ $ $) 72 T ELT)) (-3449 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3783 ((|#2| $ (-480) (-480)) NIL T ELT) ((|#2| $ (-480) (-480) |#2|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480))) 88 T ELT)) (-3315 (($ (-580 |#2|)) 56 T ELT) (($ (-580 $)) 58 T ELT)) (-3107 (((-83) $) 28 T ELT)) (-3929 (($ |#4|) 63 T ELT) (((-767) $) NIL T ELT)) (-3105 (((-83) $) 38 T ELT)) (-3932 (($ $ |#2|) 124 T ELT)) (-3820 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3822 (($ $ $) 93 T ELT)) (** (($ $ (-689)) 111 T ELT) (($ $ (-480)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-480) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3929 ((-767) |#1|)) (-15 ** (|#1| |#1| (-480))) (-15 -3932 (|#1| |#1| |#2|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-689))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -2334 (|#1| |#1| (-480) (-480) |#1|)) (-15 -2335 (|#1| |#1| (-480) (-480) (-480) (-480))) (-15 -2336 (|#1| |#1| (-480) (-480))) (-15 -2337 (|#1| |#1| (-480) (-480))) (-15 -3771 (|#1| |#1| (-580 (-480)) (-580 (-480)) |#1|)) (-15 -3783 (|#1| |#1| (-580 (-480)) (-580 (-480)))) (-15 -3577 ((-580 (-580 |#2|)) |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3397 (|#1| |#3|)) (-15 -3929 (|#1| |#4|)) (-15 -3315 (|#1| (-580 |#1|))) (-15 -3315 (|#1| (-580 |#2|))) (-15 -3316 (|#1| (-689) |#2|)) (-15 -3109 (|#1| (-689) (-689) (-1 |#2| (-480) (-480)))) (-15 -3109 (|#1| (-580 (-580 |#2|)))) (-15 -3821 (|#1| (-689) (-689))) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|)) (-15 -3107 ((-83) |#1|)) (-15 -3108 ((-83) |#1|)) (-15 -3771 (|#2| |#1| (-480) (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480) (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480) (-480)))) (-624 |#2| |#3| |#4|) (-956) (-319 |#2|) (-319 |#2|)) (T -623)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3821 (($ (-689) (-689)) 103 T ELT)) (-2338 (($ $ $) 92 T ELT)) (-3397 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3106 (((-83) $) 105 T ELT)) (-2337 (($ $ (-480) (-480)) 88 T ELT)) (-2336 (($ $ (-480) (-480)) 87 T ELT)) (-2335 (($ $ (-480) (-480) (-480) (-480)) 86 T ELT)) (-2340 (($ $) 94 T ELT)) (-3108 (((-83) $) 107 T ELT)) (-2334 (($ $ (-480) (-480) $) 85 T ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) 48 T ELT) (($ $ (-580 (-480)) (-580 (-480)) $) 89 T ELT)) (-1247 (($ $ (-480) |#2|) 46 T ELT)) (-1246 (($ $ (-480) |#3|) 45 T ELT)) (-3316 (($ (-689) |#1|) 100 T ELT)) (-3707 (($) 7 T CONST)) (-3095 (($ $) 72 (|has| |#1| (-255)) ELT)) (-3097 ((|#2| $ (-480)) 50 T ELT)) (-3094 (((-689) $) 71 (|has| |#1| (-491)) ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) 47 T ELT)) (-3098 ((|#1| $ (-480) (-480)) 52 T ELT)) (-2875 (((-580 |#1|) $) 30 T ELT)) (-3093 (((-689) $) 70 (|has| |#1| (-491)) ELT)) (-3092 (((-580 |#3|) $) 69 (|has| |#1| (-491)) ELT)) (-3100 (((-689) $) 55 T ELT)) (-3597 (($ (-689) (-689) |#1|) 61 T ELT)) (-3099 (((-689) $) 54 T ELT)) (-3310 ((|#1| $) 67 (|has| |#1| (-6 (-3980 #1="*"))) ELT)) (-3104 (((-480) $) 59 T ELT)) (-3102 (((-480) $) 57 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3103 (((-480) $) 58 T ELT)) (-3101 (((-480) $) 56 T ELT)) (-3109 (($ (-580 (-580 |#1|))) 102 T ELT) (($ (-689) (-689) (-1 |#1| (-480) (-480))) 101 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3577 (((-580 (-580 |#1|)) $) 91 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3573 (((-3 $ "failed") $) 66 (|has| |#1| (-309)) ELT)) (-2339 (($ $ $) 93 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) 60 T ELT)) (-3449 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) (-480)) 53 T ELT) ((|#1| $ (-480) (-480) |#1|) 51 T ELT) (($ $ (-580 (-480)) (-580 (-480))) 90 T ELT)) (-3315 (($ (-580 |#1|)) 99 T ELT) (($ (-580 $)) 98 T ELT)) (-3107 (((-83) $) 106 T ELT)) (-3311 ((|#1| $) 68 (|has| |#1| (-6 (-3980 #1#))) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3096 ((|#3| $ (-480)) 49 T ELT)) (-3929 (($ |#3|) 97 T ELT) (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) 104 T ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3932 (($ $ |#1|) 73 (|has| |#1| (-309)) ELT)) (-3820 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3822 (($ $ $) 84 T ELT)) (** (($ $ (-689)) 75 T ELT) (($ $ (-480)) 65 (|has| |#1| (-309)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-480) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-624 |#1| |#2| |#3|) (-111) (-956) (-319 |t#1|) (-319 |t#1|)) (T -624)) -((-3108 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-83)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-83)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-83)))) (-3821 (*1 *1 *2 *2) (-12 (-5 *2 (-689)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3109 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-1 *4 (-480) (-480))) (-4 *4 (-956)) (-4 *1 (-624 *4 *5 *6)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)))) (-3316 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3929 (*1 *1 *2) (-12 (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *2)) (-4 *4 (-319 *3)) (-4 *2 (-319 *3)))) (-3397 (*1 *1 *2) (-12 (-4 *3 (-956)) (-4 *1 (-624 *3 *2 *4)) (-4 *2 (-319 *3)) (-4 *4 (-319 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-2340 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-580 (-580 *3))))) (-3783 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-580 (-480))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3771 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-580 (-480))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-2337 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-2336 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-2335 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-2334 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-3820 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (-3820 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-624 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *2 (-319 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-624 *3 *2 *4)) (-4 *3 (-956)) (-4 *2 (-319 *3)) (-4 *4 (-319 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) (-3449 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (-4 *2 (-491)))) (-3932 (*1 *1 *1 *2) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (-4 *2 (-309)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (-4 *2 (-255)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-689)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-689)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-580 *5)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (|has| *2 (-6 (-3980 #1="*"))) (-4 *2 (-956)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (|has| *2 (-6 (-3980 #1#))) (-4 *2 (-956)))) (-3573 (*1 *1 *1) (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) (-4 *2 (-309)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-4 *3 (-309))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3979) (-6 -3978) (-15 -3108 ((-83) $)) (-15 -3107 ((-83) $)) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3821 ($ (-689) (-689))) (-15 -3109 ($ (-580 (-580 |t#1|)))) (-15 -3109 ($ (-689) (-689) (-1 |t#1| (-480) (-480)))) (-15 -3316 ($ (-689) |t#1|)) (-15 -3315 ($ (-580 |t#1|))) (-15 -3315 ($ (-580 $))) (-15 -3929 ($ |t#3|)) (-15 -3397 ($ |t#2|)) (-15 -3397 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $ $)) (-15 -2338 ($ $ $)) (-15 -3577 ((-580 (-580 |t#1|)) $)) (-15 -3783 ($ $ (-580 (-480)) (-580 (-480)))) (-15 -3771 ($ $ (-580 (-480)) (-580 (-480)) $)) (-15 -2337 ($ $ (-480) (-480))) (-15 -2336 ($ $ (-480) (-480))) (-15 -2335 ($ $ (-480) (-480) (-480) (-480))) (-15 -2334 ($ $ (-480) (-480) $)) (-15 -3822 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3820 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-480) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-689))) (IF (|has| |t#1| (-491)) (-15 -3449 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-309)) (-15 -3932 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-255)) (-15 -3095 ($ $)) |%noBranch|) (IF (|has| |t#1| (-491)) (PROGN (-15 -3094 ((-689) $)) (-15 -3093 ((-689) $)) (-15 -3092 ((-580 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3980 "*"))) (PROGN (-15 -3311 (|t#1| $)) (-15 -3310 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-309)) (PROGN (-15 -3573 ((-3 $ "failed") $)) (-15 ** ($ $ (-480)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-57 |#1| |#2| |#3|) . T) ((-1120) . T)) -((-3825 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3941 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-625 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3941 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3941 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3825 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-956) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|) (-956) (-319 |#5|) (-319 |#5|) (-624 |#5| |#6| |#7|)) (T -625)) -((-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-956)) (-4 *2 (-956)) (-4 *6 (-319 *5)) (-4 *7 (-319 *5)) (-4 *8 (-319 *2)) (-4 *9 (-319 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-624 *5 *6 *7)) (-4 *10 (-624 *2 *8 *9)))) (-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-956)) (-4 *8 (-956)) (-4 *6 (-319 *5)) (-4 *7 (-319 *5)) (-4 *2 (-624 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) (-4 *9 (-319 *8)) (-4 *10 (-319 *8)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-956)) (-4 *8 (-956)) (-4 *6 (-319 *5)) (-4 *7 (-319 *5)) (-4 *2 (-624 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) (-4 *9 (-319 *8)) (-4 *10 (-319 *8))))) -((-3095 ((|#4| |#4|) 90 (|has| |#1| (-255)) ELT)) (-3094 (((-689) |#4|) 92 (|has| |#1| (-491)) ELT)) (-3093 (((-689) |#4|) 94 (|has| |#1| (-491)) ELT)) (-3092 (((-580 |#3|) |#4|) 101 (|has| |#1| (-491)) ELT)) (-2368 (((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|) 124 (|has| |#1| (-255)) ELT)) (-3310 ((|#1| |#4|) 52 T ELT)) (-2345 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-491)) ELT)) (-3573 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-309)) ELT)) (-2344 ((|#4| |#4|) 76 (|has| |#1| (-491)) ELT)) (-2342 ((|#4| |#4| |#1| (-480) (-480)) 60 T ELT)) (-2341 ((|#4| |#4| (-480) (-480)) 55 T ELT)) (-2343 ((|#4| |#4| |#1| (-480) (-480)) 65 T ELT)) (-3311 ((|#1| |#4|) 96 T ELT)) (-2506 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-491)) ELT))) -(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3311 (|#1| |#4|)) (-15 -3310 (|#1| |#4|)) (-15 -2341 (|#4| |#4| (-480) (-480))) (-15 -2342 (|#4| |#4| |#1| (-480) (-480))) (-15 -2343 (|#4| |#4| |#1| (-480) (-480))) (IF (|has| |#1| (-491)) (PROGN (-15 -3094 ((-689) |#4|)) (-15 -3093 ((-689) |#4|)) (-15 -3092 ((-580 |#3|) |#4|)) (-15 -2344 (|#4| |#4|)) (-15 -2345 ((-3 |#4| #1="failed") |#4|)) (-15 -2506 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-255)) (PROGN (-15 -3095 (|#4| |#4|)) (-15 -2368 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -3573 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-144) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|)) (T -626)) -((-3573 (*1 *2 *2) (|partial| -12 (-4 *3 (-309)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-2368 (*1 *2 *3 *3) (-12 (-4 *3 (-255)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-626 *3 *4 *5 *6)) (-4 *6 (-624 *3 *4 *5)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-255)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2345 (*1 *2 *2) (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-491)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-580 *6)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2343 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-480)) (-4 *3 (-144)) (-4 *5 (-319 *3)) (-4 *6 (-319 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6)))) (-2342 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-480)) (-4 *3 (-144)) (-4 *5 (-319 *3)) (-4 *6 (-319 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6)))) (-2341 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-480)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *1 (-626 *4 *5 *6 *2)) (-4 *2 (-624 *4 *5 *6)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-144)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-144)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689) (-689)) 63 T ELT)) (-2338 (($ $ $) NIL T ELT)) (-3397 (($ (-1170 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2337 (($ $ (-480) (-480)) 22 T ELT)) (-2336 (($ $ (-480) (-480)) NIL T ELT)) (-2335 (($ $ (-480) (-480) (-480) (-480)) NIL T ELT)) (-2340 (($ $) NIL T ELT)) (-3108 (((-83) $) NIL T ELT)) (-2334 (($ $ (-480) (-480) $) NIL T ELT)) (-3771 ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480)) $) NIL T ELT)) (-1247 (($ $ (-480) (-1170 |#1|)) NIL T ELT)) (-1246 (($ $ (-480) (-1170 |#1|)) NIL T ELT)) (-3316 (($ (-689) |#1|) 37 T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) 46 (|has| |#1| (-255)) ELT)) (-3097 (((-1170 |#1|) $ (-480)) NIL T ELT)) (-3094 (((-689) $) 48 (|has| |#1| (-491)) ELT)) (-1565 ((|#1| $ (-480) (-480) |#1|) 68 T ELT)) (-3098 ((|#1| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL T ELT)) (-3093 (((-689) $) 50 (|has| |#1| (-491)) ELT)) (-3092 (((-580 (-1170 |#1|)) $) 53 (|has| |#1| (-491)) ELT)) (-3100 (((-689) $) 32 T ELT)) (-3597 (($ (-689) (-689) |#1|) 28 T ELT)) (-3099 (((-689) $) 33 T ELT)) (-3310 ((|#1| $) 44 (|has| |#1| (-6 (-3980 #1="*"))) ELT)) (-3104 (((-480) $) 10 T ELT)) (-3102 (((-480) $) 11 T ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3103 (((-480) $) 14 T ELT)) (-3101 (((-480) $) 64 T ELT)) (-3109 (($ (-580 (-580 |#1|))) NIL T ELT) (($ (-689) (-689) (-1 |#1| (-480) (-480))) NIL T ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3577 (((-580 (-580 |#1|)) $) 75 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3573 (((-3 $ #2="failed") $) 57 (|has| |#1| (-309)) ELT)) (-2339 (($ $ $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2187 (($ $ |#1|) NIL T ELT)) (-3449 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) (-480)) NIL T ELT) ((|#1| $ (-480) (-480) |#1|) NIL T ELT) (($ $ (-580 (-480)) (-580 (-480))) NIL T ELT)) (-3315 (($ (-580 |#1|)) NIL T ELT) (($ (-580 $)) NIL T ELT) (($ (-1170 |#1|)) 69 T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3311 ((|#1| $) 42 (|has| |#1| (-6 (-3980 #1#))) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) 79 (|has| |#1| (-550 (-469))) ELT)) (-3096 (((-1170 |#1|) $ (-480)) NIL T ELT)) (-3929 (($ (-1170 |#1|)) NIL T ELT) (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) 38 T ELT) (($ $ (-480)) 61 (|has| |#1| (-309)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-480) $) NIL T ELT) (((-1170 |#1|) $ (-1170 |#1|)) NIL T ELT) (((-1170 |#1|) (-1170 |#1|) $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-627 |#1|) (-13 (-624 |#1| (-1170 |#1|) (-1170 |#1|)) (-10 -8 (-15 -3315 ($ (-1170 |#1|))) (IF (|has| |#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -3573 ((-3 $ "failed") $)) |%noBranch|))) (-956)) (T -627)) -((-3573 (*1 *1 *1) (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-309)) (-4 *2 (-956)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-956)) (-5 *1 (-627 *3))))) -((-2351 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 37 T ELT)) (-2350 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 32 T ELT)) (-2352 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-689)) 43 T ELT)) (-2347 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 25 T ELT)) (-2348 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 29 T ELT) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 27 T ELT)) (-2349 (((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|)) 31 T ELT)) (-2346 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 23 T ELT)) (** (((-627 |#1|) (-627 |#1|) (-689)) 46 T ELT))) -(((-628 |#1|) (-10 -7 (-15 -2346 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2347 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2348 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2348 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2349 ((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|))) (-15 -2350 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -2351 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2352 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-689))) (-15 ** ((-627 |#1|) (-627 |#1|) (-689)))) (-956)) (T -628)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-628 *4)))) (-2352 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-628 *4)))) (-2351 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2350 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2349 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2348 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2348 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2347 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) (-2346 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -((-3142 (((-3 |#1| "failed") $) 18 T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-2353 (($) 7 T CONST)) (-2354 (($ |#1|) 8 T ELT)) (-3929 (($ |#1|) 16 T ELT) (((-767) $) 23 T ELT)) (-3549 (((-83) $ (|[\|\|]| |#1|)) 14 T ELT) (((-83) $ (|[\|\|]| -2353)) 11 T ELT)) (-3555 ((|#1| $) 15 T ELT))) -(((-629 |#1|) (-13 (-1166) (-945 |#1|) (-549 (-767)) (-10 -8 (-15 -2354 ($ |#1|)) (-15 -3549 ((-83) $ (|[\|\|]| |#1|))) (-15 -3549 ((-83) $ (|[\|\|]| -2353))) (-15 -3555 (|#1| $)) (-15 -2353 ($) -3935))) (-549 (-767))) (T -629)) -((-2354 (*1 *1 *2) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767))))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-549 (-767))) (-5 *2 (-83)) (-5 *1 (-629 *4)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2353)) (-5 *2 (-83)) (-5 *1 (-629 *4)) (-4 *4 (-549 (-767))))) (-3555 (*1 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767))))) (-2353 (*1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767)))))) -((-3724 (((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)) 20 T ELT)) (-3722 ((|#1| (-627 |#2|)) 9 T ELT)) (-3723 (((-627 |#1|) (-627 |#2|)) 18 T ELT))) -(((-630 |#1| |#2|) (-10 -7 (-15 -3722 (|#1| (-627 |#2|))) (-15 -3723 ((-627 |#1|) (-627 |#2|))) (-15 -3724 ((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)))) (-491) (-899 |#1|)) (T -630)) -((-3724 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-899 *4)) (-4 *4 (-491)) (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4))) (-5 *1 (-630 *4 *5)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-899 *4)) (-4 *4 (-491)) (-5 *2 (-627 *4)) (-5 *1 (-630 *4 *5)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-630 *2 *4))))) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2356 (($ $) 66 T ELT)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT) (($ |#1| $ (-689)) 67 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-2355 (((-580 (-2 (|:| |entry| |#1|) (|:| -1935 (-689)))) $) 65 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-631 |#1|) (-111) (-1007)) (T -631)) -((-3592 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-631 *2)) (-4 *2 (-1007)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1007)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-631 *3)) (-4 *3 (-1007)) (-5 *2 (-580 (-2 (|:| |entry| *3) (|:| -1935 (-689)))))))) -(-13 (-191 |t#1|) (-10 -8 (-15 -3592 ($ |t#1| $ (-689))) (-15 -2356 ($ $)) (-15 -2355 ((-580 (-2 (|:| |entry| |t#1|) (|:| -1935 (-689)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-191 |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2359 (((-580 |#1|) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))) (-480)) 66 T ELT)) (-2357 ((|#1| |#1| (-480)) 63 T ELT)) (-3129 ((|#1| |#1| |#1| (-480)) 46 T ELT)) (-3715 (((-580 |#1|) |#1| (-480)) 49 T ELT)) (-2360 ((|#1| |#1| (-480) |#1| (-480)) 40 T ELT)) (-2358 (((-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))) |#1| (-480)) 62 T ELT))) -(((-632 |#1|) (-10 -7 (-15 -3129 (|#1| |#1| |#1| (-480))) (-15 -2357 (|#1| |#1| (-480))) (-15 -3715 ((-580 |#1|) |#1| (-480))) (-15 -2358 ((-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))) |#1| (-480))) (-15 -2359 ((-580 |#1|) (-580 (-2 (|:| -3715 |#1|) (|:| -3931 (-480)))) (-480))) (-15 -2360 (|#1| |#1| (-480) |#1| (-480)))) (-1146 (-480))) (T -632)) -((-2360 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-2 (|:| -3715 *5) (|:| -3931 (-480))))) (-5 *4 (-480)) (-4 *5 (-1146 *4)) (-5 *2 (-580 *5)) (-5 *1 (-632 *5)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-5 *2 (-580 (-2 (|:| -3715 *3) (|:| -3931 *4)))) (-5 *1 (-632 *3)) (-4 *3 (-1146 *4)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-5 *2 (-580 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1146 *4)))) (-2357 (*1 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3)))) (-3129 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3))))) -((-2364 (((-1 (-849 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 17 T ELT)) (-2361 (((-1038 (-177)) (-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-177)) (-995 (-177)) (-580 (-219))) 53 T ELT) (((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-177)) (-995 (-177)) (-580 (-219))) 55 T ELT) (((-1038 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-995 (-177)) (-995 (-177)) (-580 (-219))) 57 T ELT)) (-2363 (((-1038 (-177)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-580 (-219))) NIL T ELT)) (-2362 (((-1038 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-995 (-177)) (-995 (-177)) (-580 (-219))) 58 T ELT))) -(((-633) (-10 -7 (-15 -2361 ((-1038 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-995 (-177)) (-995 (-177)) (-580 (-219)))) (-15 -2361 ((-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-177)) (-995 (-177)) (-580 (-219)))) (-15 -2361 ((-1038 (-177)) (-1038 (-177)) (-1 (-849 (-177)) (-177) (-177)) (-995 (-177)) (-995 (-177)) (-580 (-219)))) (-15 -2362 ((-1038 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-995 (-177)) (-995 (-177)) (-580 (-219)))) (-15 -2363 ((-1038 (-177)) (-262 (-480)) (-262 (-480)) (-262 (-480)) (-1 (-177) (-177)) (-995 (-177)) (-580 (-219)))) (-15 -2364 ((-1 (-849 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -633)) -((-2364 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-1 (-177) (-177) (-177) (-177))) (-5 *2 (-1 (-849 (-177)) (-177) (-177))) (-5 *1 (-633)))) (-2363 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633)))) (-2362 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined")) (-5 *5 (-995 (-177))) (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633)))) (-2361 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-177))) (-5 *5 (-580 (-219))) (-5 *1 (-633)))) (-2361 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-177))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633)))) (-2361 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1#)) (-5 *5 (-995 (-177))) (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633))))) -((-3715 (((-343 (-1076 |#4|)) (-1076 |#4|)) 87 T ELT) (((-343 |#4|) |#4|) 270 T ELT))) -(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4|)) (-15 -3715 ((-343 (-1076 |#4|)) (-1076 |#4|)))) (-751) (-712) (-296) (-856 |#3| |#2| |#1|)) (T -634)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-296)) (-4 *7 (-856 *6 *5 *4)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-634 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-296)) (-5 *2 (-343 *3)) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4))))) -((-2367 (((-627 |#1|) (-627 |#1|) |#1| |#1|) 85 T ELT)) (-3095 (((-627 |#1|) (-627 |#1|) |#1|) 66 T ELT)) (-2366 (((-627 |#1|) (-627 |#1|) |#1|) 86 T ELT)) (-2365 (((-627 |#1|) (-627 |#1|)) 67 T ELT)) (-2368 (((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|) 84 T ELT))) -(((-635 |#1|) (-10 -7 (-15 -2365 ((-627 |#1|) (-627 |#1|))) (-15 -3095 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -2366 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -2367 ((-627 |#1|) (-627 |#1|) |#1| |#1|)) (-15 -2368 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|))) (-255)) (T -635)) -((-2368 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-635 *3)) (-4 *3 (-255)))) (-2367 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3)))) (-3095 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3)))) (-2365 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3))))) -((-2374 (((-1 |#4| |#2| |#3|) |#1| (-1081) (-1081)) 19 T ELT)) (-2369 (((-1 |#4| |#2| |#3|) (-1081)) 12 T ELT))) -(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 ((-1 |#4| |#2| |#3|) (-1081))) (-15 -2374 ((-1 |#4| |#2| |#3|) |#1| (-1081) (-1081)))) (-550 (-469)) (-1120) (-1120) (-1120)) (T -636)) -((-2374 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1081)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-636 *3 *5 *6 *7)) (-4 *3 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-636 *4 *5 *6 *7)) (-4 *4 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120))))) -((-2370 (((-1 (-177) (-177) (-177)) |#1| (-1081) (-1081)) 43 T ELT) (((-1 (-177) (-177)) |#1| (-1081)) 48 T ELT))) -(((-637 |#1|) (-10 -7 (-15 -2370 ((-1 (-177) (-177)) |#1| (-1081))) (-15 -2370 ((-1 (-177) (-177) (-177)) |#1| (-1081) (-1081)))) (-550 (-469))) (T -637)) -((-2370 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1081)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-637 *3)) (-4 *3 (-550 (-469))))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-637 *3)) (-4 *3 (-550 (-469)))))) -((-2371 (((-1081) |#1| (-1081) (-580 (-1081))) 10 T ELT) (((-1081) |#1| (-1081) (-1081) (-1081)) 13 T ELT) (((-1081) |#1| (-1081) (-1081)) 12 T ELT) (((-1081) |#1| (-1081)) 11 T ELT))) -(((-638 |#1|) (-10 -7 (-15 -2371 ((-1081) |#1| (-1081))) (-15 -2371 ((-1081) |#1| (-1081) (-1081))) (-15 -2371 ((-1081) |#1| (-1081) (-1081) (-1081))) (-15 -2371 ((-1081) |#1| (-1081) (-580 (-1081))))) (-550 (-469))) (T -638)) -((-2371 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-580 (-1081))) (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) (-2371 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) (-2371 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) (-2371 (*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469)))))) -((-2372 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-639 |#1| |#2|) (-10 -7 (-15 -2372 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1120) (-1120)) (T -639)) -((-2372 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -((-2373 (((-1 |#3| |#2|) (-1081)) 11 T ELT)) (-2374 (((-1 |#3| |#2|) |#1| (-1081)) 21 T ELT))) -(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2373 ((-1 |#3| |#2|) (-1081))) (-15 -2374 ((-1 |#3| |#2|) |#1| (-1081)))) (-550 (-469)) (-1120) (-1120)) (T -640)) -((-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120))))) -((-2377 (((-3 (-580 (-1076 |#4|)) #1="failed") (-1076 |#4|) (-580 |#2|) (-580 (-1076 |#4|)) (-580 |#3|) (-580 |#4|) (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| |#4|)))) (-580 (-689)) (-1170 (-580 (-1076 |#3|))) |#3|) 92 T ELT)) (-2376 (((-3 (-580 (-1076 |#4|)) #1#) (-1076 |#4|) (-580 |#2|) (-580 (-1076 |#3|)) (-580 |#3|) (-580 |#4|) (-580 (-689)) |#3|) 110 T ELT)) (-2375 (((-3 (-580 (-1076 |#4|)) #1#) (-1076 |#4|) (-580 |#2|) (-580 |#3|) (-580 (-689)) (-580 (-1076 |#4|)) (-1170 (-580 (-1076 |#3|))) |#3|) 48 T ELT))) -(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-3 (-580 (-1076 |#4|)) #1="failed") (-1076 |#4|) (-580 |#2|) (-580 |#3|) (-580 (-689)) (-580 (-1076 |#4|)) (-1170 (-580 (-1076 |#3|))) |#3|)) (-15 -2376 ((-3 (-580 (-1076 |#4|)) #1#) (-1076 |#4|) (-580 |#2|) (-580 (-1076 |#3|)) (-580 |#3|) (-580 |#4|) (-580 (-689)) |#3|)) (-15 -2377 ((-3 (-580 (-1076 |#4|)) #1#) (-1076 |#4|) (-580 |#2|) (-580 (-1076 |#4|)) (-580 |#3|) (-580 |#4|) (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| |#4|)))) (-580 (-689)) (-1170 (-580 (-1076 |#3|))) |#3|))) (-712) (-751) (-255) (-856 |#3| |#1| |#2|)) (T -641)) -((-2377 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-580 (-1076 *13))) (-5 *3 (-1076 *13)) (-5 *4 (-580 *12)) (-5 *5 (-580 *10)) (-5 *6 (-580 *13)) (-5 *7 (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| *13))))) (-5 *8 (-580 (-689))) (-5 *9 (-1170 (-580 (-1076 *10)))) (-4 *12 (-751)) (-4 *10 (-255)) (-4 *13 (-856 *10 *11 *12)) (-4 *11 (-712)) (-5 *1 (-641 *11 *12 *10 *13)))) (-2376 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-580 *11)) (-5 *5 (-580 (-1076 *9))) (-5 *6 (-580 *9)) (-5 *7 (-580 *12)) (-5 *8 (-580 (-689))) (-4 *11 (-751)) (-4 *9 (-255)) (-4 *12 (-856 *9 *10 *11)) (-4 *10 (-712)) (-5 *2 (-580 (-1076 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1076 *12)))) (-2375 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-580 (-1076 *11))) (-5 *3 (-1076 *11)) (-5 *4 (-580 *10)) (-5 *5 (-580 *8)) (-5 *6 (-580 (-689))) (-5 *7 (-1170 (-580 (-1076 *8)))) (-4 *10 (-751)) (-4 *8 (-255)) (-4 *11 (-856 *8 *9 *10)) (-4 *9 (-712)) (-5 *1 (-641 *9 *10 *8 *11))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 54 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2879 (($ |#1| (-689)) 52 T ELT)) (-2806 (((-689) $) 56 T ELT)) (-3159 ((|#1| $) 55 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3931 (((-689) $) 57 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 51 (|has| |#1| (-144)) ELT)) (-3660 ((|#1| $ (-689)) 53 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 59 T ELT) (($ |#1| $) 58 T ELT))) -(((-642 |#1|) (-111) (-956)) (T -642)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-956)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-956)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-642 *2)) (-4 *2 (-956)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-642 *2)) (-4 *2 (-956))))) -(-13 (-956) (-80 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3931 ((-689) $)) (-15 -2806 ((-689) $)) (-15 -3159 (|t#1| $)) (-15 -3942 ($ $)) (-15 -3660 (|t#1| $ (-689))) (-15 -2879 ($ |t#1| (-689))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-660) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3941 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3941 (|#6| (-1 |#4| |#1|) |#3|))) (-491) (-1146 |#1|) (-1146 (-345 |#2|)) (-491) (-1146 |#4|) (-1146 (-345 |#5|))) (T -643)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-491)) (-4 *7 (-491)) (-4 *6 (-1146 *5)) (-4 *2 (-1146 (-345 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1146 (-345 *6))) (-4 *8 (-1146 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2378 (((-1064) (-767)) 36 T ELT)) (-3600 (((-1176) (-1064)) 29 T ELT)) (-2380 (((-1064) (-767)) 26 T ELT)) (-2379 (((-1064) (-767)) 27 T ELT)) (-3929 (((-767) $) NIL T ELT) (((-1064) (-767)) 25 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-644) (-13 (-1007) (-10 -7 (-15 -3929 ((-1064) (-767))) (-15 -2380 ((-1064) (-767))) (-15 -2379 ((-1064) (-767))) (-15 -2378 ((-1064) (-767))) (-15 -3600 ((-1176) (-1064)))))) (T -644)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-644))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL T ELT)) (-3825 (($ |#1| |#2|) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2600 ((|#2| $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2390 (((-3 $ #1#) $ $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-645 |#1| |#2| |#3| |#4| |#5|) (-13 (-309) (-10 -8 (-15 -2600 (|#2| $)) (-15 -3929 (|#1| $)) (-15 -3825 ($ |#1| |#2|)) (-15 -2390 ((-3 $ #1="failed") $ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -645)) -((-2600 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-645 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3929 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2390 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 37 T ELT)) (-3750 (((-1170 |#1|) $ (-689)) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3748 (($ (-1076 |#1|)) NIL T ELT)) (-3069 (((-1076 $) $ (-988)) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-988))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3738 (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3121 (((-689)) 55 (|has| |#1| (-315)) ELT)) (-3744 (($ $ (-689)) NIL T ELT)) (-3743 (($ $ (-689)) NIL T ELT)) (-2387 ((|#2| |#2|) 51 T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-387)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-988) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-988) $) NIL T ELT)) (-3739 (($ $ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) NIL (|has| |#1| (-144)) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) 72 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3825 (($ |#2|) 49 T ELT)) (-3450 (((-3 $ #1#) $) 98 T ELT)) (-2980 (($) 59 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3742 (($ $ $) NIL T ELT)) (-3736 (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3735 (((-2 (|:| -3937 |#1|) (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-2383 (((-864 $)) 89 T ELT)) (-1613 (($ $ |#1| (-689) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-988) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-988) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ $) NIL (|has| |#1| (-491)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-1057)) ELT)) (-3070 (($ (-1076 |#1|) (-988)) NIL T ELT) (($ (-1076 $) (-988)) NIL T ELT)) (-3760 (($ $ (-689)) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) 86 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-988)) NIL T ELT) (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2600 ((|#2|) 52 T ELT)) (-2806 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-1614 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3749 (((-1076 |#1|) $) NIL T ELT)) (-3068 (((-3 (-988) #1#) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-3065 ((|#2| $) 48 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) 35 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-988)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3795 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (|has| |#1| (-1057)) CONST)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2381 (($ $) 88 (|has| |#1| (-296)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-988) |#1|) NIL T ELT) (($ $ (-580 (-988)) (-580 |#1|)) NIL T ELT) (($ $ (-988) $) NIL T ELT) (($ $ (-580 (-988)) (-580 $)) NIL T ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-345 $) (-345 $) (-345 $)) NIL (|has| |#1| (-491)) ELT) ((|#1| (-345 $) |#1|) NIL (|has| |#1| (-309)) ELT) (((-345 $) $ (-345 $)) NIL (|has| |#1| (-491)) ELT)) (-3747 (((-3 $ #1#) $ (-689)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 99 (|has| |#1| (-309)) ELT)) (-3740 (($ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3931 (((-689) $) 39 T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-988) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-988) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-988) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-2382 (((-864 $)) 43 T ELT)) (-3737 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT) (((-3 (-345 $) #1#) (-345 $) $) NIL (|has| |#1| (-491)) ELT)) (-3929 (((-767) $) 69 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-988)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) 71 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 26 T CONST)) (-2386 (((-1170 |#1|) $) 84 T ELT)) (-2385 (($ (-1170 |#1|)) 58 T ELT)) (-2652 (($) 9 T CONST)) (-2655 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-2384 (((-1170 |#1|) $) NIL T ELT)) (-3042 (((-83) $ $) 77 T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 40 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 93 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-646 |#1| |#2|) (-13 (-1146 |#1|) (-552 |#2|) (-10 -8 (-15 -2387 (|#2| |#2|)) (-15 -2600 (|#2|)) (-15 -3825 ($ |#2|)) (-15 -3065 (|#2| $)) (-15 -2386 ((-1170 |#1|) $)) (-15 -2385 ($ (-1170 |#1|))) (-15 -2384 ((-1170 |#1|) $)) (-15 -2383 ((-864 $))) (-15 -2382 ((-864 $))) (IF (|has| |#1| (-296)) (-15 -2381 ($ $)) |%noBranch|) (IF (|has| |#1| (-315)) (-6 (-315)) |%noBranch|))) (-956) (-1146 |#1|)) (T -646)) -((-2387 (*1 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-646 *3 *2)) (-4 *2 (-1146 *3)))) (-2600 (*1 *2) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-646 *3 *2)) (-4 *3 (-956)))) (-3825 (*1 *1 *2) (-12 (-4 *3 (-956)) (-5 *1 (-646 *3 *2)) (-4 *2 (-1146 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-646 *3 *2)) (-4 *3 (-956)))) (-2386 (*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-1170 *3)) (-5 *1 (-646 *3 *4)) (-4 *4 (-1146 *3)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-956)) (-5 *1 (-646 *3 *4)) (-4 *4 (-1146 *3)))) (-2384 (*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-1170 *3)) (-5 *1 (-646 *3 *4)) (-4 *4 (-1146 *3)))) (-2383 (*1 *2) (-12 (-4 *3 (-956)) (-5 *2 (-864 (-646 *3 *4))) (-5 *1 (-646 *3 *4)) (-4 *4 (-1146 *3)))) (-2382 (*1 *2) (-12 (-4 *3 (-956)) (-5 *2 (-864 (-646 *3 *4))) (-5 *1 (-646 *3 *4)) (-4 *4 (-1146 *3)))) (-2381 (*1 *1 *1) (-12 (-4 *2 (-296)) (-4 *2 (-956)) (-5 *1 (-646 *2 *3)) (-4 *3 (-1146 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 ((|#1| $) 13 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2389 ((|#2| $) 12 T ELT)) (-3513 (($ |#1| |#2|) 16 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-2 (|:| -2388 |#1|) (|:| -2389 |#2|))) 15 T ELT) (((-2 (|:| -2388 |#1|) (|:| -2389 |#2|)) $) 14 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 11 T ELT))) -(((-647 |#1| |#2| |#3|) (-13 (-751) (-425 (-2 (|:| -2388 |#1|) (|:| -2389 |#2|))) (-10 -8 (-15 -2389 (|#2| $)) (-15 -2388 (|#1| $)) (-15 -3513 ($ |#1| |#2|)))) (-751) (-1007) (-1 (-83) (-2 (|:| -2388 |#1|) (|:| -2389 |#2|)) (-2 (|:| -2388 |#1|) (|:| -2389 |#2|)))) (T -647)) -((-2389 (*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-647 *3 *2 *4)) (-4 *3 (-751)) (-14 *4 (-1 (-83) (-2 (|:| -2388 *3) (|:| -2389 *2)) (-2 (|:| -2388 *3) (|:| -2389 *2)))))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-751)) (-5 *1 (-647 *2 *3 *4)) (-4 *3 (-1007)) (-14 *4 (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *3)) (-2 (|:| -2388 *2) (|:| -2389 *3)))))) (-3513 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-751)) (-4 *3 (-1007)) (-14 *4 (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *3)) (-2 (|:| -2388 *2) (|:| -2389 *3))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 66 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-84) #1#) $) 107 T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-84) $) 39 T ELT)) (-3450 (((-3 $ #1#) $) 102 T ELT)) (-2502 ((|#2| (-84) |#2|) 93 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2501 (($ |#1| (-307 (-84))) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2503 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2504 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3783 ((|#2| $ |#2|) 33 T ELT)) (-2505 ((|#1| |#1|) 112 (|has| |#1| (-144)) ELT)) (-3929 (((-767) $) 73 T ELT) (($ (-480)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-84)) 23 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 37 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2506 (($ $) 111 (|has| |#1| (-144)) ELT) (($ $ $) 115 (|has| |#1| (-144)) ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 9 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 83 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ (-84) (-480)) NIL T ELT) (($ $ (-480)) 64 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-144)) ELT) (($ $ |#1|) 109 (|has| |#1| (-144)) ELT))) -(((-648 |#1| |#2|) (-13 (-956) (-945 |#1|) (-945 (-84)) (-239 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2506 ($ $)) (-15 -2506 ($ $ $)) (-15 -2505 (|#1| |#1|))) |%noBranch|) (-15 -2504 ($ $ (-1 |#2| |#2|))) (-15 -2503 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-84) (-480))) (-15 ** ($ $ (-480))) (-15 -2502 (|#2| (-84) |#2|)) (-15 -2501 ($ |#1| (-307 (-84)))))) (-956) (-587 |#1|)) (T -648)) -((-2506 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) (-2506 (*1 *1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) (-2505 (*1 *2 *2) (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) (-2504 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-956)) (-5 *1 (-648 *3 *4)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-956)) (-5 *1 (-648 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-648 *4 *5)) (-4 *5 (-587 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *3 (-956)) (-5 *1 (-648 *3 *4)) (-4 *4 (-587 *3)))) (-2502 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-4 *4 (-956)) (-5 *1 (-648 *4 *2)) (-4 *2 (-587 *4)))) (-2501 (*1 *1 *2 *3) (-12 (-5 *3 (-307 (-84))) (-4 *2 (-956)) (-5 *1 (-648 *2 *4)) (-4 *4 (-587 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 33 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3825 (($ |#1| |#2|) 25 T ELT)) (-3450 (((-3 $ #1#) $) 51 T ELT)) (-2398 (((-83) $) 35 T ELT)) (-2600 ((|#2| $) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 52 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2390 (((-3 $ #1#) $ $) 50 T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-480)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3111 (((-689)) 28 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 16 T CONST)) (-2652 (($) 30 T CONST)) (-3042 (((-83) $ $) 41 T ELT)) (-3820 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3822 (($ $ $) 43 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-956) (-10 -8 (-15 -2600 (|#2| $)) (-15 -3929 (|#1| $)) (-15 -3825 ($ |#1| |#2|)) (-15 -2390 ((-3 $ #1="failed") $ $)) (-15 -3450 ((-3 $ #1#) $)) (-15 -2470 ($ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649)) -((-3450 (*1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2600 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3929 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2390 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2470 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-650 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|))) (-651 |#2|) (-144)) (T -650)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-651 |#1|) (-111) (-144)) (T -651)) -NIL -(-13 (-80 |t#1| |t#1|) (-579 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2427 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3830 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2391 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 16 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3751 ((|#1| $ |#1|) 24 T ELT) (((-738 |#1|) $ (-738 |#1|)) 32 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3929 (((-767) $) 39 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 9 T CONST)) (-3042 (((-83) $ $) 48 T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-652 |#1|) (-13 (-408) (-10 -8 (-15 -2391 ($ |#1| |#1| |#1| |#1|)) (-15 -2427 ($ |#1|)) (-15 -3830 ($ |#1|)) (-15 -3450 ($)) (-15 -2427 ($ $ |#1|)) (-15 -3830 ($ $ |#1|)) (-15 -3450 ($ $)) (-15 -3751 (|#1| $ |#1|)) (-15 -3751 ((-738 |#1|) $ (-738 |#1|))))) (-309)) (T -652)) -((-2391 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-2427 (*1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3830 (*1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3450 (*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-2427 (*1 *1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3830 (*1 *1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3751 (*1 *2 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) (-3751 (*1 *2 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *3 (-309)) (-5 *1 (-652 *3))))) -((-2395 (($ $ (-825)) 19 T ELT)) (-2394 (($ $ (-825)) 20 T ELT)) (** (($ $ (-825)) 10 T ELT))) -(((-653 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-825))) (-15 -2394 (|#1| |#1| (-825))) (-15 -2395 (|#1| |#1| (-825)))) (-654)) (T -653)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-2395 (($ $ (-825)) 19 T ELT)) (-2394 (($ $ (-825)) 18 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (** (($ $ (-825)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-654) (-111)) (T -654)) -((* (*1 *1 *1 *1) (-4 *1 (-654))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825))))) -(-13 (-1007) (-10 -8 (-15 * ($ $ $)) (-15 -2395 ($ $ (-825))) (-15 -2394 ($ $ (-825))) (-15 ** ($ $ (-825))))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2395 (($ $ (-825)) NIL T ELT) (($ $ (-689)) 18 T ELT)) (-2398 (((-83) $) 10 T ELT)) (-2394 (($ $ (-825)) NIL T ELT) (($ $ (-689)) 19 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 16 T ELT))) -(((-655 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-689))) (-15 -2394 (|#1| |#1| (-689))) (-15 -2395 (|#1| |#1| (-689))) (-15 -2398 ((-83) |#1|)) (-15 ** (|#1| |#1| (-825))) (-15 -2394 (|#1| |#1| (-825))) (-15 -2395 (|#1| |#1| (-825)))) (-656)) (T -655)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-2392 (((-3 $ "failed") $) 22 T ELT)) (-2395 (($ $ (-825)) 19 T ELT) (($ $ (-689)) 27 T ELT)) (-3450 (((-3 $ "failed") $) 24 T ELT)) (-2398 (((-83) $) 28 T ELT)) (-2393 (((-3 $ "failed") $) 23 T ELT)) (-2394 (($ $ (-825)) 18 T ELT) (($ $ (-689)) 26 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 29 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (** (($ $ (-825)) 17 T ELT) (($ $ (-689)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-656) (-111)) (T -656)) -((-2652 (*1 *1) (-4 *1 (-656))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-656)) (-5 *2 (-83)))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689)))) (-3450 (*1 *1 *1) (|partial| -4 *1 (-656))) (-2393 (*1 *1 *1) (|partial| -4 *1 (-656))) (-2392 (*1 *1 *1) (|partial| -4 *1 (-656)))) -(-13 (-654) (-10 -8 (-15 -2652 ($) -3935) (-15 -2398 ((-83) $)) (-15 -2395 ($ $ (-689))) (-15 -2394 ($ $ (-689))) (-15 ** ($ $ (-689))) (-15 -3450 ((-3 $ "failed") $)) (-15 -2393 ((-3 $ "failed") $)) (-15 -2392 ((-3 $ "failed") $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-654) . T) ((-1007) . T) ((-1120) . T)) -((-3121 (((-689)) 39 T ELT)) (-3142 (((-3 (-480) #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3825 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-345 |#3|)) 49 T ELT)) (-3450 (((-3 $ #1#) $) 69 T ELT)) (-2980 (($) 43 T ELT)) (-3117 ((|#2| $) 21 T ELT)) (-2397 (($) 18 T ELT)) (-3741 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-2396 (((-627 |#2|) (-1170 $) (-1 |#2| |#2|)) 64 T ELT)) (-3955 (((-1170 |#2|) $) NIL T ELT) (($ (-1170 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2435 ((|#3| $) 36 T ELT)) (-2000 (((-1170 $)) 33 T ELT))) -(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -2980 (|#1|)) (-15 -3121 ((-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2396 ((-627 |#2|) (-1170 |#1|) (-1 |#2| |#2|))) (-15 -3825 ((-3 |#1| #1="failed") (-345 |#3|))) (-15 -3955 (|#1| |#3|)) (-15 -3825 (|#1| |#3|)) (-15 -2397 (|#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3955 (|#3| |#1|)) (-15 -3955 (|#1| (-1170 |#2|))) (-15 -3955 ((-1170 |#2|) |#1|)) (-15 -2000 ((-1170 |#1|))) (-15 -2435 (|#3| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1|))) (-658 |#2| |#3|) (-144) (-1146 |#2|)) (T -657)) -((-3121 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-689)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-658 *4 *5))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 112 (|has| |#1| (-309)) ELT)) (-2051 (($ $) 113 (|has| |#1| (-309)) ELT)) (-2049 (((-83) $) 115 (|has| |#1| (-309)) ELT)) (-1771 (((-627 |#1|) (-1170 $)) 59 T ELT) (((-627 |#1|)) 75 T ELT)) (-3313 ((|#1| $) 65 T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) 165 (|has| |#1| (-296)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 132 (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) 133 (|has| |#1| (-309)) ELT)) (-1597 (((-83) $ $) 123 (|has| |#1| (-309)) ELT)) (-3121 (((-689)) 106 (|has| |#1| (-315)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 192 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 190 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3141 (((-480) $) 191 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 189 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 188 T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) 61 T ELT) (($ (-1170 |#1|)) 78 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-296)) ELT)) (-2550 (($ $ $) 127 (|has| |#1| (-309)) ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) 66 T ELT) (((-627 |#1|) $) 73 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 184 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 183 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 182 T ELT) (((-627 |#1|) (-627 $)) 181 T ELT)) (-3825 (($ |#2|) 176 T ELT) (((-3 $ "failed") (-345 |#2|)) 173 (|has| |#1| (-309)) ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3094 (((-825)) 67 T ELT)) (-2980 (($) 109 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) 126 (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 121 (|has| |#1| (-309)) ELT)) (-2819 (($) 167 (|has| |#1| (-296)) ELT)) (-1669 (((-83) $) 168 (|has| |#1| (-296)) ELT)) (-1753 (($ $ (-689)) 159 (|has| |#1| (-296)) ELT) (($ $) 158 (|has| |#1| (-296)) ELT)) (-3706 (((-83) $) 134 (|has| |#1| (-309)) ELT)) (-3755 (((-825) $) 170 (|has| |#1| (-296)) ELT) (((-738 (-825)) $) 156 (|has| |#1| (-296)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-3117 ((|#1| $) 64 T ELT)) (-3428 (((-629 $) $) 160 (|has| |#1| (-296)) ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 130 (|has| |#1| (-309)) ELT)) (-2002 ((|#2| $) 57 (|has| |#1| (-309)) ELT)) (-1998 (((-825) $) 108 (|has| |#1| (-315)) ELT)) (-3065 ((|#2| $) 174 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 186 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 185 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 180 T ELT) (((-627 |#1|) (-1170 $)) 179 T ELT)) (-1880 (($ (-580 $)) 119 (|has| |#1| (-309)) ELT) (($ $ $) 118 (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 135 (|has| |#1| (-309)) ELT)) (-3429 (($) 161 (|has| |#1| (-296)) CONST)) (-2388 (($ (-825)) 107 (|has| |#1| (-315)) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2397 (($) 178 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 120 (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) 117 (|has| |#1| (-309)) ELT) (($ $ $) 116 (|has| |#1| (-309)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) 164 (|has| |#1| (-296)) ELT)) (-3715 (((-343 $) $) 131 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 128 (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ "failed") $ $) 111 (|has| |#1| (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 122 (|has| |#1| (-309)) ELT)) (-1596 (((-689) $) 124 (|has| |#1| (-309)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 125 (|has| |#1| (-309)) ELT)) (-3740 ((|#1| (-1170 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1754 (((-689) $) 169 (|has| |#1| (-296)) ELT) (((-3 (-689) "failed") $ $) 157 (|has| |#1| (-296)) ELT)) (-3741 (($ $ (-689)) 154 (OR (-2548 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $) 152 (OR (-2548 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 148 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1081) (-689)) 147 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1081))) 146 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1081)) 144 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-309)) ELT) (($ $ (-1 |#1| |#1|) (-689)) 142 (|has| |#1| (-309)) ELT)) (-2396 (((-627 |#1|) (-1170 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-309)) ELT)) (-3170 ((|#2|) 177 T ELT)) (-1663 (($) 166 (|has| |#1| (-296)) ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 63 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) 62 T ELT) (((-1170 |#1|) $) 80 T ELT) (((-627 |#1|) (-1170 $)) 79 T ELT)) (-3955 (((-1170 |#1|) $) 77 T ELT) (($ (-1170 |#1|)) 76 T ELT) ((|#2| $) 193 T ELT) (($ |#2|) 175 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 163 (|has| |#1| (-296)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT) (($ $) 110 (|has| |#1| (-309)) ELT) (($ (-345 (-480))) 105 (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (($ $) 162 (|has| |#1| (-296)) ELT) (((-629 $) $) 56 (|has| |#1| (-116)) ELT)) (-2435 ((|#2| $) 58 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2000 (((-1170 $)) 81 T ELT)) (-2050 (((-83) $ $) 114 (|has| |#1| (-309)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-689)) 155 (OR (-2548 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $) 153 (OR (-2548 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 151 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1081) (-689)) 150 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1081))) 149 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1081)) 145 (-2548 (|has| |#1| (-806 (-1081))) (|has| |#1| (-309))) ELT) (($ $ (-1 |#1| |#1|)) 141 (|has| |#1| (-309)) ELT) (($ $ (-1 |#1| |#1|) (-689)) 140 (|has| |#1| (-309)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 139 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 136 (|has| |#1| (-309)) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-345 (-480)) $) 138 (|has| |#1| (-309)) ELT) (($ $ (-345 (-480))) 137 (|has| |#1| (-309)) ELT))) -(((-658 |#1| |#2|) (-111) (-144) (-1146 |t#1|)) (T -658)) -((-2397 (*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-658 *2 *3)) (-4 *3 (-1146 *2)))) (-3170 (*1 *2) (-12 (-4 *1 (-658 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) (-3825 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-658 *3 *2)) (-4 *2 (-1146 *3)))) (-3955 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-658 *3 *2)) (-4 *2 (-1146 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-658 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) (-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-309)) (-4 *3 (-144)) (-4 *1 (-658 *3 *4)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-1170 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) (-4 *1 (-658 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1146 *5)) (-5 *2 (-627 *5))))) -(-13 (-348 |t#1| |t#2|) (-144) (-550 |t#2|) (-350 |t#1|) (-324 |t#1|) (-10 -8 (-15 -2397 ($)) (-15 -3170 (|t#2|)) (-15 -3825 ($ |t#2|)) (-15 -3955 ($ |t#2|)) (-15 -3065 (|t#2| $)) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-309)) (PROGN (-6 (-309)) (-6 (-182 |t#1|)) (-15 -3825 ((-3 $ "failed") (-345 |t#2|))) (-15 -2396 ((-627 |t#1|) (-1170 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-296)) (-6 (-296)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-296)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-296)) (|has| |#1| (-309))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 $) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) . T) ((-550 |#2|) . T) ((-184 $) OR (|has| |#1| (-296)) (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (-12 (|has| |#1| (-188)) (|has| |#1| (-309)))) ((-182 |#1|) |has| |#1| (-309)) ((-188) OR (|has| |#1| (-296)) (-12 (|has| |#1| (-188)) (|has| |#1| (-309)))) ((-187) OR (|has| |#1| (-296)) (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (-12 (|has| |#1| (-188)) (|has| |#1| (-309)))) ((-223 |#1|) |has| |#1| (-309)) ((-199) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-243) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-255) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-309) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-340) |has| |#1| (-296)) ((-315) OR (|has| |#1| (-296)) (|has| |#1| (-315))) ((-296) |has| |#1| (-296)) ((-317 |#1| |#2|) . T) ((-348 |#1| |#2|) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-491) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-579 |#1|) . T) ((-579 $) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-651 |#1|) . T) ((-651 $) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-660) . T) ((-801 $ (-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))))) ((-804 (-1081)) -12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081)))) ((-806 (-1081)) OR (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#1| (-804 (-1081))))) ((-827) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-958 |#1|) . T) ((-958 $) . T) ((-963 (-345 (-480))) OR (|has| |#1| (-296)) (|has| |#1| (-309))) ((-963 |#1|) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| |#1| (-296)) ((-1120) . T) ((-1125) OR (|has| |#1| (-296)) (|has| |#1| (-309)))) -((-3707 (($) 11 T CONST)) (-3450 (((-3 $ "failed") $) 14 T ELT)) (-2398 (((-83) $) 10 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 20 T ELT))) -(((-659 |#1|) (-10 -7 (-15 -3450 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-689))) (-15 -2398 ((-83) |#1|)) (-15 -3707 (|#1|) -3935) (-15 ** (|#1| |#1| (-825)))) (-660)) (T -659)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3707 (($) 23 T CONST)) (-3450 (((-3 $ "failed") $) 20 T ELT)) (-2398 (((-83) $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 24 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (** (($ $ (-825)) 17 T ELT) (($ $ (-689)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-660) (-111)) (T -660)) -((-2652 (*1 *1) (-4 *1 (-660))) (-3707 (*1 *1) (-4 *1 (-660))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-83)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-689)))) (-3450 (*1 *1 *1) (|partial| -4 *1 (-660)))) -(-13 (-1017) (-10 -8 (-15 -2652 ($) -3935) (-15 -3707 ($) -3935) (-15 -2398 ((-83) $)) (-15 ** ($ $ (-689))) (-15 -3450 ((-3 $ "failed") $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2399 (((-2 (|:| -3075 (-343 |#2|)) (|:| |special| (-343 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3401 (((-2 (|:| -3075 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2400 ((|#2| (-345 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3418 (((-2 (|:| |poly| |#2|) (|:| -3075 (-345 |#2|)) (|:| |special| (-345 |#2|))) (-345 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-661 |#1| |#2|) (-10 -7 (-15 -3401 ((-2 (|:| -3075 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2399 ((-2 (|:| -3075 (-343 |#2|)) (|:| |special| (-343 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2400 (|#2| (-345 |#2|) (-1 |#2| |#2|))) (-15 -3418 ((-2 (|:| |poly| |#2|) (|:| -3075 (-345 |#2|)) (|:| |special| (-345 |#2|))) (-345 |#2|) (-1 |#2| |#2|)))) (-309) (-1146 |#1|)) (T -661)) -((-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3075 (-345 *6)) (|:| |special| (-345 *6)))) (-5 *1 (-661 *5 *6)) (-5 *3 (-345 *6)))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1146 *5)) (-5 *1 (-661 *5 *2)) (-4 *5 (-309)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| -3075 (-343 *3)) (|:| |special| (-343 *3)))) (-5 *1 (-661 *5 *3)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) (-5 *2 (-2 (|:| -3075 *3) (|:| |special| *3))) (-5 *1 (-661 *5 *3))))) -((-2401 ((|#7| (-580 |#5|) |#6|) NIL T ELT)) (-3941 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3941 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2401 (|#7| (-580 |#5|) |#6|))) (-751) (-712) (-712) (-956) (-956) (-856 |#4| |#2| |#1|) (-856 |#5| |#3| |#1|)) (T -662)) -((-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *9)) (-4 *9 (-956)) (-4 *5 (-751)) (-4 *6 (-712)) (-4 *8 (-956)) (-4 *2 (-856 *9 *7 *5)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-712)) (-4 *4 (-856 *8 *6 *5)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-956)) (-4 *9 (-956)) (-4 *5 (-751)) (-4 *6 (-712)) (-4 *2 (-856 *9 *7 *5)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-712)) (-4 *4 (-856 *8 *6 *5))))) -((-3941 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3941 (|#7| (-1 |#2| |#1|) |#6|))) (-751) (-751) (-712) (-712) (-956) (-856 |#5| |#3| |#1|) (-856 |#5| |#4| |#2|)) (T -663)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-751)) (-4 *6 (-751)) (-4 *7 (-712)) (-4 *9 (-956)) (-4 *2 (-856 *9 *8 *6)) (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-712)) (-4 *4 (-856 *9 *7 *5))))) -((-3715 (((-343 |#4|) |#4|) 42 T ELT))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4|))) (-712) (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081))))) (-255) (-856 (-852 |#3|) |#1| |#2|)) (T -664)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081)))))) (-4 *6 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-856 (-852 *6) *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-768 |#1|)) $) NIL T ELT)) (-3069 (((-1076 $) $ (-768 |#1|)) NIL T ELT) (((-1076 |#2|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-768 |#1|))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#2| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-768 |#1|) $) NIL T ELT)) (-3739 (($ $ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-816)) ELT)) (-1613 (($ $ |#2| (-465 (-768 |#1|)) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-768 |#1|) (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#2|) (-768 |#1|)) NIL T ELT) (($ (-1076 $) (-768 |#1|)) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-465 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-768 |#1|)) NIL T ELT)) (-2806 (((-465 (-768 |#1|)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-1614 (($ (-1 (-465 (-768 |#1|)) (-465 (-768 |#1|))) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3068 (((-3 (-768 |#1|) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-768 |#1|)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#2| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-768 |#1|) |#2|) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 |#2|)) NIL T ELT) (($ $ (-768 |#1|) $) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 $)) NIL T ELT)) (-3740 (($ $ (-768 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3741 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3931 (((-465 (-768 |#1|)) $) NIL T ELT) (((-689) $ (-768 |#1|)) NIL T ELT) (((-580 (-689)) $ (-580 (-768 |#1|))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-768 |#1|) (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-768 |#1|) (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#2| $) NIL (|has| |#2| (-387)) ELT) (($ $ (-768 |#1|)) NIL (|has| |#2| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-768 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-491)) ELT) (($ (-345 (-480))) NIL (OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-465 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-768 |#1|)) (-580 (-689))) NIL T ELT) (($ $ (-768 |#1|) (-689)) NIL T ELT) (($ $ (-580 (-768 |#1|))) NIL T ELT) (($ $ (-768 |#1|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-665 |#1| |#2|) (-856 |#2| (-465 (-768 |#1|)) (-768 |#1|)) (-580 (-1081)) (-956)) (T -665)) -NIL -((-2402 (((-2 (|:| -2469 (-852 |#3|)) (|:| -2046 (-852 |#3|))) |#4|) 14 T ELT)) (-2972 ((|#4| |#4| |#2|) 33 T ELT)) (-2405 ((|#4| (-345 (-852 |#3|)) |#2|) 62 T ELT)) (-2404 ((|#4| (-1076 (-852 |#3|)) |#2|) 74 T ELT)) (-2403 ((|#4| (-1076 |#4|) |#2|) 49 T ELT)) (-2971 ((|#4| |#4| |#2|) 52 T ELT)) (-3715 (((-343 |#4|) |#4|) 40 T ELT))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-2 (|:| -2469 (-852 |#3|)) (|:| -2046 (-852 |#3|))) |#4|)) (-15 -2971 (|#4| |#4| |#2|)) (-15 -2403 (|#4| (-1076 |#4|) |#2|)) (-15 -2972 (|#4| |#4| |#2|)) (-15 -2404 (|#4| (-1076 (-852 |#3|)) |#2|)) (-15 -2405 (|#4| (-345 (-852 |#3|)) |#2|)) (-15 -3715 ((-343 |#4|) |#4|))) (-712) (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)))) (-491) (-856 (-345 (-852 |#3|)) |#1| |#2|)) (T -666)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *6 (-491)) (-5 *2 (-343 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-856 (-345 (-852 *6)) *4 *5)))) (-2405 (*1 *2 *3 *4) (-12 (-4 *6 (-491)) (-4 *2 (-856 *3 *5 *4)) (-5 *1 (-666 *5 *4 *6 *2)) (-5 *3 (-345 (-852 *6))) (-4 *5 (-712)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 (-852 *6))) (-4 *6 (-491)) (-4 *2 (-856 (-345 (-852 *6)) *5 *4)) (-5 *1 (-666 *5 *4 *6 *2)) (-4 *5 (-712)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))))) (-2972 (*1 *2 *2 *3) (-12 (-4 *4 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *5 (-491)) (-5 *1 (-666 *4 *3 *5 *2)) (-4 *2 (-856 (-345 (-852 *5)) *4 *3)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-856 (-345 (-852 *6)) *5 *4)) (-5 *1 (-666 *5 *4 *6 *2)) (-4 *5 (-712)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *6 (-491)))) (-2971 (*1 *2 *2 *3) (-12 (-4 *4 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *5 (-491)) (-5 *1 (-666 *4 *3 *5 *2)) (-4 *2 (-856 (-345 (-852 *5)) *4 *3)))) (-2402 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *6 (-491)) (-5 *2 (-2 (|:| -2469 (-852 *6)) (|:| -2046 (-852 *6)))) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-856 (-345 (-852 *6)) *4 *5))))) -((-3715 (((-343 |#4|) |#4|) 54 T ELT))) -(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4|))) (-712) (-751) (-13 (-255) (-118)) (-856 (-345 |#3|) |#1| |#2|)) (T -667)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-13 (-255) (-118))) (-5 *2 (-343 *3)) (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-856 (-345 *6) *4 *5))))) -((-3941 (((-669 |#2| |#3|) (-1 |#2| |#1|) (-669 |#1| |#3|)) 18 T ELT))) -(((-668 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-669 |#2| |#3|) (-1 |#2| |#1|) (-669 |#1| |#3|)))) (-956) (-956) (-660)) (T -668)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5 *7)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *7 (-660)) (-5 *2 (-669 *6 *7)) (-5 *1 (-668 *5 *6 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 36 T ELT)) (-3757 (((-580 (-2 (|:| -3937 |#1|) (|:| -3921 |#2|))) $) 37 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689)) 22 (-12 (|has| |#2| (-315)) (|has| |#1| (-315))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3141 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) 99 (|has| |#2| (-751)) ELT)) (-3450 (((-3 $ #1#) $) 83 T ELT)) (-2980 (($) 48 (-12 (|has| |#2| (-315)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) 70 T ELT)) (-2807 (((-580 $) $) 52 T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| |#2|) 17 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-1998 (((-825) $) 43 (-12 (|has| |#2| (-315)) (|has| |#1| (-315))) ELT)) (-2880 ((|#2| $) 98 (|has| |#2| (-751)) ELT)) (-3159 ((|#1| $) 97 (|has| |#2| (-751)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 35 (-12 (|has| |#2| (-315)) (|has| |#1| (-315))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 96 T ELT) (($ (-480)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-580 (-2 (|:| -3937 |#1|) (|:| -3921 |#2|)))) 11 T ELT)) (-3800 (((-580 |#1|) $) 54 T ELT)) (-3660 ((|#1| $ |#2|) 114 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 12 T CONST)) (-2652 (($) 44 T CONST)) (-3042 (((-83) $ $) 104 T ELT)) (-3820 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 33 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-669 |#1| |#2|) (-13 (-956) (-945 |#2|) (-945 |#1|) (-10 -8 (-15 -2879 ($ |#1| |#2|)) (-15 -3660 (|#1| $ |#2|)) (-15 -3929 ($ (-580 (-2 (|:| -3937 |#1|) (|:| -3921 |#2|))))) (-15 -3757 ((-580 (-2 (|:| -3937 |#1|) (|:| -3921 |#2|))) $)) (-15 -3941 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-83) $)) (-15 -3800 ((-580 |#1|) $)) (-15 -2807 ((-580 $) $)) (-15 -2406 ((-689) $)) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#2| (-315)) (-6 (-315)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-751)) (PROGN (-15 -2880 (|#2| $)) (-15 -3159 (|#1| $)) (-15 -3942 ($ $))) |%noBranch|))) (-956) (-660)) (T -669)) -((-2879 (*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-956)) (-4 *3 (-660)))) (-3660 (*1 *2 *1 *3) (-12 (-4 *2 (-956)) (-5 *1 (-669 *2 *3)) (-4 *3 (-660)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| -3937 *3) (|:| -3921 *4)))) (-4 *3 (-956)) (-4 *4 (-660)) (-5 *1 (-669 *3 *4)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| -3937 *3) (|:| -3921 *4)))) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-669 *3 *4)) (-4 *4 (-660)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-580 (-669 *3 *4))) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-660)) (-4 *2 (-751)) (-5 *1 (-669 *3 *2)) (-4 *3 (-956)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-956)) (-5 *1 (-669 *2 *3)) (-4 *3 (-751)) (-4 *3 (-660)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-669 *2 *3)) (-4 *3 (-751)) (-4 *2 (-956)) (-4 *3 (-660))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3219 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3221 (($ $ $) 99 T ELT)) (-3220 (((-83) $ $) 107 T ELT)) (-3224 (($ (-580 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) 86 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2356 (($ $) 88 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) 71 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT) (($ |#1| $ (-480)) 78 T ELT) (($ (-1 (-83) |#1|) $ (-480)) 81 T ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ |#1| $ (-480)) 83 T ELT) (($ (-1 (-83) |#1|) $ (-480)) 84 T ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) 106 T ELT)) (-2407 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-580 |#1|)) 23 T ELT)) (-2594 (((-580 |#1|) $) 38 T ELT)) (-3230 (((-83) |#1| $) 66 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3223 (($ $ $) 97 T ELT)) (-1264 ((|#1| $) 63 T ELT)) (-3592 (($ |#1| $) 64 T ELT) (($ |#1| $ (-689)) 89 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1265 ((|#1| $) 62 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 57 T ELT)) (-3548 (($) 14 T ELT)) (-2355 (((-580 (-2 (|:| |entry| |#1|) (|:| -1935 (-689)))) $) 56 T ELT)) (-3222 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1455 (($) 16 T ELT) (($ (-580 |#1|)) 25 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 69 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 82 T ELT)) (-3955 (((-469) $) 36 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 22 T ELT)) (-3929 (((-767) $) 50 T ELT)) (-3225 (($ (-580 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1266 (($ (-580 |#1|)) 24 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 103 T ELT)) (-3940 (((-689) $) 68 (|has| $ (-6 -3978)) ELT))) -(((-670 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -3978) (-6 -3979) (-15 -2407 ($)) (-15 -2407 ($ |#1|)) (-15 -2407 ($ (-580 |#1|))) (-15 -2594 ((-580 |#1|) $)) (-15 -3389 ($ |#1| $ (-480))) (-15 -3389 ($ (-1 (-83) |#1|) $ (-480))) (-15 -3388 ($ |#1| $ (-480))) (-15 -3388 ($ (-1 (-83) |#1|) $ (-480))))) (-1007)) (T -670)) -((-2407 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1007)))) (-2407 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1007)))) (-2407 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-670 *3)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1007)))) (-3389 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-670 *2)) (-4 *2 (-1007)))) (-3389 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-480)) (-4 *4 (-1007)) (-5 *1 (-670 *4)))) (-3388 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-670 *2)) (-4 *2 (-1007)))) (-3388 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-480)) (-4 *4 (-1007)) (-5 *1 (-670 *4))))) -((-2554 (((-83) $ $) 19 T ELT)) (-3219 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3221 (($ $ $) 77 T ELT)) (-3220 (((-83) $ $) 78 T ELT)) (-3224 (($ (-580 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2356 (($ $) 66 T ELT)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) 69 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 T ELT)) (-3223 (($ $ $) 74 T ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT) (($ |#1| $ (-689)) 67 T ELT)) (-3228 (((-1025) $) 21 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-2355 (((-580 (-2 (|:| |entry| |#1|) (|:| -1935 (-689)))) $) 65 T ELT)) (-3222 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-3929 (((-767) $) 17 T ELT)) (-3225 (($ (-580 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1255 (((-83) $ $) 20 T ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 T ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-671 |#1|) (-111) (-1007)) (T -671)) -NIL -(-13 (-631 |t#1|) (-1005 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-549 (-767)) . T) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-191 |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-631 |#1|) . T) ((-1005 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2408 (((-1176) (-1064)) 8 T ELT))) -(((-672) (-10 -7 (-15 -2408 ((-1176) (-1064))))) (T -672)) -((-2408 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-672))))) -((-2409 (((-580 |#1|) (-580 |#1|) (-580 |#1|)) 15 T ELT))) -(((-673 |#1|) (-10 -7 (-15 -2409 ((-580 |#1|) (-580 |#1|) (-580 |#1|)))) (-751)) (T -673)) -((-2409 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-673 *3))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 |#2|) $) 157 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 150 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 149 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 147 (|has| |#1| (-491)) ELT)) (-3475 (($ $) 106 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 89 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3023 (($ $) 88 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) 105 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 90 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3477 (($ $) 104 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 91 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 141 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3797 (((-852 |#1|) $ (-689)) 119 T ELT) (((-852 |#1|) $ (-689) (-689)) 118 T ELT)) (-2878 (((-83) $) 158 T ELT)) (-3610 (($) 116 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $ |#2|) 121 T ELT) (((-689) $ |#2| (-689)) 120 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 87 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3920 (((-83) $) 139 T ELT)) (-2879 (($ $ (-580 |#2|) (-580 (-465 |#2|))) 156 T ELT) (($ $ |#2| (-465 |#2|)) 155 T ELT) (($ |#1| (-465 |#2|)) 140 T ELT) (($ $ |#2| (-689)) 123 T ELT) (($ $ (-580 |#2|) (-580 (-689))) 122 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3925 (($ $) 113 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) 136 T ELT)) (-3159 ((|#1| $) 135 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3795 (($ $ |#2|) 117 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3752 (($ $ (-689)) 124 T ELT)) (-3449 (((-3 $ "failed") $ $) 151 (|has| |#1| (-491)) ELT)) (-3926 (($ $) 114 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (($ $ |#2| $) 132 T ELT) (($ $ (-580 |#2|) (-580 $)) 131 T ELT) (($ $ (-580 (-246 $))) 130 T ELT) (($ $ (-246 $)) 129 T ELT) (($ $ $ $) 128 T ELT) (($ $ (-580 $) (-580 $)) 127 T ELT)) (-3741 (($ $ (-580 |#2|) (-580 (-689))) 50 T ELT) (($ $ |#2| (-689)) 49 T ELT) (($ $ (-580 |#2|)) 48 T ELT) (($ $ |#2|) 46 T ELT)) (-3931 (((-465 |#2|) $) 137 T ELT)) (-3478 (($ $) 103 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 92 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 102 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 93 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 101 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 94 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 159 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 154 (|has| |#1| (-144)) ELT) (($ $) 152 (|has| |#1| (-491)) ELT) (($ (-345 (-480))) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3660 ((|#1| $ (-465 |#2|)) 142 T ELT) (($ $ |#2| (-689)) 126 T ELT) (($ $ (-580 |#2|) (-580 (-689))) 125 T ELT)) (-2688 (((-629 $) $) 153 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 112 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 100 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 148 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 111 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 99 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 110 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 98 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3484 (($ $) 109 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 97 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 108 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 96 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 107 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 95 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 |#2|) (-580 (-689))) 53 T ELT) (($ $ |#2| (-689)) 52 T ELT) (($ $ (-580 |#2|)) 51 T ELT) (($ $ |#2|) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 143 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ $) 115 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 86 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 146 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 134 T ELT) (($ $ |#1|) 133 T ELT))) -(((-674 |#1| |#2|) (-111) (-956) (-751)) (T -674)) -((-3660 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *2)) (-4 *4 (-956)) (-4 *2 (-751)))) (-3660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *5)) (-5 *3 (-580 (-689))) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-674 *3 *4)) (-4 *3 (-956)) (-4 *4 (-751)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *2)) (-4 *4 (-956)) (-4 *2 (-751)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *5)) (-5 *3 (-580 (-689))) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)))) (-3755 (*1 *2 *1 *3) (-12 (-4 *1 (-674 *4 *3)) (-4 *4 (-956)) (-4 *3 (-751)) (-5 *2 (-689)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-689)) (-4 *1 (-674 *4 *3)) (-4 *4 (-956)) (-4 *3 (-751)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)) (-5 *2 (-852 *4)))) (-3797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)) (-5 *2 (-852 *4)))) (-3795 (*1 *1 *1 *2) (-12 (-4 *1 (-674 *3 *2)) (-4 *3 (-956)) (-4 *2 (-751)) (-4 *3 (-38 (-345 (-480))))))) -(-13 (-804 |t#2|) (-881 |t#1| (-465 |t#2|) |t#2|) (-449 |t#2| $) (-257 $) (-10 -8 (-15 -3660 ($ $ |t#2| (-689))) (-15 -3660 ($ $ (-580 |t#2|) (-580 (-689)))) (-15 -3752 ($ $ (-689))) (-15 -2879 ($ $ |t#2| (-689))) (-15 -2879 ($ $ (-580 |t#2|) (-580 (-689)))) (-15 -3755 ((-689) $ |t#2|)) (-15 -3755 ((-689) $ |t#2| (-689))) (-15 -3797 ((-852 |t#1|) $ (-689))) (-15 -3797 ((-852 |t#1|) $ (-689) (-689))) (IF (|has| |t#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $ |t#2|)) (-6 (-910)) (-6 (-1106))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-465 |#2|)) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-243) |has| |#1| (-491)) ((-257 $) . T) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-449 |#2| $) . T) ((-449 $ $) . T) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-801 $ |#2|) . T) ((-804 |#2|) . T) ((-806 |#2|) . T) ((-881 |#1| (-465 |#2|) |#2|) . T) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T)) -((-3715 (((-343 (-1076 |#4|)) (-1076 |#4|)) 30 T ELT) (((-343 |#4|) |#4|) 26 T ELT))) -(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 |#4|) |#4|)) (-15 -3715 ((-343 (-1076 |#4|)) (-1076 |#4|)))) (-751) (-712) (-13 (-255) (-118)) (-856 |#3| |#2| |#1|)) (T -675)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-856 *6 *5 *4)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-13 (-255) (-118))) (-5 *2 (-343 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4))))) -((-2412 (((-343 |#4|) |#4| |#2|) 142 T ELT)) (-2410 (((-343 |#4|) |#4|) NIL T ELT)) (-3954 (((-343 (-1076 |#4|)) (-1076 |#4|)) 129 T ELT) (((-343 |#4|) |#4|) 52 T ELT)) (-2414 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-580 (-2 (|:| -3715 (-1076 |#4|)) (|:| -2389 (-480)))))) (-1076 |#4|) (-580 |#2|) (-580 (-580 |#3|))) 81 T ELT)) (-2418 (((-1076 |#3|) (-1076 |#3|) (-480)) 169 T ELT)) (-2417 (((-580 (-689)) (-1076 |#4|) (-580 |#2|) (-689)) 75 T ELT)) (-3065 (((-3 (-580 (-1076 |#4|)) "failed") (-1076 |#4|) (-1076 |#3|) (-1076 |#3|) |#4| (-580 |#2|) (-580 (-689)) (-580 |#3|)) 79 T ELT)) (-2415 (((-2 (|:| |upol| (-1076 |#3|)) (|:| |Lval| (-580 |#3|)) (|:| |Lfact| (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480))))) (|:| |ctpol| |#3|)) (-1076 |#4|) (-580 |#2|) (-580 (-580 |#3|))) 27 T ELT)) (-2413 (((-2 (|:| -1992 (-1076 |#4|)) (|:| |polval| (-1076 |#3|))) (-1076 |#4|) (-1076 |#3|) (-480)) 72 T ELT)) (-2411 (((-480) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480))))) 165 T ELT)) (-2416 ((|#4| (-480) (-343 |#4|)) 73 T ELT)) (-3340 (((-83) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480)))) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480))))) NIL T ELT))) -(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-343 |#4|) |#4|)) (-15 -3954 ((-343 (-1076 |#4|)) (-1076 |#4|))) (-15 -2410 ((-343 |#4|) |#4|)) (-15 -2411 ((-480) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480)))))) (-15 -2412 ((-343 |#4|) |#4| |#2|)) (-15 -2413 ((-2 (|:| -1992 (-1076 |#4|)) (|:| |polval| (-1076 |#3|))) (-1076 |#4|) (-1076 |#3|) (-480))) (-15 -2414 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-580 (-2 (|:| -3715 (-1076 |#4|)) (|:| -2389 (-480)))))) (-1076 |#4|) (-580 |#2|) (-580 (-580 |#3|)))) (-15 -2415 ((-2 (|:| |upol| (-1076 |#3|)) (|:| |Lval| (-580 |#3|)) (|:| |Lfact| (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480))))) (|:| |ctpol| |#3|)) (-1076 |#4|) (-580 |#2|) (-580 (-580 |#3|)))) (-15 -2416 (|#4| (-480) (-343 |#4|))) (-15 -3340 ((-83) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480)))) (-580 (-2 (|:| -3715 (-1076 |#3|)) (|:| -2389 (-480)))))) (-15 -3065 ((-3 (-580 (-1076 |#4|)) "failed") (-1076 |#4|) (-1076 |#3|) (-1076 |#3|) |#4| (-580 |#2|) (-580 (-689)) (-580 |#3|))) (-15 -2417 ((-580 (-689)) (-1076 |#4|) (-580 |#2|) (-689))) (-15 -2418 ((-1076 |#3|) (-1076 |#3|) (-480)))) (-712) (-751) (-255) (-856 |#3| |#1| |#2|)) (T -676)) -((-2418 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *6)) (-5 *3 (-480)) (-4 *6 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) (-2417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-4 *7 (-751)) (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) (-4 *8 (-255)) (-5 *2 (-580 (-689))) (-5 *1 (-676 *6 *7 *8 *9)) (-5 *5 (-689)))) (-3065 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1076 *11)) (-5 *6 (-580 *10)) (-5 *7 (-580 (-689))) (-5 *8 (-580 *11)) (-4 *10 (-751)) (-4 *11 (-255)) (-4 *9 (-712)) (-4 *5 (-856 *11 *9 *10)) (-5 *2 (-580 (-1076 *5))) (-5 *1 (-676 *9 *10 *11 *5)) (-5 *3 (-1076 *5)))) (-3340 (*1 *2 *3 *3) (-12 (-5 *3 (-580 (-2 (|:| -3715 (-1076 *6)) (|:| -2389 (-480))))) (-4 *6 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-343 *2)) (-4 *2 (-856 *7 *5 *6)) (-5 *1 (-676 *5 *6 *7 *2)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-255)))) (-2415 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-5 *5 (-580 (-580 *8))) (-4 *7 (-751)) (-4 *8 (-255)) (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) (-5 *2 (-2 (|:| |upol| (-1076 *8)) (|:| |Lval| (-580 *8)) (|:| |Lfact| (-580 (-2 (|:| -3715 (-1076 *8)) (|:| -2389 (-480))))) (|:| |ctpol| *8))) (-5 *1 (-676 *6 *7 *8 *9)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-580 *7)) (-5 *5 (-580 (-580 *8))) (-4 *7 (-751)) (-4 *8 (-255)) (-4 *6 (-712)) (-4 *9 (-856 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-580 (-2 (|:| -3715 (-1076 *9)) (|:| -2389 (-480))))))) (-5 *1 (-676 *6 *7 *8 *9)) (-5 *3 (-1076 *9)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-480)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-255)) (-4 *9 (-856 *8 *6 *7)) (-5 *2 (-2 (|:| -1992 (-1076 *9)) (|:| |polval| (-1076 *8)))) (-5 *1 (-676 *6 *7 *8 *9)) (-5 *3 (-1076 *9)) (-5 *4 (-1076 *8)))) (-2412 (*1 *2 *3 *4) (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-676 *5 *4 *6 *3)) (-4 *3 (-856 *6 *5 *4)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3715 (-1076 *6)) (|:| -2389 (-480))))) (-4 *6 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-480)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-856 *6 *4 *5)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-856 *6 *4 *5))))) -((-2419 (($ $ (-825)) 17 T ELT))) -(((-677 |#1| |#2|) (-10 -7 (-15 -2419 (|#1| |#1| (-825)))) (-678 |#2|) (-144)) (T -677)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2395 (($ $ (-825)) 36 T ELT)) (-2419 (($ $ (-825)) 43 T ELT)) (-2394 (($ $ (-825)) 37 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2421 (($ $ $) 33 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2422 (($ $ $ $) 34 T ELT)) (-2420 (($ $ $) 32 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 38 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-678 |#1|) (-111) (-144)) (T -678)) -((-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-678 *3)) (-4 *3 (-144))))) -(-13 (-680) (-651 |t#1|) (-10 -8 (-15 -2419 ($ $ (-825))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-654) . T) ((-680) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2421 (($ $ $) 10 T ELT)) (-2422 (($ $ $ $) 9 T ELT)) (-2420 (($ $ $) 12 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -2420 (|#1| |#1| |#1|)) (-15 -2421 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1| |#1| |#1|))) (-680)) (T -679)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2395 (($ $ (-825)) 36 T ELT)) (-2394 (($ $ (-825)) 37 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2421 (($ $ $) 33 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2422 (($ $ $ $) 34 T ELT)) (-2420 (($ $ $) 32 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 38 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-680) (-111)) (T -680)) -((-2422 (*1 *1 *1 *1 *1) (-4 *1 (-680))) (-2421 (*1 *1 *1 *1) (-4 *1 (-680))) (-2420 (*1 *1 *1 *1) (-4 *1 (-680)))) -(-13 (-21) (-654) (-10 -8 (-15 -2422 ($ $ $ $)) (-15 -2421 ($ $ $)) (-15 -2420 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-654) . T) ((-1007) . T) ((-1120) . T)) -((-3929 (((-767) $) NIL T ELT) (($ (-480)) 10 T ELT))) -(((-681 |#1|) (-10 -7 (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-682)) (T -681)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2392 (((-3 $ #1="failed") $) 48 T ELT)) (-2395 (($ $ (-825)) 36 T ELT) (($ $ (-689)) 43 T ELT)) (-3450 (((-3 $ #1#) $) 46 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2393 (((-3 $ #1#) $) 47 T ELT)) (-2394 (($ $ (-825)) 37 T ELT) (($ $ (-689)) 44 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2421 (($ $ $) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 40 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2422 (($ $ $ $) 34 T ELT)) (-2420 (($ $ $) 32 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 41 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 38 T ELT) (($ $ (-689)) 45 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-682) (-111)) (T -682)) -((-3111 (*1 *2) (-12 (-4 *1 (-682)) (-5 *2 (-689)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-682))))) -(-13 (-680) (-656) (-10 -8 (-15 -3111 ((-689)) -3935) (-15 -3929 ($ (-480))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-654) . T) ((-656) . T) ((-680) . T) ((-1007) . T) ((-1120) . T)) -((-2424 (((-580 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 (-140 |#1|)))))) (-627 (-140 (-345 (-480)))) |#1|) 33 T ELT)) (-2423 (((-580 (-140 |#1|)) (-627 (-140 (-345 (-480)))) |#1|) 23 T ELT)) (-2435 (((-852 (-140 (-345 (-480)))) (-627 (-140 (-345 (-480)))) (-1081)) 20 T ELT) (((-852 (-140 (-345 (-480)))) (-627 (-140 (-345 (-480))))) 19 T ELT))) -(((-683 |#1|) (-10 -7 (-15 -2435 ((-852 (-140 (-345 (-480)))) (-627 (-140 (-345 (-480)))))) (-15 -2435 ((-852 (-140 (-345 (-480)))) (-627 (-140 (-345 (-480)))) (-1081))) (-15 -2423 ((-580 (-140 |#1|)) (-627 (-140 (-345 (-480)))) |#1|)) (-15 -2424 ((-580 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 (-140 |#1|)))))) (-627 (-140 (-345 (-480)))) |#1|))) (-13 (-309) (-750))) (T -683)) -((-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *2 (-580 (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 (-140 *4))))))) (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *2 (-580 (-140 *4))) (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750))))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *4 (-1081)) (-5 *2 (-852 (-140 (-345 (-480))))) (-5 *1 (-683 *5)) (-4 *5 (-13 (-309) (-750))))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *2 (-852 (-140 (-345 (-480))))) (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750)))))) -((-2602 (((-146 (-480)) |#1|) 27 T ELT))) -(((-684 |#1|) (-10 -7 (-15 -2602 ((-146 (-480)) |#1|))) (-342)) (T -684)) -((-2602 (*1 *2 *3) (-12 (-5 *2 (-146 (-480))) (-5 *1 (-684 *3)) (-4 *3 (-342))))) -((-2528 ((|#1| |#1| |#1|) 28 T ELT)) (-2529 ((|#1| |#1| |#1|) 27 T ELT)) (-2518 ((|#1| |#1| |#1|) 38 T ELT)) (-2526 ((|#1| |#1| |#1|) 33 T ELT)) (-2527 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2534 (((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|) 26 T ELT))) -(((-685 |#1| |#2|) (-10 -7 (-15 -2534 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -2527 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2526 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|))) (-642 |#2|) (-309)) (T -685)) -((-2518 (*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) (-2526 (*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) (-2527 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) (-2528 (*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) (-2529 (*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) (-2534 (*1 *2 *3 *3) (-12 (-4 *4 (-309)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-685 *3 *4)) (-4 *3 (-642 *4))))) -((-2541 (((-629 (-1129)) $ (-1129)) 27 T ELT)) (-2542 (((-629 (-484)) $ (-484)) 26 T ELT)) (-2540 (((-689) $ (-100)) 28 T ELT)) (-2543 (((-629 (-99)) $ (-99)) 25 T ELT)) (-1988 (((-629 (-1129)) $) 12 T ELT)) (-1984 (((-629 (-1127)) $) 8 T ELT)) (-1986 (((-629 (-1126)) $) 10 T ELT)) (-1989 (((-629 (-484)) $) 13 T ELT)) (-1985 (((-629 (-482)) $) 9 T ELT)) (-1987 (((-629 (-481)) $) 11 T ELT)) (-1983 (((-689) $ (-100)) 7 T ELT)) (-1990 (((-629 (-99)) $) 14 T ELT)) (-2425 (((-83) $) 32 T ELT)) (-2426 (((-629 $) |#1| (-860)) 33 T ELT)) (-1689 (($ $) 6 T ELT))) -(((-686 |#1|) (-111) (-1007)) (T -686)) -((-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *3 (-1007)) (-5 *2 (-629 *1)) (-4 *1 (-686 *3)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(-13 (-508) (-10 -8 (-15 -2426 ((-629 $) |t#1| (-860))) (-15 -2425 ((-83) $)))) -(((-145) . T) ((-461) . T) ((-508) . T) ((-765) . T)) -((-3902 (((-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) (|:| |basisInv| (-627 (-480)))) (-480)) 72 T ELT)) (-3901 (((-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) (|:| |basisInv| (-627 (-480))))) 70 T ELT)) (-3740 (((-480)) 86 T ELT))) -(((-687 |#1| |#2|) (-10 -7 (-15 -3740 ((-480))) (-15 -3901 ((-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) (|:| |basisInv| (-627 (-480)))))) (-15 -3902 ((-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) (|:| |basisInv| (-627 (-480)))) (-480)))) (-1146 (-480)) (-348 (-480) |#1|)) (T -687)) -((-3902 (*1 *2 *3) (-12 (-5 *3 (-480)) (-4 *4 (-1146 *3)) (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-687 *4 *5)) (-4 *5 (-348 *3 *4)))) (-3901 (*1 *2) (-12 (-4 *3 (-1146 (-480))) (-5 *2 (-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) (|:| |basisInv| (-627 (-480))))) (-5 *1 (-687 *3 *4)) (-4 *4 (-348 (-480) *3)))) (-3740 (*1 *2) (-12 (-4 *3 (-1146 *2)) (-5 *2 (-480)) (-5 *1 (-687 *3 *4)) (-4 *4 (-348 *2 *3))))) -((-2494 (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|))) 19 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|)) (-580 (-1081))) 18 T ELT)) (-3556 (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|))) 21 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|)) (-580 (-1081))) 20 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -2494 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|)) (-580 (-1081)))) (-15 -2494 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|)))) (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|)) (-580 (-1081)))) (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-852 |#1|))))) (-491)) (T -688)) -((-3556 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-688 *4)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-688 *5)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-688 *4)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-688 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2469 (($ $ $) 10 T ELT)) (-1301 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2427 (($ $ (-480)) 11 T ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3129 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 6 T CONST)) (-2652 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-689) (-13 (-712) (-660) (-10 -8 (-15 -2549 ($ $ $)) (-15 -2550 ($ $ $)) (-15 -3129 ($ $ $)) (-15 -2865 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -2427 ($ $ (-480))) (-15 -2980 ($ $)) (-6 (-3980 "*"))))) (T -689)) -((-2549 (*1 *1 *1 *1) (-5 *1 (-689))) (-2550 (*1 *1 *1 *1) (-5 *1 (-689))) (-3129 (*1 *1 *1 *1) (-5 *1 (-689))) (-2865 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1962 (-689)) (|:| -2888 (-689)))) (-5 *1 (-689)))) (-3449 (*1 *1 *1 *1) (|partial| -5 *1 (-689))) (-2427 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-689)))) (-2980 (*1 *1 *1) (-5 *1 (-689)))) -((-480) (|%not| (|%ilt| |#1| 0))) -((-3556 (((-3 |#2| "failed") |#2| |#2| (-84) (-1081)) 37 T ELT))) -(((-690 |#1| |#2|) (-10 -7 (-15 -3556 ((-3 |#2| "failed") |#2| |#2| (-84) (-1081)))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118)) (-13 (-29 |#1|) (-1106) (-866))) (T -690)) -((-3556 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-690 *5 *2)) (-4 *2 (-13 (-29 *5) (-1106) (-866)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 7 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 9 T ELT))) -(((-691) (-1007)) (T -691)) -NIL -((-3929 (((-691) |#1|) 8 T ELT))) -(((-692 |#1|) (-10 -7 (-15 -3929 ((-691) |#1|))) (-1120)) (T -692)) -((-3929 (*1 *2 *3) (-12 (-5 *2 (-691)) (-5 *1 (-692 *3)) (-4 *3 (-1120))))) -((-3117 ((|#2| |#4|) 35 T ELT))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3117 (|#2| |#4|))) (-387) (-1146 |#1|) (-658 |#1| |#2|) (-1146 |#3|)) (T -693)) -((-3117 (*1 *2 *3) (-12 (-4 *4 (-387)) (-4 *5 (-658 *4 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *3 (-1146 *5))))) -((-3450 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2430 (((-1176) (-1064) (-1064) |#4| |#5|) 33 T ELT)) (-2428 ((|#4| |#4| |#5|) 74 T ELT)) (-2429 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|) 79 T ELT)) (-2431 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|) 16 T ELT))) -(((-694 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3450 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2428 (|#4| |#4| |#5|)) (-15 -2429 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|)) (-15 -2430 ((-1176) (-1064) (-1064) |#4| |#5|)) (-15 -2431 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -694)) -((-2431 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) (-5 *1 (-694 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2430 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1064)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *4 (-971 *6 *7 *8)) (-5 *2 (-1176)) (-5 *1 (-694 *6 *7 *8 *4 *5)) (-4 *5 (-977 *6 *7 *8 *4)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-694 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2428 (*1 *2 *2 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *2 (-971 *4 *5 *6)) (-5 *1 (-694 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2)))) (-3450 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-694 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -((-3142 (((-3 (-1076 (-1076 |#1|)) "failed") |#4|) 53 T ELT)) (-2432 (((-580 |#4|) |#4|) 22 T ELT)) (-3911 ((|#4| |#4|) 17 T ELT))) -(((-695 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2432 ((-580 |#4|) |#4|)) (-15 -3142 ((-3 (-1076 (-1076 |#1|)) "failed") |#4|)) (-15 -3911 (|#4| |#4|))) (-296) (-277 |#1|) (-1146 |#2|) (-1146 |#3|) (-825)) (T -695)) -((-3911 (*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *4 (-277 *3)) (-4 *5 (-1146 *4)) (-5 *1 (-695 *3 *4 *5 *2 *6)) (-4 *2 (-1146 *5)) (-14 *6 (-825)))) (-3142 (*1 *2 *3) (|partial| -12 (-4 *4 (-296)) (-4 *5 (-277 *4)) (-4 *6 (-1146 *5)) (-5 *2 (-1076 (-1076 *4))) (-5 *1 (-695 *4 *5 *6 *3 *7)) (-4 *3 (-1146 *6)) (-14 *7 (-825)))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *5 (-277 *4)) (-4 *6 (-1146 *5)) (-5 *2 (-580 *3)) (-5 *1 (-695 *4 *5 *6 *3 *7)) (-4 *3 (-1146 *6)) (-14 *7 (-825))))) -((-2433 (((-2 (|:| |deter| (-580 (-1076 |#5|))) (|:| |dterm| (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-580 |#1|)) (|:| |nlead| (-580 |#5|))) (-1076 |#5|) (-580 |#1|) (-580 |#5|)) 72 T ELT)) (-2434 (((-580 (-689)) |#1|) 20 T ELT))) -(((-696 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2433 ((-2 (|:| |deter| (-580 (-1076 |#5|))) (|:| |dterm| (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-580 |#1|)) (|:| |nlead| (-580 |#5|))) (-1076 |#5|) (-580 |#1|) (-580 |#5|))) (-15 -2434 ((-580 (-689)) |#1|))) (-1146 |#4|) (-712) (-751) (-255) (-856 |#4| |#2| |#3|)) (T -696)) -((-2434 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-580 (-689))) (-5 *1 (-696 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *6)) (-4 *7 (-856 *6 *4 *5)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1146 *9)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-255)) (-4 *10 (-856 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-580 (-1076 *10))) (|:| |dterm| (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| *10))))) (|:| |nfacts| (-580 *6)) (|:| |nlead| (-580 *10)))) (-5 *1 (-696 *6 *7 *8 *9 *10)) (-5 *3 (-1076 *10)) (-5 *4 (-580 *6)) (-5 *5 (-580 *10))))) -((-2437 (((-580 (-2 (|:| |outval| |#1|) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 |#1|))))) (-627 (-345 (-480))) |#1|) 31 T ELT)) (-2436 (((-580 |#1|) (-627 (-345 (-480))) |#1|) 21 T ELT)) (-2435 (((-852 (-345 (-480))) (-627 (-345 (-480))) (-1081)) 18 T ELT) (((-852 (-345 (-480))) (-627 (-345 (-480)))) 17 T ELT))) -(((-697 |#1|) (-10 -7 (-15 -2435 ((-852 (-345 (-480))) (-627 (-345 (-480))))) (-15 -2435 ((-852 (-345 (-480))) (-627 (-345 (-480))) (-1081))) (-15 -2436 ((-580 |#1|) (-627 (-345 (-480))) |#1|)) (-15 -2437 ((-580 (-2 (|:| |outval| |#1|) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 |#1|))))) (-627 (-345 (-480))) |#1|))) (-13 (-309) (-750))) (T -697)) -((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *2 (-580 (-2 (|:| |outval| *4) (|:| |outmult| (-480)) (|:| |outvect| (-580 (-627 *4)))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-309) (-750))))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *2 (-580 *4)) (-5 *1 (-697 *4)) (-4 *4 (-13 (-309) (-750))))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *4 (-1081)) (-5 *2 (-852 (-345 (-480)))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-309) (-750))))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *2 (-852 (-345 (-480)))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-309) (-750)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 36 T ELT)) (-3067 (((-580 |#2|) $) NIL T ELT)) (-3069 (((-1076 $) $ |#2|) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 |#2|)) NIL T ELT)) (-3780 (($ $) 30 T ELT)) (-3151 (((-83) $ $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3738 (($ $ $) 110 (|has| |#1| (-491)) ELT)) (-3133 (((-580 $) $ $) 123 (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-852 (-345 (-480)))) NIL (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081)))) ELT) (((-3 $ #1#) (-852 (-480))) NIL (OR (-12 (|has| |#1| (-38 (-480))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480)))))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081))))) ELT) (((-3 $ #1#) (-852 |#1|)) NIL (OR (-12 (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-38 (-480))))) (-12 (|has| |#1| (-38 (-480))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-479)))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-899 (-480)))))) ELT) (((-3 (-1030 |#1| |#2|) #1#) $) 21 T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) ((|#2| $) NIL T ELT) (($ (-852 (-345 (-480)))) NIL (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081)))) ELT) (($ (-852 (-480))) NIL (OR (-12 (|has| |#1| (-38 (-480))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480)))))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081))))) ELT) (($ (-852 |#1|)) NIL (OR (-12 (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-38 (-480))))) (-12 (|has| |#1| (-38 (-480))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-479)))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-899 (-480)))))) ELT) (((-1030 |#1| |#2|) $) NIL T ELT)) (-3739 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT) (($ $ $) 121 (|has| |#1| (-491)) ELT)) (-3942 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3677 (((-83) $ $) NIL T ELT) (((-83) $ (-580 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3157 (((-83) $) NIL T ELT)) (-3735 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 81 T ELT)) (-3128 (($ $) 136 (|has| |#1| (-387)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ |#2|) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-3139 (($ $) NIL (|has| |#1| (-491)) ELT)) (-3140 (($ $) NIL (|has| |#1| (-491)) ELT)) (-3150 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3149 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1613 (($ $ |#1| (-465 |#2|) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| |#1| (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| |#1| (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) 57 T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3678 (((-83) $ $) NIL T ELT) (((-83) $ (-580 $)) NIL T ELT)) (-3130 (($ $ $ $ $) 107 (|has| |#1| (-491)) ELT)) (-3165 ((|#2| $) 22 T ELT)) (-3070 (($ (-1076 |#1|) |#2|) NIL T ELT) (($ (-1076 $) |#2|) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-465 |#2|)) NIL T ELT) (($ $ |#2| (-689)) 38 T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT)) (-3144 (($ $ $) 63 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#2|) NIL T ELT)) (-3158 (((-83) $) NIL T ELT)) (-2806 (((-465 |#2|) $) NIL T ELT) (((-689) $ |#2|) NIL T ELT) (((-580 (-689)) $ (-580 |#2|)) NIL T ELT)) (-3164 (((-689) $) 23 T ELT)) (-1614 (($ (-1 (-465 |#2|) (-465 |#2|)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3068 (((-3 |#2| #1#) $) NIL T ELT)) (-3125 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3126 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3153 (((-580 $) $) NIL T ELT)) (-3156 (($ $) 39 T ELT)) (-3127 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3154 (((-580 $) $) 43 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-3155 (($ $) 41 T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3143 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3464 (-689))) $ $) 96 T ELT)) (-3145 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $) 78 T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $ |#2|) NIL T ELT)) (-3146 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $) NIL T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $ |#2|) NIL T ELT)) (-3148 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3147 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3175 (($ $ $) 125 (|has| |#1| (-491)) ELT)) (-3161 (((-580 $) $) 32 T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| |#2|) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3674 (((-83) $ $) NIL T ELT) (((-83) $ (-580 $)) NIL T ELT)) (-3669 (($ $ $) NIL T ELT)) (-3429 (($ $) 24 T ELT)) (-3682 (((-83) $ $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT) (((-83) $ (-580 $)) NIL T ELT)) (-3670 (($ $ $) NIL T ELT)) (-3163 (($ $) 26 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3134 (((-2 (|:| -3129 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-491)) ELT)) (-3135 (((-2 (|:| -3129 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-491)) ELT)) (-1786 (((-83) $) 56 T ELT)) (-1785 ((|#1| $) 58 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 ((|#1| |#1| $) 133 (|has| |#1| (-387)) ELT) (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3136 (((-2 (|:| -3129 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-491)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-491)) ELT)) (-3137 (($ $ |#1|) 129 (|has| |#1| (-491)) ELT) (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3138 (($ $ |#1|) 128 (|has| |#1| (-491)) ELT) (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-580 |#2|) (-580 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-580 |#2|) (-580 $)) NIL T ELT)) (-3740 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3931 (((-465 |#2|) $) NIL T ELT) (((-689) $ |#2|) 45 T ELT) (((-580 (-689)) $ (-580 |#2|)) NIL T ELT)) (-3162 (($ $) NIL T ELT)) (-3160 (($ $) 35 T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| |#1| (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT) (($ (-852 (-345 (-480)))) NIL (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081)))) ELT) (($ (-852 (-480))) NIL (OR (-12 (|has| |#1| (-38 (-480))) (|has| |#2| (-550 (-1081))) (-2546 (|has| |#1| (-38 (-345 (-480)))))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#2| (-550 (-1081))))) ELT) (($ (-852 |#1|)) NIL (|has| |#2| (-550 (-1081))) ELT) (((-1064) $) NIL (-12 (|has| |#1| (-945 (-480))) (|has| |#2| (-550 (-1081)))) ELT) (((-852 |#1|) $) NIL (|has| |#2| (-550 (-1081))) ELT)) (-2803 ((|#1| $) 132 (|has| |#1| (-387)) ELT) (($ $ |#2|) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-852 |#1|) $) NIL (|has| |#2| (-550 (-1081))) ELT) (((-1030 |#1| |#2|) $) 18 T ELT) (($ (-1030 |#1| |#2|)) 19 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-465 |#2|)) NIL T ELT) (($ $ |#2| (-689)) 47 T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 13 T CONST)) (-3152 (((-3 (-83) #1#) $ $) NIL T ELT)) (-2652 (($) 37 T CONST)) (-3131 (($ $ $ $ (-689)) 105 (|has| |#1| (-491)) ELT)) (-3132 (($ $ $ (-689)) 104 (|has| |#1| (-491)) ELT)) (-2655 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3822 (($ $ $) 85 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 70 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-698 |#1| |#2|) (-13 (-971 |#1| (-465 |#2|) |#2|) (-549 (-1030 |#1| |#2|)) (-945 (-1030 |#1| |#2|))) (-956) (-751)) (T -698)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 12 T ELT)) (-3750 (((-1170 |#1|) $ (-689)) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3748 (($ (-1076 |#1|)) NIL T ELT)) (-3069 (((-1076 $) $ (-988)) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-988))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2441 (((-580 $) $ $) 54 (|has| |#1| (-491)) ELT)) (-3738 (($ $ $) 50 (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3744 (($ $ (-689)) NIL T ELT)) (-3743 (($ $ (-689)) NIL T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-387)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-988) #1#) $) NIL T ELT) (((-3 (-1076 |#1|) #1#) $) 10 T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-988) $) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-3739 (($ $ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 58 (|has| |#1| (-144)) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3742 (($ $ $) NIL T ELT)) (-3736 (($ $ $) 87 (|has| |#1| (-491)) ELT)) (-3735 (((-2 (|:| -3937 |#1|) (|:| -1962 $) (|:| -2888 $)) $ $) 86 (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-689) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-988) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-988) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ $) NIL (|has| |#1| (-491)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-1057)) ELT)) (-3070 (($ (-1076 |#1|) (-988)) NIL T ELT) (($ (-1076 $) (-988)) NIL T ELT)) (-3760 (($ $ (-689)) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3144 (($ $ $) 27 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-988)) NIL T ELT) (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2806 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-1614 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3749 (((-1076 |#1|) $) NIL T ELT)) (-3068 (((-3 (-988) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3143 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3464 (-689))) $ $) 37 T ELT)) (-2443 (($ $ $) 41 T ELT)) (-2442 (($ $ $) 47 T ELT)) (-3145 (((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $) 46 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3175 (($ $ $) 56 (|has| |#1| (-491)) ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-988)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3795 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (|has| |#1| (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-3134 (((-2 (|:| -3129 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-491)) ELT)) (-3135 (((-2 (|:| -3129 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-491)) ELT)) (-2438 (((-2 (|:| -3739 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-491)) ELT)) (-2439 (((-2 (|:| -3739 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-491)) ELT)) (-1786 (((-83) $) 13 T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3721 (($ $ (-689) |#1| $) 26 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3136 (((-2 (|:| -3129 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-491)) ELT)) (-2440 (((-2 (|:| -3739 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-491)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-988) |#1|) NIL T ELT) (($ $ (-580 (-988)) (-580 |#1|)) NIL T ELT) (($ $ (-988) $) NIL T ELT) (($ $ (-580 (-988)) (-580 $)) NIL T ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-345 $) (-345 $) (-345 $)) NIL (|has| |#1| (-491)) ELT) ((|#1| (-345 $) |#1|) NIL (|has| |#1| (-309)) ELT) (((-345 $) $ (-345 $)) NIL (|has| |#1| (-491)) ELT)) (-3747 (((-3 $ #1#) $ (-689)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3740 (($ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3931 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-988) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-988) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-988) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3737 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT) (((-3 (-345 $) #1#) (-345 $) $) NIL (|has| |#1| (-491)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-988)) NIL T ELT) (((-1076 |#1|) $) 7 T ELT) (($ (-1076 |#1|)) 8 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 28 T CONST)) (-2652 (($) 32 T CONST)) (-2655 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-699 |#1|) (-13 (-1146 |#1|) (-549 (-1076 |#1|)) (-945 (-1076 |#1|)) (-10 -8 (-15 -3721 ($ $ (-689) |#1| $)) (-15 -3144 ($ $ $)) (-15 -3143 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3464 (-689))) $ $)) (-15 -2443 ($ $ $)) (-15 -3145 ((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -2442 ($ $ $)) (IF (|has| |#1| (-491)) (PROGN (-15 -2441 ((-580 $) $ $)) (-15 -3175 ($ $ $)) (-15 -3136 ((-2 (|:| -3129 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3135 ((-2 (|:| -3129 $) (|:| |coef1| $)) $ $)) (-15 -3134 ((-2 (|:| -3129 $) (|:| |coef2| $)) $ $)) (-15 -2440 ((-2 (|:| -3739 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2439 ((-2 (|:| -3739 |#1|) (|:| |coef1| $)) $ $)) (-15 -2438 ((-2 (|:| -3739 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-956)) (T -699)) -((-3721 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-689)) (-5 *1 (-699 *3)) (-4 *3 (-956)))) (-3144 (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956)))) (-3143 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-699 *3)) (|:| |polden| *3) (|:| -3464 (-689)))) (-5 *1 (-699 *3)) (-4 *3 (-956)))) (-2443 (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3937 *3) (|:| |gap| (-689)) (|:| -1962 (-699 *3)) (|:| -2888 (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-956)))) (-2442 (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956)))) (-2441 (*1 *2 *1 *1) (-12 (-5 *2 (-580 (-699 *3))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-3175 (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-491)) (-4 *2 (-956)))) (-3136 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3129 (-699 *3)) (|:| |coef1| (-699 *3)) (|:| |coef2| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-3135 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3129 (-699 *3)) (|:| |coef1| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-3134 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3129 (-699 *3)) (|:| |coef2| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-2440 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3739 *3) (|:| |coef1| (-699 *3)) (|:| |coef2| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3739 *3) (|:| |coef1| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3739 *3) (|:| |coef2| (-699 *3)))) (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956))))) -((-3941 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 13 T ELT))) -(((-700 |#1| |#2|) (-10 -7 (-15 -3941 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-956) (-956)) (T -700)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-5 *2 (-699 *6)) (-5 *1 (-700 *5 *6))))) -((-2445 ((|#1| (-689) |#1|) 33 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2787 ((|#1| (-689) |#1|) 23 T ELT)) (-2444 ((|#1| (-689) |#1|) 35 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-701 |#1|) (-10 -7 (-15 -2787 (|#1| (-689) |#1|)) (IF (|has| |#1| (-38 (-345 (-480)))) (PROGN (-15 -2444 (|#1| (-689) |#1|)) (-15 -2445 (|#1| (-689) |#1|))) |%noBranch|)) (-144)) (T -701)) -((-2445 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-144)))) (-2444 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-144)))) (-2787 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-144))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) 90 T ELT)) (-3665 (((-580 $) (-580 |#4|)) 91 T ELT) (((-580 $) (-580 |#4|) (-83)) 118 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3671 ((|#4| |#4| $) 97 T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 133 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-3782 (((-3 $ #1#) $) 87 T ELT)) (-3668 ((|#4| |#4| $) 94 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3666 ((|#4| |#4| $) 92 T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) 110 T ELT)) (-3182 (((-83) |#4| $) 143 T ELT)) (-3180 (((-83) |#4| $) 140 T ELT)) (-3183 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) 135 T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 134 T ELT)) (-3781 (((-3 |#4| #1#) $) 88 T ELT)) (-3177 (((-580 $) |#4| $) 136 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) 139 T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3223 (((-580 $) |#4| $) 132 T ELT) (((-580 $) (-580 |#4|) $) 131 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 130 T ELT) (((-580 $) |#4| (-580 $)) 129 T ELT)) (-3423 (($ |#4| $) 124 T ELT) (($ (-580 |#4|) $) 123 T ELT)) (-3680 (((-580 |#4|) $) 112 T ELT)) (-3674 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3669 ((|#4| |#4| $) 95 T ELT)) (-3682 (((-83) $ $) 115 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3670 ((|#4| |#4| $) 96 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-3 |#4| #1#) $) 89 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3752 (($ $ |#4|) 82 T ELT) (((-580 $) |#4| $) 122 T ELT) (((-580 $) |#4| (-580 $)) 121 T ELT) (((-580 $) (-580 |#4|) $) 120 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 119 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-3931 (((-689) $) 111 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-3667 (($ $) 93 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-3661 (((-689) $) 81 (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) 103 T ELT)) (-3174 (((-580 $) |#4| $) 128 T ELT) (((-580 $) |#4| (-580 $)) 127 T ELT) (((-580 $) (-580 |#4|) $) 126 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 125 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) 86 T ELT)) (-3181 (((-83) |#4| $) 142 T ELT)) (-3916 (((-83) |#3| $) 85 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-702 |#1| |#2| |#3| |#4|) (-111) (-387) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -702)) -NIL -(-13 (-977 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-884 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1007) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-2448 (((-3 (-325) #1="failed") (-262 |#1|) (-825)) 60 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-325) #1#) (-262 |#1|)) 52 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-325) #1#) (-345 (-852 |#1|)) (-825)) 39 (|has| |#1| (-491)) ELT) (((-3 (-325) #1#) (-345 (-852 |#1|))) 35 (|has| |#1| (-491)) ELT) (((-3 (-325) #1#) (-852 |#1|) (-825)) 30 (|has| |#1| (-956)) ELT) (((-3 (-325) #1#) (-852 |#1|)) 24 (|has| |#1| (-956)) ELT)) (-2446 (((-325) (-262 |#1|) (-825)) 92 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-325) (-262 |#1|)) 87 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-325) (-345 (-852 |#1|)) (-825)) 84 (|has| |#1| (-491)) ELT) (((-325) (-345 (-852 |#1|))) 81 (|has| |#1| (-491)) ELT) (((-325) (-852 |#1|) (-825)) 80 (|has| |#1| (-956)) ELT) (((-325) (-852 |#1|)) 77 (|has| |#1| (-956)) ELT) (((-325) |#1| (-825)) 73 T ELT) (((-325) |#1|) 22 T ELT)) (-2449 (((-3 (-140 (-325)) #1#) (-262 (-140 |#1|)) (-825)) 68 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-140 (-325)) #1#) (-262 (-140 |#1|))) 58 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-140 (-325)) #1#) (-262 |#1|) (-825)) 61 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-140 (-325)) #1#) (-262 |#1|)) 59 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-3 (-140 (-325)) #1#) (-345 (-852 (-140 |#1|))) (-825)) 44 (|has| |#1| (-491)) ELT) (((-3 (-140 (-325)) #1#) (-345 (-852 (-140 |#1|)))) 43 (|has| |#1| (-491)) ELT) (((-3 (-140 (-325)) #1#) (-345 (-852 |#1|)) (-825)) 38 (|has| |#1| (-491)) ELT) (((-3 (-140 (-325)) #1#) (-345 (-852 |#1|))) 37 (|has| |#1| (-491)) ELT) (((-3 (-140 (-325)) #1#) (-852 |#1|) (-825)) 28 (|has| |#1| (-956)) ELT) (((-3 (-140 (-325)) #1#) (-852 |#1|)) 26 (|has| |#1| (-956)) ELT) (((-3 (-140 (-325)) #1#) (-852 (-140 |#1|)) (-825)) 18 (|has| |#1| (-144)) ELT) (((-3 (-140 (-325)) #1#) (-852 (-140 |#1|))) 15 (|has| |#1| (-144)) ELT)) (-2447 (((-140 (-325)) (-262 (-140 |#1|)) (-825)) 95 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-140 (-325)) (-262 (-140 |#1|))) 94 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-140 (-325)) (-262 |#1|) (-825)) 93 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-140 (-325)) (-262 |#1|)) 91 (-12 (|has| |#1| (-491)) (|has| |#1| (-751))) ELT) (((-140 (-325)) (-345 (-852 (-140 |#1|))) (-825)) 86 (|has| |#1| (-491)) ELT) (((-140 (-325)) (-345 (-852 (-140 |#1|)))) 85 (|has| |#1| (-491)) ELT) (((-140 (-325)) (-345 (-852 |#1|)) (-825)) 83 (|has| |#1| (-491)) ELT) (((-140 (-325)) (-345 (-852 |#1|))) 82 (|has| |#1| (-491)) ELT) (((-140 (-325)) (-852 |#1|) (-825)) 79 (|has| |#1| (-956)) ELT) (((-140 (-325)) (-852 |#1|)) 78 (|has| |#1| (-956)) ELT) (((-140 (-325)) (-852 (-140 |#1|)) (-825)) 75 (|has| |#1| (-144)) ELT) (((-140 (-325)) (-852 (-140 |#1|))) 74 (|has| |#1| (-144)) ELT) (((-140 (-325)) (-140 |#1|) (-825)) 17 (|has| |#1| (-144)) ELT) (((-140 (-325)) (-140 |#1|)) 13 (|has| |#1| (-144)) ELT) (((-140 (-325)) |#1| (-825)) 27 T ELT) (((-140 (-325)) |#1|) 25 T ELT))) -(((-703 |#1|) (-10 -7 (-15 -2446 ((-325) |#1|)) (-15 -2446 ((-325) |#1| (-825))) (-15 -2447 ((-140 (-325)) |#1|)) (-15 -2447 ((-140 (-325)) |#1| (-825))) (IF (|has| |#1| (-144)) (PROGN (-15 -2447 ((-140 (-325)) (-140 |#1|))) (-15 -2447 ((-140 (-325)) (-140 |#1|) (-825))) (-15 -2447 ((-140 (-325)) (-852 (-140 |#1|)))) (-15 -2447 ((-140 (-325)) (-852 (-140 |#1|)) (-825)))) |%noBranch|) (IF (|has| |#1| (-956)) (PROGN (-15 -2446 ((-325) (-852 |#1|))) (-15 -2446 ((-325) (-852 |#1|) (-825))) (-15 -2447 ((-140 (-325)) (-852 |#1|))) (-15 -2447 ((-140 (-325)) (-852 |#1|) (-825)))) |%noBranch|) (IF (|has| |#1| (-491)) (PROGN (-15 -2446 ((-325) (-345 (-852 |#1|)))) (-15 -2446 ((-325) (-345 (-852 |#1|)) (-825))) (-15 -2447 ((-140 (-325)) (-345 (-852 |#1|)))) (-15 -2447 ((-140 (-325)) (-345 (-852 |#1|)) (-825))) (-15 -2447 ((-140 (-325)) (-345 (-852 (-140 |#1|))))) (-15 -2447 ((-140 (-325)) (-345 (-852 (-140 |#1|))) (-825))) (IF (|has| |#1| (-751)) (PROGN (-15 -2446 ((-325) (-262 |#1|))) (-15 -2446 ((-325) (-262 |#1|) (-825))) (-15 -2447 ((-140 (-325)) (-262 |#1|))) (-15 -2447 ((-140 (-325)) (-262 |#1|) (-825))) (-15 -2447 ((-140 (-325)) (-262 (-140 |#1|)))) (-15 -2447 ((-140 (-325)) (-262 (-140 |#1|)) (-825)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-15 -2449 ((-3 (-140 (-325)) #1="failed") (-852 (-140 |#1|)))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-852 (-140 |#1|)) (-825)))) |%noBranch|) (IF (|has| |#1| (-956)) (PROGN (-15 -2448 ((-3 (-325) #1#) (-852 |#1|))) (-15 -2448 ((-3 (-325) #1#) (-852 |#1|) (-825))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-852 |#1|))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-852 |#1|) (-825)))) |%noBranch|) (IF (|has| |#1| (-491)) (PROGN (-15 -2448 ((-3 (-325) #1#) (-345 (-852 |#1|)))) (-15 -2448 ((-3 (-325) #1#) (-345 (-852 |#1|)) (-825))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-345 (-852 |#1|)))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-345 (-852 |#1|)) (-825))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-345 (-852 (-140 |#1|))))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-345 (-852 (-140 |#1|))) (-825))) (IF (|has| |#1| (-751)) (PROGN (-15 -2448 ((-3 (-325) #1#) (-262 |#1|))) (-15 -2448 ((-3 (-325) #1#) (-262 |#1|) (-825))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-262 |#1|))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-262 |#1|) (-825))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-262 (-140 |#1|)))) (-15 -2449 ((-3 (-140 (-325)) #1#) (-262 (-140 |#1|)) (-825)))) |%noBranch|)) |%noBranch|)) (-550 (-325))) (T -703)) -((-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-262 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-262 (-140 *4))) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-345 (-852 (-140 *5)))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-852 (-140 *4)))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-852 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-144)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-852 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-262 (-140 *4))) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 (-140 *5)))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 (-140 *4)))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-852 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-144)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-852 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-140 *5)) (-5 *4 (-825)) (-4 *5 (-144)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-5 *2 (-140 (-325))) (-5 *1 (-703 *3)) (-4 *3 (-550 (-325))))) (-2447 (*1 *2 *3) (-12 (-5 *2 (-140 (-325))) (-5 *1 (-703 *3)) (-4 *3 (-550 (-325))))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-5 *2 (-325)) (-5 *1 (-703 *3)) (-4 *3 (-550 *2)))) (-2446 (*1 *2 *3) (-12 (-5 *2 (-325)) (-5 *1 (-703 *3)) (-4 *3 (-550 *2))))) -((-2453 (((-825) (-1064)) 90 T ELT)) (-2455 (((-3 (-325) "failed") (-1064)) 36 T ELT)) (-2454 (((-325) (-1064)) 34 T ELT)) (-2451 (((-825) (-1064)) 64 T ELT)) (-2452 (((-1064) (-825)) 74 T ELT)) (-2450 (((-1064) (-825)) 63 T ELT))) -(((-704) (-10 -7 (-15 -2450 ((-1064) (-825))) (-15 -2451 ((-825) (-1064))) (-15 -2452 ((-1064) (-825))) (-15 -2453 ((-825) (-1064))) (-15 -2454 ((-325) (-1064))) (-15 -2455 ((-3 (-325) "failed") (-1064))))) (T -704)) -((-2455 (*1 *2 *3) (|partial| -12 (-5 *3 (-1064)) (-5 *2 (-325)) (-5 *1 (-704)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-325)) (-5 *1 (-704)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-825)) (-5 *1 (-704)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1064)) (-5 *1 (-704)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-825)) (-5 *1 (-704)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1064)) (-5 *1 (-704))))) -((-2458 (((-1176) (-1170 (-325)) (-480) (-325) (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325))) (-325) (-1170 (-325)) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325))) 54 T ELT) (((-1176) (-1170 (-325)) (-480) (-325) (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325))) (-325) (-1170 (-325)) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325))) 51 T ELT)) (-2459 (((-1176) (-1170 (-325)) (-480) (-325) (-325) (-480) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325))) 61 T ELT)) (-2457 (((-1176) (-1170 (-325)) (-480) (-325) (-325) (-325) (-325) (-480) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325))) 49 T ELT)) (-2456 (((-1176) (-1170 (-325)) (-480) (-325) (-325) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325))) 63 T ELT) (((-1176) (-1170 (-325)) (-480) (-325) (-325) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325))) 62 T ELT))) -(((-705) (-10 -7 (-15 -2456 ((-1176) (-1170 (-325)) (-480) (-325) (-325) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)))) (-15 -2456 ((-1176) (-1170 (-325)) (-480) (-325) (-325) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)))) (-15 -2457 ((-1176) (-1170 (-325)) (-480) (-325) (-325) (-325) (-325) (-480) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)))) (-15 -2458 ((-1176) (-1170 (-325)) (-480) (-325) (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325))) (-325) (-1170 (-325)) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)))) (-15 -2458 ((-1176) (-1170 (-325)) (-480) (-325) (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325))) (-325) (-1170 (-325)) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)) (-1170 (-325)))) (-15 -2459 ((-1176) (-1170 (-325)) (-480) (-325) (-325) (-480) (-1 (-1176) (-1170 (-325)) (-1170 (-325)) (-325)))))) (T -705)) -((-2459 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) (-2458 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-480)) (-5 *6 (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325)))) (-5 *7 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) (-2458 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-480)) (-5 *6 (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325)))) (-5 *7 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) (-2457 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) (-2456 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) (-2456 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705))))) -((-2468 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 65 T ELT)) (-2465 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 40 T ELT)) (-2467 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 64 T ELT)) (-2464 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 38 T ELT)) (-2466 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 63 T ELT)) (-2463 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480)) 24 T ELT)) (-2462 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480)) 41 T ELT)) (-2461 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480)) 39 T ELT)) (-2460 (((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480)) 37 T ELT))) -(((-706) (-10 -7 (-15 -2460 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480))) (-15 -2461 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480))) (-15 -2462 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480) (-480))) (-15 -2463 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))) (-15 -2464 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))) (-15 -2465 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))) (-15 -2466 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))) (-15 -2467 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))) (-15 -2468 ((-2 (|:| -3385 (-325)) (|:| -1585 (-325)) (|:| |totalpts| (-480)) (|:| |success| (-83))) (-1 (-325) (-325)) (-325) (-325) (-325) (-325) (-480) (-480))))) (T -706)) -((-2468 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2467 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2466 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2465 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2464 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2463 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2462 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2461 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480)))) (-2460 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) (-5 *2 (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) (|:| |success| (-83)))) (-5 *1 (-706)) (-5 *5 (-480))))) -((-3688 (((-1116 |#1|) |#1| (-177) (-480)) 69 T ELT))) -(((-707 |#1|) (-10 -7 (-15 -3688 ((-1116 |#1|) |#1| (-177) (-480)))) (-882)) (T -707)) -((-3688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-177)) (-5 *5 (-480)) (-5 *2 (-1116 *3)) (-5 *1 (-707 *3)) (-4 *3 (-882))))) -((-3606 (((-480) $) 17 T ELT)) (-3172 (((-83) $) 10 T ELT)) (-3366 (($ $) 19 T ELT))) -(((-708 |#1|) (-10 -7 (-15 -3366 (|#1| |#1|)) (-15 -3606 ((-480) |#1|)) (-15 -3172 ((-83) |#1|))) (-709)) (T -708)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-1301 (((-3 $ "failed") $ $) 34 T ELT)) (-3606 (((-480) $) 37 T ELT)) (-3707 (($) 30 T CONST)) (-3171 (((-83) $) 28 T ELT)) (-3172 (((-83) $) 38 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3366 (($ $) 36 T ELT)) (-2646 (($) 29 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3820 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3822 (($ $ $) 25 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT) (($ (-480) $) 39 T ELT))) -(((-709) (-111)) (T -709)) -((-3172 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-480)))) (-3366 (*1 *1 *1) (-4 *1 (-709)))) -(-13 (-716) (-21) (-10 -8 (-15 -3172 ((-83) $)) (-15 -3606 ((-480) $)) (-15 -3366 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-3171 (((-83) $) 10 T ELT))) -(((-710 |#1|) (-10 -7 (-15 -3171 ((-83) |#1|))) (-711)) (T -710)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-3707 (($) 30 T CONST)) (-3171 (((-83) $) 28 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 29 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3822 (($ $ $) 25 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT))) -(((-711) (-111)) (T -711)) -((-3171 (*1 *2 *1) (-12 (-4 *1 (-711)) (-5 *2 (-83))))) -(-13 (-713) (-23) (-10 -8 (-15 -3171 ((-83) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-713) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-2469 (($ $ $) 35 T ELT)) (-1301 (((-3 $ "failed") $ $) 34 T ELT)) (-3707 (($) 30 T CONST)) (-3171 (((-83) $) 28 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 29 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3822 (($ $ $) 25 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT))) -(((-712) (-111)) (T -712)) -((-2469 (*1 *1 *1 *1) (-4 *1 (-712)))) -(-13 (-716) (-10 -8 (-15 -2469 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3822 (($ $ $) 25 T ELT)) (* (($ (-825) $) 26 T ELT))) -(((-713) (-111)) (T -713)) -NIL -(-13 (-751) (-25)) -(((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-3173 (((-83) $) 42 T ELT)) (-3142 (((-3 (-480) #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 78 T ELT)) (-3009 (((-83) $) 72 T ELT)) (-3008 (((-345 (-480)) $) 76 T ELT)) (-3117 ((|#2| $) 26 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2470 (($ $) 58 T ELT)) (-3955 (((-469) $) 67 T ELT)) (-2995 (($ $) 21 T ELT)) (-3929 (((-767) $) 53 T ELT) (($ (-480)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-345 (-480))) NIL T ELT)) (-3111 (((-689)) 10 T CONST)) (-3366 ((|#2| $) 71 T ELT)) (-3042 (((-83) $ $) 30 T ELT)) (-2671 (((-83) $ $) 69 T ELT)) (-3820 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 31 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-714 |#1| |#2|) (-10 -7 (-15 -2671 ((-83) |#1| |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -2470 (|#1| |#1|)) (-15 -3010 ((-3 (-345 (-480)) #1="failed") |#1|)) (-15 -3008 ((-345 (-480)) |#1|)) (-15 -3009 ((-83) |#1|)) (-15 -3366 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3111 ((-689)) -3935) (-15 -3929 (|#1| (-480))) (-15 * (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 -3173 ((-83) |#1|)) (-15 * (|#1| (-825) |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-715 |#2|) (-144)) (T -714)) -((-3111 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-714 *3 *4)) (-4 *3 (-715 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3121 (((-689)) 65 (|has| |#1| (-315)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 107 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 104 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3141 (((-480) $) 106 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 103 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 102 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3626 ((|#1| $) 91 T ELT)) (-3010 (((-3 (-345 (-480)) "failed") $) 78 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 80 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 79 (|has| |#1| (-479)) ELT)) (-2980 (($) 68 (|has| |#1| (-315)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2475 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 82 T ELT)) (-3117 ((|#1| $) 83 T ELT)) (-2517 (($ $ $) 69 (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) 70 (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-1998 (((-825) $) 67 (|has| |#1| (-315)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 77 (|has| |#1| (-309)) ELT)) (-2388 (($ (-825)) 66 (|has| |#1| (-315)) ELT)) (-2472 ((|#1| $) 88 T ELT)) (-2473 ((|#1| $) 89 T ELT)) (-2474 ((|#1| $) 90 T ELT)) (-2992 ((|#1| $) 84 T ELT)) (-2993 ((|#1| $) 85 T ELT)) (-2994 ((|#1| $) 86 T ELT)) (-2471 ((|#1| $) 87 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) 99 (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) 98 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) 97 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 96 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 95 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) 94 (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-3783 (($ $ |#1|) 100 (|has| |#1| (-239 |#1| |#1|)) ELT)) (-3955 (((-469) $) 75 (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) 92 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-345 (-480))) 105 (|has| |#1| (-945 (-345 (-480)))) ELT)) (-2688 (((-629 $) $) 76 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-3366 ((|#1| $) 81 (|has| |#1| (-967)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 71 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 73 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 72 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 74 (|has| |#1| (-751)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-715 |#1|) (-111) (-144)) (T -715)) -((-2995 (*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-2475 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) (-3010 (*1 *2 *1) (|partial| -12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)) (-4 *2 (-309))))) -(-13 (-38 |t#1|) (-350 |t#1|) (-285 |t#1|) (-10 -8 (-15 -2995 ($ $)) (-15 -3626 (|t#1| $)) (-15 -2474 (|t#1| $)) (-15 -2473 (|t#1| $)) (-15 -2472 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -2994 (|t#1| $)) (-15 -2993 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -3117 (|t#1| $)) (-15 -2475 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-751)) (-6 (-751)) |%noBranch|) (IF (|has| |t#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-967)) (-15 -3366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-309)) (-15 -2470 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 |#1| $) |has| |#1| (-239 |#1| |#1|)) ((-257 |#1|) |has| |#1| (-257 |#1|)) ((-315) |has| |#1| (-315)) ((-285 |#1|) . T) ((-350 |#1|) . T) ((-449 (-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((-449 |#1| |#1|) |has| |#1| (-257 |#1|)) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-660) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-1301 (((-3 $ "failed") $ $) 34 T ELT)) (-3707 (($) 30 T CONST)) (-3171 (((-83) $) 28 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 29 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3822 (($ $ $) 25 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT))) -(((-716) (-111)) (T -716)) -NIL -(-13 (-711) (-102)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-711) . T) ((-713) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-904 |#1|) #1#) $) 35 T ELT) (((-3 (-480) #1#) $) NIL (OR (|has| (-904 |#1|) (-945 (-480))) (|has| |#1| (-945 (-480)))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (OR (|has| (-904 |#1|) (-945 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3141 ((|#1| $) NIL T ELT) (((-904 |#1|) $) 33 T ELT) (((-480) $) NIL (OR (|has| (-904 |#1|) (-945 (-480))) (|has| |#1| (-945 (-480)))) ELT) (((-345 (-480)) $) NIL (OR (|has| (-904 |#1|) (-945 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3626 ((|#1| $) 16 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) NIL (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) NIL (|has| |#1| (-479)) ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2475 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-904 |#1|) (-904 |#1|)) 29 T ELT)) (-3117 ((|#1| $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-2472 ((|#1| $) 22 T ELT)) (-2473 ((|#1| $) 20 T ELT)) (-2474 ((|#1| $) 18 T ELT)) (-2992 ((|#1| $) 26 T ELT)) (-2993 ((|#1| $) 25 T ELT)) (-2994 ((|#1| $) 24 T ELT)) (-2471 ((|#1| $) 23 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-3783 (($ $ |#1|) NIL (|has| |#1| (-239 |#1| |#1|)) ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-904 |#1|)) 30 T ELT) (($ (-345 (-480))) NIL (OR (|has| (-904 |#1|) (-945 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3366 ((|#1| $) NIL (|has| |#1| (-967)) ELT)) (-2646 (($) 8 T CONST)) (-2652 (($) 12 T CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-717 |#1|) (-13 (-715 |#1|) (-350 (-904 |#1|)) (-10 -8 (-15 -2475 ($ (-904 |#1|) (-904 |#1|))))) (-144)) (T -717)) -((-2475 (*1 *1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-144)) (-5 *1 (-717 *3))))) -((-3941 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#3| (-1 |#4| |#2|) |#1|))) (-715 |#2|) (-144) (-715 |#4|) (-144)) (T -718)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-715 *6)) (-5 *1 (-718 *4 *5 *2 *6)) (-4 *4 (-715 *5))))) -((-2476 (((-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#3| |#2| (-1081)) 19 T ELT))) -(((-719 |#1| |#2| |#3|) (-10 -7 (-15 -2476 ((-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#3| |#2| (-1081)))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118)) (-13 (-29 |#1|) (-1106) (-866)) (-597 |#2|)) (T -719)) -((-2476 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1081)) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-4 *4 (-13 (-29 *6) (-1106) (-866))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2000 (-580 *4)))) (-5 *1 (-719 *6 *4 *3)) (-4 *3 (-597 *4))))) -((-3556 (((-3 |#2| #1="failed") |#2| (-84) (-246 |#2|) (-580 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-246 |#2|) (-84) (-246 |#2|) (-580 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#2| #1#) |#2| (-84) (-1081)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#2| #1#) (-246 |#2|) (-84) (-1081)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1#) (-580 |#2|) (-580 (-84)) (-1081)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1#) (-580 (-246 |#2|)) (-580 (-84)) (-1081)) 26 T ELT) (((-3 (-580 (-1170 |#2|)) #1#) (-627 |#2|) (-1081)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1#) (-627 |#2|) (-1170 |#2|) (-1081)) 35 T ELT))) -(((-720 |#1| |#2|) (-10 -7 (-15 -3556 ((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1="failed") (-627 |#2|) (-1170 |#2|) (-1081))) (-15 -3556 ((-3 (-580 (-1170 |#2|)) #1#) (-627 |#2|) (-1081))) (-15 -3556 ((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1#) (-580 (-246 |#2|)) (-580 (-84)) (-1081))) (-15 -3556 ((-3 (-2 (|:| |particular| (-1170 |#2|)) (|:| -2000 (-580 (-1170 |#2|)))) #1#) (-580 |#2|) (-580 (-84)) (-1081))) (-15 -3556 ((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#2| #1#) (-246 |#2|) (-84) (-1081))) (-15 -3556 ((-3 (-2 (|:| |particular| |#2|) (|:| -2000 (-580 |#2|))) |#2| #1#) |#2| (-84) (-1081))) (-15 -3556 ((-3 |#2| #1#) (-246 |#2|) (-84) (-246 |#2|) (-580 |#2|))) (-15 -3556 ((-3 |#2| #1#) |#2| (-84) (-246 |#2|) (-580 |#2|)))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118)) (-13 (-29 |#1|) (-1106) (-866))) (T -720)) -((-3556 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-246 *2)) (-5 *5 (-580 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-720 *6 *2)))) (-3556 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-246 *2)) (-5 *4 (-84)) (-5 *5 (-580 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-866))) (-5 *1 (-720 *6 *2)) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))))) (-3556 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-84)) (-5 *5 (-1081)) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2000 (-580 *3))) *3 #1="failed")) (-5 *1 (-720 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-866))))) (-3556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-246 *7)) (-5 *4 (-84)) (-5 *5 (-1081)) (-4 *7 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2000 (-580 *7))) *7 #1#)) (-5 *1 (-720 *6 *7)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-580 *7)) (-5 *4 (-580 (-84))) (-5 *5 (-1081)) (-4 *7 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) (-5 *1 (-720 *6 *7)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-580 (-246 *7))) (-5 *4 (-580 (-84))) (-5 *5 (-1081)) (-4 *7 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) (-5 *1 (-720 *6 *7)))) (-3556 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1081)) (-4 *6 (-13 (-29 *5) (-1106) (-866))) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-1170 *6))) (-5 *1 (-720 *5 *6)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1081)) (-4 *7 (-13 (-29 *6) (-1106) (-866))) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) (-5 *1 (-720 *6 *7)) (-5 *4 (-1170 *7))))) -((-3453 ((|#2| |#2| (-1081)) 17 T ELT)) (-2477 ((|#2| |#2| (-1081)) 56 T ELT)) (-2478 (((-1 |#2| |#2|) (-1081)) 11 T ELT))) -(((-721 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2| (-1081))) (-15 -2477 (|#2| |#2| (-1081))) (-15 -2478 ((-1 |#2| |#2|) (-1081)))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118)) (-13 (-29 |#1|) (-1106) (-866))) (T -721)) -((-2478 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-1 *5 *5)) (-5 *1 (-721 *4 *5)) (-4 *5 (-13 (-29 *4) (-1106) (-866))))) (-2477 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-721 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-866))))) (-3453 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-721 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-866)))))) -((-2479 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2000 (-580 |#4|))) (-594 |#4|) |#4|) 33 T ELT))) -(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2000 (-580 |#4|))) (-594 |#4|) |#4|))) (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480)))) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|)) (T -722)) -((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *4)) (-4 *4 (-288 *5 *6 *7)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2000 (-580 *4)))) (-5 *1 (-722 *5 *6 *7 *4))))) -((-3724 (((-2 (|:| -3251 |#3|) (|:| |rh| (-580 (-345 |#2|)))) |#4| (-580 (-345 |#2|))) 53 T ELT)) (-2481 (((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#4| |#2|) 62 T ELT) (((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#4|) 61 T ELT) (((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#3| |#2|) 20 T ELT) (((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#3|) 21 T ELT)) (-2482 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2480 ((|#2| |#3| (-580 (-345 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-345 |#2|)) 105 T ELT))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2480 ((-3 |#2| "failed") |#3| (-345 |#2|))) (-15 -2480 (|#2| |#3| (-580 (-345 |#2|)))) (-15 -2481 ((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#3|)) (-15 -2481 ((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#3| |#2|)) (-15 -2482 (|#2| |#3| |#1|)) (-15 -2481 ((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#4|)) (-15 -2481 ((-580 (-2 (|:| -3756 |#2|) (|:| -3211 |#2|))) |#4| |#2|)) (-15 -2482 (|#2| |#4| |#1|)) (-15 -3724 ((-2 (|:| -3251 |#3|) (|:| |rh| (-580 (-345 |#2|)))) |#4| (-580 (-345 |#2|))))) (-13 (-309) (-118) (-945 (-345 (-480)))) (-1146 |#1|) (-597 |#2|) (-597 (-345 |#2|))) (T -723)) -((-3724 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-2 (|:| -3251 *7) (|:| |rh| (-580 (-345 *6))))) (-5 *1 (-723 *5 *6 *7 *3)) (-5 *4 (-580 (-345 *6))) (-4 *7 (-597 *6)) (-4 *3 (-597 (-345 *6))))) (-2482 (*1 *2 *3 *4) (-12 (-4 *2 (-1146 *4)) (-5 *1 (-723 *4 *2 *5 *3)) (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-597 *2)) (-4 *3 (-597 (-345 *2))))) (-2481 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *4 (-1146 *5)) (-5 *2 (-580 (-2 (|:| -3756 *4) (|:| -3211 *4)))) (-5 *1 (-723 *5 *4 *6 *3)) (-4 *6 (-597 *4)) (-4 *3 (-597 (-345 *4))))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-2 (|:| -3756 *5) (|:| -3211 *5)))) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 (-345 *5))))) (-2482 (*1 *2 *3 *4) (-12 (-4 *2 (-1146 *4)) (-5 *1 (-723 *4 *2 *3 *5)) (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-345 *2))))) (-2481 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *4 (-1146 *5)) (-5 *2 (-580 (-2 (|:| -3756 *4) (|:| -3211 *4)))) (-5 *1 (-723 *5 *4 *3 *6)) (-4 *3 (-597 *4)) (-4 *6 (-597 (-345 *4))))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-2 (|:| -3756 *5) (|:| -3211 *5)))) (-5 *1 (-723 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-345 *5))))) (-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-345 *2))) (-4 *2 (-1146 *5)) (-5 *1 (-723 *5 *2 *3 *6)) (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) (-4 *6 (-597 (-345 *2))))) (-2480 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-345 *2)) (-4 *2 (-1146 *5)) (-5 *1 (-723 *5 *2 *3 *6)) (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) (-4 *6 (-597 *4))))) -((-2490 (((-580 (-2 (|:| |frac| (-345 |#2|)) (|:| -3251 |#3|))) |#3| (-1 (-580 |#2|) |#2| (-1076 |#2|)) (-1 (-343 |#2|) |#2|)) 156 T ELT)) (-2491 (((-580 (-2 (|:| |poly| |#2|) (|:| -3251 |#3|))) |#3| (-1 (-580 |#1|) |#2|)) 52 T ELT)) (-2484 (((-580 (-2 (|:| |deg| (-689)) (|:| -3251 |#2|))) |#3|) 123 T ELT)) (-2483 ((|#2| |#3|) 42 T ELT)) (-2485 (((-580 (-2 (|:| -3935 |#1|) (|:| -3251 |#3|))) |#3| (-1 (-580 |#1|) |#2|)) 100 T ELT)) (-2486 ((|#3| |#3| (-345 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2483 (|#2| |#3|)) (-15 -2484 ((-580 (-2 (|:| |deg| (-689)) (|:| -3251 |#2|))) |#3|)) (-15 -2485 ((-580 (-2 (|:| -3935 |#1|) (|:| -3251 |#3|))) |#3| (-1 (-580 |#1|) |#2|))) (-15 -2491 ((-580 (-2 (|:| |poly| |#2|) (|:| -3251 |#3|))) |#3| (-1 (-580 |#1|) |#2|))) (-15 -2490 ((-580 (-2 (|:| |frac| (-345 |#2|)) (|:| -3251 |#3|))) |#3| (-1 (-580 |#2|) |#2| (-1076 |#2|)) (-1 (-343 |#2|) |#2|))) (-15 -2486 (|#3| |#3| |#2|)) (-15 -2486 (|#3| |#3| (-345 |#2|)))) (-13 (-309) (-118) (-945 (-345 (-480)))) (-1146 |#1|) (-597 |#2|) (-597 (-345 |#2|))) (T -724)) -((-2486 (*1 *2 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *2 (-597 *5)) (-4 *6 (-597 *3)))) (-2486 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-1146 *4)) (-5 *1 (-724 *4 *3 *2 *5)) (-4 *2 (-597 *3)) (-4 *5 (-597 (-345 *3))))) (-2490 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-580 *7) *7 (-1076 *7))) (-5 *5 (-1 (-343 *7) *7)) (-4 *7 (-1146 *6)) (-4 *6 (-13 (-309) (-118) (-945 (-345 (-480))))) (-5 *2 (-580 (-2 (|:| |frac| (-345 *7)) (|:| -3251 *3)))) (-5 *1 (-724 *6 *7 *3 *8)) (-4 *3 (-597 *7)) (-4 *8 (-597 (-345 *7))))) (-2491 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-2 (|:| |poly| *6) (|:| -3251 *3)))) (-5 *1 (-724 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-345 *6))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-2 (|:| -3935 *5) (|:| -3251 *3)))) (-5 *1 (-724 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-345 *6))))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-2 (|:| |deg| (-689)) (|:| -3251 *5)))) (-5 *1 (-724 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-345 *5))))) (-2483 (*1 *2 *3) (-12 (-4 *2 (-1146 *4)) (-5 *1 (-724 *4 *2 *3 *5)) (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-345 *2)))))) -((-2487 (((-2 (|:| -2000 (-580 (-345 |#2|))) (|:| |mat| (-627 |#1|))) (-595 |#2| (-345 |#2|)) (-580 (-345 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-345 |#2|) #1="failed")) (|:| -2000 (-580 (-345 |#2|)))) (-595 |#2| (-345 |#2|)) (-345 |#2|)) 145 T ELT) (((-2 (|:| -2000 (-580 (-345 |#2|))) (|:| |mat| (-627 |#1|))) (-594 (-345 |#2|)) (-580 (-345 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-345 |#2|) #1#)) (|:| -2000 (-580 (-345 |#2|)))) (-594 (-345 |#2|)) (-345 |#2|)) 138 T ELT)) (-2488 ((|#2| (-595 |#2| (-345 |#2|))) 86 T ELT) ((|#2| (-594 (-345 |#2|))) 89 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -2487 ((-2 (|:| |particular| (-3 (-345 |#2|) #1="failed")) (|:| -2000 (-580 (-345 |#2|)))) (-594 (-345 |#2|)) (-345 |#2|))) (-15 -2487 ((-2 (|:| -2000 (-580 (-345 |#2|))) (|:| |mat| (-627 |#1|))) (-594 (-345 |#2|)) (-580 (-345 |#2|)))) (-15 -2487 ((-2 (|:| |particular| (-3 (-345 |#2|) #1#)) (|:| -2000 (-580 (-345 |#2|)))) (-595 |#2| (-345 |#2|)) (-345 |#2|))) (-15 -2487 ((-2 (|:| -2000 (-580 (-345 |#2|))) (|:| |mat| (-627 |#1|))) (-595 |#2| (-345 |#2|)) (-580 (-345 |#2|)))) (-15 -2488 (|#2| (-594 (-345 |#2|)))) (-15 -2488 (|#2| (-595 |#2| (-345 |#2|))))) (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480)))) (-1146 |#1|)) (T -725)) -((-2488 (*1 *2 *3) (-12 (-5 *3 (-595 *2 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-725 *4 *2)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-594 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-725 *4 *2)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-345 *6))) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-2 (|:| -2000 (-580 (-345 *6))) (|:| |mat| (-627 *5)))) (-5 *1 (-725 *5 *6)) (-5 *4 (-580 (-345 *6))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-345 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) (-5 *1 (-725 *5 *6)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-345 *6))) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-2 (|:| -2000 (-580 (-345 *6))) (|:| |mat| (-627 *5)))) (-5 *1 (-725 *5 *6)) (-5 *4 (-580 (-345 *6))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-345 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2000 (-580 *4)))) (-5 *1 (-725 *5 *6))))) -((-2489 (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#1|))) |#5| |#4|) 49 T ELT))) -(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2489 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#1|))) |#5| |#4|))) (-309) (-597 |#1|) (-1146 |#1|) (-658 |#1| |#3|) (-597 |#4|)) (T -726)) -((-2489 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *7 (-1146 *5)) (-4 *4 (-658 *5 *7)) (-5 *2 (-2 (|:| |mat| (-627 *6)) (|:| |vec| (-1170 *5)))) (-5 *1 (-726 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4))))) -((-2490 (((-580 (-2 (|:| |frac| (-345 |#2|)) (|:| -3251 (-595 |#2| (-345 |#2|))))) (-595 |#2| (-345 |#2|)) (-1 (-343 |#2|) |#2|)) 47 T ELT)) (-2492 (((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-343 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-343 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-580 (-345 |#2|)) (-594 (-345 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|) (-1 (-343 |#2|) |#2|)) 38 T ELT) (((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|)) 39 T ELT) (((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|) (-1 (-343 |#2|) |#2|)) 36 T ELT) (((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|)) 37 T ELT)) (-2491 (((-580 (-2 (|:| |poly| |#2|) (|:| -3251 (-595 |#2| (-345 |#2|))))) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|)) 96 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -2492 ((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|))) (-15 -2492 ((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-580 |#1|) |#2|) (-1 (-343 |#2|) |#2|))) (-15 -2492 ((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|))) (-15 -2492 ((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|) (-1 (-343 |#2|) |#2|))) (-15 -2490 ((-580 (-2 (|:| |frac| (-345 |#2|)) (|:| -3251 (-595 |#2| (-345 |#2|))))) (-595 |#2| (-345 |#2|)) (-1 (-343 |#2|) |#2|))) (-15 -2491 ((-580 (-2 (|:| |poly| |#2|) (|:| -3251 (-595 |#2| (-345 |#2|))))) (-595 |#2| (-345 |#2|)) (-1 (-580 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2492 ((-580 (-345 |#2|)) (-594 (-345 |#2|)))) (-15 -2492 ((-580 (-345 |#2|)) (-594 (-345 |#2|)) (-1 (-343 |#2|) |#2|))) (-15 -2492 ((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)))) (-15 -2492 ((-580 (-345 |#2|)) (-595 |#2| (-345 |#2|)) (-1 (-343 |#2|) |#2|)))) |%noBranch|)) (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480)))) (-1146 |#1|)) (T -727)) -((-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-595 *5 (-345 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-580 (-345 *5))) (-5 *1 (-727 *4 *5)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-594 (-345 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-580 (-345 *5))) (-5 *1 (-727 *4 *5)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-2 (|:| |poly| *6) (|:| -3251 (-595 *6 (-345 *6)))))) (-5 *1 (-727 *5 *6)) (-5 *3 (-595 *6 (-345 *6))))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-5 *2 (-580 (-2 (|:| |frac| (-345 *6)) (|:| -3251 (-595 *6 (-345 *6)))))) (-5 *1 (-727 *5 *6)) (-5 *3 (-595 *6 (-345 *6))))) (-2492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *7 (-345 *7))) (-5 *4 (-1 (-580 *6) *7)) (-5 *5 (-1 (-343 *7) *7)) (-4 *6 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *7 (-1146 *6)) (-5 *2 (-580 (-345 *7))) (-5 *1 (-727 *6 *7)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) (-2492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-345 *7))) (-5 *4 (-1 (-580 *6) *7)) (-5 *5 (-1 (-343 *7) *7)) (-4 *6 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *7 (-1146 *6)) (-5 *2 (-580 (-345 *7))) (-5 *1 (-727 *6 *7)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-1 (-580 *5) *6)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6))))) -((-2493 (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#1|))) (-627 |#2|) (-1170 |#1|)) 110 T ELT) (((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-580 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1170 |#1|)) (|:| -3251 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1170 |#1|)) 15 T ELT)) (-2494 (((-2 (|:| |particular| (-3 (-1170 |#1|) #1="failed")) (|:| -2000 (-580 (-1170 |#1|)))) (-627 |#2|) (-1170 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2000 (-580 |#1|))) |#2| |#1|)) 116 T ELT)) (-3556 (((-3 (-2 (|:| |particular| (-1170 |#1|)) (|:| -2000 (-627 |#1|))) #1#) (-627 |#1|) (-1170 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2000 (-580 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-728 |#1| |#2|) (-10 -7 (-15 -2493 ((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-580 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1170 |#1|)) (|:| -3251 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1170 |#1|))) (-15 -2493 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#1|))) (-627 |#2|) (-1170 |#1|))) (-15 -3556 ((-3 (-2 (|:| |particular| (-1170 |#1|)) (|:| -2000 (-627 |#1|))) #1="failed") (-627 |#1|) (-1170 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2000 (-580 |#1|))) #1#) |#2| |#1|))) (-15 -2494 ((-2 (|:| |particular| (-3 (-1170 |#1|) #1#)) (|:| -2000 (-580 (-1170 |#1|)))) (-627 |#2|) (-1170 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2000 (-580 |#1|))) |#2| |#1|)))) (-309) (-597 |#1|)) (T -728)) -((-2494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2000 (-580 *6))) *7 *6)) (-4 *6 (-309)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1170 *6) "failed")) (|:| -2000 (-580 (-1170 *6))))) (-5 *1 (-728 *6 *7)) (-5 *4 (-1170 *6)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2000 (-580 *6))) "failed") *7 *6)) (-4 *6 (-309)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-1170 *6)) (|:| -2000 (-627 *6)))) (-5 *1 (-728 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1170 *6)))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-597 *5)) (-5 *2 (-2 (|:| |mat| (-627 *6)) (|:| |vec| (-1170 *5)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1170 *5)))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-5 *2 (-2 (|:| A (-627 *5)) (|:| |eqs| (-580 (-2 (|:| C (-627 *5)) (|:| |g| (-1170 *5)) (|:| -3251 *6) (|:| |rh| *5)))))) (-5 *1 (-728 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) (-4 *6 (-597 *5))))) -((-2495 (((-627 |#1|) (-580 |#1|) (-689)) 14 T ELT) (((-627 |#1|) (-580 |#1|)) 15 T ELT)) (-2496 (((-3 (-1170 |#1|) #1="failed") |#2| |#1| (-580 |#1|)) 39 T ELT)) (-3323 (((-3 |#1| #1#) |#2| |#1| (-580 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-729 |#1| |#2|) (-10 -7 (-15 -2495 ((-627 |#1|) (-580 |#1|))) (-15 -2495 ((-627 |#1|) (-580 |#1|) (-689))) (-15 -2496 ((-3 (-1170 |#1|) #1="failed") |#2| |#1| (-580 |#1|))) (-15 -3323 ((-3 |#1| #1#) |#2| |#1| (-580 |#1|) (-1 |#1| |#1|)))) (-309) (-597 |#1|)) (T -729)) -((-3323 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-580 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-309)) (-5 *1 (-729 *2 *3)) (-4 *3 (-597 *2)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-580 *4)) (-4 *4 (-309)) (-5 *2 (-1170 *4)) (-5 *1 (-729 *4 *3)) (-4 *3 (-597 *4)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-689)) (-4 *5 (-309)) (-5 *2 (-627 *5)) (-5 *1 (-729 *5 *6)) (-4 *6 (-597 *5)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-309)) (-5 *2 (-627 *4)) (-5 *1 (-729 *4 *5)) (-4 *5 (-597 *4))))) -((-2554 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3173 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3690 (($ (-825)) NIL (|has| |#2| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) NIL (|has| |#2| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3121 (((-689)) NIL (|has| |#2| (-315)) ELT)) (-3771 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1007)) ELT)) (-3141 (((-480) $) NIL (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) ((|#2| $) NIL (|has| |#2| (-1007)) ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-956)) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#2| (-956)) ELT)) (-2980 (($) NIL (|has| |#2| (-315)) ELT)) (-1565 ((|#2| $ (-480) |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ (-480)) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-712)) ELT)) (-2875 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#2| (-956)) ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-2594 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-1938 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#2| (-315)) ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#2| (-577 (-480))) (|has| |#2| (-956))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL (|has| |#2| (-956)) ELT) (((-627 |#2|) (-1170 $)) NIL (|has| |#2| (-956)) ELT)) (-3227 (((-1064) $) NIL (|has| |#2| (-1007)) ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#2| (-315)) ELT)) (-3228 (((-1025) $) NIL (|has| |#2| (-1007)) ELT)) (-3784 ((|#2| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ (-480) |#2|) NIL T ELT) ((|#2| $ (-480)) NIL T ELT)) (-3819 ((|#2| $ $) NIL (|has| |#2| (-956)) ELT)) (-1457 (($ (-1170 |#2|)) NIL T ELT)) (-3894 (((-105)) NIL (|has| |#2| (-309)) ELT)) (-3741 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#2|) $) NIL T ELT) (($ (-480)) NIL (OR (-12 (|has| |#2| (-945 (-480))) (|has| |#2| (-1007))) (|has| |#2| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#2| (-945 (-345 (-480)))) (|has| |#2| (-1007))) ELT) (($ |#2|) NIL (|has| |#2| (-1007)) ELT) (((-767) $) NIL (|has| |#2| (-549 (-767))) ELT)) (-3111 (((-689)) NIL (|has| |#2| (-956)) CONST)) (-1255 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) NIL (|has| |#2| (-23)) CONST)) (-2652 (($) NIL (|has| |#2| (-956)) CONST)) (-2655 (($ $ (-689)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#2| (-806 (-1081))) (|has| |#2| (-956))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-956)) ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#2| (-956)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2671 (((-83) $ $) 11 (|has| |#2| (-751)) ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-689)) NIL (|has| |#2| (-956)) ELT) (($ $ (-825)) NIL (|has| |#2| (-956)) ELT)) (* (($ $ $) NIL (|has| |#2| (-956)) ELT) (($ $ |#2|) NIL (|has| |#2| (-660)) ELT) (($ |#2| $) NIL (|has| |#2| (-660)) ELT) (($ (-480) $) NIL (|has| |#2| (-21)) ELT) (($ (-689) $) NIL (|has| |#2| (-23)) ELT) (($ (-825) $) NIL (|has| |#2| (-25)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-730 |#1| |#2| |#3|) (-194 |#1| |#2|) (-689) (-712) (-1 (-83) (-1170 |#2|) (-1170 |#2|))) (T -730)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1477 (((-580 (-689)) $) NIL T ELT) (((-580 (-689)) $ (-1081)) NIL T ELT)) (-1511 (((-689) $) NIL T ELT) (((-689) $ (-1081)) NIL T ELT)) (-3067 (((-580 (-733 (-1081))) $) NIL T ELT)) (-3069 (((-1076 $) $ (-733 (-1081))) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-733 (-1081)))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1473 (($ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-733 (-1081)) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL T ELT) (((-3 (-1030 |#1| (-1081)) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-733 (-1081)) $) NIL T ELT) (((-1081) $) NIL T ELT) (((-1030 |#1| (-1081)) $) NIL T ELT)) (-3739 (($ $ $ (-733 (-1081))) NIL (|has| |#1| (-144)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ (-733 (-1081))) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-465 (-733 (-1081))) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-733 (-1081)) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-733 (-1081)) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ (-1081)) NIL T ELT) (((-689) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#1|) (-733 (-1081))) NIL T ELT) (($ (-1076 $) (-733 (-1081))) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-465 (-733 (-1081)))) NIL T ELT) (($ $ (-733 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-733 (-1081))) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-733 (-1081))) NIL T ELT)) (-2806 (((-465 (-733 (-1081))) $) NIL T ELT) (((-689) $ (-733 (-1081))) NIL T ELT) (((-580 (-689)) $ (-580 (-733 (-1081)))) NIL T ELT)) (-1614 (($ (-1 (-465 (-733 (-1081))) (-465 (-733 (-1081)))) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1512 (((-1 $ (-689)) (-1081)) NIL T ELT) (((-1 $ (-689)) $) NIL (|has| |#1| (-188)) ELT)) (-3068 (((-3 (-733 (-1081)) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1475 (((-733 (-1081)) $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1476 (((-83) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-733 (-1081))) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-733 (-1081)) |#1|) NIL T ELT) (($ $ (-580 (-733 (-1081))) (-580 |#1|)) NIL T ELT) (($ $ (-733 (-1081)) $) NIL T ELT) (($ $ (-580 (-733 (-1081))) (-580 $)) NIL T ELT) (($ $ (-1081) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 (-1081)) (-580 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3740 (($ $ (-733 (-1081))) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-733 (-1081))) (-580 (-689))) NIL T ELT) (($ $ (-733 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-733 (-1081)))) NIL T ELT) (($ $ (-733 (-1081))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-1478 (((-580 (-1081)) $) NIL T ELT)) (-3931 (((-465 (-733 (-1081))) $) NIL T ELT) (((-689) $ (-733 (-1081))) NIL T ELT) (((-580 (-689)) $ (-580 (-733 (-1081)))) NIL T ELT) (((-689) $ (-1081)) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-733 (-1081)) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-733 (-1081)) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-733 (-1081)) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ (-733 (-1081))) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-733 (-1081))) NIL T ELT) (($ (-1081)) NIL T ELT) (($ (-1030 |#1| (-1081))) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-465 (-733 (-1081)))) NIL T ELT) (($ $ (-733 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-733 (-1081))) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-733 (-1081))) (-580 (-689))) NIL T ELT) (($ $ (-733 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-733 (-1081)))) NIL T ELT) (($ $ (-733 (-1081))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-731 |#1|) (-13 (-211 |#1| (-1081) (-733 (-1081)) (-465 (-733 (-1081)))) (-945 (-1030 |#1| (-1081)))) (-956)) (T -731)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-309)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-309)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-309)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#2| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-309)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#2| (-309)) ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#2| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-309)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#2| (-309)) ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-309)) ELT) (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 20 (|has| |#2| (-309)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-309)) ELT) (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#2| (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#2| (-309)) ELT)) (-1596 (((-689) $) NIL (|has| |#2| (-309)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3741 (($ $) 13 T ELT) (($ $ (-689)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-345 (-480))) NIL (|has| |#2| (-309)) ELT) (($ $) NIL (|has| |#2| (-309)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-309)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) 15 (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT) (($ $ (-480)) 18 (|has| |#2| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-309)) ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-309)) ELT))) -(((-732 |#1| |#2| |#3|) (-13 (-80 $ $) (-188) (-425 |#2|) (-10 -7 (IF (|has| |#2| (-309)) (-6 (-309)) |%noBranch|))) (-1007) (-804 |#1|) |#1|) (T -732)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-1511 (((-689) $) NIL T ELT)) (-3814 ((|#1| $) 10 T ELT)) (-3142 (((-3 |#1| "failed") $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-3755 (((-689) $) 11 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-1512 (($ |#1| (-689)) 9 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3741 (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2655 (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-733 |#1|) (-226 |#1|) (-751)) (T -733)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3917 (((-580 |#1|) $) 39 T ELT)) (-3121 (((-689) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3922 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3142 (((-3 |#1| #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-3782 (($ $) 43 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-1739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2287 ((|#1| $ (-480)) NIL T ELT)) (-2288 (((-689) $ (-480)) NIL T ELT)) (-3919 (($ $) 55 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-2278 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3923 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2497 (((-83) $ $) 52 T ELT)) (-3816 (((-689) $) 35 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1740 (($ $ $) NIL T ELT)) (-1741 (($ $ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 ((|#1| $) 42 T ELT)) (-1768 (((-580 (-2 (|:| |gen| |#1|) (|:| -3926 (-689)))) $) NIL T ELT)) (-2865 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2551 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 7 T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 54 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ |#1| (-689)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-734 |#1|) (-13 (-331 |#1|) (-749) (-10 -8 (-15 -3784 (|#1| $)) (-15 -3782 ($ $)) (-15 -3919 ($ $)) (-15 -2497 ((-83) $ $)) (-15 -3923 ((-3 $ #1="failed") $ |#1|)) (-15 -3922 ((-3 $ #1#) $ |#1|)) (-15 -2551 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3816 ((-689) $)) (-15 -3917 ((-580 |#1|) $)))) (-751)) (T -734)) -((-3784 (*1 *2 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) (-2497 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-734 *3)) (-4 *3 (-751)))) (-3923 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) (-3922 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) (-2551 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-734 *3)) (|:| |rm| (-734 *3)))) (-5 *1 (-734 *3)) (-4 *3 (-751)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-734 *3)) (-4 *3 (-751)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-734 *3)) (-4 *3 (-751))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3606 (((-480) $) 66 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3171 (((-83) $) 64 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3172 (((-83) $) 65 T ELT)) (-2517 (($ $ $) 58 T ELT)) (-2843 (($ $ $) 59 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3366 (($ $) 67 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 60 T ELT)) (-2553 (((-83) $ $) 62 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 61 T ELT)) (-2671 (((-83) $ $) 63 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-735) (-111)) (T -735)) -NIL -(-13 (-491) (-750)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-750) . T) ((-751) . T) ((-754) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2498 ((|#1| $) 10 T ELT)) (-2499 (($ |#1|) 9 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-689)) NIL T ELT)) (-2806 (((-689) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3741 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-689)) NIL (|has| |#1| (-188)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-3929 (((-767) $) 17 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-144)) ELT)) (-3660 ((|#2| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-689)) NIL (|has| |#1| (-188)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-736 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-188)) (-6 (-188)) |%noBranch|) (-15 -2499 ($ |#1|)) (-15 -2498 (|#1| $)))) (-642 |#2|) (-956)) (T -736)) -((-2499 (*1 *1 *2) (-12 (-4 *3 (-956)) (-5 *1 (-736 *2 *3)) (-4 *2 (-642 *3)))) (-2498 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-736 *2 *3)) (-4 *3 (-956))))) -((-2554 (((-83) $ $) 19 T ELT)) (-3219 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3221 (($ $ $) 77 T ELT)) (-3220 (((-83) $ $) 78 T ELT)) (-3224 (($ (-580 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2356 (($ $) 66 T ELT)) (-1342 (($ $) 62 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ |#1| $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) 61 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) 69 T ELT)) (-2517 ((|#1| $) 83 T ELT)) (-2842 (($ $ $) 86 T ELT)) (-3501 (($ $ $) 85 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2843 ((|#1| $) 84 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 T ELT)) (-3223 (($ $ $) 74 T ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT) (($ |#1| $ (-689)) 67 T ELT)) (-3228 (((-1025) $) 21 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-2355 (((-580 (-2 (|:| |entry| |#1|) (|:| -1935 (-689)))) $) 65 T ELT)) (-3222 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 |#1|)) 52 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 54 T ELT)) (-3929 (((-767) $) 17 T ELT)) (-3225 (($ (-580 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1255 (((-83) $ $) 20 T ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 T ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-737 |#1|) (-111) (-751)) (T -737)) -((-2517 (*1 *2 *1) (-12 (-4 *1 (-737 *2)) (-4 *2 (-751))))) -(-13 (-671 |t#1|) (-876 |t#1|) (-10 -8 (-15 -2517 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-549 (-767)) . T) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-191 |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-631 |#1|) . T) ((-671 |#1|) . T) ((-876 |#1|) . T) ((-1005 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3606 (((-480) $) NIL (|has| |#1| (-750)) ELT)) (-3707 (($) NIL (|has| |#1| (-21)) CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 9 T ELT)) (-3450 (((-3 $ #1#) $) 42 (|has| |#1| (-750)) ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 51 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 46 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 48 (|has| |#1| (-479)) ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2398 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2500 (($) 13 T ELT)) (-2510 (((-83) $) 12 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2511 (((-83) $) 11 T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) 8 T ELT) (($ (-480)) NIL (OR (|has| |#1| (-750)) (|has| |#1| (-945 (-480)))) ELT)) (-3111 (((-689)) 36 (|has| |#1| (-750)) CONST)) (-1255 (((-83) $ $) 53 T ELT)) (-3366 (($ $) NIL (|has| |#1| (-750)) ELT)) (-2646 (($) 23 (|has| |#1| (-21)) CONST)) (-2652 (($) 33 (|has| |#1| (-750)) CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3042 (((-83) $ $) 21 T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2671 (((-83) $ $) 45 (|has| |#1| (-750)) ELT)) (-3820 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-825)) NIL (|has| |#1| (-750)) ELT) (($ $ (-689)) NIL (|has| |#1| (-750)) ELT)) (* (($ $ $) 39 (|has| |#1| (-750)) ELT) (($ (-480) $) 27 (|has| |#1| (-21)) ELT) (($ (-689) $) NIL (|has| |#1| (-21)) ELT) (($ (-825) $) NIL (|has| |#1| (-21)) ELT))) -(((-738 |#1|) (-13 (-1007) (-350 |#1|) (-10 -8 (-15 -2500 ($)) (-15 -2511 ((-83) $)) (-15 -2510 ((-83) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|))) (-1007)) (T -738)) -((-2500 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1007)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-1007)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-1007)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-738 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) (-3010 (*1 *2 *1) (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-738 *3)) (-4 *3 (-479)) (-4 *3 (-1007))))) -((-3941 (((-738 |#2|) (-1 |#2| |#1|) (-738 |#1|) (-738 |#2|)) 12 T ELT) (((-738 |#2|) (-1 |#2| |#1|) (-738 |#1|)) 13 T ELT))) -(((-739 |#1| |#2|) (-10 -7 (-15 -3941 ((-738 |#2|) (-1 |#2| |#1|) (-738 |#1|))) (-15 -3941 ((-738 |#2|) (-1 |#2| |#1|) (-738 |#1|) (-738 |#2|)))) (-1007) (-1007)) (T -739)) -((-3941 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-738 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *1 (-739 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-738 *6)) (-5 *1 (-739 *5 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-84) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-84) $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2502 ((|#1| (-84) |#1|) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2501 (($ |#1| (-307 (-84))) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2503 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2504 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3783 ((|#1| $ |#1|) NIL T ELT)) (-2505 ((|#1| |#1|) NIL (|has| |#1| (-144)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-84)) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2506 (($ $) NIL (|has| |#1| (-144)) ELT) (($ $ $) NIL (|has| |#1| (-144)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ (-84) (-480)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-740 |#1|) (-13 (-956) (-945 |#1|) (-945 (-84)) (-239 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2506 ($ $)) (-15 -2506 ($ $ $)) (-15 -2505 (|#1| |#1|))) |%noBranch|) (-15 -2504 ($ $ (-1 |#1| |#1|))) (-15 -2503 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-84) (-480))) (-15 ** ($ $ (-480))) (-15 -2502 (|#1| (-84) |#1|)) (-15 -2501 ($ |#1| (-307 (-84)))))) (-956)) (T -740)) -((-2506 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956)))) (-2506 (*1 *1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956)))) (-2505 (*1 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956)))) (-2504 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-740 *3)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-740 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-480)) (-5 *1 (-740 *4)) (-4 *4 (-956)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-740 *3)) (-4 *3 (-956)))) (-2502 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-740 *2)) (-4 *2 (-956)))) (-2501 (*1 *1 *2 *3) (-12 (-5 *3 (-307 (-84))) (-5 *1 (-740 *2)) (-4 *2 (-956))))) -((-2619 (((-83) $ |#2|) 14 T ELT)) (-3929 (((-767) $) 11 T ELT))) -(((-741 |#1| |#2|) (-10 -7 (-15 -2619 ((-83) |#1| |#2|)) (-15 -3929 ((-767) |#1|))) (-742 |#2|) (-1007)) (T -741)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3525 ((|#1| $) 19 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2619 (((-83) $ |#1|) 17 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2507 (((-55) $) 18 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-742 |#1|) (-111) (-1007)) (T -742)) -((-3525 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-1007)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-742 *3)) (-4 *3 (-1007)) (-5 *2 (-55)))) (-2619 (*1 *2 *1 *3) (-12 (-4 *1 (-742 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(-13 (-1007) (-10 -8 (-15 -3525 (|t#1| $)) (-15 -2507 ((-55) $)) (-15 -2619 ((-83) $ |t#1|)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2508 (((-165 (-437)) (-1064)) 9 T ELT))) -(((-743) (-10 -7 (-15 -2508 ((-165 (-437)) (-1064))))) (T -743)) -((-2508 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-165 (-437))) (-5 *1 (-743))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3303 (((-1020) $) 10 T ELT)) (-3525 (((-441) $) 9 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2619 (((-83) $ (-441)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3513 (($ (-441) (-1020)) 8 T ELT)) (-3929 (((-767) $) 25 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2507 (((-55) $) 20 T ELT)) (-3042 (((-83) $ $) 12 T ELT))) -(((-744) (-13 (-742 (-441)) (-10 -8 (-15 -3303 ((-1020) $)) (-15 -3513 ($ (-441) (-1020)))))) (T -744)) -((-3303 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-744)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1020)) (-5 *1 (-744))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-2509 (((-1025) $) 31 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3606 (((-480) $) NIL (|has| |#1| (-750)) ELT)) (-3707 (($) NIL (|has| |#1| (-21)) CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 9 T ELT)) (-3450 (((-3 $ #1#) $) 57 (|has| |#1| (-750)) ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 65 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 60 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 63 (|has| |#1| (-479)) ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2513 (($) 14 T ELT)) (-2398 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-2512 (($) 16 T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2510 (((-83) $) 12 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2511 (((-83) $) 11 T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) 8 T ELT) (($ (-480)) NIL (OR (|has| |#1| (-750)) (|has| |#1| (-945 (-480)))) ELT)) (-3111 (((-689)) 50 (|has| |#1| (-750)) CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| |#1| (-750)) ELT)) (-2646 (($) 37 (|has| |#1| (-21)) CONST)) (-2652 (($) 47 (|has| |#1| (-750)) CONST)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3042 (((-83) $ $) 35 T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2671 (((-83) $ $) 59 (|has| |#1| (-750)) ELT)) (-3820 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-825)) NIL (|has| |#1| (-750)) ELT) (($ $ (-689)) NIL (|has| |#1| (-750)) ELT)) (* (($ $ $) 54 (|has| |#1| (-750)) ELT) (($ (-480) $) 41 (|has| |#1| (-21)) ELT) (($ (-689) $) NIL (|has| |#1| (-21)) ELT) (($ (-825) $) NIL (|has| |#1| (-21)) ELT))) -(((-745 |#1|) (-13 (-1007) (-350 |#1|) (-10 -8 (-15 -2513 ($)) (-15 -2512 ($)) (-15 -2511 ((-83) $)) (-15 -2510 ((-83) $)) (-15 -2509 ((-1025) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|))) (-1007)) (T -745)) -((-2513 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1007)))) (-2512 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1007)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-1007)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-1007)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-1025)) (-5 *1 (-745 *3)) (-4 *3 (-1007)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-745 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) (-3010 (*1 *2 *1) (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-745 *3)) (-4 *3 (-479)) (-4 *3 (-1007))))) -((-3941 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|) (-745 |#2|)) 13 T ELT) (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 14 T ELT))) -(((-746 |#1| |#2|) (-10 -7 (-15 -3941 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|))) (-15 -3941 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|) (-745 |#2|)))) (-1007) (-1007)) (T -746)) -((-3941 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *1 (-746 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3121 (((-689)) 27 T ELT)) (-2980 (($) 30 T ELT)) (-2517 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2843 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-1998 (((-825) $) 29 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2388 (($ (-825)) 28 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT))) -(((-747) (-111)) (T -747)) -((-2517 (*1 *1) (-4 *1 (-747))) (-2843 (*1 *1) (-4 *1 (-747)))) -(-13 (-751) (-315) (-10 -8 (-15 -2517 ($) -3935) (-15 -2843 ($) -3935))) -(((-72) . T) ((-549 (-767)) . T) ((-315) . T) ((-13) . T) ((-751) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-2515 (((-83) (-1170 |#2|) (-1170 |#2|)) 19 T ELT)) (-2516 (((-83) (-1170 |#2|) (-1170 |#2|)) 20 T ELT)) (-2514 (((-83) (-1170 |#2|) (-1170 |#2|)) 16 T ELT))) -(((-748 |#1| |#2|) (-10 -7 (-15 -2514 ((-83) (-1170 |#2|) (-1170 |#2|))) (-15 -2515 ((-83) (-1170 |#2|) (-1170 |#2|))) (-15 -2516 ((-83) (-1170 |#2|) (-1170 |#2|)))) (-689) (-711)) (T -748)) -((-2516 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) (-14 *4 (-689)))) (-2515 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) (-14 *4 (-689)))) (-2514 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) (-14 *4 (-689))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3707 (($) 29 T CONST)) (-3450 (((-3 $ "failed") $) 32 T ELT)) (-2398 (((-83) $) 30 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 28 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (** (($ $ (-825)) 26 T ELT) (($ $ (-689)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-749) (-111)) (T -749)) -NIL -(-13 (-761) (-660)) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-660) . T) ((-761) . T) ((-751) . T) ((-754) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 31 T ELT)) (-1301 (((-3 $ "failed") $ $) 34 T ELT)) (-3606 (((-480) $) 37 T ELT)) (-3707 (($) 30 T CONST)) (-3450 (((-3 $ "failed") $) 53 T ELT)) (-3171 (((-83) $) 28 T ELT)) (-2398 (((-83) $) 51 T ELT)) (-3172 (((-83) $) 38 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 54 T ELT)) (-3111 (((-689)) 55 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-3366 (($ $) 36 T ELT)) (-2646 (($) 29 T CONST)) (-2652 (($) 50 T CONST)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (-3820 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3822 (($ $ $) 25 T ELT)) (** (($ $ (-689)) 52 T ELT) (($ $ (-825)) 48 T ELT)) (* (($ (-825) $) 26 T ELT) (($ (-689) $) 32 T ELT) (($ (-480) $) 39 T ELT) (($ $ $) 49 T ELT))) -(((-750) (-111)) (T -750)) -NIL -(-13 (-709) (-956) (-660)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-751) . T) ((-754) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT))) -(((-751) (-111)) (T -751)) -NIL -(-13 (-1007) (-754)) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-754) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3929 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-767) $) 15 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 12 T ELT))) -(((-752 |#1| |#2|) (-13 (-754) (-425 |#1|) (-10 -7 (IF (|has| |#1| (-549 (-767))) (-6 (-549 (-767))) |%noBranch|))) (-1120) (-1 (-83) |#1| |#1|)) (T -752)) -NIL -((-2517 (($ $ $) 16 T ELT)) (-2843 (($ $ $) 15 T ELT)) (-1255 (((-83) $ $) 17 T ELT)) (-2552 (((-83) $ $) 12 T ELT)) (-2553 (((-83) $ $) 9 T ELT)) (-3042 (((-83) $ $) 14 T ELT)) (-2670 (((-83) $ $) 11 T ELT))) -(((-753 |#1|) (-10 -7 (-15 -2517 (|#1| |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -2552 ((-83) |#1| |#1|)) (-15 -2670 ((-83) |#1| |#1|)) (-15 -2553 ((-83) |#1| |#1|)) (-15 -1255 ((-83) |#1| |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-754)) (T -753)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-2517 (($ $ $) 10 T ELT)) (-2843 (($ $ $) 11 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2552 (((-83) $ $) 12 T ELT)) (-2553 (((-83) $ $) 14 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 13 T ELT)) (-2671 (((-83) $ $) 15 T ELT))) -(((-754) (-111)) (T -754)) -((-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) (-2553 (*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) (-2670 (*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) (-2843 (*1 *1 *1 *1) (-4 *1 (-754))) (-2517 (*1 *1 *1 *1) (-4 *1 (-754)))) -(-13 (-72) (-10 -8 (-15 -2671 ((-83) $ $)) (-15 -2553 ((-83) $ $)) (-15 -2670 ((-83) $ $)) (-15 -2552 ((-83) $ $)) (-15 -2843 ($ $ $)) (-15 -2517 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1120) . T)) -((-2522 (($ $ $) 49 T ELT)) (-2523 (($ $ $) 48 T ELT)) (-2524 (($ $ $) 46 T ELT)) (-2520 (($ $ $) 55 T ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 50 T ELT)) (-2521 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3142 (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3486 (($ $) 39 T ELT)) (-2528 (($ $ $) 43 T ELT)) (-2529 (($ $ $) 42 T ELT)) (-2518 (($ $ $) 51 T ELT)) (-2526 (($ $ $) 57 T ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 45 T ELT)) (-2527 (((-3 $ #1#) $ $) 52 T ELT)) (-3449 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2803 ((|#2| $) 36 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3800 (((-580 |#2|) $) 21 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-755 |#1| |#2|) (-10 -7 (-15 -2518 (|#1| |#1| |#1|)) (-15 -2519 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2397 |#1|)) |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2521 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -2525 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2397 |#1|)) |#1| |#1|)) (-15 -2526 (|#1| |#1| |#1|)) (-15 -2527 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3800 ((-580 |#2|) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3929 (|#1| (-480))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|)) (-15 -3929 ((-767) |#1|))) (-756 |#2|) (-956)) (T -755)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-2522 (($ $ $) 56 (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) 57 (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) 59 (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) 54 (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 53 (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ "failed") $ $) 55 (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 58 (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #1="failed") $) 86 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 83 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 80 T ELT)) (-3141 (((-480) $) 85 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 82 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 81 T ELT)) (-3942 (($ $) 75 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3486 (($ $) 66 (|has| |#1| (-387)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2879 (($ |#1| (-689)) 73 T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 68 (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 69 (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) 77 T ELT)) (-2528 (($ $ $) 63 (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) 64 (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) 52 (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) 61 (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 60 (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ "failed") $ $) 62 (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 65 (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) 76 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-491)) ELT)) (-3931 (((-689) $) 78 T ELT)) (-2803 ((|#1| $) 67 (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 84 (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) 79 T ELT)) (-3800 (((-580 |#1|) $) 72 T ELT)) (-3660 ((|#1| $ (-689)) 74 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2531 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) -(((-756 |#1|) (-111) (-956)) (T -756)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-756 *2)) (-4 *2 (-956)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-756 *2)) (-4 *2 (-956)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-580 *3)))) (-2531 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) (-3449 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-491)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-756 *3)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-756 *3)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-387)))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-387)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-756 *3)))) (-2529 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2527 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2526 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2525 (*1 *2 *1 *1) (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) (-4 *1 (-756 *3)))) (-2524 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-756 *3)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2521 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-2519 (*1 *2 *1 *1) (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) (-4 *1 (-756 *3)))) (-2518 (*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(-13 (-956) (-80 |t#1| |t#1|) (-350 |t#1|) (-10 -8 (-15 -3931 ((-689) $)) (-15 -2806 ((-689) $)) (-15 -3159 (|t#1| $)) (-15 -3942 ($ $)) (-15 -3660 (|t#1| $ (-689))) (-15 -2879 ($ |t#1| (-689))) (-15 -3800 ((-580 |t#1|) $)) (-15 -2531 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491)) (PROGN (-15 -3449 ((-3 $ "failed") $ |t#1|)) (-15 -2532 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -2533 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-387)) (PROGN (-15 -2803 (|t#1| $)) (-15 -3486 ($ $))) |%noBranch|) (IF (|has| |t#1| (-309)) (PROGN (-15 -2534 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -2529 ($ $ $)) (-15 -2528 ($ $ $)) (-15 -2527 ((-3 $ "failed") $ $)) (-15 -2526 ($ $ $)) (-15 -2525 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $)) (-15 -2524 ($ $ $)) (-15 -2535 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -2523 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -2521 ((-3 $ "failed") $ $)) (-15 -2520 ($ $ $)) (-15 -2519 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $)) (-15 -2518 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-350 |#1|) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-660) . T) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2530 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2535 (((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-309)) ELT)) (-2533 (((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-491)) ELT)) (-2534 (((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-309)) ELT)) (-2531 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-757 |#1| |#2|) (-10 -7 (-15 -2530 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2531 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-491)) (PROGN (-15 -2532 ((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2533 ((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-15 -2534 ((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2535 ((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-956) (-756 |#1|)) (T -757)) -((-2535 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-309)) (-4 *5 (-956)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) (-4 *3 (-756 *5)))) (-2534 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-309)) (-4 *5 (-956)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) (-4 *3 (-756 *5)))) (-2533 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-491)) (-4 *5 (-956)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) (-4 *3 (-756 *5)))) (-2532 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-491)) (-4 *5 (-956)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) (-4 *3 (-756 *5)))) (-2531 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-956)) (-5 *1 (-757 *2 *3)) (-4 *3 (-756 *2)))) (-2530 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-956)) (-5 *1 (-757 *5 *2)) (-4 *2 (-756 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2522 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 34 (|has| |#1| (-309)) ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3516 (((-767) $ (-767)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) NIL T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 30 (|has| |#1| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 28 (|has| |#1| (-491)) ELT)) (-2806 (((-689) $) NIL T ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 32 (|has| |#1| (-309)) ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (($ |#1|) NIL T ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2531 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) 23 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) 19 T ELT) (($ $ (-689)) 24 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-758 |#1| |#2| |#3|) (-13 (-756 |#1|) (-10 -8 (-15 -3516 ((-767) $ (-767))))) (-956) (-69 |#1|) (-1 |#1| |#1|)) (T -758)) -((-3516 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-758 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2522 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2523 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2524 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2520 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#2| (-309)) ELT)) (-2535 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) ((|#2| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-689)) 17 T ELT)) (-2533 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-491)) ELT)) (-2532 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-491)) ELT)) (-2806 (((-689) $) NIL T ELT)) (-2528 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2529 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2518 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2526 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-2525 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-2527 (((-3 $ #1#) $ $) NIL (|has| |#2| (-309)) ELT)) (-2534 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT)) (-3931 (((-689) $) NIL T ELT)) (-2803 ((|#2| $) NIL (|has| |#2| (-387)) ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (($ |#2|) NIL T ELT) (($ (-1167 |#1|)) 19 T ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-689)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2531 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) 13 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-759 |#1| |#2| |#3| |#4|) (-13 (-756 |#2|) (-552 (-1167 |#1|))) (-1081) (-956) (-69 |#2|) (-1 |#2| |#2|)) (T -759)) -NIL -((-2538 ((|#1| (-689) |#1|) 45 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2537 ((|#1| (-689) (-689) |#1|) 36 T ELT) ((|#1| (-689) |#1|) 24 T ELT)) (-2536 ((|#1| (-689) |#1|) 40 T ELT)) (-2786 ((|#1| (-689) |#1|) 38 T ELT)) (-2785 ((|#1| (-689) |#1|) 37 T ELT))) -(((-760 |#1|) (-10 -7 (-15 -2785 (|#1| (-689) |#1|)) (-15 -2786 (|#1| (-689) |#1|)) (-15 -2536 (|#1| (-689) |#1|)) (-15 -2537 (|#1| (-689) |#1|)) (-15 -2537 (|#1| (-689) (-689) |#1|)) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -2538 (|#1| (-689) |#1|)) |%noBranch|)) (-144)) (T -760)) -((-2538 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-144)))) (-2537 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) (-2537 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) (-2786 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) (-2785 (*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144))))) -((-2554 (((-83) $ $) 7 T ELT)) (-2517 (($ $ $) 23 T ELT)) (-2843 (($ $ $) 22 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2552 (((-83) $ $) 21 T ELT)) (-2553 (((-83) $ $) 19 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-2671 (((-83) $ $) 18 T ELT)) (** (($ $ (-825)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-761) (-111)) (T -761)) -NIL -(-13 (-751) (-1017)) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-751) . T) ((-754) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3385 (((-480) $) 14 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-480)) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 10 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 12 T ELT))) -(((-762) (-13 (-751) (-10 -8 (-15 -3929 ($ (-480))) (-15 -3385 ((-480) $))))) (T -762)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-762)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-762))))) -((-2539 (((-1176) (-580 (-51))) 23 T ELT)) (-3443 (((-1176) (-1064) (-767)) 13 T ELT) (((-1176) (-767)) 8 T ELT) (((-1176) (-1064)) 10 T ELT))) -(((-763) (-10 -7 (-15 -3443 ((-1176) (-1064))) (-15 -3443 ((-1176) (-767))) (-15 -3443 ((-1176) (-1064) (-767))) (-15 -2539 ((-1176) (-580 (-51)))))) (T -763)) -((-2539 (*1 *2 *3) (-12 (-5 *3 (-580 (-51))) (-5 *2 (-1176)) (-5 *1 (-763)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1064)) (-5 *4 (-767)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-763))))) -((-2541 (((-629 (-1129)) $ (-1129)) 15 T ELT)) (-2542 (((-629 (-484)) $ (-484)) 12 T ELT)) (-2540 (((-689) $ (-100)) 30 T ELT))) -(((-764 |#1|) (-10 -7 (-15 -2540 ((-689) |#1| (-100))) (-15 -2541 ((-629 (-1129)) |#1| (-1129))) (-15 -2542 ((-629 (-484)) |#1| (-484)))) (-765)) (T -764)) -NIL -((-2541 (((-629 (-1129)) $ (-1129)) 8 T ELT)) (-2542 (((-629 (-484)) $ (-484)) 9 T ELT)) (-2540 (((-689) $ (-100)) 7 T ELT)) (-2543 (((-629 (-99)) $ (-99)) 10 T ELT)) (-1689 (($ $) 6 T ELT))) -(((-765) (-111)) (T -765)) -((-2543 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-99))) (-5 *3 (-99)))) (-2542 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-484))) (-5 *3 (-484)))) (-2541 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-1129))) (-5 *3 (-1129)))) (-2540 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-100)) (-5 *2 (-689))))) -(-13 (-145) (-10 -8 (-15 -2543 ((-629 (-99)) $ (-99))) (-15 -2542 ((-629 (-484)) $ (-484))) (-15 -2541 ((-629 (-1129)) $ (-1129))) (-15 -2540 ((-689) $ (-100))))) -(((-145) . T)) -((-2541 (((-629 (-1129)) $ (-1129)) NIL T ELT)) (-2542 (((-629 (-484)) $ (-484)) NIL T ELT)) (-2540 (((-689) $ (-100)) NIL T ELT)) (-2543 (((-629 (-99)) $ (-99)) 22 T ELT)) (-2545 (($ (-333)) 12 T ELT) (($ (-1064)) 14 T ELT)) (-2544 (((-83) $) 19 T ELT)) (-3929 (((-767) $) 26 T ELT)) (-1689 (($ $) 23 T ELT))) -(((-766) (-13 (-765) (-549 (-767)) (-10 -8 (-15 -2545 ($ (-333))) (-15 -2545 ($ (-1064))) (-15 -2544 ((-83) $))))) (T -766)) -((-2545 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-766)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-766)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-766))))) -((-2554 (((-83) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2575 (($ $ $) 125 T ELT)) (-2590 (((-480) $) 31 T ELT) (((-480)) 36 T ELT)) (-2585 (($ (-480)) 53 T ELT)) (-2582 (($ $ $) 54 T ELT) (($ (-580 $)) 84 T ELT)) (-2566 (($ $ (-580 $)) 82 T ELT)) (-2587 (((-480) $) 34 T ELT)) (-2569 (($ $ $) 73 T ELT)) (-3515 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2588 (((-480) $) 33 T ELT)) (-2570 (($ $ $) 72 T ELT)) (-3518 (($ $) 114 T ELT)) (-2573 (($ $ $) 129 T ELT)) (-2556 (($ (-580 $)) 61 T ELT)) (-3523 (($ $ (-580 $)) 79 T ELT)) (-2584 (($ (-480) (-480)) 55 T ELT)) (-2597 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3122 (($ $ (-480)) 43 T ELT) (($ $) 46 T ELT)) (-2550 (($ $ $) 97 T ELT)) (-2571 (($ $ $) 132 T ELT)) (-2565 (($ $) 115 T ELT)) (-2549 (($ $ $) 98 T ELT)) (-2561 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2823 (((-1176) $) 10 T ELT)) (-2564 (($ $) 118 T ELT) (($ $ (-689)) 122 T ELT)) (-2567 (($ $ $) 75 T ELT)) (-2568 (($ $ $) 74 T ELT)) (-2581 (($ $ (-580 $)) 110 T ELT)) (-2579 (($ $ $) 113 T ELT)) (-2558 (($ (-580 $)) 59 T ELT)) (-2559 (($ $) 70 T ELT) (($ (-580 $)) 71 T ELT)) (-2562 (($ $ $) 123 T ELT)) (-2563 (($ $) 116 T ELT)) (-2574 (($ $ $) 128 T ELT)) (-3516 (($ (-480)) 21 T ELT) (($ (-1081)) 23 T ELT) (($ (-1064)) 30 T ELT) (($ (-177)) 25 T ELT)) (-2547 (($ $ $) 101 T ELT)) (-2546 (($ $) 102 T ELT)) (-2592 (((-1176) (-1064)) 15 T ELT)) (-2593 (($ (-1064)) 14 T ELT)) (-3109 (($ (-580 (-580 $))) 58 T ELT)) (-3123 (($ $ (-480)) 42 T ELT) (($ $) 45 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2577 (($ $ $) 131 T ELT)) (-3453 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2578 (((-83) $) 108 T ELT)) (-2580 (($ $ (-580 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2586 (($ (-480)) 39 T ELT)) (-2589 (((-480) $) 32 T ELT) (((-480)) 35 T ELT)) (-2583 (($ $ $) 40 T ELT) (($ (-580 $)) 83 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (($ $ $) 99 T ELT)) (-3548 (($) 13 T ELT)) (-3783 (($ $ (-580 $)) 109 T ELT)) (-2591 (((-1064) (-1064)) 8 T ELT)) (-3819 (($ $) 117 T ELT) (($ $ (-689)) 121 T ELT)) (-2551 (($ $ $) 96 T ELT)) (-3741 (($ $ (-689)) 139 T ELT)) (-2557 (($ (-580 $)) 60 T ELT)) (-3929 (((-767) $) 19 T ELT)) (-3756 (($ $ (-480)) 41 T ELT) (($ $) 44 T ELT)) (-2560 (($ $) 68 T ELT) (($ (-580 $)) 69 T ELT)) (-3225 (($ $) 66 T ELT) (($ (-580 $)) 67 T ELT)) (-2576 (($ $) 124 T ELT)) (-2555 (($ (-580 $)) 65 T ELT)) (-3087 (($ $ $) 105 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2572 (($ $ $) 130 T ELT)) (-2548 (($ $ $) 100 T ELT)) (-3720 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2552 (($ $ $) 89 T ELT)) (-2553 (($ $ $) 87 T ELT)) (-3042 (((-83) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2670 (($ $ $) 88 T ELT)) (-2671 (($ $ $) 86 T ELT)) (-3932 (($ $ $) 94 T ELT)) (-3820 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3822 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-767) (-13 (-1007) (-10 -8 (-15 -2823 ((-1176) $)) (-15 -2593 ($ (-1064))) (-15 -2592 ((-1176) (-1064))) (-15 -3516 ($ (-480))) (-15 -3516 ($ (-1081))) (-15 -3516 ($ (-1064))) (-15 -3516 ($ (-177))) (-15 -3548 ($)) (-15 -2591 ((-1064) (-1064))) (-15 -2590 ((-480) $)) (-15 -2589 ((-480) $)) (-15 -2590 ((-480))) (-15 -2589 ((-480))) (-15 -2588 ((-480) $)) (-15 -2587 ((-480) $)) (-15 -2586 ($ (-480))) (-15 -2585 ($ (-480))) (-15 -2584 ($ (-480) (-480))) (-15 -3123 ($ $ (-480))) (-15 -3122 ($ $ (-480))) (-15 -3756 ($ $ (-480))) (-15 -3123 ($ $)) (-15 -3122 ($ $)) (-15 -3756 ($ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2583 ($ (-580 $))) (-15 -2582 ($ (-580 $))) (-15 -2581 ($ $ (-580 $))) (-15 -2580 ($ $ (-580 $))) (-15 -2580 ($ $ $ $)) (-15 -2579 ($ $ $)) (-15 -2578 ((-83) $)) (-15 -3783 ($ $ (-580 $))) (-15 -3518 ($ $)) (-15 -2577 ($ $ $)) (-15 -2576 ($ $)) (-15 -3109 ($ (-580 (-580 $)))) (-15 -2575 ($ $ $)) (-15 -2597 ($ $)) (-15 -2597 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -2573 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -3741 ($ $ (-689))) (-15 -3087 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3523 ($ $ (-580 $))) (-15 -2566 ($ $ (-580 $))) (-15 -2565 ($ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ (-689))) (-15 -2564 ($ $)) (-15 -2564 ($ $ (-689))) (-15 -2563 ($ $)) (-15 -2562 ($ $ $)) (-15 -3515 ($ $)) (-15 -3515 ($ $ $)) (-15 -3515 ($ $ $ $)) (-15 -2561 ($ $)) (-15 -2561 ($ $ $)) (-15 -2561 ($ $ $ $)) (-15 -3453 ($ $)) (-15 -3453 ($ $ $)) (-15 -3453 ($ $ $ $)) (-15 -3225 ($ $)) (-15 -3225 ($ (-580 $))) (-15 -2560 ($ $)) (-15 -2560 ($ (-580 $))) (-15 -2559 ($ $)) (-15 -2559 ($ (-580 $))) (-15 -2558 ($ (-580 $))) (-15 -2557 ($ (-580 $))) (-15 -2556 ($ (-580 $))) (-15 -2555 ($ (-580 $))) (-15 -3042 ($ $ $)) (-15 -2554 ($ $ $)) (-15 -2671 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -2670 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -3822 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3820 ($ $)) (-15 * ($ $ $)) (-15 -3932 ($ $ $)) (-15 ** ($ $ $)) (-15 -2551 ($ $ $)) (-15 -2550 ($ $ $)) (-15 -2549 ($ $ $)) (-15 -3449 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2546 ($ $)) (-15 -3720 ($ $ $)) (-15 -3720 ($ $))))) (T -767)) -((-2823 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-767)))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-767)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-767)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-767)))) (-3548 (*1 *1) (-5 *1 (-767))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2590 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2589 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2586 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-2584 (*1 *1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-3123 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) (-3123 (*1 *1 *1) (-5 *1 (-767))) (-3122 (*1 *1 *1) (-5 *1 (-767))) (-3756 (*1 *1 *1) (-5 *1 (-767))) (-2583 (*1 *1 *1 *1) (-5 *1 (-767))) (-2582 (*1 *1 *1 *1) (-5 *1 (-767))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2580 (*1 *1 *1 *1 *1) (-5 *1 (-767))) (-2579 (*1 *1 *1 *1) (-5 *1 (-767))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-767)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-3518 (*1 *1 *1) (-5 *1 (-767))) (-2577 (*1 *1 *1 *1) (-5 *1 (-767))) (-2576 (*1 *1 *1) (-5 *1 (-767))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-767)))) (-5 *1 (-767)))) (-2575 (*1 *1 *1 *1) (-5 *1 (-767))) (-2597 (*1 *1 *1) (-5 *1 (-767))) (-2597 (*1 *1 *1 *1) (-5 *1 (-767))) (-2574 (*1 *1 *1 *1) (-5 *1 (-767))) (-2573 (*1 *1 *1 *1) (-5 *1 (-767))) (-2572 (*1 *1 *1 *1) (-5 *1 (-767))) (-2571 (*1 *1 *1 *1) (-5 *1 (-767))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) (-3087 (*1 *1 *1 *1) (-5 *1 (-767))) (-2570 (*1 *1 *1 *1) (-5 *1 (-767))) (-2569 (*1 *1 *1 *1) (-5 *1 (-767))) (-2568 (*1 *1 *1 *1) (-5 *1 (-767))) (-2567 (*1 *1 *1 *1) (-5 *1 (-767))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2566 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2565 (*1 *1 *1) (-5 *1 (-767))) (-3819 (*1 *1 *1) (-5 *1 (-767))) (-3819 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) (-2564 (*1 *1 *1) (-5 *1 (-767))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) (-2563 (*1 *1 *1) (-5 *1 (-767))) (-2562 (*1 *1 *1 *1) (-5 *1 (-767))) (-3515 (*1 *1 *1) (-5 *1 (-767))) (-3515 (*1 *1 *1 *1) (-5 *1 (-767))) (-3515 (*1 *1 *1 *1 *1) (-5 *1 (-767))) (-2561 (*1 *1 *1) (-5 *1 (-767))) (-2561 (*1 *1 *1 *1) (-5 *1 (-767))) (-2561 (*1 *1 *1 *1 *1) (-5 *1 (-767))) (-3453 (*1 *1 *1) (-5 *1 (-767))) (-3453 (*1 *1 *1 *1) (-5 *1 (-767))) (-3453 (*1 *1 *1 *1 *1) (-5 *1 (-767))) (-3225 (*1 *1 *1) (-5 *1 (-767))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2560 (*1 *1 *1) (-5 *1 (-767))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2559 (*1 *1 *1) (-5 *1 (-767))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) (-3042 (*1 *1 *1 *1) (-5 *1 (-767))) (-2554 (*1 *1 *1 *1) (-5 *1 (-767))) (-2671 (*1 *1 *1 *1) (-5 *1 (-767))) (-2553 (*1 *1 *1 *1) (-5 *1 (-767))) (-2670 (*1 *1 *1 *1) (-5 *1 (-767))) (-2552 (*1 *1 *1 *1) (-5 *1 (-767))) (-3822 (*1 *1 *1 *1) (-5 *1 (-767))) (-3820 (*1 *1 *1 *1) (-5 *1 (-767))) (-3820 (*1 *1 *1) (-5 *1 (-767))) (* (*1 *1 *1 *1) (-5 *1 (-767))) (-3932 (*1 *1 *1 *1) (-5 *1 (-767))) (** (*1 *1 *1 *1) (-5 *1 (-767))) (-2551 (*1 *1 *1 *1) (-5 *1 (-767))) (-2550 (*1 *1 *1 *1) (-5 *1 (-767))) (-2549 (*1 *1 *1 *1) (-5 *1 (-767))) (-3449 (*1 *1 *1 *1) (-5 *1 (-767))) (-2548 (*1 *1 *1 *1) (-5 *1 (-767))) (-2547 (*1 *1 *1 *1) (-5 *1 (-767))) (-2546 (*1 *1 *1) (-5 *1 (-767))) (-3720 (*1 *1 *1 *1) (-5 *1 (-767))) (-3720 (*1 *1 *1) (-5 *1 (-767)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3814 (((-3 $ "failed") (-1081)) 36 T ELT)) (-3121 (((-689)) 32 T ELT)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) 29 T ELT)) (-3227 (((-1064) $) 43 T ELT)) (-2388 (($ (-825)) 28 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3955 (((-1081) $) 13 T ELT) (((-469) $) 19 T ELT) (((-795 (-325)) $) 26 T ELT) (((-795 (-480)) $) 22 T ELT)) (-3929 (((-767) $) 16 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 40 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 38 T ELT))) -(((-768 |#1|) (-13 (-747) (-550 (-1081)) (-550 (-469)) (-550 (-795 (-325))) (-550 (-795 (-480))) (-10 -8 (-15 -3814 ((-3 $ "failed") (-1081))))) (-580 (-1081))) (T -768)) -((-3814 (*1 *1 *2) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-768 *3)) (-14 *3 (-580 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3525 (((-441) $) 12 T ELT)) (-2594 (((-580 (-376)) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 17 T ELT))) -(((-769) (-13 (-1007) (-10 -8 (-15 -3525 ((-441) $)) (-15 -2594 ((-580 (-376)) $))))) (T -769)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-769)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-580 (-376))) (-5 *1 (-769))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-852 |#1|)) NIL T ELT) (((-852 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3906 (((-1176) (-689)) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-770 |#1| |#2| |#3| |#4|) (-13 (-956) (-425 (-852 |#1|)) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -3932 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3906 ((-1176) (-689))))) (-956) (-580 (-1081)) (-580 (-689)) (-689)) (T -770)) -((-3932 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-770 *2 *3 *4 *5)) (-4 *2 (-309)) (-4 *2 (-956)) (-14 *3 (-580 (-1081))) (-14 *4 (-580 (-689))) (-14 *5 (-689)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-770 *4 *5 *6 *7)) (-4 *4 (-956)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 *3)) (-14 *7 *3)))) -((-2595 (((-3 (-146 |#3|) #1="failed") (-689) (-689) |#2| |#2|) 38 T ELT)) (-2596 (((-3 (-345 |#3|) #1#) (-689) (-689) |#2| |#2|) 29 T ELT))) -(((-771 |#1| |#2| |#3|) (-10 -7 (-15 -2596 ((-3 (-345 |#3|) #1="failed") (-689) (-689) |#2| |#2|)) (-15 -2595 ((-3 (-146 |#3|) #1#) (-689) (-689) |#2| |#2|))) (-309) (-1163 |#1|) (-1146 |#1|)) (T -771)) -((-2595 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-689)) (-4 *5 (-309)) (-5 *2 (-146 *6)) (-5 *1 (-771 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1146 *5)))) (-2596 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-689)) (-4 *5 (-309)) (-5 *2 (-345 *6)) (-5 *1 (-771 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1146 *5))))) -((-2596 (((-3 (-345 (-1139 |#2| |#1|)) #1="failed") (-689) (-689) (-1160 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-345 (-1139 |#2| |#1|)) #1#) (-689) (-689) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) 28 T ELT))) -(((-772 |#1| |#2| |#3|) (-10 -7 (-15 -2596 ((-3 (-345 (-1139 |#2| |#1|)) #1="failed") (-689) (-689) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (-15 -2596 ((-3 (-345 (-1139 |#2| |#1|)) #1#) (-689) (-689) (-1160 |#1| |#2| |#3|)))) (-309) (-1081) |#1|) (T -772)) -((-2596 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-689)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-309)) (-14 *6 (-1081)) (-14 *7 *5) (-5 *2 (-345 (-1139 *6 *5))) (-5 *1 (-772 *5 *6 *7)))) (-2596 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-689)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-309)) (-14 *6 (-1081)) (-14 *7 *5) (-5 *2 (-345 (-1139 *6 *5))) (-5 *1 (-772 *5 *6 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $ (-480)) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2597 (($ (-1076 (-480)) (-480)) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2598 (($ $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3755 (((-689) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2600 (((-480)) NIL T ELT)) (-2599 (((-480) $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3752 (($ $ (-480)) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2601 (((-1060 (-480)) $) NIL T ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-480) $ (-480)) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-773 |#1|) (-774 |#1|) (-480)) (T -773)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3023 (($ $ (-480)) 76 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-2597 (($ (-1076 (-480)) (-480)) 75 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2598 (($ $) 78 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3755 (((-689) $) 83 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-2600 (((-480)) 80 T ELT)) (-2599 (((-480) $) 79 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3752 (($ $ (-480)) 82 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-2601 (((-1060 (-480)) $) 84 T ELT)) (-2877 (($ $) 81 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3753 (((-480) $ (-480)) 77 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-774 |#1|) (-111) (-480)) (T -774)) -((-2601 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-1060 (-480))))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-689)))) (-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) (-2877 (*1 *1 *1) (-4 *1 (-774 *2))) (-2600 (*1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) (-2598 (*1 *1 *1) (-4 *1 (-774 *2))) (-3753 (*1 *2 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) (-3023 (*1 *1 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) (-2597 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *3 (-480)) (-4 *1 (-774 *4))))) -(-13 (-255) (-118) (-10 -8 (-15 -2601 ((-1060 (-480)) $)) (-15 -3755 ((-689) $)) (-15 -3752 ($ $ (-480))) (-15 -2877 ($ $)) (-15 -2600 ((-480))) (-15 -2599 ((-480) $)) (-15 -2598 ($ $)) (-15 -3753 ((-480) $ (-480))) (-15 -3023 ($ $ (-480))) (-15 -2597 ($ (-1076 (-480)) (-480))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-255) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-773 |#1|) $) NIL (|has| (-773 |#1|) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-773 |#1|) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-773 |#1|) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-773 |#1|) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-773 |#1|) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-773 |#1|) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-773 |#1|) (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| (-773 |#1|) (-945 (-480))) ELT)) (-3141 (((-773 |#1|) $) NIL T ELT) (((-1081) $) NIL (|has| (-773 |#1|) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-773 |#1|) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-773 |#1|) (-945 (-480))) ELT)) (-3713 (($ $) NIL T ELT) (($ (-480) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-773 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-773 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-773 |#1|))) (|:| |vec| (-1170 (-773 |#1|)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-773 |#1|)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-773 |#1|) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| (-773 |#1|) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-773 |#1|) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-773 |#1|) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-773 |#1|) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| (-773 |#1|) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-773 |#1|) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-3941 (($ (-1 (-773 |#1|) (-773 |#1|)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-773 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-773 |#1|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-773 |#1|))) (|:| |vec| (-1170 (-773 |#1|)))) (-1170 $) $) NIL T ELT) (((-627 (-773 |#1|)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-773 |#1|) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-773 |#1|) (-255)) ELT)) (-3115 (((-773 |#1|) $) NIL (|has| (-773 |#1|) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-773 |#1|) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-773 |#1|) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-773 |#1|)) (-580 (-773 |#1|))) NIL (|has| (-773 |#1|) (-257 (-773 |#1|))) ELT) (($ $ (-773 |#1|) (-773 |#1|)) NIL (|has| (-773 |#1|) (-257 (-773 |#1|))) ELT) (($ $ (-246 (-773 |#1|))) NIL (|has| (-773 |#1|) (-257 (-773 |#1|))) ELT) (($ $ (-580 (-246 (-773 |#1|)))) NIL (|has| (-773 |#1|) (-257 (-773 |#1|))) ELT) (($ $ (-580 (-1081)) (-580 (-773 |#1|))) NIL (|has| (-773 |#1|) (-449 (-1081) (-773 |#1|))) ELT) (($ $ (-1081) (-773 |#1|)) NIL (|has| (-773 |#1|) (-449 (-1081) (-773 |#1|))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-773 |#1|)) NIL (|has| (-773 |#1|) (-239 (-773 |#1|) (-773 |#1|))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-773 |#1|) (-773 |#1|))) NIL T ELT) (($ $ (-1 (-773 |#1|) (-773 |#1|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-773 |#1|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-773 |#1|) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-773 |#1|) $) NIL T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-773 |#1|) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-773 |#1|) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-773 |#1|) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-773 |#1|) (-928)) ELT) (((-177) $) NIL (|has| (-773 |#1|) (-928)) ELT)) (-2602 (((-146 (-345 (-480))) $) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-773 |#1|) (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-1081)) NIL (|has| (-773 |#1|) (-945 (-1081))) ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-773 |#1|) (-816))) (|has| (-773 |#1|) (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 (((-773 |#1|) $) NIL (|has| (-773 |#1|) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-345 (-480)) $ (-480)) NIL T ELT)) (-3366 (($ $) NIL (|has| (-773 |#1|) (-735)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-773 |#1|) (-773 |#1|))) NIL T ELT) (($ $ (-1 (-773 |#1|) (-773 |#1|)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-773 |#1|) (-806 (-1081))) ELT) (($ $) NIL (|has| (-773 |#1|) (-187)) ELT) (($ $ (-689)) NIL (|has| (-773 |#1|) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| (-773 |#1|) (-751)) ELT)) (-3932 (($ $ $) NIL T ELT) (($ (-773 |#1|) (-773 |#1|)) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-773 |#1|) $) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT))) -(((-775 |#1|) (-13 (-899 (-773 |#1|)) (-10 -8 (-15 -3753 ((-345 (-480)) $ (-480))) (-15 -2602 ((-146 (-345 (-480))) $)) (-15 -3713 ($ $)) (-15 -3713 ($ (-480) $)))) (-480)) (T -775)) -((-3753 (*1 *2 *1 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-775 *4)) (-14 *4 *3) (-5 *3 (-480)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-775 *3)) (-14 *3 (-480)))) (-3713 (*1 *1 *1) (-12 (-5 *1 (-775 *2)) (-14 *2 (-480)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-775 *3)) (-14 *3 *2)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 ((|#2| $) NIL (|has| |#2| (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| |#2| (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (|has| |#2| (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT)) (-3141 ((|#2| $) NIL T ELT) (((-1081) $) NIL (|has| |#2| (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT)) (-3713 (($ $) 35 T ELT) (($ (-480) $) 38 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) 64 T ELT)) (-2980 (($) NIL (|has| |#2| (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| |#2| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| |#2| (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 ((|#2| $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#2| (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| |#2| (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#2| (-751)) ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 60 T ELT)) (-3429 (($) NIL (|has| |#2| (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| |#2| (-255)) ELT)) (-3115 ((|#2| $) NIL (|has| |#2| (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 |#2|) (-580 |#2|)) NIL (|has| |#2| (-257 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-257 |#2|)) ELT) (($ $ (-246 |#2|)) NIL (|has| |#2| (-257 |#2|)) ELT) (($ $ (-580 (-246 |#2|))) NIL (|has| |#2| (-257 |#2|)) ELT) (($ $ (-580 (-1081)) (-580 |#2|)) NIL (|has| |#2| (-449 (-1081) |#2|)) ELT) (($ $ (-1081) |#2|) NIL (|has| |#2| (-449 (-1081) |#2|)) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ |#2|) NIL (|has| |#2| (-239 |#2| |#2|)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 ((|#2| $) NIL T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| |#2| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| |#2| (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| |#2| (-550 (-469))) ELT) (((-325) $) NIL (|has| |#2| (-928)) ELT) (((-177) $) NIL (|has| |#2| (-928)) ELT)) (-2602 (((-146 (-345 (-480))) $) 78 T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3929 (((-767) $) 105 T ELT) (($ (-480)) 20 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1081)) NIL (|has| |#2| (-945 (-1081))) ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3116 ((|#2| $) NIL (|has| |#2| (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-345 (-480)) $ (-480)) 71 T ELT)) (-3366 (($ $) NIL (|has| |#2| (-735)) ELT)) (-2646 (($) 15 T CONST)) (-2652 (($) 17 T CONST)) (-2655 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-3042 (((-83) $ $) 46 T ELT)) (-2670 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#2| (-751)) ELT)) (-3932 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3820 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3822 (($ $ $) 48 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) 61 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-776 |#1| |#2|) (-13 (-899 |#2|) (-10 -8 (-15 -3753 ((-345 (-480)) $ (-480))) (-15 -2602 ((-146 (-345 (-480))) $)) (-15 -3713 ($ $)) (-15 -3713 ($ (-480) $)))) (-480) (-774 |#1|)) (T -776)) -((-3753 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-345 (-480))) (-5 *1 (-776 *4 *5)) (-5 *3 (-480)) (-4 *5 (-774 *4)))) (-2602 (*1 *2 *1) (-12 (-14 *3 (-480)) (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-776 *3 *4)) (-4 *4 (-774 *3)))) (-3713 (*1 *1 *1) (-12 (-14 *2 (-480)) (-5 *1 (-776 *2 *3)) (-4 *3 (-774 *2)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-14 *3 *2) (-5 *1 (-776 *3 *4)) (-4 *4 (-774 *3))))) -((-2554 (((-83) $ $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3779 ((|#2| $) 12 T ELT)) (-2603 (($ |#1| |#2|) 9 T ELT)) (-3227 (((-1064) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3228 (((-1025) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#1| $) 11 T ELT)) (-3513 (($ |#1| |#2|) 10 T ELT)) (-3929 (((-767) $) 18 (OR (-12 (|has| |#1| (-549 (-767))) (|has| |#2| (-549 (-767)))) (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007)))) ELT)) (-1255 (((-83) $ $) NIL (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT)) (-3042 (((-83) $ $) 23 (-12 (|has| |#1| (-1007)) (|has| |#2| (-1007))) ELT))) -(((-777 |#1| |#2|) (-13 (-1120) (-10 -8 (IF (|has| |#1| (-549 (-767))) (IF (|has| |#2| (-549 (-767))) (-6 (-549 (-767))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1007)) (IF (|has| |#2| (-1007)) (-6 (-1007)) |%noBranch|) |%noBranch|) (-15 -2603 ($ |#1| |#2|)) (-15 -3513 ($ |#1| |#2|)) (-15 -3784 (|#1| $)) (-15 -3779 (|#2| $)))) (-1120) (-1120)) (T -777)) -((-2603 (*1 *1 *2 *3) (-12 (-5 *1 (-777 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *1 (-777 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3784 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-777 *2 *3)) (-4 *3 (-1120)))) (-3779 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-777 *3 *2)) (-4 *3 (-1120))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2943 (((-480) $) 16 T ELT)) (-2605 (($ (-128)) 13 T ELT)) (-2604 (($ (-128)) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2942 (((-128) $) 15 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2607 (($ (-128)) 11 T ELT)) (-2608 (($ (-128)) 10 T ELT)) (-3929 (((-767) $) 24 T ELT) (($ (-128)) 17 T ELT)) (-2606 (($ (-128)) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-778) (-13 (-1007) (-552 (-128)) (-10 -8 (-15 -2608 ($ (-128))) (-15 -2607 ($ (-128))) (-15 -2606 ($ (-128))) (-15 -2605 ($ (-128))) (-15 -2604 ($ (-128))) (-15 -2942 ((-128) $)) (-15 -2943 ((-480) $))))) (T -778)) -((-2608 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-778))))) -((-3929 (((-262 (-480)) (-345 (-852 (-48)))) 23 T ELT) (((-262 (-480)) (-852 (-48))) 18 T ELT))) -(((-779) (-10 -7 (-15 -3929 ((-262 (-480)) (-852 (-48)))) (-15 -3929 ((-262 (-480)) (-345 (-852 (-48))))))) (T -779)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 (-48)))) (-5 *2 (-262 (-480))) (-5 *1 (-779)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-852 (-48))) (-5 *2 (-262 (-480))) (-5 *1 (-779))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3549 (((-83) $ (|[\|\|]| (-441))) 9 T ELT) (((-83) $ (|[\|\|]| (-1064))) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3555 (((-441) $) 10 T ELT) (((-1064) $) 14 T ELT)) (-3042 (((-83) $ $) 15 T ELT))) -(((-780) (-13 (-989) (-1166) (-10 -8 (-15 -3549 ((-83) $ (|[\|\|]| (-441)))) (-15 -3555 ((-441) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1064)))) (-15 -3555 ((-1064) $))))) (T -780)) -((-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)) (-5 *1 (-780)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-780)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)) (-5 *1 (-780)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-780))))) -((-3941 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 15 T ELT))) -(((-781 |#1| |#2|) (-10 -7 (-15 -3941 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1120) (-1120)) (T -781)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) -((-3354 (($ |#1| |#1|) 8 T ELT)) (-2611 ((|#1| $ (-689)) 15 T ELT))) -(((-782 |#1|) (-10 -8 (-15 -3354 ($ |#1| |#1|)) (-15 -2611 (|#1| $ (-689)))) (-1120)) (T -782)) -((-2611 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-782 *2)) (-4 *2 (-1120)))) (-3354 (*1 *1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1120))))) -((-3941 (((-784 |#2|) (-1 |#2| |#1|) (-784 |#1|)) 15 T ELT))) -(((-783 |#1| |#2|) (-10 -7 (-15 -3941 ((-784 |#2|) (-1 |#2| |#1|) (-784 |#1|)))) (-1120) (-1120)) (T -783)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-784 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-784 *6)) (-5 *1 (-783 *5 *6))))) -((-3354 (($ |#1| |#1| |#1|) 8 T ELT)) (-2611 ((|#1| $ (-689)) 15 T ELT))) -(((-784 |#1|) (-10 -8 (-15 -3354 ($ |#1| |#1| |#1|)) (-15 -2611 (|#1| $ (-689)))) (-1120)) (T -784)) -((-2611 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-784 *2)) (-4 *2 (-1120)))) (-3354 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1120))))) -((-2609 (((-580 (-1086)) (-1064)) 9 T ELT))) -(((-785) (-10 -7 (-15 -2609 ((-580 (-1086)) (-1064))))) (T -785)) -((-2609 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-1086))) (-5 *1 (-785))))) -((-3941 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT))) -(((-786 |#1| |#2|) (-10 -7 (-15 -3941 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1120) (-1120)) (T -786)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))) -((-2610 (($ |#1| |#1| |#1|) 8 T ELT)) (-2611 ((|#1| $ (-689)) 15 T ELT))) -(((-787 |#1|) (-10 -8 (-15 -2610 ($ |#1| |#1| |#1|)) (-15 -2611 (|#1| $ (-689)))) (-1120)) (T -787)) -((-2611 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-787 *2)) (-4 *2 (-1120)))) (-2610 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1120))))) -((-2614 (((-1060 (-580 (-480))) (-580 (-480)) (-1060 (-580 (-480)))) 41 T ELT)) (-2613 (((-1060 (-580 (-480))) (-580 (-480)) (-580 (-480))) 31 T ELT)) (-2615 (((-1060 (-580 (-480))) (-580 (-480))) 53 T ELT) (((-1060 (-580 (-480))) (-580 (-480)) (-580 (-480))) 50 T ELT)) (-2616 (((-1060 (-580 (-480))) (-480)) 55 T ELT)) (-2612 (((-1060 (-580 (-825))) (-1060 (-580 (-825)))) 22 T ELT)) (-2995 (((-580 (-825)) (-580 (-825))) 18 T ELT))) -(((-788) (-10 -7 (-15 -2995 ((-580 (-825)) (-580 (-825)))) (-15 -2612 ((-1060 (-580 (-825))) (-1060 (-580 (-825))))) (-15 -2613 ((-1060 (-580 (-480))) (-580 (-480)) (-580 (-480)))) (-15 -2614 ((-1060 (-580 (-480))) (-580 (-480)) (-1060 (-580 (-480))))) (-15 -2615 ((-1060 (-580 (-480))) (-580 (-480)) (-580 (-480)))) (-15 -2615 ((-1060 (-580 (-480))) (-580 (-480)))) (-15 -2616 ((-1060 (-580 (-480))) (-480))))) (T -788)) -((-2616 (*1 *2 *3) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-480)))) (-2615 (*1 *2 *3) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480))))) (-2615 (*1 *2 *3 *3) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480))))) (-2614 (*1 *2 *3 *2) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *3 (-580 (-480))) (-5 *1 (-788)))) (-2613 (*1 *2 *3 *3) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480))))) (-2612 (*1 *2 *2) (-12 (-5 *2 (-1060 (-580 (-825)))) (-5 *1 (-788)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-788))))) -((-3955 (((-795 (-325)) $) 9 (|has| |#1| (-550 (-795 (-325)))) ELT) (((-795 (-480)) $) 8 (|has| |#1| (-550 (-795 (-480)))) ELT))) -(((-789 |#1|) (-111) (-1120)) (T -789)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-550 (-795 (-480)))) (-6 (-550 (-795 (-480)))) |%noBranch|) (IF (|has| |t#1| (-550 (-795 (-325)))) (-6 (-550 (-795 (-325)))) |%noBranch|))) -(((-550 (-795 (-325))) |has| |#1| (-550 (-795 (-325)))) ((-550 (-795 (-480))) |has| |#1| (-550 (-795 (-480))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3597 (($) 14 T ELT)) (-2618 (($ (-793 |#1| |#2|) (-793 |#1| |#3|)) 28 T ELT)) (-2617 (((-793 |#1| |#3|) $) 16 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2626 (((-83) $) 22 T ELT)) (-2625 (($) 19 T ELT)) (-3929 (((-767) $) 31 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2836 (((-793 |#1| |#2|) $) 15 T ELT)) (-3042 (((-83) $ $) 26 T ELT))) -(((-790 |#1| |#2| |#3|) (-13 (-1007) (-10 -8 (-15 -2626 ((-83) $)) (-15 -2625 ($)) (-15 -3597 ($)) (-15 -2618 ($ (-793 |#1| |#2|) (-793 |#1| |#3|))) (-15 -2836 ((-793 |#1| |#2|) $)) (-15 -2617 ((-793 |#1| |#3|) $)))) (-1007) (-1007) (-605 |#2|)) (T -790)) -((-2626 (*1 *2 *1) (-12 (-4 *4 (-1007)) (-5 *2 (-83)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-1007)) (-4 *5 (-605 *4)))) (-2625 (*1 *1) (-12 (-4 *3 (-1007)) (-5 *1 (-790 *2 *3 *4)) (-4 *2 (-1007)) (-4 *4 (-605 *3)))) (-3597 (*1 *1) (-12 (-4 *3 (-1007)) (-5 *1 (-790 *2 *3 *4)) (-4 *2 (-1007)) (-4 *4 (-605 *3)))) (-2618 (*1 *1 *2 *3) (-12 (-5 *2 (-793 *4 *5)) (-5 *3 (-793 *4 *6)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-605 *5)) (-5 *1 (-790 *4 *5 *6)))) (-2836 (*1 *2 *1) (-12 (-4 *4 (-1007)) (-5 *2 (-793 *3 *4)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-1007)) (-4 *5 (-605 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *4 (-1007)) (-5 *2 (-793 *3 *5)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-1007)) (-4 *5 (-605 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-2782 (((-793 |#1| $) $ (-795 |#1|) (-793 |#1| $)) 17 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-791 |#1|) (-111) (-1007)) (T -791)) -((-2782 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-793 *4 *1)) (-5 *3 (-795 *4)) (-4 *1 (-791 *4)) (-4 *4 (-1007))))) -(-13 (-1007) (-10 -8 (-15 -2782 ((-793 |t#1| $) $ (-795 |t#1|) (-793 |t#1| $))))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2619 (((-83) (-580 |#2|) |#3|) 23 T ELT) (((-83) |#2| |#3|) 18 T ELT)) (-2620 (((-793 |#1| |#2|) |#2| |#3|) 45 (-12 (-2546 (|has| |#2| (-945 (-1081)))) (-2546 (|has| |#2| (-956)))) ELT) (((-580 (-246 (-852 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-956)) (-2546 (|has| |#2| (-945 (-1081))))) ELT) (((-580 (-246 |#2|)) |#2| |#3|) 36 (|has| |#2| (-945 (-1081))) ELT) (((-790 |#1| |#2| (-580 |#2|)) (-580 |#2|) |#3|) 21 T ELT))) -(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -2619 ((-83) |#2| |#3|)) (-15 -2619 ((-83) (-580 |#2|) |#3|)) (-15 -2620 ((-790 |#1| |#2| (-580 |#2|)) (-580 |#2|) |#3|)) (IF (|has| |#2| (-945 (-1081))) (-15 -2620 ((-580 (-246 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-956)) (-15 -2620 ((-580 (-246 (-852 |#2|))) |#2| |#3|)) (-15 -2620 ((-793 |#1| |#2|) |#2| |#3|))))) (-1007) (-791 |#1|) (-550 (-795 |#1|))) (T -792)) -((-2620 (*1 *2 *3 *4) (-12 (-4 *5 (-1007)) (-5 *2 (-793 *5 *3)) (-5 *1 (-792 *5 *3 *4)) (-2546 (-4 *3 (-945 (-1081)))) (-2546 (-4 *3 (-956))) (-4 *3 (-791 *5)) (-4 *4 (-550 (-795 *5))))) (-2620 (*1 *2 *3 *4) (-12 (-4 *5 (-1007)) (-5 *2 (-580 (-246 (-852 *3)))) (-5 *1 (-792 *5 *3 *4)) (-4 *3 (-956)) (-2546 (-4 *3 (-945 (-1081)))) (-4 *3 (-791 *5)) (-4 *4 (-550 (-795 *5))))) (-2620 (*1 *2 *3 *4) (-12 (-4 *5 (-1007)) (-5 *2 (-580 (-246 *3))) (-5 *1 (-792 *5 *3 *4)) (-4 *3 (-945 (-1081))) (-4 *3 (-791 *5)) (-4 *4 (-550 (-795 *5))))) (-2620 (*1 *2 *3 *4) (-12 (-4 *5 (-1007)) (-4 *6 (-791 *5)) (-5 *2 (-790 *5 *6 (-580 *6))) (-5 *1 (-792 *5 *6 *4)) (-5 *3 (-580 *6)) (-4 *4 (-550 (-795 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *6)) (-4 *6 (-791 *5)) (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-792 *5 *6 *4)) (-4 *4 (-550 (-795 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-792 *5 *3 *4)) (-4 *3 (-791 *5)) (-4 *4 (-550 (-795 *5)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3219 (($ $ $) 40 T ELT)) (-2647 (((-3 (-83) #1="failed") $ (-795 |#1|)) 37 T ELT)) (-3597 (($) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2622 (($ (-795 |#1|) |#2| $) 20 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2624 (((-3 |#2| #1#) (-795 |#1|) $) 51 T ELT)) (-2626 (((-83) $) 15 T ELT)) (-2625 (($) 13 T ELT)) (-3242 (((-580 (-2 (|:| -3843 (-1081)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3513 (($ (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| |#2|)))) 23 T ELT)) (-3929 (((-767) $) 45 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2621 (($ (-795 |#1|) |#2| $ |#2|) 49 T ELT)) (-2623 (($ (-795 |#1|) |#2| $) 48 T ELT)) (-3042 (((-83) $ $) 42 T ELT))) -(((-793 |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -2626 ((-83) $)) (-15 -2625 ($)) (-15 -3597 ($)) (-15 -3219 ($ $ $)) (-15 -2624 ((-3 |#2| #1="failed") (-795 |#1|) $)) (-15 -2623 ($ (-795 |#1|) |#2| $)) (-15 -2622 ($ (-795 |#1|) |#2| $)) (-15 -2621 ($ (-795 |#1|) |#2| $ |#2|)) (-15 -3242 ((-580 (-2 (|:| -3843 (-1081)) (|:| |entry| |#2|))) $)) (-15 -3513 ($ (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| |#2|))))) (-15 -2647 ((-3 (-83) #1#) $ (-795 |#1|))))) (-1007) (-1007)) (T -793)) -((-2626 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-2625 (*1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-3597 (*1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-3219 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-2624 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-4 *2 (-1007)) (-5 *1 (-793 *4 *2)))) (-2623 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007)))) (-2622 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007)))) (-2621 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| *4)))) (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| *4)))) (-4 *4 (-1007)) (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)))) (-2647 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-83)) (-5 *1 (-793 *4 *5)) (-4 *5 (-1007))))) -((-3941 (((-793 |#1| |#3|) (-1 |#3| |#2|) (-793 |#1| |#2|)) 22 T ELT))) -(((-794 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-793 |#1| |#3|) (-1 |#3| |#2|) (-793 |#1| |#2|)))) (-1007) (-1007) (-1007)) (T -794)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-793 *5 *6)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-793 *5 *7)) (-5 *1 (-794 *5 *6 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2634 (($ $ (-580 (-51))) 74 T ELT)) (-3067 (((-580 $) $) 139 T ELT)) (-2631 (((-2 (|:| |var| (-580 (-1081))) (|:| |pred| (-51))) $) 30 T ELT)) (-3245 (((-83) $) 35 T ELT)) (-2632 (($ $ (-580 (-1081)) (-51)) 31 T ELT)) (-2635 (($ $ (-580 (-51))) 73 T ELT)) (-3142 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1081) #1#) $) 167 T ELT)) (-3141 ((|#1| $) 68 T ELT) (((-1081) $) NIL T ELT)) (-2629 (($ $) 126 T ELT)) (-2641 (((-83) $) 55 T ELT)) (-2636 (((-580 (-51)) $) 50 T ELT)) (-2633 (($ (-1081) (-83) (-83) (-83)) 75 T ELT)) (-2627 (((-3 (-580 $) #1#) (-580 $)) 82 T ELT)) (-2638 (((-83) $) 58 T ELT)) (-2639 (((-83) $) 57 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) 41 T ELT)) (-2644 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -2389 $)) #1#) $) 97 T ELT)) (-2808 (((-3 (-580 $) #1#) $) 40 T ELT)) (-2645 (((-3 (-580 $) #1#) $ (-84)) 124 T ELT) (((-3 (-2 (|:| -2499 (-84)) (|:| |arg| (-580 $))) #1#) $) 107 T ELT)) (-2643 (((-3 (-580 $) #1#) $) 42 T ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2389 (-689))) #1#) $) 45 T ELT)) (-2642 (((-83) $) 34 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2630 (((-83) $) 28 T ELT)) (-2637 (((-83) $) 52 T ELT)) (-2628 (((-580 (-51)) $) 130 T ELT)) (-2640 (((-83) $) 56 T ELT)) (-3783 (($ (-84) (-580 $)) 104 T ELT)) (-3306 (((-689) $) 33 T ELT)) (-3383 (($ $) 72 T ELT)) (-3955 (($ (-580 $)) 69 T ELT)) (-3936 (((-83) $) 32 T ELT)) (-3929 (((-767) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1081)) 76 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2648 (($ $ (-51)) 129 T ELT)) (-2646 (($) 103 T CONST)) (-2652 (($) 83 T CONST)) (-3042 (((-83) $ $) 93 T ELT)) (-3932 (($ $ $) 117 T ELT)) (-3822 (($ $ $) 121 T ELT)) (** (($ $ (-689)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-795 |#1|) (-13 (-1007) (-945 |#1|) (-945 (-1081)) (-10 -8 (-15 -2646 ($) -3935) (-15 -2652 ($) -3935) (-15 -2808 ((-3 (-580 $) #1="failed") $)) (-15 -2809 ((-3 (-580 $) #1#) $)) (-15 -2645 ((-3 (-580 $) #1#) $ (-84))) (-15 -2645 ((-3 (-2 (|:| -2499 (-84)) (|:| |arg| (-580 $))) #1#) $)) (-15 -2810 ((-3 (-2 (|:| |val| $) (|:| -2389 (-689))) #1#) $)) (-15 -2644 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2643 ((-3 (-580 $) #1#) $)) (-15 -2811 ((-3 (-2 (|:| |val| $) (|:| -2389 $)) #1#) $)) (-15 -3783 ($ (-84) (-580 $))) (-15 -3822 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-689))) (-15 ** ($ $ $)) (-15 -3932 ($ $ $)) (-15 -3306 ((-689) $)) (-15 -3955 ($ (-580 $))) (-15 -3383 ($ $)) (-15 -2642 ((-83) $)) (-15 -2641 ((-83) $)) (-15 -3245 ((-83) $)) (-15 -3936 ((-83) $)) (-15 -2640 ((-83) $)) (-15 -2639 ((-83) $)) (-15 -2638 ((-83) $)) (-15 -2637 ((-83) $)) (-15 -2636 ((-580 (-51)) $)) (-15 -2635 ($ $ (-580 (-51)))) (-15 -2634 ($ $ (-580 (-51)))) (-15 -2633 ($ (-1081) (-83) (-83) (-83))) (-15 -2632 ($ $ (-580 (-1081)) (-51))) (-15 -2631 ((-2 (|:| |var| (-580 (-1081))) (|:| |pred| (-51))) $)) (-15 -2630 ((-83) $)) (-15 -2629 ($ $)) (-15 -2648 ($ $ (-51))) (-15 -2628 ((-580 (-51)) $)) (-15 -3067 ((-580 $) $)) (-15 -2627 ((-3 (-580 $) #1#) (-580 $))))) (-1007)) (T -795)) -((-2646 (*1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-2652 (*1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-2808 (*1 *2 *1) (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2809 (*1 *2 *1) (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2645 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-580 (-795 *4))) (-5 *1 (-795 *4)) (-4 *4 (-1007)))) (-2645 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2499 (-84)) (|:| |arg| (-580 (-795 *3))))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2810 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-795 *3)) (|:| -2389 (-689)))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2644 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-795 *3)) (|:| |den| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2643 (*1 *2 *1) (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2811 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-795 *3)) (|:| -2389 (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 (-795 *4))) (-5 *1 (-795 *4)) (-4 *4 (-1007)))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-3932 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3383 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2633 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-83)) (-5 *1 (-795 *4)) (-4 *4 (-1007)))) (-2632 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-51)) (-5 *1 (-795 *4)) (-4 *4 (-1007)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-580 (-1081))) (|:| |pred| (-51)))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) (-2627 (*1 *2 *2) (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -((-3194 (((-795 |#1|) (-795 |#1|) (-580 (-1081)) (-1 (-83) (-580 |#2|))) 32 T ELT) (((-795 |#1|) (-795 |#1|) (-580 (-1 (-83) |#2|))) 46 T ELT) (((-795 |#1|) (-795 |#1|) (-1 (-83) |#2|)) 35 T ELT)) (-2647 (((-83) (-580 |#2|) (-795 |#1|)) 42 T ELT) (((-83) |#2| (-795 |#1|)) 36 T ELT)) (-3514 (((-1 (-83) |#2|) (-795 |#1|)) 16 T ELT)) (-2649 (((-580 |#2|) (-795 |#1|)) 24 T ELT)) (-2648 (((-795 |#1|) (-795 |#1|) |#2|) 20 T ELT))) -(((-796 |#1| |#2|) (-10 -7 (-15 -3194 ((-795 |#1|) (-795 |#1|) (-1 (-83) |#2|))) (-15 -3194 ((-795 |#1|) (-795 |#1|) (-580 (-1 (-83) |#2|)))) (-15 -3194 ((-795 |#1|) (-795 |#1|) (-580 (-1081)) (-1 (-83) (-580 |#2|)))) (-15 -3514 ((-1 (-83) |#2|) (-795 |#1|))) (-15 -2647 ((-83) |#2| (-795 |#1|))) (-15 -2647 ((-83) (-580 |#2|) (-795 |#1|))) (-15 -2648 ((-795 |#1|) (-795 |#1|) |#2|)) (-15 -2649 ((-580 |#2|) (-795 |#1|)))) (-1007) (-1120)) (T -796)) -((-2649 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-580 *5)) (-5 *1 (-796 *4 *5)) (-4 *5 (-1120)))) (-2648 (*1 *2 *2 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-796 *4 *3)) (-4 *3 (-1120)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-1120)) (-5 *2 (-83)) (-5 *1 (-796 *5 *6)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-796 *5 *3)) (-4 *3 (-1120)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-796 *4 *5)) (-4 *5 (-1120)))) (-3194 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-795 *5)) (-5 *3 (-580 (-1081))) (-5 *4 (-1 (-83) (-580 *6))) (-4 *5 (-1007)) (-4 *6 (-1120)) (-5 *1 (-796 *5 *6)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *2 (-795 *4)) (-5 *3 (-580 (-1 (-83) *5))) (-4 *4 (-1007)) (-4 *5 (-1120)) (-5 *1 (-796 *4 *5)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *2 (-795 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1007)) (-4 *5 (-1120)) (-5 *1 (-796 *4 *5))))) -((-3941 (((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)) 19 T ELT))) -(((-797 |#1| |#2|) (-10 -7 (-15 -3941 ((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)))) (-1007) (-1007)) (T -797)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-795 *6)) (-5 *1 (-797 *5 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3917 (((-580 |#1|) $) 20 T ELT)) (-2650 (((-83) $) 49 T ELT)) (-3142 (((-3 (-611 |#1|) "failed") $) 55 T ELT)) (-3141 (((-611 |#1|) $) 53 T ELT)) (-3782 (($ $) 24 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3816 (((-689) $) 60 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-611 |#1|) $) 22 T ELT)) (-3929 (((-767) $) 47 T ELT) (($ (-611 |#1|)) 27 T ELT) (((-734 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 11 T CONST)) (-2651 (((-580 (-611 |#1|)) $) 28 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 14 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 66 T ELT))) -(((-798 |#1|) (-13 (-751) (-945 (-611 |#1|)) (-10 -8 (-15 -2652 ($) -3935) (-15 -3929 ((-734 |#1|) $)) (-15 -3929 ($ |#1|)) (-15 -3784 ((-611 |#1|) $)) (-15 -3816 ((-689) $)) (-15 -2651 ((-580 (-611 |#1|)) $)) (-15 -3782 ($ $)) (-15 -2650 ((-83) $)) (-15 -3917 ((-580 |#1|) $)))) (-751)) (T -798)) -((-2652 (*1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) (-3929 (*1 *1 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-611 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-580 (-611 *3))) (-5 *1 (-798 *3)) (-4 *3 (-751)))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751))))) -((-3457 ((|#1| |#1| |#1|) 19 T ELT))) -(((-799 |#1| |#2|) (-10 -7 (-15 -3457 (|#1| |#1| |#1|))) (-1146 |#2|) (-956)) (T -799)) -((-3457 (*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-799 *2 *3)) (-4 *2 (-1146 *3))))) -((-2655 ((|#2| $ |#3|) 10 T ELT))) -(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -2655 (|#2| |#1| |#3|))) (-801 |#2| |#3|) (-1120) (-1120)) (T -800)) -NIL -((-3741 ((|#1| $ |#2|) 7 T ELT)) (-2655 ((|#1| $ |#2|) 6 T ELT))) -(((-801 |#1| |#2|) (-111) (-1120) (-1120)) (T -801)) -((-3741 (*1 *2 *1 *3) (-12 (-4 *1 (-801 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-2655 (*1 *2 *1 *3) (-12 (-4 *1 (-801 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3741 (|t#1| $ |t#2|)) (-15 -2655 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1120) . T)) -((-2654 ((|#1| |#1| (-689)) 26 T ELT)) (-2653 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3418 (((-3 (-2 (|:| -3123 |#1|) (|:| -3122 |#1|)) #1#) |#1| (-689) (-689)) 29 T ELT) (((-580 |#1|) |#1|) 38 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3418 ((-580 |#1|) |#1|)) (-15 -3418 ((-3 (-2 (|:| -3123 |#1|) (|:| -3122 |#1|)) #1="failed") |#1| (-689) (-689))) (-15 -2653 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2654 (|#1| |#1| (-689)))) (-1146 |#2|) (-309)) (T -802)) -((-2654 (*1 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-309)) (-5 *1 (-802 *2 *4)) (-4 *2 (-1146 *4)))) (-2653 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-309)) (-5 *1 (-802 *2 *3)) (-4 *2 (-1146 *3)))) (-3418 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-689)) (-4 *5 (-309)) (-5 *2 (-2 (|:| -3123 *3) (|:| -3122 *3))) (-5 *1 (-802 *3 *5)) (-4 *3 (-1146 *5)))) (-3418 (*1 *2 *3) (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-802 *3 *4)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-580 |#2|) (-580 (-689))) 44 T ELT) (($ $ |#2| (-689)) 43 T ELT) (($ $ (-580 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2655 (($ $ (-580 |#2|) (-580 (-689))) 47 T ELT) (($ $ |#2| (-689)) 46 T ELT) (($ $ (-580 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-803 |#1| |#2|) (-111) (-956) (-1007)) (T -803)) -NIL -(-13 (-80 |t#1| |t#1|) (-806 |t#2|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-651 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-801 $ |#2|) . T) ((-806 |#2|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3741 (($ $ (-580 |#1|) (-580 (-689))) 50 T ELT) (($ $ |#1| (-689)) 49 T ELT) (($ $ (-580 |#1|)) 48 T ELT) (($ $ |#1|) 46 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 |#1|) (-580 (-689))) 53 T ELT) (($ $ |#1| (-689)) 52 T ELT) (($ $ (-580 |#1|)) 51 T ELT) (($ $ |#1|) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-804 |#1|) (-111) (-1007)) (T -804)) -NIL -(-13 (-956) (-806 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-801 $ |#1|) . T) ((-806 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3741 (($ $ |#2|) NIL T ELT) (($ $ (-580 |#2|)) 10 T ELT) (($ $ |#2| (-689)) 12 T ELT) (($ $ (-580 |#2|) (-580 (-689))) 15 T ELT)) (-2655 (($ $ |#2|) 16 T ELT) (($ $ (-580 |#2|)) 18 T ELT) (($ $ |#2| (-689)) 19 T ELT) (($ $ (-580 |#2|) (-580 (-689))) 21 T ELT))) -(((-805 |#1| |#2|) (-10 -7 (-15 -2655 (|#1| |#1| (-580 |#2|) (-580 (-689)))) (-15 -2655 (|#1| |#1| |#2| (-689))) (-15 -2655 (|#1| |#1| (-580 |#2|))) (-15 -3741 (|#1| |#1| (-580 |#2|) (-580 (-689)))) (-15 -3741 (|#1| |#1| |#2| (-689))) (-15 -3741 (|#1| |#1| (-580 |#2|))) (-15 -2655 (|#1| |#1| |#2|)) (-15 -3741 (|#1| |#1| |#2|))) (-806 |#2|) (-1007)) (T -805)) -NIL -((-3741 (($ $ |#1|) 7 T ELT) (($ $ (-580 |#1|)) 15 T ELT) (($ $ |#1| (-689)) 14 T ELT) (($ $ (-580 |#1|) (-580 (-689))) 13 T ELT)) (-2655 (($ $ |#1|) 6 T ELT) (($ $ (-580 |#1|)) 12 T ELT) (($ $ |#1| (-689)) 11 T ELT) (($ $ (-580 |#1|) (-580 (-689))) 10 T ELT))) -(((-806 |#1|) (-111) (-1007)) (T -806)) -((-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-806 *3)) (-4 *3 (-1007)))) (-3741 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-806 *2)) (-4 *2 (-1007)))) (-3741 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 (-689))) (-4 *1 (-806 *4)) (-4 *4 (-1007)))) (-2655 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-806 *3)) (-4 *3 (-1007)))) (-2655 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-806 *2)) (-4 *2 (-1007)))) (-2655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 (-689))) (-4 *1 (-806 *4)) (-4 *4 (-1007))))) -(-13 (-801 $ |t#1|) (-10 -8 (-15 -3741 ($ $ (-580 |t#1|))) (-15 -3741 ($ $ |t#1| (-689))) (-15 -3741 ($ $ (-580 |t#1|) (-580 (-689)))) (-15 -2655 ($ $ (-580 |t#1|))) (-15 -2655 ($ $ |t#1| (-689))) (-15 -2655 ($ $ (-580 |t#1|) (-580 (-689)))))) -(((-13) . T) ((-801 $ |#1|) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 26 T ELT)) (-3011 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1282 (($ $ $) NIL (|has| $ (-6 -3979)) ELT)) (-1283 (($ $ $) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3979)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3122 (($ $) 25 T ELT)) (-2656 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3123 (($ $) 23 T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) 20 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1107 |#1|) $) 9 T ELT) (((-767) $) 29 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 21 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-807 |#1|) (-13 (-90 |#1|) (-549 (-1107 |#1|)) (-10 -8 (-15 -2656 ($ |#1|)) (-15 -2656 ($ $ $)))) (-1007)) (T -807)) -((-2656 (*1 *1 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1007)))) (-2656 (*1 *1 *1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2672 (((-1003 |#1|) $) 61 T ELT)) (-2895 (((-580 $) (-580 $)) 104 T ELT)) (-3606 (((-480) $) 84 T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-3755 (((-689) $) 81 T ELT)) (-2676 (((-1003 |#1|) $ |#1|) 71 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2659 (((-83) $) 89 T ELT)) (-2661 (((-689) $) 85 T ELT)) (-2517 (($ $ $) NIL (OR (|has| |#1| (-315)) (|has| |#1| (-751))) ELT)) (-2843 (($ $ $) NIL (OR (|has| |#1| (-315)) (|has| |#1| (-751))) ELT)) (-2665 (((-2 (|:| |preimage| (-580 |#1|)) (|:| |image| (-580 |#1|))) $) 56 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 131 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2658 (((-1003 |#1|) $) 136 (|has| |#1| (-315)) ELT)) (-2660 (((-83) $) 82 T ELT)) (-3783 ((|#1| $ |#1|) 69 T ELT)) (-3931 (((-689) $) 63 T ELT)) (-2667 (($ (-580 (-580 |#1|))) 119 T ELT)) (-2662 (((-879) $) 75 T ELT)) (-2668 (($ (-580 |#1|)) 32 T ELT)) (-2995 (($ $ $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-2664 (($ (-580 (-580 |#1|))) 58 T ELT)) (-2663 (($ (-580 (-580 |#1|))) 124 T ELT)) (-2657 (($ (-580 |#1|)) 133 T ELT)) (-3929 (((-767) $) 118 T ELT) (($ (-580 (-580 |#1|))) 92 T ELT) (($ (-580 |#1|)) 93 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) 24 T CONST)) (-2552 (((-83) $ $) NIL (OR (|has| |#1| (-315)) (|has| |#1| (-751))) ELT)) (-2553 (((-83) $ $) NIL (OR (|has| |#1| (-315)) (|has| |#1| (-751))) ELT)) (-3042 (((-83) $ $) 67 T ELT)) (-2670 (((-83) $ $) NIL (OR (|has| |#1| (-315)) (|has| |#1| (-751))) ELT)) (-2671 (((-83) $ $) 91 T ELT)) (-3932 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-808 |#1|) (-13 (-810 |#1|) (-10 -8 (-15 -2665 ((-2 (|:| |preimage| (-580 |#1|)) (|:| |image| (-580 |#1|))) $)) (-15 -2664 ($ (-580 (-580 |#1|)))) (-15 -3929 ($ (-580 (-580 |#1|)))) (-15 -3929 ($ (-580 |#1|))) (-15 -2663 ($ (-580 (-580 |#1|)))) (-15 -3931 ((-689) $)) (-15 -2662 ((-879) $)) (-15 -3755 ((-689) $)) (-15 -2661 ((-689) $)) (-15 -3606 ((-480) $)) (-15 -2660 ((-83) $)) (-15 -2659 ((-83) $)) (-15 -2895 ((-580 $) (-580 $))) (IF (|has| |#1| (-315)) (-15 -2658 ((-1003 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-479)) (-15 -2657 ($ (-580 |#1|))) (IF (|has| |#1| (-315)) (-15 -2657 ($ (-580 |#1|))) |%noBranch|)))) (-1007)) (T -808)) -((-2665 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-580 *3)) (|:| |image| (-580 *3)))) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-879)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-808 *3)) (-4 *3 (-315)) (-4 *3 (-1007)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-808 *3))))) -((-2666 ((|#2| (-1047 |#1| |#2|)) 48 T ELT))) -(((-809 |#1| |#2|) (-10 -7 (-15 -2666 (|#2| (-1047 |#1| |#2|)))) (-825) (-13 (-956) (-10 -7 (-6 (-3980 "*"))))) (T -809)) -((-2666 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *2)) (-14 *4 (-825)) (-4 *2 (-13 (-956) (-10 -7 (-6 (-3980 "*"))))) (-5 *1 (-809 *4 *2))))) -((-2554 (((-83) $ $) 7 T ELT)) (-2672 (((-1003 |#1|) $) 42 T ELT)) (-3707 (($) 23 T CONST)) (-3450 (((-3 $ "failed") $) 20 T ELT)) (-2676 (((-1003 |#1|) $ |#1|) 41 T ELT)) (-2398 (((-83) $) 22 T ELT)) (-2517 (($ $ $) 35 (OR (|has| |#1| (-751)) (|has| |#1| (-315))) ELT)) (-2843 (($ $ $) 36 (OR (|has| |#1| (-751)) (|has| |#1| (-315))) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 30 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3783 ((|#1| $ |#1|) 45 T ELT)) (-2667 (($ (-580 (-580 |#1|))) 43 T ELT)) (-2668 (($ (-580 |#1|)) 44 T ELT)) (-2995 (($ $ $) 27 T ELT)) (-2421 (($ $ $) 26 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2652 (($) 24 T CONST)) (-2552 (((-83) $ $) 37 (OR (|has| |#1| (-751)) (|has| |#1| (-315))) ELT)) (-2553 (((-83) $ $) 39 (OR (|has| |#1| (-751)) (|has| |#1| (-315))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 38 (OR (|has| |#1| (-751)) (|has| |#1| (-315))) ELT)) (-2671 (((-83) $ $) 40 T ELT)) (-3932 (($ $ $) 29 T ELT)) (** (($ $ (-825)) 17 T ELT) (($ $ (-689)) 21 T ELT) (($ $ (-480)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-810 |#1|) (-111) (-1007)) (T -810)) -((-2668 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-810 *3)))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-4 *1 (-810 *3)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-1003 *3)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-1003 *3)))) (-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(-13 (-408) (-239 |t#1| |t#1|) (-10 -8 (-15 -2668 ($ (-580 |t#1|))) (-15 -2667 ($ (-580 (-580 |t#1|)))) (-15 -2672 ((-1003 |t#1|) $)) (-15 -2676 ((-1003 |t#1|) $ |t#1|)) (-15 -2671 ((-83) $ $)) (IF (|has| |t#1| (-751)) (-6 (-751)) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-751)) |%noBranch|))) -(((-72) . T) ((-549 (-767)) . T) ((-239 |#1| |#1|) . T) ((-408) . T) ((-13) . T) ((-660) . T) ((-751) OR (|has| |#1| (-751)) (|has| |#1| (-315))) ((-754) OR (|has| |#1| (-751)) (|has| |#1| (-315))) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2678 (((-580 (-580 (-689))) $) 163 T ELT)) (-2674 (((-580 (-689)) (-808 |#1|) $) 191 T ELT)) (-2673 (((-580 (-689)) (-808 |#1|) $) 192 T ELT)) (-2672 (((-1003 |#1|) $) 155 T ELT)) (-2679 (((-580 (-808 |#1|)) $) 152 T ELT)) (-2980 (((-808 |#1|) $ (-480)) 157 T ELT) (((-808 |#1|) $) 158 T ELT)) (-2677 (($ (-580 (-808 |#1|))) 165 T ELT)) (-3755 (((-689) $) 159 T ELT)) (-2675 (((-1003 (-1003 |#1|)) $) 189 T ELT)) (-2676 (((-1003 |#1|) $ |#1|) 180 T ELT) (((-1003 (-1003 |#1|)) $ (-1003 |#1|)) 201 T ELT) (((-1003 (-580 |#1|)) $ (-580 |#1|)) 204 T ELT)) (-3230 (((-83) (-808 |#1|) $) 140 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2669 (((-1176) $) 145 T ELT) (((-1176) $ (-480) (-480)) 205 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2681 (((-580 (-808 |#1|)) $) 146 T ELT)) (-3783 (((-808 |#1|) $ (-689)) 153 T ELT)) (-3931 (((-689) $) 160 T ELT)) (-3929 (((-767) $) 177 T ELT) (((-580 (-808 |#1|)) $) 28 T ELT) (($ (-580 (-808 |#1|))) 164 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (((-580 |#1|) $) 162 T ELT)) (-3042 (((-83) $ $) 198 T ELT)) (-2670 (((-83) $ $) 195 T ELT)) (-2671 (((-83) $ $) 194 T ELT))) -(((-811 |#1|) (-13 (-1007) (-10 -8 (-15 -3929 ((-580 (-808 |#1|)) $)) (-15 -2681 ((-580 (-808 |#1|)) $)) (-15 -3783 ((-808 |#1|) $ (-689))) (-15 -2980 ((-808 |#1|) $ (-480))) (-15 -2980 ((-808 |#1|) $)) (-15 -3755 ((-689) $)) (-15 -3931 ((-689) $)) (-15 -2680 ((-580 |#1|) $)) (-15 -2679 ((-580 (-808 |#1|)) $)) (-15 -2678 ((-580 (-580 (-689))) $)) (-15 -3929 ($ (-580 (-808 |#1|)))) (-15 -2677 ($ (-580 (-808 |#1|)))) (-15 -2676 ((-1003 |#1|) $ |#1|)) (-15 -2675 ((-1003 (-1003 |#1|)) $)) (-15 -2676 ((-1003 (-1003 |#1|)) $ (-1003 |#1|))) (-15 -2676 ((-1003 (-580 |#1|)) $ (-580 |#1|))) (-15 -3230 ((-83) (-808 |#1|) $)) (-15 -2674 ((-580 (-689)) (-808 |#1|) $)) (-15 -2673 ((-580 (-689)) (-808 |#1|) $)) (-15 -2672 ((-1003 |#1|) $)) (-15 -2671 ((-83) $ $)) (-15 -2670 ((-83) $ $)) (-15 -2669 ((-1176) $)) (-15 -2669 ((-1176) $ (-480) (-480))))) (-1007)) (T -811)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-808 *4)) (-5 *1 (-811 *4)) (-4 *4 (-1007)))) (-2980 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *2 (-808 *4)) (-5 *1 (-811 *4)) (-4 *4 (-1007)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-808 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-689)))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-580 (-808 *3))) (-4 *3 (-1007)) (-5 *1 (-811 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-580 (-808 *3))) (-4 *3 (-1007)) (-5 *1 (-811 *3)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1003 (-1003 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *4 (-1007)) (-5 *2 (-1003 (-1003 *4))) (-5 *1 (-811 *4)) (-5 *3 (-1003 *4)))) (-2676 (*1 *2 *1 *3) (-12 (-4 *4 (-1007)) (-5 *2 (-1003 (-580 *4))) (-5 *1 (-811 *4)) (-5 *3 (-580 *4)))) (-3230 (*1 *2 *3 *1) (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-83)) (-5 *1 (-811 *4)))) (-2674 (*1 *2 *3 *1) (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-580 (-689))) (-5 *1 (-811 *4)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-580 (-689))) (-5 *1 (-811 *4)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2671 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2670 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) (-2669 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-811 *4)) (-4 *4 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3912 (((-689)) NIL T ELT)) (-3313 (($ $ (-825)) NIL (|has| $ (-315)) ELT) (($ $) NIL T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 $ #1#) $) NIL T ELT)) (-3141 (($ $) NIL T ELT)) (-1781 (($ (-1170 $)) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-2819 (($) NIL T ELT)) (-1669 (((-83) $) NIL T ELT)) (-1753 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3755 (((-738 (-825)) $) NIL T ELT) (((-825) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2001 (($) NIL (|has| $ (-315)) ELT)) (-1999 (((-83) $) NIL (|has| $ (-315)) ELT)) (-3117 (($ $ (-825)) NIL (|has| $ (-315)) ELT) (($ $) NIL T ELT)) (-3428 (((-629 $) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2002 (((-1076 $) $ (-825)) NIL (|has| $ (-315)) ELT) (((-1076 $) $) NIL T ELT)) (-1998 (((-825) $) NIL T ELT)) (-1616 (((-1076 $) $) NIL (|has| $ (-315)) ELT)) (-1615 (((-3 (-1076 $) #1#) $ $) NIL (|has| $ (-315)) ELT) (((-1076 $) $) NIL (|has| $ (-315)) ELT)) (-1617 (($ $ (-1076 $)) NIL (|has| $ (-315)) ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL T CONST)) (-2388 (($ (-825)) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) NIL (|has| $ (-315)) ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-3913 (((-825)) NIL T ELT) (((-738 (-825))) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-1754 (((-3 (-689) #1#) $ $) NIL T ELT) (((-689) $) NIL T ELT)) (-3894 (((-105)) NIL T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3931 (((-825) $) NIL T ELT) (((-738 (-825)) $) NIL T ELT)) (-3170 (((-1076 $)) NIL T ELT)) (-1663 (($) NIL T ELT)) (-1618 (($) NIL (|has| $ (-315)) ELT)) (-3209 (((-627 $) (-1170 $)) NIL T ELT) (((-1170 $) $) NIL T ELT)) (-3955 (((-480) $) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT)) (-2688 (((-629 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $) (-825)) NIL T ELT) (((-1170 $)) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3911 (($ $ (-689)) NIL (|has| $ (-315)) ELT) (($ $) NIL (|has| $ (-315)) ELT)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-812 |#1|) (-13 (-296) (-277 $) (-550 (-480))) (-825)) (T -812)) -NIL -((-2683 (((-3 (-580 (-1076 |#4|)) #1="failed") (-580 (-1076 |#4|)) (-1076 |#4|)) 164 T ELT)) (-2686 ((|#1|) 101 T ELT)) (-2685 (((-343 (-1076 |#4|)) (-1076 |#4|)) 173 T ELT)) (-2687 (((-343 (-1076 |#4|)) (-580 |#3|) (-1076 |#4|)) 83 T ELT)) (-2684 (((-343 (-1076 |#4|)) (-1076 |#4|)) 183 T ELT)) (-2682 (((-3 (-580 (-1076 |#4|)) #1#) (-580 (-1076 |#4|)) (-1076 |#4|) |#3|) 117 T ELT))) -(((-813 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 ((-3 (-580 (-1076 |#4|)) #1="failed") (-580 (-1076 |#4|)) (-1076 |#4|))) (-15 -2684 ((-343 (-1076 |#4|)) (-1076 |#4|))) (-15 -2685 ((-343 (-1076 |#4|)) (-1076 |#4|))) (-15 -2686 (|#1|)) (-15 -2682 ((-3 (-580 (-1076 |#4|)) #1#) (-580 (-1076 |#4|)) (-1076 |#4|) |#3|)) (-15 -2687 ((-343 (-1076 |#4|)) (-580 |#3|) (-1076 |#4|)))) (-816) (-712) (-751) (-856 |#1| |#2| |#3|)) (T -813)) -((-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *7)) (-4 *7 (-751)) (-4 *5 (-816)) (-4 *6 (-712)) (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-343 (-1076 *8))) (-5 *1 (-813 *5 *6 *7 *8)) (-5 *4 (-1076 *8)))) (-2682 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-580 (-1076 *7))) (-5 *3 (-1076 *7)) (-4 *7 (-856 *5 *6 *4)) (-4 *5 (-816)) (-4 *6 (-712)) (-4 *4 (-751)) (-5 *1 (-813 *5 *6 *4 *7)))) (-2686 (*1 *2) (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-816)) (-5 *1 (-813 *2 *3 *4 *5)) (-4 *5 (-856 *2 *3 *4)))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-813 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-813 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) (-2683 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 *7))) (-5 *3 (-1076 *7)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-813 *4 *5 *6 *7))))) -((-2683 (((-3 (-580 (-1076 |#2|)) "failed") (-580 (-1076 |#2|)) (-1076 |#2|)) 39 T ELT)) (-2686 ((|#1|) 71 T ELT)) (-2685 (((-343 (-1076 |#2|)) (-1076 |#2|)) 125 T ELT)) (-2687 (((-343 (-1076 |#2|)) (-1076 |#2|)) 109 T ELT)) (-2684 (((-343 (-1076 |#2|)) (-1076 |#2|)) 136 T ELT))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2683 ((-3 (-580 (-1076 |#2|)) "failed") (-580 (-1076 |#2|)) (-1076 |#2|))) (-15 -2684 ((-343 (-1076 |#2|)) (-1076 |#2|))) (-15 -2685 ((-343 (-1076 |#2|)) (-1076 |#2|))) (-15 -2686 (|#1|)) (-15 -2687 ((-343 (-1076 |#2|)) (-1076 |#2|)))) (-816) (-1146 |#1|)) (T -814)) -((-2687 (*1 *2 *3) (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5)))) (-2686 (*1 *2) (-12 (-4 *2 (-816)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1146 *2)))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5)))) (-2683 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 *5))) (-5 *3 (-1076 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-816)) (-5 *1 (-814 *4 *5))))) -((-2690 (((-3 (-580 (-1076 $)) "failed") (-580 (-1076 $)) (-1076 $)) 46 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 18 T ELT)) (-2688 (((-629 $) $) 40 T ELT))) -(((-815 |#1|) (-10 -7 (-15 -2688 ((-629 |#1|) |#1|)) (-15 -2690 ((-3 (-580 (-1076 |#1|)) "failed") (-580 (-1076 |#1|)) (-1076 |#1|))) (-15 -2694 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)))) (-816)) (T -815)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 73 T ELT)) (-3758 (($ $) 64 T ELT)) (-3954 (((-343 $) $) 65 T ELT)) (-2690 (((-3 (-580 (-1076 $)) "failed") (-580 (-1076 $)) (-1076 $)) 70 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3706 (((-83) $) 66 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 71 T ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 72 T ELT)) (-3715 (((-343 $) $) 63 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2689 (((-3 (-1170 $) "failed") (-627 $)) 69 (|has| $ (-116)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-2688 (((-629 $) $) 68 (|has| $ (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-816) (-111)) (T -816)) -((-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-816)))) (-2693 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1)))) (-2692 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1)))) (-2690 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-580 (-1076 *1))) (-5 *3 (-1076 *1)) (-4 *1 (-816)))) (-2689 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-816)) (-5 *2 (-1170 *1)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-116)) (-4 *1 (-816))))) -(-13 (-1125) (-10 -8 (-15 -2693 ((-343 (-1076 $)) (-1076 $))) (-15 -2692 ((-343 (-1076 $)) (-1076 $))) (-15 -2691 ((-343 (-1076 $)) (-1076 $))) (-15 -2694 ((-1076 $) (-1076 $) (-1076 $))) (-15 -2690 ((-3 (-580 (-1076 $)) "failed") (-580 (-1076 $)) (-1076 $))) (IF (|has| $ (-116)) (PROGN (-15 -2689 ((-3 (-1170 $) "failed") (-627 $))) (-15 -2688 ((-629 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-2696 (((-3 (-2 (|:| -3755 (-689)) (|:| -2371 |#5|)) #1="failed") (-280 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2695 (((-83) (-280 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3755 (((-3 (-689) #1#) (-280 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-817 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 ((-3 (-689) #1="failed") (-280 |#2| |#3| |#4| |#5|))) (-15 -2695 ((-83) (-280 |#2| |#3| |#4| |#5|))) (-15 -2696 ((-3 (-2 (|:| -3755 (-689)) (|:| -2371 |#5|)) #1#) (-280 |#2| |#3| |#4| |#5|)))) (-13 (-491) (-945 (-480))) (-359 |#1|) (-1146 |#2|) (-1146 (-345 |#3|)) (-288 |#2| |#3| |#4|)) (T -817)) -((-2696 (*1 *2 *3) (|partial| -12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-2 (|:| -3755 (-689)) (|:| -2371 *8))) (-5 *1 (-817 *4 *5 *6 *7 *8)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-83)) (-5 *1 (-817 *4 *5 *6 *7 *8)))) (-3755 (*1 *2 *3) (|partial| -12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-689)) (-5 *1 (-817 *4 *5 *6 *7 *8))))) -((-2696 (((-3 (-2 (|:| -3755 (-689)) (|:| -2371 |#3|)) #1="failed") (-280 (-345 (-480)) |#1| |#2| |#3|)) 64 T ELT)) (-2695 (((-83) (-280 (-345 (-480)) |#1| |#2| |#3|)) 16 T ELT)) (-3755 (((-3 (-689) #1#) (-280 (-345 (-480)) |#1| |#2| |#3|)) 14 T ELT))) -(((-818 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-3 (-689) #1="failed") (-280 (-345 (-480)) |#1| |#2| |#3|))) (-15 -2695 ((-83) (-280 (-345 (-480)) |#1| |#2| |#3|))) (-15 -2696 ((-3 (-2 (|:| -3755 (-689)) (|:| -2371 |#3|)) #1#) (-280 (-345 (-480)) |#1| |#2| |#3|)))) (-1146 (-345 (-480))) (-1146 (-345 |#1|)) (-288 (-345 (-480)) |#1| |#2|)) (T -818)) -((-2696 (*1 *2 *3) (|partial| -12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 (-345 (-480)) *4 *5)) (-5 *2 (-2 (|:| -3755 (-689)) (|:| -2371 *6))) (-5 *1 (-818 *4 *5 *6)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 (-345 (-480)) *4 *5)) (-5 *2 (-83)) (-5 *1 (-818 *4 *5 *6)))) (-3755 (*1 *2 *3) (|partial| -12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 (-345 (-480)) *4 *5)) (-5 *2 (-689)) (-5 *1 (-818 *4 *5 *6))))) -((-2701 ((|#2| |#2|) 26 T ELT)) (-2699 (((-480) (-580 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480))))) 15 T ELT)) (-2697 (((-825) (-480)) 38 T ELT)) (-2700 (((-480) |#2|) 45 T ELT)) (-2698 (((-480) |#2|) 21 T ELT) (((-2 (|:| |den| (-480)) (|:| |gcdnum| (-480))) |#1|) 20 T ELT))) -(((-819 |#1| |#2|) (-10 -7 (-15 -2697 ((-825) (-480))) (-15 -2698 ((-2 (|:| |den| (-480)) (|:| |gcdnum| (-480))) |#1|)) (-15 -2698 ((-480) |#2|)) (-15 -2699 ((-480) (-580 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480)))))) (-15 -2700 ((-480) |#2|)) (-15 -2701 (|#2| |#2|))) (-1146 (-345 (-480))) (-1146 (-345 |#1|))) (T -819)) -((-2701 (*1 *2 *2) (-12 (-4 *3 (-1146 (-345 (-480)))) (-5 *1 (-819 *3 *2)) (-4 *2 (-1146 (-345 *3))))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *3)) (-4 *3 (-1146 (-345 *4))))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480))))) (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1146 (-345 *4))))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *3)) (-4 *3 (-1146 (-345 *4))))) (-2698 (*1 *2 *3) (-12 (-4 *3 (-1146 (-345 (-480)))) (-5 *2 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480)))) (-5 *1 (-819 *3 *4)) (-4 *4 (-1146 (-345 *3))))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-480)) (-4 *4 (-1146 (-345 *3))) (-5 *2 (-825)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1146 (-345 *4)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 ((|#1| $) 99 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2550 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 93 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2709 (($ |#1| (-343 |#1|)) 91 T ELT)) (-2703 (((-1076 |#1|) |#1| |#1|) 52 T ELT)) (-2702 (($ $) 60 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2704 (((-480) $) 96 T ELT)) (-2705 (($ $ (-480)) 98 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-2706 ((|#1| $) 95 T ELT)) (-2707 (((-343 |#1|) $) 94 T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) 92 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2708 (($ $) 49 T ELT)) (-3929 (((-767) $) 123 T ELT) (($ (-480)) 72 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 40 T ELT) (((-345 |#1|) $) 77 T ELT) (($ (-345 (-343 |#1|))) 85 T ELT)) (-3111 (((-689)) 70 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) 24 T CONST)) (-2652 (($) 12 T CONST)) (-3042 (((-83) $ $) 86 T ELT)) (-3932 (($ $ $) NIL T ELT)) (-3820 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 48 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-820 |#1|) (-13 (-309) (-38 |#1|) (-10 -8 (-15 -3929 ((-345 |#1|) $)) (-15 -3929 ($ (-345 (-343 |#1|)))) (-15 -2708 ($ $)) (-15 -2707 ((-343 |#1|) $)) (-15 -2706 (|#1| $)) (-15 -2705 ($ $ (-480))) (-15 -2704 ((-480) $)) (-15 -2703 ((-1076 |#1|) |#1| |#1|)) (-15 -2702 ($ $)) (-15 -2709 ($ |#1| (-343 |#1|))) (-15 -3114 (|#1| $)))) (-255)) (T -820)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-345 (-343 *3))) (-4 *3 (-255)) (-5 *1 (-820 *3)))) (-2708 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) (-2706 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255)))) (-2705 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) (-2703 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) (-2702 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255)))) (-2709 (*1 *1 *2 *3) (-12 (-5 *3 (-343 *2)) (-4 *2 (-255)) (-5 *1 (-820 *2)))) (-3114 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255))))) -((-2709 (((-51) (-852 |#1|) (-343 (-852 |#1|)) (-1081)) 17 T ELT) (((-51) (-345 (-852 |#1|)) (-1081)) 18 T ELT))) -(((-821 |#1|) (-10 -7 (-15 -2709 ((-51) (-345 (-852 |#1|)) (-1081))) (-15 -2709 ((-51) (-852 |#1|) (-343 (-852 |#1|)) (-1081)))) (-13 (-255) (-118))) (T -821)) -((-2709 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-343 (-852 *6))) (-5 *5 (-1081)) (-5 *3 (-852 *6)) (-4 *6 (-13 (-255) (-118))) (-5 *2 (-51)) (-5 *1 (-821 *6)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-51)) (-5 *1 (-821 *5))))) -((-2710 ((|#4| (-580 |#4|)) 148 T ELT) (((-1076 |#4|) (-1076 |#4|) (-1076 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3129 (((-1076 |#4|) (-580 (-1076 |#4|))) 141 T ELT) (((-1076 |#4|) (-1076 |#4|) (-1076 |#4|)) 61 T ELT) ((|#4| (-580 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3129 (|#4| |#4| |#4|)) (-15 -3129 (|#4| (-580 |#4|))) (-15 -3129 ((-1076 |#4|) (-1076 |#4|) (-1076 |#4|))) (-15 -3129 ((-1076 |#4|) (-580 (-1076 |#4|)))) (-15 -2710 (|#4| |#4| |#4|)) (-15 -2710 ((-1076 |#4|) (-1076 |#4|) (-1076 |#4|))) (-15 -2710 (|#4| (-580 |#4|)))) (-712) (-751) (-255) (-856 |#3| |#1| |#2|)) (T -822)) -((-2710 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *6 *4 *5)) (-5 *1 (-822 *4 *5 *6 *2)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *6)))) (-2710 (*1 *2 *2 *2) (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *2)) (-4 *2 (-856 *5 *3 *4)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-580 (-1076 *7))) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-1076 *7)) (-5 *1 (-822 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) (-3129 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *6)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *6 *4 *5)) (-5 *1 (-822 *4 *5 *6 *2)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)))) (-3129 (*1 *2 *2 *2) (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *2)) (-4 *2 (-856 *5 *3 *4))))) -((-2723 (((-811 (-480)) (-879)) 38 T ELT) (((-811 (-480)) (-580 (-480))) 34 T ELT)) (-2711 (((-811 (-480)) (-580 (-480))) 66 T ELT) (((-811 (-480)) (-825)) 67 T ELT)) (-2722 (((-811 (-480))) 39 T ELT)) (-2720 (((-811 (-480))) 53 T ELT) (((-811 (-480)) (-580 (-480))) 52 T ELT)) (-2719 (((-811 (-480))) 51 T ELT) (((-811 (-480)) (-580 (-480))) 50 T ELT)) (-2718 (((-811 (-480))) 49 T ELT) (((-811 (-480)) (-580 (-480))) 48 T ELT)) (-2717 (((-811 (-480))) 47 T ELT) (((-811 (-480)) (-580 (-480))) 46 T ELT)) (-2716 (((-811 (-480))) 45 T ELT) (((-811 (-480)) (-580 (-480))) 44 T ELT)) (-2721 (((-811 (-480))) 55 T ELT) (((-811 (-480)) (-580 (-480))) 54 T ELT)) (-2715 (((-811 (-480)) (-580 (-480))) 71 T ELT) (((-811 (-480)) (-825)) 73 T ELT)) (-2714 (((-811 (-480)) (-580 (-480))) 68 T ELT) (((-811 (-480)) (-825)) 69 T ELT)) (-2712 (((-811 (-480)) (-580 (-480))) 64 T ELT) (((-811 (-480)) (-825)) 65 T ELT)) (-2713 (((-811 (-480)) (-580 (-825))) 57 T ELT))) -(((-823) (-10 -7 (-15 -2711 ((-811 (-480)) (-825))) (-15 -2711 ((-811 (-480)) (-580 (-480)))) (-15 -2712 ((-811 (-480)) (-825))) (-15 -2712 ((-811 (-480)) (-580 (-480)))) (-15 -2713 ((-811 (-480)) (-580 (-825)))) (-15 -2714 ((-811 (-480)) (-825))) (-15 -2714 ((-811 (-480)) (-580 (-480)))) (-15 -2715 ((-811 (-480)) (-825))) (-15 -2715 ((-811 (-480)) (-580 (-480)))) (-15 -2716 ((-811 (-480)) (-580 (-480)))) (-15 -2716 ((-811 (-480)))) (-15 -2717 ((-811 (-480)) (-580 (-480)))) (-15 -2717 ((-811 (-480)))) (-15 -2718 ((-811 (-480)) (-580 (-480)))) (-15 -2718 ((-811 (-480)))) (-15 -2719 ((-811 (-480)) (-580 (-480)))) (-15 -2719 ((-811 (-480)))) (-15 -2720 ((-811 (-480)) (-580 (-480)))) (-15 -2720 ((-811 (-480)))) (-15 -2721 ((-811 (-480)) (-580 (-480)))) (-15 -2721 ((-811 (-480)))) (-15 -2722 ((-811 (-480)))) (-15 -2723 ((-811 (-480)) (-580 (-480)))) (-15 -2723 ((-811 (-480)) (-879))))) (T -823)) -((-2723 (*1 *2 *3) (-12 (-5 *3 (-879)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2722 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2721 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2720 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2720 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2719 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2718 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2717 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2716 (*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -((-2725 (((-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081))) 14 T ELT)) (-2724 (((-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081))) 13 T ELT))) -(((-824 |#1|) (-10 -7 (-15 -2724 ((-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081)))) (-15 -2725 ((-580 (-852 |#1|)) (-580 (-852 |#1|)) (-580 (-1081))))) (-387)) (T -824)) -((-2725 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-852 *4))) (-5 *3 (-580 (-1081))) (-4 *4 (-387)) (-5 *1 (-824 *4)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-852 *4))) (-5 *3 (-580 (-1081))) (-4 *4 (-387)) (-5 *1 (-824 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ "failed") $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3129 (($ $ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2652 (($) NIL T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-825) (-13 (-713) (-660) (-10 -8 (-15 -3129 ($ $ $)) (-6 (-3980 "*"))))) (T -825)) -((-3129 (*1 *1 *1 *1) (-5 *1 (-825)))) -((-689) (|%ilt| 0 |#1|)) -((-3929 (((-262 |#1|) (-412)) 16 T ELT))) -(((-826 |#1|) (-10 -7 (-15 -3929 ((-262 |#1|) (-412)))) (-491)) (T -826)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-412)) (-5 *2 (-262 *4)) (-5 *1 (-826 *4)) (-4 *4 (-491))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-827) (-111)) (T -827)) -((-2727 (*1 *2 *3) (-12 (-4 *1 (-827)) (-5 *2 (-2 (|:| -3937 (-580 *1)) (|:| -2397 *1))) (-5 *3 (-580 *1)))) (-2726 (*1 *2 *3 *1) (-12 (-4 *1 (-827)) (-5 *2 (-629 (-580 *1))) (-5 *3 (-580 *1))))) -(-13 (-387) (-10 -8 (-15 -2727 ((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $))) (-15 -2726 ((-629 (-580 $)) (-580 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3091 (((-1076 |#2|) (-580 |#2|) (-580 |#2|)) 17 T ELT) (((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-580 |#2|) (-580 |#2|)) 13 T ELT))) -(((-828 |#1| |#2|) (-10 -7 (-15 -3091 ((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-580 |#2|) (-580 |#2|))) (-15 -3091 ((-1076 |#2|) (-580 |#2|) (-580 |#2|)))) (-1081) (-309)) (T -828)) -((-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *5)) (-4 *5 (-309)) (-5 *2 (-1076 *5)) (-5 *1 (-828 *4 *5)) (-14 *4 (-1081)))) (-3091 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-580 *5)) (-14 *4 (-1081)) (-4 *5 (-309)) (-5 *1 (-828 *4 *5))))) -((-2728 ((|#2| (-580 |#1|) (-580 |#1|)) 28 T ELT))) -(((-829 |#1| |#2|) (-10 -7 (-15 -2728 (|#2| (-580 |#1|) (-580 |#1|)))) (-309) (-1146 |#1|)) (T -829)) -((-2728 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-309)) (-4 *2 (-1146 *4)) (-5 *1 (-829 *4 *2))))) -((-2730 (((-480) (-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-1064)) 175 T ELT)) (-2749 ((|#4| |#4|) 194 T ELT)) (-2734 (((-580 (-345 (-852 |#1|))) (-580 (-1081))) 146 T ELT)) (-2748 (((-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))) (-627 |#4|) (-580 (-345 (-852 |#1|))) (-580 (-580 |#4|)) (-689) (-689) (-480)) 88 T ELT)) (-2738 (((-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-580 |#4|)) 69 T ELT)) (-2747 (((-627 |#4|) (-627 |#4|) (-580 |#4|)) 65 T ELT)) (-2731 (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-1064)) 187 T ELT)) (-2729 (((-480) (-627 |#4|) (-825) (-1064)) 167 T ELT) (((-480) (-627 |#4|) (-580 (-1081)) (-825) (-1064)) 166 T ELT) (((-480) (-627 |#4|) (-580 |#4|) (-825) (-1064)) 165 T ELT) (((-480) (-627 |#4|) (-1064)) 154 T ELT) (((-480) (-627 |#4|) (-580 (-1081)) (-1064)) 153 T ELT) (((-480) (-627 |#4|) (-580 |#4|) (-1064)) 152 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-825)) 151 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 (-1081)) (-825)) 150 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 |#4|) (-825)) 149 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|)) 148 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 (-1081))) 147 T ELT) (((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 |#4|)) 143 T ELT)) (-2735 ((|#4| (-852 |#1|)) 80 T ELT)) (-2745 (((-83) (-580 |#4|) (-580 (-580 |#4|))) 191 T ELT)) (-2744 (((-580 (-580 (-480))) (-480) (-480)) 161 T ELT)) (-2743 (((-580 (-580 |#4|)) (-580 (-580 |#4|))) 106 T ELT)) (-2742 (((-689) (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|))))) 100 T ELT)) (-2741 (((-689) (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|))))) 99 T ELT)) (-2750 (((-83) (-580 (-852 |#1|))) 19 T ELT) (((-83) (-580 |#4|)) 15 T ELT)) (-2736 (((-2 (|:| |sysok| (-83)) (|:| |z0| (-580 |#4|)) (|:| |n0| (-580 |#4|))) (-580 |#4|) (-580 |#4|)) 84 T ELT)) (-2740 (((-580 |#4|) |#4|) 57 T ELT)) (-2733 (((-580 (-345 (-852 |#1|))) (-580 |#4|)) 142 T ELT) (((-627 (-345 (-852 |#1|))) (-627 |#4|)) 66 T ELT) (((-345 (-852 |#1|)) |#4|) 139 T ELT)) (-2732 (((-2 (|:| |rgl| (-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))))))) (|:| |rgsz| (-480))) (-627 |#4|) (-580 (-345 (-852 |#1|))) (-689) (-1064) (-480)) 112 T ELT)) (-2737 (((-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|)))) (-627 |#4|) (-689)) 98 T ELT)) (-2746 (((-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) (-627 |#4|) (-689)) 121 T ELT)) (-2739 (((-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-2 (|:| |mat| (-627 (-345 (-852 |#1|)))) (|:| |vec| (-580 (-345 (-852 |#1|)))) (|:| -3094 (-689)) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) 56 T ELT))) -(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 |#4|))) (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 (-1081)))) (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|))) (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 |#4|) (-825))) (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-580 (-1081)) (-825))) (-15 -2729 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-627 |#4|) (-825))) (-15 -2729 ((-480) (-627 |#4|) (-580 |#4|) (-1064))) (-15 -2729 ((-480) (-627 |#4|) (-580 (-1081)) (-1064))) (-15 -2729 ((-480) (-627 |#4|) (-1064))) (-15 -2729 ((-480) (-627 |#4|) (-580 |#4|) (-825) (-1064))) (-15 -2729 ((-480) (-627 |#4|) (-580 (-1081)) (-825) (-1064))) (-15 -2729 ((-480) (-627 |#4|) (-825) (-1064))) (-15 -2730 ((-480) (-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-1064))) (-15 -2731 ((-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|))))))))) (-1064))) (-15 -2732 ((-2 (|:| |rgl| (-580 (-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))))))) (|:| |rgsz| (-480))) (-627 |#4|) (-580 (-345 (-852 |#1|))) (-689) (-1064) (-480))) (-15 -2733 ((-345 (-852 |#1|)) |#4|)) (-15 -2733 ((-627 (-345 (-852 |#1|))) (-627 |#4|))) (-15 -2733 ((-580 (-345 (-852 |#1|))) (-580 |#4|))) (-15 -2734 ((-580 (-345 (-852 |#1|))) (-580 (-1081)))) (-15 -2735 (|#4| (-852 |#1|))) (-15 -2736 ((-2 (|:| |sysok| (-83)) (|:| |z0| (-580 |#4|)) (|:| |n0| (-580 |#4|))) (-580 |#4|) (-580 |#4|))) (-15 -2737 ((-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|)))) (-627 |#4|) (-689))) (-15 -2738 ((-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-580 |#4|))) (-15 -2739 ((-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))) (-2 (|:| |mat| (-627 (-345 (-852 |#1|)))) (|:| |vec| (-580 (-345 (-852 |#1|)))) (|:| -3094 (-689)) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (-15 -2740 ((-580 |#4|) |#4|)) (-15 -2741 ((-689) (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|)))))) (-15 -2742 ((-689) (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 |#4|)))))) (-15 -2743 ((-580 (-580 |#4|)) (-580 (-580 |#4|)))) (-15 -2744 ((-580 (-580 (-480))) (-480) (-480))) (-15 -2745 ((-83) (-580 |#4|) (-580 (-580 |#4|)))) (-15 -2746 ((-580 (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) (-627 |#4|) (-689))) (-15 -2747 ((-627 |#4|) (-627 |#4|) (-580 |#4|))) (-15 -2748 ((-2 (|:| |eqzro| (-580 |#4|)) (|:| |neqzro| (-580 |#4|)) (|:| |wcond| (-580 (-852 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 |#1|)))) (|:| -2000 (-580 (-1170 (-345 (-852 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))) (-627 |#4|) (-580 (-345 (-852 |#1|))) (-580 (-580 |#4|)) (-689) (-689) (-480))) (-15 -2749 (|#4| |#4|)) (-15 -2750 ((-83) (-580 |#4|))) (-15 -2750 ((-83) (-580 (-852 |#1|))))) (-13 (-255) (-118)) (-13 (-751) (-550 (-1081))) (-712) (-856 |#1| |#3| |#2|)) (T -830)) -((-2750 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-83)) (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-83)) (-5 *1 (-830 *4 *5 *6 *7)))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-255) (-118))) (-4 *4 (-13 (-751) (-550 (-1081)))) (-4 *5 (-712)) (-5 *1 (-830 *3 *4 *5 *2)) (-4 *2 (-856 *3 *5 *4)))) (-2748 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) (-5 *4 (-627 *12)) (-5 *5 (-580 (-345 (-852 *9)))) (-5 *6 (-580 (-580 *12))) (-5 *7 (-689)) (-5 *8 (-480)) (-4 *9 (-13 (-255) (-118))) (-4 *12 (-856 *9 *11 *10)) (-4 *10 (-13 (-751) (-550 (-1081)))) (-4 *11 (-712)) (-5 *2 (-2 (|:| |eqzro| (-580 *12)) (|:| |neqzro| (-580 *12)) (|:| |wcond| (-580 (-852 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *9)))) (|:| -2000 (-580 (-1170 (-345 (-852 *9))))))))) (-5 *1 (-830 *9 *10 *11 *12)))) (-2747 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *1 (-830 *4 *5 *6 *7)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-689)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-580 (-2 (|:| |det| *8) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (-5 *1 (-830 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-580 *8))) (-5 *3 (-580 *8)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-83)) (-5 *1 (-830 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 (-580 (-480)))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-480)) (-4 *7 (-856 *4 *6 *5)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-580 (-580 *6))) (-4 *6 (-856 *3 *5 *4)) (-4 *3 (-13 (-255) (-118))) (-4 *4 (-13 (-751) (-550 (-1081)))) (-4 *5 (-712)) (-5 *1 (-830 *3 *4 *5 *6)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| *7) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 *7))))) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-689)) (-5 *1 (-830 *4 *5 *6 *7)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| *7) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 *7))))) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-689)) (-5 *1 (-830 *4 *5 *6 *7)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 *3)) (-5 *1 (-830 *4 *5 *6 *3)) (-4 *3 (-856 *4 *6 *5)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-627 (-345 (-852 *4)))) (|:| |vec| (-580 (-345 (-852 *4)))) (|:| -3094 (-689)) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) (|:| -2000 (-580 (-1170 (-345 (-852 *4))))))) (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) (|:| -2000 (-580 (-1170 (-345 (-852 *4))))))) (-5 *3 (-580 *7)) (-4 *4 (-13 (-255) (-118))) (-4 *7 (-856 *4 *6 *5)) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *1 (-830 *4 *5 *6 *7)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-580 (-2 (|:| -3094 (-689)) (|:| |eqns| (-580 (-2 (|:| |det| *8) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480)))))) (|:| |fgb| (-580 *8))))) (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-689)))) (-2736 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-4 *7 (-856 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-580 *7)) (|:| |n0| (-580 *7)))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-852 *4)) (-4 *4 (-13 (-255) (-118))) (-4 *2 (-856 *4 *6 *5)) (-5 *1 (-830 *4 *5 *6 *2)) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-627 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7)))) (-2733 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-345 (-852 *4))) (-5 *1 (-830 *4 *5 *6 *3)) (-4 *3 (-856 *4 *6 *5)))) (-2732 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-627 *11)) (-5 *4 (-580 (-345 (-852 *8)))) (-5 *5 (-689)) (-5 *6 (-1064)) (-4 *8 (-13 (-255) (-118))) (-4 *11 (-856 *8 *10 *9)) (-4 *9 (-13 (-751) (-550 (-1081)))) (-4 *10 (-712)) (-5 *2 (-2 (|:| |rgl| (-580 (-2 (|:| |eqzro| (-580 *11)) (|:| |neqzro| (-580 *11)) (|:| |wcond| (-580 (-852 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *8)))) (|:| -2000 (-580 (-1170 (-345 (-852 *8)))))))))) (|:| |rgsz| (-480)))) (-5 *1 (-830 *8 *9 *10 *11)) (-5 *7 (-480)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *7)) (|:| |neqzro| (-580 *7)) (|:| |wcond| (-580 (-852 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) (|:| -2000 (-580 (-1170 (-345 (-852 *4)))))))))) (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) (|:| |wcond| (-580 (-852 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) (-5 *4 (-1064)) (-4 *5 (-13 (-255) (-118))) (-4 *8 (-856 *5 *7 *6)) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *5 *6 *7 *8)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-825)) (-5 *5 (-1064)) (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *6 *7 *8 *9)))) (-2729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-580 (-1081))) (-5 *5 (-825)) (-5 *6 (-1064)) (-4 *10 (-856 *7 *9 *8)) (-4 *7 (-13 (-255) (-118))) (-4 *8 (-13 (-751) (-550 (-1081)))) (-4 *9 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *7 *8 *9 *10)))) (-2729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-580 *10)) (-5 *5 (-825)) (-5 *6 (-1064)) (-4 *10 (-856 *7 *9 *8)) (-4 *7 (-13 (-255) (-118))) (-4 *8 (-13 (-751) (-550 (-1081)))) (-4 *9 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *7 *8 *9 *10)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-1064)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *5 *6 *7 *8)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 (-1081))) (-5 *5 (-1064)) (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *6 *7 *8 *9)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 *9)) (-5 *5 (-1064)) (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *6 *7 *8 *9)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-825)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) (|:| |wcond| (-580 (-852 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) (-5 *1 (-830 *5 *6 *7 *8)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 (-1081))) (-5 *5 (-825)) (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *9)) (|:| |neqzro| (-580 *9)) (|:| |wcond| (-580 (-852 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *6)))) (|:| -2000 (-580 (-1170 (-345 (-852 *6)))))))))) (-5 *1 (-830 *6 *7 *8 *9)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *5 (-825)) (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *9)) (|:| |neqzro| (-580 *9)) (|:| |wcond| (-580 (-852 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *6)))) (|:| -2000 (-580 (-1170 (-345 (-852 *6)))))))))) (-5 *1 (-830 *6 *7 *8 *9)) (-5 *4 (-580 *9)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *7)) (|:| |neqzro| (-580 *7)) (|:| |wcond| (-580 (-852 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) (|:| -2000 (-580 (-1170 (-345 (-852 *4)))))))))) (-5 *1 (-830 *4 *5 *6 *7)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-580 (-1081))) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) (|:| |wcond| (-580 (-852 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) (-5 *1 (-830 *5 *6 *7 *8)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-580 (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) (|:| |wcond| (-580 (-852 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-580 *8))))) -((-3857 (($ $ (-995 (-177))) 125 T ELT) (($ $ (-995 (-177)) (-995 (-177))) 126 T ELT)) (-2882 (((-995 (-177)) $) 73 T ELT)) (-2883 (((-995 (-177)) $) 72 T ELT)) (-2774 (((-995 (-177)) $) 74 T ELT)) (-2755 (((-480) (-480)) 66 T ELT)) (-2759 (((-480) (-480)) 61 T ELT)) (-2757 (((-480) (-480)) 64 T ELT)) (-2753 (((-83) (-83)) 68 T ELT)) (-2756 (((-480)) 65 T ELT)) (-3119 (($ $ (-995 (-177))) 129 T ELT) (($ $) 130 T ELT)) (-2776 (($ (-1 (-849 (-177)) (-177)) (-995 (-177))) 148 T ELT) (($ (-1 (-849 (-177)) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177))) 149 T ELT)) (-2762 (($ (-1 (-177) (-177)) (-995 (-177))) 156 T ELT) (($ (-1 (-177) (-177))) 160 T ELT)) (-2775 (($ (-1 (-177) (-177)) (-995 (-177))) 144 T ELT) (($ (-1 (-177) (-177)) (-995 (-177)) (-995 (-177))) 145 T ELT) (($ (-580 (-1 (-177) (-177))) (-995 (-177))) 153 T ELT) (($ (-580 (-1 (-177) (-177))) (-995 (-177)) (-995 (-177))) 154 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177))) 146 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177))) 147 T ELT) (($ $ (-995 (-177))) 131 T ELT)) (-2761 (((-83) $) 69 T ELT)) (-2752 (((-480)) 70 T ELT)) (-2760 (((-480)) 59 T ELT)) (-2758 (((-480)) 62 T ELT)) (-2884 (((-580 (-580 (-849 (-177)))) $) 35 T ELT)) (-2751 (((-83) (-83)) 71 T ELT)) (-3929 (((-767) $) 174 T ELT)) (-2754 (((-83)) 67 T ELT))) -(((-831) (-13 (-861) (-10 -8 (-15 -2775 ($ (-1 (-177) (-177)) (-995 (-177)))) (-15 -2775 ($ (-1 (-177) (-177)) (-995 (-177)) (-995 (-177)))) (-15 -2775 ($ (-580 (-1 (-177) (-177))) (-995 (-177)))) (-15 -2775 ($ (-580 (-1 (-177) (-177))) (-995 (-177)) (-995 (-177)))) (-15 -2775 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)))) (-15 -2775 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)))) (-15 -2776 ($ (-1 (-849 (-177)) (-177)) (-995 (-177)))) (-15 -2776 ($ (-1 (-849 (-177)) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)))) (-15 -2762 ($ (-1 (-177) (-177)) (-995 (-177)))) (-15 -2762 ($ (-1 (-177) (-177)))) (-15 -2775 ($ $ (-995 (-177)))) (-15 -2761 ((-83) $)) (-15 -3857 ($ $ (-995 (-177)))) (-15 -3857 ($ $ (-995 (-177)) (-995 (-177)))) (-15 -3119 ($ $ (-995 (-177)))) (-15 -3119 ($ $)) (-15 -2774 ((-995 (-177)) $)) (-15 -2760 ((-480))) (-15 -2759 ((-480) (-480))) (-15 -2758 ((-480))) (-15 -2757 ((-480) (-480))) (-15 -2756 ((-480))) (-15 -2755 ((-480) (-480))) (-15 -2754 ((-83))) (-15 -2753 ((-83) (-83))) (-15 -2752 ((-480))) (-15 -2751 ((-83) (-83)))))) (T -831)) -((-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-580 (-1 (-177) (-177)))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-580 (-1 (-177) (-177)))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2776 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2762 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-831)))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) (-3857 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) (-3119 (*1 *1 *1) (-5 *1 (-831))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) (-2760 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2758 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2756 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2754 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2752 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -((-2762 (((-831) |#1| (-1081)) 17 T ELT) (((-831) |#1| (-1081) (-995 (-177))) 21 T ELT)) (-2775 (((-831) |#1| |#1| (-1081) (-995 (-177))) 19 T ELT) (((-831) |#1| (-1081) (-995 (-177))) 15 T ELT))) -(((-832 |#1|) (-10 -7 (-15 -2775 ((-831) |#1| (-1081) (-995 (-177)))) (-15 -2775 ((-831) |#1| |#1| (-1081) (-995 (-177)))) (-15 -2762 ((-831) |#1| (-1081) (-995 (-177)))) (-15 -2762 ((-831) |#1| (-1081)))) (-550 (-469))) (T -832)) -((-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-5 *2 (-831)) (-5 *1 (-832 *3)) (-4 *3 (-550 (-469))))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) (-4 *3 (-550 (-469))))) (-2775 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) (-4 *3 (-550 (-469))))) (-2775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) (-4 *3 (-550 (-469)))))) -((-3857 (($ $ (-995 (-177)) (-995 (-177)) (-995 (-177))) 123 T ELT)) (-2881 (((-995 (-177)) $) 64 T ELT)) (-2882 (((-995 (-177)) $) 63 T ELT)) (-2883 (((-995 (-177)) $) 62 T ELT)) (-2773 (((-580 (-580 (-177))) $) 69 T ELT)) (-2774 (((-995 (-177)) $) 65 T ELT)) (-2767 (((-480) (-480)) 57 T ELT)) (-2771 (((-480) (-480)) 52 T ELT)) (-2769 (((-480) (-480)) 55 T ELT)) (-2765 (((-83) (-83)) 59 T ELT)) (-2768 (((-480)) 56 T ELT)) (-3119 (($ $ (-995 (-177))) 126 T ELT) (($ $) 127 T ELT)) (-2776 (($ (-1 (-849 (-177)) (-177)) (-995 (-177))) 133 T ELT) (($ (-1 (-849 (-177)) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177))) 134 T ELT)) (-2775 (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177))) 140 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177))) 141 T ELT) (($ $ (-995 (-177))) 129 T ELT)) (-2764 (((-480)) 60 T ELT)) (-2772 (((-480)) 50 T ELT)) (-2770 (((-480)) 53 T ELT)) (-2884 (((-580 (-580 (-849 (-177)))) $) 157 T ELT)) (-2763 (((-83) (-83)) 61 T ELT)) (-3929 (((-767) $) 155 T ELT)) (-2766 (((-83)) 58 T ELT))) -(((-833) (-13 (-882) (-10 -8 (-15 -2776 ($ (-1 (-849 (-177)) (-177)) (-995 (-177)))) (-15 -2776 ($ (-1 (-849 (-177)) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)))) (-15 -2775 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)))) (-15 -2775 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)) (-995 (-177)))) (-15 -2775 ($ $ (-995 (-177)))) (-15 -3857 ($ $ (-995 (-177)) (-995 (-177)) (-995 (-177)))) (-15 -3119 ($ $ (-995 (-177)))) (-15 -3119 ($ $)) (-15 -2774 ((-995 (-177)) $)) (-15 -2773 ((-580 (-580 (-177))) $)) (-15 -2772 ((-480))) (-15 -2771 ((-480) (-480))) (-15 -2770 ((-480))) (-15 -2769 ((-480) (-480))) (-15 -2768 ((-480))) (-15 -2767 ((-480) (-480))) (-15 -2766 ((-83))) (-15 -2765 ((-83) (-83))) (-15 -2764 ((-480))) (-15 -2763 ((-83) (-83)))))) (T -833)) -((-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) (-2776 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) (-2775 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) (-2775 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) (-3857 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) (-3119 (*1 *1 *1) (-5 *1 (-833))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-177)))) (-5 *1 (-833)))) (-2772 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2770 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2768 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2766 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833)))) (-2764 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833))))) -((-2777 (((-580 (-995 (-177))) (-580 (-580 (-849 (-177))))) 34 T ELT))) -(((-834) (-10 -7 (-15 -2777 ((-580 (-995 (-177))) (-580 (-580 (-849 (-177)))))))) (T -834)) -((-2777 (*1 *2 *3) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-580 (-995 (-177)))) (-5 *1 (-834))))) -((-2779 (((-262 (-480)) (-1081)) 16 T ELT)) (-2780 (((-262 (-480)) (-1081)) 14 T ELT)) (-3935 (((-262 (-480)) (-1081)) 12 T ELT)) (-2778 (((-262 (-480)) (-1081) (-441)) 19 T ELT))) -(((-835) (-10 -7 (-15 -2778 ((-262 (-480)) (-1081) (-441))) (-15 -3935 ((-262 (-480)) (-1081))) (-15 -2779 ((-262 (-480)) (-1081))) (-15 -2780 ((-262 (-480)) (-1081))))) (T -835)) -((-2780 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-441)) (-5 *2 (-262 (-480))) (-5 *1 (-835))))) -((-2779 ((|#2| |#2|) 28 T ELT)) (-2780 ((|#2| |#2|) 29 T ELT)) (-3935 ((|#2| |#2|) 27 T ELT)) (-2778 ((|#2| |#2| (-441)) 26 T ELT))) -(((-836 |#1| |#2|) (-10 -7 (-15 -2778 (|#2| |#2| (-441))) (-15 -3935 (|#2| |#2|)) (-15 -2779 (|#2| |#2|)) (-15 -2780 (|#2| |#2|))) (-1007) (-359 |#1|)) (T -836)) -((-2780 (*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3)))) (-2779 (*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3)))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3)))) (-2778 (*1 *2 *2 *3) (-12 (-5 *3 (-441)) (-4 *4 (-1007)) (-5 *1 (-836 *4 *2)) (-4 *2 (-359 *4))))) -((-2782 (((-793 |#1| |#3|) |#2| (-795 |#1|) (-793 |#1| |#3|)) 25 T ELT)) (-2781 (((-1 (-83) |#2|) (-1 (-83) |#3|)) 13 T ELT))) -(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-1 (-83) |#2|) (-1 (-83) |#3|))) (-15 -2782 ((-793 |#1| |#3|) |#2| (-795 |#1|) (-793 |#1| |#3|)))) (-1007) (-791 |#1|) (-13 (-1007) (-945 |#2|))) (T -837)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *6)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-13 (-1007) (-945 *3))) (-4 *3 (-791 *5)) (-5 *1 (-837 *5 *3 *6)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1007) (-945 *5))) (-4 *5 (-791 *4)) (-4 *4 (-1007)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-837 *4 *5 *6))))) -((-2782 (((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)) 30 T ELT))) -(((-838 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)))) (-1007) (-13 (-491) (-791 |#1|)) (-13 (-359 |#2|) (-550 (-795 |#1|)) (-791 |#1|) (-945 (-547 $)))) (T -838)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) (-4 *3 (-13 (-359 *6) (-550 *4) (-791 *5) (-945 (-547 $)))) (-5 *4 (-795 *5)) (-4 *6 (-13 (-491) (-791 *5))) (-5 *1 (-838 *5 *6 *3))))) -((-2782 (((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|)) 13 T ELT))) -(((-839 |#1|) (-10 -7 (-15 -2782 ((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|)))) (-479)) (T -839)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 (-480) *3)) (-5 *4 (-795 (-480))) (-4 *3 (-479)) (-5 *1 (-839 *3))))) -((-2782 (((-793 |#1| |#2|) (-547 |#2|) (-795 |#1|) (-793 |#1| |#2|)) 57 T ELT))) -(((-840 |#1| |#2|) (-10 -7 (-15 -2782 ((-793 |#1| |#2|) (-547 |#2|) (-795 |#1|) (-793 |#1| |#2|)))) (-1007) (-13 (-1007) (-945 (-547 $)) (-550 (-795 |#1|)) (-791 |#1|))) (T -840)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *6)) (-5 *3 (-547 *6)) (-4 *5 (-1007)) (-4 *6 (-13 (-1007) (-945 (-547 $)) (-550 *4) (-791 *5))) (-5 *4 (-795 *5)) (-5 *1 (-840 *5 *6))))) -((-2782 (((-790 |#1| |#2| |#3|) |#3| (-795 |#1|) (-790 |#1| |#2| |#3|)) 17 T ELT))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-790 |#1| |#2| |#3|) |#3| (-795 |#1|) (-790 |#1| |#2| |#3|)))) (-1007) (-791 |#1|) (-605 |#2|)) (T -841)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-790 *5 *6 *3)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-791 *5)) (-4 *3 (-605 *6)) (-5 *1 (-841 *5 *6 *3))))) -((-2782 (((-793 |#1| |#5|) |#5| (-795 |#1|) (-793 |#1| |#5|)) 17 (|has| |#3| (-791 |#1|)) ELT) (((-793 |#1| |#5|) |#5| (-795 |#1|) (-793 |#1| |#5|) (-1 (-793 |#1| |#5|) |#3| (-795 |#1|) (-793 |#1| |#5|))) 16 T ELT))) -(((-842 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2782 ((-793 |#1| |#5|) |#5| (-795 |#1|) (-793 |#1| |#5|) (-1 (-793 |#1| |#5|) |#3| (-795 |#1|) (-793 |#1| |#5|)))) (IF (|has| |#3| (-791 |#1|)) (-15 -2782 ((-793 |#1| |#5|) |#5| (-795 |#1|) (-793 |#1| |#5|))) |%noBranch|)) (-1007) (-712) (-751) (-13 (-956) (-791 |#1|)) (-13 (-856 |#4| |#2| |#3|) (-550 (-795 |#1|)))) (T -842)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) (-4 *3 (-13 (-856 *8 *6 *7) (-550 *4))) (-5 *4 (-795 *5)) (-4 *7 (-791 *5)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-13 (-956) (-791 *5))) (-5 *1 (-842 *5 *6 *7 *8 *3)))) (-2782 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-793 *6 *3) *8 (-795 *6) (-793 *6 *3))) (-4 *8 (-751)) (-5 *2 (-793 *6 *3)) (-5 *4 (-795 *6)) (-4 *6 (-1007)) (-4 *3 (-13 (-856 *9 *7 *8) (-550 *4))) (-4 *7 (-712)) (-4 *9 (-13 (-956) (-791 *6))) (-5 *1 (-842 *6 *7 *8 *9 *3))))) -((-3194 (((-262 (-480)) (-1081) (-580 (-1 (-83) |#1|))) 18 T ELT) (((-262 (-480)) (-1081) (-1 (-83) |#1|)) 15 T ELT))) -(((-843 |#1|) (-10 -7 (-15 -3194 ((-262 (-480)) (-1081) (-1 (-83) |#1|))) (-15 -3194 ((-262 (-480)) (-1081) (-580 (-1 (-83) |#1|))))) (-1120)) (T -843)) -((-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-580 (-1 (-83) *5))) (-4 *5 (-1120)) (-5 *2 (-262 (-480))) (-5 *1 (-843 *5)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1120)) (-5 *2 (-262 (-480))) (-5 *1 (-843 *5))))) -((-3194 ((|#2| |#2| (-580 (-1 (-83) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-83) |#3|)) 13 T ELT))) -(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -3194 (|#2| |#2| (-1 (-83) |#3|))) (-15 -3194 (|#2| |#2| (-580 (-1 (-83) |#3|))))) (-1007) (-359 |#1|) (-1120)) (T -844)) -((-3194 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-1 (-83) *5))) (-4 *5 (-1120)) (-4 *4 (-1007)) (-5 *1 (-844 *4 *2 *5)) (-4 *2 (-359 *4)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1120)) (-4 *4 (-1007)) (-5 *1 (-844 *4 *2 *5)) (-4 *2 (-359 *4))))) -((-2782 (((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)) 25 T ELT))) -(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)))) (-1007) (-13 (-491) (-791 |#1|) (-550 (-795 |#1|))) (-899 |#2|)) (T -845)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) (-4 *3 (-899 *6)) (-4 *6 (-13 (-491) (-791 *5) (-550 *4))) (-5 *4 (-795 *5)) (-5 *1 (-845 *5 *6 *3))))) -((-2782 (((-793 |#1| (-1081)) (-1081) (-795 |#1|) (-793 |#1| (-1081))) 18 T ELT))) -(((-846 |#1|) (-10 -7 (-15 -2782 ((-793 |#1| (-1081)) (-1081) (-795 |#1|) (-793 |#1| (-1081))))) (-1007)) (T -846)) -((-2782 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *5 (-1081))) (-5 *3 (-1081)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-5 *1 (-846 *5))))) -((-2783 (((-793 |#1| |#3|) (-580 |#3|) (-580 (-795 |#1|)) (-793 |#1| |#3|) (-1 (-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|))) 34 T ELT)) (-2782 (((-793 |#1| |#3|) (-580 |#3|) (-580 (-795 |#1|)) (-1 |#3| (-580 |#3|)) (-793 |#1| |#3|) (-1 (-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|))) 33 T ELT))) -(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-793 |#1| |#3|) (-580 |#3|) (-580 (-795 |#1|)) (-1 |#3| (-580 |#3|)) (-793 |#1| |#3|) (-1 (-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|)))) (-15 -2783 ((-793 |#1| |#3|) (-580 |#3|) (-580 (-795 |#1|)) (-793 |#1| |#3|) (-1 (-793 |#1| |#3|) |#3| (-795 |#1|) (-793 |#1| |#3|))))) (-1007) (-956) (-13 (-956) (-550 (-795 |#1|)) (-945 |#2|))) (T -847)) -((-2783 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 (-795 *6))) (-5 *5 (-1 (-793 *6 *8) *8 (-795 *6) (-793 *6 *8))) (-4 *6 (-1007)) (-4 *8 (-13 (-956) (-550 (-795 *6)) (-945 *7))) (-5 *2 (-793 *6 *8)) (-4 *7 (-956)) (-5 *1 (-847 *6 *7 *8)))) (-2782 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-580 (-795 *7))) (-5 *5 (-1 *9 (-580 *9))) (-5 *6 (-1 (-793 *7 *9) *9 (-795 *7) (-793 *7 *9))) (-4 *7 (-1007)) (-4 *9 (-13 (-956) (-550 (-795 *7)) (-945 *8))) (-5 *2 (-793 *7 *9)) (-5 *3 (-580 *9)) (-4 *8 (-956)) (-5 *1 (-847 *7 *8 *9))))) -((-2791 (((-1076 (-345 (-480))) (-480)) 80 T ELT)) (-2790 (((-1076 (-480)) (-480)) 83 T ELT)) (-3317 (((-1076 (-480)) (-480)) 77 T ELT)) (-2789 (((-480) (-1076 (-480))) 73 T ELT)) (-2788 (((-1076 (-345 (-480))) (-480)) 66 T ELT)) (-2787 (((-1076 (-480)) (-480)) 49 T ELT)) (-2786 (((-1076 (-480)) (-480)) 85 T ELT)) (-2785 (((-1076 (-480)) (-480)) 84 T ELT)) (-2784 (((-1076 (-345 (-480))) (-480)) 68 T ELT))) -(((-848) (-10 -7 (-15 -2784 ((-1076 (-345 (-480))) (-480))) (-15 -2785 ((-1076 (-480)) (-480))) (-15 -2786 ((-1076 (-480)) (-480))) (-15 -2787 ((-1076 (-480)) (-480))) (-15 -2788 ((-1076 (-345 (-480))) (-480))) (-15 -2789 ((-480) (-1076 (-480)))) (-15 -3317 ((-1076 (-480)) (-480))) (-15 -2790 ((-1076 (-480)) (-480))) (-15 -2791 ((-1076 (-345 (-480))) (-480))))) (T -848)) -((-2791 (*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2790 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) (-3317 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1076 (-480))) (-5 *2 (-480)) (-5 *1 (-848)))) (-2788 (*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2787 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2786 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2785 (*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689)) NIL (|has| |#1| (-23)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-3689 (($ (-580 |#1|)) 9 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3818 (((-627 |#1|) $ $) NIL (|has| |#1| (-956)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-580 |#1|)) 25 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) 18 T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3819 ((|#1| $ $) NIL (|has| |#1| (-956)) ELT)) (-3894 (((-825) $) 13 T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3817 (($ $ $) 23 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT) (($ (-580 |#1|)) 14 T ELT)) (-3513 (($ (-580 |#1|)) NIL T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3820 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-480) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-660)) ELT) (($ $ |#1|) NIL (|has| |#1| (-660)) ELT)) (-3940 (((-689) $) 11 (|has| $ (-6 -3978)) ELT))) -(((-849 |#1|) (-888 |#1|) (-956)) (T -849)) -NIL -((-2794 (((-416 |#1| |#2|) (-852 |#2|)) 22 T ELT)) (-2797 (((-204 |#1| |#2|) (-852 |#2|)) 35 T ELT)) (-2795 (((-852 |#2|) (-416 |#1| |#2|)) 27 T ELT)) (-2793 (((-204 |#1| |#2|) (-416 |#1| |#2|)) 57 T ELT)) (-2796 (((-852 |#2|) (-204 |#1| |#2|)) 32 T ELT)) (-2792 (((-416 |#1| |#2|) (-204 |#1| |#2|)) 48 T ELT))) -(((-850 |#1| |#2|) (-10 -7 (-15 -2792 ((-416 |#1| |#2|) (-204 |#1| |#2|))) (-15 -2793 ((-204 |#1| |#2|) (-416 |#1| |#2|))) (-15 -2794 ((-416 |#1| |#2|) (-852 |#2|))) (-15 -2795 ((-852 |#2|) (-416 |#1| |#2|))) (-15 -2796 ((-852 |#2|) (-204 |#1| |#2|))) (-15 -2797 ((-204 |#1| |#2|) (-852 |#2|)))) (-580 (-1081)) (-956)) (T -850)) -((-2797 (*1 *2 *3) (-12 (-5 *3 (-852 *5)) (-4 *5 (-956)) (-5 *2 (-204 *4 *5)) (-5 *1 (-850 *4 *5)) (-14 *4 (-580 (-1081))))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) (-5 *2 (-852 *5)) (-5 *1 (-850 *4 *5)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-416 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) (-5 *2 (-852 *5)) (-5 *1 (-850 *4 *5)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-852 *5)) (-4 *5 (-956)) (-5 *2 (-416 *4 *5)) (-5 *1 (-850 *4 *5)) (-14 *4 (-580 (-1081))))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-416 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) (-5 *2 (-204 *4 *5)) (-5 *1 (-850 *4 *5)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) (-5 *2 (-416 *4 *5)) (-5 *1 (-850 *4 *5))))) -((-2798 (((-580 |#2|) |#2| |#2|) 10 T ELT)) (-2801 (((-689) (-580 |#1|)) 47 (|has| |#1| (-750)) ELT)) (-2799 (((-580 |#2|) |#2|) 11 T ELT)) (-2802 (((-689) (-580 |#1|) (-480) (-480)) 45 (|has| |#1| (-750)) ELT)) (-2800 ((|#1| |#2|) 37 (|has| |#1| (-750)) ELT))) -(((-851 |#1| |#2|) (-10 -7 (-15 -2798 ((-580 |#2|) |#2| |#2|)) (-15 -2799 ((-580 |#2|) |#2|)) (IF (|has| |#1| (-750)) (PROGN (-15 -2800 (|#1| |#2|)) (-15 -2801 ((-689) (-580 |#1|))) (-15 -2802 ((-689) (-580 |#1|) (-480) (-480)))) |%noBranch|)) (-309) (-1146 |#1|)) (T -851)) -((-2802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-480)) (-4 *5 (-750)) (-4 *5 (-309)) (-5 *2 (-689)) (-5 *1 (-851 *5 *6)) (-4 *6 (-1146 *5)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-750)) (-4 *4 (-309)) (-5 *2 (-689)) (-5 *1 (-851 *4 *5)) (-4 *5 (-1146 *4)))) (-2800 (*1 *2 *3) (-12 (-4 *2 (-309)) (-4 *2 (-750)) (-5 *1 (-851 *2 *3)) (-4 *3 (-1146 *2)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1146 *4)))) (-2798 (*1 *2 *3 *3) (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-1081)) $) 16 T ELT)) (-3069 (((-1076 $) $ (-1081)) 21 T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-1081))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-1081) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-1081) $) NIL T ELT)) (-3739 (($ $ $ (-1081)) NIL (|has| |#1| (-144)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-465 (-1081)) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-1081) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-1081) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#1|) (-1081)) NIL T ELT) (($ (-1076 $) (-1081)) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-465 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-1081)) NIL T ELT)) (-2806 (((-465 (-1081)) $) NIL T ELT) (((-689) $ (-1081)) NIL T ELT) (((-580 (-689)) $ (-580 (-1081))) NIL T ELT)) (-1614 (($ (-1 (-465 (-1081)) (-465 (-1081))) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3068 (((-3 (-1081) #1#) $) 19 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-1081)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3795 (($ $ (-1081)) 29 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-1081) |#1|) NIL T ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL T ELT) (($ $ (-1081) $) NIL T ELT) (($ $ (-580 (-1081)) (-580 $)) NIL T ELT)) (-3740 (($ $ (-1081)) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT)) (-3931 (((-465 (-1081)) $) NIL T ELT) (((-689) $ (-1081)) NIL T ELT) (((-580 (-689)) $ (-580 (-1081))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-1081) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-1081) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-1081) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 25 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1081)) 27 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-465 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-852 |#1|) (-13 (-856 |#1| (-465 (-1081)) (-1081)) (-10 -8 (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1081))) |%noBranch|))) (-956)) (T -852)) -((-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-852 *3)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956))))) -((-3941 (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)) 19 T ELT))) -(((-853 |#1| |#2|) (-10 -7 (-15 -3941 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)))) (-956) (-956)) (T -853)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-5 *2 (-852 *6)) (-5 *1 (-853 *5 *6))))) -((-3069 (((-1139 |#1| (-852 |#2|)) (-852 |#2|) (-1167 |#1|)) 18 T ELT))) -(((-854 |#1| |#2|) (-10 -7 (-15 -3069 ((-1139 |#1| (-852 |#2|)) (-852 |#2|) (-1167 |#1|)))) (-1081) (-956)) (T -854)) -((-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-1167 *5)) (-14 *5 (-1081)) (-4 *6 (-956)) (-5 *2 (-1139 *5 (-852 *6))) (-5 *1 (-854 *5 *6)) (-5 *3 (-852 *6))))) -((-2805 (((-689) $) 88 T ELT) (((-689) $ (-580 |#4|)) 93 T ELT)) (-3758 (($ $) 214 T ELT)) (-3954 (((-343 $) $) 206 T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 141 T ELT)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) (((-480) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3739 (($ $ $ |#4|) 95 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 131 T ELT) (((-627 |#2|) (-627 $)) 121 T ELT)) (-3486 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2804 (((-580 $) $) 77 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 240 T ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 233 T ELT)) (-2807 (((-580 $) $) 34 T ELT)) (-2879 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-689)) NIL T ELT) (($ $ (-580 |#4|) (-580 (-689))) 71 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#4|) 203 T ELT)) (-2809 (((-3 (-580 $) #1#) $) 52 T ELT)) (-2808 (((-3 (-580 $) #1#) $) 39 T ELT)) (-2810 (((-3 (-2 (|:| |var| |#4|) (|:| -2389 (-689))) #1#) $) 57 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 134 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 147 T ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 145 T ELT)) (-3715 (((-343 $) $) 165 T ELT)) (-3751 (($ $ (-580 (-246 $))) 24 T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-580 |#4|) (-580 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-580 |#4|) (-580 $)) NIL T ELT)) (-3740 (($ $ |#4|) 97 T ELT)) (-3955 (((-795 (-325)) $) 254 T ELT) (((-795 (-480)) $) 247 T ELT) (((-469) $) 262 T ELT)) (-2803 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 185 T ELT)) (-3660 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-689)) 62 T ELT) (($ $ (-580 |#4|) (-580 (-689))) 69 T ELT)) (-2688 (((-629 $) $) 195 T ELT)) (-1255 (((-83) $ $) 227 T ELT))) -(((-855 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3954 ((-343 |#1|) |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -2688 ((-629 |#1|) |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -2782 ((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|))) (-15 -2782 ((-793 (-325) |#1|) |#1| (-795 (-325)) (-793 (-325) |#1|))) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -2692 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2691 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2690 ((-3 (-580 (-1076 |#1|)) #1="failed") (-580 (-1076 |#1|)) (-1076 |#1|))) (-15 -2689 ((-3 (-1170 |#1|) #1#) (-627 |#1|))) (-15 -3486 (|#1| |#1| |#4|)) (-15 -2803 (|#1| |#1| |#4|)) (-15 -3740 (|#1| |#1| |#4|)) (-15 -3739 (|#1| |#1| |#1| |#4|)) (-15 -2804 ((-580 |#1|) |#1|)) (-15 -2805 ((-689) |#1| (-580 |#4|))) (-15 -2805 ((-689) |#1|)) (-15 -2810 ((-3 (-2 (|:| |var| |#4|) (|:| -2389 (-689))) #1#) |#1|)) (-15 -2809 ((-3 (-580 |#1|) #1#) |#1|)) (-15 -2808 ((-3 (-580 |#1|) #1#) |#1|)) (-15 -2879 (|#1| |#1| (-580 |#4|) (-580 (-689)))) (-15 -2879 (|#1| |#1| |#4| (-689))) (-15 -3746 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1| |#4|)) (-15 -2807 ((-580 |#1|) |#1|)) (-15 -3660 (|#1| |#1| (-580 |#4|) (-580 (-689)))) (-15 -3660 (|#1| |#1| |#4| (-689))) (-15 -2267 ((-627 |#2|) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -3142 ((-3 |#4| #1#) |#1|)) (-15 -3141 (|#4| |#1|)) (-15 -3751 (|#1| |#1| (-580 |#4|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#4| |#1|)) (-15 -3751 (|#1| |#1| (-580 |#4|) (-580 |#2|))) (-15 -3751 (|#1| |#1| |#4| |#2|)) (-15 -3751 (|#1| |#1| (-580 |#1|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| (-246 |#1|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -2879 (|#1| |#2| |#3|)) (-15 -3660 (|#2| |#1| |#3|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -1255 ((-83) |#1| |#1|))) (-856 |#2| |#3| |#4|) (-956) (-712) (-751)) (T -855)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 |#3|) $) 121 T ELT)) (-3069 (((-1076 $) $ |#3|) 136 T ELT) (((-1076 |#1|) $) 135 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 98 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 99 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 101 (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) 123 T ELT) (((-689) $ (-580 |#3|)) 122 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 111 (|has| |#1| (-816)) ELT)) (-3758 (($ $) 109 (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) 108 (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 114 (|has| |#1| (-816)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-345 (-480)) #2#) $) 176 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #2#) $) 174 (|has| |#1| (-945 (-480))) ELT) (((-3 |#3| #2#) $) 151 T ELT)) (-3141 ((|#1| $) 178 T ELT) (((-345 (-480)) $) 177 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) 175 (|has| |#1| (-945 (-480))) ELT) ((|#3| $) 152 T ELT)) (-3739 (($ $ $ |#3|) 119 (|has| |#1| (-144)) ELT)) (-3942 (($ $) 169 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 147 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 146 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 145 T ELT) (((-627 |#1|) (-627 $)) 144 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3486 (($ $) 191 (|has| |#1| (-387)) ELT) (($ $ |#3|) 116 (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) 120 T ELT)) (-3706 (((-83) $) 107 (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| |#2| $) 187 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 95 (-12 (|has| |#3| (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 94 (-12 (|has| |#3| (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2406 (((-689) $) 184 T ELT)) (-3070 (($ (-1076 |#1|) |#3|) 128 T ELT) (($ (-1076 $) |#3|) 127 T ELT)) (-2807 (((-580 $) $) 137 T ELT)) (-3920 (((-83) $) 167 T ELT)) (-2879 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-689)) 130 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 129 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#3|) 131 T ELT)) (-2806 ((|#2| $) 185 T ELT) (((-689) $ |#3|) 133 T ELT) (((-580 (-689)) $ (-580 |#3|)) 132 T ELT)) (-1614 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3068 (((-3 |#3| "failed") $) 134 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 149 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 148 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 143 T ELT) (((-627 |#1|) (-1170 $)) 142 T ELT)) (-2880 (($ $) 164 T ELT)) (-3159 ((|#1| $) 163 T ELT)) (-1880 (($ (-580 $)) 105 (|has| |#1| (-387)) ELT) (($ $ $) 104 (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2809 (((-3 (-580 $) "failed") $) 125 T ELT)) (-2808 (((-3 (-580 $) "failed") $) 126 T ELT)) (-2810 (((-3 (-2 (|:| |var| |#3|) (|:| -2389 (-689))) "failed") $) 124 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 181 T ELT)) (-1785 ((|#1| $) 182 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 106 (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) 103 (|has| |#1| (-387)) ELT) (($ $ $) 102 (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 113 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 112 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 110 (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) 160 T ELT) (($ $ (-246 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-580 $) (-580 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-580 |#3|) (-580 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-580 |#3|) (-580 $)) 153 T ELT)) (-3740 (($ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#3|) (-580 (-689))) 50 T ELT) (($ $ |#3| (-689)) 49 T ELT) (($ $ (-580 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3931 ((|#2| $) 165 T ELT) (((-689) $ |#3|) 141 T ELT) (((-580 (-689)) $ (-580 |#3|)) 140 T ELT)) (-3955 (((-795 (-325)) $) 93 (-12 (|has| |#3| (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) 92 (-12 (|has| |#3| (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) 91 (-12 (|has| |#3| (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) 190 (|has| |#1| (-387)) ELT) (($ $ |#3|) 117 (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 115 (-2548 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ $) 96 (|has| |#1| (-491)) ELT) (($ (-345 (-480))) 89 (OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ELT)) (-3800 (((-580 |#1|) $) 183 T ELT)) (-3660 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-689)) 139 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 138 T ELT)) (-2688 (((-629 $) $) 90 (OR (-2548 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1612 (($ $ $ (-689)) 188 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 100 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 |#3|) (-580 (-689))) 53 T ELT) (($ $ |#3| (-689)) 52 T ELT) (($ $ (-580 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 171 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 173 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 172 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-856 |#1| |#2| |#3|) (-111) (-956) (-712) (-751)) (T -856)) -((-3486 (*1 *1 *1) (-12 (-4 *1 (-856 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3931 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-689)))) (-3931 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 (-689))))) (-3660 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-856 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *2 (-751)))) (-3660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 (-689))) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-856 *3 *4 *5)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-1076 *1)) (-4 *1 (-856 *4 *5 *3)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-1076 *3)))) (-3068 (*1 *2 *1) (|partial| -12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-2806 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-689)))) (-2806 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 (-689))))) (-3746 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-856 *4 *5 *3)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-856 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *2 (-751)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 (-689))) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)))) (-3070 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 *4)) (-4 *4 (-956)) (-4 *1 (-856 *4 *5 *3)) (-4 *5 (-712)) (-4 *3 (-751)))) (-3070 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-856 *3 *4 *5)))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-856 *3 *4 *5)))) (-2810 (*1 *2 *1) (|partial| -12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| |var| *5) (|:| -2389 (-689)))))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-689)))) (-2805 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-689)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *5)))) (-2804 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-856 *3 *4 *5)))) (-3739 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *3 (-144)))) (-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *3 (-144)))) (-2803 (*1 *1 *1 *2) (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *3 (-387)))) (-3486 (*1 *1 *1 *2) (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *3 (-387)))) (-3758 (*1 *1 *1) (-12 (-4 *1 (-856 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-387)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-343 *1)) (-4 *1 (-856 *3 *4 *5))))) -(-13 (-804 |t#3|) (-274 |t#1| |t#2|) (-257 $) (-449 |t#3| |t#1|) (-449 |t#3| $) (-945 |t#3|) (-324 |t#1|) (-10 -8 (-15 -3931 ((-689) $ |t#3|)) (-15 -3931 ((-580 (-689)) $ (-580 |t#3|))) (-15 -3660 ($ $ |t#3| (-689))) (-15 -3660 ($ $ (-580 |t#3|) (-580 (-689)))) (-15 -2807 ((-580 $) $)) (-15 -3069 ((-1076 $) $ |t#3|)) (-15 -3069 ((-1076 |t#1|) $)) (-15 -3068 ((-3 |t#3| "failed") $)) (-15 -2806 ((-689) $ |t#3|)) (-15 -2806 ((-580 (-689)) $ (-580 |t#3|))) (-15 -3746 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |t#3|)) (-15 -2879 ($ $ |t#3| (-689))) (-15 -2879 ($ $ (-580 |t#3|) (-580 (-689)))) (-15 -3070 ($ (-1076 |t#1|) |t#3|)) (-15 -3070 ($ (-1076 $) |t#3|)) (-15 -2808 ((-3 (-580 $) "failed") $)) (-15 -2809 ((-3 (-580 $) "failed") $)) (-15 -2810 ((-3 (-2 (|:| |var| |t#3|) (|:| -2389 (-689))) "failed") $)) (-15 -2805 ((-689) $)) (-15 -2805 ((-689) $ (-580 |t#3|))) (-15 -3067 ((-580 |t#3|) $)) (-15 -2804 ((-580 $) $)) (IF (|has| |t#1| (-550 (-469))) (IF (|has| |t#3| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-550 (-795 (-480)))) (IF (|has| |t#3| (-550 (-795 (-480)))) (-6 (-550 (-795 (-480)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-550 (-795 (-325)))) (IF (|has| |t#3| (-550 (-795 (-325)))) (-6 (-550 (-795 (-325)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-791 (-480))) (IF (|has| |t#3| (-791 (-480))) (-6 (-791 (-480))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-791 (-325))) (IF (|has| |t#3| (-791 (-325))) (-6 (-791 (-325))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3739 ($ $ $ |t#3|)) (-15 -3740 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-387)) (PROGN (-6 (-387)) (-15 -2803 ($ $ |t#3|)) (-15 -3486 ($ $)) (-15 -3486 ($ $ |t#3|)) (-15 -3954 ((-343 $) $)) (-15 -3758 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3976)) (-6 -3976) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 |#3|) . T) ((-552 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-550 (-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#3| (-550 (-469)))) ((-550 (-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#3| (-550 (-795 (-325))))) ((-550 (-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#3| (-550 (-795 (-480))))) ((-243) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-257 $) . T) ((-274 |#1| |#2|) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-816)) (|has| |#1| (-387))) ((-449 |#3| |#1|) . T) ((-449 |#3| $) . T) ((-449 $ $) . T) ((-491) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-660) . T) ((-801 $ |#3|) . T) ((-804 |#3|) . T) ((-806 |#3|) . T) ((-791 (-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#3| (-791 (-325)))) ((-791 (-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#3| (-791 (-480)))) ((-816) |has| |#1| (-816)) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-945 |#3|) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) |has| |#1| (-816))) -((-3067 (((-580 |#2|) |#5|) 40 T ELT)) (-3069 (((-1076 |#5|) |#5| |#2| (-1076 |#5|)) 23 T ELT) (((-345 (-1076 |#5|)) |#5| |#2|) 16 T ELT)) (-3070 ((|#5| (-345 (-1076 |#5|)) |#2|) 30 T ELT)) (-3068 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2809 (((-3 (-580 |#5|) #1#) |#5|) 64 T ELT)) (-2811 (((-3 (-2 (|:| |val| |#5|) (|:| -2389 (-480))) #1#) |#5|) 53 T ELT)) (-2808 (((-3 (-580 |#5|) #1#) |#5|) 66 T ELT)) (-2810 (((-3 (-2 (|:| |var| |#2|) (|:| -2389 (-480))) #1#) |#5|) 56 T ELT))) -(((-857 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3067 ((-580 |#2|) |#5|)) (-15 -3068 ((-3 |#2| #1="failed") |#5|)) (-15 -3069 ((-345 (-1076 |#5|)) |#5| |#2|)) (-15 -3070 (|#5| (-345 (-1076 |#5|)) |#2|)) (-15 -3069 ((-1076 |#5|) |#5| |#2| (-1076 |#5|))) (-15 -2808 ((-3 (-580 |#5|) #1#) |#5|)) (-15 -2809 ((-3 (-580 |#5|) #1#) |#5|)) (-15 -2810 ((-3 (-2 (|:| |var| |#2|) (|:| -2389 (-480))) #1#) |#5|)) (-15 -2811 ((-3 (-2 (|:| |val| |#5|) (|:| -2389 (-480))) #1#) |#5|))) (-712) (-751) (-956) (-856 |#3| |#1| |#2|) (-13 (-309) (-10 -8 (-15 -3929 ($ |#4|)) (-15 -2984 (|#4| $)) (-15 -2983 (|#4| $))))) (T -857)) -((-2811 (*1 *2 *3) (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2389 (-480)))) (-5 *1 (-857 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) (-2810 (*1 *2 *3) (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2389 (-480)))) (-5 *1 (-857 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) (-2809 (*1 *2 *3) (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-580 *3)) (-5 *1 (-857 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) (-2808 (*1 *2 *3) (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-580 *3)) (-5 *1 (-857 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) (-3069 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))) (-4 *7 (-856 *6 *5 *4)) (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) (-5 *1 (-857 *5 *4 *6 *7 *3)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-1076 *2))) (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) (-4 *2 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))) (-5 *1 (-857 *5 *4 *6 *7 *2)) (-4 *7 (-856 *6 *5 *4)))) (-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *5 *4)) (-5 *2 (-345 (-1076 *3))) (-5 *1 (-857 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) (-3068 (*1 *2 *3) (|partial| -12 (-4 *4 (-712)) (-4 *5 (-956)) (-4 *6 (-856 *5 *4 *2)) (-4 *2 (-751)) (-5 *1 (-857 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *6)) (-15 -2984 (*6 $)) (-15 -2983 (*6 $))))))) (-3067 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-580 *5)) (-5 *1 (-857 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) -((-3941 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3941 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-712) (-751) (-956) (-856 |#3| |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -3822 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-689)))))) (T -858)) -((-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-751)) (-4 *8 (-956)) (-4 *6 (-712)) (-4 *2 (-13 (-1007) (-10 -8 (-15 -3822 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-689)))))) (-5 *1 (-858 *6 *7 *8 *5 *2)) (-4 *5 (-856 *8 *6 *7))))) -((-2812 (((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) |#3| (-689)) 48 T ELT)) (-2813 (((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) (-345 (-480)) (-689)) 43 T ELT)) (-2815 (((-2 (|:| -2389 (-689)) (|:| -3937 |#4|) (|:| |radicand| (-580 |#4|))) |#4| (-689)) 64 T ELT)) (-2814 (((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) |#5| (-689)) 73 (|has| |#3| (-387)) ELT))) -(((-859 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2812 ((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) |#3| (-689))) (-15 -2813 ((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) (-345 (-480)) (-689))) (IF (|has| |#3| (-387)) (-15 -2814 ((-2 (|:| -2389 (-689)) (|:| -3937 |#5|) (|:| |radicand| |#5|)) |#5| (-689))) |%noBranch|) (-15 -2815 ((-2 (|:| -2389 (-689)) (|:| -3937 |#4|) (|:| |radicand| (-580 |#4|))) |#4| (-689)))) (-712) (-751) (-491) (-856 |#3| |#1| |#2|) (-13 (-309) (-10 -8 (-15 -3929 ($ |#4|)) (-15 -2984 (|#4| $)) (-15 -2983 (|#4| $))))) (T -859)) -((-2815 (*1 *2 *3 *4) (-12 (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) (-4 *3 (-856 *7 *5 *6)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| (-580 *3)))) (-5 *1 (-859 *5 *6 *7 *3 *8)) (-5 *4 (-689)) (-4 *8 (-13 (-309) (-10 -8 (-15 -3929 ($ *3)) (-15 -2984 (*3 $)) (-15 -2983 (*3 $))))))) (-2814 (*1 *2 *3 *4) (-12 (-4 *7 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) (-4 *8 (-856 *7 *5 *6)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| *3))) (-5 *1 (-859 *5 *6 *7 *8 *3)) (-5 *4 (-689)) (-4 *3 (-13 (-309) (-10 -8 (-15 -3929 ($ *8)) (-15 -2984 (*8 $)) (-15 -2983 (*8 $))))))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-480))) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) (-4 *8 (-856 *7 *5 *6)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *9) (|:| |radicand| *9))) (-5 *1 (-859 *5 *6 *7 *8 *9)) (-5 *4 (-689)) (-4 *9 (-13 (-309) (-10 -8 (-15 -3929 ($ *8)) (-15 -2984 (*8 $)) (-15 -2983 (*8 $))))))) (-2812 (*1 *2 *3 *4) (-12 (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-491)) (-4 *7 (-856 *3 *5 *6)) (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *8) (|:| |radicand| *8))) (-5 *1 (-859 *5 *6 *3 *7 *8)) (-5 *4 (-689)) (-4 *8 (-13 (-309) (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2816 (($ (-1025)) 8 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 15 T ELT) (((-1025) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 11 T ELT))) -(((-860) (-13 (-1007) (-549 (-1025)) (-10 -8 (-15 -2816 ($ (-1025)))))) (T -860)) -((-2816 (*1 *1 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-860))))) -((-2882 (((-995 (-177)) $) 8 T ELT)) (-2883 (((-995 (-177)) $) 9 T ELT)) (-2884 (((-580 (-580 (-849 (-177)))) $) 10 T ELT)) (-3929 (((-767) $) 6 T ELT))) -(((-861) (-111)) (T -861)) -((-2884 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-580 (-580 (-849 (-177))))))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-995 (-177))))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-995 (-177)))))) -(-13 (-549 (-767)) (-10 -8 (-15 -2884 ((-580 (-580 (-849 (-177)))) $)) (-15 -2883 ((-995 (-177)) $)) (-15 -2882 ((-995 (-177)) $)))) -(((-549 (-767)) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 80 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 81 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) 32 T ELT)) (-3450 (((-3 $ #1#) $) 43 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-1613 (($ $ |#1| |#2| $) 64 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) 18 T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| |#2|) NIL T ELT)) (-2806 ((|#2| $) 25 T ELT)) (-1614 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2880 (($ $) 29 T ELT)) (-3159 ((|#1| $) 27 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) 52 T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-3721 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-102)) (|has| |#1| (-491))) ELT)) (-3449 (((-3 $ #1#) $ $) 92 (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-491)) ELT)) (-3931 ((|#2| $) 23 T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) 47 T ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ |#1|) 42 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ |#2|) 38 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 15 T CONST)) (-1612 (($ $ $ (-689)) 76 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) 86 (|has| |#1| (-491)) ELT)) (-2646 (($) 28 T CONST)) (-2652 (($) 12 T CONST)) (-3042 (((-83) $ $) 85 T ELT)) (-3932 (($ $ |#1|) 93 (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) 71 T ELT) (($ $ (-689)) 69 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-862 |#1| |#2|) (-13 (-274 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-491)) (IF (|has| |#2| (-102)) (-15 -3721 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|))) (-956) (-711)) (T -862)) -((-3721 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-862 *3 *2)) (-4 *2 (-102)) (-4 *3 (-491)) (-4 *3 (-956)) (-4 *2 (-711))))) -((-2817 (((-3 (-627 |#1|) "failed") |#2| (-825)) 18 T ELT))) -(((-863 |#1| |#2|) (-10 -7 (-15 -2817 ((-3 (-627 |#1|) "failed") |#2| (-825)))) (-491) (-597 |#1|)) (T -863)) -((-2817 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-825)) (-4 *5 (-491)) (-5 *2 (-627 *5)) (-5 *1 (-863 *5 *3)) (-4 *3 (-597 *5))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 20 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 19 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 17 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) |#1|) 16 T ELT)) (-2188 (((-480) $) 11 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) 21 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) 13 T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) 18 T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 22 T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 15 T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3940 (((-689) $) 8 (|has| $ (-6 -3978)) ELT))) -(((-864 |#1|) (-19 |#1|) (-1120)) (T -864)) -NIL -((-3824 (((-864 |#2|) (-1 |#2| |#1| |#2|) (-864 |#1|) |#2|) 16 T ELT)) (-3825 ((|#2| (-1 |#2| |#1| |#2|) (-864 |#1|) |#2|) 18 T ELT)) (-3941 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 13 T ELT))) -(((-865 |#1| |#2|) (-10 -7 (-15 -3824 ((-864 |#2|) (-1 |#2| |#1| |#2|) (-864 |#1|) |#2|)) (-15 -3825 (|#2| (-1 |#2| |#1| |#2|) (-864 |#1|) |#2|)) (-15 -3941 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1120) (-1120)) (T -865)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-864 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-865 *5 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-864 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-864 *5)) (-5 *1 (-865 *6 *5))))) -((-2818 (($ $ (-998 $)) 7 T ELT) (($ $ (-1081)) 6 T ELT))) -(((-866) (-111)) (T -866)) -((-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-866)))) (-2818 (*1 *1 *1 *2) (-12 (-4 *1 (-866)) (-5 *2 (-1081))))) -(-13 (-10 -8 (-15 -2818 ($ $ (-1081))) (-15 -2818 ($ $ (-998 $))))) -((-2819 (((-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 |#1|))) (|:| |prim| (-1076 |#1|))) (-580 (-852 |#1|)) (-580 (-1081)) (-1081)) 26 T ELT) (((-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 |#1|))) (|:| |prim| (-1076 |#1|))) (-580 (-852 |#1|)) (-580 (-1081))) 27 T ELT) (((-2 (|:| |coef1| (-480)) (|:| |coef2| (-480)) (|:| |prim| (-1076 |#1|))) (-852 |#1|) (-1081) (-852 |#1|) (-1081)) 49 T ELT))) -(((-867 |#1|) (-10 -7 (-15 -2819 ((-2 (|:| |coef1| (-480)) (|:| |coef2| (-480)) (|:| |prim| (-1076 |#1|))) (-852 |#1|) (-1081) (-852 |#1|) (-1081))) (-15 -2819 ((-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 |#1|))) (|:| |prim| (-1076 |#1|))) (-580 (-852 |#1|)) (-580 (-1081)))) (-15 -2819 ((-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 |#1|))) (|:| |prim| (-1076 |#1|))) (-580 (-852 |#1|)) (-580 (-1081)) (-1081)))) (-13 (-309) (-118))) (T -867)) -((-2819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) (-5 *5 (-1081)) (-4 *6 (-13 (-309) (-118))) (-5 *2 (-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 *6))) (|:| |prim| (-1076 *6)))) (-5 *1 (-867 *6)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) (-4 *5 (-13 (-309) (-118))) (-5 *2 (-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 *5))) (|:| |prim| (-1076 *5)))) (-5 *1 (-867 *5)))) (-2819 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-852 *5)) (-5 *4 (-1081)) (-4 *5 (-13 (-309) (-118))) (-5 *2 (-2 (|:| |coef1| (-480)) (|:| |coef2| (-480)) (|:| |prim| (-1076 *5)))) (-5 *1 (-867 *5))))) -((-2822 (((-580 |#1|) |#1| |#1|) 47 T ELT)) (-3706 (((-83) |#1|) 44 T ELT)) (-2821 ((|#1| |#1|) 80 T ELT)) (-2820 ((|#1| |#1|) 79 T ELT))) -(((-868 |#1|) (-10 -7 (-15 -3706 ((-83) |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2822 ((-580 |#1|) |#1| |#1|))) (-479)) (T -868)) -((-2822 (*1 *2 *3 *3) (-12 (-5 *2 (-580 *3)) (-5 *1 (-868 *3)) (-4 *3 (-479)))) (-2821 (*1 *2 *2) (-12 (-5 *1 (-868 *2)) (-4 *2 (-479)))) (-2820 (*1 *2 *2) (-12 (-5 *1 (-868 *2)) (-4 *2 (-479)))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-868 *3)) (-4 *3 (-479))))) -((-2823 (((-1176) (-767)) 9 T ELT))) -(((-869) (-10 -7 (-15 -2823 ((-1176) (-767))))) (T -869)) -((-2823 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-869))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) ELT)) (-2469 (($ $ $) 65 (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) ELT)) (-1301 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) ELT)) (-3121 (((-689)) 36 (-12 (|has| |#1| (-315)) (|has| |#2| (-315))) ELT)) (-2824 ((|#2| $) 22 T ELT)) (-2825 ((|#1| $) 21 T ELT)) (-3707 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) CONST)) (-3450 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) ELT)) (-2980 (($) NIL (-12 (|has| |#1| (-315)) (|has| |#2| (-315))) ELT)) (-3171 (((-83) $) NIL (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) ELT)) (-2398 (((-83) $) NIL (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) ELT)) (-2517 (($ $ $) NIL (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-2843 (($ $ $) NIL (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-2826 (($ |#1| |#2|) 20 T ELT)) (-1998 (((-825) $) NIL (-12 (|has| |#1| (-315)) (|has| |#2| (-315))) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 39 (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) ELT)) (-2388 (($ (-825)) NIL (-12 (|has| |#1| (-315)) (|has| |#2| (-315))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2995 (($ $ $) NIL (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) ELT)) (-2421 (($ $ $) NIL (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) ELT)) (-3929 (((-767) $) 14 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) CONST)) (-2652 (($) 25 (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) CONST)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-2553 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-3042 (((-83) $ $) 19 T ELT)) (-2670 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-2671 (((-83) $ $) 69 (OR (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-751)) (|has| |#2| (-751)))) ELT)) (-3932 (($ $ $) NIL (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) ELT)) (-3820 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3822 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) ELT)) (** (($ $ (-480)) NIL (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) ELT) (($ $ (-689)) 32 (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) ELT) (($ $ (-825)) NIL (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) ELT)) (* (($ (-480) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-689) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) ELT) (($ (-825) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-408)) (|has| |#2| (-408))) (-12 (|has| |#1| (-660)) (|has| |#2| (-660)))) ELT))) -(((-870 |#1| |#2|) (-13 (-1007) (-10 -8 (IF (|has| |#1| (-315)) (IF (|has| |#2| (-315)) (-6 (-315)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-660)) (IF (|has| |#2| (-660)) (-6 (-660)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-102)) (IF (|has| |#2| (-102)) (-6 (-102)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-408)) (IF (|has| |#2| (-408)) (-6 (-408)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-712)) (IF (|has| |#2| (-712)) (-6 (-712)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-751)) (IF (|has| |#2| (-751)) (-6 (-751)) |%noBranch|) |%noBranch|) (-15 -2826 ($ |#1| |#2|)) (-15 -2825 (|#1| $)) (-15 -2824 (|#2| $)))) (-1007) (-1007)) (T -870)) -((-2826 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-2825 (*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1007)))) (-2824 (*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1007))))) -((-3385 (((-1009) $) 13 T ELT)) (-2827 (($ (-441) (-1009)) 15 T ELT)) (-3525 (((-441) $) 11 T ELT)) (-3929 (((-767) $) 25 T ELT))) -(((-871) (-13 (-549 (-767)) (-10 -8 (-15 -3525 ((-441) $)) (-15 -3385 ((-1009) $)) (-15 -2827 ($ (-441) (-1009)))))) (T -871)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-871)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-871)))) (-2827 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1009)) (-5 *1 (-871))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 29 T ELT)) (-2841 (($) 17 T CONST)) (-2547 (($ $ $) NIL T ELT)) (-2546 (($ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2832 (((-629 (-777 $ $)) $) 62 T ELT)) (-2834 (((-629 $) $) 52 T ELT)) (-2831 (((-629 (-777 $ $)) $) 63 T ELT)) (-2830 (((-629 (-777 $ $)) $) 64 T ELT)) (-2835 (((-629 |#1|) $) 43 T ELT)) (-2833 (((-629 (-777 $ $)) $) 61 T ELT)) (-2839 (($ $ $) 38 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2840 (($) 16 T CONST)) (-2838 (($ $ $) 39 T ELT)) (-2828 (($ $ $) 36 T ELT)) (-2829 (($ $ $) 34 T ELT)) (-3929 (((-767) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2299 (($ $ $) 37 T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) 35 T ELT))) -(((-872 |#1|) (-13 (-875) (-552 |#1|) (-10 -8 (-15 -2835 ((-629 |#1|) $)) (-15 -2834 ((-629 $) $)) (-15 -2833 ((-629 (-777 $ $)) $)) (-15 -2832 ((-629 (-777 $ $)) $)) (-15 -2831 ((-629 (-777 $ $)) $)) (-15 -2830 ((-629 (-777 $ $)) $)) (-15 -2829 ($ $ $)) (-15 -2828 ($ $ $)))) (-1007)) (T -872)) -((-2835 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-629 (-872 *3))) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) (-4 *3 (-1007)))) (-2829 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1007)))) (-2828 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1007))))) -((-3632 (((-872 |#1|) (-872 |#1|)) 46 T ELT)) (-2837 (((-872 |#1|) (-872 |#1|)) 22 T ELT)) (-2836 (((-1003 |#1|) (-872 |#1|)) 41 T ELT))) -(((-873 |#1|) (-13 (-1120) (-10 -7 (-15 -2837 ((-872 |#1|) (-872 |#1|))) (-15 -2836 ((-1003 |#1|) (-872 |#1|))) (-15 -3632 ((-872 |#1|) (-872 |#1|))))) (-1007)) (T -873)) -((-2837 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-1007)) (-5 *1 (-873 *3)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-872 *4)) (-4 *4 (-1007)) (-5 *2 (-1003 *4)) (-5 *1 (-873 *4)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-1007)) (-5 *1 (-873 *3))))) -((-3941 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 29 T ELT))) -(((-874 |#1| |#2|) (-13 (-1120) (-10 -7 (-15 -3941 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))) (-1007) (-1007)) (T -874)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-872 *6)) (-5 *1 (-874 *5 *6))))) -((-2554 (((-83) $ $) 19 T ELT)) (-2301 (($ $) 8 T ELT)) (-2841 (($) 17 T CONST)) (-2547 (($ $ $) 9 T ELT)) (-2546 (($ $) 11 T ELT)) (-3227 (((-1064) $) 23 T ELT)) (-2839 (($ $ $) 15 T ELT)) (-3228 (((-1025) $) 22 T ELT)) (-2840 (($) 16 T CONST)) (-2838 (($ $ $) 14 T ELT)) (-3929 (((-767) $) 21 T ELT)) (-1255 (((-83) $ $) 20 T ELT)) (-2548 (($ $ $) 10 T ELT)) (-2299 (($ $ $) 6 T ELT)) (-3042 (((-83) $ $) 18 T ELT)) (-2300 (($ $ $) 7 T ELT))) -(((-875) (-111)) (T -875)) -((-2841 (*1 *1) (-4 *1 (-875))) (-2840 (*1 *1) (-4 *1 (-875))) (-2839 (*1 *1 *1 *1) (-4 *1 (-875))) (-2838 (*1 *1 *1 *1) (-4 *1 (-875)))) -(-13 (-82) (-1007) (-10 -8 (-15 -2841 ($) -3935) (-15 -2840 ($) -3935) (-15 -2839 ($ $ $)) (-15 -2838 ($ $ $)))) -(((-72) . T) ((-82) . T) ((-549 (-767)) . T) ((-13) . T) ((-601) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3707 (($) 7 T CONST)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2842 (($ $ $) 47 T ELT)) (-3501 (($ $ $) 48 T ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2843 ((|#1| $) 49 T ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-876 |#1|) (-111) (-751)) (T -876)) -((-2843 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751)))) (-3501 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3978) (-15 -2843 (|t#1| $)) (-15 -3501 ($ $ $)) (-15 -2842 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2855 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3129 |#2|)) |#2| |#2|) 105 T ELT)) (-3738 ((|#2| |#2| |#2|) 103 T ELT)) (-2856 (((-2 (|:| |coef2| |#2|) (|:| -3129 |#2|)) |#2| |#2|) 107 T ELT)) (-2857 (((-2 (|:| |coef1| |#2|) (|:| -3129 |#2|)) |#2| |#2|) 109 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 132 (|has| |#1| (-387)) ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|) 56 T ELT)) (-2845 (((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|) 80 T ELT)) (-2846 (((-2 (|:| |coef1| |#2|) (|:| -3739 |#1|)) |#2| |#2|) 82 T ELT)) (-2854 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2849 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689)) 89 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2|) 121 T ELT)) (-2852 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689)) 92 T ELT)) (-2861 (((-580 (-689)) |#2| |#2|) 102 T ELT)) (-2869 ((|#1| |#2| |#2|) 50 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 130 (|has| |#1| (-387)) ELT)) (-2862 ((|#1| |#2| |#2|) 128 (|has| |#1| (-387)) ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|) 54 T ELT)) (-2844 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|) 79 T ELT)) (-3739 ((|#1| |#2| |#2|) 76 T ELT)) (-3735 (((-2 (|:| -3937 |#1|) (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2|) 41 T ELT)) (-2868 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2853 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3175 ((|#2| |#2| |#2|) 93 T ELT)) (-2848 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689)) 87 T ELT)) (-2847 ((|#2| |#2| |#2| (-689)) 85 T ELT)) (-3129 ((|#2| |#2| |#2|) 136 (|has| |#1| (-387)) ELT)) (-3449 (((-1170 |#2|) (-1170 |#2|) |#1|) 22 T ELT)) (-2865 (((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2|) 46 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2|) 119 T ELT)) (-3740 ((|#1| |#2|) 116 T ELT)) (-2851 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689)) 91 T ELT)) (-2850 ((|#2| |#2| |#2| (-689)) 90 T ELT)) (-2860 (((-580 |#2|) |#2| |#2|) 99 T ELT)) (-2867 ((|#2| |#2| |#1| |#1| (-689)) 62 T ELT)) (-2866 ((|#1| |#1| |#1| (-689)) 61 T ELT)) (* (((-1170 |#2|) |#1| (-1170 |#2|)) 17 T ELT))) -(((-877 |#1| |#2|) (-10 -7 (-15 -3739 (|#1| |#2| |#2|)) (-15 -2844 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|)) (-15 -2846 ((-2 (|:| |coef1| |#2|) (|:| -3739 |#1|)) |#2| |#2|)) (-15 -2847 (|#2| |#2| |#2| (-689))) (-15 -2848 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689))) (-15 -2849 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689))) (-15 -2850 (|#2| |#2| |#2| (-689))) (-15 -2851 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689))) (-15 -2852 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-689))) (-15 -3175 (|#2| |#2| |#2|)) (-15 -2853 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2854 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -2855 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3129 |#2|)) |#2| |#2|)) (-15 -2856 ((-2 (|:| |coef2| |#2|) (|:| -3129 |#2|)) |#2| |#2|)) (-15 -2857 ((-2 (|:| |coef1| |#2|) (|:| -3129 |#2|)) |#2| |#2|)) (-15 -3740 (|#1| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2|)) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2|)) (-15 -2860 ((-580 |#2|) |#2| |#2|)) (-15 -2861 ((-580 (-689)) |#2| |#2|)) (IF (|has| |#1| (-387)) (PROGN (-15 -2862 (|#1| |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -3129 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1170 |#2|) |#1| (-1170 |#2|))) (-15 -3449 ((-1170 |#2|) (-1170 |#2|) |#1|)) (-15 -3735 ((-2 (|:| -3937 |#1|) (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2|)) (-15 -2865 ((-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) |#2| |#2|)) (-15 -2866 (|#1| |#1| |#1| (-689))) (-15 -2867 (|#2| |#2| |#1| |#1| (-689))) (-15 -2868 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2869 (|#1| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2| |#2|))) (-491) (-1146 |#1|)) (T -877)) -((-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2)))) (-2868 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) (-2867 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-689)) (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) (-2866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *2 (-491)) (-5 *1 (-877 *2 *4)) (-4 *4 (-1146 *2)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3735 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -3937 *4) (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3449 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-491)) (-5 *1 (-877 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-491)) (-5 *1 (-877 *3 *4)))) (-3129 (*1 *2 *2 *2) (-12 (-4 *3 (-387)) (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *2 (-491)) (-4 *2 (-387)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 (-689))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2)))) (-2857 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3129 *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3129 *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3129 *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3738 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2853 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3175 (*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) (-2852 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5)))) (-2851 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5)))) (-2850 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-491)) (-5 *1 (-877 *4 *2)) (-4 *2 (-1146 *4)))) (-2849 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5)))) (-2848 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5)))) (-2847 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-491)) (-5 *1 (-877 *4 *2)) (-4 *2 (-1146 *4)))) (-2846 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3739 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2845 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-2844 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) (-3739 (*1 *2 *3 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3302 (((-1121) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 11 T ELT)) (-3929 (((-767) $) 21 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-878) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $)) (-15 -3302 ((-1121) $))))) (T -878)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-878)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-878))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 40 T ELT)) (-1301 (((-3 $ "failed") $ $) 54 T ELT)) (-3707 (($) NIL T CONST)) (-2873 (((-580 (-777 (-825) (-825))) $) 64 T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2872 (((-825) $) 91 T ELT)) (-2875 (((-580 (-825)) $) 17 T ELT)) (-2874 (((-1060 $) (-689)) 39 T ELT)) (-2876 (($ (-580 (-825))) 16 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2995 (($ $) 67 T ELT)) (-3929 (((-767) $) 87 T ELT) (((-580 (-825)) $) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 10 T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 44 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 42 T ELT)) (-3822 (($ $ $) 46 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) 49 T ELT)) (-3940 (((-689) $) 22 T ELT))) -(((-879) (-13 (-716) (-549 (-580 (-825))) (-10 -8 (-15 -2876 ($ (-580 (-825)))) (-15 -2875 ((-580 (-825)) $)) (-15 -3940 ((-689) $)) (-15 -2874 ((-1060 $) (-689))) (-15 -2873 ((-580 (-777 (-825) (-825))) $)) (-15 -2872 ((-825) $)) (-15 -2995 ($ $))))) (T -879)) -((-2876 (*1 *1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-879)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-879)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-879)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1060 (-879))) (-5 *1 (-879)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-580 (-777 (-825) (-825)))) (-5 *1 (-879)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-879)))) (-2995 (*1 *1 *1) (-5 *1 (-879)))) -((-3932 (($ $ |#2|) 31 T ELT)) (-3820 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-345 (-480)) $) 27 T ELT) (($ $ (-345 (-480))) 29 T ELT))) -(((-880 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-345 (-480)))) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 -3932 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 * (|#1| (-825) |#1|))) (-881 |#2| |#3| |#4|) (-956) (-711) (-751)) (T -880)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 |#3|) $) 93 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2878 (((-83) $) 92 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| |#2|) 79 T ELT) (($ $ |#3| |#2|) 95 T ELT) (($ $ (-580 |#3|) (-580 |#2|)) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-3931 ((|#2| $) 82 T ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT)) (-3660 ((|#1| $ |#2|) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-881 |#1| |#2| |#3|) (-111) (-956) (-711) (-751)) (T -881)) -((-3159 (*1 *2 *1) (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *3 (-711)) (-4 *4 (-751)) (-4 *2 (-956)))) (-2880 (*1 *1 *1) (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *4 (-751)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-881 *3 *2 *4)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *2 (-711)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-881 *4 *3 *2)) (-4 *4 (-956)) (-4 *3 (-711)) (-4 *2 (-751)))) (-2879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 *5)) (-4 *1 (-881 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-711)) (-4 *6 (-751)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-881 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-711)) (-4 *5 (-751)) (-5 *2 (-580 *5)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-881 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-711)) (-4 *5 (-751)) (-5 *2 (-83)))) (-2877 (*1 *1 *1) (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *4 (-751))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2879 ($ $ |t#3| |t#2|)) (-15 -2879 ($ $ (-580 |t#3|) (-580 |t#2|))) (-15 -2880 ($ $)) (-15 -3159 (|t#1| $)) (-15 -3931 (|t#2| $)) (-15 -3067 ((-580 |t#3|) $)) (-15 -2878 ((-83) $)) (-15 -2877 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-243) |has| |#1| (-491)) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2881 (((-995 (-177)) $) 8 T ELT)) (-2882 (((-995 (-177)) $) 9 T ELT)) (-2883 (((-995 (-177)) $) 10 T ELT)) (-2884 (((-580 (-580 (-849 (-177)))) $) 11 T ELT)) (-3929 (((-767) $) 6 T ELT))) -(((-882) (-111)) (T -882)) -((-2884 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-580 (-580 (-849 (-177))))))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177))))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177)))))) -(-13 (-549 (-767)) (-10 -8 (-15 -2884 ((-580 (-580 (-849 (-177)))) $)) (-15 -2883 ((-995 (-177)) $)) (-15 -2882 ((-995 (-177)) $)) (-15 -2881 ((-995 (-177)) $)))) -(((-549 (-767)) . T)) -((-3067 (((-580 |#4|) $) 23 T ELT)) (-2894 (((-83) $) 55 T ELT)) (-2885 (((-83) $) 54 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2890 (((-83) $) 56 T ELT)) (-2892 (((-83) $ $) 62 T ELT)) (-2891 (((-83) $ $) 65 T ELT)) (-2893 (((-83) $) 60 T ELT)) (-2886 (((-580 |#5|) (-580 |#5|) $) 98 T ELT)) (-2887 (((-580 |#5|) (-580 |#5|) $) 95 T ELT)) (-2888 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2900 (((-580 |#4|) $) 27 T ELT)) (-2899 (((-83) |#4| $) 34 T ELT)) (-2889 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2896 (($ $ |#4|) 39 T ELT)) (-2898 (($ $ |#4|) 38 T ELT)) (-2897 (($ $ |#4|) 40 T ELT)) (-3042 (((-83) $ $) 46 T ELT))) -(((-883 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2885 ((-83) |#1|)) (-15 -2886 ((-580 |#5|) (-580 |#5|) |#1|)) (-15 -2887 ((-580 |#5|) (-580 |#5|) |#1|)) (-15 -2888 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2889 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2890 ((-83) |#1|)) (-15 -2891 ((-83) |#1| |#1|)) (-15 -2892 ((-83) |#1| |#1|)) (-15 -2893 ((-83) |#1|)) (-15 -2894 ((-83) |#1|)) (-15 -2895 ((-2 (|:| |under| |#1|) (|:| -3115 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2897 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -2899 ((-83) |#4| |#1|)) (-15 -2900 ((-580 |#4|) |#1|)) (-15 -3067 ((-580 |#4|) |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-884 |#2| |#3| |#4| |#5|) (-956) (-712) (-751) (-971 |#2| |#3| |#4|)) (T -883)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-884 |#1| |#2| |#3| |#4|) (-111) (-956) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -884)) -((-3142 (*1 *1 *2) (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *1 (-884 *3 *4 *5 *6)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *1 (-884 *3 *4 *5 *6)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-971 *3 *4 *2)) (-4 *2 (-751)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5)))) (-2899 (*1 *2 *3 *1) (-12 (-4 *1 (-884 *4 *5 *3 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-4 *6 (-971 *4 *5 *3)) (-5 *2 (-83)))) (-2898 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *5 (-971 *3 *4 *2)))) (-2897 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *5 (-971 *3 *4 *2)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) (-4 *5 (-971 *3 *4 *2)))) (-2895 (*1 *2 *1 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-4 *6 (-971 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3115 *1) (|:| |upper| *1))) (-4 *1 (-884 *4 *5 *3 *6)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83)))) (-2892 (*1 *2 *1 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83)))) (-2891 (*1 *2 *1 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83)))) (-2889 (*1 *2 *3 *1) (-12 (-4 *1 (-884 *4 *5 *6 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2888 (*1 *2 *3 *1) (-12 (-4 *1 (-884 *4 *5 *6 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2887 (*1 *2 *2 *1) (-12 (-5 *2 (-580 *6)) (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)))) (-2886 (*1 *2 *2 *1) (-12 (-5 *2 (-580 *6)) (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) -(-13 (-1007) (-122 |t#4|) (-549 (-580 |t#4|)) (-10 -8 (-6 -3978) (-15 -3142 ((-3 $ "failed") (-580 |t#4|))) (-15 -3141 ($ (-580 |t#4|))) (-15 -3165 (|t#3| $)) (-15 -3067 ((-580 |t#3|) $)) (-15 -2900 ((-580 |t#3|) $)) (-15 -2899 ((-83) |t#3| $)) (-15 -2898 ($ $ |t#3|)) (-15 -2897 ($ $ |t#3|)) (-15 -2896 ($ $ |t#3|)) (-15 -2895 ((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |t#3|)) (-15 -2894 ((-83) $)) (IF (|has| |t#1| (-491)) (PROGN (-15 -2893 ((-83) $)) (-15 -2892 ((-83) $ $)) (-15 -2891 ((-83) $ $)) (-15 -2890 ((-83) $)) (-15 -2889 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2888 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2887 ((-580 |t#4|) (-580 |t#4|) $)) (-15 -2886 ((-580 |t#4|) (-580 |t#4|) $)) (-15 -2885 ((-83) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2902 (((-580 |#4|) |#4| |#4|) 135 T ELT)) (-2925 (((-580 |#4|) (-580 |#4|) (-83)) 123 (|has| |#1| (-387)) ELT) (((-580 |#4|) (-580 |#4|)) 124 (|has| |#1| (-387)) ELT)) (-2912 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|)) 44 T ELT)) (-2911 (((-83) |#4|) 43 T ELT)) (-2924 (((-580 |#4|) |#4|) 120 (|has| |#1| (-387)) ELT)) (-2907 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-1 (-83) |#4|) (-580 |#4|)) 24 T ELT)) (-2908 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 (-1 (-83) |#4|)) (-580 |#4|)) 30 T ELT)) (-2909 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 (-1 (-83) |#4|)) (-580 |#4|)) 31 T ELT)) (-2920 (((-3 (-2 (|:| |bas| (-411 |#1| |#2| |#3| |#4|)) (|:| -3307 (-580 |#4|))) "failed") (-580 |#4|)) 90 T ELT)) (-2922 (((-580 |#4|) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2923 (((-580 |#4|) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2901 (((-580 |#4|) (-580 |#4|)) 126 T ELT)) (-2917 (((-580 |#4|) (-580 |#4|) (-580 |#4|) (-83)) 59 T ELT) (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 61 T ELT)) (-2918 ((|#4| |#4| (-580 |#4|)) 60 T ELT)) (-2926 (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 131 (|has| |#1| (-387)) ELT)) (-2928 (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 134 (|has| |#1| (-387)) ELT)) (-2927 (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 133 (|has| |#1| (-387)) ELT)) (-2903 (((-580 |#4|) (-580 |#4|) (-580 |#4|) (-1 (-580 |#4|) (-580 |#4|))) 105 T ELT) (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 107 T ELT) (((-580 |#4|) (-580 |#4|) |#4|) 139 T ELT) (((-580 |#4|) |#4| |#4|) 136 T ELT) (((-580 |#4|) (-580 |#4|)) 106 T ELT)) (-2931 (((-580 |#4|) (-580 |#4|) (-580 |#4|)) 117 (-12 (|has| |#1| (-118)) (|has| |#1| (-255))) ELT)) (-2910 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|)) 52 T ELT)) (-2906 (((-83) (-580 |#4|)) 79 T ELT)) (-2905 (((-83) (-580 |#4|) (-580 (-580 |#4|))) 67 T ELT)) (-2914 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|)) 37 T ELT)) (-2913 (((-83) |#4|) 36 T ELT)) (-2930 (((-580 |#4|) (-580 |#4|)) 116 (-12 (|has| |#1| (-118)) (|has| |#1| (-255))) ELT)) (-2929 (((-580 |#4|) (-580 |#4|)) 115 (-12 (|has| |#1| (-118)) (|has| |#1| (-255))) ELT)) (-2919 (((-580 |#4|) (-580 |#4|)) 83 T ELT)) (-2921 (((-580 |#4|) (-580 |#4|)) 97 T ELT)) (-2904 (((-83) (-580 |#4|) (-580 |#4|)) 65 T ELT)) (-2916 (((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|)) 50 T ELT)) (-2915 (((-83) |#4|) 45 T ELT))) -(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 ((-580 |#4|) (-580 |#4|))) (-15 -2903 ((-580 |#4|) |#4| |#4|)) (-15 -2901 ((-580 |#4|) (-580 |#4|))) (-15 -2902 ((-580 |#4|) |#4| |#4|)) (-15 -2903 ((-580 |#4|) (-580 |#4|) |#4|)) (-15 -2903 ((-580 |#4|) (-580 |#4|) (-580 |#4|))) (-15 -2903 ((-580 |#4|) (-580 |#4|) (-580 |#4|) (-1 (-580 |#4|) (-580 |#4|)))) (-15 -2904 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -2905 ((-83) (-580 |#4|) (-580 (-580 |#4|)))) (-15 -2906 ((-83) (-580 |#4|))) (-15 -2907 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-1 (-83) |#4|) (-580 |#4|))) (-15 -2908 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 (-1 (-83) |#4|)) (-580 |#4|))) (-15 -2909 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 (-1 (-83) |#4|)) (-580 |#4|))) (-15 -2910 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|))) (-15 -2911 ((-83) |#4|)) (-15 -2912 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|))) (-15 -2913 ((-83) |#4|)) (-15 -2914 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|))) (-15 -2915 ((-83) |#4|)) (-15 -2916 ((-2 (|:| |goodPols| (-580 |#4|)) (|:| |badPols| (-580 |#4|))) (-580 |#4|))) (-15 -2917 ((-580 |#4|) (-580 |#4|) (-580 |#4|))) (-15 -2917 ((-580 |#4|) (-580 |#4|) (-580 |#4|) (-83))) (-15 -2918 (|#4| |#4| (-580 |#4|))) (-15 -2919 ((-580 |#4|) (-580 |#4|))) (-15 -2920 ((-3 (-2 (|:| |bas| (-411 |#1| |#2| |#3| |#4|)) (|:| -3307 (-580 |#4|))) "failed") (-580 |#4|))) (-15 -2921 ((-580 |#4|) (-580 |#4|))) (-15 -2922 ((-580 |#4|) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2923 ((-580 |#4|) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-387)) (PROGN (-15 -2924 ((-580 |#4|) |#4|)) (-15 -2925 ((-580 |#4|) (-580 |#4|))) (-15 -2925 ((-580 |#4|) (-580 |#4|) (-83))) (-15 -2926 ((-580 |#4|) (-580 |#4|) (-580 |#4|))) (-15 -2927 ((-580 |#4|) (-580 |#4|) (-580 |#4|))) (-15 -2928 ((-580 |#4|) (-580 |#4|) (-580 |#4|)))) |%noBranch|) (IF (|has| |#1| (-255)) (IF (|has| |#1| (-118)) (PROGN (-15 -2929 ((-580 |#4|) (-580 |#4|))) (-15 -2930 ((-580 |#4|) (-580 |#4|))) (-15 -2931 ((-580 |#4|) (-580 |#4|) (-580 |#4|)))) |%noBranch|) |%noBranch|)) (-491) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -885)) -((-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2928 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2927 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2925 (*1 *2 *2 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-83)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *7)))) (-2925 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-387)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2923 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-885 *5 *6 *7 *8)))) (-2922 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-580 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) (-4 *8 (-751)) (-5 *1 (-885 *6 *7 *8 *9)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2920 (*1 *2 *3) (|partial| -12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-411 *4 *5 *6 *7)) (|:| -3307 (-580 *7)))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *2)))) (-2917 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-580 *7)) (-5 *3 (-83)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2915 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-1 (-83) *8))) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-1 (-83) *8))) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *7)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-580 *8))) (-5 *3 (-580 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *5 *6 *7 *8)))) (-2904 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *7)))) (-2903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-580 *7) (-580 *7))) (-5 *2 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *7)))) (-2903 (*1 *2 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-580 *3)) (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *3)))) (-2902 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2901 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2903 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) -((-2932 (((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2934 (((-580 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1170 |#1|)))) (-627 |#1|) (-1170 |#1|)) 45 T ELT)) (-2933 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-886 |#1|) (-10 -7 (-15 -2932 ((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2933 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2934 ((-580 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1170 |#1|)))) (-627 |#1|) (-1170 |#1|)))) (-309)) (T -886)) -((-2934 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-5 *2 (-580 (-2 (|:| C (-627 *5)) (|:| |g| (-1170 *5))))) (-5 *1 (-886 *5)) (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)))) (-2933 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-627 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) (-5 *1 (-886 *5)))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-309)) (-5 *2 (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6)))) (-5 *1 (-886 *6)) (-5 *3 (-627 *6))))) -((-3954 (((-343 |#4|) |#4|) 61 T ELT))) -(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-343 |#4|) |#4|))) (-751) (-712) (-387) (-856 |#3| |#2| |#1|)) (T -887)) -((-3954 (*1 *2 *3) (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-387)) (-5 *2 (-343 *3)) (-5 *1 (-887 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4))))) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3821 (($ (-689)) 121 (|has| |#1| (-23)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3979)) ELT) (($ $) 97 (-12 (|has| |#1| (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 99 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 109 T ELT)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) 106 T ELT) (((-480) |#1| $) 105 (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) 104 (|has| |#1| (-1007)) ELT)) (-3689 (($ (-580 |#1|)) 127 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3818 (((-627 |#1|) $ $) 114 (|has| |#1| (-956)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 91 (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 92 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3815 ((|#1| $) 111 (-12 (|has| |#1| (-956)) (|has| |#1| (-910))) ELT)) (-3816 ((|#1| $) 112 (-12 (|has| |#1| (-956)) (|has| |#1| (-910))) ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-580 |#1|)) 125 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-3819 ((|#1| $ $) 115 (|has| |#1| (-956)) ELT)) (-3894 (((-825) $) 126 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-3817 (($ $ $) 113 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 100 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT) (($ (-580 |#1|)) 128 T ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 93 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 95 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) 94 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 96 (|has| |#1| (-751)) ELT)) (-3820 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-480) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-660)) ELT) (($ $ |#1|) 116 (|has| |#1| (-660)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-888 |#1|) (-111) (-956)) (T -888)) -((-3689 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-956)) (-4 *1 (-888 *3)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-956)) (-5 *2 (-825)))) (-3817 (*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-956)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-888 *3)) (-4 *3 (-956))))) -(-13 (-1169 |t#1|) (-554 (-580 |t#1|)) (-10 -8 (-15 -3689 ($ (-580 |t#1|))) (-15 -3894 ((-825) $)) (-15 -3817 ($ $ $)) (-15 -3752 ($ $ (-580 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-554 (-580 |#1|)) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-319 |#1|) . T) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-19 |#1|) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-1007) OR (|has| |#1| (-1007)) (|has| |#1| (-751))) ((-1120) . T) ((-1169 |#1|) . T)) -((-3941 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 17 T ELT))) -(((-889 |#1| |#2|) (-10 -7 (-15 -3941 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)))) (-956) (-956)) (T -889)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-5 *2 (-849 *6)) (-5 *1 (-889 *5 *6))))) -((-2937 ((|#1| (-849 |#1|)) 14 T ELT)) (-2936 ((|#1| (-849 |#1|)) 13 T ELT)) (-2935 ((|#1| (-849 |#1|)) 12 T ELT)) (-2939 ((|#1| (-849 |#1|)) 16 T ELT)) (-2943 ((|#1| (-849 |#1|)) 24 T ELT)) (-2938 ((|#1| (-849 |#1|)) 15 T ELT)) (-2940 ((|#1| (-849 |#1|)) 17 T ELT)) (-2942 ((|#1| (-849 |#1|)) 23 T ELT)) (-2941 ((|#1| (-849 |#1|)) 22 T ELT))) -(((-890 |#1|) (-10 -7 (-15 -2935 (|#1| (-849 |#1|))) (-15 -2936 (|#1| (-849 |#1|))) (-15 -2937 (|#1| (-849 |#1|))) (-15 -2938 (|#1| (-849 |#1|))) (-15 -2939 (|#1| (-849 |#1|))) (-15 -2940 (|#1| (-849 |#1|))) (-15 -2941 (|#1| (-849 |#1|))) (-15 -2942 (|#1| (-849 |#1|))) (-15 -2943 (|#1| (-849 |#1|)))) (-956)) (T -890)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -((-2961 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2949 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2947 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2951 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2944 (((-3 |#1| "failed") |#1| (-689)) 1 T ELT)) (-2946 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2945 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2952 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2950 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2948 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2953 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2956 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2954 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-891 |#1|) (-111) (-1106)) (T -891)) -((-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2953 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2952 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2950 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2947 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106)))) (-2944 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-689)) (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(-13 (-10 -7 (-15 -2944 ((-3 |t#1| "failed") |t#1| (-689))) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -2947 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)) (-15 -2950 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -2952 ((-3 |t#1| "failed") |t#1|)) (-15 -2953 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)))) -((-2972 ((|#4| |#4| (-580 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2971 ((|#4| |#4| (-580 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3941 ((|#4| (-1 |#4| (-852 |#1|)) |#4|) 33 T ELT))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2971 (|#4| |#4| |#3|)) (-15 -2971 (|#4| |#4| (-580 |#3|))) (-15 -2972 (|#4| |#4| |#3|)) (-15 -2972 (|#4| |#4| (-580 |#3|))) (-15 -3941 (|#4| (-1 |#4| (-852 |#1|)) |#4|))) (-956) (-712) (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081))))) (-856 (-852 |#1|) |#2| |#3|)) (T -892)) -((-3941 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-852 *4))) (-4 *4 (-956)) (-4 *2 (-856 (-852 *4) *5 *6)) (-4 *5 (-712)) (-4 *6 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1="failed") (-1081)))))) (-5 *1 (-892 *4 *5 *6 *2)))) (-2972 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) (-4 *4 (-956)) (-4 *5 (-712)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *2 (-856 (-852 *4) *5 *6)))) (-2972 (*1 *2 *2 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) (-5 *1 (-892 *4 *5 *3 *2)) (-4 *2 (-856 (-852 *4) *5 *3)))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-580 *6)) (-4 *6 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) (-4 *4 (-956)) (-4 *5 (-712)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *2 (-856 (-852 *4) *5 *6)))) (-2971 (*1 *2 *2 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) (-5 *1 (-892 *4 *5 *3 *2)) (-4 *2 (-856 (-852 *4) *5 *3))))) -((-2973 ((|#2| |#3|) 35 T ELT)) (-3902 (((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 79 T ELT)) (-3901 (((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 100 T ELT))) -(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3901 ((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -3902 ((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)) (-15 -2973 (|#2| |#3|))) (-296) (-1146 |#1|) (-1146 |#2|) (-658 |#2| |#3|)) (T -893)) -((-2973 (*1 *2 *3) (-12 (-4 *3 (-1146 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-893 *4 *2 *3 *5)) (-4 *4 (-296)) (-4 *5 (-658 *2 *3)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 *3)) (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-893 *4 *3 *5 *6)) (-4 *6 (-658 *3 *5)))) (-3901 (*1 *2) (-12 (-4 *3 (-296)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| -2000 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-658 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3384 (((-3 (-83) #1="failed") $) 71 T ELT)) (-3632 (($ $) 36 (-12 (|has| |#1| (-118)) (|has| |#1| (-255))) ELT)) (-2977 (($ $ (-3 (-83) #1#)) 72 T ELT)) (-2978 (($ (-580 |#4|) |#4|) 25 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2974 (($ $) 69 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3386 (((-83) $) 70 T ELT)) (-3548 (($) 30 T ELT)) (-2975 ((|#4| $) 74 T ELT)) (-2976 (((-580 |#4|) $) 73 T ELT)) (-3929 (((-767) $) 68 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-894 |#1| |#2| |#3| |#4|) (-13 (-1007) (-549 (-767)) (-10 -8 (-15 -3548 ($)) (-15 -2978 ($ (-580 |#4|) |#4|)) (-15 -3384 ((-3 (-83) #1="failed") $)) (-15 -2977 ($ $ (-3 (-83) #1#))) (-15 -3386 ((-83) $)) (-15 -2976 ((-580 |#4|) $)) (-15 -2975 (|#4| $)) (-15 -2974 ($ $)) (IF (|has| |#1| (-255)) (IF (|has| |#1| (-118)) (-15 -3632 ($ $)) |%noBranch|) |%noBranch|))) (-387) (-751) (-712) (-856 |#1| |#3| |#2|)) (T -894)) -((-3548 (*1 *1) (-12 (-4 *2 (-387)) (-4 *3 (-751)) (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) (-4 *5 (-856 *2 *4 *3)))) (-2978 (*1 *1 *2 *3) (-12 (-5 *2 (-580 *3)) (-4 *3 (-856 *4 *6 *5)) (-4 *4 (-387)) (-4 *5 (-751)) (-4 *6 (-712)) (-5 *1 (-894 *4 *5 *6 *3)))) (-3384 (*1 *2 *1) (|partial| -12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-83)) (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) (-3386 (*1 *2 *1) (-12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-83)) (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-580 *6)) (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) (-2975 (*1 *2 *1) (-12 (-4 *2 (-856 *3 *5 *4)) (-5 *1 (-894 *3 *4 *5 *2)) (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)))) (-2974 (*1 *1 *1) (-12 (-4 *2 (-387)) (-4 *3 (-751)) (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) (-4 *5 (-856 *2 *4 *3)))) (-3632 (*1 *1 *1) (-12 (-4 *2 (-118)) (-4 *2 (-255)) (-4 *2 (-387)) (-4 *3 (-751)) (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) (-4 *5 (-856 *2 *4 *3))))) -((-2979 (((-894 (-345 (-480)) (-768 |#1|) (-195 |#2| (-689)) (-204 |#1| (-345 (-480)))) (-894 (-345 (-480)) (-768 |#1|) (-195 |#2| (-689)) (-204 |#1| (-345 (-480))))) 82 T ELT))) -(((-895 |#1| |#2|) (-10 -7 (-15 -2979 ((-894 (-345 (-480)) (-768 |#1|) (-195 |#2| (-689)) (-204 |#1| (-345 (-480)))) (-894 (-345 (-480)) (-768 |#1|) (-195 |#2| (-689)) (-204 |#1| (-345 (-480))))))) (-580 (-1081)) (-689)) (T -895)) -((-2979 (*1 *2 *2) (-12 (-5 *2 (-894 (-345 (-480)) (-768 *3) (-195 *4 (-689)) (-204 *3 (-345 (-480))))) (-14 *3 (-580 (-1081))) (-14 *4 (-689)) (-5 *1 (-895 *3 *4))))) -((-3254 (((-83) |#5| |#5|) 44 T ELT)) (-3257 (((-83) |#5| |#5|) 59 T ELT)) (-3262 (((-83) |#5| (-580 |#5|)) 81 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3258 (((-83) (-580 |#4|) (-580 |#4|)) 65 T ELT)) (-3264 (((-83) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) 70 T ELT)) (-3253 (((-1176)) 32 T ELT)) (-3252 (((-1176) (-1064) (-1064) (-1064)) 28 T ELT)) (-3263 (((-580 |#5|) (-580 |#5|)) 100 T ELT)) (-3265 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) 92 T ELT)) (-3266 (((-580 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|)))) (-580 |#4|) (-580 |#5|) (-83) (-83)) 122 T ELT)) (-3256 (((-83) |#5| |#5|) 53 T ELT)) (-3261 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3259 (((-83) (-580 |#4|) (-580 |#4|)) 64 T ELT)) (-3260 (((-83) (-580 |#4|) (-580 |#4|)) 66 T ELT)) (-3682 (((-83) (-580 |#4|) (-580 |#4|)) 67 T ELT)) (-3267 (((-3 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|))) #1#) (-580 |#4|) |#5| (-580 |#4|) (-83) (-83) (-83) (-83) (-83)) 117 T ELT)) (-3255 (((-580 |#5|) (-580 |#5|)) 49 T ELT))) -(((-896 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3252 ((-1176) (-1064) (-1064) (-1064))) (-15 -3253 ((-1176))) (-15 -3254 ((-83) |#5| |#5|)) (-15 -3255 ((-580 |#5|) (-580 |#5|))) (-15 -3256 ((-83) |#5| |#5|)) (-15 -3257 ((-83) |#5| |#5|)) (-15 -3258 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3259 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3260 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3682 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3261 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3262 ((-83) |#5| |#5|)) (-15 -3262 ((-83) |#5| (-580 |#5|))) (-15 -3263 ((-580 |#5|) (-580 |#5|))) (-15 -3264 ((-83) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) (-15 -3265 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-15 -3266 ((-580 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|)))) (-580 |#4|) (-580 |#5|) (-83) (-83))) (-15 -3267 ((-3 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|))) #1#) (-580 |#4|) |#5| (-580 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -896)) -((-3267 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *4) (|:| |ineq| (-580 *9)))) (-5 *1 (-896 *6 *7 *8 *9 *4)) (-5 *3 (-580 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-3266 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-580 *10)) (-5 *5 (-83)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *10) (|:| |ineq| (-580 *9))))) (-5 *1 (-896 *6 *7 *8 *9 *10)) (-5 *3 (-580 *9)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-580 (-2 (|:| |val| (-580 *6)) (|:| -1589 *7)))) (-4 *6 (-971 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-896 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *1 (-896 *3 *4 *5 *6 *7)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-896 *5 *6 *7 *8 *3)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3261 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3682 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *1 (-896 *3 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3253 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-896 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3252 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-896 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -((-3814 (((-1081) $) 15 T ELT)) (-3385 (((-1064) $) 16 T ELT)) (-3211 (($ (-1081) (-1064)) 14 T ELT)) (-3929 (((-767) $) 13 T ELT))) -(((-897) (-13 (-549 (-767)) (-10 -8 (-15 -3211 ($ (-1081) (-1064))) (-15 -3814 ((-1081) $)) (-15 -3385 ((-1064) $))))) (T -897)) -((-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1064)) (-5 *1 (-897)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-897)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-897))))) -((-3142 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1081) #1#) $) 72 T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) 102 T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-1081) $) 67 T ELT) (((-345 (-480)) $) NIL T ELT) (((-480) $) 99 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 121 T ELT) (((-627 |#2|) (-627 $)) 35 T ELT)) (-2980 (($) 105 T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 82 T ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 91 T ELT)) (-2982 (($ $) 10 T ELT)) (-3428 (((-629 $) $) 27 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3429 (($) 16 T CONST)) (-3113 (($ $) 61 T ELT)) (-3741 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2981 (($ $) 12 T ELT)) (-3955 (((-795 (-480)) $) 77 T ELT) (((-795 (-325)) $) 86 T ELT) (((-469) $) 47 T ELT) (((-325) $) 51 T ELT) (((-177) $) 55 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1081)) 64 T ELT)) (-3111 (((-689)) 38 T CONST)) (-2671 (((-83) $ $) 57 T ELT))) -(((-898 |#1| |#2|) (-10 -7 (-15 -2671 ((-83) |#1| |#1|)) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3429 (|#1|) -3935) (-15 -3428 ((-629 |#1|) |#1|)) (-15 -3142 ((-3 (-480) #1="failed") |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3955 ((-177) |#1|)) (-15 -3955 ((-325) |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3929 (|#1| (-1081))) (-15 -3142 ((-3 (-1081) #1#) |#1|)) (-15 -3141 ((-1081) |#1|)) (-15 -2980 (|#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 -2782 ((-793 (-325) |#1|) |#1| (-795 (-325)) (-793 (-325) |#1|))) (-15 -2782 ((-793 (-480) |#1|) |#1| (-795 (-480)) (-793 (-480) |#1|))) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -2267 ((-627 |#2|) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 (|#1| |#1|)) (-15 -3111 ((-689)) -3935) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-899 |#2|) (-491)) (T -898)) -((-3111 (*1 *2) (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-898 *3 *4)) (-4 *3 (-899 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3114 ((|#1| $) 171 (|has| |#1| (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 162 (|has| |#1| (-816)) ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 165 (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3606 (((-480) $) 152 (|has| |#1| (-735)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| #2="failed") $) 201 T ELT) (((-3 (-1081) #2#) $) 160 (|has| |#1| (-945 (-1081))) ELT) (((-3 (-345 (-480)) #2#) $) 143 (|has| |#1| (-945 (-480))) ELT) (((-3 (-480) #2#) $) 141 (|has| |#1| (-945 (-480))) ELT)) (-3141 ((|#1| $) 202 T ELT) (((-1081) $) 161 (|has| |#1| (-945 (-1081))) ELT) (((-345 (-480)) $) 144 (|has| |#1| (-945 (-480))) ELT) (((-480) $) 142 (|has| |#1| (-945 (-480))) ELT)) (-2550 (($ $ $) 69 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 186 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 185 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 184 T ELT) (((-627 |#1|) (-627 $)) 183 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2980 (($) 169 (|has| |#1| (-479)) ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-3171 (((-83) $) 154 (|has| |#1| (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 178 (|has| |#1| (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 177 (|has| |#1| (-791 (-325))) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2982 (($ $) 173 T ELT)) (-2984 ((|#1| $) 175 T ELT)) (-3428 (((-629 $) $) 140 (|has| |#1| (-1057)) ELT)) (-3172 (((-83) $) 153 (|has| |#1| (-735)) ELT)) (-1594 (((-3 (-580 $) #3="failed") (-580 $) $) 66 T ELT)) (-2517 (($ $ $) 145 (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) 146 (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 193 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 188 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 187 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 182 T ELT) (((-627 |#1|) (-1170 $)) 181 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3429 (($) 139 (|has| |#1| (-1057)) CONST)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3113 (($ $) 170 (|has| |#1| (-255)) ELT)) (-3115 ((|#1| $) 167 (|has| |#1| (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 164 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 163 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) 199 (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) 198 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) 197 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 196 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 195 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) 194 (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-1596 (((-689) $) 72 T ELT)) (-3783 (($ $ |#1|) 200 (|has| |#1| (-239 |#1| |#1|)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-3741 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 191 T ELT) (($ $) 138 (|has| |#1| (-187)) ELT) (($ $ (-689)) 136 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 134 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 132 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 131 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 130 (|has| |#1| (-806 (-1081))) ELT)) (-2981 (($ $) 172 T ELT)) (-2983 ((|#1| $) 174 T ELT)) (-3955 (((-795 (-480)) $) 180 (|has| |#1| (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) 179 (|has| |#1| (-550 (-795 (-325)))) ELT) (((-469) $) 157 (|has| |#1| (-550 (-469))) ELT) (((-325) $) 156 (|has| |#1| (-928)) ELT) (((-177) $) 155 (|has| |#1| (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 166 (-2548 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ |#1|) 205 T ELT) (($ (-1081)) 159 (|has| |#1| (-945 (-1081))) ELT)) (-2688 (((-629 $) $) 158 (OR (|has| |#1| (-116)) (-2548 (|has| $ (-116)) (|has| |#1| (-816)))) ELT)) (-3111 (((-689)) 38 T CONST)) (-3116 ((|#1| $) 168 (|has| |#1| (-479)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3366 (($ $) 151 (|has| |#1| (-735)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) 190 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 189 T ELT) (($ $) 137 (|has| |#1| (-187)) ELT) (($ $ (-689)) 135 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 133 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 129 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 128 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 127 (|has| |#1| (-806 (-1081))) ELT)) (-2552 (((-83) $ $) 147 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 149 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 148 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 150 (|has| |#1| (-751)) ELT)) (-3932 (($ $ $) 81 T ELT) (($ |#1| |#1|) 176 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT) (($ |#1| $) 204 T ELT) (($ $ |#1|) 203 T ELT))) -(((-899 |#1|) (-111) (-491)) (T -899)) -((-3932 (*1 *1 *2 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-255)))) (-3113 (*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-255)))) (-2980 (*1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-479)) (-4 *2 (-491)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-479)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-479))))) -(-13 (-309) (-38 |t#1|) (-945 |t#1|) (-285 |t#1|) (-182 |t#1|) (-324 |t#1|) (-789 |t#1|) (-338 |t#1|) (-10 -8 (-15 -3932 ($ |t#1| |t#1|)) (-15 -2984 (|t#1| $)) (-15 -2983 (|t#1| $)) (-15 -2982 ($ $)) (-15 -2981 ($ $)) (IF (|has| |t#1| (-1057)) (-6 (-1057)) |%noBranch|) (IF (|has| |t#1| (-945 (-480))) (PROGN (-6 (-945 (-480))) (-6 (-945 (-345 (-480))))) |%noBranch|) (IF (|has| |t#1| (-751)) (-6 (-751)) |%noBranch|) (IF (|has| |t#1| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|) (IF (|has| |t#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-945 (-1081))) (-6 (-945 (-1081))) |%noBranch|) (IF (|has| |t#1| (-255)) (PROGN (-15 -3114 (|t#1| $)) (-15 -3113 ($ $))) |%noBranch|) (IF (|has| |t#1| (-479)) (PROGN (-15 -2980 ($)) (-15 -3116 (|t#1| $)) (-15 -3115 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 (-1081)) |has| |#1| (-945 (-1081))) ((-552 |#1|) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-550 (-177)) |has| |#1| (-928)) ((-550 (-325)) |has| |#1| (-928)) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-550 (-795 (-325))) |has| |#1| (-550 (-795 (-325)))) ((-550 (-795 (-480))) |has| |#1| (-550 (-795 (-480)))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-223 |#1|) . T) ((-199) . T) ((-239 |#1| $) |has| |#1| (-239 |#1| |#1|)) ((-243) . T) ((-255) . T) ((-257 |#1|) |has| |#1| (-257 |#1|)) ((-309) . T) ((-285 |#1|) . T) ((-324 |#1|) . T) ((-338 |#1|) . T) ((-387) . T) ((-449 (-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((-449 |#1| |#1|) |has| |#1| (-257 |#1|)) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 |#1|) . T) ((-579 $) . T) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-660) . T) ((-709) |has| |#1| (-735)) ((-711) |has| |#1| (-735)) ((-713) |has| |#1| (-735)) ((-716) |has| |#1| (-735)) ((-735) |has| |#1| (-735)) ((-750) |has| |#1| (-735)) ((-751) OR (|has| |#1| (-751)) (|has| |#1| (-735))) ((-754) OR (|has| |#1| (-751)) (|has| |#1| (-735))) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-791 (-325)) |has| |#1| (-791 (-325))) ((-791 (-480)) |has| |#1| (-791 (-480))) ((-789 |#1|) . T) ((-816) |has| |#1| (-816)) ((-827) . T) ((-928) |has| |#1| (-928)) ((-945 (-345 (-480))) |has| |#1| (-945 (-480))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 (-1081)) |has| |#1| (-945 (-1081))) ((-945 |#1|) . T) ((-958 (-345 (-480))) . T) ((-958 |#1|) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| |#1| (-1057)) ((-1120) . T) ((-1125) . T)) -((-3941 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#2| |#1|) |#3|))) (-491) (-491) (-899 |#1|) (-899 |#2|)) (T -900)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-491)) (-4 *6 (-491)) (-4 *2 (-899 *6)) (-5 *1 (-900 *5 *6 *4 *2)) (-4 *4 (-899 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ "failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2985 (($ (-1047 |#1| |#2|)) 11 T ELT)) (-3109 (((-1047 |#1| |#2|) $) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#2| $ (-195 |#1| |#2|)) 16 T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT))) -(((-901 |#1| |#2|) (-13 (-21) (-239 (-195 |#1| |#2|) |#2|) (-10 -8 (-15 -2985 ($ (-1047 |#1| |#2|))) (-15 -3109 ((-1047 |#1| |#2|) $)))) (-825) (-309)) (T -901)) -((-2985 (*1 *1 *2) (-12 (-5 *2 (-1047 *3 *4)) (-14 *3 (-825)) (-4 *4 (-309)) (-5 *1 (-901 *3 *4)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1047 *3 *4)) (-5 *1 (-901 *3 *4)) (-14 *3 (-825)) (-4 *4 (-309))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 10 T ELT)) (-3929 (((-767) $) 16 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-902) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $))))) (T -902)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-902))))) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3707 (($) 7 T CONST)) (-2988 (($ $) 50 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3816 (((-689) $) 49 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-2987 ((|#1| $) 48 T ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2990 ((|#1| |#1| $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-2989 ((|#1| $) 51 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-2986 ((|#1| $) 47 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-903 |#1|) (-111) (-1120)) (T -903)) -((-2990 (*1 *2 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120)))) (-2988 (*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3978) (-15 -2990 (|t#1| |t#1| $)) (-15 -2989 (|t#1| $)) (-15 -2988 ($ $)) (-15 -3816 ((-689) $)) (-15 -2987 (|t#1| $)) (-15 -2986 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3626 ((|#1| $) 12 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) NIL (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) NIL (|has| |#1| (-479)) ELT)) (-2991 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3117 ((|#1| $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2992 ((|#1| $) 15 T ELT)) (-2993 ((|#1| $) 14 T ELT)) (-2994 ((|#1| $) 13 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) NIL (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-3783 (($ $ |#1|) NIL (|has| |#1| (-239 |#1| |#1|)) ELT)) (-3741 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3366 ((|#1| $) NIL (|has| |#1| (-967)) ELT)) (-2646 (($) 8 T CONST)) (-2652 (($) 10 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-309)) ELT))) -(((-904 |#1|) (-906 |#1|) (-144)) (T -904)) -NIL -((-3173 (((-83) $) 43 T ELT)) (-3142 (((-3 (-480) #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) 78 T ELT)) (-3009 (((-83) $) 72 T ELT)) (-3008 (((-345 (-480)) $) 76 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3117 ((|#2| $) 22 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2470 (($ $) 58 T ELT)) (-3741 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-3955 (((-469) $) 67 T ELT)) (-2995 (($ $) 17 T ELT)) (-3929 (((-767) $) 53 T ELT) (($ (-480)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-345 (-480))) NIL T ELT)) (-3111 (((-689)) 10 T CONST)) (-3366 ((|#2| $) 71 T ELT)) (-3042 (((-83) $ $) 26 T ELT)) (-2671 (((-83) $ $) 69 T ELT)) (-3820 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3822 (($ $ $) 27 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT))) -(((-905 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| (-345 (-480)))) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -2671 ((-83) |#1| |#1|)) (-15 * (|#1| (-345 (-480)) |#1|)) (-15 * (|#1| |#1| (-345 (-480)))) (-15 -2470 (|#1| |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3010 ((-3 (-345 (-480)) #1="failed") |#1|)) (-15 -3008 ((-345 (-480)) |#1|)) (-15 -3009 ((-83) |#1|)) (-15 -3366 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3941 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3111 ((-689)) -3935) (-15 -3929 (|#1| (-480))) (-15 -2398 ((-83) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 * (|#1| (-689) |#1|)) (-15 -3173 ((-83) |#1|)) (-15 * (|#1| (-825) |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-906 |#2|) (-144)) (T -905)) -((-3111 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 (-480) #1="failed") $) 141 (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 139 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) 136 T ELT)) (-3141 (((-480) $) 140 (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) 138 (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) 137 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 121 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 120 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 119 T ELT) (((-627 |#1|) (-627 $)) 118 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3626 ((|#1| $) 109 T ELT)) (-3010 (((-3 (-345 (-480)) "failed") $) 105 (|has| |#1| (-479)) ELT)) (-3009 (((-83) $) 107 (|has| |#1| (-479)) ELT)) (-3008 (((-345 (-480)) $) 106 (|has| |#1| (-479)) ELT)) (-2991 (($ |#1| |#1| |#1| |#1|) 110 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3117 ((|#1| $) 111 T ELT)) (-2517 (($ $ $) 93 (|has| |#1| (-751)) ELT)) (-2843 (($ $ $) 94 (|has| |#1| (-751)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 123 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 122 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 117 T ELT) (((-627 |#1|) (-1170 $)) 116 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 102 (|has| |#1| (-309)) ELT)) (-2992 ((|#1| $) 112 T ELT)) (-2993 ((|#1| $) 113 T ELT)) (-2994 ((|#1| $) 114 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) 130 (|has| |#1| (-257 |#1|)) ELT) (($ $ |#1| |#1|) 129 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-246 |#1|)) 128 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-246 |#1|))) 127 (|has| |#1| (-257 |#1|)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) 126 (|has| |#1| (-449 (-1081) |#1|)) ELT) (($ $ (-1081) |#1|) 125 (|has| |#1| (-449 (-1081) |#1|)) ELT)) (-3783 (($ $ |#1|) 131 (|has| |#1| (-239 |#1| |#1|)) ELT)) (-3741 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 134 T ELT) (($ $) 92 (|has| |#1| (-187)) ELT) (($ $ (-689)) 90 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 88 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 86 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 85 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 84 (|has| |#1| (-806 (-1081))) ELT)) (-3955 (((-469) $) 103 (|has| |#1| (-550 (-469))) ELT)) (-2995 (($ $) 115 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-345 (-480))) 80 (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (((-629 $) $) 104 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-3366 ((|#1| $) 108 (|has| |#1| (-967)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#1| |#1|)) 133 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 132 T ELT) (($ $) 91 (|has| |#1| (-187)) ELT) (($ $ (-689)) 89 (|has| |#1| (-187)) ELT) (($ $ (-1081)) 87 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 83 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 82 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 81 (|has| |#1| (-806 (-1081))) ELT)) (-2552 (((-83) $ $) 95 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 97 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 96 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 98 (|has| |#1| (-751)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 101 (|has| |#1| (-309)) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ $ (-345 (-480))) 100 (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) 99 (|has| |#1| (-309)) ELT))) -(((-906 |#1|) (-111) (-144)) (T -906)) -((-2995 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-2991 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) (-3010 (*1 *2 *1) (|partial| -12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480)))))) -(-13 (-38 |t#1|) (-350 |t#1|) (-182 |t#1|) (-285 |t#1|) (-324 |t#1|) (-10 -8 (-15 -2995 ($ $)) (-15 -2994 (|t#1| $)) (-15 -2993 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -3117 (|t#1| $)) (-15 -2991 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3626 (|t#1| $)) (IF (|has| |t#1| (-243)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-751)) (-6 (-751)) |%noBranch|) (IF (|has| |t#1| (-309)) (-6 (-199)) |%noBranch|) (IF (|has| |t#1| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-967)) (-15 -3366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-479)) (PROGN (-15 -3009 ((-83) $)) (-15 -3008 ((-345 (-480)) $)) (-15 -3010 ((-3 (-345 (-480)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-309)) ((-38 |#1|) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-309)) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-309)) (|has| |#1| (-243))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-309))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-223 |#1|) . T) ((-199) |has| |#1| (-309)) ((-239 |#1| $) |has| |#1| (-239 |#1| |#1|)) ((-243) OR (|has| |#1| (-309)) (|has| |#1| (-243))) ((-257 |#1|) |has| |#1| (-257 |#1|)) ((-285 |#1|) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-449 (-1081) |#1|) |has| |#1| (-449 (-1081) |#1|)) ((-449 |#1| |#1|) |has| |#1| (-257 |#1|)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-309)) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-309)) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-309)) ((-579 |#1|) . T) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) |has| |#1| (-309)) ((-651 |#1|) . T) ((-660) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-958 (-345 (-480))) |has| |#1| (-309)) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-309)) (|has| |#1| (-243))) ((-963 (-345 (-480))) |has| |#1| (-309)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-309)) (|has| |#1| (-243))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3941 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#3| (-1 |#4| |#2|) |#1|))) (-906 |#2|) (-144) (-906 |#4|) (-144)) (T -907)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-906 *6)) (-5 *1 (-907 *4 *5 *2 *6)) (-4 *4 (-906 *5))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3707 (($) NIL T CONST)) (-2988 (($ $) 24 T ELT)) (-2996 (($ (-580 |#1|)) 34 T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3816 (((-689) $) 27 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 29 T ELT)) (-3592 (($ |#1| $) 18 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-2987 ((|#1| $) 28 T ELT)) (-1265 ((|#1| $) 23 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2990 ((|#1| |#1| $) 17 T ELT)) (-3386 (((-83) $) 19 T ELT)) (-3548 (($) NIL T ELT)) (-2989 ((|#1| $) 22 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) NIL T ELT)) (-2986 ((|#1| $) 31 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-908 |#1|) (-13 (-903 |#1|) (-10 -8 (-15 -2996 ($ (-580 |#1|))))) (-1007)) (T -908)) -((-2996 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-908 *3))))) -((-3023 (($ $) 12 T ELT)) (-2997 (($ $ (-480)) 13 T ELT))) -(((-909 |#1|) (-10 -7 (-15 -3023 (|#1| |#1|)) (-15 -2997 (|#1| |#1| (-480)))) (-910)) (T -909)) -NIL -((-3023 (($ $) 6 T ELT)) (-2997 (($ $ (-480)) 7 T ELT)) (** (($ $ (-345 (-480))) 8 T ELT))) -(((-910) (-111)) (T -910)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-910)) (-5 *2 (-345 (-480))))) (-2997 (*1 *1 *1 *2) (-12 (-4 *1 (-910)) (-5 *2 (-480)))) (-3023 (*1 *1 *1) (-4 *1 (-910)))) -(-13 (-10 -8 (-15 -3023 ($ $)) (-15 -2997 ($ $ (-480))) (-15 ** ($ $ (-345 (-480)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1636 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2051 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2049 (((-83) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1771 (((-627 (-345 |#2|)) (-1170 $)) NIL T ELT) (((-627 (-345 |#2|))) NIL T ELT)) (-3313 (((-345 |#2|) $) NIL T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1597 (((-83) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3121 (((-689)) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1650 (((-83)) NIL T ELT)) (-1649 (((-83) |#1|) 162 T ELT) (((-83) |#2|) 166 T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| (-345 |#2|) (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-3 (-345 |#2|) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| (-345 |#2|) (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| (-345 |#2|) (-945 (-345 (-480)))) ELT) (((-345 |#2|) $) NIL T ELT)) (-1781 (($ (-1170 (-345 |#2|)) (-1170 $)) NIL T ELT) (($ (-1170 (-345 |#2|))) 79 T ELT) (($ (-1170 |#2|) |#2|) NIL T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-345 |#2|) (-296)) ELT)) (-2550 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1770 (((-627 (-345 |#2|)) $ (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) (-627 $)) NIL T ELT)) (-1641 (((-1170 $) (-1170 $)) NIL T ELT)) (-3825 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-345 |#3|)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-1628 (((-580 (-580 |#1|))) NIL (|has| |#1| (-315)) ELT)) (-1653 (((-83) |#1| |#1|) NIL T ELT)) (-3094 (((-825)) NIL T ELT)) (-2980 (($) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1648 (((-83)) NIL T ELT)) (-1647 (((-83) |#1|) 61 T ELT) (((-83) |#2|) 164 T ELT)) (-2549 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3486 (($ $) NIL T ELT)) (-2819 (($) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1669 (((-83) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1753 (($ $ (-689)) NIL (|has| (-345 |#2|) (-296)) ELT) (($ $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3706 (((-83) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3755 (((-825) $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-738 (-825)) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-3360 (((-689)) NIL T ELT)) (-1642 (((-1170 $) (-1170 $)) NIL T ELT)) (-3117 (((-345 |#2|) $) NIL T ELT)) (-1629 (((-580 (-852 |#1|)) (-1081)) NIL (|has| |#1| (-309)) ELT)) (-3428 (((-629 $) $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2002 ((|#3| $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1998 (((-825) $) NIL (|has| (-345 |#2|) (-315)) ELT)) (-3065 ((|#3| $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-345 |#2|) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-345 |#2|))) (|:| |vec| (-1170 (-345 |#2|)))) (-1170 $) $) NIL T ELT) (((-627 (-345 |#2|)) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1637 (((-627 (-345 |#2|))) 57 T ELT)) (-1639 (((-627 (-345 |#2|))) 56 T ELT)) (-2470 (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1634 (($ (-1170 |#2|) |#2|) 80 T ELT)) (-1638 (((-627 (-345 |#2|))) 55 T ELT)) (-1640 (((-627 (-345 |#2|))) 54 T ELT)) (-1633 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1635 (((-2 (|:| |num| (-1170 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1646 (((-1170 $)) 51 T ELT)) (-3901 (((-1170 $)) 50 T ELT)) (-1645 (((-83) $) NIL T ELT)) (-1644 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3429 (($) NIL (|has| (-345 |#2|) (-296)) CONST)) (-2388 (($ (-825)) NIL (|has| (-345 |#2|) (-315)) ELT)) (-1631 (((-3 |#2| #1#)) 70 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1655 (((-689)) NIL T ELT)) (-2397 (($) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3715 (((-343 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-345 |#2|) (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1596 (((-689) $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3783 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1632 (((-3 |#2| #1#)) 68 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3740 (((-345 |#2|) (-1170 $)) NIL T ELT) (((-345 |#2|)) 47 T ELT)) (-1754 (((-689) $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-3 (-689) #1#) $ $) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3741 (($ $ (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-2396 (((-627 (-345 |#2|)) (-1170 $) (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3170 ((|#3|) 58 T ELT)) (-1663 (($) NIL (|has| (-345 |#2|) (-296)) ELT)) (-3209 (((-1170 (-345 |#2|)) $ (-1170 $)) NIL T ELT) (((-627 (-345 |#2|)) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 (-345 |#2|)) $) 81 T ELT) (((-627 (-345 |#2|)) (-1170 $)) NIL T ELT)) (-3955 (((-1170 (-345 |#2|)) $) NIL T ELT) (($ (-1170 (-345 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| (-345 |#2|) (-296)) ELT)) (-1643 (((-1170 $) (-1170 $)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 |#2|)) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-2688 (($ $) NIL (|has| (-345 |#2|) (-296)) ELT) (((-629 $) $) NIL (|has| (-345 |#2|) (-116)) ELT)) (-2435 ((|#3| $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1652 (((-83)) 65 T ELT)) (-1651 (((-83) |#1|) 167 T ELT) (((-83) |#2|) 168 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-1630 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1654 (((-83)) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-1 (-345 |#2|) (-345 |#2|))) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-1 (-345 |#2|) (-345 |#2|)) (-689)) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-804 (-1081)))) (-12 (|has| (-345 |#2|) (-309)) (|has| (-345 |#2|) (-806 (-1081))))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT) (($ $) NIL (OR (-12 (|has| (-345 |#2|) (-188)) (|has| (-345 |#2|) (-309))) (-12 (|has| (-345 |#2|) (-187)) (|has| (-345 |#2|) (-309))) (|has| (-345 |#2|) (-296))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ $) NIL (|has| (-345 |#2|) (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| (-345 |#2|) (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 |#2|)) NIL T ELT) (($ (-345 |#2|) $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| (-345 |#2|) (-309)) ELT) (($ $ (-345 (-480))) NIL (|has| (-345 |#2|) (-309)) ELT))) -(((-911 |#1| |#2| |#3| |#4| |#5|) (-288 |#1| |#2| |#3|) (-1125) (-1146 |#1|) (-1146 (-345 |#2|)) (-345 |#2|) (-689)) (T -911)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3003 (((-580 (-480)) $) 73 T ELT)) (-2999 (($ (-580 (-480))) 81 T ELT)) (-3114 (((-480) $) 48 (|has| (-480) (-255)) ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL (|has| (-480) (-735)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) 60 T ELT) (((-3 (-1081) #1#) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-3 (-345 (-480)) #1#) $) 57 (|has| (-480) (-945 (-480))) ELT) (((-3 (-480) #1#) $) 60 (|has| (-480) (-945 (-480))) ELT)) (-3141 (((-480) $) NIL T ELT) (((-1081) $) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) NIL (|has| (-480) (-945 (-480))) ELT) (((-480) $) NIL (|has| (-480) (-945 (-480))) ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2980 (($) NIL (|has| (-480) (-479)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3001 (((-580 (-480)) $) 79 T ELT)) (-3171 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (|has| (-480) (-791 (-480))) ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (|has| (-480) (-791 (-325))) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL T ELT)) (-2984 (((-480) $) 45 T ELT)) (-3428 (((-629 $) $) NIL (|has| (-480) (-1057)) ELT)) (-3172 (((-83) $) NIL (|has| (-480) (-735)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-480) (-751)) ELT)) (-3941 (($ (-1 (-480) (-480)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| (-480) (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL T ELT)) (-3429 (($) NIL (|has| (-480) (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3113 (($ $) NIL (|has| (-480) (-255)) ELT) (((-345 (-480)) $) 50 T ELT)) (-3002 (((-1060 (-480)) $) 78 T ELT)) (-2998 (($ (-580 (-480)) (-580 (-480))) 82 T ELT)) (-3115 (((-480) $) 64 (|has| (-480) (-479)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| (-480) (-816)) ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-3751 (($ $ (-580 (-480)) (-580 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-480) (-480)) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-246 (-480))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-246 (-480)))) NIL (|has| (-480) (-257 (-480))) ELT) (($ $ (-580 (-1081)) (-580 (-480))) NIL (|has| (-480) (-449 (-1081) (-480))) ELT) (($ $ (-1081) (-480)) NIL (|has| (-480) (-449 (-1081) (-480))) ELT)) (-1596 (((-689) $) NIL T ELT)) (-3783 (($ $ (-480)) NIL (|has| (-480) (-239 (-480) (-480))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) 15 (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-480) $) 47 T ELT)) (-3000 (((-580 (-480)) $) 80 T ELT)) (-3955 (((-795 (-480)) $) NIL (|has| (-480) (-550 (-795 (-480)))) ELT) (((-795 (-325)) $) NIL (|has| (-480) (-550 (-795 (-325)))) ELT) (((-469) $) NIL (|has| (-480) (-550 (-469))) ELT) (((-325) $) NIL (|has| (-480) (-928)) ELT) (((-177) $) NIL (|has| (-480) (-928)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-480) (-816))) ELT)) (-3929 (((-767) $) 108 T ELT) (($ (-480)) 51 T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 27 T ELT) (($ (-480)) 51 T ELT) (($ (-1081)) NIL (|has| (-480) (-945 (-1081))) ELT) (((-345 (-480)) $) 25 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-480) (-816))) (|has| (-480) (-116))) ELT)) (-3111 (((-689)) 13 T CONST)) (-3116 (((-480) $) 62 (|has| (-480) (-479)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3366 (($ $) NIL (|has| (-480) (-735)) ELT)) (-2646 (($) 14 T CONST)) (-2652 (($) 17 T CONST)) (-2655 (($ $ (-1 (-480) (-480))) NIL T ELT) (($ $ (-1 (-480) (-480)) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| (-480) (-806 (-1081))) ELT) (($ $) NIL (|has| (-480) (-187)) ELT) (($ $ (-689)) NIL (|has| (-480) (-187)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-3042 (((-83) $ $) 21 T ELT)) (-2670 (((-83) $ $) NIL (|has| (-480) (-751)) ELT)) (-2671 (((-83) $ $) 40 (|has| (-480) (-751)) ELT)) (-3932 (($ $ $) 36 T ELT) (($ (-480) (-480)) 38 T ELT)) (-3820 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3822 (($ $ $) 28 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ (-480) $) 32 T ELT) (($ $ (-480)) NIL T ELT))) -(((-912 |#1|) (-13 (-899 (-480)) (-549 (-345 (-480))) (-10 -8 (-15 -3113 ((-345 (-480)) $)) (-15 -3003 ((-580 (-480)) $)) (-15 -3002 ((-1060 (-480)) $)) (-15 -3001 ((-580 (-480)) $)) (-15 -3000 ((-580 (-480)) $)) (-15 -2999 ($ (-580 (-480)))) (-15 -2998 ($ (-580 (-480)) (-580 (-480)))))) (-480)) (T -912)) -((-3113 (*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) (-2998 (*1 *1 *2 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -((-3004 (((-51) (-345 (-480)) (-480)) 9 T ELT))) -(((-913) (-10 -7 (-15 -3004 ((-51) (-345 (-480)) (-480))))) (T -913)) -((-3004 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-480))) (-5 *4 (-480)) (-5 *2 (-51)) (-5 *1 (-913))))) -((-3121 (((-480)) 21 T ELT)) (-3007 (((-480)) 26 T ELT)) (-3006 (((-1176) (-480)) 24 T ELT)) (-3005 (((-480) (-480)) 27 T ELT) (((-480)) 20 T ELT))) -(((-914) (-10 -7 (-15 -3005 ((-480))) (-15 -3121 ((-480))) (-15 -3005 ((-480) (-480))) (-15 -3006 ((-1176) (-480))) (-15 -3007 ((-480))))) (T -914)) -((-3007 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-914)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914)))) (-3121 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914)))) (-3005 (*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914))))) -((-3716 (((-343 |#1|) |#1|) 43 T ELT)) (-3715 (((-343 |#1|) |#1|) 41 T ELT))) -(((-915 |#1|) (-10 -7 (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3716 ((-343 |#1|) |#1|))) (-1146 (-345 (-480)))) (T -915)) -((-3716 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1146 (-345 (-480)))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1146 (-345 (-480))))))) -((-3010 (((-3 (-345 (-480)) "failed") |#1|) 15 T ELT)) (-3009 (((-83) |#1|) 14 T ELT)) (-3008 (((-345 (-480)) |#1|) 10 T ELT))) -(((-916 |#1|) (-10 -7 (-15 -3008 ((-345 (-480)) |#1|)) (-15 -3009 ((-83) |#1|)) (-15 -3010 ((-3 (-345 (-480)) "failed") |#1|))) (-945 (-345 (-480)))) (T -916)) -((-3010 (*1 *2 *3) (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-916 *3)) (-4 *3 (-945 *2)))) (-3009 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-916 *3)) (-4 *3 (-945 (-345 (-480)))))) (-3008 (*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-916 *3)) (-4 *3 (-945 *2))))) -((-3771 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3783 ((|#2| $ #1#) 10 T ELT)) (-3014 (((-83) $ $) 18 T ELT))) -(((-917 |#1| |#2|) (-10 -7 (-15 -3771 (|#2| |#1| #1="value" |#2|)) (-15 -3014 ((-83) |#1| |#1|)) (-15 -3783 (|#2| |#1| #1#))) (-918 |#2|) (-1120)) (T -917)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3707 (($) 7 T CONST)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ "value") 51 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-918 |#1|) (-111) (-1120)) (T -918)) -((-3505 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-580 *1)) (-4 *1 (-918 *3)))) (-3017 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-580 *1)) (-4 *1 (-918 *3)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1120)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-918 *2)) (-4 *2 (-1120)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-580 *3)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-480)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *1)) (|has| *1 (-6 -3979)) (-4 *1 (-918 *3)) (-4 *3 (-1120)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3979)) (-4 *1 (-918 *2)) (-4 *2 (-1120)))) (-3011 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-918 *2)) (-4 *2 (-1120))))) -(-13 (-424 |t#1|) (-10 -8 (-15 -3505 ((-580 $) $)) (-15 -3017 ((-580 $) $)) (-15 -3510 ((-83) $)) (-15 -3385 (|t#1| $)) (-15 -3783 (|t#1| $ "value")) (-15 -3616 ((-83) $)) (-15 -3016 ((-580 |t#1|) $)) (-15 -3015 ((-480) $ $)) (IF (|has| |t#1| (-1007)) (PROGN (-15 -3014 ((-83) $ $)) (-15 -3013 ((-83) $ $))) |%noBranch|) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3012 ($ $ (-580 $))) (-15 -3771 (|t#1| $ "value" |t#1|)) (-15 -3011 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-3023 (($ $) 9 T ELT) (($ $ (-825)) 49 T ELT) (($ (-345 (-480))) 13 T ELT) (($ (-480)) 15 T ELT)) (-3168 (((-3 $ #1="failed") (-1076 $) (-825) (-767)) 24 T ELT) (((-3 $ #1#) (-1076 $) (-825)) 32 T ELT)) (-2997 (($ $ (-480)) 58 T ELT)) (-3111 (((-689)) 18 T CONST)) (-3169 (((-580 $) (-1076 $)) NIL T ELT) (((-580 $) (-1076 (-345 (-480)))) 63 T ELT) (((-580 $) (-1076 (-480))) 68 T ELT) (((-580 $) (-852 $)) 72 T ELT) (((-580 $) (-852 (-345 (-480)))) 76 T ELT) (((-580 $) (-852 (-480))) 80 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT) (($ $ (-345 (-480))) 53 T ELT))) -(((-919 |#1|) (-10 -7 (-15 -3023 (|#1| (-480))) (-15 -3023 (|#1| (-345 (-480)))) (-15 -3023 (|#1| |#1| (-825))) (-15 -3169 ((-580 |#1|) (-852 (-480)))) (-15 -3169 ((-580 |#1|) (-852 (-345 (-480))))) (-15 -3169 ((-580 |#1|) (-852 |#1|))) (-15 -3169 ((-580 |#1|) (-1076 (-480)))) (-15 -3169 ((-580 |#1|) (-1076 (-345 (-480))))) (-15 -3169 ((-580 |#1|) (-1076 |#1|))) (-15 -3168 ((-3 |#1| #1="failed") (-1076 |#1|) (-825))) (-15 -3168 ((-3 |#1| #1#) (-1076 |#1|) (-825) (-767))) (-15 ** (|#1| |#1| (-345 (-480)))) (-15 -2997 (|#1| |#1| (-480))) (-15 -3023 (|#1| |#1|)) (-15 ** (|#1| |#1| (-480))) (-15 -3111 ((-689)) -3935) (-15 ** (|#1| |#1| (-689))) (-15 ** (|#1| |#1| (-825)))) (-920)) (T -919)) -((-3111 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 109 T ELT)) (-2051 (($ $) 110 T ELT)) (-2049 (((-83) $) 112 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 129 T ELT)) (-3954 (((-343 $) $) 130 T ELT)) (-3023 (($ $) 93 T ELT) (($ $ (-825)) 79 T ELT) (($ (-345 (-480))) 78 T ELT) (($ (-480)) 77 T ELT)) (-1597 (((-83) $ $) 120 T ELT)) (-3606 (((-480) $) 146 T ELT)) (-3707 (($) 22 T CONST)) (-3168 (((-3 $ "failed") (-1076 $) (-825) (-767)) 87 T ELT) (((-3 $ "failed") (-1076 $) (-825)) 86 T ELT)) (-3142 (((-3 (-480) #1="failed") $) 106 (|has| (-345 (-480)) (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 104 (|has| (-345 (-480)) (-945 (-345 (-480)))) ELT) (((-3 (-345 (-480)) #1#) $) 101 T ELT)) (-3141 (((-480) $) 105 (|has| (-345 (-480)) (-945 (-480))) ELT) (((-345 (-480)) $) 103 (|has| (-345 (-480)) (-945 (-345 (-480)))) ELT) (((-345 (-480)) $) 102 T ELT)) (-3019 (($ $ (-767)) 76 T ELT)) (-3018 (($ $ (-767)) 75 T ELT)) (-2550 (($ $ $) 124 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 123 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 118 T ELT)) (-3706 (((-83) $) 131 T ELT)) (-3171 (((-83) $) 144 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 92 T ELT)) (-3172 (((-83) $) 145 T ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 127 T ELT)) (-2517 (($ $ $) 138 T ELT)) (-2843 (($ $ $) 139 T ELT)) (-3020 (((-3 (-1076 $) "failed") $) 88 T ELT)) (-3022 (((-3 (-767) "failed") $) 90 T ELT)) (-3021 (((-3 (-1076 $) "failed") $) 89 T ELT)) (-1880 (($ (-580 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 132 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 117 T ELT)) (-3129 (($ (-580 $)) 114 T ELT) (($ $ $) 113 T ELT)) (-3715 (((-343 $) $) 128 T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 126 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 125 T ELT)) (-3449 (((-3 $ "failed") $ $) 108 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 119 T ELT)) (-1596 (((-689) $) 121 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 122 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 136 T ELT) (($ $) 107 T ELT) (($ (-345 (-480))) 100 T ELT) (($ (-480)) 99 T ELT) (($ (-345 (-480))) 96 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 111 T ELT)) (-3753 (((-345 (-480)) $ $) 74 T ELT)) (-3169 (((-580 $) (-1076 $)) 85 T ELT) (((-580 $) (-1076 (-345 (-480)))) 84 T ELT) (((-580 $) (-1076 (-480))) 83 T ELT) (((-580 $) (-852 $)) 82 T ELT) (((-580 $) (-852 (-345 (-480)))) 81 T ELT) (((-580 $) (-852 (-480))) 80 T ELT)) (-3366 (($ $) 147 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 140 T ELT)) (-2553 (((-83) $ $) 142 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 141 T ELT)) (-2671 (((-83) $ $) 143 T ELT)) (-3932 (($ $ $) 137 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 133 T ELT) (($ $ (-345 (-480))) 91 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-345 (-480)) $) 135 T ELT) (($ $ (-345 (-480))) 134 T ELT) (($ (-480) $) 98 T ELT) (($ $ (-480)) 97 T ELT) (($ (-345 (-480)) $) 95 T ELT) (($ $ (-345 (-480))) 94 T ELT))) -(((-920) (-111)) (T -920)) -((-3023 (*1 *1 *1) (-4 *1 (-920))) (-3022 (*1 *2 *1) (|partial| -12 (-4 *1 (-920)) (-5 *2 (-767)))) (-3021 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076 *1)) (-4 *1 (-920)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076 *1)) (-4 *1 (-920)))) (-3168 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1076 *1)) (-5 *3 (-825)) (-5 *4 (-767)) (-4 *1 (-920)))) (-3168 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1076 *1)) (-5 *3 (-825)) (-4 *1 (-920)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-920)) (-5 *2 (-580 *1)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1076 (-345 (-480)))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1076 (-480))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-920)) (-5 *2 (-580 *1)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-852 (-345 (-480)))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-852 (-480))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) (-3023 (*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-825)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-4 *1 (-920)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-920)))) (-3019 (*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-767)))) (-3018 (*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-767)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *1 (-920)) (-5 *2 (-345 (-480)))))) -(-13 (-118) (-750) (-144) (-309) (-350 (-345 (-480))) (-38 (-480)) (-38 (-345 (-480))) (-910) (-10 -8 (-15 -3022 ((-3 (-767) "failed") $)) (-15 -3021 ((-3 (-1076 $) "failed") $)) (-15 -3020 ((-3 (-1076 $) "failed") $)) (-15 -3168 ((-3 $ "failed") (-1076 $) (-825) (-767))) (-15 -3168 ((-3 $ "failed") (-1076 $) (-825))) (-15 -3169 ((-580 $) (-1076 $))) (-15 -3169 ((-580 $) (-1076 (-345 (-480))))) (-15 -3169 ((-580 $) (-1076 (-480)))) (-15 -3169 ((-580 $) (-852 $))) (-15 -3169 ((-580 $) (-852 (-345 (-480))))) (-15 -3169 ((-580 $) (-852 (-480)))) (-15 -3023 ($ $ (-825))) (-15 -3023 ($ $)) (-15 -3023 ($ (-345 (-480)))) (-15 -3023 ($ (-480))) (-15 -3019 ($ $ (-767))) (-15 -3018 ($ $ (-767))) (-15 -3753 ((-345 (-480)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 (-480)) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 (-480) (-480)) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-350 (-345 (-480))) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 (-480)) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 (-480)) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 (-480)) . T) ((-651 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-750) . T) ((-751) . T) ((-754) . T) ((-827) . T) ((-910) . T) ((-945 (-345 (-480))) . T) ((-945 (-480)) |has| (-345 (-480)) (-945 (-480))) ((-958 (-345 (-480))) . T) ((-958 (-480)) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 (-480)) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-3024 (((-2 (|:| |ans| |#2|) (|:| -3122 |#2|) (|:| |sol?| (-83))) (-480) |#2| |#2| (-1081) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-580 |#2|)) (-1 (-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-921 |#1| |#2|) (-10 -7 (-15 -3024 ((-2 (|:| |ans| |#2|) (|:| -3122 |#2|) (|:| |sol?| (-83))) (-480) |#2| |#2| (-1081) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-580 |#2|)) (-1 (-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-387) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-27) (-359 |#1|))) (T -921)) -((-3024 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1081)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-580 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-359 *8))) (-4 *8 (-13 (-387) (-118) (-945 *3) (-577 *3))) (-5 *3 (-480)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3122 *4) (|:| |sol?| (-83)))) (-5 *1 (-921 *8 *4))))) -((-3025 (((-3 (-580 |#2|) #1="failed") (-480) |#2| |#2| |#2| (-1081) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-580 |#2|)) (-1 (-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-922 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-580 |#2|) #1="failed") (-480) |#2| |#2| |#2| (-1081) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-580 |#2|)) (-1 (-3 (-2 (|:| -2124 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-387) (-118) (-945 (-480)) (-577 (-480))) (-13 (-1106) (-27) (-359 |#1|))) (T -922)) -((-3025 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1081)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-580 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-359 *8))) (-4 *8 (-13 (-387) (-118) (-945 *3) (-577 *3))) (-5 *3 (-480)) (-5 *2 (-580 *4)) (-5 *1 (-922 *8 *4))))) -((-3028 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3251 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-480)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-480) (-1 |#2| |#2|)) 39 T ELT)) (-3026 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-345 |#2|)) (|:| |c| (-345 |#2|)) (|:| -3079 |#2|)) "failed") (-345 |#2|) (-345 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3027 (((-2 (|:| |ans| (-345 |#2|)) (|:| |nosol| (-83))) (-345 |#2|) (-345 |#2|)) 76 T ELT))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3026 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-345 |#2|)) (|:| |c| (-345 |#2|)) (|:| -3079 |#2|)) "failed") (-345 |#2|) (-345 |#2|) (-1 |#2| |#2|))) (-15 -3027 ((-2 (|:| |ans| (-345 |#2|)) (|:| |nosol| (-83))) (-345 |#2|) (-345 |#2|))) (-15 -3028 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3251 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-480)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-480) (-1 |#2| |#2|)))) (-13 (-309) (-118) (-945 (-480))) (-1146 |#1|)) (T -923)) -((-3028 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1146 *6)) (-4 *6 (-13 (-309) (-118) (-945 *4))) (-5 *4 (-480)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) (|:| -3251 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-923 *6 *3)))) (-3027 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| |ans| (-345 *5)) (|:| |nosol| (-83)))) (-5 *1 (-923 *4 *5)) (-5 *3 (-345 *5)))) (-3026 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-345 *6)) (|:| |c| (-345 *6)) (|:| -3079 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-345 *6))))) -((-3029 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-345 |#2|)) (|:| |h| |#2|) (|:| |c1| (-345 |#2|)) (|:| |c2| (-345 |#2|)) (|:| -3079 |#2|)) #1="failed") (-345 |#2|) (-345 |#2|) (-345 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3030 (((-3 (-580 (-345 |#2|)) #1#) (-345 |#2|) (-345 |#2|) (-345 |#2|)) 34 T ELT))) -(((-924 |#1| |#2|) (-10 -7 (-15 -3029 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-345 |#2|)) (|:| |h| |#2|) (|:| |c1| (-345 |#2|)) (|:| |c2| (-345 |#2|)) (|:| -3079 |#2|)) #1="failed") (-345 |#2|) (-345 |#2|) (-345 |#2|) (-1 |#2| |#2|))) (-15 -3030 ((-3 (-580 (-345 |#2|)) #1#) (-345 |#2|) (-345 |#2|) (-345 |#2|)))) (-13 (-309) (-118) (-945 (-480))) (-1146 |#1|)) (T -924)) -((-3030 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) (-5 *2 (-580 (-345 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-345 *5)))) (-3029 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-13 (-309) (-118) (-945 (-480)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-345 *6)) (|:| |h| *6) (|:| |c1| (-345 *6)) (|:| |c2| (-345 *6)) (|:| -3079 *6))) (-5 *1 (-924 *5 *6)) (-5 *3 (-345 *6))))) -((-3031 (((-1 |#1|) (-580 (-2 (|:| -3385 |#1|) (|:| -1511 (-480))))) 34 T ELT)) (-3086 (((-1 |#1|) (-1003 |#1|)) 42 T ELT)) (-3032 (((-1 |#1|) (-1170 |#1|) (-1170 (-480)) (-480)) 31 T ELT))) -(((-925 |#1|) (-10 -7 (-15 -3086 ((-1 |#1|) (-1003 |#1|))) (-15 -3031 ((-1 |#1|) (-580 (-2 (|:| -3385 |#1|) (|:| -1511 (-480)))))) (-15 -3032 ((-1 |#1|) (-1170 |#1|) (-1170 (-480)) (-480)))) (-1007)) (T -925)) -((-3032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1170 *6)) (-5 *4 (-1170 (-480))) (-5 *5 (-480)) (-4 *6 (-1007)) (-5 *2 (-1 *6)) (-5 *1 (-925 *6)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3385 *4) (|:| -1511 (-480))))) (-4 *4 (-1007)) (-5 *2 (-1 *4)) (-5 *1 (-925 *4)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-1003 *4)) (-4 *4 (-1007)) (-5 *2 (-1 *4)) (-5 *1 (-925 *4))))) -((-3755 (((-689) (-280 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 ((-689) (-280 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-309) (-1146 |#1|) (-1146 (-345 |#2|)) (-288 |#1| |#2| |#3|) (-13 (-315) (-309))) (T -926)) -((-3755 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-280 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-309)) (-4 *7 (-1146 *6)) (-4 *4 (-1146 (-345 *7))) (-4 *8 (-288 *6 *7 *4)) (-4 *9 (-13 (-315) (-309))) (-5 *2 (-689)) (-5 *1 (-926 *6 *7 *4 *8 *9))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3578 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-927) (-13 (-989) (-10 -8 (-15 -3578 ((-1040) $)) (-15 -3218 ((-1040) $))))) (T -927)) -((-3578 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-927)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-927))))) -((-3955 (((-177) $) 6 T ELT) (((-325) $) 9 T ELT))) -(((-928) (-111)) (T -928)) -NIL -(-13 (-550 (-177)) (-550 (-325))) -(((-550 (-177)) . T) ((-550 (-325)) . T)) -((-3119 (((-3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) "failed") |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) 32 T ELT) (((-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480))) 29 T ELT)) (-3035 (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480))) 34 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-345 (-480))) 30 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) 33 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1|) 28 T ELT)) (-3034 (((-580 (-345 (-480))) (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) 20 T ELT)) (-3033 (((-345 (-480)) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) 17 T ELT))) -(((-929 |#1|) (-10 -7 (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1|)) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-345 (-480)))) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480)))) (-15 -3119 ((-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480)))) (-15 -3119 ((-3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) "failed") |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-15 -3033 ((-345 (-480)) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-15 -3034 ((-580 (-345 (-480))) (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))))) (-1146 (-480))) (T -929)) -((-3034 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *2 (-580 (-345 (-480)))) (-5 *1 (-929 *4)) (-4 *4 (-1146 (-480))))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) (-5 *2 (-345 (-480))) (-5 *1 (-929 *4)) (-4 *4 (-1146 (-480))))) (-3119 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))))) (-3119 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) (-5 *4 (-345 (-480))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))))) (-3035 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *5) (|:| -3122 *5)))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) (-5 *4 (-2 (|:| -3123 *5) (|:| -3122 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) (-5 *4 (-345 (-480))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) (-5 *4 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480)))))) -((-3119 (((-3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) "failed") |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) 35 T ELT) (((-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480))) 32 T ELT)) (-3035 (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480))) 30 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-345 (-480))) 26 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) 28 T ELT) (((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1|) 24 T ELT))) -(((-930 |#1|) (-10 -7 (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1|)) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-345 (-480)))) (-15 -3035 ((-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480)))) (-15 -3119 ((-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-345 (-480)))) (-15 -3119 ((-3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) "failed") |#1| (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))) (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))))) (-1146 (-345 (-480)))) (T -930)) -((-3119 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480)))))) (-3119 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) (-5 *4 (-345 (-480))) (-5 *1 (-930 *3)) (-4 *3 (-1146 *4)))) (-3035 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *5) (|:| -3122 *5)))) (-5 *1 (-930 *3)) (-4 *3 (-1146 *5)) (-5 *4 (-2 (|:| -3123 *5) (|:| -3122 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *4 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *4) (|:| -3122 *4)))) (-5 *1 (-930 *3)) (-4 *3 (-1146 *4)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480)))) (-5 *4 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480))))))) -((-3556 (((-580 (-325)) (-852 (-480)) (-325)) 28 T ELT) (((-580 (-325)) (-852 (-345 (-480))) (-325)) 27 T ELT)) (-3952 (((-580 (-580 (-325))) (-580 (-852 (-480))) (-580 (-1081)) (-325)) 37 T ELT))) -(((-931) (-10 -7 (-15 -3556 ((-580 (-325)) (-852 (-345 (-480))) (-325))) (-15 -3556 ((-580 (-325)) (-852 (-480)) (-325))) (-15 -3952 ((-580 (-580 (-325))) (-580 (-852 (-480))) (-580 (-1081)) (-325))))) (T -931)) -((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-852 (-480)))) (-5 *4 (-580 (-1081))) (-5 *2 (-580 (-580 (-325)))) (-5 *1 (-931)) (-5 *5 (-325)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-852 (-480))) (-5 *2 (-580 (-325))) (-5 *1 (-931)) (-5 *4 (-325)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-852 (-345 (-480)))) (-5 *2 (-580 (-325))) (-5 *1 (-931)) (-5 *4 (-325))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 75 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-3023 (($ $) NIL T ELT) (($ $ (-825)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-480)) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) 70 T ELT)) (-3707 (($) NIL T CONST)) (-3168 (((-3 $ #1#) (-1076 $) (-825) (-767)) NIL T ELT) (((-3 $ #1#) (-1076 $) (-825)) 55 T ELT)) (-3142 (((-3 (-345 (-480)) #1#) $) NIL (|has| (-345 (-480)) (-945 (-345 (-480)))) ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-480) #1#) $) NIL (OR (|has| (-345 (-480)) (-945 (-480))) (|has| |#1| (-945 (-480)))) ELT)) (-3141 (((-345 (-480)) $) 17 (|has| (-345 (-480)) (-945 (-345 (-480)))) ELT) (((-345 (-480)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-480) $) NIL (OR (|has| (-345 (-480)) (-945 (-480))) (|has| |#1| (-945 (-480)))) ELT)) (-3019 (($ $ (-767)) 47 T ELT)) (-3018 (($ $ (-767)) 48 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-3167 (((-345 (-480)) $ $) 21 T ELT)) (-3450 (((-3 $ #1#) $) 88 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-3171 (((-83) $) 66 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL T ELT)) (-3172 (((-83) $) 69 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3020 (((-3 (-1076 $) #1#) $) 83 T ELT)) (-3022 (((-3 (-767) #1#) $) 82 T ELT)) (-3021 (((-3 (-1076 $) #1#) $) 80 T ELT)) (-3036 (((-3 (-968 $ (-1076 $)) #1#) $) 78 T ELT)) (-1880 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 89 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3929 (((-767) $) 87 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) 63 T ELT) (($ (-345 (-480))) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-3753 (((-345 (-480)) $ $) 27 T ELT)) (-3169 (((-580 $) (-1076 $)) 61 T ELT) (((-580 $) (-1076 (-345 (-480)))) NIL T ELT) (((-580 $) (-1076 (-480))) NIL T ELT) (((-580 $) (-852 $)) NIL T ELT) (((-580 $) (-852 (-345 (-480)))) NIL T ELT) (((-580 $) (-852 (-480))) NIL T ELT)) (-3037 (($ (-968 $ (-1076 $)) (-767)) 46 T ELT)) (-3366 (($ $) 22 T ELT)) (-2646 (($) 32 T CONST)) (-2652 (($) 39 T CONST)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 76 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 24 T ELT)) (-3932 (($ $ $) 37 T ELT)) (-3820 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3822 (($ $ $) 111 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ (-480) $) 71 T ELT) (($ $ (-480)) NIL T ELT) (($ (-345 (-480)) $) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-932 |#1|) (-13 (-920) (-350 |#1|) (-38 |#1|) (-10 -8 (-15 -3037 ($ (-968 $ (-1076 $)) (-767))) (-15 -3036 ((-3 (-968 $ (-1076 $)) "failed") $)) (-15 -3167 ((-345 (-480)) $ $)))) (-13 (-750) (-309) (-928))) (T -932)) -((-3037 (*1 *1 *2 *3) (-12 (-5 *2 (-968 (-932 *4) (-1076 (-932 *4)))) (-5 *3 (-767)) (-5 *1 (-932 *4)) (-4 *4 (-13 (-750) (-309) (-928))))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-968 (-932 *3) (-1076 (-932 *3)))) (-5 *1 (-932 *3)) (-4 *3 (-13 (-750) (-309) (-928))))) (-3167 (*1 *2 *1 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-932 *3)) (-4 *3 (-13 (-750) (-309) (-928)))))) -((-3038 (((-2 (|:| -3251 |#2|) (|:| -2499 (-580 |#1|))) |#2| (-580 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-933 |#1| |#2|) (-10 -7 (-15 -3038 (|#2| |#2| |#1|)) (-15 -3038 ((-2 (|:| -3251 |#2|) (|:| -2499 (-580 |#1|))) |#2| (-580 |#1|)))) (-309) (-597 |#1|)) (T -933)) -((-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-5 *2 (-2 (|:| -3251 *3) (|:| -2499 (-580 *5)))) (-5 *1 (-933 *5 *3)) (-5 *4 (-580 *5)) (-4 *3 (-597 *5)))) (-3038 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-933 *3 *2)) (-4 *2 (-597 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3039 ((|#1| $ |#1|) 12 T ELT)) (-3041 (($ |#1|) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3040 ((|#1| $) 11 T ELT)) (-3929 (((-767) $) 17 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 9 T ELT))) -(((-934 |#1|) (-13 (-1007) (-10 -8 (-15 -3041 ($ |#1|)) (-15 -3040 (|#1| $)) (-15 -3039 (|#1| $ |#1|)) (-15 -3042 ((-83) $ $)))) (-1120)) (T -934)) -((-3042 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-934 *3)) (-4 *3 (-1120)))) (-3041 (*1 *1 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120)))) (-3040 (*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120)))) (-3039 (*1 *2 *1 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) NIL T ELT)) (-3665 (((-580 $) (-580 |#4|)) 114 T ELT) (((-580 $) (-580 |#4|) (-83)) 115 T ELT) (((-580 $) (-580 |#4|) (-83) (-83)) 113 T ELT) (((-580 $) (-580 |#4|) (-83) (-83) (-83) (-83)) 116 T ELT)) (-3067 (((-580 |#3|) $) NIL T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 108 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3693 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1#) (-580 |#4|)) NIL T ELT)) (-3141 (($ (-580 |#4|)) NIL T ELT)) (-3782 (((-3 $ #1#) $) 45 T ELT)) (-3668 ((|#4| |#4| $) 66 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3389 (($ |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 ((|#4| |#4| $) NIL T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) NIL T ELT)) (-3182 (((-83) |#4| $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3183 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3421 (((-2 (|:| |val| (-580 |#4|)) (|:| |towers| (-580 $))) (-580 |#4|) (-83) (-83)) 129 T ELT)) (-2875 (((-580 |#4|) $) 18 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 19 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2900 (((-580 |#3|) $) NIL T ELT)) (-2899 (((-83) |#3| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) NIL T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 106 T ELT)) (-3781 (((-3 |#4| #1#) $) 42 T ELT)) (-3177 (((-580 $) |#4| $) 89 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) NIL T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 99 T ELT) (((-83) |#4| $) 61 T ELT)) (-3223 (((-580 $) |#4| $) 111 T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) 112 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT)) (-3422 (((-580 $) (-580 |#4|) (-83) (-83) (-83)) 124 T ELT)) (-3423 (($ |#4| $) 78 T ELT) (($ (-580 |#4|) $) 79 T ELT) (((-580 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 75 T ELT)) (-3680 (((-580 |#4|) $) NIL T ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3682 (((-83) $ $) NIL T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-3 |#4| #1#) $) 40 T ELT)) (-1343 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3752 (($ $ |#4|) NIL T ELT) (((-580 $) |#4| $) 91 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) 85 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 17 T ELT)) (-3548 (($) 14 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-1935 (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 13 T ELT)) (-3955 (((-469) $) NIL (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 22 T ELT)) (-2896 (($ $ |#3|) 49 T ELT)) (-2898 (($ $ |#3|) 51 T ELT)) (-3667 (($ $) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3929 (((-767) $) 35 T ELT) (((-580 |#4|) $) 46 T ELT)) (-3661 (((-689) $) NIL (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) NIL T ELT)) (-3174 (((-580 $) |#4| $) 88 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT)) (-3916 (((-83) |#3| $) 62 T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-935 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3423 ((-580 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3665 ((-580 $) (-580 |#4|) (-83) (-83))) (-15 -3665 ((-580 $) (-580 |#4|) (-83) (-83) (-83) (-83))) (-15 -3422 ((-580 $) (-580 |#4|) (-83) (-83) (-83))) (-15 -3421 ((-2 (|:| |val| (-580 |#4|)) (|:| |towers| (-580 $))) (-580 |#4|) (-83) (-83))))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -935)) -((-3423 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *3))) (-5 *1 (-935 *5 *6 *7 *3)) (-4 *3 (-971 *5 *6 *7)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) (-5 *1 (-935 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) (-5 *1 (-935 *5 *6 *7 *8)))) (-3422 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) (-5 *1 (-935 *5 *6 *7 *8)))) (-3421 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-580 *8)) (|:| |towers| (-580 (-935 *5 *6 *7 *8))))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *3 (-580 *8))))) -((-3043 (((-580 (-2 (|:| |radval| (-262 (-480))) (|:| |radmult| (-480)) (|:| |radvect| (-580 (-627 (-262 (-480))))))) (-627 (-345 (-852 (-480))))) 67 T ELT)) (-3044 (((-580 (-627 (-262 (-480)))) (-262 (-480)) (-627 (-345 (-852 (-480))))) 52 T ELT)) (-3045 (((-580 (-262 (-480))) (-627 (-345 (-852 (-480))))) 45 T ELT)) (-3049 (((-580 (-627 (-262 (-480)))) (-627 (-345 (-852 (-480))))) 85 T ELT)) (-3047 (((-627 (-262 (-480))) (-627 (-262 (-480)))) 38 T ELT)) (-3048 (((-580 (-627 (-262 (-480)))) (-580 (-627 (-262 (-480))))) 74 T ELT)) (-3046 (((-3 (-627 (-262 (-480))) "failed") (-627 (-345 (-852 (-480))))) 82 T ELT))) -(((-936) (-10 -7 (-15 -3043 ((-580 (-2 (|:| |radval| (-262 (-480))) (|:| |radmult| (-480)) (|:| |radvect| (-580 (-627 (-262 (-480))))))) (-627 (-345 (-852 (-480)))))) (-15 -3044 ((-580 (-627 (-262 (-480)))) (-262 (-480)) (-627 (-345 (-852 (-480)))))) (-15 -3045 ((-580 (-262 (-480))) (-627 (-345 (-852 (-480)))))) (-15 -3046 ((-3 (-627 (-262 (-480))) "failed") (-627 (-345 (-852 (-480)))))) (-15 -3047 ((-627 (-262 (-480))) (-627 (-262 (-480))))) (-15 -3048 ((-580 (-627 (-262 (-480)))) (-580 (-627 (-262 (-480)))))) (-15 -3049 ((-580 (-627 (-262 (-480)))) (-627 (-345 (-852 (-480)))))))) (T -936)) -((-3049 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-627 (-262 (-480))))) (-5 *1 (-936)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-580 (-627 (-262 (-480))))) (-5 *1 (-936)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-627 (-262 (-480)))) (-5 *1 (-936)))) (-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-627 (-262 (-480)))) (-5 *1 (-936)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-262 (-480)))) (-5 *1 (-936)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-627 (-262 (-480))))) (-5 *1 (-936)) (-5 *3 (-262 (-480))))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-2 (|:| |radval| (-262 (-480))) (|:| |radmult| (-480)) (|:| |radvect| (-580 (-627 (-262 (-480)))))))) (-5 *1 (-936))))) -((-3053 (((-580 (-627 |#1|)) (-580 (-627 |#1|))) 69 T ELT) (((-627 |#1|) (-627 |#1|)) 68 T ELT) (((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-580 (-627 |#1|))) 67 T ELT) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 64 T ELT)) (-3052 (((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-825)) 62 T ELT) (((-627 |#1|) (-627 |#1|) (-825)) 61 T ELT)) (-3054 (((-580 (-627 (-480))) (-580 (-580 (-480)))) 80 T ELT) (((-580 (-627 (-480))) (-580 (-808 (-480))) (-480)) 79 T ELT) (((-627 (-480)) (-580 (-480))) 76 T ELT) (((-627 (-480)) (-808 (-480)) (-480)) 74 T ELT)) (-3051 (((-627 (-852 |#1|)) (-689)) 94 T ELT)) (-3050 (((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-825)) 48 (|has| |#1| (-6 (-3980 #1="*"))) ELT) (((-627 |#1|) (-627 |#1|) (-825)) 46 (|has| |#1| (-6 (-3980 #1#))) ELT))) -(((-937 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3980 #1="*"))) (-15 -3050 ((-627 |#1|) (-627 |#1|) (-825))) |%noBranch|) (IF (|has| |#1| (-6 (-3980 #1#))) (-15 -3050 ((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-825))) |%noBranch|) (-15 -3051 ((-627 (-852 |#1|)) (-689))) (-15 -3052 ((-627 |#1|) (-627 |#1|) (-825))) (-15 -3052 ((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-825))) (-15 -3053 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3053 ((-580 (-627 |#1|)) (-580 (-627 |#1|)) (-580 (-627 |#1|)))) (-15 -3053 ((-627 |#1|) (-627 |#1|))) (-15 -3053 ((-580 (-627 |#1|)) (-580 (-627 |#1|)))) (-15 -3054 ((-627 (-480)) (-808 (-480)) (-480))) (-15 -3054 ((-627 (-480)) (-580 (-480)))) (-15 -3054 ((-580 (-627 (-480))) (-580 (-808 (-480))) (-480))) (-15 -3054 ((-580 (-627 (-480))) (-580 (-580 (-480)))))) (-956)) (T -937)) -((-3054 (*1 *2 *3) (-12 (-5 *3 (-580 (-580 (-480)))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-937 *4)) (-4 *4 (-956)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-808 (-480)))) (-5 *4 (-480)) (-5 *2 (-580 (-627 *4))) (-5 *1 (-937 *5)) (-4 *5 (-956)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-937 *4)) (-4 *4 (-956)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-480))) (-5 *4 (-480)) (-5 *2 (-627 *4)) (-5 *1 (-937 *5)) (-4 *5 (-956)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-580 (-627 *3))) (-4 *3 (-956)) (-5 *1 (-937 *3)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-937 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-580 (-627 *3))) (-4 *3 (-956)) (-5 *1 (-937 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-937 *3)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-627 *4))) (-5 *3 (-825)) (-4 *4 (-956)) (-5 *1 (-937 *4)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-825)) (-4 *4 (-956)) (-5 *1 (-937 *4)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-627 (-852 *4))) (-5 *1 (-937 *4)) (-4 *4 (-956)))) (-3050 (*1 *2 *2 *3) (-12 (-5 *2 (-580 (-627 *4))) (-5 *3 (-825)) (|has| *4 (-6 (-3980 "*"))) (-4 *4 (-956)) (-5 *1 (-937 *4)))) (-3050 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-825)) (|has| *4 (-6 (-3980 "*"))) (-4 *4 (-956)) (-5 *1 (-937 *4))))) -((-3058 (((-627 |#1|) (-580 (-627 |#1|)) (-1170 |#1|)) 69 (|has| |#1| (-255)) ELT)) (-3401 (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-1170 (-1170 |#1|))) 107 (|has| |#1| (-309)) ELT) (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-1170 |#1|)) 104 (|has| |#1| (-309)) ELT)) (-3062 (((-1170 |#1|) (-580 (-1170 |#1|)) (-480)) 113 (-12 (|has| |#1| (-309)) (|has| |#1| (-315))) ELT)) (-3061 (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-825)) 119 (-12 (|has| |#1| (-309)) (|has| |#1| (-315))) ELT) (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-83)) 118 (-12 (|has| |#1| (-309)) (|has| |#1| (-315))) ELT) (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|))) 117 (-12 (|has| |#1| (-309)) (|has| |#1| (-315))) ELT) (((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-83) (-480) (-480)) 116 (-12 (|has| |#1| (-309)) (|has| |#1| (-315))) ELT)) (-3060 (((-83) (-580 (-627 |#1|))) 101 (|has| |#1| (-309)) ELT) (((-83) (-580 (-627 |#1|)) (-480)) 100 (|has| |#1| (-309)) ELT)) (-3057 (((-1170 (-1170 |#1|)) (-580 (-627 |#1|)) (-1170 |#1|)) 66 (|has| |#1| (-255)) ELT)) (-3056 (((-627 |#1|) (-580 (-627 |#1|)) (-627 |#1|)) 46 T ELT)) (-3055 (((-627 |#1|) (-1170 (-1170 |#1|))) 39 T ELT)) (-3059 (((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|)) (-480)) 93 (|has| |#1| (-309)) ELT) (((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|))) 92 (|has| |#1| (-309)) ELT) (((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|)) (-83) (-480)) 91 (|has| |#1| (-309)) ELT))) -(((-938 |#1|) (-10 -7 (-15 -3055 ((-627 |#1|) (-1170 (-1170 |#1|)))) (-15 -3056 ((-627 |#1|) (-580 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-255)) (PROGN (-15 -3057 ((-1170 (-1170 |#1|)) (-580 (-627 |#1|)) (-1170 |#1|))) (-15 -3058 ((-627 |#1|) (-580 (-627 |#1|)) (-1170 |#1|)))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-15 -3059 ((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|)) (-83) (-480))) (-15 -3059 ((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|)))) (-15 -3059 ((-627 |#1|) (-580 (-627 |#1|)) (-580 (-627 |#1|)) (-480))) (-15 -3060 ((-83) (-580 (-627 |#1|)) (-480))) (-15 -3060 ((-83) (-580 (-627 |#1|)))) (-15 -3401 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-1170 |#1|))) (-15 -3401 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-1170 (-1170 |#1|))))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-309)) (PROGN (-15 -3061 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-83) (-480) (-480))) (-15 -3061 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)))) (-15 -3061 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-83))) (-15 -3061 ((-580 (-580 (-627 |#1|))) (-580 (-627 |#1|)) (-825))) (-15 -3062 ((-1170 |#1|) (-580 (-1170 |#1|)) (-480)))) |%noBranch|) |%noBranch|)) (-956)) (T -938)) -((-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-1170 *5))) (-5 *4 (-480)) (-5 *2 (-1170 *5)) (-5 *1 (-938 *5)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956)) (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956)) (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *4 (-315)) (-4 *4 (-956)) (-5 *2 (-580 (-580 (-627 *4)))) (-5 *1 (-938 *4)) (-5 *3 (-580 (-627 *4))))) (-3061 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-83)) (-5 *5 (-480)) (-4 *6 (-309)) (-4 *6 (-315)) (-4 *6 (-956)) (-5 *2 (-580 (-580 (-627 *6)))) (-5 *1 (-938 *6)) (-5 *3 (-580 (-627 *6))))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-1170 (-1170 *5))) (-4 *5 (-309)) (-4 *5 (-956)) (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-4 *5 (-956)) (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-580 (-627 *4))) (-4 *4 (-309)) (-4 *4 (-956)) (-5 *2 (-83)) (-5 *1 (-938 *4)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-480)) (-4 *5 (-309)) (-4 *5 (-956)) (-5 *2 (-83)) (-5 *1 (-938 *5)))) (-3059 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-480)) (-5 *2 (-627 *5)) (-5 *1 (-938 *5)) (-4 *5 (-309)) (-4 *5 (-956)))) (-3059 (*1 *2 *3 *3) (-12 (-5 *3 (-580 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-938 *4)) (-4 *4 (-309)) (-4 *4 (-956)))) (-3059 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-580 (-627 *6))) (-5 *4 (-83)) (-5 *5 (-480)) (-5 *2 (-627 *6)) (-5 *1 (-938 *6)) (-4 *6 (-309)) (-4 *6 (-956)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-1170 *5)) (-4 *5 (-255)) (-4 *5 (-956)) (-5 *2 (-627 *5)) (-5 *1 (-938 *5)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-627 *5))) (-4 *5 (-255)) (-4 *5 (-956)) (-5 *2 (-1170 (-1170 *5))) (-5 *1 (-938 *5)) (-5 *4 (-1170 *5)))) (-3056 (*1 *2 *3 *2) (-12 (-5 *3 (-580 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-956)) (-5 *1 (-938 *4)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-4 *4 (-956)) (-5 *2 (-627 *4)) (-5 *1 (-938 *4))))) -((-3063 ((|#1| (-825) |#1|) 18 T ELT))) -(((-939 |#1|) (-10 -7 (-15 -3063 (|#1| (-825) |#1|))) (-13 (-1007) (-10 -8 (-15 -3822 ($ $ $))))) (T -939)) -((-3063 (*1 *2 *3 *2) (-12 (-5 *3 (-825)) (-5 *1 (-939 *2)) (-4 *2 (-13 (-1007) (-10 -8 (-15 -3822 ($ $ $)))))))) -((-3064 ((|#1| |#1| (-825)) 18 T ELT))) -(((-940 |#1|) (-10 -7 (-15 -3064 (|#1| |#1| (-825)))) (-13 (-1007) (-10 -8 (-15 * ($ $ $))))) (T -940)) -((-3064 (*1 *2 *2 *3) (-12 (-5 *3 (-825)) (-5 *1 (-940 *2)) (-4 *2 (-13 (-1007) (-10 -8 (-15 * ($ $ $)))))))) -((-3929 ((|#1| (-259)) 11 T ELT) (((-1176) |#1|) 9 T ELT))) -(((-941 |#1|) (-10 -7 (-15 -3929 ((-1176) |#1|)) (-15 -3929 (|#1| (-259)))) (-1120)) (T -941)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-259)) (-5 *1 (-941 *2)) (-4 *2 (-1120)))) (-3929 (*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-941 *3)) (-4 *3 (-1120))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3825 (($ |#4|) 24 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3065 ((|#4| $) 26 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 45 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3111 (((-689)) 42 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 22 T CONST)) (-3042 (((-83) $ $) 39 T ELT)) (-3820 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 28 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-942 |#1| |#2| |#3| |#4| |#5|) (-13 (-144) (-38 |#1|) (-10 -8 (-15 -3825 ($ |#4|)) (-15 -3929 ($ |#4|)) (-15 -3065 (|#4| $)))) (-309) (-712) (-751) (-856 |#1| |#2| |#3|) (-580 |#4|)) (T -942)) -((-3825 (*1 *1 *2) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *2 (-856 *3 *4 *5)) (-14 *6 (-580 *2)))) (-3929 (*1 *1 *2) (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *2 (-856 *3 *4 *5)) (-14 *6 (-580 *2)))) (-3065 (*1 *2 *1) (-12 (-4 *2 (-856 *3 *4 *5)) (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-14 *6 (-580 *2))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 11 T ELT)) (-3929 (((-767) $) 17 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-943) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $))))) (T -943)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-943))))) -((-3141 ((|#2| $) 10 T ELT))) -(((-944 |#1| |#2|) (-10 -7 (-15 -3141 (|#2| |#1|))) (-945 |#2|) (-1120)) (T -944)) -NIL -((-3142 (((-3 |#1| "failed") $) 9 T ELT)) (-3141 ((|#1| $) 8 T ELT)) (-3929 (($ |#1|) 6 T ELT))) -(((-945 |#1|) (-111) (-1120)) (T -945)) -((-3142 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *2)) (-4 *2 (-1120)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-1120))))) -(-13 (-552 |t#1|) (-10 -8 (-15 -3142 ((-3 |t#1| "failed") $)) (-15 -3141 (|t#1| $)))) -(((-552 |#1|) . T)) -((-3066 (((-580 (-580 (-246 (-345 (-852 |#2|))))) (-580 (-852 |#2|)) (-580 (-1081))) 38 T ELT))) -(((-946 |#1| |#2|) (-10 -7 (-15 -3066 ((-580 (-580 (-246 (-345 (-852 |#2|))))) (-580 (-852 |#2|)) (-580 (-1081))))) (-491) (-13 (-491) (-945 |#1|))) (T -946)) -((-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) (-4 *6 (-13 (-491) (-945 *5))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *6)))))) (-5 *1 (-946 *5 *6))))) -((-3067 (((-580 (-1081)) (-345 (-852 |#1|))) 17 T ELT)) (-3069 (((-345 (-1076 (-345 (-852 |#1|)))) (-345 (-852 |#1|)) (-1081)) 24 T ELT)) (-3070 (((-345 (-852 |#1|)) (-345 (-1076 (-345 (-852 |#1|)))) (-1081)) 26 T ELT)) (-3068 (((-3 (-1081) "failed") (-345 (-852 |#1|))) 20 T ELT)) (-3751 (((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-580 (-246 (-345 (-852 |#1|))))) 32 T ELT) (((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|)))) 33 T ELT) (((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-580 (-1081)) (-580 (-345 (-852 |#1|)))) 28 T ELT) (((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|))) 29 T ELT)) (-3929 (((-345 (-852 |#1|)) |#1|) 11 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3067 ((-580 (-1081)) (-345 (-852 |#1|)))) (-15 -3068 ((-3 (-1081) "failed") (-345 (-852 |#1|)))) (-15 -3069 ((-345 (-1076 (-345 (-852 |#1|)))) (-345 (-852 |#1|)) (-1081))) (-15 -3070 ((-345 (-852 |#1|)) (-345 (-1076 (-345 (-852 |#1|)))) (-1081))) (-15 -3751 ((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|)))) (-15 -3751 ((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-580 (-1081)) (-580 (-345 (-852 |#1|))))) (-15 -3751 ((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-246 (-345 (-852 |#1|))))) (-15 -3751 ((-345 (-852 |#1|)) (-345 (-852 |#1|)) (-580 (-246 (-345 (-852 |#1|)))))) (-15 -3929 ((-345 (-852 |#1|)) |#1|))) (-491)) (T -947)) -((-3929 (*1 *2 *3) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-947 *3)) (-4 *3 (-491)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-246 (-345 (-852 *4))))) (-5 *2 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *1 (-947 *4)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *3 (-246 (-345 (-852 *4)))) (-5 *2 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *1 (-947 *4)))) (-3751 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-580 (-1081))) (-5 *4 (-580 (-345 (-852 *5)))) (-5 *2 (-345 (-852 *5))) (-4 *5 (-491)) (-5 *1 (-947 *5)))) (-3751 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-345 (-852 *4))) (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-947 *4)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-1076 (-345 (-852 *5))))) (-5 *4 (-1081)) (-5 *2 (-345 (-852 *5))) (-5 *1 (-947 *5)) (-4 *5 (-491)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-345 (-1076 (-345 (-852 *5))))) (-5 *1 (-947 *5)) (-5 *3 (-345 (-852 *5))))) (-3068 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-1081)) (-5 *1 (-947 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-580 (-1081))) (-5 *1 (-947 *4))))) -((-3071 (((-325)) 17 T ELT)) (-3086 (((-1 (-325)) (-325) (-325)) 22 T ELT)) (-3079 (((-1 (-325)) (-689)) 48 T ELT)) (-3072 (((-325)) 37 T ELT)) (-3075 (((-1 (-325)) (-325) (-325)) 38 T ELT)) (-3073 (((-325)) 29 T ELT)) (-3076 (((-1 (-325)) (-325)) 30 T ELT)) (-3074 (((-325) (-689)) 43 T ELT)) (-3077 (((-1 (-325)) (-689)) 44 T ELT)) (-3078 (((-1 (-325)) (-689) (-689)) 47 T ELT)) (-3367 (((-1 (-325)) (-689) (-689)) 45 T ELT))) -(((-948) (-10 -7 (-15 -3071 ((-325))) (-15 -3072 ((-325))) (-15 -3073 ((-325))) (-15 -3074 ((-325) (-689))) (-15 -3086 ((-1 (-325)) (-325) (-325))) (-15 -3075 ((-1 (-325)) (-325) (-325))) (-15 -3076 ((-1 (-325)) (-325))) (-15 -3077 ((-1 (-325)) (-689))) (-15 -3367 ((-1 (-325)) (-689) (-689))) (-15 -3078 ((-1 (-325)) (-689) (-689))) (-15 -3079 ((-1 (-325)) (-689))))) (T -948)) -((-3079 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948)))) (-3078 (*1 *2 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948)))) (-3367 (*1 *2 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948)))) (-3076 (*1 *2 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325)))) (-3075 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325)))) (-3086 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-325)) (-5 *1 (-948)))) (-3073 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948)))) (-3072 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948)))) (-3071 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948))))) -((-3715 (((-343 |#1|) |#1|) 33 T ELT))) -(((-949 |#1|) (-10 -7 (-15 -3715 ((-343 |#1|) |#1|))) (-1146 (-345 (-852 (-480))))) (T -949)) -((-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-949 *3)) (-4 *3 (-1146 (-345 (-852 (-480)))))))) -((-3080 (((-345 (-343 (-852 |#1|))) (-345 (-852 |#1|))) 14 T ELT))) -(((-950 |#1|) (-10 -7 (-15 -3080 ((-345 (-343 (-852 |#1|))) (-345 (-852 |#1|))))) (-255)) (T -950)) -((-3080 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-255)) (-5 *2 (-345 (-343 (-852 *4)))) (-5 *1 (-950 *4))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3707 (($) 22 T CONST)) (-3084 ((|#1| $) 28 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3083 ((|#1| $) 27 T ELT)) (-3081 ((|#1|) 25 T CONST)) (-3929 (((-767) $) 13 T ELT)) (-3082 ((|#1| $) 26 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT))) -(((-951 |#1|) (-111) (-23)) (T -951)) -((-3084 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23)))) (-3081 (*1 *2) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3084 (|t#1| $)) (-15 -3083 (|t#1| $)) (-15 -3082 (|t#1| $)) (-15 -3081 (|t#1|) -3935))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3085 (($) 30 T CONST)) (-3707 (($) 22 T CONST)) (-3084 ((|#1| $) 28 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3083 ((|#1| $) 27 T ELT)) (-3081 ((|#1|) 25 T CONST)) (-3929 (((-767) $) 13 T ELT)) (-3082 ((|#1| $) 26 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT))) -(((-952 |#1|) (-111) (-23)) (T -952)) -((-3085 (*1 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-23))))) -(-13 (-951 |t#1|) (-10 -8 (-15 -3085 ($) -3935))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 (-698 |#1| (-768 |#2|)))))) (-580 (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3665 (((-580 $) (-580 (-698 |#1| (-768 |#2|)))) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-83)) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-83) (-83)) NIL T ELT)) (-3067 (((-580 (-768 |#2|)) $) NIL T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3676 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3758 (((-580 (-2 (|:| |val| (-698 |#1| (-768 |#2|))) (|:| -1589 $))) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ (-768 |#2|)) NIL T ELT)) (-3693 (($ (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 (-698 |#1| (-768 |#2|)) #1="failed") $ (-768 |#2|)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3672 (((-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|))) $ (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) (-1 (-83) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-2886 (((-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|))) $) NIL (|has| |#1| (-491)) ELT)) (-2887 (((-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|))) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1#) (-580 (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3141 (($ (-580 (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3782 (((-3 $ #1#) $) NIL T ELT)) (-3668 (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT)) (-3389 (($ (-698 |#1| (-768 |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (($ (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-698 |#1| (-768 |#2|))) (|:| |den| |#1|)) (-698 |#1| (-768 |#2|)) $) NIL (|has| |#1| (-491)) ELT)) (-3677 (((-83) (-698 |#1| (-768 |#2|)) $ (-1 (-83) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3666 (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3825 (((-698 |#1| (-768 |#2|)) (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) $ (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (((-698 |#1| (-768 |#2|)) (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) $ (-698 |#1| (-768 |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-698 |#1| (-768 |#2|)) (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $ (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) (-1 (-83) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3679 (((-2 (|:| -3844 (-580 (-698 |#1| (-768 |#2|)))) (|:| -1691 (-580 (-698 |#1| (-768 |#2|))))) $) NIL T ELT)) (-3182 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3180 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3183 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-2875 (((-580 (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3165 (((-768 |#2|) $) NIL T ELT)) (-2594 (((-580 (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-698 |#1| (-768 |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT)) (-1938 (($ (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) $) NIL T ELT)) (-2900 (((-580 (-768 |#2|)) $) NIL T ELT)) (-2899 (((-83) (-768 |#2|) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3176 (((-3 (-698 |#1| (-768 |#2|)) (-580 $)) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3175 (((-580 (-2 (|:| |val| (-698 |#1| (-768 |#2|))) (|:| -1589 $))) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3781 (((-3 (-698 |#1| (-768 |#2|)) #1#) $) NIL T ELT)) (-3177 (((-580 $) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3179 (((-3 (-83) (-580 $)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3223 (((-580 $) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-580 $)) NIL T ELT) (((-580 $) (-698 |#1| (-768 |#2|)) (-580 $)) NIL T ELT)) (-3423 (($ (-698 |#1| (-768 |#2|)) $) NIL T ELT) (($ (-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT)) (-3680 (((-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT)) (-3674 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3682 (((-83) $ $) NIL T ELT)) (-2889 (((-2 (|:| |num| (-698 |#1| (-768 |#2|))) (|:| |den| |#1|)) (-698 |#1| (-768 |#2|)) $) NIL (|has| |#1| (-491)) ELT)) (-3675 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 (((-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-3 (-698 |#1| (-768 |#2|)) #1#) $) NIL T ELT)) (-1343 (((-3 (-698 |#1| (-768 |#2|)) #1#) (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL T ELT)) (-3662 (((-3 $ #1#) $ (-698 |#1| (-768 |#2|))) NIL T ELT)) (-3752 (($ $ (-698 |#1| (-768 |#2|))) NIL T ELT) (((-580 $) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-580 $) (-698 |#1| (-768 |#2|)) (-580 $)) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-580 $)) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-698 |#1| (-768 |#2|))) (-580 (-698 |#1| (-768 |#2|)))) NIL (-12 (|has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|)))) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (($ $ (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|))) NIL (-12 (|has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|)))) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (($ $ (-246 (-698 |#1| (-768 |#2|)))) NIL (-12 (|has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|)))) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (($ $ (-580 (-246 (-698 |#1| (-768 |#2|))))) NIL (-12 (|has| (-698 |#1| (-768 |#2|)) (-257 (-698 |#1| (-768 |#2|)))) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3931 (((-689) $) NIL T ELT)) (-1935 (((-689) (-698 |#1| (-768 |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-698 |#1| (-768 |#2|)) (-1007))) ELT) (((-689) (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-698 |#1| (-768 |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-2896 (($ $ (-768 |#2|)) NIL T ELT)) (-2898 (($ $ (-768 |#2|)) NIL T ELT)) (-3667 (($ $) NIL T ELT)) (-2897 (($ $ (-768 |#2|)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (((-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT)) (-3661 (((-689) $) NIL (|has| (-768 |#2|) (-315)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 (-698 |#1| (-768 |#2|))))) #1#) (-580 (-698 |#1| (-768 |#2|))) (-1 (-83) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 (-698 |#1| (-768 |#2|))))) #1#) (-580 (-698 |#1| (-768 |#2|))) (-1 (-83) (-698 |#1| (-768 |#2|))) (-1 (-83) (-698 |#1| (-768 |#2|)) (-698 |#1| (-768 |#2|)))) NIL T ELT)) (-3673 (((-83) $ (-1 (-83) (-698 |#1| (-768 |#2|)) (-580 (-698 |#1| (-768 |#2|))))) NIL T ELT)) (-3174 (((-580 $) (-698 |#1| (-768 |#2|)) $) NIL T ELT) (((-580 $) (-698 |#1| (-768 |#2|)) (-580 $)) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) $) NIL T ELT) (((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-580 $)) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-698 |#1| (-768 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 (-768 |#2|)) $) NIL T ELT)) (-3181 (((-83) (-698 |#1| (-768 |#2|)) $) NIL T ELT)) (-3916 (((-83) (-768 |#2|) $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-953 |#1| |#2|) (-13 (-977 |#1| (-465 (-768 |#2|)) (-768 |#2|) (-698 |#1| (-768 |#2|))) (-10 -8 (-15 -3665 ((-580 $) (-580 (-698 |#1| (-768 |#2|))) (-83) (-83))))) (-387) (-580 (-1081))) (T -953)) -((-3665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-953 *5 *6))))) -((-3086 (((-1 (-480)) (-995 (-480))) 32 T ELT)) (-3090 (((-480) (-480) (-480) (-480) (-480)) 29 T ELT)) (-3088 (((-1 (-480)) |RationalNumber|) NIL T ELT)) (-3089 (((-1 (-480)) |RationalNumber|) NIL T ELT)) (-3087 (((-1 (-480)) (-480) |RationalNumber|) NIL T ELT))) -(((-954) (-10 -7 (-15 -3086 ((-1 (-480)) (-995 (-480)))) (-15 -3087 ((-1 (-480)) (-480) |RationalNumber|)) (-15 -3088 ((-1 (-480)) |RationalNumber|)) (-15 -3089 ((-1 (-480)) |RationalNumber|)) (-15 -3090 ((-480) (-480) (-480) (-480) (-480))))) (T -954)) -((-3090 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-954)))) (-3089 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954)))) (-3088 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954)) (-5 *3 (-480)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-995 (-480))) (-5 *2 (-1 (-480))) (-5 *1 (-954))))) -((-3929 (((-767) $) NIL T ELT) (($ (-480)) 10 T ELT))) -(((-955 |#1|) (-10 -7 (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-956)) (T -955)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-956) (-111)) (T -956)) -((-3111 (*1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-689))))) -(-13 (-964) (-1052) (-587 $) (-552 (-480)) (-10 -7 (-15 -3111 ((-689)) -3935) (-6 -3975))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-552 (-480)) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-660) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3091 (((-345 (-852 |#2|)) (-580 |#2|) (-580 |#2|) (-689) (-689)) 55 T ELT))) -(((-957 |#1| |#2|) (-10 -7 (-15 -3091 ((-345 (-852 |#2|)) (-580 |#2|) (-580 |#2|) (-689) (-689)))) (-1081) (-309)) (T -957)) -((-3091 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-689)) (-4 *6 (-309)) (-5 *2 (-345 (-852 *6))) (-5 *1 (-957 *5 *6)) (-14 *5 (-1081))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-958 |#1|) (-111) (-1017)) (T -958)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-1017))))) -(-13 (-1007) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3106 (((-83) $) 38 T ELT)) (-3108 (((-83) $) 17 T ELT)) (-3100 (((-689) $) 13 T ELT)) (-3099 (((-689) $) 14 T ELT)) (-3107 (((-83) $) 30 T ELT)) (-3105 (((-83) $) 40 T ELT))) -(((-959 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3099 ((-689) |#1|)) (-15 -3100 ((-689) |#1|)) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|)) (-15 -3107 ((-83) |#1|)) (-15 -3108 ((-83) |#1|))) (-960 |#2| |#3| |#4| |#5| |#6|) (-689) (-689) (-956) (-194 |#3| |#4|) (-194 |#2| |#4|)) (T -959)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3106 (((-83) $) 61 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-83) $) 63 T ELT)) (-3707 (($) 22 T CONST)) (-3095 (($ $) 44 (|has| |#3| (-255)) ELT)) (-3097 ((|#4| $ (-480)) 49 T ELT)) (-3094 (((-689) $) 43 (|has| |#3| (-491)) ELT)) (-3098 ((|#3| $ (-480) (-480)) 51 T ELT)) (-2875 (((-580 |#3|) $) 75 (|has| $ (-6 -3978)) ELT)) (-3093 (((-689) $) 42 (|has| |#3| (-491)) ELT)) (-3092 (((-580 |#5|) $) 41 (|has| |#3| (-491)) ELT)) (-3100 (((-689) $) 55 T ELT)) (-3099 (((-689) $) 54 T ELT)) (-3104 (((-480) $) 59 T ELT)) (-3102 (((-480) $) 57 T ELT)) (-2594 (((-580 |#3|) $) 76 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#3| $) 78 (-12 (|has| |#3| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3103 (((-480) $) 58 T ELT)) (-3101 (((-480) $) 56 T ELT)) (-3109 (($ (-580 (-580 |#3|))) 64 T ELT)) (-1938 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3577 (((-580 (-580 |#3|)) $) 53 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) 73 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#3|) (-580 |#3|)) 82 (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-246 |#3|)) 80 (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-580 (-246 |#3|))) 79 (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT)) (-1212 (((-83) $ $) 65 T ELT)) (-3386 (((-83) $) 68 T ELT)) (-3548 (($) 67 T ELT)) (-3783 ((|#3| $ (-480) (-480)) 52 T ELT) ((|#3| $ (-480) (-480) |#3|) 50 T ELT)) (-3107 (((-83) $) 62 T ELT)) (-1935 (((-689) |#3| $) 77 (-12 (|has| |#3| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#3|) $) 74 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 66 T ELT)) (-3096 ((|#5| $ (-480)) 48 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-1937 (((-83) (-1 (-83) |#3|) $) 72 (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) 60 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#3|) 45 (|has| |#3| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3940 (((-689) $) 69 (|has| $ (-6 -3978)) ELT))) -(((-960 |#1| |#2| |#3| |#4| |#5|) (-111) (-689) (-689) (-956) (-194 |t#2| |t#3|) (-194 |t#1| |t#3|)) (T -960)) -((-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *5))) (-4 *5 (-956)) (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-83)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-83)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-83)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-480)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-480)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-480)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-480)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-689)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-689)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-5 *2 (-580 (-580 *5))))) (-3783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *6 (-194 *5 *2)) (-4 *7 (-194 *4 *2)) (-4 *2 (-956)))) (-3098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *6 (-194 *5 *2)) (-4 *7 (-194 *4 *2)) (-4 *2 (-956)))) (-3783 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *2 (-956)) (-4 *6 (-194 *5 *2)) (-4 *7 (-194 *4 *2)))) (-3097 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *6 *2 *7)) (-4 *6 (-956)) (-4 *7 (-194 *4 *6)) (-4 *2 (-194 *5 *6)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *6 *7 *2)) (-4 *6 (-956)) (-4 *7 (-194 *5 *6)) (-4 *2 (-194 *4 *6)))) (-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)))) (-3449 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-960 *3 *4 *2 *5 *6)) (-4 *2 (-956)) (-4 *5 (-194 *4 *2)) (-4 *6 (-194 *3 *2)) (-4 *2 (-491)))) (-3932 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2 *5 *6)) (-4 *2 (-956)) (-4 *5 (-194 *4 *2)) (-4 *6 (-194 *3 *2)) (-4 *2 (-309)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-960 *2 *3 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) (-4 *6 (-194 *2 *4)) (-4 *4 (-255)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-689)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-689)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-580 *7))))) -(-13 (-80 |t#3| |t#3|) (-424 |t#3|) (-10 -8 (-6 -3978) (IF (|has| |t#3| (-144)) (-6 (-651 |t#3|)) |%noBranch|) (-15 -3109 ($ (-580 (-580 |t#3|)))) (-15 -3108 ((-83) $)) (-15 -3107 ((-83) $)) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3104 ((-480) $)) (-15 -3103 ((-480) $)) (-15 -3102 ((-480) $)) (-15 -3101 ((-480) $)) (-15 -3100 ((-689) $)) (-15 -3099 ((-689) $)) (-15 -3577 ((-580 (-580 |t#3|)) $)) (-15 -3783 (|t#3| $ (-480) (-480))) (-15 -3098 (|t#3| $ (-480) (-480))) (-15 -3783 (|t#3| $ (-480) (-480) |t#3|)) (-15 -3097 (|t#4| $ (-480))) (-15 -3096 (|t#5| $ (-480))) (-15 -3941 ($ (-1 |t#3| |t#3|) $)) (-15 -3941 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-491)) (-15 -3449 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-309)) (-15 -3932 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-255)) (-15 -3095 ($ $)) |%noBranch|) (IF (|has| |t#3| (-491)) (PROGN (-15 -3094 ((-689) $)) (-15 -3093 ((-689) $)) (-15 -3092 ((-580 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-80 |#3| |#3|) . T) ((-102) . T) ((-549 (-767)) . T) ((-257 |#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ((-424 |#3|) . T) ((-449 |#3| |#3|) -12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ((-13) . T) ((-585 (-480)) . T) ((-585 |#3|) . T) ((-587 |#3|) . T) ((-579 |#3|) |has| |#3| (-144)) ((-651 |#3|) |has| |#3| (-144)) ((-958 |#3|) . T) ((-963 |#3|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-83) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) 47 (|has| |#3| (-255)) ELT)) (-3097 (((-195 |#2| |#3|) $ (-480)) 36 T ELT)) (-3110 (($ (-627 |#3|)) 45 T ELT)) (-3094 (((-689) $) 49 (|has| |#3| (-491)) ELT)) (-3098 ((|#3| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3093 (((-689) $) 51 (|has| |#3| (-491)) ELT)) (-3092 (((-580 (-195 |#1| |#3|)) $) 55 (|has| |#3| (-491)) ELT)) (-3100 (((-689) $) NIL T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-3109 (($ (-580 (-580 |#3|))) 31 T ELT)) (-1938 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3577 (((-580 (-580 |#3|)) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#3|) (-580 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-246 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-580 (-246 |#3|))) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#3| $ (-480) (-480)) NIL T ELT) ((|#3| $ (-480) (-480) |#3|) NIL T ELT)) (-3894 (((-105)) 59 (|has| |#3| (-309)) ELT)) (-3107 (((-83) $) NIL T ELT)) (-1935 (((-689) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT) (((-689) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) 66 (|has| |#3| (-550 (-469))) ELT)) (-3096 (((-195 |#1| |#3|) $ (-480)) 40 T ELT)) (-3929 (((-767) $) 19 T ELT) (((-627 |#3|) $) 42 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-2646 (($) 16 T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#3|) NIL (|has| |#3| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-961 |#1| |#2| |#3|) (-13 (-960 |#1| |#2| |#3| (-195 |#2| |#3|) (-195 |#1| |#3|)) (-549 (-627 |#3|)) (-10 -8 (IF (|has| |#3| (-309)) (-6 (-1178 |#3|)) |%noBranch|) (IF (|has| |#3| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|) (-15 -3110 ($ (-627 |#3|))))) (-689) (-689) (-956)) (T -961)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-956)) (-5 *1 (-961 *3 *4 *5)) (-14 *3 (-689)) (-14 *4 (-689))))) -((-3825 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3941 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-962 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3941 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3825 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-689) (-689) (-956) (-194 |#2| |#3|) (-194 |#1| |#3|) (-960 |#1| |#2| |#3| |#4| |#5|) (-956) (-194 |#2| |#7|) (-194 |#1| |#7|) (-960 |#1| |#2| |#7| |#8| |#9|)) (T -962)) -((-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-956)) (-4 *2 (-956)) (-14 *5 (-689)) (-14 *6 (-689)) (-4 *8 (-194 *6 *7)) (-4 *9 (-194 *5 *7)) (-4 *10 (-194 *6 *2)) (-4 *11 (-194 *5 *2)) (-5 *1 (-962 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-960 *5 *6 *7 *8 *9)) (-4 *12 (-960 *5 *6 *2 *10 *11)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-956)) (-4 *10 (-956)) (-14 *5 (-689)) (-14 *6 (-689)) (-4 *8 (-194 *6 *7)) (-4 *9 (-194 *5 *7)) (-4 *2 (-960 *5 *6 *10 *11 *12)) (-5 *1 (-962 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-960 *5 *6 *7 *8 *9)) (-4 *11 (-194 *6 *10)) (-4 *12 (-194 *5 *10))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-963 |#1|) (-111) (-964)) (T -963)) -NIL -(-13 (-21) (-958 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-958 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-964) (-111)) (T -964)) -NIL -(-13 (-21) (-1017)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3814 (((-1081) $) 11 T ELT)) (-3719 ((|#1| $) 12 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3211 (($ (-1081) |#1|) 10 T ELT)) (-3929 (((-767) $) 22 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3042 (((-83) $ $) 17 (|has| |#1| (-1007)) ELT))) -(((-965 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3211 ($ (-1081) |#1|)) (-15 -3814 ((-1081) $)) (-15 -3719 (|#1| $)) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|))) (-1000 |#2|) (-1120)) (T -965)) -((-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-4 *4 (-1120)) (-5 *1 (-965 *3 *4)) (-4 *3 (-1000 *4)))) (-3814 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-1081)) (-5 *1 (-965 *3 *4)) (-4 *3 (-1000 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *2 (-1000 *3)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1120))))) -((-3754 (($ $) 17 T ELT)) (-3112 (($ $) 25 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 54 T ELT)) (-3117 (($ $) 27 T ELT)) (-3113 (($ $) 12 T ELT)) (-3115 (($ $) 40 T ELT)) (-3955 (((-325) $) NIL T ELT) (((-177) $) NIL T ELT) (((-795 (-325)) $) 36 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) 31 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) 31 T ELT)) (-3111 (((-689)) 9 T CONST)) (-3116 (($ $) 44 T ELT))) -(((-966 |#1|) (-10 -7 (-15 -3112 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -3117 (|#1| |#1|)) (-15 -2782 ((-793 (-325) |#1|) |#1| (-795 (-325)) (-793 (-325) |#1|))) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 (|#1| (-480))) (-15 -3955 ((-177) |#1|)) (-15 -3955 ((-325) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 (|#1| |#1|)) (-15 -3111 ((-689)) -3935) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-967)) (T -966)) -((-3111 (*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-966 *3)) (-4 *3 (-967))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3114 (((-480) $) 106 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-3754 (($ $) 104 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-3023 (($ $) 114 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3606 (((-480) $) 131 T ELT)) (-3707 (($) 22 T CONST)) (-3112 (($ $) 103 T ELT)) (-3142 (((-3 (-480) #1="failed") $) 119 T ELT) (((-3 (-345 (-480)) #1#) $) 116 T ELT)) (-3141 (((-480) $) 120 T ELT) (((-345 (-480)) $) 117 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-3706 (((-83) $) 87 T ELT)) (-3171 (((-83) $) 129 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 110 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 113 T ELT)) (-3117 (($ $) 109 T ELT)) (-3172 (((-83) $) 130 T ELT)) (-1594 (((-3 (-580 $) #2="failed") (-580 $) $) 66 T ELT)) (-2517 (($ $ $) 123 T ELT)) (-2843 (($ $ $) 124 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3113 (($ $) 105 T ELT)) (-3115 (($ $) 107 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-3955 (((-325) $) 122 T ELT) (((-177) $) 121 T ELT) (((-795 (-325)) $) 111 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ (-480)) 118 T ELT) (($ (-345 (-480))) 115 T ELT)) (-3111 (((-689)) 38 T CONST)) (-3116 (($ $) 108 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3366 (($ $) 132 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2552 (((-83) $ $) 125 T ELT)) (-2553 (((-83) $ $) 127 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 126 T ELT)) (-2671 (((-83) $ $) 128 T ELT)) (-3932 (($ $ $) 81 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT) (($ $ (-345 (-480))) 112 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT))) -(((-967) (-111)) (T -967)) -((-3117 (*1 *1 *1) (-4 *1 (-967))) (-3116 (*1 *1 *1) (-4 *1 (-967))) (-3115 (*1 *1 *1) (-4 *1 (-967))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-480)))) (-3113 (*1 *1 *1) (-4 *1 (-967))) (-3754 (*1 *1 *1) (-4 *1 (-967))) (-3112 (*1 *1 *1) (-4 *1 (-967)))) -(-13 (-309) (-750) (-928) (-945 (-480)) (-945 (-345 (-480))) (-910) (-550 (-795 (-325))) (-791 (-325)) (-118) (-10 -8 (-15 -3117 ($ $)) (-15 -3116 ($ $)) (-15 -3115 ($ $)) (-15 -3114 ((-480) $)) (-15 -3113 ($ $)) (-15 -3754 ($ $)) (-15 -3112 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-550 (-177)) . T) ((-550 (-325)) . T) ((-550 (-795 (-325))) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 $) . T) ((-660) . T) ((-709) . T) ((-711) . T) ((-713) . T) ((-716) . T) ((-750) . T) ((-751) . T) ((-754) . T) ((-791 (-325)) . T) ((-827) . T) ((-910) . T) ((-928) . T) ((-945 (-345 (-480))) . T) ((-945 (-480)) . T) ((-958 (-345 (-480))) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) |#2| $) 26 T ELT)) (-3121 ((|#1| $) 10 T ELT)) (-3606 (((-480) |#2| $) 119 T ELT)) (-3168 (((-3 $ #1="failed") |#2| (-825)) 76 T ELT)) (-3122 ((|#1| $) 31 T ELT)) (-3167 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3119 (($ $) 28 T ELT)) (-3450 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3171 (((-83) |#2| $) NIL T ELT)) (-3172 (((-83) |#2| $) NIL T ELT)) (-3118 (((-83) |#2| $) 27 T ELT)) (-3120 ((|#1| $) 120 T ELT)) (-3123 ((|#1| $) 30 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3170 ((|#2| $) 104 T ELT)) (-3929 (((-767) $) 95 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3753 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3169 (((-580 $) |#2|) 78 T ELT)) (-3042 (((-83) $ $) 99 T ELT))) -(((-968 |#1| |#2|) (-13 (-974 |#1| |#2|) (-10 -8 (-15 -3123 (|#1| $)) (-15 -3122 (|#1| $)) (-15 -3121 (|#1| $)) (-15 -3120 (|#1| $)) (-15 -3119 ($ $)) (-15 -3118 ((-83) |#2| $)) (-15 -3167 (|#1| |#2| $ |#1|)))) (-13 (-750) (-309)) (-1146 |#1|)) (T -968)) -((-3167 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3122 (*1 *2 *1) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3119 (*1 *1 *1) (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) (-3118 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-750) (-309))) (-5 *2 (-83)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2030 (($ $ $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3606 (((-480) $) NIL T ELT)) (-2427 (($ $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3124 (($ (-1081)) 10 T ELT) (($ (-480)) 7 T ELT)) (-3142 (((-3 (-480) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-627 (-480)) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3009 (((-83) $) NIL T ELT)) (-3008 (((-345 (-480)) $) NIL T ELT)) (-2980 (($) NIL T ELT) (($ $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2028 (($ $ $ $) NIL T ELT)) (-2036 (($ $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1358 (($ $ $) NIL T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2659 (((-83) $) NIL T ELT)) (-3428 (((-629 $) $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2029 (($ $ $ $) NIL T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-2032 (($ $) NIL T ELT)) (-3816 (($ $) NIL T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2027 (($ $ $) NIL T ELT)) (-3429 (($) NIL T CONST)) (-2034 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-1356 (($ $) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2660 (((-83) $) NIL T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2033 (($ $) NIL T ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-480) $) 16 T ELT) (((-469) $) NIL T ELT) (((-795 (-480)) $) NIL T ELT) (((-325) $) NIL T ELT) (((-177) $) NIL T ELT) (($ (-1081)) 9 T ELT)) (-3929 (((-767) $) 23 T ELT) (($ (-480)) 6 T ELT) (($ $) NIL T ELT) (($ (-480)) 6 T ELT)) (-3111 (((-689)) NIL T CONST)) (-2037 (((-83) $ $) NIL T ELT)) (-3087 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (($) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2031 (($ $ $ $) NIL T ELT)) (-3366 (($ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-3820 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-480) $) NIL T ELT))) -(((-969) (-13 (-479) (-554 (-1081)) (-10 -8 (-6 -3965) (-6 -3970) (-6 -3966) (-15 -3124 ($ (-1081))) (-15 -3124 ($ (-480)))))) (T -969)) -((-3124 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-969)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-969))))) -((-3780 (($ $) 46 T ELT)) (-3151 (((-83) $ $) 82 T ELT)) (-3142 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-852 (-345 (-480)))) 247 T ELT) (((-3 $ #1#) (-852 (-480))) 246 T ELT) (((-3 $ #1#) (-852 |#2|)) 249 T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) (((-480) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-852 (-345 (-480)))) 235 T ELT) (($ (-852 (-480))) 231 T ELT) (($ (-852 |#2|)) 255 T ELT)) (-3942 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3677 (((-83) $ $) 131 T ELT) (((-83) $ (-580 $)) 135 T ELT)) (-3157 (((-83) $) 60 T ELT)) (-3735 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 125 T ELT)) (-3128 (($ $) 160 T ELT)) (-3139 (($ $) 156 T ELT)) (-3140 (($ $) 155 T ELT)) (-3150 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3149 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3678 (((-83) $ $) 143 T ELT) (((-83) $ (-580 $)) 144 T ELT)) (-3165 ((|#4| $) 32 T ELT)) (-3144 (($ $ $) 128 T ELT)) (-3158 (((-83) $) 59 T ELT)) (-3164 (((-689) $) 35 T ELT)) (-3125 (($ $) 174 T ELT)) (-3126 (($ $) 171 T ELT)) (-3153 (((-580 $) $) 72 T ELT)) (-3156 (($ $) 62 T ELT)) (-3127 (($ $) 167 T ELT)) (-3154 (((-580 $) $) 69 T ELT)) (-3155 (($ $) 64 T ELT)) (-3159 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3143 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3464 (-689))) $ $) 130 T ELT)) (-3145 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $) 126 T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $ |#4|) 127 T ELT)) (-3146 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $) 121 T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $ |#4|) 123 T ELT)) (-3148 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3147 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3161 (((-580 $) $) 54 T ELT)) (-3674 (((-83) $ $) 140 T ELT) (((-83) $ (-580 $)) 141 T ELT)) (-3669 (($ $ $) 116 T ELT)) (-3429 (($ $) 37 T ELT)) (-3682 (((-83) $ $) 80 T ELT)) (-3675 (((-83) $ $) 136 T ELT) (((-83) $ (-580 $)) 138 T ELT)) (-3670 (($ $ $) 112 T ELT)) (-3163 (($ $) 41 T ELT)) (-3129 ((|#2| |#2| $) 164 T ELT) (($ (-580 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3137 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3138 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3162 (($ $) 49 T ELT)) (-3160 (($ $) 55 T ELT)) (-3955 (((-795 (-325)) $) NIL T ELT) (((-795 (-480)) $) NIL T ELT) (((-469) $) NIL T ELT) (($ (-852 (-345 (-480)))) 237 T ELT) (($ (-852 (-480))) 233 T ELT) (($ (-852 |#2|)) 248 T ELT) (((-1064) $) 278 T ELT) (((-852 |#2|) $) 184 T ELT)) (-3929 (((-767) $) 29 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-852 |#2|) $) 185 T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT)) (-3152 (((-3 (-83) #1#) $ $) 79 T ELT))) -(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3929 (|#1| |#1|)) (-15 -3129 (|#1| |#1| |#1|)) (-15 -3129 (|#1| (-580 |#1|))) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 ((-852 |#2|) |#1|)) (-15 -3955 ((-852 |#2|) |#1|)) (-15 -3955 ((-1064) |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3129 (|#2| |#2| |#1|)) (-15 -3137 (|#1| |#1| |#1|)) (-15 -3138 (|#1| |#1| |#1|)) (-15 -3137 (|#1| |#1| |#2|)) (-15 -3138 (|#1| |#1| |#2|)) (-15 -3139 (|#1| |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3955 (|#1| (-852 |#2|))) (-15 -3141 (|#1| (-852 |#2|))) (-15 -3142 ((-3 |#1| #1="failed") (-852 |#2|))) (-15 -3955 (|#1| (-852 (-480)))) (-15 -3141 (|#1| (-852 (-480)))) (-15 -3142 ((-3 |#1| #1#) (-852 (-480)))) (-15 -3955 (|#1| (-852 (-345 (-480))))) (-15 -3141 (|#1| (-852 (-345 (-480))))) (-15 -3142 ((-3 |#1| #1#) (-852 (-345 (-480))))) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3670 (|#1| |#1| |#1|)) (-15 -3143 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3464 (-689))) |#1| |#1|)) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3735 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -3145 ((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1| |#4|)) (-15 -3145 ((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -3146 ((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -2888 |#1|)) |#1| |#1| |#4|)) (-15 -3146 ((-2 (|:| -3937 |#1|) (|:| |gap| (-689)) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -3147 (|#1| |#1| |#1| |#4|)) (-15 -3148 (|#1| |#1| |#1| |#4|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| |#1| |#4|)) (-15 -3150 (|#1| |#1| |#1| |#4|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3150 (|#1| |#1| |#1|)) (-15 -3678 ((-83) |#1| (-580 |#1|))) (-15 -3678 ((-83) |#1| |#1|)) (-15 -3674 ((-83) |#1| (-580 |#1|))) (-15 -3674 ((-83) |#1| |#1|)) (-15 -3675 ((-83) |#1| (-580 |#1|))) (-15 -3675 ((-83) |#1| |#1|)) (-15 -3677 ((-83) |#1| (-580 |#1|))) (-15 -3677 ((-83) |#1| |#1|)) (-15 -3151 ((-83) |#1| |#1|)) (-15 -3682 ((-83) |#1| |#1|)) (-15 -3152 ((-3 (-83) #1#) |#1| |#1|)) (-15 -3153 ((-580 |#1|) |#1|)) (-15 -3154 ((-580 |#1|) |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-83) |#1|)) (-15 -3158 ((-83) |#1|)) (-15 -3942 (|#1| |#1| |#4|)) (-15 -3159 (|#1| |#1| |#4|)) (-15 -3160 (|#1| |#1|)) (-15 -3161 ((-580 |#1|) |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3163 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3164 ((-689) |#1|)) (-15 -3165 (|#4| |#1|)) (-15 -3955 ((-469) |#1|)) (-15 -3955 ((-795 (-480)) |#1|)) (-15 -3955 ((-795 (-325)) |#1|)) (-15 -3929 (|#1| |#4|)) (-15 -3142 ((-3 |#4| #1#) |#1|)) (-15 -3141 (|#4| |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-971 |#2| |#3| |#4|) (-956) (-712) (-751)) (T -970)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 |#3|) $) 121 T ELT)) (-3069 (((-1076 $) $ |#3|) 136 T ELT) (((-1076 |#1|) $) 135 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 98 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 99 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 101 (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) 123 T ELT) (((-689) $ (-580 |#3|)) 122 T ELT)) (-3780 (($ $) 291 T ELT)) (-3151 (((-83) $ $) 277 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3738 (($ $ $) 236 (|has| |#1| (-491)) ELT)) (-3133 (((-580 $) $ $) 231 (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 111 (|has| |#1| (-816)) ELT)) (-3758 (($ $) 109 (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) 108 (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 114 (|has| |#1| (-816)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-345 (-480)) #2#) $) 176 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #2#) $) 174 (|has| |#1| (-945 (-480))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 $ "failed") (-852 (-345 (-480)))) 251 (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081)))) ELT) (((-3 $ "failed") (-852 (-480))) 248 (OR (-12 (-2546 (|has| |#1| (-38 (-345 (-480))))) (|has| |#1| (-38 (-480))) (|has| |#3| (-550 (-1081)))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081))))) ELT) (((-3 $ "failed") (-852 |#1|)) 245 (OR (-12 (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-38 (-480)))) (|has| |#3| (-550 (-1081)))) (-12 (-2546 (|has| |#1| (-479))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (|has| |#1| (-38 (-480))) (|has| |#3| (-550 (-1081)))) (-12 (-2546 (|has| |#1| (-899 (-480)))) (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081))))) ELT)) (-3141 ((|#1| $) 178 T ELT) (((-345 (-480)) $) 177 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) 175 (|has| |#1| (-945 (-480))) ELT) ((|#3| $) 152 T ELT) (($ (-852 (-345 (-480)))) 250 (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081)))) ELT) (($ (-852 (-480))) 247 (OR (-12 (-2546 (|has| |#1| (-38 (-345 (-480))))) (|has| |#1| (-38 (-480))) (|has| |#3| (-550 (-1081)))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081))))) ELT) (($ (-852 |#1|)) 244 (OR (-12 (-2546 (|has| |#1| (-38 (-345 (-480))))) (-2546 (|has| |#1| (-38 (-480)))) (|has| |#3| (-550 (-1081)))) (-12 (-2546 (|has| |#1| (-479))) (-2546 (|has| |#1| (-38 (-345 (-480))))) (|has| |#1| (-38 (-480))) (|has| |#3| (-550 (-1081)))) (-12 (-2546 (|has| |#1| (-899 (-480)))) (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081))))) ELT)) (-3739 (($ $ $ |#3|) 119 (|has| |#1| (-144)) ELT) (($ $ $) 232 (|has| |#1| (-491)) ELT)) (-3942 (($ $) 169 T ELT) (($ $ |#3|) 286 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 147 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 146 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 145 T ELT) (((-627 |#1|) (-627 $)) 144 T ELT)) (-3677 (((-83) $ $) 276 T ELT) (((-83) $ (-580 $)) 275 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3157 (((-83) $) 284 T ELT)) (-3735 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 256 T ELT)) (-3128 (($ $) 225 (|has| |#1| (-387)) ELT)) (-3486 (($ $) 191 (|has| |#1| (-387)) ELT) (($ $ |#3|) 116 (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) 120 T ELT)) (-3706 (((-83) $) 107 (|has| |#1| (-816)) ELT)) (-3139 (($ $) 241 (|has| |#1| (-491)) ELT)) (-3140 (($ $) 242 (|has| |#1| (-491)) ELT)) (-3150 (($ $ $) 268 T ELT) (($ $ $ |#3|) 266 T ELT)) (-3149 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-1613 (($ $ |#1| |#2| $) 187 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 95 (-12 (|has| |#3| (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 94 (-12 (|has| |#3| (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2406 (((-689) $) 184 T ELT)) (-3678 (((-83) $ $) 270 T ELT) (((-83) $ (-580 $)) 269 T ELT)) (-3130 (($ $ $ $ $) 227 (|has| |#1| (-491)) ELT)) (-3165 ((|#3| $) 295 T ELT)) (-3070 (($ (-1076 |#1|) |#3|) 128 T ELT) (($ (-1076 $) |#3|) 127 T ELT)) (-2807 (((-580 $) $) 137 T ELT)) (-3920 (((-83) $) 167 T ELT)) (-2879 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-689)) 130 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 129 T ELT)) (-3144 (($ $ $) 255 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#3|) 131 T ELT)) (-3158 (((-83) $) 285 T ELT)) (-2806 ((|#2| $) 185 T ELT) (((-689) $ |#3|) 133 T ELT) (((-580 (-689)) $ (-580 |#3|)) 132 T ELT)) (-3164 (((-689) $) 294 T ELT)) (-1614 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3068 (((-3 |#3| #3="failed") $) 134 T ELT)) (-3125 (($ $) 222 (|has| |#1| (-387)) ELT)) (-3126 (($ $) 223 (|has| |#1| (-387)) ELT)) (-3153 (((-580 $) $) 280 T ELT)) (-3156 (($ $) 283 T ELT)) (-3127 (($ $) 224 (|has| |#1| (-387)) ELT)) (-3154 (((-580 $) $) 281 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 149 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 148 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 143 T ELT) (((-627 |#1|) (-1170 $)) 142 T ELT)) (-3155 (($ $) 282 T ELT)) (-2880 (($ $) 164 T ELT)) (-3159 ((|#1| $) 163 T ELT) (($ $ |#3|) 287 T ELT)) (-1880 (($ (-580 $)) 105 (|has| |#1| (-387)) ELT) (($ $ $) 104 (|has| |#1| (-387)) ELT)) (-3143 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3464 (-689))) $ $) 254 T ELT)) (-3145 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $) 258 T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $ |#3|) 257 T ELT)) (-3146 (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $) 260 T ELT) (((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $ |#3|) 259 T ELT)) (-3148 (($ $ $) 264 T ELT) (($ $ $ |#3|) 262 T ELT)) (-3147 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3175 (($ $ $) 230 (|has| |#1| (-491)) ELT)) (-3161 (((-580 $) $) 289 T ELT)) (-2809 (((-3 (-580 $) #3#) $) 125 T ELT)) (-2808 (((-3 (-580 $) #3#) $) 126 T ELT)) (-2810 (((-3 (-2 (|:| |var| |#3|) (|:| -2389 (-689))) #3#) $) 124 T ELT)) (-3674 (((-83) $ $) 272 T ELT) (((-83) $ (-580 $)) 271 T ELT)) (-3669 (($ $ $) 252 T ELT)) (-3429 (($ $) 293 T ELT)) (-3682 (((-83) $ $) 278 T ELT)) (-3675 (((-83) $ $) 274 T ELT) (((-83) $ (-580 $)) 273 T ELT)) (-3670 (($ $ $) 253 T ELT)) (-3163 (($ $) 292 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3134 (((-2 (|:| -3129 $) (|:| |coef2| $)) $ $) 233 (|has| |#1| (-491)) ELT)) (-3135 (((-2 (|:| -3129 $) (|:| |coef1| $)) $ $) 234 (|has| |#1| (-491)) ELT)) (-1786 (((-83) $) 181 T ELT)) (-1785 ((|#1| $) 182 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 106 (|has| |#1| (-387)) ELT)) (-3129 ((|#1| |#1| $) 226 (|has| |#1| (-387)) ELT) (($ (-580 $)) 103 (|has| |#1| (-387)) ELT) (($ $ $) 102 (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 113 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 112 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 110 (|has| |#1| (-816)) ELT)) (-3136 (((-2 (|:| -3129 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-491)) ELT)) (-3449 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-491)) ELT)) (-3137 (($ $ |#1|) 239 (|has| |#1| (-491)) ELT) (($ $ $) 237 (|has| |#1| (-491)) ELT)) (-3138 (($ $ |#1|) 240 (|has| |#1| (-491)) ELT) (($ $ $) 238 (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) 160 T ELT) (($ $ (-246 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-580 $) (-580 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-580 |#3|) (-580 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-580 |#3|) (-580 $)) 153 T ELT)) (-3740 (($ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#3|) (-580 (-689))) 50 T ELT) (($ $ |#3| (-689)) 49 T ELT) (($ $ (-580 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3931 ((|#2| $) 165 T ELT) (((-689) $ |#3|) 141 T ELT) (((-580 (-689)) $ (-580 |#3|)) 140 T ELT)) (-3162 (($ $) 290 T ELT)) (-3160 (($ $) 288 T ELT)) (-3955 (((-795 (-325)) $) 93 (-12 (|has| |#3| (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) 92 (-12 (|has| |#3| (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) 91 (-12 (|has| |#3| (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT) (($ (-852 (-345 (-480)))) 249 (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081)))) ELT) (($ (-852 (-480))) 246 (OR (-12 (-2546 (|has| |#1| (-38 (-345 (-480))))) (|has| |#1| (-38 (-480))) (|has| |#3| (-550 (-1081)))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#3| (-550 (-1081))))) ELT) (($ (-852 |#1|)) 243 (|has| |#3| (-550 (-1081))) ELT) (((-1064) $) 221 (-12 (|has| |#1| (-945 (-480))) (|has| |#3| (-550 (-1081)))) ELT) (((-852 |#1|) $) 220 (|has| |#3| (-550 (-1081))) ELT)) (-2803 ((|#1| $) 190 (|has| |#1| (-387)) ELT) (($ $ |#3|) 117 (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 115 (-2548 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (((-852 |#1|) $) 219 (|has| |#3| (-550 (-1081))) ELT) (($ (-345 (-480))) 89 (OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ELT) (($ $) 96 (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) 183 T ELT)) (-3660 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-689)) 139 T ELT) (($ $ (-580 |#3|) (-580 (-689))) 138 T ELT)) (-2688 (((-629 $) $) 90 (OR (-2548 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1612 (($ $ $ (-689)) 188 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 100 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-3152 (((-3 (-83) "failed") $ $) 279 T ELT)) (-2652 (($) 43 T CONST)) (-3131 (($ $ $ $ (-689)) 228 (|has| |#1| (-491)) ELT)) (-3132 (($ $ $ (-689)) 229 (|has| |#1| (-491)) ELT)) (-2655 (($ $ (-580 |#3|) (-580 (-689))) 53 T ELT) (($ $ |#3| (-689)) 52 T ELT) (($ $ (-580 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 171 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 173 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 172 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-971 |#1| |#2| |#3|) (-111) (-956) (-712) (-751)) (T -971)) -((-3165 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-689)))) (-3429 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3163 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3780 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3161 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-971 *3 *4 *5)))) (-3160 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3159 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-971 *3 *4 *5)))) (-3153 (*1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-971 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3677 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)))) (-3674 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)))) (-3150 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3149 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3150 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3149 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3147 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) (-3146 (*1 *2 *1 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -2888 *1))) (-4 *1 (-971 *3 *4 *5)))) (-3146 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -2888 *1))) (-4 *1 (-971 *4 *5 *3)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-971 *3 *4 *5)))) (-3145 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-971 *4 *5 *3)))) (-3735 (*1 *2 *1 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-971 *3 *4 *5)))) (-3144 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3143 (*1 *2 *1 *1) (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3464 (-689)))) (-4 *1 (-971 *3 *4 *5)))) (-3670 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) (-3142 (*1 *1 *2) (|partial| -12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)))) (-3142 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))))) (-3141 (*1 *1 *2) (OR (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))))) (-3955 (*1 *1 *2) (OR (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))))) (-3142 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-2546 (-4 *3 (-38 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-479))) (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-899 (-480)))) (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))))) (-3141 (*1 *1 *2) (OR (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-2546 (-4 *3 (-38 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-479))) (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) (-12 (-5 *2 (-852 *3)) (-12 (-2546 (-4 *3 (-899 (-480)))) (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-852 *3)) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *5 (-550 (-1081))) (-4 *4 (-712)) (-4 *5 (-751)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3138 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3137 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3138 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3137 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3136 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -3129 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-971 *3 *4 *5)))) (-3135 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -3129 *1) (|:| |coef1| *1))) (-4 *1 (-971 *3 *4 *5)))) (-3134 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-2 (|:| -3129 *1) (|:| |coef2| *1))) (-4 *1 (-971 *3 *4 *5)))) (-3739 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3133 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-971 *3 *4 *5)))) (-3175 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3132 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *3 (-491)))) (-3131 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *3 (-491)))) (-3130 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-491)))) (-3129 (*1 *2 *2 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-387))))) -(-13 (-856 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3165 (|t#3| $)) (-15 -3164 ((-689) $)) (-15 -3429 ($ $)) (-15 -3163 ($ $)) (-15 -3780 ($ $)) (-15 -3162 ($ $)) (-15 -3161 ((-580 $) $)) (-15 -3160 ($ $)) (-15 -3159 ($ $ |t#3|)) (-15 -3942 ($ $ |t#3|)) (-15 -3158 ((-83) $)) (-15 -3157 ((-83) $)) (-15 -3156 ($ $)) (-15 -3155 ($ $)) (-15 -3154 ((-580 $) $)) (-15 -3153 ((-580 $) $)) (-15 -3152 ((-3 (-83) "failed") $ $)) (-15 -3682 ((-83) $ $)) (-15 -3151 ((-83) $ $)) (-15 -3677 ((-83) $ $)) (-15 -3677 ((-83) $ (-580 $))) (-15 -3675 ((-83) $ $)) (-15 -3675 ((-83) $ (-580 $))) (-15 -3674 ((-83) $ $)) (-15 -3674 ((-83) $ (-580 $))) (-15 -3678 ((-83) $ $)) (-15 -3678 ((-83) $ (-580 $))) (-15 -3150 ($ $ $)) (-15 -3149 ($ $ $)) (-15 -3150 ($ $ $ |t#3|)) (-15 -3149 ($ $ $ |t#3|)) (-15 -3148 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3148 ($ $ $ |t#3|)) (-15 -3147 ($ $ $ |t#3|)) (-15 -3146 ((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $)) (-15 -3146 ((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -2888 $)) $ $ |t#3|)) (-15 -3145 ((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -3145 ((-2 (|:| -3937 $) (|:| |gap| (-689)) (|:| -1962 $) (|:| -2888 $)) $ $ |t#3|)) (-15 -3735 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -3144 ($ $ $)) (-15 -3143 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3464 (-689))) $ $)) (-15 -3670 ($ $ $)) (-15 -3669 ($ $ $)) (IF (|has| |t#3| (-550 (-1081))) (PROGN (-6 (-549 (-852 |t#1|))) (-6 (-550 (-852 |t#1|))) (IF (|has| |t#1| (-38 (-345 (-480)))) (PROGN (-15 -3142 ((-3 $ "failed") (-852 (-345 (-480))))) (-15 -3141 ($ (-852 (-345 (-480))))) (-15 -3955 ($ (-852 (-345 (-480))))) (-15 -3142 ((-3 $ "failed") (-852 (-480)))) (-15 -3141 ($ (-852 (-480)))) (-15 -3955 ($ (-852 (-480)))) (IF (|has| |t#1| (-899 (-480))) |%noBranch| (PROGN (-15 -3142 ((-3 $ "failed") (-852 |t#1|))) (-15 -3141 ($ (-852 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-480))) (IF (|has| |t#1| (-38 (-345 (-480)))) |%noBranch| (PROGN (-15 -3142 ((-3 $ "failed") (-852 (-480)))) (-15 -3141 ($ (-852 (-480)))) (-15 -3955 ($ (-852 (-480)))) (IF (|has| |t#1| (-479)) |%noBranch| (PROGN (-15 -3142 ((-3 $ "failed") (-852 |t#1|))) (-15 -3141 ($ (-852 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-480))) |%noBranch| (IF (|has| |t#1| (-38 (-345 (-480)))) |%noBranch| (PROGN (-15 -3142 ((-3 $ "failed") (-852 |t#1|))) (-15 -3141 ($ (-852 |t#1|)))))) (-15 -3955 ($ (-852 |t#1|))) (IF (|has| |t#1| (-945 (-480))) (-6 (-550 (-1064))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-491)) (PROGN (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3138 ($ $ |t#1|)) (-15 -3137 ($ $ |t#1|)) (-15 -3138 ($ $ $)) (-15 -3137 ($ $ $)) (-15 -3738 ($ $ $)) (-15 -3136 ((-2 (|:| -3129 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3135 ((-2 (|:| -3129 $) (|:| |coef1| $)) $ $)) (-15 -3134 ((-2 (|:| -3129 $) (|:| |coef2| $)) $ $)) (-15 -3739 ($ $ $)) (-15 -3133 ((-580 $) $ $)) (-15 -3175 ($ $ $)) (-15 -3132 ($ $ $ (-689))) (-15 -3131 ($ $ $ $ (-689))) (-15 -3130 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-387)) (PROGN (-15 -3129 (|t#1| |t#1| $)) (-15 -3128 ($ $)) (-15 -3127 ($ $)) (-15 -3126 ($ $)) (-15 -3125 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 |#3|) . T) ((-552 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-549 (-767)) . T) ((-549 (-852 |#1|)) |has| |#3| (-550 (-1081))) ((-144) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-550 (-469)) -12 (|has| |#1| (-550 (-469))) (|has| |#3| (-550 (-469)))) ((-550 (-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#3| (-550 (-795 (-325))))) ((-550 (-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#3| (-550 (-795 (-480))))) ((-550 (-852 |#1|)) |has| |#3| (-550 (-1081))) ((-550 (-1064)) -12 (|has| |#1| (-945 (-480))) (|has| |#3| (-550 (-1081)))) ((-243) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-257 $) . T) ((-274 |#1| |#2|) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-816)) (|has| |#1| (-387))) ((-449 |#3| |#1|) . T) ((-449 |#3| $) . T) ((-449 $ $) . T) ((-491) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387))) ((-660) . T) ((-801 $ |#3|) . T) ((-804 |#3|) . T) ((-806 |#3|) . T) ((-791 (-325)) -12 (|has| |#1| (-791 (-325))) (|has| |#3| (-791 (-325)))) ((-791 (-480)) -12 (|has| |#1| (-791 (-480))) (|has| |#3| (-791 (-480)))) ((-856 |#1| |#2| |#3|) . T) ((-816) |has| |#1| (-816)) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 |#1|) . T) ((-945 |#3|) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) |has| |#1| (-816))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3166 (((-580 (-1040)) $) 18 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 27 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-1040) $) 20 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-972) (-13 (-989) (-10 -8 (-15 -3166 ((-580 (-1040)) $)) (-15 -3218 ((-1040) $))))) (T -972)) -((-3166 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-972)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-972))))) -((-3173 (((-83) |#3| $) 15 T ELT)) (-3168 (((-3 $ #1="failed") |#3| (-825)) 29 T ELT)) (-3450 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3171 (((-83) |#3| $) 19 T ELT)) (-3172 (((-83) |#3| $) 17 T ELT))) -(((-973 |#1| |#2| |#3|) (-10 -7 (-15 -3168 ((-3 |#1| #1="failed") |#3| (-825))) (-15 -3450 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3171 ((-83) |#3| |#1|)) (-15 -3172 ((-83) |#3| |#1|)) (-15 -3173 ((-83) |#3| |#1|))) (-974 |#2| |#3|) (-13 (-750) (-309)) (-1146 |#2|)) (T -973)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) |#2| $) 25 T ELT)) (-3606 (((-480) |#2| $) 26 T ELT)) (-3168 (((-3 $ "failed") |#2| (-825)) 19 T ELT)) (-3167 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3450 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3171 (((-83) |#2| $) 23 T ELT)) (-3172 (((-83) |#2| $) 24 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3170 ((|#2| $) 21 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3753 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3169 (((-580 $) |#2|) 20 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-974 |#1| |#2|) (-111) (-13 (-750) (-309)) (-1146 |t#1|)) (T -974)) -((-3606 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-480)))) (-3173 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-83)))) (-3172 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-83)))) (-3171 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-83)))) (-3450 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-750) (-309))) (-4 *2 (-1146 *3)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-750) (-309))) (-4 *2 (-1146 *3)))) (-3169 (*1 *2 *3) (-12 (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-580 *1)) (-4 *1 (-974 *4 *3)))) (-3168 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-825)) (-4 *4 (-13 (-750) (-309))) (-4 *1 (-974 *4 *2)) (-4 *2 (-1146 *4)))) (-3753 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-750) (-309))) (-4 *3 (-1146 *2)))) (-3167 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-750) (-309))) (-4 *3 (-1146 *2))))) -(-13 (-1007) (-10 -8 (-15 -3606 ((-480) |t#2| $)) (-15 -3173 ((-83) |t#2| $)) (-15 -3172 ((-83) |t#2| $)) (-15 -3171 ((-83) |t#2| $)) (-15 -3450 ((-3 |t#2| "failed") |t#2| $)) (-15 -3170 (|t#2| $)) (-15 -3169 ((-580 $) |t#2|)) (-15 -3168 ((-3 $ "failed") |t#2| (-825))) (-15 -3753 (|t#1| |t#2| $ |t#1|)) (-15 -3167 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3419 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 |#4|) (-580 |#5|) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-689)) 114 T ELT)) (-3416 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689)) 63 T ELT)) (-3420 (((-1176) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-689)) 99 T ELT)) (-3414 (((-689) (-580 |#4|) (-580 |#5|)) 30 T ELT)) (-3417 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689)) 65 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689) (-83)) 67 T ELT)) (-3418 (((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83) (-83) (-83) (-83)) 86 T ELT) (((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83)) 87 T ELT)) (-3955 (((-1064) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) 92 T ELT)) (-3415 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-83)) 62 T ELT)) (-3413 (((-689) (-580 |#4|) (-580 |#5|)) 21 T ELT))) -(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3413 ((-689) (-580 |#4|) (-580 |#5|))) (-15 -3414 ((-689) (-580 |#4|) (-580 |#5|))) (-15 -3415 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-83))) (-15 -3416 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689))) (-15 -3416 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|)) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689) (-83))) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689))) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|)) (-15 -3418 ((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83))) (-15 -3418 ((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3419 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 |#4|) (-580 |#5|) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-689))) (-15 -3955 ((-1064) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) (-15 -3420 ((-1176) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-689)))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -975)) -((-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *4 (-689)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-1176)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1064)) (-5 *1 (-975 *4 *5 *6 *7 *8)))) (-3419 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-580 *11)) (|:| |todo| (-580 (-2 (|:| |val| *3) (|:| -1589 *11)))))) (-5 *6 (-689)) (-5 *2 (-580 (-2 (|:| |val| (-580 *10)) (|:| -1589 *11)))) (-5 *3 (-580 *10)) (-5 *4 (-580 *11)) (-4 *10 (-971 *7 *8 *9)) (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) (-5 *1 (-975 *7 *8 *9 *10 *11)))) (-3418 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3418 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-689)) (-5 *6 (-83)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) (-4 *3 (-971 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3415 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-689)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-689)) (-5 *1 (-975 *5 *6 *7 *8 *9))))) -((-3182 (((-83) |#5| $) 26 T ELT)) (-3180 (((-83) |#5| $) 29 T ELT)) (-3183 (((-83) |#5| $) 18 T ELT) (((-83) $) 52 T ELT)) (-3223 (((-580 $) |#5| $) NIL T ELT) (((-580 $) (-580 |#5|) $) 94 T ELT) (((-580 $) (-580 |#5|) (-580 $)) 92 T ELT) (((-580 $) |#5| (-580 $)) 95 T ELT)) (-3752 (($ $ |#5|) NIL T ELT) (((-580 $) |#5| $) NIL T ELT) (((-580 $) |#5| (-580 $)) 73 T ELT) (((-580 $) (-580 |#5|) $) 75 T ELT) (((-580 $) (-580 |#5|) (-580 $)) 77 T ELT)) (-3174 (((-580 $) |#5| $) NIL T ELT) (((-580 $) |#5| (-580 $)) 64 T ELT) (((-580 $) (-580 |#5|) $) 69 T ELT) (((-580 $) (-580 |#5|) (-580 $)) 71 T ELT)) (-3181 (((-83) |#5| $) 32 T ELT))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3752 ((-580 |#1|) (-580 |#5|) (-580 |#1|))) (-15 -3752 ((-580 |#1|) (-580 |#5|) |#1|)) (-15 -3752 ((-580 |#1|) |#5| (-580 |#1|))) (-15 -3752 ((-580 |#1|) |#5| |#1|)) (-15 -3174 ((-580 |#1|) (-580 |#5|) (-580 |#1|))) (-15 -3174 ((-580 |#1|) (-580 |#5|) |#1|)) (-15 -3174 ((-580 |#1|) |#5| (-580 |#1|))) (-15 -3174 ((-580 |#1|) |#5| |#1|)) (-15 -3223 ((-580 |#1|) |#5| (-580 |#1|))) (-15 -3223 ((-580 |#1|) (-580 |#5|) (-580 |#1|))) (-15 -3223 ((-580 |#1|) (-580 |#5|) |#1|)) (-15 -3223 ((-580 |#1|) |#5| |#1|)) (-15 -3180 ((-83) |#5| |#1|)) (-15 -3183 ((-83) |#1|)) (-15 -3181 ((-83) |#5| |#1|)) (-15 -3182 ((-83) |#5| |#1|)) (-15 -3183 ((-83) |#5| |#1|)) (-15 -3752 (|#1| |#1| |#5|))) (-977 |#2| |#3| |#4| |#5|) (-387) (-712) (-751) (-971 |#2| |#3| |#4|)) (T -976)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) 90 T ELT)) (-3665 (((-580 $) (-580 |#4|)) 91 T ELT) (((-580 $) (-580 |#4|) (-83)) 118 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3671 ((|#4| |#4| $) 97 T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 133 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-3782 (((-3 $ #1#) $) 87 T ELT)) (-3668 ((|#4| |#4| $) 94 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3666 ((|#4| |#4| $) 92 T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) 110 T ELT)) (-3182 (((-83) |#4| $) 143 T ELT)) (-3180 (((-83) |#4| $) 140 T ELT)) (-3183 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) 135 T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 134 T ELT)) (-3781 (((-3 |#4| #1#) $) 88 T ELT)) (-3177 (((-580 $) |#4| $) 136 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) 139 T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3223 (((-580 $) |#4| $) 132 T ELT) (((-580 $) (-580 |#4|) $) 131 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 130 T ELT) (((-580 $) |#4| (-580 $)) 129 T ELT)) (-3423 (($ |#4| $) 124 T ELT) (($ (-580 |#4|) $) 123 T ELT)) (-3680 (((-580 |#4|) $) 112 T ELT)) (-3674 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3669 ((|#4| |#4| $) 95 T ELT)) (-3682 (((-83) $ $) 115 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3670 ((|#4| |#4| $) 96 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-3 |#4| #1#) $) 89 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3752 (($ $ |#4|) 82 T ELT) (((-580 $) |#4| $) 122 T ELT) (((-580 $) |#4| (-580 $)) 121 T ELT) (((-580 $) (-580 |#4|) $) 120 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 119 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-3931 (((-689) $) 111 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-3667 (($ $) 93 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-3661 (((-689) $) 81 (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) 103 T ELT)) (-3174 (((-580 $) |#4| $) 128 T ELT) (((-580 $) |#4| (-580 $)) 127 T ELT) (((-580 $) (-580 |#4|) $) 126 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 125 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) 86 T ELT)) (-3181 (((-83) |#4| $) 142 T ELT)) (-3916 (((-83) |#3| $) 85 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-977 |#1| |#2| |#3| |#4|) (-111) (-387) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -977)) -((-3183 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3182 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-3 (-83) (-580 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3178 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3178 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3176 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-3 *3 (-580 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3758 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3223 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3223 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) (-3223 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) (-3174 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3174 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) (-3174 (*1 *2 *3 *1) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3174 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) (-3423 (*1 *1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3423 (*1 *1 *2 *1) (-12 (-5 *2 (-580 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)))) (-3752 (*1 *2 *3 *1) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) (-3752 (*1 *2 *3 *1) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) (-3665 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *5 *6 *7 *8))))) -(-13 (-1115 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3183 ((-83) |t#4| $)) (-15 -3182 ((-83) |t#4| $)) (-15 -3181 ((-83) |t#4| $)) (-15 -3183 ((-83) $)) (-15 -3180 ((-83) |t#4| $)) (-15 -3179 ((-3 (-83) (-580 $)) |t#4| $)) (-15 -3178 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |t#4| $)) (-15 -3178 ((-83) |t#4| $)) (-15 -3177 ((-580 $) |t#4| $)) (-15 -3176 ((-3 |t#4| (-580 $)) |t#4| |t#4| $)) (-15 -3175 ((-580 (-2 (|:| |val| |t#4|) (|:| -1589 $))) |t#4| |t#4| $)) (-15 -3758 ((-580 (-2 (|:| |val| |t#4|) (|:| -1589 $))) |t#4| $)) (-15 -3223 ((-580 $) |t#4| $)) (-15 -3223 ((-580 $) (-580 |t#4|) $)) (-15 -3223 ((-580 $) (-580 |t#4|) (-580 $))) (-15 -3223 ((-580 $) |t#4| (-580 $))) (-15 -3174 ((-580 $) |t#4| $)) (-15 -3174 ((-580 $) |t#4| (-580 $))) (-15 -3174 ((-580 $) (-580 |t#4|) $)) (-15 -3174 ((-580 $) (-580 |t#4|) (-580 $))) (-15 -3423 ($ |t#4| $)) (-15 -3423 ($ (-580 |t#4|) $)) (-15 -3752 ((-580 $) |t#4| $)) (-15 -3752 ((-580 $) |t#4| (-580 $))) (-15 -3752 ((-580 $) (-580 |t#4|) $)) (-15 -3752 ((-580 $) (-580 |t#4|) (-580 $))) (-15 -3665 ((-580 $) (-580 |t#4|) (-83))))) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-884 |#1| |#2| |#3| |#4|) . T) ((-1007) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-3190 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|) 86 T ELT)) (-3187 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3189 (((-580 |#5|) |#4| |#5|) 74 T ELT)) (-3188 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3271 (((-1176)) 36 T ELT)) (-3269 (((-1176)) 25 T ELT)) (-3270 (((-1176) (-1064) (-1064) (-1064)) 32 T ELT)) (-3268 (((-1176) (-1064) (-1064) (-1064)) 21 T ELT)) (-3184 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3185 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#3| (-83)) 117 T ELT) (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3186 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1176) (-1064) (-1064) (-1064))) (-15 -3269 ((-1176))) (-15 -3270 ((-1176) (-1064) (-1064) (-1064))) (-15 -3271 ((-1176))) (-15 -3184 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3185 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3185 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#3| (-83))) (-15 -3186 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3187 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3188 ((-83) |#4| |#5|)) (-15 -3188 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|)) (-15 -3189 ((-580 |#5|) |#4| |#5|)) (-15 -3190 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -978)) -((-3190 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3189 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3187 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3186 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3185 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *5 (-83)) (-4 *8 (-971 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *4 (-751)) (-5 *2 (-580 (-2 (|:| |val| *8) (|:| -1589 *9)))) (-5 *1 (-978 *6 *7 *4 *8 *9)))) (-3185 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3184 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3271 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3302 (((-1121) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3191 (((-1040) $) 11 T ELT)) (-3929 (((-767) $) 21 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-979) (-13 (-989) (-10 -8 (-15 -3191 ((-1040) $)) (-15 -3302 ((-1121) $))))) (T -979)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-979)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-979))))) -((-3251 (((-83) $ $) 7 T ELT))) -(((-980) (-13 (-1120) (-10 -8 (-15 -3251 ((-83) $ $))))) (T -980)) -((-3251 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-980))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3194 (($ $ (-580 (-1081)) (-1 (-83) (-580 |#3|))) 34 T ELT)) (-3195 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-580 (-1081))) 21 T ELT)) (-3511 ((|#3| $) 13 T ELT)) (-3142 (((-3 (-246 |#3|) "failed") $) 60 T ELT)) (-3141 (((-246 |#3|) $) NIL T ELT)) (-3192 (((-580 (-1081)) $) 16 T ELT)) (-3193 (((-795 |#1|) $) 11 T ELT)) (-3512 ((|#3| $) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-825)) 41 T ELT)) (-3929 (((-767) $) 89 T ELT) (($ (-246 |#3|)) 22 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 38 T ELT))) -(((-981 |#1| |#2| |#3|) (-13 (-1007) (-239 |#3| |#3|) (-945 (-246 |#3|)) (-10 -8 (-15 -3195 ($ |#3| |#3|)) (-15 -3195 ($ |#3| |#3| (-580 (-1081)))) (-15 -3194 ($ $ (-580 (-1081)) (-1 (-83) (-580 |#3|)))) (-15 -3193 ((-795 |#1|) $)) (-15 -3512 (|#3| $)) (-15 -3511 (|#3| $)) (-15 -3783 (|#3| $ |#3| (-825))) (-15 -3192 ((-580 (-1081)) $)))) (-1007) (-13 (-956) (-791 |#1|) (-550 (-795 |#1|))) (-13 (-359 |#2|) (-791 |#1|) (-550 (-795 |#1|)))) (T -981)) -((-3195 (*1 *1 *2 *2) (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) (-5 *1 (-981 *3 *4 *2)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))))) (-3195 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) (-3194 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-1 (-83) (-580 *6))) (-4 *6 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *6)))) (-3193 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 *2))) (-5 *2 (-795 *3)) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-359 *4) (-791 *3) (-550 *2))))) (-3512 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) (-5 *1 (-981 *3 *4 *2)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))))) (-3511 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) (-5 *1 (-981 *3 *4 *2)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))))) (-3783 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-825)) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) (-3192 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) (-5 *2 (-580 (-1081))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3525 (((-1081) $) 8 T ELT)) (-3227 (((-1064) $) 17 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 11 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 14 T ELT))) -(((-982 |#1|) (-13 (-1007) (-10 -8 (-15 -3525 ((-1081) $)))) (-1081)) (T -982)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-982 *3)) (-14 *3 *2)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3197 (($ (-580 (-981 |#1| |#2| |#3|))) 15 T ELT)) (-3196 (((-580 (-981 |#1| |#2| |#3|)) $) 22 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-825)) 28 T ELT)) (-3929 (((-767) $) 18 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 21 T ELT))) -(((-983 |#1| |#2| |#3|) (-13 (-1007) (-239 |#3| |#3|) (-10 -8 (-15 -3197 ($ (-580 (-981 |#1| |#2| |#3|)))) (-15 -3196 ((-580 (-981 |#1| |#2| |#3|)) $)) (-15 -3783 (|#3| $ |#3| (-825))))) (-1007) (-13 (-956) (-791 |#1|) (-550 (-795 |#1|))) (-13 (-359 |#2|) (-791 |#1|) (-550 (-795 |#1|)))) (T -983)) -((-3197 (*1 *1 *2) (-12 (-5 *2 (-580 (-981 *3 *4 *5))) (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) (-5 *1 (-983 *3 *4 *5)))) (-3196 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) (-5 *2 (-580 (-981 *3 *4 *5))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))))) (-3783 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-825)) (-4 *4 (-1007)) (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4))))))) -((-3198 (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83)) 88 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|))) 92 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83)) 90 T ELT))) -(((-984 |#1| |#2|) (-10 -7 (-15 -3198 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83))) (-15 -3198 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)))) (-15 -3198 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83)))) (-13 (-255) (-118)) (-580 (-1081))) (T -984)) -((-3198 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) (-5 *1 (-984 *5 *6)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))))) (-3198 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-118))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) (-5 *1 (-984 *4 *5)) (-5 *3 (-580 (-852 *4))) (-14 *5 (-580 (-1081))))) (-3198 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) (-5 *1 (-984 *5 *6)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 132 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-309)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-1771 (((-627 |#1|) (-1170 $)) NIL T ELT) (((-627 |#1|)) 117 T ELT)) (-3313 ((|#1| $) 121 T ELT)) (-1664 (((-1093 (-825) (-689)) (-480)) NIL (|has| |#1| (-296)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3121 (((-689)) 43 (|has| |#1| (-315)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-1781 (($ (-1170 |#1|) (-1170 $)) NIL T ELT) (($ (-1170 |#1|)) 46 T ELT)) (-1662 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-296)) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-1770 (((-627 |#1|) $ (-1170 $)) NIL T ELT) (((-627 |#1|) $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 109 T ELT) (((-627 |#1|) (-627 $)) 104 T ELT)) (-3825 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-345 |#2|)) NIL (|has| |#1| (-309)) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3094 (((-825)) 80 T ELT)) (-2980 (($) 47 (|has| |#1| (-315)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-2819 (($) NIL (|has| |#1| (-296)) ELT)) (-1669 (((-83) $) NIL (|has| |#1| (-296)) ELT)) (-1753 (($ $ (-689)) NIL (|has| |#1| (-296)) ELT) (($ $) NIL (|has| |#1| (-296)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-3755 (((-825) $) NIL (|has| |#1| (-296)) ELT) (((-738 (-825)) $) NIL (|has| |#1| (-296)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-3117 ((|#1| $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-296)) ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-2002 ((|#2| $) 87 (|has| |#1| (-309)) ELT)) (-1998 (((-825) $) 140 (|has| |#1| (-315)) ELT)) (-3065 ((|#2| $) 59 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3429 (($) NIL (|has| |#1| (-296)) CONST)) (-2388 (($ (-825)) 131 (|has| |#1| (-315)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2397 (($) 123 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-1665 (((-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480))))) NIL (|has| |#1| (-296)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3740 ((|#1| (-1170 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1754 (((-689) $) NIL (|has| |#1| (-296)) ELT) (((-3 (-689) #1#) $ $) NIL (|has| |#1| (-296)) ELT)) (-3741 (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL (|has| |#1| (-309)) ELT)) (-2396 (((-627 |#1|) (-1170 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-309)) ELT)) (-3170 ((|#2|) 77 T ELT)) (-1663 (($) NIL (|has| |#1| (-296)) ELT)) (-3209 (((-1170 |#1|) $ (-1170 $)) 92 T ELT) (((-627 |#1|) (-1170 $) (-1170 $)) NIL T ELT) (((-1170 |#1|) $) 72 T ELT) (((-627 |#1|) (-1170 $)) 88 T ELT)) (-3955 (((-1170 |#1|) $) NIL T ELT) (($ (-1170 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (|has| |#1| (-296)) ELT)) (-3929 (((-767) $) 58 T ELT) (($ (-480)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-309)) ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-309)) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-2688 (($ $) NIL (|has| |#1| (-296)) ELT) (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-2435 ((|#2| $) 85 T ELT)) (-3111 (((-689)) 79 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2000 (((-1170 $)) 84 T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-2646 (($) 32 T CONST)) (-2652 (($) 19 T CONST)) (-2655 (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-309))) (|has| |#1| (-296))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-806 (-1081)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL (|has| |#1| (-309)) ELT)) (-3042 (((-83) $ $) 64 T ELT)) (-3932 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 66 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-309)) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-309)) ELT))) -(((-985 |#1| |#2| |#3|) (-658 |#1| |#2|) (-144) (-1146 |#1|) |#2|) (T -985)) -NIL -((-3715 (((-343 |#3|) |#3|) 18 T ELT))) -(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3715 ((-343 |#3|) |#3|))) (-1146 (-345 (-480))) (-13 (-309) (-118) (-658 (-345 (-480)) |#1|)) (-1146 |#2|)) (T -986)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-13 (-309) (-118) (-658 (-345 (-480)) *4))) (-5 *2 (-343 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1146 *5))))) -((-3715 (((-343 |#3|) |#3|) 19 T ELT))) -(((-987 |#1| |#2| |#3|) (-10 -7 (-15 -3715 ((-343 |#3|) |#3|))) (-1146 (-345 (-852 (-480)))) (-13 (-309) (-118) (-658 (-345 (-852 (-480))) |#1|)) (-1146 |#2|)) (T -987)) -((-3715 (*1 *2 *3) (-12 (-4 *4 (-1146 (-345 (-852 (-480))))) (-4 *5 (-13 (-309) (-118) (-658 (-345 (-852 (-480))) *4))) (-5 *2 (-343 *3)) (-5 *1 (-987 *4 *5 *3)) (-4 *3 (-1146 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2517 (($ $ $) 16 T ELT)) (-2843 (($ $ $) 17 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3199 (($) 6 T ELT)) (-3955 (((-1081) $) 20 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 15 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 9 T ELT))) -(((-988) (-13 (-751) (-550 (-1081)) (-10 -8 (-15 -3199 ($))))) (T -988)) -((-3199 (*1 *1) (-5 *1 (-988)))) -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-1086)) 20 T ELT) (((-1086) $) 19 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-989) (-111)) (T -989)) +(((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) +NIL +((-3936 (($ $) 6 T ELT)) (-3937 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +(((-239) (-113)) (T -239)) +((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3937 (*1 *1 *1) (-4 *1 (-239))) (-3936 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-10 -8 (-15 -3936 ($ $)) (-15 -3937 ($ $)) (-15 ** ($ $ $)))) +((-1572 (((-583 (-1067 |#1|)) (-1067 |#1|) |#1|) 35 T ELT)) (-1569 ((|#2| |#2| |#1|) 39 T ELT)) (-1571 ((|#2| |#2| |#1|) 41 T ELT)) (-1570 ((|#2| |#2| |#1|) 40 T ELT))) +(((-240 |#1| |#2|) (-10 -7 (-15 -1569 (|#2| |#2| |#1|)) (-15 -1570 (|#2| |#2| |#1|)) (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 ((-583 (-1067 |#1|)) (-1067 |#1|) |#1|))) (-311) (-1170 |#1|)) (T -240)) +((-1572 (*1 *2 *3 *4) (-12 (-4 *4 (-311)) (-5 *2 (-583 (-1067 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1569 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) +((-3794 ((|#2| $ |#1|) 6 T ELT))) +(((-241 |#1| |#2|) (-113) (-1127) (-1127)) (T -241)) +((-3794 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127))))) +(-13 (-1127) (-10 -8 (-15 -3794 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1127) . T)) +((-1573 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3108 ((|#3| $ |#2|) 10 T ELT))) +(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1573 (|#3| |#1| |#2| |#3|)) (-15 -3108 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1012) (-1127)) (T -242)) +NIL +((-3782 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3990)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 11 T ELT)) (-3794 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-243 |#1| |#2|) (-113) (-1012) (-1127)) (T -243)) +((-3794 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3108 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-1573 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127))))) +(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3794 (|t#2| $ |t#1| |t#2|)) (-15 -3108 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3782 (|t#2| $ |t#1| |t#2|)) (-15 -1573 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-241 |#1| |#2|) . T) ((-13) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 44 T ELT)) (-2059 (($ $) 41 T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) 35 T ELT)) (-3836 (($ |#2| |#3|) 18 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 ((|#3| $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) NIL T ELT)) (-1604 (((-694) $) 36 T ELT)) (-3794 ((|#2| $ |#2|) 46 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 23 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 31 T CONST)) (-2662 (($) 39 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-257) (-241 |#2| |#2|) (-10 -8 (-15 -2610 (|#3| $)) (-15 -3940 (|#2| $)) (-15 -3836 ($ |#2| |#3|)) (-15 -2398 ((-3 $ #1="failed") $ $)) (-15 -3461 ((-3 $ #1#) $)) (-15 -2480 ($ $)))) (-146) (-1153 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) +((-3461 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2610 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3836 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2480 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-245) (-113)) (T -245)) +NIL +(-13 (-961) (-82 $ $) (-10 -7 (-6 -3982))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-1581 (((-583 (-996)) $) 10 T ELT)) (-1579 (($ (-444) (-444) (-1014) $) 19 T ELT)) (-1577 (($ (-444) (-583 (-876)) $) 23 T ELT)) (-1575 (($) 25 T ELT)) (-1580 (((-632 (-1014)) (-444) (-444) $) 18 T ELT)) (-1578 (((-583 (-876)) (-444) $) 22 T ELT)) (-3559 (($) 7 T ELT)) (-1576 (($) 24 T ELT)) (-3940 (((-772) $) 29 T ELT)) (-1574 (($) 26 T ELT))) +(((-246) (-13 (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -1581 ((-583 (-996)) $)) (-15 -1580 ((-632 (-1014)) (-444) (-444) $)) (-15 -1579 ($ (-444) (-444) (-1014) $)) (-15 -1578 ((-583 (-876)) (-444) $)) (-15 -1577 ($ (-444) (-583 (-876)) $)) (-15 -1576 ($)) (-15 -1575 ($)) (-15 -1574 ($))))) (T -246)) +((-3559 (*1 *1) (-5 *1 (-246))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-583 (-996))) (-5 *1 (-246)))) (-1580 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-1014))) (-5 *1 (-246)))) (-1579 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-246)))) (-1578 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-583 (-876))) (-5 *1 (-246)))) (-1577 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-246)))) (-1576 (*1 *1) (-5 *1 (-246))) (-1575 (*1 *1) (-5 *1 (-246))) (-1574 (*1 *1) (-5 *1 (-246)))) +((-1585 (((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))) 103 T ELT)) (-1584 (((-583 (-630 (-347 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|)))))) (-630 (-347 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1586 (((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))) 100 T ELT)) (-1583 (((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|)))) 76 T ELT)) (-1582 (((-583 (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (-630 (-347 (-857 |#1|)))) 75 T ELT)) (-2445 (((-857 |#1|) (-630 (-347 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-347 (-857 |#1|))) (-1088)) 57 T ELT))) +(((-247 |#1|) (-10 -7 (-15 -2445 ((-857 |#1|) (-630 (-347 (-857 |#1|))) (-1088))) (-15 -2445 ((-857 |#1|) (-630 (-347 (-857 |#1|))))) (-15 -1582 ((-583 (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (-630 (-347 (-857 |#1|))))) (-15 -1583 ((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))))) (-15 -1584 ((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))) (-694) (-694))) (-15 -1584 ((-583 (-630 (-347 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|)))))) (-630 (-347 (-857 |#1|))))) (-15 -1585 ((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|))))) (-15 -1586 ((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))))) (-389)) (T -247)) +((-1586 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-630 (-347 (-857 *5)))))) (-1584 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-347 (-857 *6)) (-1078 (-1088) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *6))))) (-5 *1 (-247 *6)) (-5 *4 (-630 (-347 (-857 *6)))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-630 (-347 (-857 *5)))))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-4 *4 (-389)) (-5 *2 (-583 (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4))))) (-5 *1 (-247 *4)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-247 *4)) (-4 *4 (-389)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-857 *5)))) (-5 *4 (-1088)) (-5 *2 (-857 *5)) (-5 *1 (-247 *5)) (-4 *5 (-389))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1592 (($ $) 12 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1601 (($ $ $) 95 (|has| |#1| (-253)) ELT)) (-3718 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1590 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1588 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3522 ((|#1| $) 11 T ELT)) (-3461 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3523 ((|#1| $) 10 T ELT)) (-1591 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1589 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2480 (($ $) 64 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1587 (((-583 $) $) 85 (|has| |#1| (-494)) ELT)) (-3762 (($ $ $) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-1088) |#1|) 17 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 21 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3221 (($ |#1| |#1|) 9 T ELT)) (-3905 (((-107)) 90 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 87 (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-809 (-1088))) ELT)) (-3005 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3940 (($ (-483)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1012)) ELT) (((-772) $) 36 (|has| |#1| (-1012)) ELT)) (-3121 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2656 (($) 47 (|has| |#1| (-21)) CONST)) (-2662 (($) 57 (|has| |#1| (-663)) CONST)) (-2665 (($ $ (-1088)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-809 (-1088))) ELT)) (-3052 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1012)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 92 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3831 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3833 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) NIL (|has| |#1| (-410)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1024)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1024)) ELT) (($ |#1| $) 54 (|has| |#1| (-1024)) ELT) (($ $ $) 53 (|has| |#1| (-1024)) ELT) (($ (-483) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT))) +(((-248 |#1|) (-13 (-1127) (-10 -8 (-15 -3052 ($ |#1| |#1|)) (-15 -3221 ($ |#1| |#1|)) (-15 -1592 ($ $)) (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452 (-1088) |#1|)) (-6 (-452 (-1088) |#1|)) |%noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-6 (-552 (-85))) (IF (|has| |#1| (-259 |#1|)) (PROGN (-15 -3762 ($ $ $)) (-15 -3762 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3833 ($ |#1| $)) (-15 -3833 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1591 ($ $)) (-15 -1590 ($ $)) (-15 -3831 ($ |#1| $)) (-15 -3831 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1024)) (PROGN (-6 (-1024)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1589 ((-3 $ #1="failed") $)) (-15 -1588 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-410)) (PROGN (-6 (-410)) (-15 -1589 ((-3 $ #1#) $)) (-15 -1588 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-494)) (-15 -1587 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-1185 |#1|)) (-15 -3943 ($ $ $)) (-15 -2480 ($ $))) |%noBranch|) (IF (|has| |#1| (-253)) (-15 -1601 ($ $ $)) |%noBranch|))) (-1127)) (T -248)) +((-3052 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3221 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3523 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3522 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-248 *3)))) (-3762 (*1 *1 *1 *1) (-12 (-4 *2 (-259 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-248 *2)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)) (-5 *1 (-248 *3)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1590 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1589 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))) (-1588 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-583 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-494)) (-4 *3 (-1127)))) (-1601 (*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1127)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (-3943 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127))))) (-2480 (*1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127)))))) +((-3952 (((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)) 14 T ELT))) +(((-249 |#1| |#2|) (-10 -7 (-15 -3952 ((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)))) (-1127) (-1127)) (T -249)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-250 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012)) (T -250)) +NIL +((-1593 (((-261) (-1071) (-583 (-1071))) 17 T ELT) (((-261) (-1071) (-1071)) 16 T ELT) (((-261) (-583 (-1071))) 15 T ELT) (((-261) (-1071)) 14 T ELT))) +(((-251) (-10 -7 (-15 -1593 ((-261) (-1071))) (-15 -1593 ((-261) (-583 (-1071)))) (-15 -1593 ((-261) (-1071) (-1071))) (-15 -1593 ((-261) (-1071) (-583 (-1071)))))) (T -251)) +((-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1071))) (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251))))) +((-1597 (((-583 (-550 $)) $) 27 T ELT)) (-1601 (($ $ (-248 $)) 78 T ELT) (($ $ (-583 (-248 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3151 (((-550 $) $) 127 T ELT)) (-2569 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1596 (((-583 (-86)) $) 35 T ELT)) (-3589 (((-86) (-86)) 89 T ELT)) (-2669 (((-85) $) 151 T ELT)) (-3952 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1599 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2231 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2629 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1088)) 132 T ELT)) (-2599 (((-694) $) 44 T ELT)) (-1595 (((-85) $ $) 57 T ELT) (((-85) $ (-1088)) 49 T ELT)) (-2670 (((-85) $) 149 T ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) 138 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1088) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3794 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1600 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2586 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2250 (((-85) (-86)) 21 T ELT))) +(((-252 |#1|) (-10 -7 (-15 -2669 ((-85) |#1|)) (-15 -2670 ((-85) |#1|)) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| |#1|)))) (-15 -1595 ((-85) |#1| (-1088))) (-15 -1595 ((-85) |#1| |#1|)) (-15 -3952 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2231 (|#1| (-86) (-583 |#1|))) (-15 -2231 (|#1| (-86) |#1|)) (-15 -2629 ((-85) |#1| (-1088))) (-15 -2629 ((-85) |#1| (-86))) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1596 ((-583 (-86)) |#1|)) (-15 -1597 ((-583 (-550 |#1|)) |#1|)) (-15 -1599 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2599 ((-694) |#1|)) (-15 -1600 (|#1| |#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -2569 (|#1| (-583 |#1|))) (-15 -2569 (|#1| |#1|)) (-15 -2586 (|#1| (-583 |#1|))) (-15 -2586 (|#1| |#1|)) (-15 -1601 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1601 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -1601 (|#1| |#1| (-248 |#1|))) (-15 -3794 (|#1| (-86) (-583 |#1|))) (-15 -3794 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3152 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3151 ((-550 |#1|) |#1|))) (-253)) (T -252)) +((-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253))))) +((-2564 (((-85) $ $) 7 T ELT)) (-1597 (((-583 (-550 $)) $) 42 T ELT)) (-1601 (($ $ (-248 $)) 54 T ELT) (($ $ (-583 (-248 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3152 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3151 (((-550 $) $) 68 T ELT)) (-2569 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1596 (((-583 (-86)) $) 41 T ELT)) (-3589 (((-86) (-86)) 40 T ELT)) (-2669 (((-85) $) 20 (|has| $ (-950 (-483))) ELT)) (-1594 (((-1083 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 43 T ELT)) (-2231 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2629 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2599 (((-694) $) 45 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1595 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-2670 (((-85) $) 21 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3794 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1600 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3180 (($ $) 22 (|has| $ (-961)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2586 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2250 (((-85) (-86)) 39 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-253) (-113)) (T -253)) +((-3794 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *1))) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-2586 (*1 *1 *1) (-4 *1 (-253))) (-2586 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) (-2569 (*1 *1 *1) (-4 *1 (-253))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) (-1600 (*1 *1 *1) (-4 *1 (-253))) (-1600 (*1 *1 *1 *1) (-4 *1 (-253))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-694)))) (-1599 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-253)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-583 (-86))))) (-3589 (*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2250 (*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-2231 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2231 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-3952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-253)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85)))) (-1595 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-253)) (-5 *2 (-1083 *1)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-253)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85))))) +(-13 (-1012) (-950 (-550 $)) (-452 (-550 $) $) (-259 $) (-10 -8 (-15 -3794 ($ (-86) $)) (-15 -3794 ($ (-86) $ $)) (-15 -3794 ($ (-86) $ $ $)) (-15 -3794 ($ (-86) $ $ $ $)) (-15 -3794 ($ (-86) (-583 $))) (-15 -1601 ($ $ (-248 $))) (-15 -1601 ($ $ (-583 (-248 $)))) (-15 -1601 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2586 ($ $)) (-15 -2586 ($ (-583 $))) (-15 -2569 ($ $)) (-15 -2569 ($ (-583 $))) (-15 -1600 ($ $)) (-15 -1600 ($ $ $)) (-15 -2599 ((-694) $)) (-15 -1599 ((-3 (-550 $) "failed") $)) (-15 -1598 ((-583 (-550 $)) $)) (-15 -1597 ((-583 (-550 $)) $)) (-15 -1596 ((-583 (-86)) $)) (-15 -3589 ((-86) (-86))) (-15 -2250 ((-85) (-86))) (-15 -2629 ((-85) $ (-86))) (-15 -2629 ((-85) $ (-1088))) (-15 -2231 ($ (-86) $)) (-15 -2231 ($ (-86) (-583 $))) (-15 -3952 ($ (-1 $ $) (-550 $))) (-15 -1595 ((-85) $ $)) (-15 -1595 ((-85) $ (-1088))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-1088) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-1088) (-1 $ $))) (-15 -3762 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1594 ((-1083 $) (-550 $))) (-15 -3180 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-483))) (PROGN (-15 -2670 ((-85) $)) (-15 -2669 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-259 $) . T) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1012) . T) ((-1127) . T)) +((-3952 ((|#2| (-1 |#2| |#1|) (-1071) (-550 |#1|)) 18 T ELT))) +(((-254 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| (-1 |#2| |#1|) (-1071) (-550 |#1|)))) (-253) (-1127)) (T -254)) +((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-550 *6)) (-4 *6 (-253)) (-4 *2 (-1127)) (-5 *1 (-254 *6 *2))))) +((-3952 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-253) (-253)) (T -255)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-253)) (-4 *2 (-253)) (-5 *1 (-255 *5 *2))))) +((-1605 (((-85) $ $) 14 T ELT)) (-2560 (($ $ $) 18 T ELT)) (-2559 (($ $ $) 17 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 50 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3139 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3460 (((-3 $ #1#) $ $) 21 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 55 T ELT))) +(((-256 |#1|) (-10 -7 (-15 -1602 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1603 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1603 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1| |#1|)) (-15 -1605 ((-85) |#1| |#1|)) (-15 -2736 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2737 ((-2 (|:| -3948 (-583 |#1|)) (|:| -2405 |#1|)) (-583 |#1|))) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#1|))) (-257)) (T -256)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) "failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-257) (-113)) (T -257)) +((-1605 (*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-694)))) (-2875 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-257)))) (-2559 (*1 *1 *1 *1) (-4 *1 (-257))) (-2560 (*1 *1 *1 *1) (-4 *1 (-257))) (-1603 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-257)))) (-1603 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-257)))) (-1602 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-257))))) +(-13 (-832) (-10 -8 (-15 -1605 ((-85) $ $)) (-15 -1604 ((-694) $)) (-15 -2875 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2559 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -1603 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -1603 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1602 ((-3 (-583 $) "failed") (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3762 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-248 |#2|)) 11 T ELT) (($ $ (-583 (-248 |#2|))) NIL T ELT))) +(((-258 |#1| |#2|) (-10 -7 (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-259 |#2|) (-1012)) (T -258)) +NIL +((-3762 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-248 |#1|)) 13 T ELT) (($ $ (-583 (-248 |#1|))) 12 T ELT))) +(((-259 |#1|) (-113) (-1012)) (T -259)) +((-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1012)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1012))))) +(-13 (-452 |t#1| |t#1|) (-10 -8 (-15 -3762 ($ $ (-248 |t#1|))) (-15 -3762 ($ $ (-583 (-248 |t#1|)))))) +(((-452 |#1| |#1|) . T)) +((-3762 ((|#1| (-1 |#1| (-483)) (-1090 (-347 (-483)))) 26 T ELT))) +(((-260 |#1|) (-10 -7 (-15 -3762 (|#1| (-1 |#1| (-483)) (-1090 (-347 (-483)))))) (-38 (-347 (-483)))) (T -260)) +((-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-347 (-483)))) (-5 *1 (-260 *2)) (-4 *2 (-38 (-347 (-483))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT))) +(((-261) (-1012)) (T -261)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3500 (((-483) $) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-262) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3500 ((-483) $))))) (T -262)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-262)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-262))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 60 T ELT)) (-3124 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1164 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3151 (((-1164 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1088) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-1164 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-1164 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3439 (((-632 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3952 (($ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3778 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-1177 $) $) NIL T ELT) (((-630 (-1164 |#1| |#2| |#3| |#4|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-3125 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-1164 |#1| |#2| |#3| |#4|)) (-583 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-248 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-248 (-1164 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1088)) (-583 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1088) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-1164 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (($ (-1158 |#2| |#3| |#4|)) 37 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1164 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3943 (($ $ $) 35 T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-263 |#1| |#2| |#3| |#4|) (-13 (-904 (-1164 |#1| |#2| |#3| |#4|)) (-950 (-1158 |#2| |#3| |#4|)) (-10 -8 (-15 -3778 ((-3 (-750 |#2|) "failed") $)) (-15 -3940 ($ (-1158 |#2| |#3| |#4|))))) (-13 (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -263)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4) (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *1 (-263 *3 *4 *5 *6)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-750 *4)) (-5 *1 (-263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) +((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) $) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-1213 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3183 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3077 (((-583 (-1088)) $) 365 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1597 (((-583 (-550 $)) $) NIL T ELT)) (-3486 (($ $) 170 (|has| |#1| (-494)) ELT)) (-3633 (($ $) 146 (|has| |#1| (-494)) ELT)) (-1369 (($ $ (-1003 $)) 231 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 227 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 305 (-12 (|has| |#1| (-389)) (|has| |#1| (-494))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-494)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-494)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3484 (($ $) 166 (|has| |#1| (-494)) ELT)) (-3632 (($ $) 142 (|has| |#1| (-494)) ELT)) (-1606 (($ $ (-483)) 68 (|has| |#1| (-494)) ELT)) (-3488 (($ $) 174 (|has| |#1| (-494)) ELT)) (-3631 (($ $) 150 (|has| |#1| (-494)) ELT)) (-3718 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) (|has| |#1| (-1024))) CONST)) (-1214 (((-583 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) $) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3178 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) 133 (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-494)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-347 (-483)) #1#) $) 48 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-550 $) $) 12 T ELT) (((-1088) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-857 |#1|)) $) NIL (|has| |#1| (-494)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-347 (-483)) $) 316 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT)) (-3836 (($ $) 95 (|has| |#1| (-494)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3938 (($ $ (-1003 $)) 235 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 233 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-494)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3380 (($ $ $) 201 (|has| |#1| (-494)) ELT)) (-3621 (($) 136 (|has| |#1| (-494)) ELT)) (-1366 (($ $ $) 221 (|has| |#1| (-494)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 389 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 396 (|has| |#1| (-796 (-327))) ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) 275 T ELT)) (-2406 (((-85) $) 27 (|has| |#1| (-1024)) ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1607 (((-85) $) 49 (|has| |#1| (-494)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-494)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-494)) ELT)) (-1594 (((-1083 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3936 (($ $) 140 (|has| |#1| (-494)) ELT)) (-2253 (($ $) 246 (|has| |#1| (-494)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) 51 T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $) NIL (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-1088)) NIL (|has| |#1| (-961)) ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) 53 T ELT)) (-2480 (($ $) NIL (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-2828 (($ $ (-1088)) 250 (|has| |#1| (-494)) ELT) (($ $ (-1003 $)) 252 (|has| |#1| (-494)) ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 45 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 298 (|has| |#1| (-494)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-1370 (($ $ (-1088)) 225 (|has| |#1| (-494)) ELT) (($ $) 223 (|has| |#1| (-494)) ELT)) (-1364 (($ $) 217 (|has| |#1| (-494)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 303 (-12 (|has| |#1| (-389)) (|has| |#1| (-494))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) 138 (|has| |#1| (-494)) ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-553 (-472))) ELT) (($ $) NIL (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 363 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 362 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-2251 (($ $) 238 (|has| |#1| (-494)) ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2252 (($ $) 248 (|has| |#1| (-494)) ELT)) (-3379 (($ $) 199 (|has| |#1| (-494)) ELT)) (-3752 (($ $ (-1088)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2991 (($ $) 74 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 92 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 314 (|has| $ (-961)) ELT)) (-3489 (($ $) 176 (|has| |#1| (-494)) ELT)) (-3630 (($ $) 152 (|has| |#1| (-494)) ELT)) (-3487 (($ $) 172 (|has| |#1| (-494)) ELT)) (-3629 (($ $) 148 (|has| |#1| (-494)) ELT)) (-3485 (($ $) 168 (|has| |#1| (-494)) ELT)) (-3628 (($ $) 144 (|has| |#1| (-494)) ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (($ (-345 $)) NIL (|has| |#1| (-494)) ELT) (((-472) $) 360 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1088)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (($ (-1037 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-347 |#1|)) NIL (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-857 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-483)) 36 (OR (|has| |#1| (-950 (-483))) (|has| |#1| (-961))) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-494)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3097 (($ $ $) 219 (|has| |#1| (-494)) ELT)) (-3383 (($ $ $) 205 (|has| |#1| (-494)) ELT)) (-3385 (($ $ $) 209 (|has| |#1| (-494)) ELT)) (-3382 (($ $ $) 203 (|has| |#1| (-494)) ELT)) (-3384 (($ $ $) 207 (|has| |#1| (-494)) ELT)) (-2250 (((-85) (-86)) 10 T ELT)) (-1262 (((-85) $ $) 85 T ELT)) (-3492 (($ $) 182 (|has| |#1| (-494)) ELT)) (-3480 (($ $) 158 (|has| |#1| (-494)) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 178 (|has| |#1| (-494)) ELT)) (-3478 (($ $) 154 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 186 (|has| |#1| (-494)) ELT)) (-3482 (($ $) 162 (|has| |#1| (-494)) ELT)) (-1792 (($ (-1088) $) NIL T ELT) (($ (-1088) $ $) NIL T ELT) (($ (-1088) $ $ $) NIL T ELT) (($ (-1088) $ $ $ $) NIL T ELT) (($ (-1088) (-583 $)) NIL T ELT)) (-3387 (($ $) 213 (|has| |#1| (-494)) ELT)) (-3386 (($ $) 211 (|has| |#1| (-494)) ELT)) (-3495 (($ $) 188 (|has| |#1| (-494)) ELT)) (-3483 (($ $) 164 (|has| |#1| (-494)) ELT)) (-3493 (($ $) 184 (|has| |#1| (-494)) ELT)) (-3481 (($ $) 160 (|has| |#1| (-494)) ELT)) (-3491 (($ $) 180 (|has| |#1| (-494)) ELT)) (-3479 (($ $) 156 (|has| |#1| (-494)) ELT)) (-3377 (($ $) 191 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) CONST)) (-2255 (($ $) 242 (|has| |#1| (-494)) ELT)) (-2662 (($) 25 (|has| |#1| (-1024)) CONST)) (-3381 (($ $) 193 (|has| |#1| (-494)) ELT) (($ $ $) 195 (|has| |#1| (-494)) ELT)) (-2256 (($ $) 240 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-1088)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2254 (($ $) 244 (|has| |#1| (-494)) ELT)) (-3378 (($ $ $) 197 (|has| |#1| (-494)) ELT)) (-3052 (((-85) $ $) 87 T ELT)) (-3943 (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 105 (|has| |#1| (-494)) ELT) (($ $ $) 44 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-3831 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3833 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) 311 (|has| |#1| (-494)) ELT) (($ $ (-483)) 79 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1024)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1024)) ELT)) (* (($ (-347 (-483)) $) NIL (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-494)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1024)) ELT) (($ (-483) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT))) +(((-264 |#1|) (-13 (-361 |#1|) (-10 -8 (IF (|has| |#1| (-494)) (PROGN (-6 (-29 |#1|)) (-6 (-1113)) (-6 (-133)) (-6 (-569)) (-6 (-1051)) (-15 -3836 ($ $)) (-15 -1607 ((-85) $)) (-15 -1606 ($ $ (-483))) (IF (|has| |#1| (-389)) (PROGN (-15 -2702 ((-345 (-1083 $)) (-1083 $))) (-15 -2703 ((-345 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-483))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1012)) (T -264)) +((-3836 (*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-494)) (-4 *2 (-1012)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2702 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012)))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012))))) +((-3952 (((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)) 13 T ELT))) +(((-265 |#1| |#2|) (-10 -7 (-15 -3952 ((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)))) (-1012) (-1012)) (T -265)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6))))) +((-3723 (((-51) |#2| (-248 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-248 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1088)) 26 T ELT)) (-3812 (((-51) |#2| (-248 |#2|) (-347 (-483))) 59 T ELT) (((-51) |#2| (-248 |#2|)) 56 T ELT) (((-51) |#2| (-347 (-483))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1088)) 55 T ELT)) (-3776 (((-51) |#2| (-248 |#2|) (-347 (-483))) 54 T ELT) (((-51) |#2| (-248 |#2|)) 51 T ELT) (((-51) |#2| (-347 (-483))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1088)) 50 T ELT)) (-3773 (((-51) |#2| (-248 |#2|) (-483)) 47 T ELT) (((-51) |#2| (-248 |#2|)) 44 T ELT) (((-51) |#2| (-483)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1088)) 43 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -3723 ((-51) (-1088))) (-15 -3723 ((-51) |#2|)) (-15 -3723 ((-51) |#2| (-694))) (-15 -3723 ((-51) |#2| (-248 |#2|))) (-15 -3723 ((-51) |#2| (-248 |#2|) (-694))) (-15 -3773 ((-51) (-1088))) (-15 -3773 ((-51) |#2|)) (-15 -3773 ((-51) |#2| (-483))) (-15 -3773 ((-51) |#2| (-248 |#2|))) (-15 -3773 ((-51) |#2| (-248 |#2|) (-483))) (-15 -3776 ((-51) (-1088))) (-15 -3776 ((-51) |#2|)) (-15 -3776 ((-51) |#2| (-347 (-483)))) (-15 -3776 ((-51) |#2| (-248 |#2|))) (-15 -3776 ((-51) |#2| (-248 |#2|) (-347 (-483)))) (-15 -3812 ((-51) (-1088))) (-15 -3812 ((-51) |#2|)) (-15 -3812 ((-51) |#2| (-347 (-483)))) (-15 -3812 ((-51) |#2| (-248 |#2|))) (-15 -3812 ((-51) |#2| (-248 |#2|) (-347 (-483))))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -266)) +((-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3776 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 *5) (-580 *5))) (-5 *5 (-483)) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-13 (-389) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3773 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4)))))) +((-1608 (((-51) |#2| (-86) (-248 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-248 |#2|) (-248 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-248 |#2|) |#2|) 87 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|))) 82 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|)) 86 T ELT))) +(((-267 |#1| |#2|) (-10 -7 (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|))) (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|)))) (-15 -1608 ((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|)))) (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|)) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) |#2|)) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) (-248 |#2|))) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) (-583 |#2|)))) (-13 (-494) (-553 (-472))) (-361 |#1|)) (T -267)) +((-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-583 *3)) (-4 *3 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))) (-1608 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1608 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) (-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-248 *8))) (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-248 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *8)) (-5 *6 (-583 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) (-4 *5 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6))))) +((-1610 (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071)) 67 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483)) 68 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071)) 64 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483)) 65 T ELT)) (-1609 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-268) (-10 -7 (-15 -1609 ((-1 (-179) (-179)) (-179))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071))))) (T -268)) +((-1610 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1609 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 26 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 20 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 36 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) NIL T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1611 (((-347 (-483)) $) 17 T ELT)) (-3086 (($ (-1158 |#1| |#2| |#3|)) 11 T ELT)) (-2397 (((-1158 |#1| |#2| |#3|) $) 12 T ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 10 T ELT)) (-3940 (((-772) $) 42 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 34 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 28 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 37 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-269 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-716) (-10 -8 (-15 -3086 ($ (-1158 |#1| |#2| |#3|))) (-15 -2397 ((-1158 |#1| |#2| |#3|) $)) (-15 -1611 ((-347 (-483)) $)))) (-311) (-1088) |#1|) (T -269)) +((-3086 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-269 *3 *4 *5)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3)))) +((-3007 (((-2 (|:| -2397 (-694)) (|:| -3948 |#1|) (|:| |radicand| (-583 |#1|))) (-345 |#1|) (-694)) 35 T ELT)) (-3936 (((-583 (-2 (|:| -3948 (-694)) (|:| |logand| |#1|))) (-345 |#1|)) 40 T ELT))) +(((-270 |#1|) (-10 -7 (-15 -3007 ((-2 (|:| -2397 (-694)) (|:| -3948 |#1|) (|:| |radicand| (-583 |#1|))) (-345 |#1|) (-694))) (-15 -3936 ((-583 (-2 (|:| -3948 (-694)) (|:| |logand| |#1|))) (-345 |#1|)))) (-494)) (T -270)) +((-3936 (*1 *2 *3) (-12 (-5 *3 (-345 *4)) (-4 *4 (-494)) (-5 *2 (-583 (-2 (|:| -3948 (-694)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *5)) (-4 *5 (-494)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-270 *5)) (-5 *4 (-694))))) +((-3077 (((-583 |#2|) (-1083 |#4|)) 45 T ELT)) (-1616 ((|#3| (-483)) 48 T ELT)) (-1614 (((-1083 |#4|) (-1083 |#3|)) 30 T ELT)) (-1615 (((-1083 |#4|) (-1083 |#4|) (-483)) 67 T ELT)) (-1613 (((-1083 |#3|) (-1083 |#4|)) 21 T ELT)) (-3942 (((-583 (-694)) (-1083 |#4|) (-583 |#2|)) 41 T ELT)) (-1612 (((-1083 |#3|) (-1083 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT))) +(((-271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 ((-1083 |#3|) (-1083 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3942 ((-583 (-694)) (-1083 |#4|) (-583 |#2|))) (-15 -3077 ((-583 |#2|) (-1083 |#4|))) (-15 -1613 ((-1083 |#3|) (-1083 |#4|))) (-15 -1614 ((-1083 |#4|) (-1083 |#3|))) (-15 -1615 ((-1083 |#4|) (-1083 |#4|) (-483))) (-15 -1616 (|#3| (-483)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -271)) +((-1616 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1615 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-271 *4 *5 *6 *7)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1083 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-271 *5 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1083 *8)) (-5 *1 (-271 *6 *7 *8 *9))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 19 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $) 21 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-1619 (((-483) $ (-483)) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1618 (($ (-1 (-483) (-483)) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) NIL (|has| (-483) (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3671 (((-483) |#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ (-483) |#1|) 28 T ELT))) +(((-272 |#1|) (-13 (-21) (-654 (-483)) (-273 |#1| (-483)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1012)) (T -272)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 33 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3131 (((-694) $) 34 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 38 T ELT)) (-3151 ((|#1| $) 39 T ELT)) (-2295 ((|#1| $ (-483)) 31 T ELT)) (-1619 ((|#2| $ (-483)) 32 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1618 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1617 (($ $ $) 27 (|has| |#2| (-716)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3671 ((|#2| |#1| $) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-273 |#1| |#2|) (-113) (-1012) (-104)) (T -273)) +((-3833 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))))) (-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012)))) (-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-1618 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-1617 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-716))))) +(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3833 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3131 ((-694) $)) (-15 -3768 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3937 |t#2|))) $)) (-15 -1619 (|t#2| $ (-483))) (-15 -2295 (|t#1| $ (-483))) (-15 -3671 (|t#2| |t#1| $)) (-15 -1618 ($ (-1 |t#2| |t#2|) $)) (-15 -2286 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1617 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-1619 (((-694) $ (-483)) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1618 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3671 (((-694) |#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT))) +(((-274 |#1|) (-273 |#1| (-694)) (-1012)) (T -274)) +NIL +((-3497 (($ $) 72 T ELT)) (-1621 (($ $ |#2| |#3| $) 14 T ELT)) (-1622 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1794 (((-85) $) 42 T ELT)) (-1793 ((|#2| $) 44 T ELT)) (-3460 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2813 ((|#2| $) 68 T ELT)) (-3811 (((-583 |#2|) $) 56 T ELT)) (-1620 (($ $ $ (-694)) 37 T ELT)) (-3943 (($ $ |#2|) 60 T ELT))) +(((-275 |#1| |#2| |#3|) (-10 -7 (-15 -3497 (|#1| |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3460 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1620 (|#1| |#1| |#1| (-694))) (-15 -1621 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3811 ((-583 |#2|) |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 ((-85) |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#2|))) (-276 |#2| |#3|) (-961) (-716)) (T -275)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 105 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 102 T ELT)) (-3151 (((-483) $) 106 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 104 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 103 T ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 91 (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| |#2| $) 95 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 98 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT)) (-2816 ((|#2| $) 97 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 96 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 101 T ELT)) (-1793 ((|#1| $) 100 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ |#1|) 93 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2813 ((|#1| $) 92 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 T ELT) (($ (-347 (-483))) 75 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 99 T ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 94 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-276 |#1| |#2|) (-113) (-961) (-716)) (T -276)) +((-1794 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1621 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1620 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-494)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-389)))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-389))))) +(-13 (-47 |t#1| |t#2|) (-352 |t#1|) (-10 -8 (-15 -1794 ((-85) $)) (-15 -1793 (|t#1| $)) (-15 -3811 ((-583 |t#1|) $)) (-15 -2416 ((-694) $)) (-15 -2816 (|t#2| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -1621 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1620 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2813 (|t#1| $)) (-15 -3497 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-352 |#1|) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1982 (((-85) (-85)) NIL T ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-2364 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1983 (($ $ (-483)) NIL T ELT)) (-1984 (((-694) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1985 (($ (-583 |#1|)) NIL T ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-277 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1985 ($ (-583 |#1|))) (-15 -1984 ((-694) $)) (-15 -1983 ($ $ (-483))) (-15 -1982 ((-85) (-85))))) (-1127)) (T -277)) +((-1985 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-277 *3)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1127))))) +((-3926 (((-85) $) 47 T ELT)) (-3923 (((-694)) 23 T ELT)) (-3324 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3131 (((-694)) 124 T ELT)) (-1789 (($ (-1177 |#2|)) 20 T ELT)) (-2007 (((-85) $) 136 T ELT)) (-3127 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2010 (((-1083 |#2|) $) NIL T ELT) (((-1083 $) $ (-830)) 111 T ELT)) (-1624 (((-1083 |#2|) $) 95 T ELT)) (-1623 (((-1083 |#2|) $) 91 T ELT) (((-3 (-1083 |#2|) "failed") $ $) 88 T ELT)) (-1625 (($ $ (-1083 |#2|)) 58 T ELT)) (-3924 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3905 (((-107)) 27 T ELT)) (-3942 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1626 (($) 130 T ELT)) (-3219 (((-1177 |#2|) $) NIL T ELT) (((-630 |#2|) (-1177 $)) 42 T ELT)) (-2698 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3927 (((-85) $) 45 T ELT))) +(((-278 |#1| |#2|) (-10 -7 (-15 -2698 ((-632 |#1|) |#1|)) (-15 -3131 ((-694))) (-15 -2698 (|#1| |#1|)) (-15 -1623 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -1623 ((-1083 |#2|) |#1|)) (-15 -1624 ((-1083 |#2|) |#1|)) (-15 -1625 (|#1| |#1| (-1083 |#2|))) (-15 -2007 ((-85) |#1|)) (-15 -1626 (|#1|)) (-15 -3324 (|#1| |#1| (-830))) (-15 -3127 (|#1| |#1| (-830))) (-15 -2010 ((-1083 |#1|) |#1| (-830))) (-15 -3324 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3942 ((-830) |#1|)) (-15 -3924 ((-830))) (-15 -2010 ((-1083 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -3923 ((-694))) (-15 -3924 ((-743 (-830)))) (-15 -3942 ((-743 (-830)) |#1|)) (-15 -3926 ((-85) |#1|)) (-15 -3927 ((-85) |#1|)) (-15 -3905 ((-107)))) (-279 |#2|) (-311)) (T -278)) +((-3905 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3924 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-743 (-830))) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3923 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3924 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-830)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3131 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3926 (((-85) $) 112 T ELT)) (-3923 (((-694)) 108 T ELT)) (-3324 ((|#1| $) 160 T ELT) (($ $ (-830)) 157 (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 142 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3131 (((-694)) 132 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 119 T ELT)) (-3151 ((|#1| $) 120 T ELT)) (-1789 (($ (-1177 |#1|)) 166 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 148 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 129 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2829 (($) 144 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) 145 (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-830) $) 147 (|has| |#1| (-317)) ELT) (((-743 (-830)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2009 (($) 155 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 154 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 161 T ELT) (($ $ (-830)) 158 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) 133 (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2010 (((-1083 |#1|) $) 165 T ELT) (((-1083 $) $ (-830)) 159 (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 130 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) 151 (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) 150 (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) "failed") $ $) 149 (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) 152 (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 134 (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 131 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 111 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 153 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 141 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-3924 (((-743 (-830))) 109 T ELT) (((-830)) 163 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-694) $) 146 (|has| |#1| (-317)) ELT) (((-3 (-694) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) 117 T ELT)) (-3752 (($ $ (-694)) 137 (|has| |#1| (-317)) ELT) (($ $) 135 (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) 110 T ELT) (((-830) $) 162 T ELT)) (-3180 (((-1083 |#1|)) 164 T ELT)) (-1671 (($) 143 (|has| |#1| (-317)) ELT)) (-1626 (($) 156 (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 168 T ELT) (((-630 |#1|) (-1177 $)) 167 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 140 (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2698 (($ $) 139 (|has| |#1| (-317)) ELT) (((-632 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 170 T ELT) (((-1177 $) (-830)) 169 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3927 (((-85) $) 113 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3922 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-694)) 106 (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) 138 (|has| |#1| (-317)) ELT) (($ $) 136 (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) +(((-279 |#1|) (-113) (-311)) (T -279)) +((-2008 (*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *3)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *4)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) (-3180 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) (-3924 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1083 *1)) (-4 *1 (-279 *4)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-1626 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2009 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) (-2405 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))) (-1623 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3))))) +(-13 (-1196 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -2008 ((-1177 $) (-830))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -2010 ((-1083 |t#1|) $)) (-15 -3180 ((-1083 |t#1|))) (-15 -3924 ((-830))) (-15 -3942 ((-830) $)) (-15 -3127 (|t#1| $)) (-15 -3324 (|t#1| $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-298)) (-15 -2010 ((-1083 $) $ (-830))) (-15 -3127 ($ $ (-830))) (-15 -3324 ($ $ (-830))) (-15 -1626 ($)) (-15 -2009 ($)) (-15 -2007 ((-85) $)) (-15 -2405 ($)) (-15 -1625 ($ $ (-1083 |t#1|))) (-15 -1624 ((-1083 |t#1|) $)) (-15 -1623 ((-1083 |t#1|) $)) (-15 -1623 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-317)) ((-190) |has| |#1| (-317)) ((-189) |has| |#1| (-317)) ((-201) . T) ((-245) . T) ((-257) . T) ((-1196 |#1|) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-317) |has| |#1| (-317)) ((-298) |has| |#1| (-317)) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-317)) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-1627 (((-85) $) 13 T ELT)) (-3632 (($ |#1|) 10 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3628 (($ |#1|) 12 T ELT)) (-3940 (((-772) $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2232 ((|#1| $) 14 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 21 T ELT))) +(((-280 |#1|) (-13 (-756) (-10 -8 (-15 -3632 ($ |#1|)) (-15 -3628 ($ |#1|)) (-15 -1627 ((-85) $)) (-15 -2232 (|#1| $)))) (-756)) (T -280)) +((-3632 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) (-3628 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-756)))) (-2232 (*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1628 (((-444) $) 20 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1629 (((-869 (-694)) $) 18 T ELT)) (-1631 (((-209) $) 7 T ELT)) (-3940 (((-772) $) 26 T ELT)) (-2202 (((-869 (-158 (-112))) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1630 (((-583 (-782 (-1093) (-694))) $) 12 T ELT)) (-3052 (((-85) $ $) 22 T ELT))) +(((-281) (-13 (-1012) (-10 -8 (-15 -1631 ((-209) $)) (-15 -1630 ((-583 (-782 (-1093) (-694))) $)) (-15 -1629 ((-869 (-694)) $)) (-15 -2202 ((-869 (-158 (-112))) $)) (-15 -1628 ((-444) $))))) (T -281)) +((-1631 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1093) (-694)))) (-5 *1 (-281)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-281)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-281)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ $) 34 T ELT)) (-1634 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1632 (((-1177 |#4|) $) 133 T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 32 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (((-3 |#4| #1#) $) 37 T ELT)) (-1633 (((-1177 |#4|) $) 125 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-483)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 15 T CONST)) (-3052 (((-85) $ $) 21 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 24 T ELT))) +(((-282 |#1| |#2| |#3| |#4|) (-13 (-285 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1633 ((-1177 |#4|) $)) (-15 -1632 ((-1177 |#4|) $)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -282)) +((-1633 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))) (-1632 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) +((-3952 (((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-283 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 ((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-311) (-1153 |#5|) (-1153 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -283)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *9 (-311)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-347 *10))) (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-290 *9 *10 *11))))) +((-1634 (((-85) $) 14 T ELT))) +(((-284 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1634 ((-85) |#1|))) (-285 |#2| |#3| |#4| |#5|) (-311) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -284)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3836 (($ $) 34 T ELT)) (-1634 (((-85) $) 33 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 40 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (((-3 |#4| "failed") $) 32 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-483)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT))) +(((-285 |#1| |#2| |#3| |#4|) (-113) (-311) (-1153 |t#1|) (-1153 (-347 |t#2|)) (-290 |t#1| |t#2| |t#3|)) (T -285)) +((-1966 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-353 *4 (-347 *4) *5 *6)))) (-1635 (*1 *1 *2) (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) (-4 *1 (-285 *3 *4 *5 *6)))) (-1635 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) (-1635 (*1 *1 *2 *2) (-12 (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))) (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) (-1635 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-311)) (-4 *4 (-1153 *2)) (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) (-4 *6 (-290 *2 *4 *5)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-2 (|:| -2332 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))) (-2405 (*1 *2 *1) (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) (-1635 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-311)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1966 ((-353 |t#2| (-347 |t#2|) |t#3| |t#4|) $)) (-15 -1635 ($ (-353 |t#2| (-347 |t#2|) |t#3| |t#4|))) (-15 -1635 ($ |t#4|)) (-15 -1635 ($ |t#1| |t#1|)) (-15 -1635 ($ |t#1| |t#1| (-483))) (-15 -3429 ((-2 (|:| -2332 (-353 |t#2| (-347 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3836 ($ $)) (-15 -1634 ((-85) $)) (-15 -2405 ((-3 |t#4| "failed") $)) (-15 -1635 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1012) . T) ((-1127) . T)) +((-3762 (($ $ (-1088) |#2|) NIL T ELT) (($ $ (-583 (-1088)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-248 |#2|))) 15 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3794 (($ $ |#2|) 11 T ELT))) +(((-286 |#1| |#2|) (-10 -7 (-15 -3794 (|#1| |#1| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 |#2|))) (-15 -3762 (|#1| |#1| (-1088) |#2|))) (-287 |#2|) (-1012)) (T -286)) +NIL +((-3952 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3762 (($ $ (-1088) |#1|) 17 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 16 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 15 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 14 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-259 |#1|)) ELT)) (-3794 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) +(((-287 |#1|) (-113) (-1012)) (T -287)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1012))))) +(-13 (-10 -8 (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452 (-1088) |t#1|)) (-6 (-452 (-1088) |t#1|)) |%noBranch|))) +(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1127) |has| |#1| (-241 |#1| |#1|))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-288 |#1| |#2|) (-279 (-817 |#1|)) (-830) (-830)) (T -288)) +NIL +((-1644 (((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1789 (($ (-1177 (-347 |#3|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#3|))) NIL T ELT) (($ (-1177 |#3|) |#3|) 172 T ELT)) (-1649 (((-1177 $) (-1177 $)) 156 T ELT)) (-1636 (((-583 (-583 |#2|))) 126 T ELT)) (-1661 (((-85) |#2| |#2|) 76 T ELT)) (-3497 (($ $) 148 T ELT)) (-3371 (((-694)) 171 T ELT)) (-1650 (((-1177 $) (-1177 $)) 219 T ELT)) (-1637 (((-583 (-857 |#2|)) (-1088)) 115 T ELT)) (-1653 (((-85) $) 168 T ELT)) (-1652 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1639 (((-3 |#3| #1="failed")) 52 T ELT)) (-1663 (((-694)) 183 T ELT)) (-3794 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1640 (((-3 |#3| #1#)) 71 T ELT)) (-3752 (($ $ (-1 (-347 |#3|) (-347 |#3|))) NIL T ELT) (($ $ (-1 (-347 |#3|) (-347 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1651 (((-1177 $) (-1177 $)) 162 T ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1662 (((-85)) 34 T ELT))) +(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -1636 ((-583 (-583 |#2|)))) (-15 -1637 ((-583 (-857 |#2|)) (-1088))) (-15 -1638 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1639 ((-3 |#3| #1="failed"))) (-15 -1640 ((-3 |#3| #1#))) (-15 -3794 (|#2| |#1| |#2| |#2|)) (-15 -3497 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1652 ((-85) |#1| |#3|)) (-15 -1652 ((-85) |#1| |#2|)) (-15 -1789 (|#1| (-1177 |#3|) |#3|)) (-15 -1644 ((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1649 ((-1177 |#1|) (-1177 |#1|))) (-15 -1650 ((-1177 |#1|) (-1177 |#1|))) (-15 -1651 ((-1177 |#1|) (-1177 |#1|))) (-15 -1652 ((-85) |#1|)) (-15 -1653 ((-85) |#1|)) (-15 -1661 ((-85) |#2| |#2|)) (-15 -1662 ((-85))) (-15 -1663 ((-694))) (-15 -3371 ((-694))) (-15 -3752 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)) (-694))) (-15 -3752 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)))) (-15 -1789 (|#1| (-1177 (-347 |#3|)))) (-15 -1789 (|#1| (-1177 (-347 |#3|)) (-1177 |#1|)))) (-290 |#2| |#3| |#4|) (-1132) (-1153 |#2|) (-1153 (-347 |#3|))) (T -289)) +((-3371 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1663 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1662 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1661 (*1 *2 *3 *3) (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) (-1640 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1639 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) (-1636 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) 113 (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) 115 (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) 59 T ELT) (((-630 (-347 |#2|))) 75 T ELT)) (-3324 (((-347 |#2|) $) 65 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 132 (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) 133 (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) 123 (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) 106 (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) 240 T ELT)) (-1657 (((-85) |#1|) 239 T ELT) (((-85) |#2|) 238 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) 188 T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) 61 T ELT) (($ (-1177 (-347 |#2|))) 78 T ELT) (($ (-1177 |#2|) |#2|) 222 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) 127 (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) 66 T ELT) (((-630 (-347 |#2|)) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) 182 T ELT) (((-630 (-347 |#2|)) (-630 $)) 181 T ELT)) (-1649 (((-1177 $) (-1177 $)) 228 T ELT)) (-3836 (($ |#3|) 176 T ELT) (((-3 $ "failed") (-347 |#3|)) 173 (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-1636 (((-583 (-583 |#1|))) 209 (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) 244 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) 237 T ELT)) (-1655 (((-85) |#1|) 236 T ELT) (((-85) |#2|) 235 T ELT)) (-2559 (($ $ $) 126 (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) 215 T ELT)) (-2829 (($) 167 (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) 168 (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| (-347 |#2|) (-298)) ELT) (($ $) 158 (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) 134 (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) 170 (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) 156 (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3371 (((-694)) 247 T ELT)) (-1650 (((-1177 $) (-1177 $)) 229 T ELT)) (-3127 (((-347 |#2|) $) 64 T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) 210 (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) 160 (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) 57 (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) 108 (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) 180 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 118 (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1645 (((-630 (-347 |#2|))) 224 T ELT)) (-1647 (((-630 (-347 |#2|))) 226 T ELT)) (-2480 (($ $) 135 (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 220 T ELT)) (-1646 (((-630 (-347 |#2|))) 225 T ELT)) (-1648 (((-630 (-347 |#2|))) 227 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 219 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 221 T ELT)) (-1654 (((-1177 $)) 233 T ELT)) (-3912 (((-1177 $)) 234 T ELT)) (-1653 (((-85) $) 232 T ELT)) (-1652 (((-85) $) 231 T ELT) (((-85) $ |#1|) 218 T ELT) (((-85) $ |#2|) 217 T ELT)) (-3440 (($) 161 (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| "failed")) 212 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1663 (((-694)) 246 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) 117 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 116 (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) 131 (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ "failed") $ $) 111 (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) 124 (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) 214 T ELT)) (-1640 (((-3 |#2| "failed")) 213 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) 60 T ELT) (((-347 |#2|)) 74 T ELT)) (-1762 (((-694) $) 169 (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 143 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) 142 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 216 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088) (-694)) 147 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-583 (-1088))) 146 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088)) 144 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-694)) 154 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 152 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) 172 (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 177 T ELT)) (-1671 (($) 166 (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) 63 T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 (-347 |#2|)) $) 80 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 79 T ELT)) (-3966 (((-1177 (-347 |#2|)) $) 77 T ELT) (($ (-1177 (-347 |#2|))) 76 T ELT) ((|#3| $) 193 T ELT) (($ |#3|) 175 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) 230 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 |#2|)) 50 T ELT) (($ (-347 (-483))) 105 (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) 110 (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) 162 (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) 56 (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1660 (((-85)) 243 T ELT)) (-1659 (((-85) |#1|) 242 T ELT) (((-85) |#2|) 241 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2058 (((-85) $ $) 114 (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 211 T ELT)) (-1662 (((-85)) 245 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 141 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) 140 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088) (-694)) 150 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-583 (-1088))) 149 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088)) 145 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-694)) 155 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 153 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 136 (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 |#2|)) 52 T ELT) (($ (-347 |#2|) $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| (-347 |#2|) (-311)) ELT))) +(((-290 |#1| |#2| |#3|) (-113) (-1132) (-1153 |t#1|) (-1153 (-347 |t#2|))) (T -290)) +((-3371 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))) (-1663 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))) (-1662 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-1658 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-1656 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-3912 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1654 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1646 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1645 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1642 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))))) (-3794 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))))) (-1640 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))) (-1639 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))) (-1638 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-290 *4 *5 *6)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *4 (-311)) (-5 *2 (-583 (-857 *4))))) (-1636 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-583 (-583 *3)))))) +(-13 (-661 (-347 |t#2|) |t#3|) (-10 -8 (-15 -3371 ((-694))) (-15 -1663 ((-694))) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1| |t#1|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -1658 ((-85))) (-15 -1657 ((-85) |t#1|)) (-15 -1657 ((-85) |t#2|)) (-15 -1656 ((-85))) (-15 -1655 ((-85) |t#1|)) (-15 -1655 ((-85) |t#2|)) (-15 -3912 ((-1177 $))) (-15 -1654 ((-1177 $))) (-15 -1653 ((-85) $)) (-15 -1652 ((-85) $)) (-15 -1651 ((-1177 $) (-1177 $))) (-15 -1650 ((-1177 $) (-1177 $))) (-15 -1649 ((-1177 $) (-1177 $))) (-15 -1648 ((-630 (-347 |t#2|)))) (-15 -1647 ((-630 (-347 |t#2|)))) (-15 -1646 ((-630 (-347 |t#2|)))) (-15 -1645 ((-630 (-347 |t#2|)))) (-15 -1644 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1789 ($ (-1177 |t#2|) |t#2|)) (-15 -1643 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1642 ($ (-1177 |t#2|) |t#2|)) (-15 -1641 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1652 ((-85) $ |t#1|)) (-15 -1652 ((-85) $ |t#2|)) (-15 -3752 ($ $ (-1 |t#2| |t#2|))) (-15 -3497 ($ $)) (-15 -3794 (|t#1| $ |t#1| |t#1|)) (-15 -1640 ((-3 |t#2| "failed"))) (-15 -1639 ((-3 |t#2| "failed"))) (-15 -1638 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-311)) (-15 -1637 ((-583 (-857 |t#1|)) (-1088))) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1636 ((-583 (-583 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-38 (-347 |#2|)) . T) ((-38 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-82 (-347 |#2|) (-347 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-118))) ((-120) |has| (-347 |#2|) (-120)) ((-555 (-347 (-483))) OR (|has| (-347 |#2|) (-950 (-347 (-483)))) (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-555 (-347 |#2|)) . T) ((-555 (-483)) . T) ((-555 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-184 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-190) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-189) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-225 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-201) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-245) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-257) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-311) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-342) |has| (-347 |#2|) (-298)) ((-317) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-317))) ((-298) |has| (-347 |#2|) (-298)) ((-319 (-347 |#2|) |#3|) . T) ((-350 (-347 |#2|) |#3|) . T) ((-326 (-347 |#2|)) . T) ((-352 (-347 |#2|)) . T) ((-389) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-494) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-588 (-347 |#2|)) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-590 (-347 |#2|)) . T) ((-590 (-483)) |has| (-347 |#2|) (-580 (-483))) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-582 (-347 |#2|)) . T) ((-582 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-580 (-347 |#2|)) . T) ((-580 (-483)) |has| (-347 |#2|) (-580 (-483))) ((-654 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-654 (-347 |#2|)) . T) ((-654 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-661 (-347 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1088)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088))))) ((-809 (-1088)) -12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) ((-811 (-1088)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088))))) ((-832) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-950 (-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) ((-950 (-347 |#2|)) . T) ((-950 (-483)) |has| (-347 |#2|) (-950 (-483))) ((-963 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-963 (-347 |#2|)) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-968 (-347 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| (-347 |#2|) (-298)) ((-1127) . T) ((-1132) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311)))) +((-3952 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-291 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 (|#8| (-1 |#5| |#1|) |#4|))) (-1132) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-1132) (-1153 |#5|) (-1153 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -291)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-290 *8 *9 *10)) (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) (-4 *10 (-1153 (-347 *9)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-292 |#1| |#2|) (-13 (-279 (-817 |#1|)) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-830) (-830)) (T -292)) +((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-292 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 58 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 56 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 139 T ELT)) (-3151 ((|#1| $) 111 T ELT)) (-1789 (($ (-1177 |#1|)) 128 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 122 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 155 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) 65 (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) 60 (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 62 T ELT)) (-2009 (($) 157 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 115 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 165 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 172 T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 94 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 142 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) 57 T ELT)) (-2405 (($) 153 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 117 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) 156 (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) 120 T ELT)) (-1671 (($) 154 (|has| |#1| (-317)) ELT)) (-1626 (($) 162 (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 76 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 168 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 150 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 141 T ELT) (((-1177 $) (-830)) 96 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 66 T CONST)) (-2662 (($) 101 T CONST)) (-3922 (($ $) 105 (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 64 T ELT)) (-3943 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3831 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-483)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-293 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-298) (-1083 |#1|)) (T -293)) +((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) (-14 *4 (-1083 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-294 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-298) (-830)) (T -294)) +((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830))))) +((-1674 (((-694) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 61 T ELT)) (-1665 (((-869 (-1032)) (-1083 |#1|)) 112 T ELT)) (-1666 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) (-1083 |#1|)) 103 T ELT)) (-1667 (((-630 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 113 T ELT)) (-1668 (((-3 (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) "failed") (-830)) 13 T ELT)) (-1669 (((-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) (-830)) 18 T ELT))) +(((-295 |#1|) (-10 -7 (-15 -1665 ((-869 (-1032)) (-1083 |#1|))) (-15 -1666 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) (-1083 |#1|))) (-15 -1667 ((-630 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1674 ((-694) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1668 ((-3 (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) "failed") (-830))) (-15 -1669 ((-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) (-830)))) (-298)) (T -295)) +((-1669 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1083 *4) (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1668 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-694)) (-5 *1 (-295 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-630 *4)) (-5 *1 (-295 *4)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-5 *1 (-295 *4)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-869 (-1032))) (-5 *1 (-295 *4))))) +((-3940 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#3| |#1|)) (-15 -3940 (|#1| |#3|))) (-279 |#2|) (-298) (-279 |#2|)) (T -296)) +((-3940 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) (-4 *3 (-279 *4)))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) (-4 *3 (-279 *4))))) +((-1677 (((-85) $) 65 T ELT)) (-3766 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3439 (((-632 $) $) 21 T ELT)) (-3440 (($) 9 T CONST)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 T ELT)) (-1762 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3752 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1671 (($) 58 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 41 T ELT)) (-2698 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-297 |#1|) (-10 -7 (-15 -3766 ((-830) |#1|)) (-15 -1762 ((-694) |#1|)) (-15 -1677 ((-85) |#1|)) (-15 -1671 (|#1|)) (-15 -2699 ((-3 (-1177 |#1|) #1="failed") (-630 |#1|))) (-15 -2698 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -1762 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3766 ((-743 (-830)) |#1|)) (-15 -2698 ((-632 |#1|) |#1|)) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-298)) (T -297)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 111 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3131 (((-694)) 121 T ELT)) (-3718 (($) 22 T CONST)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 105 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 124 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2829 (($) 109 T ELT)) (-1677 (((-85) $) 108 T ELT)) (-1761 (($ $) 95 T ELT) (($ $ (-694)) 94 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 97 T ELT) (((-830) $) 106 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3439 (((-632 $) $) 120 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2006 (((-830) $) 123 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 119 T CONST)) (-2396 (($ (-830)) 122 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 112 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 96 T ELT) (((-694) $) 107 T ELT)) (-3752 (($ $) 118 T ELT) (($ $ (-694)) 116 T ELT)) (-1671 (($) 110 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 113 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-2698 (((-632 $) $) 98 T ELT) (($ $) 114 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $) 117 T ELT) (($ $ (-694)) 115 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-298) (-113)) (T -298)) +((-2698 (*1 *1 *1) (-4 *1 (-298))) (-2699 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-298)) (-5 *2 (-1177 *1)))) (-1673 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))))) (-1672 (*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-483)) (-5 *2 (-1100 (-830) (-694))))) (-1671 (*1 *1) (-4 *1 (-298))) (-2829 (*1 *1) (-4 *1 (-298))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-694)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-830)))) (-1670 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-342) (-317) (-1064) (-190) (-10 -8 (-15 -2698 ($ $)) (-15 -2699 ((-3 (-1177 $) "failed") (-630 $))) (-15 -1673 ((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483)))))) (-15 -1672 ((-1100 (-830) (-694)) (-483))) (-15 -1671 ($)) (-15 -2829 ($)) (-15 -1677 ((-85) $)) (-15 -1762 ((-694) $)) (-15 -3766 ((-830) $)) (-15 -1670 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) . T) ((-317) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T)) +((-3913 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT))) +(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))) (-1153 |#1|) (-350 |#1| |#2|)) (T -299)) +((-3913 (*1 *2 *3) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3912 (*1 *2) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 (-817 |#1|)) (|:| -2396 (-1032)))))) NIL T ELT)) (-1675 (((-630 (-817 |#1|))) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-300 |#1| |#2|) (-13 (-279 (-817 |#1|)) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 (-817 |#1|)) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 (-817 |#1|)))) (-15 -1674 ((-694))))) (-830) (-830)) (T -300)) +((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 (-817 *3)) (|:| -2396 (-1032)))))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) +((-2564 (((-85) $ $) 72 T ELT)) (-3183 (((-85) $) 87 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 168 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) 102 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 185 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 126 T ELT)) (-3151 ((|#1| $) 104 T ELT)) (-1789 (($ (-1177 |#1|)) 70 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 180 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 169 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 112 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 198 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 212 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 146 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) 86 (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) 83 (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) 95 (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) 82 (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 216 T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 148 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 122 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 96 T ELT)) (-1675 (((-630 |#1|)) 100 T ELT)) (-2405 (($) 109 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 171 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3180 (((-1083 |#1|)) 173 T ELT)) (-1671 (($) 145 (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 120 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 138 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 178 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 195 T ELT) (((-1177 $) (-830)) 115 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 184 T CONST)) (-2662 (($) 159 T CONST)) (-3922 (($ $) 121 (|has| |#1| (-317)) ELT) (($ $ (-694)) 113 (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 206 T ELT)) (-3943 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3831 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3833 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-301 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 |#1|))) (-15 -1674 ((-694))))) (-298) (-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (T -301)) +((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) *2)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) NIL T ELT)) (-1675 (((-630 |#1|)) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-302 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 |#1|))) (-15 -1674 ((-694))))) (-298) (-830)) (T -302)) +((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 130 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 156 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 104 T ELT)) (-3151 ((|#1| $) 101 T ELT)) (-1789 (($ (-1177 |#1|)) 96 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 93 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 52 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 131 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 85 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 76 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 106 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 158 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 45 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 125 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3180 (((-1083 |#1|)) 99 T ELT)) (-1671 (($) 136 (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 64 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 154 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 160 T CONST)) (-1262 (((-85) $ $) 162 T ELT)) (-2008 (((-1177 $)) 120 T ELT) (((-1177 $) (-830)) 59 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 122 T CONST)) (-2662 (($) 40 T CONST)) (-3922 (($ $) 79 (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 118 T ELT)) (-3943 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3831 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3833 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-483)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-303 |#1| |#2|) (-279 |#1|) (-298) (-1083 |#1|)) (T -303)) +NIL +((-1692 (((-869 (-1083 |#1|)) (-1083 |#1|)) 49 T ELT)) (-2990 (((-1083 |#1|) (-830) (-830)) 159 T ELT) (((-1083 |#1|) (-830)) 155 T ELT)) (-1677 (((-85) (-1083 |#1|)) 110 T ELT)) (-1679 (((-830) (-830)) 85 T ELT)) (-1680 (((-830) (-830)) 94 T ELT)) (-1678 (((-830) (-830)) 83 T ELT)) (-2007 (((-85) (-1083 |#1|)) 114 T ELT)) (-1687 (((-3 (-1083 |#1|) #1="failed") (-1083 |#1|)) 139 T ELT)) (-1690 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 144 T ELT)) (-1689 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 143 T ELT)) (-1688 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 142 T ELT)) (-1686 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 134 T ELT)) (-1691 (((-1083 |#1|) (-1083 |#1|)) 71 T ELT)) (-1682 (((-1083 |#1|) (-830)) 149 T ELT)) (-1685 (((-1083 |#1|) (-830)) 152 T ELT)) (-1684 (((-1083 |#1|) (-830)) 151 T ELT)) (-1683 (((-1083 |#1|) (-830)) 150 T ELT)) (-1681 (((-1083 |#1|) (-830)) 147 T ELT))) +(((-304 |#1|) (-10 -7 (-15 -1677 ((-85) (-1083 |#1|))) (-15 -2007 ((-85) (-1083 |#1|))) (-15 -1678 ((-830) (-830))) (-15 -1679 ((-830) (-830))) (-15 -1680 ((-830) (-830))) (-15 -1681 ((-1083 |#1|) (-830))) (-15 -1682 ((-1083 |#1|) (-830))) (-15 -1683 ((-1083 |#1|) (-830))) (-15 -1684 ((-1083 |#1|) (-830))) (-15 -1685 ((-1083 |#1|) (-830))) (-15 -1686 ((-3 (-1083 |#1|) #1="failed") (-1083 |#1|))) (-15 -1687 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1688 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1689 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1690 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -2990 ((-1083 |#1|) (-830))) (-15 -2990 ((-1083 |#1|) (-830) (-830))) (-15 -1691 ((-1083 |#1|) (-1083 |#1|))) (-15 -1692 ((-869 (-1083 |#1|)) (-1083 |#1|)))) (-298)) (T -304)) +((-1692 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-869 (-1083 *4))) (-5 *1 (-304 *4)) (-5 *3 (-1083 *4)))) (-1691 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1686 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))) +((-1693 ((|#1| (-1083 |#2|)) 60 T ELT))) +(((-305 |#1| |#2|) (-10 -7 (-15 -1693 (|#1| (-1083 |#2|)))) (-13 (-342) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -2006 ((-830) |#1|)) (-15 -2008 ((-1177 |#1|) (-830))) (-15 -3922 (|#1| |#1|)))) (-298)) (T -305)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-4 *2 (-13 (-342) (-10 -7 (-15 -3940 (*2 *4)) (-15 -2006 ((-830) *2)) (-15 -2008 ((-1177 *2) (-830))) (-15 -3922 (*2 *2))))) (-5 *1 (-305 *2 *4))))) +((-2700 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT))) +(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -2700 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-298) (-1153 |#1|) (-1153 |#2|)) (T -306)) +((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-307 |#1| |#2|) (-279 |#1|) (-298) (-830)) (T -307)) +NIL +((-2245 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2247 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2246 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT))) +(((-308 |#1| |#2|) (-10 -7 (-15 -2245 ((-85) (-583 (-857 |#1|)))) (-15 -2246 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2247 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-389) (-583 (-1088))) (T -308)) +((-2247 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-583 (-1088))))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-583 (-1088))))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-85)) (-5 *1 (-308 *4 *5)) (-14 *5 (-583 (-1088)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) 17 T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-483) $ (-483)) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2287 (($ (-1 (-483) (-483)) $) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 28 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $) 30 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ |#1| (-483)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-309 |#1|) (-13 (-410) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-483))) (-15 -3131 ((-694) $)) (-15 -2296 ((-483) $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -2287 ($ (-1 (-483) (-483)) $)) (-15 -2286 ($ (-1 |#1| |#1|) $)) (-15 -1776 ((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $)))) (-1012)) (T -309)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2296 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-309 *3)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-483))))) (-5 *1 (-309 *3)) (-4 *3 (-1012))))) +((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 13 T ELT)) (-2059 (($ $) 14 T ELT)) (-3965 (((-345 $) $) 31 T ELT)) (-3717 (((-85) $) 27 T ELT)) (-2480 (($ $) 19 T ELT)) (-3139 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) 32 T ELT)) (-3460 (((-3 $ "failed") $ $) 21 T ELT)) (-1604 (((-694) $) 25 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 36 T ELT)) (-2058 (((-85) $ $) 16 T ELT)) (-3943 (($ $ $) 34 T ELT))) +(((-310 |#1|) (-10 -7 (-15 -3943 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -3717 ((-85) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -2058 ((-85) |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-311) (-113)) (T -311)) +((-3943 (*1 *1 *1 *1) (-4 *1 (-311)))) +(-13 (-257) (-1132) (-201) (-10 -8 (-15 -3943 ($ $ $)) (-6 -3987) (-6 -3981))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-1694 ((|#1| $ |#1|) 35 T ELT)) (-1698 (($ $ (-1071)) 23 T ELT)) (-3613 (((-3 |#1| "failed") $) 34 T ELT)) (-1695 ((|#1| $) 32 T ELT)) (-1699 (($ (-335)) 22 T ELT) (($ (-335) (-1071)) 21 T ELT)) (-3536 (((-335) $) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1696 (((-1071) $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT)) (-1697 (($ $) 24 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 19 T ELT))) +(((-312 |#1|) (-13 (-313 (-335) |#1|) (-10 -8 (-15 -3613 ((-3 |#1| "failed") $)))) (-1012)) (T -312)) +((-3613 (*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1012))))) +((-2564 (((-85) $ $) 7 T ELT)) (-1694 ((|#2| $ |#2|) 17 T ELT)) (-1698 (($ $ (-1071)) 22 T ELT)) (-1695 ((|#2| $) 18 T ELT)) (-1699 (($ |#1|) 24 T ELT) (($ |#1| (-1071)) 23 T ELT)) (-3536 ((|#1| $) 20 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1696 (((-1071) $) 19 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1697 (($ $) 21 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-313 |#1| |#2|) (-113) (-1012) (-1012)) (T -313)) +((-1699 (*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1697 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1694 (*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) +(-13 (-1012) (-10 -8 (-15 -1699 ($ |t#1|)) (-15 -1699 ($ |t#1| (-1071))) (-15 -1698 ($ $ (-1071))) (-15 -1697 ($ $)) (-15 -3536 (|t#1| $)) (-15 -1696 ((-1071) $)) (-15 -1695 (|t#2| $)) (-15 -1694 (|t#2| $ |t#2|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3218 (((-1177 (-630 |#2|)) (-1177 $)) 67 T ELT)) (-1785 (((-630 |#2|) (-1177 $)) 139 T ELT)) (-1724 ((|#2| $) 36 T ELT)) (-1783 (((-630 |#2|) $ (-1177 $)) 142 T ELT)) (-2400 (((-3 $ #1="failed") $) 89 T ELT)) (-1722 ((|#2| $) 39 T ELT)) (-1702 (((-1083 |#2|) $) 98 T ELT)) (-1787 ((|#2| (-1177 $)) 122 T ELT)) (-1720 (((-1083 |#2|) $) 32 T ELT)) (-1714 (((-85)) 116 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) 132 T ELT)) (-3461 (((-3 $ #1#) $) 93 T ELT)) (-1707 (((-85)) 111 T ELT)) (-1705 (((-85)) 106 T ELT)) (-1709 (((-85)) 58 T ELT)) (-1786 (((-630 |#2|) (-1177 $)) 137 T ELT)) (-1725 ((|#2| $) 35 T ELT)) (-1784 (((-630 |#2|) $ (-1177 $)) 141 T ELT)) (-2401 (((-3 $ #1#) $) 87 T ELT)) (-1723 ((|#2| $) 38 T ELT)) (-1703 (((-1083 |#2|) $) 97 T ELT)) (-1788 ((|#2| (-1177 $)) 120 T ELT)) (-1721 (((-1083 |#2|) $) 30 T ELT)) (-1715 (((-85)) 115 T ELT)) (-1706 (((-85)) 108 T ELT)) (-1708 (((-85)) 56 T ELT)) (-1710 (((-85)) 103 T ELT)) (-1713 (((-85)) 117 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) 128 T ELT)) (-1719 (((-85)) 113 T ELT)) (-1704 (((-583 (-1177 |#2|))) 102 T ELT)) (-1717 (((-85)) 114 T ELT)) (-1718 (((-85)) 112 T ELT)) (-1716 (((-85)) 51 T ELT)) (-1712 (((-85)) 118 T ELT))) +(((-314 |#1| |#2|) (-10 -7 (-15 -1702 ((-1083 |#2|) |#1|)) (-15 -1703 ((-1083 |#2|) |#1|)) (-15 -1704 ((-583 (-1177 |#2|)))) (-15 -2400 ((-3 |#1| #1="failed") |#1|)) (-15 -2401 ((-3 |#1| #1#) |#1|)) (-15 -3461 ((-3 |#1| #1#) |#1|)) (-15 -1705 ((-85))) (-15 -1706 ((-85))) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-1083 |#2|) |#1|)) (-15 -1721 ((-1083 |#2|) |#1|)) (-15 -1785 ((-630 |#2|) (-1177 |#1|))) (-15 -1786 ((-630 |#2|) (-1177 |#1|))) (-15 -1787 (|#2| (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1722 (|#2| |#1|)) (-15 -1723 (|#2| |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1783 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -3218 ((-1177 (-630 |#2|)) (-1177 |#1|)))) (-315 |#2|) (-146)) (T -314)) +((-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1177 *4))) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1769 (((-3 $ "failed")) 47 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) 88 T ELT)) (-1726 (((-1177 $)) 91 T ELT)) (-3718 (($) 22 T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed")) 50 (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ "failed")) 48 (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) 75 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) 86 T ELT)) (-2400 (((-3 $ "failed") $) 55 (|has| |#1| (-494)) ELT)) (-2403 (($ $ (-830)) 36 T ELT)) (-1722 ((|#1| $) 82 T ELT)) (-1702 (((-1083 |#1|) $) 52 (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) 77 T ELT)) (-1720 (((-1083 |#1|) $) 73 T ELT)) (-1714 (((-85)) 67 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 79 T ELT)) (-3461 (((-3 $ "failed") $) 57 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 90 T ELT)) (-1711 (((-85)) 64 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1705 (((-85)) 58 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed")) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ "failed")) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) 76 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) 87 T ELT)) (-2401 (((-3 $ "failed") $) 56 (|has| |#1| (-494)) ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1710 (((-85)) 63 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1713 (((-85)) 66 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 81 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 80 T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) 89 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1704 (((-583 (-1177 |#1|))) 54 (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-1717 (((-85)) 70 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-1718 (((-85)) 71 T ELT)) (-1716 (((-85)) 69 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-315 |#1|) (-113) (-146)) (T -315)) +((-1726 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-315 *3)))) (-3104 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1719 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1706 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1705 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3461 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2401 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2400 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-1704 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-583 (-1177 *3))))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1904 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) (-1903 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) (-1701 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1700 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1769 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) +(-13 (-683 |t#1|) (-10 -8 (-15 -1726 ((-1177 $))) (-15 -3104 ((-830))) (-15 -1889 ((-583 (-857 |t#1|)) (-1177 $))) (-15 -3218 ((-1177 (-630 |t#1|)) (-1177 $))) (-15 -1784 ((-630 |t#1|) $ (-1177 $))) (-15 -1783 ((-630 |t#1|) $ (-1177 $))) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -1723 (|t#1| $)) (-15 -1722 (|t#1| $)) (-15 -3219 ((-1177 |t#1|) $ (-1177 $))) (-15 -3219 ((-630 |t#1|) (-1177 $) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|) (-1177 $))) (-15 -1788 (|t#1| (-1177 $))) (-15 -1787 (|t#1| (-1177 $))) (-15 -1786 ((-630 |t#1|) (-1177 $))) (-15 -1785 ((-630 |t#1|) (-1177 $))) (-15 -1721 ((-1083 |t#1|) $)) (-15 -1720 ((-1083 |t#1|) $)) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (-15 -1706 ((-85))) (-15 -1705 ((-85))) (IF (|has| |t#1| (-494)) (PROGN (-15 -3461 ((-3 $ "failed") $)) (-15 -2401 ((-3 $ "failed") $)) (-15 -2400 ((-3 $ "failed") $)) (-15 -1704 ((-583 (-1177 |t#1|)))) (-15 -1703 ((-1083 |t#1|) $)) (-15 -1702 ((-1083 |t#1|) $)) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed"))) (-15 -1903 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed"))) (-15 -1701 ((-3 $ "failed"))) (-15 -1700 ((-3 $ "failed"))) (-15 -1769 ((-3 $ "failed"))) (-6 -3986)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2990 (($) 15 T ELT))) +(((-316 |#1|) (-10 -7 (-15 -2990 (|#1|))) (-317)) (T -316)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694)) 20 T ELT)) (-2990 (($) 17 T ELT)) (-2006 (((-830) $) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2396 (($ (-830)) 19 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-317) (-113)) (T -317)) +((-3131 (*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-694)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-317)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-830)))) (-2990 (*1 *1) (-4 *1 (-317)))) +(-13 (-1012) (-10 -8 (-15 -3131 ((-694))) (-15 -2396 ($ (-830))) (-15 -2006 ((-830) $)) (-15 -2990 ($)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-1779 (((-630 |#2|) (-1177 $)) 45 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) 39 T ELT)) (-1778 (((-630 |#2|) $ (-1177 $)) 47 T ELT)) (-3751 ((|#2| (-1177 $)) 13 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) 27 T ELT))) +(((-318 |#1| |#2| |#3|) (-10 -7 (-15 -1779 ((-630 |#2|) (-1177 |#1|))) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1778 ((-630 |#2|) |#1| (-1177 |#1|)))) (-319 |#2| |#3|) (-146) (-1153 |#2|)) (T -318)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2698 (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-319 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -319)) +((-3104 (*1 *2) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-830)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-319 *4 *5)) (-4 *5 (-1153 *4)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1153 *2)) (-4 *2 (-146)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1153 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3104 ((-830))) (-15 -1778 ((-630 |t#1|) $ (-1177 $))) (-15 -3324 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3219 ((-1177 |t#1|) $ (-1177 $))) (-15 -3219 ((-630 |t#1|) (-1177 $) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|) (-1177 $))) (-15 -3751 (|t#1| (-1177 $))) (-15 -1779 ((-630 |t#1|) (-1177 $))) (-15 -2445 (|t#2| $)) (IF (|has| |t#1| (-311)) (-15 -2010 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-1729 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1727 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2905 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2294 (($ $) 25 T ELT)) (-3413 (((-483) (-1 (-85) |#2|) $) NIL T ELT) (((-483) |#2| $) 11 T ELT) (((-483) |#2| $ (-483)) NIL T ELT)) (-3512 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-320 |#1| |#2|) (-10 -7 (-15 -1727 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1729 ((-85) |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2905 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-321 |#2|) (-1127)) (T -320)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-321 |#1|) (-113) (-1127)) (T -321)) +((-3512 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)))) (-2905 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-1729 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3413 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1728 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-2293 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)))) (-1727 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-1727 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))) +(-13 (-593 |t#1|) (-10 -8 (-6 -3989) (-15 -3512 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2294 ($ $)) (-15 -2905 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1729 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3413 ((-483) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3413 ((-483) |t#1| $)) (-15 -3413 ((-483) |t#1| $ (-483)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3512 ($ $ $)) (-15 -2905 ($ $)) (-15 -1729 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -1728 ($ $ $ (-483))) (-15 -2293 ($ $)) (-15 -1727 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1727 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T)) +((-3835 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3836 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3952 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3836 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3835 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1127) (-321 |#1|) (-1127) (-321 |#3|)) (T -322)) +((-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-321 *5)) (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-321 *6)) (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 42 T ELT)) (-3941 (($ $ (-694)) 43 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3933 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 46 T ELT)) (-3930 (($ $) 44 T ELT)) (-3934 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 47 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ |#1| $) 41 T ELT) (($ $ (-583 |#1|) (-583 $)) 40 T ELT)) (-3942 (((-694) $) 48 T ELT)) (-3524 (($ $ $) 39 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1193 |#1| |#2|) $) 50 T ELT) (((-1202 |#1| |#2|) $) 49 T ELT)) (-3948 ((|#2| (-1202 |#1| |#2|) $) 52 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-1730 (($ (-614 |#1|)) 45 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#2|) 38 (|has| |#2| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-323 |#1| |#2|) (-113) (-756) (-146)) (T -323)) +((-3948 (*1 *2 *3 *1) (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1193 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1202 *3 *4)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3934 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3933 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3762 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146))))) +(-13 (-574 |t#2|) (-10 -8 (-15 -3948 (|t#2| (-1202 |t#1| |t#2|) $)) (-15 -3940 ($ |t#1|)) (-15 -3940 ((-1193 |t#1| |t#2|) $)) (-15 -3940 ((-1202 |t#1| |t#2|) $)) (-15 -3942 ((-694) $)) (-15 -3934 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -3933 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -1730 ($ (-614 |t#1|))) (-15 -3930 ($ $)) (-15 -3941 ($ $ (-694))) (-15 -3928 ((-583 |t#1|) $)) (-15 -3762 ($ $ |t#1| $)) (-15 -3762 ($ $ (-583 |t#1|) (-583 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1012) . T) ((-1127) . T)) +((-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1731 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1732 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-324 |#1| |#2|) (-10 -7 (-15 -1731 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1732 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1127) (-13 (-321 |#1|) (-10 -7 (-6 -3990)))) (T -324)) +((-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))) (-1732 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))) (-1731 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990))))))) +((-2275 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 22 T ELT) (((-630 (-483)) (-630 $)) 14 T ELT))) +(((-325 |#1| |#2|) (-10 -7 (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 |#2|) (-630 |#1|)))) (-326 |#2|) (-961)) (T -325)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2275 (((-630 |#1|) (-630 $)) 35 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 34 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 46 (|has| |#1| (-580 (-483))) ELT) (((-630 (-483)) (-630 $)) 45 (|has| |#1| (-580 (-483))) ELT)) (-2276 (((-630 |#1|) (-1177 $)) 37 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 36 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 44 (|has| |#1| (-580 (-483))) ELT) (((-630 (-483)) (-1177 $)) 43 (|has| |#1| (-580 (-483))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-326 |#1|) (-113) (-961)) (T -326)) +NIL +(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-483))) (-6 (-580 (-483))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 16 T ELT)) (-3124 (((-483) $) 44 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3765 (($ $) 120 T ELT)) (-3486 (($ $) 81 T ELT)) (-3633 (($ $) 72 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) 28 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3484 (($ $) 79 T ELT)) (-3632 (($ $) 67 T ELT)) (-3617 (((-483) $) 60 T ELT)) (-2437 (($ $ (-483)) 55 T ELT)) (-3488 (($ $) NIL T ELT)) (-3631 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3122 (($ $) 122 T ELT)) (-3152 (((-3 (-483) #1#) $) 217 T ELT) (((-3 (-347 (-483)) #1#) $) 213 T ELT)) (-3151 (((-483) $) 215 T ELT) (((-347 (-483)) $) 211 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-1742 (((-483) $ $) 110 T ELT)) (-3461 (((-3 $ #1#) $) 125 T ELT)) (-1741 (((-347 (-483)) $ (-694)) 218 T ELT) (((-347 (-483)) $ (-694) (-694)) 210 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1765 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 38 T ELT)) (-3621 (($) 22 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL T ELT)) (-1734 (((-1183) (-694)) 177 T ELT)) (-1735 (((-1183)) 182 T ELT) (((-1183) (-694)) 183 T ELT)) (-1737 (((-1183)) 184 T ELT) (((-1183) (-694)) 185 T ELT)) (-1736 (((-1183)) 180 T ELT) (((-1183) (-694)) 181 T ELT)) (-3766 (((-483) $) 50 T ELT)) (-2406 (((-85) $) 21 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-2439 (($ $) 32 T ELT)) (-3127 (($ $) NIL T ELT)) (-3182 (((-85) $) 18 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-2853 (($ $ $) NIL T ELT) (($) NIL (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-1767 (((-483) $) 112 T ELT)) (-1740 (($) 90 T ELT) (($ $) 97 T ELT)) (-1739 (($) 96 T ELT) (($ $) 98 T ELT)) (-3936 (($ $) 84 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 127 T ELT)) (-1764 (((-830) (-483)) 27 (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) 41 T ELT)) (-3125 (($ $) 119 T ELT)) (-3249 (($ (-483) (-483)) 115 T ELT) (($ (-483) (-483) (-830)) 116 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2397 (((-483) $) 113 T ELT)) (-1738 (($) 99 T ELT)) (-3937 (($ $) 78 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3980)) ELT)) (-3752 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1763 (((-830) (-483)) 31 (|has| $ (-6 -3980)) ELT)) (-3489 (($ $) NIL T ELT)) (-3630 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3629 (($ $) NIL T ELT)) (-3485 (($ $) 80 T ELT)) (-3628 (($ $) 71 T ELT)) (-3966 (((-327) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-327)) $) NIL T ELT) (((-1071) $) 188 T ELT) (((-472) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3940 (((-772) $) 192 T ELT) (($ (-483)) 214 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) 214 T ELT) (($ (-347 (-483))) NIL T ELT) (((-179) $) 205 T ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (($ $) 121 T ELT)) (-1766 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-830)) 111 T ELT)) (-3492 (($ $) 87 T ELT)) (-3480 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 85 T ELT)) (-3478 (($ $) 20 T ELT)) (-3494 (($ $) NIL T ELT)) (-3482 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3493 (($ $) NIL T ELT)) (-3481 (($ $) NIL T ELT)) (-3491 (($ $) 86 T ELT)) (-3479 (($ $) 33 T ELT)) (-3377 (($ $) 39 T ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 24 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 189 T ELT)) (-2563 (((-85) $ $) 26 T ELT)) (-3052 (((-85) $ $) 37 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 43 T ELT)) (-3943 (($ $ $) 29 T ELT) (($ $ (-483)) 23 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3833 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 91 T ELT) (($ $ (-347 (-483))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-327) (-13 (-344) (-190) (-553 (-1071)) (-552 (-179)) (-1113) (-553 (-472)) (-557 (-179)) (-10 -8 (-15 -3943 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -2439 ($ $)) (-15 -1742 ((-483) $ $)) (-15 -2437 ($ $ (-483))) (-15 -1741 ((-347 (-483)) $ (-694))) (-15 -1741 ((-347 (-483)) $ (-694) (-694))) (-15 -1740 ($)) (-15 -1739 ($)) (-15 -1738 ($)) (-15 -3480 ($ $ $)) (-15 -1740 ($ $)) (-15 -1739 ($ $)) (-15 -1737 ((-1183))) (-15 -1737 ((-1183) (-694))) (-15 -1736 ((-1183))) (-15 -1736 ((-1183) (-694))) (-15 -1735 ((-1183))) (-15 -1735 ((-1183) (-694))) (-15 -1734 ((-1183) (-694))) (-6 -3980) (-6 -3972)))) (T -327)) +((** (*1 *1 *1 *1) (-5 *1 (-327))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-2439 (*1 *1 *1) (-5 *1 (-327))) (-1742 (*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-2437 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))) (-1740 (*1 *1) (-5 *1 (-327))) (-1739 (*1 *1) (-5 *1 (-327))) (-1738 (*1 *1) (-5 *1 (-327))) (-3480 (*1 *1 *1 *1) (-5 *1 (-327))) (-1740 (*1 *1 *1) (-5 *1 (-327))) (-1739 (*1 *1 *1) (-5 *1 (-327))) (-1737 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1736 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1735 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327))))) +((-1743 (((-583 (-248 (-857 (-142 |#1|)))) (-248 (-347 (-857 (-142 (-483))))) |#1|) 52 T ELT) (((-583 (-248 (-857 (-142 |#1|)))) (-347 (-857 (-142 (-483)))) |#1|) 51 T ELT) (((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-248 (-347 (-857 (-142 (-483)))))) |#1|) 48 T ELT) (((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-347 (-857 (-142 (-483))))) |#1|) 42 T ELT)) (-1744 (((-583 (-583 (-142 |#1|))) (-583 (-347 (-857 (-142 (-483))))) (-583 (-1088)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-347 (-857 (-142 (-483)))) |#1|) 18 T ELT))) +(((-328 |#1|) (-10 -7 (-15 -1743 ((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-347 (-857 (-142 (-483))))) |#1|)) (-15 -1743 ((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-248 (-347 (-857 (-142 (-483)))))) |#1|)) (-15 -1743 ((-583 (-248 (-857 (-142 |#1|)))) (-347 (-857 (-142 (-483)))) |#1|)) (-15 -1743 ((-583 (-248 (-857 (-142 |#1|)))) (-248 (-347 (-857 (-142 (-483))))) |#1|)) (-15 -1744 ((-583 (-142 |#1|)) (-347 (-857 (-142 (-483)))) |#1|)) (-15 -1744 ((-583 (-583 (-142 |#1|))) (-583 (-347 (-857 (-142 (-483))))) (-583 (-1088)) |#1|))) (-13 (-311) (-755))) (T -328)) +((-1744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-328 *5)) (-4 *5 (-13 (-311) (-755))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 (-142 (-483)))))) (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 (-142 (-483))))))) (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755)))))) +((-3567 (((-583 (-248 (-857 |#1|))) (-248 (-347 (-857 (-483)))) |#1|) 47 T ELT) (((-583 (-248 (-857 |#1|))) (-347 (-857 (-483))) |#1|) 46 T ELT) (((-583 (-583 (-248 (-857 |#1|)))) (-583 (-248 (-347 (-857 (-483))))) |#1|) 43 T ELT) (((-583 (-583 (-248 (-857 |#1|)))) (-583 (-347 (-857 (-483)))) |#1|) 37 T ELT)) (-1745 (((-583 |#1|) (-347 (-857 (-483))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-347 (-857 (-483)))) (-583 (-1088)) |#1|) 30 T ELT))) +(((-329 |#1|) (-10 -7 (-15 -3567 ((-583 (-583 (-248 (-857 |#1|)))) (-583 (-347 (-857 (-483)))) |#1|)) (-15 -3567 ((-583 (-583 (-248 (-857 |#1|)))) (-583 (-248 (-347 (-857 (-483))))) |#1|)) (-15 -3567 ((-583 (-248 (-857 |#1|))) (-347 (-857 (-483))) |#1|)) (-15 -3567 ((-583 (-248 (-857 |#1|))) (-248 (-347 (-857 (-483)))) |#1|)) (-15 -1745 ((-583 (-583 |#1|)) (-583 (-347 (-857 (-483)))) (-583 (-1088)) |#1|)) (-15 -1745 ((-583 |#1|) (-347 (-857 (-483))) |#1|))) (-13 (-755) (-311))) (T -329)) +((-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-1745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 (-483))))) (-5 *2 (-583 (-248 (-857 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 (-248 (-857 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 (-483)))))) (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 34 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 12 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-330 |#1| |#2|) (-13 (-82 |#1| |#1|) (-447 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -330)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 29 T ELT)) (-3151 ((|#2| $) 31 T ELT)) (-3953 (($ $) NIL T ELT)) (-2416 (((-694) $) 13 T ELT)) (-2817 (((-583 $) $) 23 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ |#2| |#1|) 21 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2890 ((|#2| $) 18 T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3811 (((-583 |#1|) $) 20 T ELT)) (-3671 ((|#1| $ |#2|) 54 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 32 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-331 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -331)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| "failed") $) 54 T ELT)) (-3151 ((|#2| $) 55 T ELT)) (-3953 (($ $) 40 T ELT)) (-2416 (((-694) $) 44 T ELT)) (-2817 (((-583 $) $) 45 T ELT)) (-3931 (((-85) $) 48 T ELT)) (-3932 (($ |#2| |#1|) 49 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2890 ((|#2| $) 43 T ELT)) (-3169 ((|#1| $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3811 (((-583 |#1|) $) 46 T ELT)) (-3671 ((|#1| $ |#2|) 51 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-332 |#1| |#2|) (-113) (-961) (-1012)) (T -332)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)))) (-3932 (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-332 *3 *4)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-694)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012))))) +(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3671 (|t#1| $ |t#2|)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -3932 ($ |t#2| |t#1|)) (-15 -3931 ((-85) $)) (-15 -2661 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3811 ((-583 |t#1|) $)) (-15 -2817 ((-583 $) $)) (-15 -2416 ((-694) $)) (-15 -2890 (|t#2| $)) (-15 -3169 (|t#1| $)) (-15 -1746 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3953 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694) $) 40 T ELT)) (-3718 (($) 23 T CONST)) (-3933 (((-3 $ "failed") $ $) 43 T ELT)) (-3152 (((-3 |#1| "failed") $) 51 T ELT)) (-3151 ((|#1| $) 52 T ELT)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-2295 ((|#1| $ (-483)) 37 T ELT)) (-2296 (((-694) $ (-483)) 38 T ELT)) (-2527 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2287 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3934 (((-3 $ "failed") $ $) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1748 (($ $ $) 45 T ELT)) (-1749 (($ $ $) 46 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) 39 T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-333 |#1|) (-113) (-1012)) (T -333)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-1748 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-3934 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-3933 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-2875 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-1747 (*1 *2 *1 *1) (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-694))))))) (-2296 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *4)) (-4 *4 (-1012)) (-5 *2 (-694)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-333 *3)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1012))))) +(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1749 ($ $ $)) (-15 -1748 ($ $ $)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3933 ((-3 $ "failed") $ $)) (-15 -2875 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1747 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3131 ((-694) $)) (-15 -1776 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3937 (-694)))) $)) (-15 -2296 ((-694) $ (-483))) (-15 -2295 (|t#1| $ (-483))) (-15 -2287 ($ (-1 (-694) (-694)) $)) (-15 -2286 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) 74 T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2406 (((-85) $) 17 T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-694) $ (-483)) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2287 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3934 (((-3 $ #1#) $ $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1748 (($ $ $) 28 T ELT)) (-1749 (($ $ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) 34 T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-334 |#1|) (-333 |#1|) (-1012)) (T -334)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-1750 (((-85) $) 25 T ELT)) (-1751 (((-85) $) 22 T ELT)) (-3608 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-3536 (((-1071) $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1755 (($ (-1071) (-1071) (-1071)) 14 T ELT)) (-1753 (((-1071) $) 17 T ELT)) (-1752 (((-85) $) 18 T ELT)) (-1754 (((-1071) $) 15 T ELT)) (-3940 (((-772) $) 12 T ELT) (($ (-1071)) 13 T ELT) (((-1071) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 7 T ELT))) +(((-335) (-336)) (T -335)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-1750 (((-85) $) 20 T ELT)) (-1751 (((-85) $) 21 T ELT)) (-3608 (($ (-1071) (-1071) (-1071)) 19 T ELT)) (-3536 (((-1071) $) 24 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1755 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-1753 (((-1071) $) 23 T ELT)) (-1752 (((-85) $) 22 T ELT)) (-1754 (((-1071) $) 25 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1071)) 28 T ELT) (((-1071) $) 27 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-336) (-113)) (T -336)) +((-1755 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-3608 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336))))) +(-13 (-1012) (-427 (-1071)) (-10 -8 (-15 -1755 ($ (-1071) (-1071) (-1071))) (-15 -1754 ((-1071) $)) (-15 -3536 ((-1071) $)) (-15 -1753 ((-1071) $)) (-15 -1752 ((-85) $)) (-15 -1751 ((-85) $)) (-15 -1750 ((-85) $)) (-15 -3608 ($ (-1071) (-1071) (-1071))))) +(((-72) . T) ((-555 (-1071)) . T) ((-552 (-772)) . T) ((-552 (-1071)) . T) ((-427 (-1071)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-1756 (((-772) $) 64 T ELT)) (-3718 (($) NIL T CONST)) (-2403 (($ $ (-830)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) 38 T ELT)) (-3905 (((-694)) 18 T ELT)) (-1757 (((-772) $) 66 T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-2656 (($) 24 T CONST)) (-3052 (((-85) $ $) 41 T ELT)) (-3831 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3833 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-337 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3905 ((-694))) (-15 -1757 ((-772) $)) (-15 -1756 ((-772) $)) (-15 -2405 ($ (-694))))) (-694) (-694) (-146)) (T -337)) +((-3905 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-3766 (((-694) (-282 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-338 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3766 ((-694) (-282 |#1| |#2| |#3| |#4|)))) (-13 (-317) (-311)) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -338)) +((-3766 (*1 *2 *3) (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-338 *4 *5 *6 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1759 ((|#2| $) 38 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1760 (($ (-347 |#2|)) 93 T ELT)) (-1758 (((-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3752 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3966 (((-347 |#2|) $) 49 T ELT)) (-3524 (($ (-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3940 (((-772) $) 131 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ |#2| $) 41 T ELT))) +(((-339 |#1| |#2|) (-13 (-1012) (-189) (-553 (-347 |#2|)) (-10 -8 (-15 -3833 ($ |#2| $)) (-15 -1760 ($ (-347 |#2|))) (-15 -1759 (|#2| $)) (-15 -1758 ((-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))) $)) (-15 -3524 ($ (-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))))))) (-13 (-311) (-120)) (-1153 |#1|)) (T -339)) +((-3833 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1153 *3)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) (-1759 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))) (-1758 (*1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) (-5 *1 (-339 *3 *4)) (-4 *4 (-1153 *3)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4))))) +((-2564 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 16 (|has| |#1| (-796 (-327))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 15 (|has| |#1| (-796 (-483))) ELT)) (-3237 (((-1071) $) 14 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3238 (((-1032) $) 13 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3940 (((-772) $) 12 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-1262 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3052 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT))) +(((-340 |#1|) (-113) (-1127)) (T -340)) +NIL +(-13 (-1127) (-10 -7 (IF (|has| |t#1| (-796 (-483))) (-6 (-796 (-483))) |%noBranch|) (IF (|has| |t#1| (-796 (-327))) (-6 (-796 (-327))) |%noBranch|))) +(((-72) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-552 (-772)) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-13) . T) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-1012) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-1127) . T)) +((-1761 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT))) +(((-341 |#1|) (-10 -7 (-15 -1761 (|#1| |#1| (-694))) (-15 -1761 (|#1| |#1|))) (-342)) (T -341)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-1761 (($ $) 95 T ELT) (($ $ (-694)) 94 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 97 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 96 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-2698 (((-632 $) $) 98 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-342) (-113)) (T -342)) +((-3766 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-743 (-830))))) (-1762 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-694)))) (-1761 (*1 *1 *1) (-4 *1 (-342))) (-1761 (*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-694))))) +(-13 (-311) (-118) (-10 -8 (-15 -3766 ((-743 (-830)) $)) (-15 -1762 ((-3 (-694) "failed") $ $)) (-15 -1761 ($ $)) (-15 -1761 ($ $ (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-3249 (($ (-483) (-483)) 11 T ELT) (($ (-483) (-483) (-830)) NIL T ELT)) (-2611 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT))) +(((-343 |#1|) (-10 -7 (-15 -2611 ((-830) (-830))) (-15 -2611 ((-830))) (-15 -3249 (|#1| (-483) (-483) (-830))) (-15 -3249 (|#1| (-483) (-483)))) (-344)) (T -343)) +((-2611 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 (((-483) $) 106 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3765 (($ $) 104 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 114 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 131 T ELT)) (-3718 (($) 22 T CONST)) (-3122 (($ $) 103 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 119 T ELT) (((-3 (-347 (-483)) #1#) $) 116 T ELT)) (-3151 (((-483) $) 120 T ELT) (((-347 (-483)) $) 117 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-1765 (((-830)) 147 T ELT) (((-830) (-830)) 144 (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 129 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 110 T ELT)) (-3766 (((-483) $) 153 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 113 T ELT)) (-3127 (($ $) 109 T ELT)) (-3182 (((-85) $) 130 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 123 T ELT) (($) 141 (-12 (-2556 (|has| $ (-6 -3980))) (-2556 (|has| $ (-6 -3972)))) ELT)) (-2853 (($ $ $) 124 T ELT) (($) 140 (-12 (-2556 (|has| $ (-6 -3980))) (-2556 (|has| $ (-6 -3972)))) ELT)) (-1767 (((-483) $) 150 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-1764 (((-830) (-483)) 143 (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 105 T ELT)) (-3125 (($ $) 107 T ELT)) (-3249 (($ (-483) (-483)) 155 T ELT) (($ (-483) (-483) (-830)) 154 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-2397 (((-483) $) 151 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-830)) 148 T ELT) (((-830) (-830)) 145 (|has| $ (-6 -3980)) ELT)) (-1763 (((-830) (-483)) 142 (|has| $ (-6 -3980)) ELT)) (-3966 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-800 (-327)) $) 111 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-483)) 118 T ELT) (($ (-347 (-483))) 115 T ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 (($ $) 108 T ELT)) (-1766 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2690 (((-830)) 152 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 132 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 125 T ELT)) (-2563 (((-85) $ $) 127 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 126 T ELT)) (-2681 (((-85) $ $) 128 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 112 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-344) (-113)) (T -344)) +((-3249 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-344)))) (-3249 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-830)) (-4 *1 (-344)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-2690 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-1766 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-2611 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-1765 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))) (-2527 (*1 *1) (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) (-2556 (|has| *1 (-6 -3972))))) (-2853 (*1 *1) (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) (-2556 (|has| *1 (-6 -3972)))))) +(-13 (-972) (-10 -8 (-6 -3764) (-15 -3249 ($ (-483) (-483))) (-15 -3249 ($ (-483) (-483) (-830))) (-15 -3766 ((-483) $)) (-15 -2690 ((-830))) (-15 -2397 ((-483) $)) (-15 -1767 ((-483) $)) (-15 -1766 ((-830))) (-15 -2611 ((-830))) (-15 -1765 ((-830))) (IF (|has| $ (-6 -3980)) (PROGN (-15 -1766 ((-830) (-830))) (-15 -2611 ((-830) (-830))) (-15 -1765 ((-830) (-830))) (-15 -1764 ((-830) (-483))) (-15 -1763 ((-830) (-483)))) |%noBranch|) (IF (|has| $ (-6 -3972)) |%noBranch| (IF (|has| $ (-6 -3980)) |%noBranch| (PROGN (-15 -2527 ($)) (-15 -2853 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-800 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-327)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-972) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 59 T ELT)) (-1768 (($ $) 77 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 189 T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) 48 T ELT)) (-1769 ((|#1| $) 16 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-1132)) ELT)) (-1771 (($ |#1| (-483)) 42 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 73 T ELT)) (-3461 (((-3 $ #1#) $) 163 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 84 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 80 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 82 (|has| |#1| (-482)) ELT)) (-1772 (($ |#1| (-483)) 44 T ELT)) (-3717 (((-85) $) 209 (|has| |#1| (-1132)) ELT)) (-2406 (((-85) $) 61 T ELT)) (-1831 (((-694) $) 51 T ELT)) (-1773 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-483)) 174 T ELT)) (-2295 ((|#1| $ (-483)) 173 T ELT)) (-1774 (((-483) $ (-483)) 172 T ELT)) (-1777 (($ |#1| (-483)) 41 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1828 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483))))) 78 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1775 (($ |#1| (-483)) 43 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 190 (|has| |#1| (-389)) ELT)) (-1770 (($ |#1| (-483) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1776 (((-583 (-2 (|:| -3726 |#1|) (|:| -2397 (-483)))) $) 72 T ELT)) (-1949 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $) 12 T ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-1132)) ELT)) (-3460 (((-3 $ #1#) $ $) 175 T ELT)) (-2397 (((-483) $) 166 T ELT)) (-3957 ((|#1| $) 74 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 105 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) $) NIL (|has| |#1| (-452 (-1088) $)) ELT) (($ $ (-583 (-1088)) (-583 $)) 106 (|has| |#1| (-452 (-1088) $)) ELT) (($ $ (-583 (-248 $))) 102 (|has| |#1| (-259 $)) ELT) (($ $ (-248 $)) NIL (|has| |#1| (-259 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-259 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-259 $)) ELT)) (-3794 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) 39 (|has| |#1| (-553 (-472))) ELT) (((-327) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3940 (((-772) $) 145 T ELT) (($ (-483)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT)) (-3121 (((-694)) 66 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 53 T CONST)) (-2662 (($) 52 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 158 T ELT)) (-3831 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-345 |#1|) (-13 (-494) (-184 |#1|) (-38 |#1|) (-287 |#1|) (-352 |#1|) (-10 -8 (-15 -3957 (|#1| $)) (-15 -2397 ((-483) $)) (-15 -1828 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))))) (-15 -1949 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $)) (-15 -1777 ($ |#1| (-483))) (-15 -1776 ((-583 (-2 (|:| -3726 |#1|) (|:| -2397 (-483)))) $)) (-15 -1775 ($ |#1| (-483))) (-15 -1774 ((-483) $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -1773 ((-3 #1# #2# #3# #4#) $ (-483))) (-15 -1831 ((-694) $)) (-15 -1772 ($ |#1| (-483))) (-15 -1771 ($ |#1| (-483))) (-15 -1770 ($ |#1| (-483) (-3 #1# #2# #3# #4#))) (-15 -1769 (|#1| $)) (-15 -1768 ($ $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-389)) (-6 (-389)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-259 $)) (-6 (-259 $)) |%noBranch|) (IF (|has| |#1| (-452 (-1088) $)) (-6 (-452 (-1088) $)) |%noBranch|))) (-494)) (T -345)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-345 *3)))) (-3957 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1828 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-483))))) (-4 *2 (-494)) (-5 *1 (-345 *2)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-483))))) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -2397 (-483))))) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1774 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *4)) (-4 *4 (-494)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1771 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1770 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1769 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1768 (*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494))))) +((-3952 (((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)) 20 T ELT))) +(((-346 |#1| |#2|) (-10 -7 (-15 -3952 ((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)))) (-494) (-494)) (T -346)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 13 T ELT)) (-3124 ((|#1| $) 21 (|has| |#1| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#1| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) 54 (|has| |#1| (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 15 T ELT) (((-1088) $) NIL (|has| |#1| (-950 (-1088))) ELT) (((-347 (-483)) $) 51 (|has| |#1| (-950 (-483))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 32 T ELT)) (-2990 (($) NIL (|has| |#1| (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#1| (-796 (-327))) ELT)) (-2406 (((-85) $) 38 T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 ((|#1| $) 55 T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3182 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 82 T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3125 ((|#1| $) 26 (|has| |#1| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 128 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 ((|#1| $) 57 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT) (((-327) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1088)) NIL (|has| |#1| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 93 T CONST)) (-3126 ((|#1| $) 24 (|has| |#1| (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 8 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 48 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3943 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3833 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-347 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3976)) (IF (|has| |#1| (-389)) (IF (|has| |#1| (-6 -3987)) (-6 -3976) |%noBranch|) |%noBranch|) |%noBranch|))) (-494)) (T -347)) +NIL +((-3952 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 13 T ELT))) +(((-348 |#1| |#2|) (-10 -7 (-15 -3952 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-494) (-494)) (T -348)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))) +((-1779 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT)) (-1778 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2010 ((|#3| $) 69 T ELT)) (-3751 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 22 T ELT) (((-630 |#2|) (-1177 $)) 38 T ELT)) (-3966 (((-1177 |#2|) $) 11 T ELT) (($ (-1177 |#2|)) 13 T ELT)) (-2445 ((|#3| $) 55 T ELT))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-630 |#2|) |#1|)) (-15 -3751 (|#2|)) (-15 -1779 ((-630 |#2|))) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -2010 (|#3| |#1|)) (-15 -2445 (|#3| |#1|)) (-15 -1779 ((-630 |#2|) (-1177 |#1|))) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1778 ((-630 |#2|) |#1| (-1177 |#1|)))) (-350 |#2| |#3|) (-146) (-1153 |#2|)) (T -349)) +((-1779 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)) (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) (-3751 (*1 *2) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) (-4 *3 (-350 *2 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2698 (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-350 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -350)) +((-2008 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) (-4 *1 (-350 *3 *4)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1153 *3)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1153 *3)))) (-1779 (*1 *2) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-630 *3)))) (-3751 (*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-630 *3))))) +(-13 (-319 |t#1| |t#2|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -3966 ((-1177 |t#1|) $)) (-15 -3966 ($ (-1177 |t#1|))) (-15 -1779 ((-630 |t#1|))) (-15 -3751 (|t#1|)) (-15 -1778 ((-630 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-319 |#1| |#2|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) 27 T ELT) (((-3 (-483) #1#) $) 19 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) 24 T ELT) (((-483) $) 14 T ELT)) (-3940 (($ |#2|) NIL T ELT) (($ (-347 (-483))) 22 T ELT) (($ (-483)) 11 T ELT))) +(((-351 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|))) (-352 |#2|) (-1127)) (T -351)) +NIL +((-3152 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-347 (-483)) #1#) $) 16 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) 13 (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 8 T ELT) (((-347 (-483)) $) 17 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 14 (|has| |#1| (-950 (-483))) ELT)) (-3940 (($ |#1|) 6 T ELT) (($ (-347 (-483))) 15 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ (-483)) 12 (|has| |#1| (-950 (-483))) ELT))) +(((-352 |#1|) (-113) (-1127)) (T -352)) +NIL +(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-483))) (-6 (-950 (-483))) |%noBranch|) (IF (|has| |t#1| (-950 (-347 (-483)))) (-6 (-950 (-347 (-483)))) |%noBranch|))) +(((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) |has| |#1| (-950 (-483))) ((-555 |#1|) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-1780 ((|#4| (-694) (-1177 |#4|)) 55 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2994 (((-1177 |#4|) $) 15 T ELT)) (-3127 ((|#2| $) 53 T ELT)) (-1781 (($ $) 156 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 103 T ELT)) (-1966 (($ (-1177 |#4|)) 102 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#1| $) 16 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 147 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 |#4|) $) 140 T ELT)) (-2662 (($) 11 T CONST)) (-3052 (((-85) $ $) 39 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-353 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -1966 ($ (-1177 |#4|))) (-15 -2008 ((-1177 |#4|) $)) (-15 -3127 (|#2| $)) (-15 -2994 ((-1177 |#4|) $)) (-15 -2993 (|#1| $)) (-15 -1781 ($ $)) (-15 -1780 (|#4| (-694) (-1177 |#4|))))) (-257) (-904 |#1|) (-1153 |#2|) (-13 (-350 |#2| |#3|) (-950 |#2|))) (T -353)) +((-1966 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-353 *3 *4 *5 *6)))) (-2008 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) (-3127 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-353 *3 *2 *4 *5)) (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-950 *2))))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-257)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))) (-1781 (*1 *1 *1) (-12 (-4 *2 (-257)) (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1177 *2)) (-4 *5 (-257)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-350 *6 *7) (-950 *6))) (-5 *1 (-353 *5 *6 *7 *2)) (-4 *7 (-1153 *6))))) +((-3952 (((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-354 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 ((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)))) (-257) (-904 |#1|) (-1153 |#2|) (-13 (-350 |#2| |#3|) (-950 |#2|)) (-257) (-904 |#5|) (-1153 |#6|) (-13 (-350 |#6| |#7|) (-950 |#6|))) (T -354)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) (-4 *6 (-904 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-350 *6 *7) (-950 *6))) (-4 *9 (-257)) (-4 *10 (-904 *9)) (-4 *11 (-1153 *10)) (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-350 *10 *11) (-950 *10)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#2| $) 69 T ELT)) (-1782 (($ (-1177 |#4|)) 27 T ELT) (($ (-353 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 37 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 |#4|) $) 28 T ELT)) (-2662 (($) 26 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-355 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2008 ((-1177 |#4|) $)) (-15 -3127 (|#2| $)) (-15 -1782 ($ (-1177 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1782 ($ (-353 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-257) (-904 |#1|) (-1153 |#2|) (-350 |#2| |#3|) (-1177 |#4|)) (T -355)) +((-2008 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) (-3127 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1177 *5)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-350 *4 *5)) (-14 *7 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7))))) +((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-356 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-358 |#2|) (-146) (-358 |#4|) (-146)) (T -356)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5))))) +((-1769 (((-3 $ #1="failed")) 99 T ELT)) (-3218 (((-1177 (-630 |#2|)) (-1177 $)) NIL T ELT) (((-1177 (-630 |#2|))) 104 T ELT)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 97 T ELT)) (-1700 (((-3 $ #1#)) 96 T ELT)) (-1785 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1783 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1897 (((-1083 (-857 |#2|))) 64 T ELT)) (-1787 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 125 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 95 T ELT)) (-1701 (((-3 $ #1#)) 87 T ELT)) (-1786 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1784 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1901 (((-1083 (-857 |#2|))) 63 T ELT)) (-1788 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 124 T ELT) (((-630 |#2|) (-1177 $)) 133 T ELT)) (-3966 (((-1177 |#2|) $) 109 T ELT) (($ (-1177 |#2|)) 111 T ELT)) (-1889 (((-583 (-857 |#2|)) (-1177 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2541 (($ (-630 |#2|) $) 103 T ELT))) +(((-357 |#1| |#2|) (-10 -7 (-15 -2541 (|#1| (-630 |#2|) |#1|)) (-15 -1897 ((-1083 (-857 |#2|)))) (-15 -1901 ((-1083 (-857 |#2|)))) (-15 -1783 ((-630 |#2|) |#1|)) (-15 -1784 ((-630 |#2|) |#1|)) (-15 -1785 ((-630 |#2|))) (-15 -1786 ((-630 |#2|))) (-15 -1787 (|#2|)) (-15 -1788 (|#2|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -1889 ((-583 (-857 |#2|)))) (-15 -3218 ((-1177 (-630 |#2|)))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -1769 ((-3 |#1| #1="failed"))) (-15 -1700 ((-3 |#1| #1#))) (-15 -1701 ((-3 |#1| #1#))) (-15 -1903 ((-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#))) (-15 -1904 ((-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#))) (-15 -1785 ((-630 |#2|) (-1177 |#1|))) (-15 -1786 ((-630 |#2|) (-1177 |#1|))) (-15 -1787 (|#2| (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1783 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -3218 ((-1177 (-630 |#2|)) (-1177 |#1|))) (-15 -1889 ((-583 (-857 |#2|)) (-1177 |#1|)))) (-358 |#2|) (-146)) (T -357)) +((-3218 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1788 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1787 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1786 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1785 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1769 (((-3 $ #1="failed")) 47 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) 88 T ELT) (((-1177 (-630 |#1|))) 114 T ELT)) (-1726 (((-1177 $)) 91 T ELT)) (-3718 (($) 22 T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 50 (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ #1#)) 48 (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) 75 T ELT) (((-630 |#1|)) 106 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) 86 T ELT) (((-630 |#1|) $) 104 T ELT)) (-2400 (((-3 $ #1#) $) 55 (|has| |#1| (-494)) ELT)) (-1897 (((-1083 (-857 |#1|))) 102 (|has| |#1| (-311)) ELT)) (-2403 (($ $ (-830)) 36 T ELT)) (-1722 ((|#1| $) 82 T ELT)) (-1702 (((-1083 |#1|) $) 52 (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1720 (((-1083 |#1|) $) 73 T ELT)) (-1714 (((-85)) 67 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 79 T ELT) (($ (-1177 |#1|)) 112 T ELT)) (-3461 (((-3 $ #1#) $) 57 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 90 T ELT)) (-1711 (((-85)) 64 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1705 (((-85)) 58 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2401 (((-3 $ #1#) $) 56 (|has| |#1| (-494)) ELT)) (-1901 (((-1083 (-857 |#1|))) 103 (|has| |#1| (-311)) ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1710 (((-85)) 63 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1713 (((-85)) 66 T ELT)) (-3794 ((|#1| $ (-483)) 118 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 81 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 80 T ELT) (((-1177 |#1|) $) 116 T ELT) (((-630 |#1|) (-1177 $)) 115 T ELT)) (-3966 (((-1177 |#1|) $) 111 T ELT) (($ (-1177 |#1|)) 110 T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) 89 T ELT) (((-583 (-857 |#1|))) 113 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 117 T ELT)) (-1704 (((-583 (-1177 |#1|))) 54 (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-1717 (((-85)) 70 T ELT)) (-2541 (($ (-630 |#1|) $) 101 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-1718 (((-85)) 71 T ELT)) (-1716 (((-85)) 69 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-358 |#1|) (-113) (-146)) (T -358)) +((-2008 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-358 *3)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3218 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-630 *3))))) (-1889 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-1788 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1787 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1786 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1785 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1901 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1083 (-857 *3))))) (-1897 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1083 (-857 *3))))) (-2541 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146))))) +(-13 (-315 |t#1|) (-241 (-483) |t#1|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -3218 ((-1177 (-630 |t#1|)))) (-15 -1889 ((-583 (-857 |t#1|)))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -3966 ((-1177 |t#1|) $)) (-15 -3966 ($ (-1177 |t#1|))) (-15 -1788 (|t#1|)) (-15 -1787 (|t#1|)) (-15 -1786 ((-630 |t#1|))) (-15 -1785 ((-630 |t#1|))) (-15 -1784 ((-630 |t#1|) $)) (-15 -1783 ((-630 |t#1|) $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -1901 ((-1083 (-857 |t#1|)))) (-15 -1897 ((-1083 (-857 |t#1|))))) |%noBranch|) (-15 -2541 ($ (-630 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-483) |#1|) . T) ((-315 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-3129 (((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|)) 28 T ELT)) (-1790 (((-345 |#1|) (-345 |#1|) (-345 |#1|)) 17 T ELT))) +(((-359 |#1|) (-10 -7 (-15 -3129 ((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|))) (-15 -1790 ((-345 |#1|) (-345 |#1|) (-345 |#1|)))) (-494)) (T -359)) +((-1790 (*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-494)) (-5 *1 (-359 *3)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-494)) (-5 *2 (-345 *4)) (-5 *1 (-359 *4))))) +((-3077 (((-583 (-1088)) $) 81 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 313 T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3152 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 84 T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-347 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-1088) $) 28 T ELT) (((-483) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-347 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-347 (-483)) $) NIL T ELT)) (-3589 (((-86) (-86)) 47 T ELT)) (-2992 (($ $) 99 T ELT)) (-1599 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1598 (((-583 (-550 $)) $) 269 T ELT)) (-2819 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #1#) $) 294 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-1088)) 257 T ELT)) (-1794 (((-85) $) 17 T ELT)) (-1793 ((|#2| $) 19 T ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) 62 T ELT) (($ $ (-583 (-1088))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1088)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 72 T ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1088) (-694) (-1 $ $)) 104 T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3752 (($ $ (-1088)) 278 T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-2991 (($ $) 324 T ELT)) (-3966 (((-800 (-483)) $) 297 T ELT) (((-800 (-327)) $) 301 T ELT) (($ (-345 $)) 359 T ELT) (((-472) $) NIL T ELT)) (-3940 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1088)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#2| (-550 $))) NIL T ELT) (($ (-347 |#2|)) 329 T ELT) (($ (-857 (-347 |#2|))) 368 T ELT) (($ (-347 (-857 (-347 |#2|)))) 341 T ELT) (($ (-347 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) 373 T ELT)) (-3121 (((-694)) 88 T CONST)) (-2250 (((-85) (-86)) 42 T ELT)) (-1792 (($ (-1088) $) 31 T ELT) (($ (-1088) $ $) 32 T ELT) (($ (-1088) $ $ $) 33 T ELT) (($ (-1088) $ $ $ $) 34 T ELT) (($ (-1088) (-583 $)) 39 T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-360 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3940 (|#1| (-483))) (-15 -3121 ((-694)) -3946) (-15 * (|#1| |#2| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3940 (|#1| (-857 |#2|))) (-15 -3152 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3151 ((-857 |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3940 (|#1| (-347 (-857 |#2|)))) (-15 -3152 ((-3 (-347 (-857 |#2|)) #1#) |#1|)) (-15 -3151 ((-347 (-857 |#2|)) |#1|)) (-15 -3079 ((-347 (-1083 |#1|)) |#1| (-550 |#1|))) (-15 -3940 (|#1| (-347 (-857 (-347 |#2|))))) (-15 -3940 (|#1| (-857 (-347 |#2|)))) (-15 -3940 (|#1| (-347 |#2|))) (-15 -2991 (|#1| |#1|)) (-15 -3966 (|#1| (-345 |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-694) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2821 ((-3 (-2 (|:| |val| |#1|) (|:| -2397 (-483))) #1#) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1| (-1088))) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1| (-86))) (-15 -2992 (|#1| |#1|)) (-15 -3940 (|#1| (-1037 |#2| (-550 |#1|)))) (-15 -1791 ((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2818 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1|)) (-15 -2819 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1088))) (-15 -3762 (|#1| |#1| (-86) |#1| (-1088))) (-15 -3762 (|#1| |#1|)) (-15 -3762 (|#1| |#1| (-583 (-1088)))) (-15 -3762 (|#1| |#1| (-1088))) (-15 -1792 (|#1| (-1088) (-583 |#1|))) (-15 -1792 (|#1| (-1088) |#1| |#1| |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1| |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1|)) (-15 -3077 ((-583 (-1088)) |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 ((-85) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3940 (|#1| (-1088))) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| |#1|)))) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1598 ((-583 (-550 |#1|)) |#1|)) (-15 -1599 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1601 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1601 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -1601 (|#1| |#1| (-248 |#1|))) (-15 -3794 (|#1| (-86) (-583 |#1|))) (-15 -3794 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3940 (|#1| (-550 |#1|))) (-15 -3152 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3151 ((-550 |#1|) |#1|)) (-15 -3940 ((-772) |#1|))) (-361 |#2|) (-1012)) (T -360)) +((-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) (-4 *4 (-361 *5)))) (-3121 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3077 (((-583 (-1088)) $) 220 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 188 (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 160 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 161 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 163 (|has| |#1| (-494)) ELT)) (-1597 (((-583 (-550 $)) $) 42 T ELT)) (-1309 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1601 (($ $ (-248 $)) 54 T ELT) (($ $ (-583 (-248 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3769 (($ $) 180 (|has| |#1| (-494)) ELT)) (-3965 (((-345 $) $) 181 (|has| |#1| (-494)) ELT)) (-1605 (((-85) $ $) 171 (|has| |#1| (-494)) ELT)) (-3718 (($) 117 (OR (|has| |#1| (-1024)) (|has| |#1| (-25))) CONST)) (-3152 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1088) #1#) $) 233 T ELT) (((-3 (-483) #1#) $) 227 (|has| |#1| (-950 (-483))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-347 (-857 |#1|)) #1#) $) 186 (|has| |#1| (-494)) ELT) (((-3 (-857 |#1|) #1#) $) 136 (|has| |#1| (-961)) ELT) (((-3 (-347 (-483)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-550 $) $) 68 T ELT) (((-1088) $) 234 T ELT) (((-483) $) 226 (|has| |#1| (-950 (-483))) ELT) ((|#1| $) 225 T ELT) (((-347 (-857 |#1|)) $) 187 (|has| |#1| (-494)) ELT) (((-857 |#1|) $) 137 (|has| |#1| (-961)) ELT) (((-347 (-483)) $) 112 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) 175 (|has| |#1| (-494)) ELT)) (-2275 (((-630 (-483)) (-630 $)) 153 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 152 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 150 (|has| |#1| (-961)) ELT)) (-3461 (((-3 $ "failed") $) 119 (|has| |#1| (-1024)) ELT)) (-2559 (($ $ $) 174 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 169 (|has| |#1| (-494)) ELT)) (-3717 (((-85) $) 182 (|has| |#1| (-494)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 229 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 228 (|has| |#1| (-796 (-327))) ELT)) (-2569 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1596 (((-583 (-86)) $) 41 T ELT)) (-3589 (((-86) (-86)) 40 T ELT)) (-2406 (((-85) $) 118 (|has| |#1| (-1024)) ELT)) (-2669 (((-85) $) 20 (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 203 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 204 (|has| |#1| (-961)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 178 (|has| |#1| (-494)) ELT)) (-1594 (((-1083 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 155 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 154 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 149 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1177 $)) 148 (|has| |#1| (-961)) ELT)) (-1888 (($ (-583 $)) 167 (|has| |#1| (-494)) ELT) (($ $ $) 166 (|has| |#1| (-494)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 43 T ELT)) (-2231 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2819 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) "failed") $) 200 (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $) 208 (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-86)) 202 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-1088)) 201 (|has| |#1| (-961)) ELT)) (-2629 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2480 (($ $) 121 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-2599 (((-694) $) 45 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 222 T ELT)) (-1793 ((|#1| $) 221 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 168 (|has| |#1| (-494)) ELT)) (-3139 (($ (-583 $)) 165 (|has| |#1| (-494)) ELT) (($ $ $) 164 (|has| |#1| (-494)) ELT)) (-1595 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-3726 (((-345 $) $) 179 (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 176 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ "failed") $ $) 159 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 170 (|has| |#1| (-494)) ELT)) (-2670 (((-85) $) 21 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1088)) 214 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) 213 (|has| |#1| (-553 (-472))) ELT) (($ $) 212 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 211 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 210 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 198 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 197 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ $)) 196 (|has| |#1| (-961)) ELT)) (-1604 (((-694) $) 172 (|has| |#1| (-494)) ELT)) (-3794 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 173 (|has| |#1| (-494)) ELT)) (-1600 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3752 (($ $ (-1088)) 146 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 144 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 143 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 142 (|has| |#1| (-961)) ELT)) (-2991 (($ $) 193 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 194 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 22 (|has| $ (-961)) ELT)) (-3966 (((-800 (-483)) $) 231 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 230 (|has| |#1| (-553 (-800 (-327)))) ELT) (($ (-345 $)) 195 (|has| |#1| (-494)) ELT) (((-472) $) 113 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $ $) 124 (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) 125 (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1088)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1037 |#1| (-550 $))) 205 (|has| |#1| (-961)) ELT) (($ (-347 |#1|)) 191 (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) 190 (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) 189 (|has| |#1| (-494)) ELT) (($ (-347 (-857 |#1|))) 185 (|has| |#1| (-494)) ELT) (($ $) 158 (|has| |#1| (-494)) ELT) (($ (-857 |#1|)) 135 (|has| |#1| (-961)) ELT) (($ (-347 (-483))) 110 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ (-483)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-483)))) ELT)) (-2698 (((-632 $) $) 156 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 138 (|has| |#1| (-961)) CONST)) (-2586 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2250 (((-85) (-86)) 39 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 162 (|has| |#1| (-494)) ELT)) (-1792 (($ (-1088) $) 219 T ELT) (($ (-1088) $ $) 218 T ELT) (($ (-1088) $ $ $) 217 T ELT) (($ (-1088) $ $ $ $) 216 T ELT) (($ (-1088) (-583 $)) 215 T ELT)) (-2656 (($) 128 (|has| |#1| (-25)) CONST)) (-2662 (($) 116 (|has| |#1| (-1024)) CONST)) (-2665 (($ $ (-1088)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 141 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 140 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 139 (|has| |#1| (-961)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 192 (|has| |#1| (-494)) ELT) (($ $ $) 122 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-3831 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) 123 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1024)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1024)) ELT)) (* (($ (-347 (-483)) $) 184 (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) 183 (|has| |#1| (-494)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-961)) ELT) (($ (-483) $) 132 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1024)) ELT))) +(((-361 |#1|) (-113) (-1012)) (T -361)) +((-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-1088))))) (-1792 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-553 (-472))))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-553 (-472))))) (-3762 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-553 (-472))))) (-3762 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-553 (-472))))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1088)) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-553 (-472))))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-361 *3)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) (-2818 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-361 *3)))) (-1791 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| -3948 (-483)) (|:| |var| (-550 *1)))) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) (-4 *1 (-361 *3)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-961)))) (-2820 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) (-2820 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |val| *1) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) (-4 *1 (-361 *3)))) (-2991 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-494)))) (-3943 (*1 *1 *2 *2) (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 *3))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 (-857 (-347 *3)))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3079 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-494)) (-5 *2 (-347 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-1024))))) +(-13 (-253) (-950 (-1088)) (-794 |t#1|) (-340 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1794 ((-85) $)) (-15 -1793 (|t#1| $)) (-15 -3077 ((-583 (-1088)) $)) (-15 -1792 ($ (-1088) $)) (-15 -1792 ($ (-1088) $ $)) (-15 -1792 ($ (-1088) $ $ $)) (-15 -1792 ($ (-1088) $ $ $ $)) (-15 -1792 ($ (-1088) (-583 $))) (IF (|has| |t#1| (-553 (-472))) (PROGN (-6 (-553 (-472))) (-15 -3762 ($ $ (-1088))) (-15 -3762 ($ $ (-583 (-1088)))) (-15 -3762 ($ $)) (-15 -3762 ($ $ (-86) $ (-1088))) (-15 -3762 ($ $ (-583 (-86)) (-583 $) (-1088)))) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2819 ((-3 (-583 $) "failed") $)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-410)) (-6 (-410)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2818 ((-3 (-583 $) "failed") $)) (-15 -1791 ((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1088))) (-6 (-326 |t#1|)) (-15 -3940 ($ (-1037 |t#1| (-550 $)))) (-15 -2994 ((-1037 |t#1| (-550 $)) $)) (-15 -2992 ($ $)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-86))) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-1088))) (-15 -2821 ((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) "failed") $)) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-1088) (-694) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-1088) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-311)) (-6 (-950 (-347 (-857 |t#1|)))) (-15 -3966 ($ (-345 $))) (-15 -2993 ((-1037 |t#1| (-550 $)) $)) (-15 -2991 ($ $)) (-15 -3943 ($ (-1037 |t#1| (-550 $)) (-1037 |t#1| (-550 $)))) (-15 -3940 ($ (-347 |t#1|))) (-15 -3940 ($ (-857 (-347 |t#1|)))) (-15 -3940 ($ (-347 (-857 (-347 |t#1|))))) (-15 -3079 ((-347 (-1083 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-483))) (-6 (-950 (-347 (-483)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-347 (-483))) |has| |#1| (-494)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-494)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-494)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-494))) ((-555 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-555 (-483)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-483))) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1088)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) |has| |#1| (-494)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-201) |has| |#1| (-494)) ((-245) |has| |#1| (-494)) ((-257) |has| |#1| (-494)) ((-259 $) . T) ((-253) . T) ((-311) |has| |#1| (-494)) ((-326 |#1|) |has| |#1| (-961)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) |has| |#1| (-494)) ((-410) |has| |#1| (-410)) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-494)) ((-588 (-483)) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-347 (-483))) |has| |#1| (-494)) ((-590 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-347 (-483))) |has| |#1| (-494)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-580 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-347 (-483))) |has| |#1| (-494)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) OR (|has| |#1| (-1024)) (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1088)) |has| |#1| (-961)) ((-809 (-1088)) |has| |#1| (-961)) ((-811 (-1088)) |has| |#1| (-961)) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-832) |has| |#1| (-494)) ((-950 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483))))) ((-950 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1088)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-494)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-494)) ((-968 (-347 (-483))) |has| |#1| (-494)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-494)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-969) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1024) OR (|has| |#1| (-1024)) (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1059) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-494))) +((-3952 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-361 |#1|) (-961) (-361 |#3|)) (T -362)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-361 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5))))) +((-1798 ((|#2| |#2|) 182 T ELT)) (-1795 (((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85)) 60 T ELT))) +(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1795 ((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85))) (-15 -1798 (|#2| |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -363)) +((-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-361 *3))) (-14 *4 (-1088)) (-14 *5 *2))) (-1795 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-14 *6 (-1088)) (-14 *7 *3)))) +((-1798 ((|#2| |#2|) 105 T ELT)) (-1796 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 52 T ELT)) (-1797 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 169 T ELT))) +(((-364 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1796 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1797 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1798 (|#2| |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|) (-10 -8 (-15 -3940 ($ |#3|)))) (-755) (-13 (-1156 |#2| |#3|) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $)))) (-896 |#4|) (-1088)) (T -364)) +((-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *2 (-13 (-27) (-1113) (-361 *3) (-10 -8 (-15 -3940 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1156 *2 *4) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1088)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1156 *3 *7) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) (-14 *10 (-1088)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1156 *3 *7) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) (-14 *10 (-1088))))) +((-1799 (($) 51 T ELT)) (-3229 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3231 (($ $ $) 46 T ELT)) (-3230 (((-85) $ $) 35 T ELT)) (-3131 (((-694)) 55 T ELT)) (-3234 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2990 (($) 66 T ELT)) (-3236 (((-85) $ $) 15 T ELT)) (-2527 ((|#2| $) 77 T ELT)) (-2853 ((|#2| $) 75 T ELT)) (-2006 (((-830) $) 70 T ELT)) (-3233 (($ $ $) 42 T ELT)) (-2396 (($ (-830)) 60 T ELT)) (-3232 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) 31 T ELT)) (-3524 (($ (-583 |#2|)) 27 T ELT)) (-1800 (($ $) 53 T ELT)) (-3940 (((-772) $) 40 T ELT)) (-1801 (((-694) $) 24 T ELT)) (-3235 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3052 (((-85) $ $) 19 T ELT))) +(((-365 |#1| |#2|) (-10 -7 (-15 -3131 ((-694))) (-15 -2396 (|#1| (-830))) (-15 -2006 ((-830) |#1|)) (-15 -2990 (|#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2853 (|#2| |#1|)) (-15 -1799 (|#1|)) (-15 -1800 (|#1| |#1|)) (-15 -1801 ((-694) |#1|)) (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3236 ((-85) |#1| |#1|)) (-15 -3235 (|#1|)) (-15 -3235 (|#1| (-583 |#2|))) (-15 -3234 (|#1|)) (-15 -3234 (|#1| (-583 |#2|))) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3230 ((-85) |#1| |#1|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -3229 (|#1| |#2| |#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|))) (-366 |#2|) (-1012)) (T -365)) +((-3131 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) +((-2564 (((-85) $ $) 19 T ELT)) (-1799 (($) 71 (|has| |#1| (-317)) ELT)) (-3229 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3231 (($ $ $) 82 T ELT)) (-3230 (((-85) $ $) 83 T ELT)) (-3131 (((-694)) 65 (|has| |#1| (-317)) ELT)) (-3234 (($ (-583 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2990 (($) 68 (|has| |#1| (-317)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 74 T ELT)) (-2527 ((|#1| $) 69 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 70 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2006 (((-830) $) 67 (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 79 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-2396 (($ (-830)) 66 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3232 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-1800 (($ $) 72 (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 17 T ELT)) (-1801 (((-694) $) 73 T ELT)) (-3235 (($ (-583 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-366 |#1|) (-113) (-1012)) (T -366)) +((-1801 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-317)))) (-1799 (*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1012)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756))))) +(-13 (-183 |t#1|) (-1010 |t#1|) (-10 -8 (-6 -3989) (-15 -1801 ((-694) $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-317)) (-15 -1800 ($ $)) (-15 -1799 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2853 (|t#1| $)) (-15 -2527 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-317) |has| |#1| (-317)) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-3835 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3836 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3952 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3836 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3835 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1012) (-366 |#1|) (-1012) (-366 |#3|)) (T -367)) +((-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-366 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-366 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5))))) +((-1802 (((-518 |#2|) |#2| (-1088)) 36 T ELT)) (-2096 (((-518 |#2|) |#2| (-1088)) 21 T ELT)) (-2145 ((|#2| |#2| (-1088)) 26 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -2096 ((-518 |#2|) |#2| (-1088))) (-15 -1802 ((-518 |#2|) |#2| (-1088))) (-15 -2145 (|#2| |#2| (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-29 |#1|))) (T -368)) +((-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) (-1802 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1804 (($ |#2| |#1|) 37 T ELT)) (-1803 (($ |#2| |#1|) 35 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-280 |#2|)) 25 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-369 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3976)) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-280 |#2|))) (-15 -1804 ($ |#2| |#1|)) (-15 -1803 ($ |#2| |#1|)))) (-13 (-146) (-38 (-347 (-483)))) (-13 (-756) (-21))) (T -369)) +((-3940 (*1 *1 *2) (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-483))))) (-4 *3 (-13 (-756) (-21))))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-369 *3 *4)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))))) (-1804 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) (-4 *2 (-13 (-756) (-21))))) (-1803 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) (-4 *2 (-13 (-756) (-21)))))) +((-3806 (((-3 |#2| (-583 |#2|)) |#2| (-1088)) 115 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -3806 ((-3 |#2| (-583 |#2|)) |#2| (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -370)) +((-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1113) (-871) (-29 *5)))))) +((-3380 ((|#2| |#2| |#2|) 31 T ELT)) (-3589 (((-86) (-86)) 43 T ELT)) (-1806 ((|#2| |#2|) 63 T ELT)) (-1805 ((|#2| |#2|) 66 T ELT)) (-3379 ((|#2| |#2|) 30 T ELT)) (-3383 ((|#2| |#2| |#2|) 33 T ELT)) (-3385 ((|#2| |#2| |#2|) 35 T ELT)) (-3382 ((|#2| |#2| |#2|) 32 T ELT)) (-3384 ((|#2| |#2| |#2|) 34 T ELT)) (-2250 (((-85) (-86)) 41 T ELT)) (-3387 ((|#2| |#2|) 37 T ELT)) (-3386 ((|#2| |#2|) 36 T ELT)) (-3377 ((|#2| |#2|) 25 T ELT)) (-3381 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3378 ((|#2| |#2| |#2|) 29 T ELT))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -3377 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -3378 (|#2| |#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3380 (|#2| |#2| |#2|)) (-15 -3382 (|#2| |#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1806 (|#2| |#2|))) (-494) (-361 |#1|)) (T -371)) +((-1806 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3382 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3380 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3378 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) (-4 *5 (-361 *4))))) +((-2829 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-583 |#2|)) 65 T ELT))) +(((-372 |#1| |#2|) (-10 -7 (-15 -2829 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2829 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-494) (-120)) (-361 |#1|)) (T -372)) +((-2829 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-372 *4 *5))))) +((-1808 (((-1183)) 18 T ELT)) (-1807 (((-1083 (-347 (-483))) |#2| (-550 |#2|)) 40 T ELT) (((-347 (-483)) |#2|) 27 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -1807 ((-347 (-483)) |#2|)) (-15 -1807 ((-1083 (-347 (-483))) |#2| (-550 |#2|))) (-15 -1808 ((-1183)))) (-13 (-494) (-950 (-483))) (-361 |#1|)) (T -373)) +((-1808 (*1 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *2 (-1183)) (-5 *1 (-373 *3 *4)) (-4 *4 (-361 *3)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-373 *5 *3)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4))))) +((-3639 (((-85) $) 33 T ELT)) (-1809 (((-85) $) 35 T ELT)) (-3254 (((-85) $) 36 T ELT)) (-1811 (((-85) $) 39 T ELT)) (-1813 (((-85) $) 34 T ELT)) (-1812 (((-85) $) 38 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1071)) 32 T ELT) (($ (-1088)) 30 T ELT) (((-1088) $) 24 T ELT) (((-1014) $) 23 T ELT)) (-1810 (((-85) $) 37 T ELT)) (-3052 (((-85) $ $) 17 T ELT))) +(((-374) (-13 (-552 (-772)) (-10 -8 (-15 -3940 ($ (-1071))) (-15 -3940 ($ (-1088))) (-15 -3940 ((-1088) $)) (-15 -3940 ((-1014) $)) (-15 -3639 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -3254 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -1810 ((-85) $)) (-15 -1809 ((-85) $)) (-15 -3052 ((-85) $ $))))) (T -374)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-374)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-374)))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) +((-1815 (((-3 (-345 (-1083 (-347 (-483)))) #1="failed") |#3|) 71 T ELT)) (-1814 (((-345 |#3|) |#3|) 34 T ELT)) (-1817 (((-3 (-345 (-1083 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1816 (((-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85))) |#3|) 37 T ELT))) +(((-375 |#1| |#2| |#3|) (-10 -7 (-15 -1814 ((-345 |#3|) |#3|)) (-15 -1815 ((-3 (-345 (-1083 (-347 (-483)))) #1="failed") |#3|)) (-15 -1816 ((-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1817 ((-3 (-345 (-1083 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-494) (-950 (-483))) (-361 |#1|) (-1153 |#2|)) (T -375)) +((-1817 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-48)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1815 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-347 (-483))))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1814 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1827 (((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1824 (($) 35 T ELT)) (-1821 (($) 41 T ELT)) (-1822 (($) 37 T ELT)) (-1819 (($) 39 T ELT)) (-1823 (($) 36 T ELT)) (-1820 (($) 38 T ELT)) (-1818 (($) 40 T ELT)) (-1825 (((-85) $) 8 T ELT)) (-1826 (((-583 (-857 (-483))) $) 19 T ELT)) (-3524 (($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-1088)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-857 (-483))) (-85)) 30 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-374)) 32 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-376) (-13 (-1012) (-10 -8 (-15 -3940 ($ (-374))) (-15 -1827 ((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $)) (-15 -1826 ((-583 (-857 (-483))) $)) (-15 -1825 ((-85) $)) (-15 -3524 ($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-1088)) (-85))) (-15 -3524 ($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-857 (-483))) (-85))) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($)) (-15 -1819 ($)) (-15 -1818 ($))))) (T -376)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *1 (-376)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-483)))) (-5 *1 (-376)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-1088))) (-5 *4 (-85)) (-5 *1 (-376)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-85)) (-5 *1 (-376)))) (-1824 (*1 *1) (-5 *1 (-376))) (-1823 (*1 *1) (-5 *1 (-376))) (-1822 (*1 *1) (-5 *1 (-376))) (-1821 (*1 *1) (-5 *1 (-376))) (-1820 (*1 *1) (-5 *1 (-376))) (-1819 (*1 *1) (-5 *1 (-376))) (-1818 (*1 *1) (-5 *1 (-376)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-3237 (((-1071) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT))) +(((-377 |#1|) (-13 (-1012) (-10 -8 (-15 -3536 ((-1088) $)))) (-1088)) (T -377)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-377 *3)) (-14 *3 *2)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 7 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT))) +(((-378) (-13 (-1012) (-10 -8 (-15 -3314 ((-1027) $))))) (T -378)) +((-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-378))))) +((-1833 (((-85)) 18 T ELT)) (-1834 (((-85) (-85)) 19 T ELT)) (-1835 (((-85)) 14 T ELT)) (-1836 (((-85) (-85)) 15 T ELT)) (-1838 (((-85)) 16 T ELT)) (-1839 (((-85) (-85)) 17 T ELT)) (-1830 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1831 (((-694) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483))))) 52 T ELT)) (-1829 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1832 (((-2 (|:| -2574 (-483)) (|:| -1776 (-583 |#1|))) |#1|) 94 T ELT)) (-1828 (((-345 |#1|) (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483))))))) 176 T ELT)) (-3728 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)) 209 T ELT)) (-3727 (((-345 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-345 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-345 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-345 |#1|) |#1| (-694)) 222 T ELT) (((-345 |#1|) |#1|) 220 T ELT)) (-1850 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3726 (((-345 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-345 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-345 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-345 |#1|) |#1| (-694)) 216 T ELT) (((-345 |#1|) |#1|) 214 T ELT)) (-1837 (((-85) |#1|) 43 T ELT)) (-1849 (((-675 (-694)) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483))))) 99 T ELT)) (-1840 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85) (-1008 (-694)) (-694)) 213 T ELT))) +(((-379 |#1|) (-10 -7 (-15 -1828 ((-345 |#1|) (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))))) (-15 -1849 ((-675 (-694)) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))))) (-15 -1829 ((-830))) (-15 -1829 ((-830) (-830))) (-15 -1830 ((-830))) (-15 -1830 ((-830) (-830))) (-15 -1831 ((-694) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))))) (-15 -1832 ((-2 (|:| -2574 (-483)) (|:| -1776 (-583 |#1|))) |#1|)) (-15 -1833 ((-85))) (-15 -1834 ((-85) (-85))) (-15 -1835 ((-85))) (-15 -1836 ((-85) (-85))) (-15 -1837 ((-85) |#1|)) (-15 -1838 ((-85))) (-15 -1839 ((-85) (-85))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3726 ((-345 |#1|) |#1| (-694))) (-15 -3726 ((-345 |#1|) |#1| (-583 (-694)))) (-15 -3726 ((-345 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3726 ((-345 |#1|) |#1| (-694) (-694))) (-15 -3727 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1| (-694))) (-15 -3727 ((-345 |#1|) |#1| (-583 (-694)))) (-15 -3727 ((-345 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3727 ((-345 |#1|) |#1| (-694) (-694))) (-15 -1850 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3728 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85))) (-15 -1840 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85) (-1008 (-694)) (-694)))) (-1153 (-483))) (T -379)) +((-1840 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-3727 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1838 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1837 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1835 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1833 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1832 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2574 (-483)) (|:| -1776 (-583 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-694)) (-5 *1 (-379 *4)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1830 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1829 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-675 (-694))) (-5 *1 (-379 *4)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *4) (|:| -2391 (-483))))))) (-4 *4 (-1153 (-483))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4))))) +((-1844 (((-483) |#2|) 52 T ELT) (((-483) |#2| (-694)) 51 T ELT)) (-1843 (((-483) |#2|) 64 T ELT)) (-1845 ((|#3| |#2|) 26 T ELT)) (-3127 ((|#3| |#2| (-830)) 15 T ELT)) (-3827 ((|#3| |#2|) 16 T ELT)) (-1846 ((|#3| |#2|) 9 T ELT)) (-2599 ((|#3| |#2|) 10 T ELT)) (-1842 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1841 (((-483) |#2|) 66 T ELT))) +(((-380 |#1| |#2| |#3|) (-10 -7 (-15 -1841 ((-483) |#2|)) (-15 -1842 (|#3| |#2|)) (-15 -1842 (|#3| |#2| (-830))) (-15 -1843 ((-483) |#2|)) (-15 -1844 ((-483) |#2| (-694))) (-15 -1844 ((-483) |#2|)) (-15 -3127 (|#3| |#2| (-830))) (-15 -1845 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -2599 (|#3| |#2|)) (-15 -3827 (|#3| |#2|))) (-961) (-1153 |#1|) (-13 (-344) (-950 |#1|) (-311) (-1113) (-239))) (T -380)) +((-3827 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-2599 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-3127 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *5 *3 *6)) (-4 *3 (-1153 *5)) (-4 *6 (-13 (-344) (-950 *5) (-311) (-1113) (-239))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))))) +((-3348 ((|#2| (-1177 |#1|)) 42 T ELT)) (-1848 ((|#2| |#2| |#1|) 58 T ELT)) (-1847 ((|#2| |#2| |#1|) 49 T ELT)) (-2294 ((|#2| |#2|) 44 T ELT)) (-3168 (((-85) |#2|) 32 T ELT)) (-1851 (((-583 |#2|) (-830) (-345 |#2|)) 21 T ELT)) (-1850 ((|#2| (-830) (-345 |#2|)) 25 T ELT)) (-1849 (((-675 (-694)) (-345 |#2|)) 29 T ELT))) +(((-381 |#1| |#2|) (-10 -7 (-15 -3168 ((-85) |#2|)) (-15 -3348 (|#2| (-1177 |#1|))) (-15 -2294 (|#2| |#2|)) (-15 -1847 (|#2| |#2| |#1|)) (-15 -1848 (|#2| |#2| |#1|)) (-15 -1849 ((-675 (-694)) (-345 |#2|))) (-15 -1850 (|#2| (-830) (-345 |#2|))) (-15 -1851 ((-583 |#2|) (-830) (-345 |#2|)))) (-961) (-1153 |#1|)) (T -381)) +((-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-345 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-381 *5 *6)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-345 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-381 *5 *2)) (-4 *5 (-961)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4 *5)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-1847 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-961)) (-4 *2 (-1153 *4)) (-5 *1 (-381 *4 *2)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1153 *4))))) +((-1854 (((-694)) 59 T ELT)) (-1858 (((-694)) 29 (|has| |#1| (-344)) ELT) (((-694) (-694)) 28 (|has| |#1| (-344)) ELT)) (-1857 (((-483) |#1|) 25 (|has| |#1| (-344)) ELT)) (-1856 (((-483) |#1|) 27 (|has| |#1| (-344)) ELT)) (-1853 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1852 ((|#1| (-694) (-483)) 37 T ELT)) (-1855 (((-1183)) 61 T ELT))) +(((-382 |#1|) (-10 -7 (-15 -1852 (|#1| (-694) (-483))) (-15 -1853 ((-694) (-694))) (-15 -1853 ((-694))) (-15 -1854 ((-694))) (-15 -1855 ((-1183))) (IF (|has| |#1| (-344)) (PROGN (-15 -1856 ((-483) |#1|)) (-15 -1857 ((-483) |#1|)) (-15 -1858 ((-694) (-694))) (-15 -1858 ((-694)))) |%noBranch|)) (-961)) (T -382)) +((-1858 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1855 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1854 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1853 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-483)) (-5 *1 (-382 *2)) (-4 *2 (-961))))) +((-1859 (((-583 (-483)) (-483)) 76 T ELT)) (-3717 (((-85) (-142 (-483))) 84 T ELT)) (-3726 (((-345 (-142 (-483))) (-142 (-483))) 75 T ELT))) +(((-383) (-10 -7 (-15 -3726 ((-345 (-142 (-483))) (-142 (-483)))) (-15 -1859 ((-583 (-483)) (-483))) (-15 -3717 ((-85) (-142 (-483)))))) (T -383)) +((-3717 (*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-383)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-383)) (-5 *3 (-483)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 (-142 (-483)))) (-5 *1 (-383)) (-5 *3 (-142 (-483)))))) +((-2942 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-311)) ELT)) (-2247 (((-583 |#4|) (-583 |#4|) (-1071) (-1071)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1071)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT))) +(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2247 ((-583 |#4|) (-583 |#4|))) (-15 -2247 ((-583 |#4|) (-583 |#4|) (-1071))) (-15 -2247 ((-583 |#4|) (-583 |#4|) (-1071) (-1071))) (IF (|has| |#1| (-311)) (-15 -2942 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-389) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -384)) +((-2942 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *2)))) (-2247 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-384 *3 *4 *5 *6))))) +((-1860 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1861 (((-583 |#4|) (-583 |#4|) (-1071) (-1071)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1071)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT))) +(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1860 (|#4| |#4| (-583 |#4|))) (-15 -1861 ((-583 |#4|) (-583 |#4|))) (-15 -1861 ((-583 |#4|) (-583 |#4|) (-1071))) (-15 -1861 ((-583 |#4|) (-583 |#4|) (-1071) (-1071)))) (-257) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -385)) +((-1861 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1860 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *2))))) +((-1863 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1862 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1862 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-257) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -386)) +((-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1863 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1862 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +((-1887 (((-694) |#4|) 12 T ELT)) (-1875 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)))) 39 T ELT)) (-1877 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1876 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1865 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1873 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1880 (((-1183) |#4|) 59 T ELT)) (-1883 (((-1183) (-583 |#4|)) 69 T ELT)) (-1881 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483)) 66 T ELT)) (-1884 (((-1183) (-483)) 110 T ELT)) (-1878 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1886 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)) |#4| (-694)) 31 T ELT)) (-1879 (((-483) |#4|) 109 T ELT)) (-1874 ((|#4| |#4|) 37 T ELT)) (-1866 (((-583 |#4|) (-583 |#4|) (-483) (-483)) 74 T ELT)) (-1882 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483)) 123 T ELT)) (-1885 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1867 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1872 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1871 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1868 (((-85) |#2| |#2|) 75 T ELT)) (-1870 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1869 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1864 ((|#4| |#4| (-583 |#4|)) 97 T ELT))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| (-583 |#4|))) (-15 -1865 (|#4| |#4| (-583 |#4|))) (-15 -1866 ((-583 |#4|) (-583 |#4|) (-483) (-483))) (-15 -1867 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1868 ((-85) |#2| |#2|)) (-15 -1869 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1870 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1871 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1872 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1874 (|#4| |#4|)) (-15 -1875 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))))) (-15 -1876 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1877 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1878 ((-583 |#4|) (-583 |#4|))) (-15 -1879 ((-483) |#4|)) (-15 -1880 ((-1183) |#4|)) (-15 -1881 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483))) (-15 -1882 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483))) (-15 -1883 ((-1183) (-583 |#4|))) (-15 -1884 ((-1183) (-483))) (-15 -1885 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1886 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)) |#4| (-694))) (-15 -1887 ((-694) |#4|))) (-389) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387)) +((-1887 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1886 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2000 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-387 *6 *7 *8 *4)))) (-1885 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1882 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1881 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-483)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1877 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) (-4 *4 (-389)) (-4 *6 (-756)))) (-1875 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *3)))) (-1874 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-387 *5 *6 *7 *3)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *4 *3 *5 *6)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1870 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *3)))) (-1869 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1868 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1866 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))) +((-1888 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 45 T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT))) +(((-388 |#1|) (-10 -7 (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1888 (|#1| (-583 |#1|))) (-15 -1888 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|))) (-389)) (T -388)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-389) (-113)) (T -389)) +((-3139 (*1 *1 *1 *1) (-4 *1 (-389))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) (-1888 (*1 *1 *1 *1) (-4 *1 (-389))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-389))))) +(-13 (-494) (-10 -8 (-15 -3139 ($ $ $)) (-15 -3139 ($ (-583 $))) (-15 -1888 ($ $ $)) (-15 -1888 ($ (-583 $))) (-15 -2704 ((-1083 $) (-1083 $) (-1083 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 (-347 (-857 |#1|)))) (-1177 $)) NIL T ELT) (((-1177 (-630 (-347 (-857 |#1|))))) NIL T ELT)) (-1726 (((-1177 $)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL T ELT)) (-1700 (((-3 $ #1#)) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1785 (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|)))) NIL T ELT)) (-1724 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1783 (((-630 (-347 (-857 |#1|))) $ (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1897 (((-1083 (-857 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-311)) ELT) (((-1083 (-347 (-857 |#1|)))) 89 (|has| |#1| (-494)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1702 (((-1083 (-347 (-857 |#1|))) $) 87 (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1787 (((-347 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-347 (-857 |#1|))) NIL T ELT)) (-1720 (((-1083 (-347 (-857 |#1|))) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1789 (($ (-1177 (-347 (-857 |#1|))) (-1177 $)) 111 T ELT) (($ (-1177 (-347 (-857 |#1|)))) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-3104 (((-830)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL T ELT)) (-1701 (((-3 $ #1#)) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1786 (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|)))) NIL T ELT)) (-1725 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1784 (((-630 (-347 (-857 |#1|))) $ (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1901 (((-1083 (-857 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-311)) ELT) (((-1083 (-347 (-857 |#1|)))) 88 (|has| |#1| (-494)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1703 (((-1083 (-347 (-857 |#1|))) $) 84 (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1788 (((-347 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-347 (-857 |#1|))) NIL T ELT)) (-1721 (((-1083 (-347 (-857 |#1|))) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1891 (((-347 (-857 |#1|)) $ $) 75 (|has| |#1| (-494)) ELT)) (-1895 (((-347 (-857 |#1|)) $) 74 (|has| |#1| (-494)) ELT)) (-1894 (((-347 (-857 |#1|)) $) 101 (|has| |#1| (-494)) ELT)) (-1896 (((-1083 (-347 (-857 |#1|))) $) 93 (|has| |#1| (-494)) ELT)) (-1890 (((-347 (-857 |#1|))) 76 (|has| |#1| (-494)) ELT)) (-1893 (((-347 (-857 |#1|)) $ $) 64 (|has| |#1| (-494)) ELT)) (-1899 (((-347 (-857 |#1|)) $) 63 (|has| |#1| (-494)) ELT)) (-1898 (((-347 (-857 |#1|)) $) 100 (|has| |#1| (-494)) ELT)) (-1900 (((-1083 (-347 (-857 |#1|))) $) 92 (|has| |#1| (-494)) ELT)) (-1892 (((-347 (-857 |#1|))) 73 (|has| |#1| (-494)) ELT)) (-1902 (($) 107 T ELT) (($ (-1088)) 115 T ELT) (($ (-1177 (-1088))) 114 T ELT) (($ (-1177 $)) 102 T ELT) (($ (-1088) (-1177 $)) 113 T ELT) (($ (-1177 (-1088)) (-1177 $)) 112 T ELT)) (-1713 (((-85)) NIL T ELT)) (-3794 (((-347 (-857 |#1|)) $ (-483)) NIL T ELT)) (-3219 (((-1177 (-347 (-857 |#1|))) $ (-1177 $)) 104 T ELT) (((-630 (-347 (-857 |#1|))) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 (-857 |#1|))) $) 44 T ELT) (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT)) (-3966 (((-1177 (-347 (-857 |#1|))) $) NIL T ELT) (($ (-1177 (-347 (-857 |#1|)))) 41 T ELT)) (-1889 (((-583 (-857 (-347 (-857 |#1|)))) (-1177 $)) NIL T ELT) (((-583 (-857 (-347 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1177 $)) 105 (|has| |#1| (-494)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-494)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1177 (-347 (-857 |#1|)))) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 66 T ELT)) (-1704 (((-583 (-1177 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2541 (($ (-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-857 |#1|))) NIL T ELT) (($ (-347 (-857 |#1|)) $) NIL T ELT) (($ (-1054 |#2| (-347 (-857 |#1|))) $) NIL T ELT))) +(((-390 |#1| |#2| |#3| |#4|) (-13 (-358 (-347 (-857 |#1|))) (-590 (-1054 |#2| (-347 (-857 |#1|)))) (-10 -8 (-15 -3940 ($ (-1177 (-347 (-857 |#1|))))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1="failed"))) (-15 -1903 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#))) (-15 -1902 ($)) (-15 -1902 ($ (-1088))) (-15 -1902 ($ (-1177 (-1088)))) (-15 -1902 ($ (-1177 $))) (-15 -1902 ($ (-1088) (-1177 $))) (-15 -1902 ($ (-1177 (-1088)) (-1177 $))) (IF (|has| |#1| (-494)) (PROGN (-15 -1901 ((-1083 (-347 (-857 |#1|))))) (-15 -1900 ((-1083 (-347 (-857 |#1|))) $)) (-15 -1899 ((-347 (-857 |#1|)) $)) (-15 -1898 ((-347 (-857 |#1|)) $)) (-15 -1897 ((-1083 (-347 (-857 |#1|))))) (-15 -1896 ((-1083 (-347 (-857 |#1|))) $)) (-15 -1895 ((-347 (-857 |#1|)) $)) (-15 -1894 ((-347 (-857 |#1|)) $)) (-15 -1893 ((-347 (-857 |#1|)) $ $)) (-15 -1892 ((-347 (-857 |#1|)))) (-15 -1891 ((-347 (-857 |#1|)) $ $)) (-15 -1890 ((-347 (-857 |#1|)))) (-15 -1889 ((-583 (-857 |#1|)) (-1177 $))) (-15 -1889 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1088)) (-1177 (-630 |#1|))) (T -390)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1177 (-347 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1177 (-630 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))))) (-1904 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1903 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1) (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1088))) (-14 *5 (-1177 (-630 *2))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1177 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1177 (-630 *4))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))) (-1901 (*1 *2) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1897 (*1 *2) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1892 (*1 *2) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1891 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1890 (*1 *2) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))) (-1889 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 19 T ELT)) (-3077 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) 53 T ELT) (((-1083 |#2|) $) 140 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) 49 T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) 95 T ELT)) (-3953 (($ $) 81 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| |#3| $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 66 T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1083 $) (-773 |#1|)) 59 T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) 69 T ELT)) (-2889 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1622 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) 48 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 47 T ELT)) (-1793 ((|#2| $) 138 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) 151 (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3942 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) 147 (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) 175 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 32 T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) 77 (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-391 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961) (-196 (-3951 |#1|) (-694))) (T -391)) +((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-14 *3 (-583 (-1088))) (-5 *1 (-391 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3951 *3) (-694)))))) +((-1908 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1906 (((-3 (-1177 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1907 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1177 (-583 |#2|))) 101 T ELT)) (-2033 ((|#2| |#2| |#1|) 35 T ELT)) (-1905 (((-694) |#2| (-583 |#2|)) 26 T ELT))) +(((-392 |#1| |#2|) (-10 -7 (-15 -2033 (|#2| |#2| |#1|)) (-15 -1905 ((-694) |#2| (-583 |#2|))) (-15 -1906 ((-3 (-1177 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1907 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1177 (-583 |#2|)))) (-15 -1908 ((-85) |#1| (-583 |#2|)))) (-257) (-1153 |#1|)) (T -392)) +((-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-257)) (-5 *2 (-85)) (-5 *1 (-392 *3 *5)))) (-1907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1177 (-583 *3))) (-4 *4 (-257)) (-5 *2 (-583 *3)) (-5 *1 (-392 *4 *3)) (-4 *3 (-1153 *4)))) (-1906 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-257)) (-4 *6 (-1153 *4)) (-5 *2 (-1177 (-583 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-583 *6)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-257)) (-5 *2 (-694)) (-5 *1 (-392 *5 *3)))) (-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1153 *3))))) +((-3726 (((-345 |#5|) |#5|) 24 T ELT))) +(((-393 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3726 ((-345 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-717) (-494) (-494) (-861 |#4| |#2| |#1|)) (T -393)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) (-4 *5 (-717)) (-4 *7 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-861 *7 *5 *4))))) +((-2696 ((|#3|) 43 T ELT)) (-2704 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 34 T ELT))) +(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2696 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -394)) +((-2696 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-394 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-394 *3 *4 *5 *6))))) +((-3726 (((-345 (-1083 |#1|)) (-1083 |#1|)) 43 T ELT))) +(((-395 |#1|) (-10 -7 (-15 -3726 ((-345 (-1083 |#1|)) (-1083 |#1|)))) (-257)) (T -395)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1083 *4))) (-5 *1 (-395 *4)) (-5 *3 (-1083 *4))))) +((-3723 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-694))) 44 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-694))) 43 T ELT) (((-51) |#2| (-1088) (-248 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|)) 29 T ELT)) (-3812 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 88 T ELT) (((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 87 T ELT) (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483))) 86 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483))) 85 T ELT) (((-51) |#2| (-1088) (-248 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|)) 79 T ELT)) (-3776 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 74 T ELT) (((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 72 T ELT)) (-3773 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483))) 51 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483))) 50 T ELT))) +(((-396 |#1| |#2|) (-10 -7 (-15 -3723 ((-51) (-1 |#2| (-483)) (-248 |#2|))) (-15 -3723 ((-51) |#2| (-1088) (-248 |#2|))) (-15 -3723 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-694)))) (-15 -3723 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-694)))) (-15 -3773 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483)))) (-15 -3773 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483)))) (-15 -3776 ((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3776 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3812 ((-51) (-1 |#2| (-483)) (-248 |#2|))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|))) (-15 -3812 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483)))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483)))) (-15 -3812 ((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -396)) +((-3812 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3812 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) (-4 *8 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3812 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))) (-3776 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) (-4 *8 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3723 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-694))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-694))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6))))) +((-2033 ((|#2| |#2| |#1|) 15 T ELT)) (-1910 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1909 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT))) +(((-397 |#1| |#2|) (-10 -7 (-15 -1909 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1910 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2033 (|#2| |#2| |#1|))) (-257) (-1153 |#1|)) (T -397)) +((-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1153 *3)))) (-1910 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1153 *4)) (-4 *4 (-257)) (-5 *1 (-397 *4 *3)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-257)) (-4 *3 (-1153 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) (-5 *4 (-583 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 28 T ELT)) (-3701 (($ |#3|) 25 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) 32 T ELT)) (-1911 (($ |#2| |#4| $) 33 T ELT)) (-2889 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2890 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1913 ((|#3| $) 19 T ELT)) (-1914 ((|#4| $) 17 T ELT)) (-3169 ((|#2| $) 29 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1912 (($ |#2| |#3| |#4|) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 36 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3169 (|#2| $)) (-15 -2890 ((-650 |#3| |#4| |#5|) $)) (-15 -1914 (|#4| $)) (-15 -1913 (|#3| $)) (-15 -3953 ($ $)) (-15 -2889 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3701 ($ |#3|)) (-15 -1912 ($ |#2| |#3| |#4|)) (-15 -1911 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1088)) (-146) (-756) (-196 (-3951 |#1|) (-694)) (-1 (-85) (-2 (|:| -2396 |#3|) (|:| -2397 |#4|)) (-2 (|:| -2396 |#3|) (|:| -2397 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -398)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3169 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) (-2 (|:| -2396 *4) (|:| -2397 *5)))) (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2890 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1914 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *2)) (-2 (|:| -2396 *5) (|:| -2397 *2)))) (-4 *2 (-196 (-3951 *3) (-694))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1913 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) (-2 (|:| -2396 *2) (|:| -2397 *5)))) (-4 *2 (-756)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3953 (*1 *1 *1) (-12 (-14 *2 (-583 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3951 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) (-2 (|:| -2396 *4) (|:| -2397 *5)))) (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3951 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3701 (*1 *1 *2) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) (-2 (|:| -2396 *2) (|:| -2397 *5)))) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1912 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3951 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *4)) (-2 (|:| -2396 *3) (|:| -2397 *4)))) (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1911 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3951 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *3)) (-2 (|:| -2396 *5) (|:| -2397 *3)))) (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4)))))) +((-1915 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-399 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1915 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|) (-13 (-950 (-347 (-483))) (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -399)) +((-1915 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-494)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-347 (-483))) (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3077 (((-583 |#3|) $) 41 T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1="failed") (-583 |#4|)) 49 T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3175 ((|#3| $) 47 T ELT)) (-2604 (((-583 |#4|) $) 14 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 39 T ELT)) (-3559 (($) 17 T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 16 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT) (($ (-583 |#4|)) 51 T ELT)) (-3524 (($ (-583 |#4|)) 13 T ELT)) (-2906 (($ $ |#3|) NIL T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 38 T ELT) (((-583 |#4|) $) 50 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 30 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-400 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3966 ($ (-583 |#4|))) (-6 -3989) (-6 -3990))) (-961) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -400)) +((-3966 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-400 *3 *4 *5 *6))))) +((-2656 (($) 11 T CONST)) (-2662 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-401 |#1| |#2| |#3|) (-10 -7 (-15 -2662 (|#1|) -3946) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2656 (|#1|) -3946)) (-402 |#2| |#3|) (-146) (-23)) (T -401)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3152 (((-3 |#1| "failed") $) 30 T ELT)) (-3151 ((|#1| $) 31 T ELT)) (-3938 (($ $ $) 27 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 ((|#2| $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 22 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-402 |#1| |#2|) (-113) (-146) (-23)) (T -402)) +((-2662 (*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-407 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2662 ($) -3946) (-15 -3938 ($ $ $)))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-407 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-1916 (((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-830)) 26 T ELT)) (-1917 (((-1177 (-1177 (-483))) (-830)) 21 T ELT))) +(((-403) (-10 -7 (-15 -1916 ((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-830))) (-15 -1917 ((-1177 (-1177 (-483))) (-830))))) (T -403)) +((-1917 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-403)))) (-1916 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-830)) (-5 *1 (-403))))) +((-2766 (((-483) (-483)) 32 T ELT) (((-483)) 24 T ELT)) (-2770 (((-483) (-483)) 28 T ELT) (((-483)) 20 T ELT)) (-2768 (((-483) (-483)) 30 T ELT) (((-483)) 22 T ELT)) (-1919 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1918 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1920 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-404) (-10 -7 (-15 -1918 ((-85))) (-15 -1919 ((-85))) (-15 -1918 ((-85) (-85))) (-15 -1919 ((-85) (-85))) (-15 -1920 ((-85))) (-15 -2768 ((-483))) (-15 -2770 ((-483))) (-15 -2766 ((-483))) (-15 -1920 ((-85) (-85))) (-15 -2768 ((-483) (-483))) (-15 -2770 ((-483) (-483))) (-15 -2766 ((-483) (-483))))) (T -404)) +((-2766 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-2766 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2770 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2768 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1918 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3845 (((-583 (-327)) $) 34 T ELT) (((-583 (-327)) $ (-583 (-327))) 145 T ELT)) (-1925 (((-583 (-1000 (-327))) $) 16 T ELT) (((-583 (-1000 (-327))) $ (-583 (-1000 (-327)))) 142 T ELT)) (-1922 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1926 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3700 (((-1183) $ (-854 (-179)) (-783)) 162 T ELT)) (-1927 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 110 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1928 (($) 146 T ELT)) (-1921 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1924 (((-1183) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1183) $ (-854 (-179))) 156 T ELT) (((-1183) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3940 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1923 (((-1183) $ (-854 (-179))) 161 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-405) (-13 (-1012) (-10 -8 (-15 -1928 ($)) (-15 -1927 ($ $)) (-15 -1927 ($ (-583 (-583 (-854 (-179)))))) (-15 -1927 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1927 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1926 ((-583 (-583 (-854 (-179)))) $)) (-15 -3854 ((-483) $)) (-15 -1925 ((-583 (-1000 (-327))) $)) (-15 -1925 ((-583 (-1000 (-327))) $ (-583 (-1000 (-327))))) (-15 -3845 ((-583 (-327)) $)) (-15 -3845 ((-583 (-327)) $ (-583 (-327)))) (-15 -1924 ((-1183) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1924 ((-1183) $ (-854 (-179)))) (-15 -1924 ((-1183) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1923 ((-1183) $ (-854 (-179)))) (-15 -3700 ((-1183) $ (-854 (-179)) (-783))) (-15 -3940 ($ (-583 (-583 (-854 (-179)))))) (-15 -3940 ((-772) $)) (-15 -1922 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1921 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -405)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-405)))) (-1928 (*1 *1) (-5 *1 (-405))) (-1927 (*1 *1 *1) (-5 *1 (-405))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-1927 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-405)))) (-1927 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-405)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1923 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))) (-3700 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-405)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-405))))) +((-3831 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-406 |#1| |#2| |#3|) (-10 -7 (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|))) (-407 |#2| |#3|) (-146) (-23)) (T -406)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 ((|#2| $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 22 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-407 |#1| |#2|) (-113) (-146) (-23)) (T -407)) +((-3942 (*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2656 (*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1012) (-10 -8 (-15 -3942 (|t#2| $)) (-15 -2656 ($) -3946) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3831 ($ $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-1930 (((-3 (-583 (-418 |#1| |#2|)) "failed") (-583 (-418 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1929 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1931 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-483)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT))) +(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -1929 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1930 ((-3 (-583 (-418 |#1| |#2|)) "failed") (-583 (-418 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1931 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-483)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1088)) (-389) (-389)) (T -408)) +((-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-483))))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389)))) (-1930 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) (-4 *6 (-389)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389))))) +((-3461 (((-3 $ "failed") $) 11 T ELT)) (-3005 (($ $ $) 22 T ELT)) (-2431 (($ $ $) 23 T ELT)) (-3943 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 21 T ELT))) +(((-409 |#1|) (-10 -7 (-15 -2431 (|#1| |#1| |#1|)) (-15 -3005 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-410)) (T -409)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3005 (($ $ $) 27 T ELT)) (-2431 (($ $ $) 26 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-410) (-113)) (T -410)) +((-2480 (*1 *1 *1) (-4 *1 (-410))) (-3943 (*1 *1 *1 *1) (-4 *1 (-410))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-483)))) (-3005 (*1 *1 *1 *1) (-4 *1 (-410))) (-2431 (*1 *1 *1 *1) (-4 *1 (-410)))) +(-13 (-663) (-10 -8 (-15 -2480 ($ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ (-483))) (-6 -3986) (-15 -3005 ($ $ $)) (-15 -2431 ($ $ $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 18 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) NIL T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 29 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 35 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 30 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 28 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 16 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1174 |#2|)) NIL T ELT) (($ (-1158 |#1| |#2| |#3|)) 9 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 21 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-411 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (-15 -3940 ($ (-1158 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -411)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-411 *3 *4 *5)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-412 |#1| |#2| |#3| |#4|) (-1105 |#1| |#2|) (-1012) (-1012) (-1105 |#1| |#2|) |#2|) (T -412)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3763 (($ $ |#4|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3927 (((-85) |#3| $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-413 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -413)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3621 (($) 17 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3966 (((-327) $) 21 T ELT) (((-179) $) 24 T ELT) (((-347 (-1083 (-483))) $) 18 T ELT) (((-472) $) 53 T ELT)) (-3940 (((-772) $) 51 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (((-179) $) 23 T ELT) (((-327) $) 20 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 37 T CONST)) (-2662 (($) 8 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-414) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))) (-933) (-552 (-179)) (-552 (-327)) (-553 (-347 (-1083 (-483)))) (-553 (-472)) (-10 -8 (-15 -3621 ($))))) (T -414)) +((-3621 (*1 *1) (-5 *1 (-414)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-415) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -415)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) 13 T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 19 T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) 15 (|has| $ (-6 -3989)) ELT))) +(((-416 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012) (-1071)) (T -416)) +NIL +((-1932 (((-483) (-483) (-483)) 19 T ELT)) (-1933 (((-85) (-483) (-483) (-483) (-483)) 28 T ELT)) (-3451 (((-1177 (-583 (-483))) (-694) (-694)) 42 T ELT))) +(((-417) (-10 -7 (-15 -1932 ((-483) (-483) (-483))) (-15 -1933 ((-85) (-483) (-483) (-483) (-483))) (-15 -3451 ((-1177 (-583 (-483))) (-694) (-694))))) (T -417)) +((-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1177 (-583 (-483)))) (-5 *1 (-417)))) (-1933 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-417)))) (-1932 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-417))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-419 (-3951 |#1|) (-694)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-419 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-419 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-419 (-3951 |#1|) (-694)) (-419 (-3951 |#1|) (-694))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-419 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-419 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-418 |#1| |#2|) (-13 (-861 |#2| (-419 (-3951 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961)) (T -418)) +((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-418 *3 *4)) (-14 *3 (-583 (-1088))) (-4 *4 (-961))))) +((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 11 T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#2| (-23)) CONST)) (-2662 (($) NIL (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-419 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -419)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-1935 (((-583 (-785)) $) 16 T ELT)) (-3536 (((-444) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1936 (($ (-444) (-583 (-785))) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-420) (-13 (-994) (-10 -8 (-15 -1936 ($ (-444) (-583 (-785)))) (-15 -3536 ((-444) $)) (-15 -1935 ((-583 (-785)) $))))) (T -420)) +((-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-785))) (-5 *1 (-420)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-420))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3718 (($) NIL T CONST)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2852 (($ $ $) 48 T ELT)) (-3512 (($ $ $) 47 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2853 ((|#1| $) 40 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 41 T ELT)) (-3603 (($ |#1| $) 18 T ELT)) (-1937 (($ (-583 |#1|)) 19 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 34 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 11 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 29 (|has| $ (-6 -3989)) ELT))) +(((-421 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1937 ($ (-583 |#1|))))) (-756)) (T -421)) +((-1937 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-421 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ $) 71 T ELT)) (-1634 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 45 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (((-3 |#4| #1#) $) 117 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-483)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3940 (((-772) $) 110 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 32 T CONST)) (-3052 (((-85) $ $) 121 T ELT)) (-3831 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 77 T ELT))) +(((-422 |#1| |#2| |#3| |#4|) (-285 |#1| |#2| |#3| |#4|) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -422)) +NIL +((-1941 (((-483) (-583 (-483))) 53 T ELT)) (-1938 ((|#1| (-583 |#1|)) 94 T ELT)) (-1940 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1939 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3139 ((|#1| (-583 |#1|)) 96 T ELT)) (-2813 (((-583 (-483)) (-583 |#1|)) 56 T ELT))) +(((-423 |#1|) (-10 -7 (-15 -3139 (|#1| (-583 |#1|))) (-15 -1938 (|#1| (-583 |#1|))) (-15 -1939 ((-583 |#1|) (-583 |#1|))) (-15 -1940 ((-583 |#1|) (-583 |#1|))) (-15 -2813 ((-583 (-483)) (-583 |#1|))) (-15 -1941 ((-483) (-583 (-483))))) (-1153 (-483))) (T -423)) +((-1941 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-483)) (-5 *1 (-423 *4)) (-4 *4 (-1153 *2)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-583 (-483))) (-5 *1 (-423 *4)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483))))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-1942 (($ (-347 (-483))) 9 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) +(((-424) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 16)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -1942 ($ (-347 (-483))))))) (T -424)) +((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424)))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424))))) +((-2604 (((-583 |#2|) $) 31 T ELT)) (-3240 (((-85) |#2| $) 39 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 13 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 30 T ELT) (((-694) |#2| $) 37 T ELT)) (-3940 (((-772) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-3951 (((-694) $) 18 T ELT))) +(((-425 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3240 ((-85) |#2| |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -2604 ((-583 |#2|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-426 |#2|) (-1127)) (T -425)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-426 |#1|) (-113) (-1127)) (T -426)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1127)))) (-1946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-426 *3)) (-4 *3 (-1127)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1943 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-694)))) (-2885 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-2604 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-1943 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-3240 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-1012)) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3990)) (-15 -1946 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3989)) (PROGN (-15 -1945 ((-85) (-1 (-85) |t#1|) $)) (-15 -1944 ((-85) (-1 (-85) |t#1|) $)) (-15 -1943 ((-694) (-1 (-85) |t#1|) $)) (-15 -2885 ((-583 |t#1|) $)) (-15 -2604 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -1943 ((-694) |t#1| $)) (-15 -3240 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-3940 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-427 |#1|) (-113) (-1127)) (T -427)) +NIL +(-13 (-552 |t#1|) (-555 |t#1|)) +(((-555 |#1|) . T) ((-552 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1947 (($ (-1071)) 8 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT) (((-1071) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT))) +(((-428) (-13 (-1012) (-552 (-1071)) (-10 -8 (-15 -1947 ($ (-1071)))))) (T -428)) +((-1947 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-428))))) +((-3486 (($ $) 15 T ELT)) (-3484 (($ $) 24 T ELT)) (-3488 (($ $) 12 T ELT)) (-3489 (($ $) 10 T ELT)) (-3487 (($ $) 17 T ELT)) (-3485 (($ $) 22 T ELT))) +(((-429 |#1|) (-10 -7 (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-430)) (T -429)) +NIL +((-3486 (($ $) 11 T ELT)) (-3484 (($ $) 10 T ELT)) (-3488 (($ $) 9 T ELT)) (-3489 (($ $) 8 T ELT)) (-3487 (($ $) 7 T ELT)) (-3485 (($ $) 6 T ELT))) +(((-430) (-113)) (T -430)) +((-3486 (*1 *1 *1) (-4 *1 (-430))) (-3484 (*1 *1 *1) (-4 *1 (-430))) (-3488 (*1 *1 *1) (-4 *1 (-430))) (-3489 (*1 *1 *1) (-4 *1 (-430))) (-3487 (*1 *1 *1) (-4 *1 (-430))) (-3485 (*1 *1 *1) (-4 *1 (-430)))) +(-13 (-10 -8 (-15 -3485 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3484 ($ $)) (-15 -3486 ($ $)))) +((-3726 (((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)) 54 T ELT))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)))) (-311) (-1153 |#1|) (-13 (-311) (-120) (-661 |#1| |#2|)) (-1153 |#3|)) (T -431)) +((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-4 *7 (-13 (-311) (-120) (-661 *5 *6))) (-5 *2 (-345 *3)) (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1153 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1213 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3183 (((-85) $) 39 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1948 (((-85) $ $) 72 T ELT)) (-1597 (((-583 (-550 $)) $) 49 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1214 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3178 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-347 (-483)) $) 54 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 (-483))) (-630 $)) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) NIL T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2994 (((-1037 (-483) (-550 $)) $) 37 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (((-1083 $) (-1083 $) (-550 $)) 86 T ELT) (((-1083 $) (-1083 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1594 (((-1083 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-1177 $) $) NIL T ELT) (((-630 (-347 (-483))) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) NIL T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3752 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2993 (((-1037 (-483) (-550 $)) $) 20 T ELT)) (-3180 (($ $) NIL (|has| $ (-961)) ELT)) (-3966 (((-327) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-327)) $) 116 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-550 $))) 21 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2250 (((-85) (-86)) 92 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 22 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) 24 T ELT)) (-3943 (($ $ $) 44 T ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-483))) NIL T ELT) (($ $ (-483)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-432) (-13 (-253) (-27) (-950 (-483)) (-950 (-347 (-483))) (-580 (-483)) (-933) (-580 (-347 (-483))) (-120) (-553 (-142 (-327))) (-190) (-555 (-1037 (-483) (-550 $))) (-10 -8 (-15 -2994 ((-1037 (-483) (-550 $)) $)) (-15 -2993 ((-1037 (-483) (-550 $)) $)) (-15 -3836 ($ $)) (-15 -1948 ((-85) $ $)) (-15 -3127 ((-1083 $) (-1083 $) (-550 $))) (-15 -3127 ((-1083 $) (-1083 $) (-583 (-550 $)))) (-15 -3127 ($ $ (-550 $))) (-15 -3127 ($ $ (-583 (-550 $))))))) (T -432)) +((-2994 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) (-3836 (*1 *1 *1) (-5 *1 (-432))) (-1948 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-550 (-432))) (-5 *1 (-432)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-583 (-550 (-432)))) (-5 *1 (-432)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-432))) (-5 *1 (-432)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-432)))) (-5 *1 (-432))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 43 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 39 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 38 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 22 T ELT)) (-2196 (((-483) $) 18 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 40 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 16 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 20 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 42 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 14 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 25 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 12 (|has| $ (-6 -3989)) ELT))) +(((-433 |#1| |#2|) (-19 |#1|) (-1127) (-483)) (T -433)) +NIL +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1254 (($ $ (-483) (-433 |#1| |#3|)) NIL T ELT)) (-1253 (($ $ (-483) (-433 |#1| |#2|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 (((-433 |#1| |#3|) $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-433 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-434 |#1| |#2| |#3|) (-57 |#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) (-1127) (-483) (-483)) (T -434)) +NIL +((-1950 (((-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1949 (((-583 (-1083 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2073 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1949 ((-583 (-1083 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1950 ((-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2073 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-298) (-1153 |#1|) (-1153 |#2|)) (T -435)) +((-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-298)) (-5 *2 (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-435 *6 *7 *8)))) (-1950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-298)) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-435 *5 *6 *7)) (-5 *3 (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1153 *6)))) (-1949 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-298)) (-4 *5 (-1153 *3)) (-5 *2 (-583 (-1083 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1153 *5))))) +((-1956 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1951 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1953 (((-694) (-694) (-694)) 34 T ELT)) (-1955 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1954 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1952 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-483)) 28 T ELT)) (-3323 ((|#1| (-630 |#1|)) 18 T ELT))) +(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -3323 (|#1| (-630 |#1|))) (-15 -1951 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1952 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-483))) (-15 -1953 ((-694) (-694) (-694))) (-15 -1954 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1954 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1955 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))) (-1153 |#1|) (-350 |#1| |#2|)) (T -436)) +((-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1953 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1952 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-483)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-1951 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1153 *2)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 44 T ELT)) (-3316 (($ $ $) 41 T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) 43 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-1573 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) NIL T ELT)) (-3413 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2885 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) 39 T ELT)) (-2556 (($ $) NIL T ELT)) (-1297 (($ $ $) NIL T ELT)) (-3608 (($ (-694) (-85)) 27 T ELT)) (-1298 (($ $ $) NIL T ELT)) (-2196 (((-483) $) 8 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2604 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL T ELT)) (-1946 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-85) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2195 (($ $ (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 29 T ELT)) (-3794 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) 22 T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1943 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 30 T ELT)) (-3966 (((-472) $) NIL (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) NIL T ELT)) (-3796 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3940 (((-772) $) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) 37 T ELT)) (-2307 (($ $ $) 46 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 31 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 32 T ELT)) (-2308 (($ $ $) 45 T ELT)) (-3951 (((-694) $) 13 (|has| $ (-6 -3989)) ELT))) +(((-437 |#1|) (-96) (-483)) (T -437)) +NIL +((-1958 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|)) 35 T ELT)) (-1957 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22 T ELT)) (-1959 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1083 |#4|))) 46 T ELT)) (-1960 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1957 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -1957 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1958 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|))) (-15 -1959 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1083 |#4|)))) (-15 -1960 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1153 |#1|) (-1153 |#2|) (-961)) (T -438)) +((-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))) (-1959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1083 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *6)) (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1153 *6)))) (-1958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1153 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1153 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1961 (((-1183) $) 25 T ELT)) (-3794 (((-1071) $ (-1088)) 30 T ELT)) (-3611 (((-1183) $) 20 T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1071)) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 12 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 10 T ELT))) +(((-439) (-13 (-756) (-555 (-1071)) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))) (T -439)) +((-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-439)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))) +((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3733 ((|#1| |#4|) 10 T ELT)) (-3734 ((|#3| |#4|) 17 T ELT))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 (|#1| |#4|)) (-15 -3734 (|#3| |#4|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-494) (-904 |#1|) (-321 |#1|) (-321 |#2|)) (T -440)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-4 *2 (-321 *4)) (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-440 *2 *4 *5 *3)) (-4 *5 (-321 *2)) (-4 *3 (-321 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1971 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3183 (((-85) $) 178 T ELT)) (-1963 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1962 (((-1078 (-583 (-857 |#1|)) (-583 (-248 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1088))) ELT)) (-1970 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2406 (((-85) $) 177 T ELT)) (-1967 (($ $) 132 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1972 (((-85) |#4| $) 130 T ELT)) (-1973 (((-85) $ $) 82 T ELT)) (-1966 (($ (-583 |#4|)) 106 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1965 (($ (-583 |#4|)) 175 T ELT)) (-1964 (((-85) $) 176 T ELT)) (-2247 (($ $) 85 T ELT)) (-2691 (((-583 |#4|) $) 73 T ELT)) (-1969 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1974 (((-85) |#4| $) 89 T ELT)) (-3905 (((-483) $ (-583 |#3|)) 134 T ELT) (((-483) $) 135 T ELT)) (-3940 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1968 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3052 (((-85) $ $) 84 T ELT)) (-3833 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-441 |#1| |#2| |#3| |#4|) (-13 (-1012) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3833 ($ $ $)) (-15 -2406 ((-85) $)) (-15 -3183 ((-85) $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ $)) (-15 -1972 ((-85) |#4| $)) (-15 -1971 ((-85) $ (-583 |#3|))) (-15 -1971 ((-85) $)) (-15 -3233 ($ $ $)) (-15 -3233 ($ (-583 $))) (-15 -1970 ($ $ $)) (-15 -1970 ($ $ |#4|)) (-15 -2247 ($ $)) (-15 -1969 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1968 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3905 ((-483) $ (-583 |#3|))) (-15 -3905 ((-483) $)) (-15 -1967 ($ $)) (-15 -1966 ($ (-583 |#4|))) (-15 -1965 ($ (-583 |#4|))) (-15 -1964 ((-85) $)) (-15 -2691 ((-583 |#4|) $)) (-15 -3940 ($ (-583 |#4|))) (-15 -1963 ($ $ |#4|)) (-15 -1963 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1088))) (-15 -1962 ((-1078 (-583 (-857 |#1|)) (-583 (-248 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-311) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -441)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2406 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3183 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1971 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-583 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1970 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1970 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2247 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1969 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-441 *4 *5 *6 *7)))) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-441 *3 *4 *5 *6)))) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-483)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1967 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1964 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1963 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1963 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1088))) (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1078 (-583 (-857 *4)) (-583 (-248 (-857 *4))))) (-5 *1 (-441 *4 *5 *6 *7))))) +((-1975 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 178 T ELT)) (-1976 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 179 T ELT)) (-1977 (((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 129 T ELT)) (-3717 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) NIL T ELT)) (-1978 (((-583 (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 181 T ELT)) (-1979 (((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-583 (-773 |#1|))) 197 T ELT))) +(((-442 |#1| |#2|) (-10 -7 (-15 -1975 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1976 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -3717 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1977 ((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1978 ((-583 (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1979 ((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-583 (-773 |#1|))))) (-583 (-1088)) (-694)) (T -442)) +((-1979 (*1 *2 *2 *3) (-12 (-5 *2 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *1 (-442 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-583 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))) (-5 *1 (-442 *4 *5)) (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-441 (-347 (-483)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-347 (-483))))) (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-442 *3 *4)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) +((-3794 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-443 |#1|) (-113) (-72)) (T -443)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3052 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1980 (($) 6 T ELT)) (-3940 (((-772) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-444) (-13 (-1012) (-10 -8 (-15 -1980 ($))))) (T -444)) +((-1980 (*1 *1) (-5 *1 (-444)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 12 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 26 T ELT))) +(((-445 |#1| |#2|) (-13 (-21) (-447 |#1| |#2|)) (-21) (-759)) (T -445)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 17 T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 14 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) 44 T ELT)) (-2889 (($ |#1| |#2|) 41 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 13 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 40 T ELT))) +(((-446 |#1| |#2|) (-13 (-23) (-447 |#1| |#2|)) (-23) (-759)) (T -446)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 15 T ELT)) (-3953 (($ $) 16 T ELT)) (-2889 (($ |#1| |#2|) 19 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1981 ((|#2| $) 17 T ELT)) (-3169 ((|#1| $) 18 T ELT)) (-3237 (((-1071) $) 14 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3238 (((-1032) $) 13 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3940 (((-772) $) 12 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-447 |#1| |#2|) (-113) (-72) (-759)) (T -447)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2889 (*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-782 *4 *3)))))) +(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1012)) (IF (|has| |t#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -2889 ($ |t#1| |t#2|)) (-15 -3169 (|t#1| $)) (-15 -1981 (|t#2| $)) (-15 -3953 ($ $)) (-15 -3768 ((-583 (-782 |t#2| |t#1|)) $)))) +(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-13) . T) ((-1012) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 36 T ELT)) (-3953 (($ $) 33 T ELT)) (-2889 (($ |#1| |#2|) 30 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1981 ((|#2| $) 35 T ELT)) (-3169 ((|#1| $) 34 T ELT)) (-3237 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3238 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3940 (((-772) $) 28 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 21 T ELT))) +(((-448 |#1| |#2|) (-447 |#1| |#2|) (-72) (-759)) (T -448)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 23 T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-449 |#1| |#2|) (-13 (-716) (-447 |#1| |#2|)) (-716) (-759)) (T -449)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-2479 (($ $ $) 24 T ELT)) (-1309 (((-3 $ "failed") $ $) 20 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-450 |#1| |#2|) (-13 (-717) (-447 |#1| |#2|)) (-717) (-756)) (T -450)) +NIL +((-3762 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -3762 (|#1| |#1| |#2| |#3|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-452 |#2| |#3|) (-1012) (-1127)) (T -451)) +NIL +((-3762 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-452 |#1| |#2|) (-113) (-1012) (-1127)) (T -452)) +((-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-452 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1127)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-452 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127))))) +(-13 (-10 -8 (-15 -3762 ($ $ |t#1| |t#2|)) (-15 -3762 ($ $ (-583 |t#1|) (-583 |t#2|))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 17 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 19 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) 24 T ELT)) (-1619 ((|#2| $ (-483)) 22 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1618 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3671 ((|#2| |#1| $) 51 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 11 T CONST)) (-3052 (((-85) $ $) 30 T ELT)) (-3833 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-453 |#1| |#2| |#3|) (-273 |#1| |#2|) (-1012) (-104) |#2|) (T -453)) +NIL +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1982 (((-85) (-85)) 32 T ELT)) (-3782 ((|#1| $ (-483) |#1|) 42 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-2364 (($ $) 83 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1983 (($ $ (-483)) 19 T ELT)) (-1984 (((-694) $) 13 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 31 T ELT)) (-2196 (((-483) $) 29 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 28 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ $ $ (-483)) 75 T ELT) (($ |#1| $ (-483)) 59 T ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1985 (($ (-583 |#1|)) 43 T ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 62 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 21 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 55 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) 73 T ELT) (($ $ (-483)) 67 T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) 63 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 53 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 22 (|has| $ (-6 -3989)) ELT))) +(((-454 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1985 ($ (-583 |#1|))) (-15 -1984 ((-694) $)) (-15 -1983 ($ $ (-483))) (-15 -1982 ((-85) (-85))))) (-1127) (-483)) (T -454)) +((-1985 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-454 *3 *4)) (-14 *4 (-483)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1987 (((-1047) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1986 (((-1047) $) 14 T ELT)) (-3916 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-455) (-13 (-994) (-10 -8 (-15 -3916 ((-1047) $)) (-15 -1987 ((-1047) $)) (-15 -1986 ((-1047) $))))) (T -455)) +((-3916 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-516 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-516 |#1|) #1#) $) NIL T ELT)) (-3151 (((-516 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-516 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3127 (((-516 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-516 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1624 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1623 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-3 (-1083 (-516 |#1|)) #1#) $ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-516 |#1|))) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-516 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-516 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3219 (((-1177 (-516 |#1|)) $) NIL T ELT) (((-630 (-516 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-516 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT) (($ (-516 |#1|) $) NIL T ELT))) +(((-456 |#1| |#2|) (-279 (-516 |#1|)) (-830) (-830)) (T -456)) +NIL +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 51 T ELT)) (-1254 (($ $ (-483) |#4|) NIL T ELT)) (-1253 (($ $ (-483) |#5|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 ((|#4| $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 50 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 45 T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) 33 T ELT)) (-3608 (($ (-694) (-694) |#1|) 30 T ELT)) (-3109 (((-694) $) 38 T ELT)) (-3114 (((-483) $) 31 T ELT)) (-3112 (((-483) $) 32 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 37 T ELT)) (-3111 (((-483) $) 39 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) 55 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 16 T ELT)) (-3559 (($) 18 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 48 T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 ((|#5| $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-457 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1127) (-483) (-483) (-321 |#1|) (-321 |#1|)) (T -457)) +NIL +((-3105 ((|#4| |#4|) 38 T ELT)) (-3104 (((-694) |#4|) 45 T ELT)) (-3103 (((-694) |#4|) 46 T ELT)) (-3102 (((-583 |#3|) |#4|) 57 (|has| |#3| (-6 -3990)) ELT)) (-3584 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1988 ((|#4| |#4|) 61 T ELT)) (-3322 ((|#1| |#4|) 60 T ELT))) +(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3105 (|#4| |#4|)) (-15 -3104 ((-694) |#4|)) (-15 -3103 ((-694) |#4|)) (IF (|has| |#3| (-6 -3990)) (-15 -3102 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3322 (|#1| |#4|)) (-15 -1988 (|#4| |#4|)) (-15 -3584 ((-3 |#4| "failed") |#4|))) (-311) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -458)) +((-3584 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1988 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) (-5 *1 (-458 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3102 (*1 *2 *3) (-12 (|has| *6 (-6 -3990)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-583 *6)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-3105 ((|#8| |#4|) 20 T ELT)) (-3102 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -3990)) ELT)) (-3584 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-459 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3105 (|#8| |#4|)) (-15 -3584 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3990)) (-15 -3102 ((-583 |#3|) |#4|)) |%noBranch|)) (-494) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-321 |#5|) (-321 |#5|) (-627 |#5| |#6| |#7|)) (T -459)) +((-3102 (*1 *2 *3) (-12 (|has| *9 (-6 -3990)) (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-583 *6)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3584 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) NIL T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-536 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) 21 T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-536 |#1| |#3|)) NIL T ELT)) (-1253 (($ $ (-483) (-536 |#1| |#2|)) NIL T ELT)) (-3327 (($ (-694) |#1|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 30 (|has| |#1| (-257)) ELT)) (-3107 (((-536 |#1| |#3|) $ (-483)) NIL T ELT)) (-3104 (((-694) $) 33 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) 35 (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-536 |#1| |#2|)) $) 38 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#1| $) 28 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 10 T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 13 T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) 42 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) 26 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-536 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (($ (-536 |#1| |#2|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-536 |#1| |#2|) $ (-536 |#1| |#2|)) NIL T ELT) (((-536 |#1| |#3|) (-536 |#1| |#3|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-460 |#1| |#2| |#3|) (-627 |#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) (-961) (-483) (-483)) (T -460)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1989 (((-583 (-1128)) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (($ (-583 (-1128))) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-461) (-13 (-994) (-10 -8 (-15 -3940 ($ (-583 (-1128)))) (-15 -1989 ((-583 (-1128)) $))))) (T -461)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1990 (((-1047) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3444 (((-444) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-462) (-13 (-994) (-10 -8 (-15 -3444 ((-444) $)) (-15 -1990 ((-1047) $))))) (T -462)) +((-3444 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-462)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462))))) +((-1996 (((-632 (-1136)) $) 15 T ELT)) (-1992 (((-632 (-1134)) $) 38 T ELT)) (-1994 (((-632 (-1133)) $) 29 T ELT)) (-1997 (((-632 (-487)) $) 12 T ELT)) (-1993 (((-632 (-485)) $) 42 T ELT)) (-1995 (((-632 (-484)) $) 33 T ELT)) (-1991 (((-694) $ (-102)) 54 T ELT))) +(((-463 |#1|) (-10 -7 (-15 -1991 ((-694) |#1| (-102))) (-15 -1992 ((-632 (-1134)) |#1|)) (-15 -1993 ((-632 (-485)) |#1|)) (-15 -1994 ((-632 (-1133)) |#1|)) (-15 -1995 ((-632 (-484)) |#1|)) (-15 -1996 ((-632 (-1136)) |#1|)) (-15 -1997 ((-632 (-487)) |#1|))) (-464)) (T -463)) +NIL +((-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-1697 (($ $) 6 T ELT))) +(((-464) (-113)) (T -464)) +((-1998 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-101))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-487))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1136))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-484))))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1133))))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-485))))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1134))))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-694))))) +(-13 (-147) (-10 -8 (-15 -1998 ((-632 (-101)) $)) (-15 -1997 ((-632 (-487)) $)) (-15 -1996 ((-632 (-1136)) $)) (-15 -1995 ((-632 (-484)) $)) (-15 -1994 ((-632 (-1133)) $)) (-15 -1993 ((-632 (-485)) $)) (-15 -1992 ((-632 (-1134)) $)) (-15 -1991 ((-694) $ (-102))))) +(((-147) . T)) +((-2001 (((-1083 |#1|) (-694)) 114 T ELT)) (-3324 (((-1177 |#1|) (-1177 |#1|) (-830)) 107 T ELT)) (-1999 (((-1183) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) |#1|) 122 T ELT)) (-2003 (((-1177 |#1|) (-1177 |#1|) (-694)) 53 T ELT)) (-2990 (((-1177 |#1|) (-830)) 109 T ELT)) (-2005 (((-1177 |#1|) (-1177 |#1|) (-483)) 30 T ELT)) (-2000 (((-1083 |#1|) (-1177 |#1|)) 115 T ELT)) (-2009 (((-1177 |#1|) (-830)) 136 T ELT)) (-2007 (((-85) (-1177 |#1|)) 119 T ELT)) (-3127 (((-1177 |#1|) (-1177 |#1|) (-830)) 99 T ELT)) (-2010 (((-1083 |#1|) (-1177 |#1|)) 130 T ELT)) (-2006 (((-830) (-1177 |#1|)) 95 T ELT)) (-2480 (((-1177 |#1|) (-1177 |#1|)) 38 T ELT)) (-2396 (((-1177 |#1|) (-830) (-830)) 139 T ELT)) (-2004 (((-1177 |#1|) (-1177 |#1|) (-1032) (-1032)) 29 T ELT)) (-2002 (((-1177 |#1|) (-1177 |#1|) (-694) (-1032)) 54 T ELT)) (-2008 (((-1177 (-1177 |#1|)) (-830)) 135 T ELT)) (-3943 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 120 T ELT)) (** (((-1177 |#1|) (-1177 |#1|) (-483)) 67 T ELT)) (* (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 31 T ELT))) +(((-465 |#1|) (-10 -7 (-15 -1999 ((-1183) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) |#1|)) (-15 -2990 ((-1177 |#1|) (-830))) (-15 -2396 ((-1177 |#1|) (-830) (-830))) (-15 -2000 ((-1083 |#1|) (-1177 |#1|))) (-15 -2001 ((-1083 |#1|) (-694))) (-15 -2002 ((-1177 |#1|) (-1177 |#1|) (-694) (-1032))) (-15 -2003 ((-1177 |#1|) (-1177 |#1|) (-694))) (-15 -2004 ((-1177 |#1|) (-1177 |#1|) (-1032) (-1032))) (-15 -2005 ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3943 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3127 ((-1177 |#1|) (-1177 |#1|) (-830))) (-15 -3324 ((-1177 |#1|) (-1177 |#1|) (-830))) (-15 -2480 ((-1177 |#1|) (-1177 |#1|))) (-15 -2006 ((-830) (-1177 |#1|))) (-15 -2007 ((-85) (-1177 |#1|))) (-15 -2008 ((-1177 (-1177 |#1|)) (-830))) (-15 -2009 ((-1177 |#1|) (-830))) (-15 -2010 ((-1083 |#1|) (-1177 |#1|)))) (-298)) (T -465)) +((-2010 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-465 *4)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-830)) (-5 *1 (-465 *4)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2005 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2004 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2002 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1177 *5)) (-5 *3 (-694)) (-5 *4 (-1032)) (-4 *5 (-298)) (-5 *1 (-465 *5)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2396 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-1999 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-1183)) (-5 *1 (-465 *4))))) +((-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) NIL T ELT)) (-1998 (((-632 (-101)) $) 26 T ELT)) (-2011 (((-1032) $ (-1032)) 31 T ELT)) (-3413 (((-1032) $) 30 T ELT)) (-2554 (((-85) $) 20 T ELT)) (-2013 (($ (-335)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-2012 (((-85) $) 27 T ELT)) (-3940 (((-772) $) 34 T ELT)) (-1697 (($ $) 28 T ELT))) +(((-466) (-13 (-464) (-552 (-772)) (-10 -8 (-15 -2013 ($ (-335))) (-15 -2013 ($ (-1071))) (-15 -2012 ((-85) $)) (-15 -2554 ((-85) $)) (-15 -3413 ((-1032) $)) (-15 -2011 ((-1032) $ (-1032)))))) (T -466)) +((-2013 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-466)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))) (-2011 (*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466))))) +((-2015 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2014 (((-1 |#1| |#1|)) 10 T ELT))) +(((-467 |#1|) (-10 -7 (-15 -2014 ((-1 |#1| |#1|))) (-15 -2015 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -467)) +((-2015 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25))))) (-2014 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#1| (-694))) $) NIL T ELT)) (-2479 (($ $ $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ (-694) |#1|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1981 ((|#1| $) NIL T ELT)) (-3169 (((-694) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-468 |#1|) (-13 (-717) (-447 (-694) |#1|)) (-756)) (T -468)) +NIL +((-2017 (((-583 |#2|) (-1083 |#1|) |#3|) 98 T ELT)) (-2018 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-345 (-1083 |#1|)) (-1083 |#1|))) 114 T ELT)) (-2016 (((-1083 |#1|) (-630 |#1|)) 110 T ELT))) +(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-1083 |#1|) (-630 |#1|))) (-15 -2017 ((-583 |#2|) (-1083 |#1|) |#3|)) (-15 -2018 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-345 (-1083 |#1|)) (-1083 |#1|))))) (-311) (-311) (-13 (-311) (-755))) (T -469)) +((-2018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-345 (-1083 *6)) (-1083 *6))) (-4 *6 (-311)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-311)) (-5 *2 (-583 *6)) (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *2 (-1083 *4)) (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-755)))))) +((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) 39 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 40 T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) 35 T ELT)) (-1998 (((-632 (-101)) $) 37 T ELT)) (-2435 (((-85) $) 27 T ELT)) (-2436 (((-632 $) (-514) (-865)) 18 T ELT) (((-632 $) (-428) (-865)) 24 T ELT)) (-3940 (((-772) $) 48 T ELT)) (-1697 (($ $) 42 T ELT))) +(((-470) (-13 (-691 (-514)) (-552 (-772)) (-10 -8 (-15 -2436 ((-632 $) (-428) (-865)))))) (T -470)) +((-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-428)) (-5 *4 (-865)) (-5 *2 (-632 (-470))) (-5 *1 (-470))))) +((-2523 (((-750 (-483))) 12 T ELT)) (-2522 (((-750 (-483))) 14 T ELT)) (-2510 (((-743 (-483))) 9 T ELT))) +(((-471) (-10 -7 (-15 -2510 ((-743 (-483)))) (-15 -2523 ((-750 (-483)))) (-15 -2522 ((-750 (-483)))))) (T -471)) +((-2522 (*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) (-2523 (*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) (-2510 (*1 *2) (-12 (-5 *2 (-743 (-483))) (-5 *1 (-471))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2022 (((-1071) $) 55 T ELT)) (-3255 (((-85) $) 51 T ELT)) (-3251 (((-1088) $) 52 T ELT)) (-3256 (((-85) $) 49 T ELT)) (-3529 (((-1071) $) 50 T ELT)) (-2021 (($ (-1071)) 56 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2024 (($ $ (-583 (-1088))) 21 T ELT)) (-2027 (((-51) $) 23 T ELT)) (-3254 (((-85) $) NIL T ELT)) (-3250 (((-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2379 (($ $ (-583 (-1088)) (-1088)) 73 T ELT)) (-3253 (((-85) $) NIL T ELT)) (-3249 (((-179) $) NIL T ELT)) (-2023 (($ $) 44 T ELT)) (-3248 (((-772) $) NIL T ELT)) (-3261 (((-85) $ $) NIL T ELT)) (-3794 (($ $ (-483)) NIL T ELT) (($ $ (-583 (-483))) NIL T ELT)) (-3252 (((-583 $) $) 30 T ELT)) (-2020 (((-1088) (-583 $)) 57 T ELT)) (-3966 (($ (-1071)) NIL T ELT) (($ (-1088)) 19 T ELT) (($ (-483)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1014) $) 12 T ELT) (($ (-1014)) 13 T ELT)) (-2019 (((-1088) (-1088) (-583 $)) 60 T ELT)) (-3940 (((-772) $) 54 T ELT)) (-3246 (($ $) 59 T ELT)) (-3247 (($ $) 58 T ELT)) (-2025 (($ $ (-583 $)) 66 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) 29 T ELT)) (-2656 (($) 9 T CONST)) (-2662 (($) 11 T CONST)) (-3052 (((-85) $ $) 74 T ELT)) (-3943 (($ $ $) 82 T ELT)) (-3833 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-483)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3951 (((-483) $) NIL T ELT))) +(((-472) (-13 (-1015 (-1071) (-1088) (-483) (-179) (-772)) (-553 (-1014)) (-10 -8 (-15 -2027 ((-51) $)) (-15 -3966 ($ (-1014))) (-15 -2025 ($ $ (-583 $))) (-15 -2379 ($ $ (-583 (-1088)) (-1088))) (-15 -2024 ($ $ (-583 (-1088)))) (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-483))) (-15 -2656 ($) -3946) (-15 -2662 ($) -3946) (-15 -2023 ($ $)) (-15 -2022 ((-1071) $)) (-15 -2021 ($ (-1071))) (-15 -2020 ((-1088) (-583 $))) (-15 -2019 ((-1088) (-1088) (-583 $)))))) (T -472)) +((-2027 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-472))) (-5 *1 (-472)))) (-2379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-472)))) (-3833 (*1 *1 *1 *1) (-5 *1 (-472))) (* (*1 *1 *1 *1) (-5 *1 (-472))) (-3943 (*1 *1 *1 *1) (-5 *1 (-472))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-472)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472)))) (-2656 (*1 *1) (-5 *1 (-472))) (-2662 (*1 *1) (-5 *1 (-472))) (-2023 (*1 *1 *1) (-5 *1 (-472))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-583 (-472))) (-5 *2 (-1088)) (-5 *1 (-472)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 (-472))) (-5 *1 (-472))))) +((-2026 (((-472) (-1088)) 15 T ELT)) (-2027 ((|#1| (-472)) 20 T ELT))) +(((-473 |#1|) (-10 -7 (-15 -2026 ((-472) (-1088))) (-15 -2027 (|#1| (-472)))) (-1127)) (T -473)) +((-2027 (*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127))))) +((-3447 ((|#2| |#2|) 17 T ELT)) (-3445 ((|#2| |#2|) 13 T ELT)) (-3448 ((|#2| |#2| (-483) (-483)) 20 T ELT)) (-3446 ((|#2| |#2|) 15 T ELT))) +(((-474 |#1| |#2|) (-10 -7 (-15 -3445 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2| (-483) (-483)))) (-13 (-494) (-120)) (-1170 |#1|)) (T -474)) +((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2)) (-4 *2 (-1170 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3))))) +((-2030 (((-583 (-248 (-857 |#2|))) (-583 |#2|) (-583 (-1088))) 32 T ELT)) (-2028 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1083 |#1|) |#3|) 53 T ELT)) (-2029 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)) |#3|) 106 T ELT))) +(((-475 |#1| |#2| |#3|) (-10 -7 (-15 -2028 ((-583 |#2|) (-1083 |#1|) |#3|)) (-15 -2028 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2029 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)) |#3|)) (-15 -2030 ((-583 (-248 (-857 |#2|))) (-583 |#2|) (-583 (-1088))))) (-389) (-311) (-13 (-311) (-755))) (T -475)) +((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1088))) (-4 *6 (-311)) (-5 *2 (-583 (-248 (-857 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-13 (-311) (-755))))) (-2029 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-311)) (-4 *5 (-13 (-311) (-755))))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755)))))) +((-2033 ((|#2| |#2| |#1|) 17 T ELT)) (-2031 ((|#2| (-583 |#2|)) 30 T ELT)) (-2032 ((|#2| (-583 |#2|)) 51 T ELT))) +(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2031 (|#2| (-583 |#2|))) (-15 -2032 (|#2| (-583 |#2|))) (-15 -2033 (|#2| |#2| |#1|))) (-257) (-1153 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -476)) +((-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) +((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|) (-1 (-345 (-1083 |#3|)) (-1083 |#3|))) 90 T ELT) (((-345 |#4|) |#4| (-1 (-345 (-1083 |#3|)) (-1083 |#3|))) 213 T ELT))) +(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4| (-1 (-345 (-1083 |#3|)) (-1083 |#3|)))) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|) (-1 (-345 (-1083 |#3|)) (-1083 |#3|))))) (-756) (-717) (-13 (-257) (-120)) (-861 |#3| |#2| |#1|)) (T -477)) +((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-477 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5))))) +((-3447 ((|#4| |#4|) 74 T ELT)) (-3445 ((|#4| |#4|) 70 T ELT)) (-3448 ((|#4| |#4| (-483) (-483)) 76 T ELT)) (-3446 ((|#4| |#4|) 72 T ELT))) +(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3446 (|#4| |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -3448 (|#4| |#4| (-483) (-483)))) (-13 (-311) (-317) (-553 (-483))) (-1153 |#1|) (-661 |#1| |#2|) (-1170 |#3|)) (T -478)) +((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-4 *5 (-1153 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5))))) +((-3447 ((|#2| |#2|) 27 T ELT)) (-3445 ((|#2| |#2|) 23 T ELT)) (-3448 ((|#2| |#2| (-483) (-483)) 29 T ELT)) (-3446 ((|#2| |#2|) 25 T ELT))) +(((-479 |#1| |#2|) (-10 -7 (-15 -3445 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2| (-483) (-483)))) (-13 (-311) (-317) (-553 (-483))) (-1170 |#1|)) (T -479)) +((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3))))) +((-2034 (((-3 (-483) #1="failed") |#2| |#1| (-1 (-3 (-483) #1#) |#1|)) 18 T ELT) (((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|)) 14 T ELT) (((-3 (-483) #1#) |#2| (-483) (-1 (-3 (-483) #1#) |#1|)) 30 T ELT))) +(((-480 |#1| |#2|) (-10 -7 (-15 -2034 ((-3 (-483) #1="failed") |#2| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2034 ((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2034 ((-3 (-483) #1#) |#2| |#1| (-1 (-3 (-483) #1#) |#1|)))) (-961) (-1153 |#1|)) (T -480)) +((-2034 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2034 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-483) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5))))) +((-2043 (($ $ $) 87 T ELT)) (-3965 (((-345 $) $) 50 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 62 T ELT)) (-3151 (((-483) $) 40 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 80 T ELT)) (-3019 (((-85) $) 24 T ELT)) (-3018 (((-347 (-483)) $) 78 T ELT)) (-3717 (((-85) $) 53 T ELT)) (-2036 (($ $ $ $) 94 T ELT)) (-1366 (($ $ $) 60 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 75 T ELT)) (-3439 (((-632 $) $) 70 T ELT)) (-2040 (($ $) 22 T ELT)) (-2035 (($ $ $) 92 T ELT)) (-3440 (($) 63 T CONST)) (-1364 (($ $) 56 T ELT)) (-3726 (((-345 $) $) 48 T ELT)) (-2670 (((-85) $) 15 T ELT)) (-1604 (((-694) $) 30 T ELT)) (-3752 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3394 (($ $) 16 T ELT)) (-3966 (((-483) $) NIL T ELT) (((-472) $) 39 T ELT) (((-800 (-483)) $) 43 T ELT) (((-327) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3121 (((-694)) 9 T CONST)) (-2045 (((-85) $ $) 19 T ELT)) (-3097 (($ $ $) 58 T ELT))) +(((-481 |#1|) (-10 -7 (-15 -2035 (|#1| |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3394 (|#1| |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -2043 (|#1| |#1| |#1|)) (-15 -2045 ((-85) |#1| |#1|)) (-15 -2670 ((-85) |#1|)) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3966 ((-483) |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3717 ((-85) |#1|)) (-15 -3121 ((-694)) -3946)) (-482)) (T -481)) +((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-481 *3)) (-4 *3 (-482))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-2043 (($ $ $) 100 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2038 (($ $ $ $) 89 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-1605 (((-85) $ $) 143 T ELT)) (-3617 (((-483) $) 132 T ELT)) (-2437 (($ $ $) 103 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) "failed") $) 124 T ELT)) (-3151 (((-483) $) 125 T ELT)) (-2560 (($ $ $) 147 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 122 T ELT) (((-630 (-483)) (-630 $)) 121 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 97 T ELT)) (-3019 (((-85) $) 99 T ELT)) (-3018 (((-347 (-483)) $) 98 T ELT)) (-2990 (($) 96 T ELT) (($ $) 95 T ELT)) (-2559 (($ $ $) 146 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 141 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2036 (($ $ $ $) 87 T ELT)) (-2044 (($ $ $) 101 T ELT)) (-3181 (((-85) $) 134 T ELT)) (-1366 (($ $ $) 112 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 115 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) 107 T ELT)) (-3439 (((-632 $) $) 109 T ELT)) (-3182 (((-85) $) 133 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 150 T ELT)) (-2037 (($ $ $ $) 88 T ELT)) (-2527 (($ $ $) 140 T ELT)) (-2853 (($ $ $) 139 T ELT)) (-2040 (($ $) 91 T ELT)) (-3827 (($ $) 104 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 120 T ELT) (((-630 (-483)) (-1177 $)) 119 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2035 (($ $ $) 86 T ELT)) (-3440 (($) 108 T CONST)) (-2042 (($ $) 93 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1364 (($ $) 113 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 149 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 148 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 142 T ELT)) (-2670 (((-85) $) 106 T ELT)) (-1604 (((-694) $) 144 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 145 T ELT)) (-3752 (($ $) 130 T ELT) (($ $ (-694)) 128 T ELT)) (-2041 (($ $) 92 T ELT)) (-3394 (($ $) 94 T ELT)) (-3966 (((-483) $) 126 T ELT) (((-472) $) 117 T ELT) (((-800 (-483)) $) 116 T ELT) (((-327) $) 111 T ELT) (((-179) $) 110 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-483)) 123 T ELT)) (-3121 (((-694)) 38 T CONST)) (-2045 (((-85) $ $) 102 T ELT)) (-3097 (($ $ $) 114 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2690 (($) 105 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2039 (($ $ $ $) 90 T ELT)) (-3377 (($ $) 131 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $) 129 T ELT) (($ $ (-694)) 127 T ELT)) (-2562 (((-85) $ $) 138 T ELT)) (-2563 (((-85) $ $) 136 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 137 T ELT)) (-2681 (((-85) $ $) 135 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-483) $) 118 T ELT))) +(((-482) (-113)) (T -482)) +((-2669 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2690 (*1 *1) (-4 *1 (-482))) (-3827 (*1 *1 *1) (-4 *1 (-482))) (-2437 (*1 *1 *1 *1) (-4 *1 (-482))) (-2045 (*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2044 (*1 *1 *1 *1) (-4 *1 (-482))) (-2043 (*1 *1 *1 *1) (-4 *1 (-482))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) (-2990 (*1 *1) (-4 *1 (-482))) (-2990 (*1 *1 *1) (-4 *1 (-482))) (-3394 (*1 *1 *1) (-4 *1 (-482))) (-2042 (*1 *1 *1) (-4 *1 (-482))) (-2041 (*1 *1 *1) (-4 *1 (-482))) (-2040 (*1 *1 *1) (-4 *1 (-482))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2038 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2037 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2036 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2035 (*1 *1 *1 *1) (-4 *1 (-482)))) +(-13 (-1132) (-257) (-740) (-190) (-553 (-483)) (-950 (-483)) (-580 (-483)) (-553 (-472)) (-553 (-800 (-483))) (-796 (-483)) (-116) (-933) (-120) (-1064) (-10 -8 (-15 -2669 ((-85) $)) (-15 -2670 ((-85) $)) (-6 -3988) (-15 -2690 ($)) (-15 -3827 ($ $)) (-15 -2437 ($ $ $)) (-15 -2045 ((-85) $ $)) (-15 -2044 ($ $ $)) (-15 -2043 ($ $ $)) (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $)) (-15 -2990 ($)) (-15 -2990 ($ $)) (-15 -3394 ($ $)) (-15 -2042 ($ $)) (-15 -2041 ($ $)) (-15 -2040 ($ $)) (-15 -2039 ($ $ $ $)) (-15 -2038 ($ $ $ $)) (-15 -2037 ($ $ $ $)) (-15 -2036 ($ $ $ $)) (-15 -2035 ($ $ $)) (-6 -3987))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-472)) . T) ((-553 (-483)) . T) ((-553 (-800 (-483))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-483)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-483)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-483)) . T) ((-832) . T) ((-933) . T) ((-950 (-483)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 8 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 77 T ELT)) (-2059 (($ $) 78 T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) 32 T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) 71 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) 33 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 54 T ELT) (((-630 (-483)) (-630 $)) 50 T ELT)) (-3461 (((-3 $ #1#) $) 74 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) 56 T ELT) (($ $) 57 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) 47 T ELT)) (-3181 (((-85) $) 22 T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2406 (((-85) $) 9 T ELT)) (-2669 (((-85) $) 64 T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) 21 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) 34 T ELT)) (-2527 (($ $ $) 67 T ELT)) (-2853 (($ $ $) 66 T ELT)) (-2040 (($ $) NIL T ELT)) (-3827 (($ $) 29 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) 46 T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2042 (($ $) 15 T ELT)) (-3238 (((-1032) $) 19 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 109 T ELT)) (-3139 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) 95 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 93 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) 65 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) 17 T ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-483) $) 28 T ELT) (((-472) $) 43 T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) 37 T ELT) (((-179) $) 40 T ELT)) (-3940 (((-772) $) 26 T ELT) (($ (-483)) 27 T ELT) (($ $) NIL T ELT) (($ (-483)) 27 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) 12 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2039 (($ $ $ $) 31 T ELT)) (-3377 (($ $) 55 T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 11 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 30 T ELT)) (-2563 (((-85) $ $) 58 T ELT)) (-3052 (((-85) $ $) 7 T ELT)) (-2680 (((-85) $ $) 59 T ELT)) (-2681 (((-85) $ $) 20 T ELT)) (-3831 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3833 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-483) $) 61 T ELT))) +(((-483) (-13 (-482) (-10 -7 (-6 -3976) (-6 -3981) (-6 -3977)))) (T -483)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-484) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -484)) +((-3718 (*1 *1) (-5 *1 (-484)))) +((-483) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-485) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -485)) +((-3718 (*1 *1) (-5 *1 (-485)))) +((-483) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-486) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -486)) +((-3718 (*1 *1) (-5 *1 (-486)))) +((-483) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-487) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -487)) +((-3718 (*1 *1) (-5 *1 (-487)))) +((-483) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-488 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989)))) (T -488)) +NIL +((-2046 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 50 T ELT))) +(((-489 |#1| |#2|) (-10 -7 (-15 -2046 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-494) (-13 (-27) (-361 |#1|))) (T -489)) +((-2046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3)) (-5 *1 (-489 *6 *3))))) +((-2048 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2049 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2047 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-490 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2047 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2048 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2049 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-494) (-950 (-483))) (-13 (-27) (-361 |#1|)) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -490)) +((-2049 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *7 (-1153 (-347 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2)) (-4 *2 (-290 *5 *6 *7)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) +((-2052 (((-85) (-483) (-483)) 12 T ELT)) (-2050 (((-483) (-483)) 7 T ELT)) (-2051 (((-483) (-483) (-483)) 10 T ELT))) +(((-491) (-10 -7 (-15 -2050 ((-483) (-483))) (-15 -2051 ((-483) (-483) (-483))) (-15 -2052 ((-85) (-483) (-483))))) (T -491)) +((-2052 (*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491)))) (-2051 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2600 ((|#1| $) 75 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3486 (($ $) 105 T ELT)) (-3633 (($ $) 88 T ELT)) (-2479 ((|#1| $) 76 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 87 T ELT)) (-3484 (($ $) 104 T ELT)) (-3632 (($ $) 89 T ELT)) (-3488 (($ $) 103 T ELT)) (-3631 (($ $) 90 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) "failed") $) 83 T ELT)) (-3151 (((-483) $) 84 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2055 (($ |#1| |#1|) 80 T ELT)) (-3181 (((-85) $) 74 T ELT)) (-3621 (($) 115 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 86 T ELT)) (-3182 (((-85) $) 73 T ELT)) (-2527 (($ $ $) 116 T ELT)) (-2853 (($ $ $) 117 T ELT)) (-3936 (($ $) 112 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2056 (($ |#1| |#1|) 81 T ELT) (($ |#1|) 79 T ELT) (($ (-347 (-483))) 78 T ELT)) (-2054 ((|#1| $) 77 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3937 (($ $) 113 T ELT)) (-3489 (($ $) 102 T ELT)) (-3630 (($ $) 91 T ELT)) (-3487 (($ $) 101 T ELT)) (-3629 (($ $) 92 T ELT)) (-3485 (($ $) 100 T ELT)) (-3628 (($ $) 93 T ELT)) (-2053 (((-85) $ |#1|) 72 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-483)) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 111 T ELT)) (-3480 (($ $) 99 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3490 (($ $) 110 T ELT)) (-3478 (($ $) 98 T ELT)) (-3494 (($ $) 109 T ELT)) (-3482 (($ $) 97 T ELT)) (-3495 (($ $) 108 T ELT)) (-3483 (($ $) 96 T ELT)) (-3493 (($ $) 107 T ELT)) (-3481 (($ $) 95 T ELT)) (-3491 (($ $) 106 T ELT)) (-3479 (($ $) 94 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 118 T ELT)) (-2563 (((-85) $ $) 120 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 119 T ELT)) (-2681 (((-85) $ $) 121 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ $) 114 T ELT) (($ $ (-347 (-483))) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-492 |#1|) (-113) (-13 (-344) (-1113))) (T -492)) +((-2056 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2055 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2056 (*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) (-2053 (*1 *2 *1 *3) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85))))) +(-13 (-389) (-756) (-1113) (-915) (-950 (-483)) (-10 -8 (-6 -3764) (-15 -2056 ($ |t#1| |t#1|)) (-15 -2055 ($ |t#1| |t#1|)) (-15 -2056 ($ |t#1|)) (-15 -2056 ($ (-347 (-483)))) (-15 -2054 (|t#1| $)) (-15 -2479 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -3181 ((-85) $)) (-15 -3182 ((-85) $)) (-15 -2053 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-245) . T) ((-389) . T) ((-430) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-483)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) . T) ((-1116) . T) ((-1127) . T)) +((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 9 T ELT)) (-2059 (($ $) 11 T ELT)) (-2057 (((-85) $) 20 T ELT)) (-3461 (((-3 $ "failed") $) 16 T ELT)) (-2058 (((-85) $ $) 22 T ELT))) +(((-493 |#1|) (-10 -7 (-15 -2057 ((-85) |#1|)) (-15 -2058 ((-85) |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1|))) (-494)) (T -493)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-494) (-113)) (T -494)) +((-3460 (*1 *1 *1 *1) (|partial| -4 *1 (-494))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1769 *1) (|:| -3976 *1) (|:| |associate| *1))) (-4 *1 (-494)))) (-2059 (*1 *1 *1) (-4 *1 (-494))) (-2058 (*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-245) (-10 -8 (-15 -3460 ((-3 $ "failed") $ $)) (-15 -2060 ((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $)) (-15 -2059 ($ $)) (-15 -2058 ((-85) $ $)) (-15 -2057 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2062 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1088) (-583 |#2|)) 38 T ELT)) (-2064 (((-518 |#2|) |#2| (-1088)) 63 T ELT)) (-2063 (((-3 |#2| #1#) |#2| (-1088)) 156 T ELT)) (-2065 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2061 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) |#2|) 41 T ELT))) +(((-495 |#1| |#2|) (-10 -7 (-15 -2061 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1088) |#2|)) (-15 -2062 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1088) (-583 |#2|))) (-15 -2063 ((-3 |#2| #1#) |#2| (-1088))) (-15 -2064 ((-518 |#2|) |#2| (-1088))) (-15 -2065 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -495)) +((-2065 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2063 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-495 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-2062 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-495 *6 *3)))) (-2061 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) +((-3965 (((-345 |#1|) |#1|) 17 T ELT)) (-3726 (((-345 |#1|) |#1|) 32 T ELT)) (-2067 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2066 (((-345 |#1|) |#1|) 59 T ELT))) +(((-496 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -2066 ((-345 |#1|) |#1|)) (-15 -2067 ((-3 |#1| "failed") |#1|))) (-482)) (T -496)) +((-2067 (*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482)))) (-2066 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))) +((-3079 (((-1083 (-347 (-1083 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1083 |#2|)) 35 T ELT)) (-2070 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1083 |#2|)) 115 T ELT)) (-2068 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 85 T ELT) (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|)) 55 T ELT)) (-2069 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-347 (-1083 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1083 |#2|)) 114 T ELT)) (-2071 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|)) 116 T ELT)) (-2072 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3080 ((|#2| (-1083 (-347 (-1083 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3075 (((-1083 (-347 (-1083 |#2|))) (-1083 |#2|) (-550 |#2|)) 34 T ELT))) +(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -2068 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|))) (-15 -2068 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2069 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2069 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2070 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1083 |#2|))) (-15 -2070 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2071 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|))) (-15 -2071 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -3079 ((-1083 (-347 (-1083 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1083 |#2|))) (-15 -3080 (|#2| (-1083 (-347 (-1083 |#2|))) (-550 |#2|) |#2|)) (-15 -3075 ((-1083 (-347 (-1083 |#2|))) (-1083 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2072 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|))) (-15 -2072 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-120) (-580 (-483))) (-13 (-361 |#1|) (-27) (-1113)) (-1012)) (T -497)) +((-2072 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-347 (-1083 *4))) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-2072 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-1083 (-347 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1012)))) (-3080 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-347 (-1083 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012)))) (-3079 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-1083 (-347 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1012)))) (-2071 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1088))) (-5 *5 (-347 (-1083 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2071 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1088))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2070 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2069 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2069 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2068 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2068 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012))))) +((-2082 (((-483) (-483) (-694)) 87 T ELT)) (-2081 (((-483) (-483)) 85 T ELT)) (-2080 (((-483) (-483)) 82 T ELT)) (-2079 (((-483) (-483)) 89 T ELT)) (-2801 (((-483) (-483) (-483)) 67 T ELT)) (-2078 (((-483) (-483) (-483)) 64 T ELT)) (-2077 (((-347 (-483)) (-483)) 29 T ELT)) (-2076 (((-483) (-483)) 34 T ELT)) (-2075 (((-483) (-483)) 76 T ELT)) (-2798 (((-483) (-483)) 47 T ELT)) (-2074 (((-583 (-483)) (-483)) 81 T ELT)) (-2073 (((-483) (-483) (-483) (-483) (-483)) 60 T ELT)) (-2794 (((-347 (-483)) (-483)) 56 T ELT))) +(((-498) (-10 -7 (-15 -2794 ((-347 (-483)) (-483))) (-15 -2073 ((-483) (-483) (-483) (-483) (-483))) (-15 -2074 ((-583 (-483)) (-483))) (-15 -2798 ((-483) (-483))) (-15 -2075 ((-483) (-483))) (-15 -2076 ((-483) (-483))) (-15 -2077 ((-347 (-483)) (-483))) (-15 -2078 ((-483) (-483) (-483))) (-15 -2801 ((-483) (-483) (-483))) (-15 -2079 ((-483) (-483))) (-15 -2080 ((-483) (-483))) (-15 -2081 ((-483) (-483))) (-15 -2082 ((-483) (-483) (-694))))) (T -498)) +((-2082 (*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-694)) (-5 *1 (-498)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2801 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2078 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2077 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2074 (*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2073 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) +((-2083 (((-2 (|:| |answer| |#4|) (|:| -2131 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2083 ((-2 (|:| |answer| |#4|) (|:| -2131 |#4|)) |#4| (-1 |#2| |#2|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -499)) +((-2083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2131 *3))) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7))))) +((-2083 (((-2 (|:| |answer| (-347 |#2|)) (|:| -2131 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-500 |#1| |#2|) (-10 -7 (-15 -2083 ((-2 (|:| |answer| (-347 |#2|)) (|:| -2131 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -500)) +((-2083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| (-347 *6)) (|:| -2131 (-347 *6)) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-500 *5 *6)) (-5 *3 (-347 *6))))) +((-2086 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2084 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2085 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2087 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088))) 200 T ELT)) (-2088 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1088)) 209 (|has| |#3| (-600 |#2|)) ELT))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2084 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2085 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2086 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2087 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2088 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1088))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-120) (-580 (-483))) (-13 (-361 |#1|) (-27) (-1113)) (-1012)) (T -501)) +((-2088 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-2087 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088))) (-4 *2 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012)))) (-2086 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012)))) (-2085 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012)))) (-2084 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012))))) +((-2089 (((-2 (|:| -2334 |#2|) (|:| |nconst| |#2|)) |#2| (-1088)) 64 T ELT)) (-2091 (((-3 |#2| #1="failed") |#2| (-1088) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1051)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT)) (-2090 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT))) +(((-502 |#1| |#2|) (-10 -7 (-15 -2089 ((-2 (|:| -2334 |#2|) (|:| |nconst| |#2|)) |#2| (-1088))) (IF (|has| |#1| (-553 (-800 (-483)))) (IF (|has| |#1| (-796 (-483))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2090 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1088))) (-15 -2091 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -2091 ((-3 |#2| #1#) |#2| (-1088) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-483)) (-389) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -502)) +((-2091 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-750 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *1 (-502 *5 *2)))) (-2091 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2090 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| -2334 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) +((-2094 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1="failed") (-347 |#2|) (-583 (-347 |#2|))) 41 T ELT)) (-3806 (((-518 (-347 |#2|)) (-347 |#2|)) 28 T ELT)) (-2092 (((-3 (-347 |#2|) #1#) (-347 |#2|)) 17 T ELT)) (-2093 (((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|)) 48 T ELT))) +(((-503 |#1| |#2|) (-10 -7 (-15 -3806 ((-518 (-347 |#2|)) (-347 |#2|))) (-15 -2092 ((-3 (-347 |#2|) #1="failed") (-347 |#2|))) (-15 -2093 ((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|))) (-15 -2094 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-583 (-347 |#2|))))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -503)) +((-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *5 *6)))) (-2093 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2132 (-347 *5)) (|:| |coeff| (-347 *5)))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5)))) (-2092 (*1 *2 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120) (-950 (-483)))) (-5 *1 (-503 *3 *4)))) (-3806 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-518 (-347 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5))))) +((-2095 (((-3 (-483) "failed") |#1|) 14 T ELT)) (-3254 (((-85) |#1|) 13 T ELT)) (-3250 (((-483) |#1|) 9 T ELT))) +(((-504 |#1|) (-10 -7 (-15 -3250 ((-483) |#1|)) (-15 -3254 ((-85) |#1|)) (-15 -2095 ((-3 (-483) "failed") |#1|))) (-950 (-483))) (T -504)) +((-2095 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2)))) (-3254 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-950 (-483))))) (-3250 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2))))) +((-2098 (((-3 (-2 (|:| |mainpart| (-347 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 (-857 |#1|))) (|:| |logand| (-347 (-857 |#1|))))))) #1="failed") (-347 (-857 |#1|)) (-1088) (-583 (-347 (-857 |#1|)))) 48 T ELT)) (-2096 (((-518 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-1088)) 28 T ELT)) (-2097 (((-3 (-347 (-857 |#1|)) #1#) (-347 (-857 |#1|)) (-1088)) 23 T ELT)) (-2099 (((-3 (-2 (|:| -2132 (-347 (-857 |#1|))) (|:| |coeff| (-347 (-857 |#1|)))) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))) 35 T ELT))) +(((-505 |#1|) (-10 -7 (-15 -2096 ((-518 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -2097 ((-3 (-347 (-857 |#1|)) #1="failed") (-347 (-857 |#1|)) (-1088))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-347 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 (-857 |#1|))) (|:| |logand| (-347 (-857 |#1|))))))) #1#) (-347 (-857 |#1|)) (-1088) (-583 (-347 (-857 |#1|))))) (-15 -2099 ((-3 (-2 (|:| -2132 (-347 (-857 |#1|))) (|:| |coeff| (-347 (-857 |#1|)))) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))))) (-13 (-494) (-950 (-483)) (-120))) (T -505)) +((-2099 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-2 (|:| -2132 (-347 (-857 *5))) (|:| |coeff| (-347 (-857 *5))))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5))))) (-2098 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 (-347 (-857 *6)))) (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *6)))) (-2097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-120))) (-5 *1 (-505 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-518 (-347 (-857 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5)))))) +((-2564 (((-85) $ $) 77 T ELT)) (-3183 (((-85) $) 49 T ELT)) (-2600 ((|#1| $) 39 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) 81 T ELT)) (-3486 (($ $) 142 T ELT)) (-3633 (($ $) 120 T ELT)) (-2479 ((|#1| $) 37 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-3484 (($ $) 144 T ELT)) (-3632 (($ $) 116 T ELT)) (-3488 (($ $) 146 T ELT)) (-3631 (($ $) 124 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) 95 T ELT)) (-3151 (((-483) $) 97 T ELT)) (-3461 (((-3 $ #1#) $) 80 T ELT)) (-2055 (($ |#1| |#1|) 35 T ELT)) (-3181 (((-85) $) 44 T ELT)) (-3621 (($) 106 T ELT)) (-2406 (((-85) $) 56 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3182 (((-85) $) 46 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3936 (($ $) 108 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2056 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-347 (-483))) 94 T ELT)) (-2054 ((|#1| $) 36 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 82 T ELT)) (-3937 (($ $) 110 T ELT)) (-3489 (($ $) 150 T ELT)) (-3630 (($ $) 122 T ELT)) (-3487 (($ $) 152 T ELT)) (-3629 (($ $) 126 T ELT)) (-3485 (($ $) 148 T ELT)) (-3628 (($ $) 118 T ELT)) (-2053 (((-85) $ |#1|) 42 T ELT)) (-3940 (((-772) $) 102 T ELT) (($ (-483)) 85 T ELT) (($ $) NIL T ELT) (($ (-483)) 85 T ELT)) (-3121 (((-694)) 104 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 164 T ELT)) (-3480 (($ $) 132 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 162 T ELT)) (-3478 (($ $) 128 T ELT)) (-3494 (($ $) 160 T ELT)) (-3482 (($ $) 140 T ELT)) (-3495 (($ $) 158 T ELT)) (-3483 (($ $) 138 T ELT)) (-3493 (($ $) 156 T ELT)) (-3481 (($ $) 134 T ELT)) (-3491 (($ $) 154 T ELT)) (-3479 (($ $) 130 T ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 50 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 48 T ELT)) (-3831 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3833 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-347 (-483))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-506 |#1|) (-492 |#1|) (-13 (-344) (-1113))) (T -506)) +NIL +((-2700 (((-3 (-583 (-1083 (-483))) "failed") (-583 (-1083 (-483))) (-1083 (-483))) 27 T ELT))) +(((-507) (-10 -7 (-15 -2700 ((-3 (-583 (-1083 (-483))) "failed") (-583 (-1083 (-483))) (-1083 (-483)))))) (T -507)) +((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 (-483)))) (-5 *3 (-1083 (-483))) (-5 *1 (-507))))) +((-2100 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1088)) 19 T ELT)) (-2103 (((-583 (-550 |#2|)) (-583 |#2|) (-1088)) 23 T ELT)) (-3229 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2104 ((|#2| |#2| (-1088)) 59 (|has| |#1| (-494)) ELT)) (-2105 ((|#2| |#2| (-1088)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-389))) ELT)) (-2102 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1088)) 25 T ELT)) (-2101 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2106 (((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1088))) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-389)) (|has| |#1| (-796 (-483)))) ELT))) +(((-508 |#1| |#2|) (-10 -7 (-15 -2100 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1088))) (-15 -2101 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2102 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1088))) (-15 -3229 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2103 ((-583 (-550 |#2|)) (-583 |#2|) (-1088))) (IF (|has| |#1| (-494)) (-15 -2104 (|#2| |#2| (-1088))) |%noBranch|) (IF (|has| |#1| (-389)) (IF (|has| |#2| (-239)) (PROGN (-15 -2105 (|#2| |#2| (-1088))) (IF (|has| |#1| (-553 (-800 (-483)))) (IF (|has| |#1| (-796 (-483))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1088))) (-15 -2106 ((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1012) (-361 |#1|)) (T -508)) +((-2106 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-518 *3) *3 (-1088))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-361 *7)) (-5 *4 (-1088)) (-4 *7 (-553 (-800 (-483)))) (-4 *7 (-389)) (-4 *7 (-796 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3)) (-5 *1 (-508 *7 *3)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-389)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-239)) (-4 *2 (-361 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-361 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1088)) (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-508 *5 *6)))) (-3229 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1012)) (-5 *1 (-508 *3 *4)))) (-2102 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1088)) (-5 *2 (-550 *6)) (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1012)) (-5 *2 (-550 *5)) (-5 *1 (-508 *4 *5)) (-4 *5 (-361 *4)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1088)) (-4 *5 (-361 *4)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *5))))) +((-2109 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-483) |#1| |#1|)) 199 T ELT)) (-2112 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-347 |#2|))) 174 T ELT)) (-2115 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-583 (-347 |#2|))) 171 T ELT)) (-2116 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2107 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2114 (((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|)) 202 T ELT)) (-2110 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|)) 205 T ELT)) (-2118 (((-2 (|:| |ir| (-518 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2119 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2113 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-583 (-347 |#2|))) 178 T ELT)) (-2117 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 166 T ELT)) (-2108 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 189 T ELT)) (-2111 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-347 |#2|)) 210 T ELT))) +(((-509 |#1| |#2|) (-10 -7 (-15 -2107 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2108 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2109 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-483) |#1| |#1|))) (-15 -2110 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|))) (-15 -2111 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-347 |#2|))) (-15 -2112 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-347 |#2|)))) (-15 -2113 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-583 (-347 |#2|)))) (-15 -2114 ((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|))) (-15 -2115 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-583 (-347 |#2|)))) (-15 -2116 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2117 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2118 ((-2 (|:| |ir| (-518 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|))) (-15 -2119 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -509)) +((-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |ir| (-518 (-347 *6))) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))) (-2117 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85))) (-483) *4)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5)))) (-2116 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-311)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4)))) (-2115 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-347 *7))) (-4 *7 (-1153 *6)) (-5 *3 (-347 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *7)))) (-2114 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -2132 (-347 *6)) (|:| |coeff| (-347 *6)))) (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))) (-2113 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3132 *7) (|:| |sol?| (-85))) (-483) *7)) (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2112 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2111 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2110 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-483) *6 *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2108 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) +((-2120 (((-3 |#2| "failed") |#2| (-1088) (-1088)) 10 T ELT))) +(((-510 |#1| |#2|) (-10 -7 (-15 -2120 ((-3 |#2| "failed") |#2| (-1088) (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-1051) (-29 |#1|))) (T -510)) +((-2120 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-1051) (-29 *4)))))) +((-2551 (((-632 (-1136)) $ (-1136)) 27 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 26 T ELT)) (-2550 (((-694) $ (-102)) 28 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 25 T ELT)) (-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-1697 (($ $) 6 T ELT))) +(((-511) (-113)) (T -511)) +NIL +(-13 (-464) (-770)) +(((-147) . T) ((-464) . T) ((-770) . T)) +((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) NIL T ELT)) (-2553 (((-632 (-101)) $ (-101)) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) NIL T ELT)) (-1998 (((-632 (-101)) $) NIL T ELT)) (-2554 (((-85) $) NIL T ELT)) (-2121 (($ (-335)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1697 (($ $) NIL T ELT))) +(((-512) (-13 (-511) (-552 (-772)) (-10 -8 (-15 -2121 ($ (-335))) (-15 -2121 ($ (-1071))) (-15 -2554 ((-85) $))))) (T -512)) +((-2121 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-512)))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3454 (($) 7 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-2124 (($) 6 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT)) (-2122 (($) 9 T CONST)) (-2123 (($) 8 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT))) +(((-513) (-13 (-1012) (-10 -8 (-15 -2124 ($) -3946) (-15 -3454 ($) -3946) (-15 -2123 ($) -3946) (-15 -2122 ($) -3946)))) (T -513)) +((-2124 (*1 *1) (-5 *1 (-513))) (-3454 (*1 *1) (-5 *1 (-513))) (-2123 (*1 *1) (-5 *1 (-513))) (-2122 (*1 *1) (-5 *1 (-513)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2125 (((-632 $) (-428)) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2127 (($ (-1071)) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 33 T ELT)) (-2126 (((-166 4 (-101)) $) 24 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 26 T ELT))) +(((-514) (-13 (-1012) (-10 -8 (-15 -2127 ($ (-1071))) (-15 -2126 ((-166 4 (-101)) $)) (-15 -2125 ((-632 $) (-428)))))) (T -514)) +((-2127 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-632 (-514))) (-5 *1 (-514))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) 73 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) 79 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 64 T ELT)) (-2608 (($ $) 43 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) 37 T ELT)) (-2609 (((-483) $) 41 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) 24 T ELT)) (-3460 (((-3 $ #1#) $ $) 70 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) 17 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-1067 (-483)) $) 19 T ELT)) (-2887 (($ $) 26 T ELT)) (-3940 (((-772) $) 100 T ELT) (($ (-483)) 59 T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) 15 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) 46 T ELT)) (-2656 (($) 44 T CONST)) (-2662 (($) 21 T CONST)) (-3052 (((-85) $ $) 51 T ELT)) (-3831 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3833 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-515 |#1| |#2|) (-779 |#1|) (-483) (-85)) (T -515)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 30 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 59 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 $ #1#) $) 95 T ELT)) (-3151 (($ $) 94 T ELT)) (-1789 (($ (-1177 $)) 93 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 47 T ELT)) (-2990 (($) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 61 T ELT)) (-1677 (((-85) $) NIL T ELT)) (-1761 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 49 (|has| $ (-317)) ELT)) (-2007 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3127 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 $) $ (-830)) NIL (|has| $ (-317)) ELT) (((-1083 $) $) 104 T ELT)) (-2006 (((-830) $) 67 T ELT)) (-1624 (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1623 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1625 (($ $ (-1083 $)) NIL (|has| $ (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) 60 T ELT)) (-3925 (((-85) $) 87 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 28 (|has| $ (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 54 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3942 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3180 (((-1083 $)) 102 T ELT)) (-1671 (($) 66 T ELT)) (-1626 (($) 50 (|has| $ (-317)) ELT)) (-3219 (((-630 $) (-1177 $)) NIL T ELT) (((-1177 $) $) 91 T ELT)) (-3966 (((-483) $) 42 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 45 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3121 (((-694)) 51 T CONST)) (-1262 (((-85) $ $) 107 T ELT)) (-2008 (((-1177 $) (-830)) 97 T ELT) (((-1177 $)) 96 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 31 T CONST)) (-2662 (($) 27 T CONST)) (-3922 (($ $ (-694)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-516 |#1|) (-13 (-298) (-279 $) (-553 (-483))) (-830)) (T -516)) +NIL +((-2128 (((-1183) (-1071)) 10 T ELT))) +(((-517) (-10 -7 (-15 -2128 ((-1183) (-1071))))) (T -517)) +((-2128 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 77 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2132 ((|#1| $) 30 T ELT)) (-2130 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2133 (($ |#1| (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2131 (((-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2828 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1088)) 49 (|has| |#1| (-950 (-1088))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2129 (((-85) $) 35 T ELT)) (-3752 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1088)) 90 (|has| |#1| (-809 (-1088))) ELT)) (-3940 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 16 T ELT) (($ (-347 (-483)) $) 41 T ELT) (($ $ (-347 (-483))) NIL T ELT))) +(((-518 |#1|) (-13 (-654 (-347 (-483))) (-950 |#1|) (-10 -8 (-15 -2133 ($ |#1| (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2132 (|#1| $)) (-15 -2131 ((-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -2130 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2129 ((-85) $)) (-15 -2828 ($ |#1| |#1|)) (-15 -3752 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1088))) (-15 -3752 (|#1| $ (-1088))) |%noBranch|) (IF (|has| |#1| (-950 (-1088))) (-15 -2828 ($ |#1| (-1088))) |%noBranch|))) (-311)) (T -518)) +((-2133 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) (-5 *1 (-518 *2)))) (-2132 (*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2828 (*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-3752 (*1 *2 *1 *3) (-12 (-4 *2 (-311)) (-4 *2 (-809 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088)))) (-2828 (*1 *1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-950 *3)) (-4 *2 (-311))))) +((-3952 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|)) 30 T ELT))) +(((-519 |#1| |#2|) (-10 -7 (-15 -3952 ((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|))) (-15 -3952 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3952 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3952 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-311) (-311)) (T -519)) +((-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-519 *5 *6)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-519 *5 *2)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2132 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| -2132 *6) (|:| |coeff| *6))) (-5 *1 (-519 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6))))) +((-3412 (((-518 |#2|) (-518 |#2|)) 42 T ELT)) (-3957 (((-583 |#2|) (-518 |#2|)) 44 T ELT)) (-2144 ((|#2| (-518 |#2|)) 50 T ELT))) +(((-520 |#1| |#2|) (-10 -7 (-15 -3412 ((-518 |#2|) (-518 |#2|))) (-15 -3957 ((-583 |#2|) (-518 |#2|))) (-15 -2144 (|#2| (-518 |#2|)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-29 |#1|) (-1113))) (T -520)) +((-2144 (*1 *2 *3) (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 *5)) (-5 *1 (-520 *4 *5)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113))) (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-520 *3 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2136 (($ (-444) (-531)) 14 T ELT)) (-2134 (($ (-444) (-531) $) 16 T ELT)) (-2135 (($ (-444) (-531)) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) 7 T ELT) (((-1093) $) 6 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-521) (-13 (-1012) (-427 (-1093)) (-10 -8 (-15 -2136 ($ (-444) (-531))) (-15 -2135 ($ (-444) (-531))) (-15 -2134 ($ (-444) (-531) $))))) (T -521)) +((-2136 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2135 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2134 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521))))) +((-2140 (((-85) |#1|) 16 T ELT)) (-2141 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2138 (((-2 (|:| -2690 |#1|) (|:| -2397 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2137 (((-85) |#1| (-694)) 19 T ELT)) (-2142 ((|#1| |#1|) 41 T ELT)) (-2139 ((|#1| |#1| (-694)) 44 T ELT))) +(((-522 |#1|) (-10 -7 (-15 -2137 ((-85) |#1| (-694))) (-15 -2138 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2138 ((-2 (|:| -2690 |#1|) (|:| -2397 (-694))) |#1|)) (-15 -2139 (|#1| |#1| (-694))) (-15 -2140 ((-85) |#1|)) (-15 -2141 ((-3 |#1| #1#) |#1|)) (-15 -2142 (|#1| |#1|))) (-482)) (T -522)) +((-2142 (*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2141 (*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2140 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2139 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2690 *3) (|:| -2397 (-694)))) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2138 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) +((-2143 (((-1083 |#1|) (-830)) 44 T ELT))) +(((-523 |#1|) (-10 -7 (-15 -2143 ((-1083 |#1|) (-830)))) (-298)) (T -523)) +((-2143 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-298))))) +((-3412 (((-518 (-347 (-857 |#1|))) (-518 (-347 (-857 |#1|)))) 27 T ELT)) (-3806 (((-3 (-264 |#1|) (-583 (-264 |#1|))) (-347 (-857 |#1|)) (-1088)) 33 (|has| |#1| (-120)) ELT)) (-3957 (((-583 (-264 |#1|)) (-518 (-347 (-857 |#1|)))) 19 T ELT)) (-2145 (((-264 |#1|) (-347 (-857 |#1|)) (-1088)) 31 (|has| |#1| (-120)) ELT)) (-2144 (((-264 |#1|) (-518 (-347 (-857 |#1|)))) 21 T ELT))) +(((-524 |#1|) (-10 -7 (-15 -3412 ((-518 (-347 (-857 |#1|))) (-518 (-347 (-857 |#1|))))) (-15 -3957 ((-583 (-264 |#1|)) (-518 (-347 (-857 |#1|))))) (-15 -2144 ((-264 |#1|) (-518 (-347 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3806 ((-3 (-264 |#1|) (-583 (-264 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -2145 ((-264 |#1|) (-347 (-857 |#1|)) (-1088)))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-580 (-483)))) (T -524)) +((-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *5)) (-5 *1 (-524 *5)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (-264 *5) (-583 (-264 *5)))) (-5 *1 (-524 *5)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-518 (-347 (-857 *4)))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-524 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-518 (-347 (-857 *4)))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 (-264 *4))) (-5 *1 (-524 *4)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-518 (-347 (-857 *3)))) (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-524 *3))))) +((-2147 (((-583 (-630 (-483))) (-583 (-830)) (-583 (-813 (-483)))) 80 T ELT) (((-583 (-630 (-483))) (-583 (-830))) 81 T ELT) (((-630 (-483)) (-583 (-830)) (-813 (-483))) 74 T ELT)) (-2146 (((-694) (-583 (-830))) 71 T ELT))) +(((-525) (-10 -7 (-15 -2146 ((-694) (-583 (-830)))) (-15 -2147 ((-630 (-483)) (-583 (-830)) (-813 (-483)))) (-15 -2147 ((-583 (-630 (-483))) (-583 (-830)))) (-15 -2147 ((-583 (-630 (-483))) (-583 (-830)) (-583 (-813 (-483))))))) (T -525)) +((-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-483)))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-525)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-525))))) +((-3208 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2148 (((-85) |#5| (-583 |#5|)) 34 T ELT))) +(((-526 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3208 ((-583 |#5|) |#5| (-85))) (-15 -2148 ((-85) |#5| (-583 |#5|)))) (-13 (-257) (-120)) (-717) (-756) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -526)) +((-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1019 *5 *6 *7 *8)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3)) (-4 *3 (-1019 *5 *6 *7 *8))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-527) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -527)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527))))) +((-3526 (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|)) 32 T ELT))) +(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3526 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|))) (-15 -3526 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|)) (T -528)) +((-3526 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1000 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *6 *4 *7 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 71 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 58 T ELT) (($ $ (-483) (-483)) 59 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 65 T ELT)) (-2179 (($ $) 109 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2177 (((-772) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-939 (-750 (-483))) (-1088) |#1| (-347 (-483))) 232 T ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 36 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3766 (((-483) $) 63 T ELT) (((-483) $ (-483)) 64 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3771 (($ $ (-830)) 83 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 80 T ELT)) (-3931 (((-85) $) 26 T ELT)) (-2889 (($ |#1| (-483)) 22 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2183 (($ (-939 (-750 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 13 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $) 120 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2180 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2178 (($ $ $) 116 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2181 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 15 T ELT)) (-2182 (((-939 (-750 (-483))) $) 14 T ELT)) (-3763 (($ $ (-483)) 47 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-3794 ((|#1| $ (-483)) 62 T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3942 (((-483) $) NIL T ELT)) (-2887 (($ $) 48 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 29 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ (-483)) 61 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 39 T CONST)) (-3767 ((|#1| $) NIL T ELT)) (-2158 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2170 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2160 (($ $) 189 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2172 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2156 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2168 (($ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2175 (($ $ (-347 (-483))) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2176 (($ $ |#1|) 128 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2173 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2174 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2155 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2167 (($ $) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2157 (($ $) 193 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2169 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2159 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2171 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2152 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2164 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2154 (($ $) 197 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2166 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2150 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2162 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2149 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2161 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2151 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2163 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2153 (($ $) 199 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2165 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 40 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3052 (((-85) $ $) 73 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3833 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-483) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-529 |#1|) (-13 (-1156 |#1| (-483)) (-10 -8 (-15 -2183 ($ (-939 (-750 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -2182 ((-939 (-750 (-483))) $)) (-15 -2181 ((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $)) (-15 -3812 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -3931 ((-85) $)) (-15 -3809 ($ (-1 |#1| (-483)) $)) (-15 -2180 ((-3 $ "failed") $ $ (-85))) (-15 -2179 ($ $)) (-15 -2178 ($ $ $)) (-15 -2177 ((-772) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-939 (-750 (-483))) (-1088) |#1| (-347 (-483)))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (-15 -2176 ($ $ |#1|)) (-15 -2175 ($ $ (-347 (-483)))) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $))) |%noBranch|))) (-961)) (T -529)) +((-3931 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-529 *4)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-529 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-529 *3)))) (-2180 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))) (-2178 (*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))) (-2177 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-483)))) (-5 *5 (-1088)) (-5 *7 (-347 (-483))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-529 *6)))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1 *2) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 62 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3812 (($ (-1067 |#1|)) 9 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 44 T ELT)) (-2888 (((-85) $) 56 T ELT)) (-3766 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 46 (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-1067 |#1|) $) 25 T ELT)) (-3121 (((-694)) 55 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 14 T CONST)) (-3052 (((-85) $ $) 24 T ELT)) (-3831 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3833 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-483)) 38 T ELT))) +(((-530 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3811 ((-1067 |#1|) $)) (-15 -3812 ($ (-1067 |#1|))) (-15 -2888 ((-85) $)) (-15 -3766 ((-694) $)) (-15 -3766 ((-694) $ (-694))) (-15 * ($ $ (-483))) (IF (|has| |#1| (-494)) (-6 (-494)) |%noBranch|))) (-961)) (T -530)) +((-3811 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3766 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-961))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2186 (($) 8 T CONST)) (-2187 (($) 7 T CONST)) (-2184 (($ $ (-583 $)) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2188 (($) 6 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) 15 T ELT) (((-1093) $) 10 T ELT)) (-2185 (($) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-531) (-13 (-1012) (-427 (-1093)) (-10 -8 (-15 -2188 ($) -3946) (-15 -2187 ($) -3946) (-15 -2186 ($) -3946) (-15 -2185 ($) -3946) (-15 -2184 ($ $ (-583 $)))))) (T -531)) +((-2188 (*1 *1) (-5 *1 (-531))) (-2187 (*1 *1) (-5 *1 (-531))) (-2186 (*1 *1) (-5 *1 (-531))) (-2185 (*1 *1) (-5 *1 (-531))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-531))) (-5 *1 (-531))))) +((-3952 (((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|)) 15 T ELT))) +(((-532 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3952 ((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|))))) (-1127) (-1127)) (T -532)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6))))) +((-3952 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)) 20 T ELT) (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|)) 19 T ELT) (((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|)) 18 T ELT))) +(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|))) (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|))) (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -533)) +((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8)) (-5 *1 (-533 *6 *7 *8))))) +((-2193 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1088))) 57 T ELT)) (-2192 (((-142 |#2|) |#3|) 122 T ELT)) (-2189 ((|#3| (-142 |#2|)) 46 T ELT)) (-2190 ((|#2| |#3|) 21 T ELT)) (-2191 ((|#3| |#2|) 35 T ELT))) +(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -2189 (|#3| (-142 |#2|))) (-15 -2190 (|#2| |#3|)) (-15 -2191 (|#3| |#2|)) (-15 -2192 ((-142 |#2|) |#3|)) (-15 -2193 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1088))))) (-494) (-13 (-361 |#1|) (-915) (-1113)) (-13 (-361 (-142 |#1|)) (-915) (-1113))) (T -534)) +((-2193 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1088))) (-4 *2 (-13 (-361 (-142 *5)) (-915) (-1113))) (-4 *5 (-494)) (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-915) (-1113))))) (-2192 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-915) (-1113))))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *5 *2))))) +((-3704 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3451 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3450 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3449 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3524 (((-1067 |#1|) $) 20 T ELT)) (-3940 (((-772) $) 25 T ELT))) +(((-535 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3952 ($ (-1 |#1| |#1|) $)) (-15 -3450 ($ (-1 (-85) |#1|) $)) (-15 -3449 ($ (-1 (-85) |#1|) $)) (-15 -3704 ($ (-1 (-85) |#1|) $)) (-15 -3451 ($ (-1 |#1| |#1|) |#1|)) (-15 -3524 ((-1067 |#1|) $)))) (-1127)) (T -535)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-536 |#1| |#2|) (-1176 |#1|) (-1127) (-483)) (T -536)) +NIL +((-2194 (((-1183) $ |#2| |#2|) 35 T ELT)) (-2196 ((|#2| $) 23 T ELT)) (-2197 ((|#2| $) 21 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3952 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3795 ((|#3| $) 26 T ELT)) (-2195 (($ $ |#3|) 33 T ELT)) (-2198 (((-85) |#3| $) 17 T ELT)) (-2201 (((-583 |#3|) $) 15 T ELT)) (-3794 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2194 ((-1183) |#1| |#2| |#2|)) (-15 -2195 (|#1| |#1| |#3|)) (-15 -3795 (|#3| |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -2198 ((-85) |#3| |#1|)) (-15 -2201 ((-583 |#3|) |#1|)) (-15 -3794 (|#3| |#1| |#2|)) (-15 -3794 (|#3| |#1| |#2| |#3|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3952 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1012) (-1127)) (T -537)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2194 (((-1183) $ |#1| |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-1573 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 55 T ELT)) (-2885 (((-583 |#2|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) 47 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#2|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 48 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2199 (((-583 |#1|) $) 50 T ELT)) (-2200 (((-85) |#1| $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) 46 (|has| |#1| (-756)) ELT)) (-2195 (($ $ |#2|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-538 |#1| |#2|) (-113) (-1012) (-1127)) (T -538)) +((-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *4)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *3)))) (-2198 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-756)) (-4 *2 (-1127)))) (-2195 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-2194 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-1183))))) +(-13 (-426 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2201 ((-583 |t#2|) $)) (-15 -2200 ((-85) |t#1| $)) (-15 -2199 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1012)) (IF (|has| $ (-6 -3989)) (-15 -2198 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2197 (|t#1| $)) (-15 -2196 (|t#1| $)) (-15 -3795 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -2195 ($ $ |t#2|)) (-15 -2194 ((-1183) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-426 |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-1012) |has| |#2| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 15 T ELT) (($ (-583 (-1128))) 14 T ELT)) (-2202 (((-583 (-1128)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-539) (-13 (-994) (-552 (-1128)) (-10 -8 (-15 -3940 ($ (-583 (-1128)))) (-15 -2202 ((-583 (-1128)) $))))) (T -539)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 (-630 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 (((-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1700 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1785 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1783 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2400 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1702 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1789 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-3104 (((-830)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1705 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2401 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3794 ((|#1| $ (-483)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3219 (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3966 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1889 (((-583 (-857 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-583 (-857 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3940 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2541 (($ (-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540)) +((-3940 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-541) (-13 (-1012) (-427 (-101)))) (T -541)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2204 (($) 10 T CONST)) (-2226 (($) 8 T CONST)) (-2203 (($) 11 T CONST)) (-2222 (($) 9 T CONST)) (-2219 (($) 12 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-542) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2222 ($) -3946) (-15 -2204 ($) -3946) (-15 -2203 ($) -3946) (-15 -2219 ($) -3946)))) (T -542)) +((-2226 (*1 *1) (-5 *1 (-542))) (-2222 (*1 *1) (-5 *1 (-542))) (-2204 (*1 *1) (-5 *1 (-542))) (-2203 (*1 *1) (-5 *1 (-542))) (-2219 (*1 *1) (-5 *1 (-542)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2215 (($) 11 T CONST)) (-2209 (($) 17 T CONST)) (-2205 (($) 21 T CONST)) (-2207 (($) 19 T CONST)) (-2212 (($) 14 T CONST)) (-2206 (($) 20 T CONST)) (-2214 (($) 12 T CONST)) (-2213 (($) 13 T CONST)) (-2208 (($) 18 T CONST)) (-2211 (($) 15 T CONST)) (-2210 (($) 16 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-1012) (-552 (-101)) (-10 -8 (-15 -2215 ($) -3946) (-15 -2214 ($) -3946) (-15 -2213 ($) -3946) (-15 -2212 ($) -3946) (-15 -2211 ($) -3946) (-15 -2210 ($) -3946) (-15 -2209 ($) -3946) (-15 -2208 ($) -3946) (-15 -2207 ($) -3946) (-15 -2206 ($) -3946) (-15 -2205 ($) -3946)))) (T -543)) +((-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2207 (*1 *1) (-5 *1 (-543))) (-2206 (*1 *1) (-5 *1 (-543))) (-2205 (*1 *1) (-5 *1 (-543)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2217 (($) 13 T CONST)) (-2216 (($) 14 T CONST)) (-2223 (($) 11 T CONST)) (-2226 (($) 8 T CONST)) (-2224 (($) 10 T CONST)) (-2225 (($) 9 T CONST)) (-2222 (($) 12 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-544) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2225 ($) -3946) (-15 -2224 ($) -3946) (-15 -2223 ($) -3946) (-15 -2222 ($) -3946) (-15 -2217 ($) -3946) (-15 -2216 ($) -3946)))) (T -544)) +((-2226 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544))) (-2224 (*1 *1) (-5 *1 (-544))) (-2223 (*1 *1) (-5 *1 (-544))) (-2222 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2218 (($) 16 T CONST)) (-2223 (($) 11 T CONST)) (-2226 (($) 8 T CONST)) (-2224 (($) 10 T CONST)) (-2225 (($) 9 T CONST)) (-2220 (($) 14 T CONST)) (-2222 (($) 12 T CONST)) (-2219 (($) 15 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-545) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2225 ($) -3946) (-15 -2224 ($) -3946) (-15 -2223 ($) -3946) (-15 -2222 ($) -3946) (-15 -2221 ($) -3946) (-15 -2220 ($) -3946) (-15 -2219 ($) -3946) (-15 -2218 ($) -3946)))) (T -545)) +((-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-546) (-13 (-1012) (-427 (-541)) (-427 (-101)))) (T -546)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-1694 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) 40 T ELT)) (-3593 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-1071) |#1|) 50 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#1| #1="failed") (-1071) $) 53 T ELT)) (-3718 (($) NIL T CONST)) (-1698 (($ $ (-1071)) 25 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3399 (((-3 |#1| #1#) (-1071) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3400 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1695 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1573 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-1071)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2267 (($ $) 55 T ELT)) (-1699 (($ (-335)) 23 T ELT) (($ (-335) (-1071)) 22 T ELT)) (-3536 (((-335) $) 41 T ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2228 (((-583 (-1071)) $) 46 T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1696 (((-1071) $) 42 T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 44 T ELT)) (-3794 ((|#1| $ (-1071) |#1|) NIL T ELT) ((|#1| $ (-1071)) 49 T ELT)) (-1463 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1697 (($ $) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-3951 (((-694) $) 48 (|has| $ (-6 -3989)) ELT))) +(((-547 |#1|) (-13 (-313 (-335) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-1105 (-1071) |#1|) (-10 -8 (-6 -3989) (-15 -2267 ($ $)))) (-1012)) (T -547)) +((-2267 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1012))))) +((-3240 (((-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2228 (((-583 |#2|) $) 20 T ELT)) (-2229 (((-85) |#2| $) 12 T ELT))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2228 ((-583 |#2|) |#1|)) (-15 -2229 ((-85) |#2| |#1|)) (-15 -3240 ((-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|))) (-549 |#2| |#3|) (-1012) (-1012)) (T -548)) +NIL +((-2564 (((-85) $ $) 19 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3940 (((-772) $) 17 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-549 |#1| |#2|) (-113) (-1012) (-1012)) (T -549)) +((-2229 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))) (-3399 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2227 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) +(-13 (-183 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2229 ((-85) |t#1| $)) (-15 -2228 ((-583 |t#1|) $)) (-15 -3399 ((-3 |t#2| "failed") |t#1| $)) (-15 -2227 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-13) . T) ((-1012) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2230 (((-3 (-1088) "failed") $) 46 T ELT)) (-1310 (((-1183) $ (-694)) 22 T ELT)) (-3413 (((-694) $) 20 T ELT)) (-3589 (((-86) $) 9 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2231 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1088)) 33 T ELT)) (-2629 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1088)) 13 T ELT)) (-2599 (((-694) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-800 (-483)) $) 99 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 106 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) 92 (|has| |#1| (-553 (-472))) ELT)) (-3940 (((-772) $) 74 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2232 (((-583 |#1|) $) 19 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 51 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 53 T ELT))) +(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3589 ((-86) $)) (-15 -2232 ((-583 |#1|) $)) (-15 -2599 ((-694) $)) (-15 -2231 ($ (-86) (-583 |#1|) (-694))) (-15 -2231 ($ (-1088))) (-15 -2230 ((-3 (-1088) "failed") $)) (-15 -2629 ((-85) $ (-86))) (-15 -2629 ((-85) $ (-1088))) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|))) (-1012)) (T -550)) +((-3589 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2231 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1012)) (-5 *1 (-550 *5)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2230 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012))))) +((-2233 (((-550 |#2|) |#1|) 17 T ELT)) (-2234 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2233 ((-550 |#2|) |#1|)) (-15 -2234 ((-3 |#1| "failed") (-550 |#2|)))) (-1012) (-1012)) (T -551)) +((-2234 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-551 *2 *4)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +((-3940 ((|#1| $) 6 T ELT))) +(((-552 |#1|) (-113) (-1127)) (T -552)) +((-3940 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127))))) +(-13 (-10 -8 (-15 -3940 (|t#1| $)))) +((-3966 ((|#1| $) 6 T ELT))) +(((-553 |#1|) (-113) (-1127)) (T -553)) +((-3966 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1127))))) +(-13 (-10 -8 (-15 -3966 (|t#1| $)))) +((-2235 (((-3 (-1083 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)) 15 T ELT) (((-3 (-1083 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 16 T ELT))) +(((-554 |#1| |#2|) (-10 -7 (-15 -2235 ((-3 (-1083 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|))) (-15 -2235 ((-3 (-1083 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -554)) +((-2235 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-1083 (-347 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-347 *6)))) (-2235 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-347 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-347 *5))))) +((-3940 (($ |#1|) 6 T ELT))) +(((-555 |#1|) (-113) (-1127)) (T -555)) +((-3940 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1127))))) +(-13 (-10 -8 (-15 -3940 ($ |t#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-2236 (($) 11 T CONST)) (-2851 (($) 13 T CONST)) (-3131 (((-694)) 36 T ELT)) (-2990 (($) NIL T ELT)) (-2557 (($ $ $) 25 T ELT)) (-2556 (($ $) 23 T ELT)) (-2006 (((-830) $) 43 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 42 T ELT)) (-2849 (($ $ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 9 T CONST)) (-2848 (($ $ $) 27 T ELT)) (-3940 (((-772) $) 34 T ELT)) (-3560 (((-85) $ (|[\|\|]| -2850)) 20 T ELT) (((-85) $ (|[\|\|]| -2236)) 22 T ELT) (((-85) $ (|[\|\|]| -2851)) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 24 T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) 16 T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-556) (-13 (-880) (-317) (-10 -8 (-15 -2236 ($) -3946) (-15 -3560 ((-85) $ (|[\|\|]| -2850))) (-15 -3560 ((-85) $ (|[\|\|]| -2236))) (-15 -3560 ((-85) $ (|[\|\|]| -2851)))))) (T -556)) +((-2236 (*1 *1) (-5 *1 (-556))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2850)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2851)) (-5 *2 (-85)) (-5 *1 (-556))))) +((-3966 (($ |#1|) 6 T ELT))) +(((-557 |#1|) (-113) (-1127)) (T -557)) +((-3966 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1127))))) +(-13 (-10 -8 (-15 -3966 ($ |t#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2994 ((|#1| $) 13 T ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#3| $) 15 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3121 (((-694)) 20 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 12 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3943 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3943 ($ $ |#3|)) (-15 -3943 ($ |#1| |#3|)) (-15 -2994 (|#1| $)) (-15 -2993 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558)) +((-3943 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3943 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2993 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-559 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 47 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 48 T ELT))) +(((-560 |#1|) (-113) (-961)) (T -560)) +((-3940 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))) +(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3940 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2237 ((|#2| |#2| (-1088) (-1088)) 16 T ELT))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2237 (|#2| |#2| (-1088) (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -561)) +((-2237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-29 *4)))))) +((-2564 (((-85) $ $) 64 T ELT)) (-3183 (((-85) $) 58 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2238 ((|#1| $) 55 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3745 (((-2 (|:| -1759 $) (|:| -1758 (-347 |#2|))) (-347 |#2|)) 111 (|has| |#1| (-311)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 27 T ELT)) (-3461 (((-3 $ #1#) $) 88 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3766 (((-483) $) 22 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 40 T ELT)) (-2889 (($ |#1| (-483)) 24 T ELT)) (-3169 ((|#1| $) 57 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 101 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) 93 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) 115 (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 114 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3942 (((-483) $) 38 T ELT)) (-3966 (((-347 |#2|) $) 47 T ELT)) (-3940 (((-772) $) 69 T ELT) (($ (-483)) 35 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3671 ((|#1| $ (-483)) 72 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 32 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 9 T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-3831 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-562 |#1| |#2|) (-13 (-184 |#2|) (-494) (-553 (-347 |#2|)) (-352 |#1|) (-950 |#2|) (-10 -8 (-15 -3931 ((-85) $)) (-15 -3942 ((-483) $)) (-15 -3766 ((-483) $)) (-15 -3953 ($ $)) (-15 -3169 (|#1| $)) (-15 -2238 (|#1| $)) (-15 -3671 (|#1| $ (-483))) (-15 -2889 ($ |#1| (-483))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-257)) (-15 -3745 ((-2 (|:| -1759 $) (|:| -1758 (-347 |#2|))) (-347 |#2|)))) |%noBranch|))) (-494) (-1153 |#1|)) (T -562)) +((-3931 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3766 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3953 (*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-3169 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-2238 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-494)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1759 (-562 *4 *5)) (|:| -1758 (-347 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-347 *5))))) +((-3676 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2239 ((|#6| |#6|) 48 T ELT))) +(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2239 (|#6| |#6|)) (-15 -3676 ((-583 |#6|) (-583 |#4|) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|) (-1019 |#1| |#2| |#3| |#4|)) (T -563)) +((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *10 (-1019 *5 *6 *7 *8)))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *2 (-1019 *3 *4 *5 *6))))) +((-2240 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2241 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1083 |#3|)))) "failed") |#3| (-583 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1776 (-583 (-2 (|:| |irr| |#4|) (|:| -2391 (-483)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT))) +(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2241 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1083 |#3|)))) "failed") |#3| (-583 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1776 (-583 (-2 (|:| |irr| |#4|) (|:| -2391 (-483)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-257) (-861 |#3| |#2| |#1|)) (T -564)) +((-2241 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1776 (-583 (-2 (|:| |irr| *10) (|:| -2391 (-483))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-257)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1083 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1083 *3))))) (-2240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-257)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-565) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -565)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3930 (($ $) 77 T ELT)) (-3936 (((-606 |#1| |#2|) $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 81 T ELT)) (-2242 (((-583 (-248 |#2|)) $ $) 42 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3937 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 66 T ELT) (((-1193 |#1| |#2|) $) NIL T ELT) (((-1198 |#1| |#2|) $) 74 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 61 T CONST)) (-2243 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2244 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2661 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3052 (((-85) $ $) 62 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-566 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -3937 ($ (-606 |#1| |#2|))) (-15 -3936 ((-606 |#1| |#2|) $)) (-15 -2661 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3940 ((-1193 |#1| |#2|) $)) (-15 -3940 ((-1198 |#1| |#2|) $)) (-15 -3930 ($ $)) (-15 -3928 ((-583 |#1|) $)) (-15 -2244 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2243 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2242 ((-583 (-248 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-347 (-483)))) (-830)) (T -566)) +((-3937 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-347 (-483))))) (-14 *4 (-830)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-347 (-483))))) (-14 *6 (-830)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2242 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-248 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))) +((-3676 (((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2245 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2249 (((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2248 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2247 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2246 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT))) +(((-567 |#1| |#2|) (-10 -7 (-15 -2245 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2246 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2247 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2248 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2249 ((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3676 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3676 ((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-389) (-583 (-1088))) (T -567)) +((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-389)) (-14 *5 (-583 (-1088))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) +((-3589 (((-86) (-86)) 88 T ELT)) (-2253 ((|#2| |#2|) 28 T ELT)) (-2828 ((|#2| |#2| (-1003 |#2|)) 84 T ELT) ((|#2| |#2| (-1088)) 50 T ELT)) (-2251 ((|#2| |#2|) 27 T ELT)) (-2252 ((|#2| |#2|) 29 T ELT)) (-2250 (((-85) (-86)) 33 T ELT)) (-2255 ((|#2| |#2|) 24 T ELT)) (-2256 ((|#2| |#2|) 26 T ELT)) (-2254 ((|#2| |#2|) 25 T ELT))) +(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -2256 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2828 (|#2| |#2| (-1088))) (-15 -2828 (|#2| |#2| (-1003 |#2|)))) (-494) (-13 (-361 |#1|) (-915) (-1113))) (T -568)) +((-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) (-5 *1 (-568 *4 *2)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-361 *3) (-915) (-1113))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113)))))) +((-3486 (($ $) 38 T ELT)) (-3633 (($ $) 21 T ELT)) (-3484 (($ $) 37 T ELT)) (-3632 (($ $) 22 T ELT)) (-3488 (($ $) 36 T ELT)) (-3631 (($ $) 23 T ELT)) (-3621 (($) 48 T ELT)) (-3936 (($ $) 45 T ELT)) (-2253 (($ $) 17 T ELT)) (-2828 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT)) (-3937 (($ $) 46 T ELT)) (-2251 (($ $) 15 T ELT)) (-2252 (($ $) 16 T ELT)) (-3489 (($ $) 35 T ELT)) (-3630 (($ $) 24 T ELT)) (-3487 (($ $) 34 T ELT)) (-3629 (($ $) 25 T ELT)) (-3485 (($ $) 33 T ELT)) (-3628 (($ $) 26 T ELT)) (-3492 (($ $) 44 T ELT)) (-3480 (($ $) 32 T ELT)) (-3490 (($ $) 43 T ELT)) (-3478 (($ $) 31 T ELT)) (-3494 (($ $) 42 T ELT)) (-3482 (($ $) 30 T ELT)) (-3495 (($ $) 41 T ELT)) (-3483 (($ $) 29 T ELT)) (-3493 (($ $) 40 T ELT)) (-3481 (($ $) 28 T ELT)) (-3491 (($ $) 39 T ELT)) (-3479 (($ $) 27 T ELT)) (-2255 (($ $) 19 T ELT)) (-2256 (($ $) 20 T ELT)) (-2254 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-569) (-113)) (T -569)) +((-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569))) (-2254 (*1 *1 *1) (-4 *1 (-569))) (-2253 (*1 *1 *1) (-4 *1 (-569))) (-2252 (*1 *1 *1) (-4 *1 (-569))) (-2251 (*1 *1 *1) (-4 *1 (-569)))) +(-13 (-871) (-1113) (-10 -8 (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-871) . T) ((-1113) . T) ((-1116) . T)) +((-2266 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2259 (((-583 (-206 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 90 T ELT)) (-2260 (((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2257 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-483)))) (-583 (-418 |#1| |#2|))) 136 T ELT)) (-2264 (((-583 (-418 |#1| |#2|)) (-773 |#1|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 105 T ELT)) (-2258 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-483)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2262 (((-1177 |#2|) (-418 |#1| |#2|) (-583 (-418 |#1| |#2|))) 70 T ELT)) (-2261 (((-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 47 T ELT)) (-2265 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2263 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2257 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-483)))) (-583 (-418 |#1| |#2|)))) (-15 -2258 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-483)))) (-583 (-206 |#1| |#2|)))) (-15 -2259 ((-583 (-206 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2260 ((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)) (-773 |#1|))) (-15 -2260 ((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-773 |#1|))) (-15 -2261 ((-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2262 ((-1177 |#2|) (-418 |#1| |#2|) (-583 (-418 |#1| |#2|)))) (-15 -2263 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2264 ((-583 (-418 |#1| |#2|)) (-773 |#1|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2265 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2266 ((-418 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1088)) (-389)) (T -570)) +((-2266 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-418 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2265 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))) (-2264 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))) (-2263 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-389)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1088))) (-5 *1 (-570 *5 *6)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-1177 *6)) (-5 *1 (-570 *5 *6)))) (-2261 (*1 *2 *2) (-12 (-5 *2 (-583 (-418 *3 *4))) (-14 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-570 *3 *4)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))) (-2260 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2258 (*1 *2 *3) (-12 (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-483))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-483))))) (-5 *1 (-570 *4 *5))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088) (-51)) 16 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 (-51) #1="failed") (-1071) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 (-51) #1#) (-1071) $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-51) $ (-1071) (-51)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-51) $ (-1071)) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2267 (($ $) NIL T ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2268 (($ (-335)) 8 T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-2228 (((-583 (-1071)) $) NIL T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3795 (((-51) $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2195 (($ $ (-51)) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-248 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-583 (-248 (-51)))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT)) (-2201 (((-583 (-51)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 (((-51) $ (-1071)) NIL T ELT) (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088)) 14 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-694) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT) (((-694) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-571) (-13 (-1105 (-1071) (-51)) (-241 (-1088) (-51)) (-10 -8 (-15 -2268 ($ (-335))) (-15 -2267 ($ $)) (-15 -3782 ((-51) $ (-1088) (-51)))))) (T -571)) +((-2268 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-571)))) (-2267 (*1 *1 *1) (-5 *1 (-571))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-571))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 (-630 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 (((-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1700 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1785 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1783 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2400 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1702 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1789 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-3104 (((-830)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1705 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2401 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3794 ((|#1| $ (-483)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3219 (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3966 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1889 (((-583 (-857 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-583 (-857 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3940 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2541 (($ (-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572)) +((-3940 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))) +((-3943 (($ $ |#2|) 10 T ELT))) +(((-573 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3524 (($ $ $) 39 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 38 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-574 |#1|) (-113) (-146)) (T -574)) +((-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) +(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3524 ($ $ $)) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2270 (((-3 (-750 |#2|) #1="failed") |#2| (-248 |#2|) (-1071)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-248 (-750 |#2|))) 130 T ELT)) (-2269 (((-3 (-743 |#2|) #1#) |#2| (-248 (-743 |#2|))) 135 T ELT))) +(((-575 |#1| |#2|) (-10 -7 (-15 -2270 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-248 (-750 |#2|)))) (-15 -2269 ((-3 (-743 |#2|) #1#) |#2| (-248 (-743 |#2|)))) (-15 -2270 ((-3 (-750 |#2|) #1#) |#2| (-248 |#2|) (-1071)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -575)) +((-2270 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1071)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2269 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-248 (-743 *3))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-750 *3))) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3))))) +((-2270 (((-3 (-750 (-347 (-857 |#1|))) #1="failed") (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))) (-1071)) 86 T ELT) (((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-750 (-857 |#1|)))) 35 T ELT)) (-2269 (((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 23 T ELT) (((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-743 (-857 |#1|)))) 43 T ELT))) +(((-576 |#1|) (-10 -7 (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-750 (-857 |#1|))))) (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -2269 ((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-743 (-857 |#1|))))) (-15 -2269 ((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))) (-1071)))) (-389)) (T -576)) +((-2270 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 (-347 (-857 *6)))) (-5 *5 (-1071)) (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-743 (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-743 (-347 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-750 (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-3 (-750 (-347 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2847 (($ (-168 |#1|)) 12 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2847 ($ (-168 |#1|))))) (-583 (-1088))) (T -577)) +((-2847 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-577 *3))))) +((-2273 (((-3 (-1177 (-347 |#1|)) #1="failed") (-1177 |#2|) |#2|) 64 (-2556 (|has| |#1| (-311))) ELT) (((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|) 49 (|has| |#1| (-311)) ELT)) (-2271 (((-85) (-1177 |#2|)) 33 T ELT)) (-2272 (((-3 (-1177 |#1|) #1#) (-1177 |#2|)) 40 T ELT))) +(((-578 |#1| |#2|) (-10 -7 (-15 -2271 ((-85) (-1177 |#2|))) (-15 -2272 ((-3 (-1177 |#1|) #1="failed") (-1177 |#2|))) (IF (|has| |#1| (-311)) (-15 -2273 ((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|)) (-15 -2273 ((-3 (-1177 (-347 |#1|)) #1#) (-1177 |#2|) |#2|)))) (-494) (-13 (-961) (-580 |#1|))) (T -578)) +((-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2556 (-4 *5 (-311))) (-4 *5 (-494)) (-5 *2 (-1177 (-347 *5))) (-5 *1 (-578 *5 *4)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-578 *5 *4)))) (-2272 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-578 *4 *5)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 (-577 |#2|) |#1|)) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2274 (($ (-583 |#1|)) 25 T ELT)) (-1981 (((-577 |#2|) $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3905 (((-107)) 16 T ELT)) (-3219 (((-1177 |#1|) $) 44 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 20 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-579 |#1| |#2|) (-13 (-1185 |#1|) (-555 (-577 |#2|)) (-447 |#1| (-577 |#2|)) (-10 -8 (-15 -2274 ($ (-583 |#1|))) (-15 -3219 ((-1177 |#1|) $)))) (-311) (-583 (-1088))) (T -579)) +((-2274 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1088))))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-311)) (-14 *4 (-583 (-1088)))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2275 (((-630 |#1|) (-630 $)) 35 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 34 T ELT)) (-2276 (((-630 |#1|) (-1177 $)) 37 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 36 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-580 |#1|) (-113) (-961)) (T -580)) +((-2276 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2276 (*1 *2 *3 *1) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1177 *4)))))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 *5))))))) +(-13 (-590 |t#1|) (-10 -8 (-15 -2276 ((-630 |t#1|) (-1177 $))) (-15 -2276 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-1177 $) $)) (-15 -2275 ((-630 |t#1|) (-630 $))) (-15 -2275 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-630 $) (-1177 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2277 (($ (-583 |#1|)) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3905 (((-107)) 13 T ELT)) (-3219 (((-1177 |#1|) $) 42 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-581 |#1| |#2|) (-13 (-1185 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))) (-15 -3219 ((-1177 |#1|) $)))) (-311) (-583 (-1088))) (T -581)) +((-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1088))))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-311)) (-14 *4 (-583 (-1088)))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-582 |#1|) (-113) (-1024)) (T -582)) +NIL +(-13 (-588 |t#1|) (-963 |t#1|)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 71 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 68 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 26 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-2280 (($ $ $) 77 (|has| |#1| (-1012)) ELT)) (-2279 (($ $ $) 78 (|has| |#1| (-1012)) ELT)) (-2278 (($ $ $) 81 (|has| |#1| (-1012)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) 31 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 32 T ELT)) (-3793 (($ $) 21 T ELT) (($ $ (-694)) 36 T ELT)) (-2364 (($ $) 66 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 76 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2282 (((-85) $) 9 T ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2283 (($) 7 T CONST)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) 35 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 69 T ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 64 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3528 (($ |#1|) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) 62 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 15 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) 20 T ELT)) (-3559 (($) 19 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 80 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3627 (((-85) $) 39 T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) 44 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 40 T ELT)) (-3966 (((-472) $) 89 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 29 T ELT)) (-3455 (($ |#1| $) 10 T ELT)) (-3785 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3940 (((-772) $) 54 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2281 (($ $ $) 11 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 58 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 13 (|has| $ (-6 -3989)) ELT))) +(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2283 ($) -3946) (-15 -2282 ((-85) $)) (-15 -3455 ($ |#1| $)) (-15 -2281 ($ $ $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -2280 ($ $ $)) (-15 -2279 ($ $ $)) (-15 -2278 ($ $ $))) |%noBranch|))) (-1127)) (T -583)) +((-2283 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1127)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2280 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2278 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) +((-3835 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3952 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3835 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3952 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1127) (-1127)) (T -584)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))) +((-3416 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1012) (-1127)) (T -585)) +((-3416 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-585 *5 *6)))) (-3416 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1012)) (-4 *5 (-1127)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))) +((-3952 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT))) +(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1127) (-1127) (-1127)) (T -586)) +((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-587 |#1|) (-13 (-994) (-552 |#1|)) (-1012)) (T -587)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-588 |#1|) (-113) (-1024)) (T -588)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1024))))) +(-13 (-1012) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2284 (($ |#1| |#1| $) 45 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2364 (($ $) 47 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 58 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 9 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 49 T ELT)) (-3603 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1272 ((|#1| $) 52 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 23 T ELT)) (-3559 (($) 29 T ELT)) (-2285 (((-85) $) 56 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 69 T ELT)) (-1463 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 65 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 20 T ELT)) (-3966 (((-472) $) 36 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3940 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 24 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 17 (|has| $ (-6 -3989)) ELT))) +(((-589 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -3989) (-15 -2285 ((-85) $)) (-15 -2284 ($ |#1| |#1| $)))) (-1012)) (T -589)) +((-2285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1012)))) (-2284 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1012))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-590 |#1|) (-113) (-969)) (T -590)) +NIL +(-13 (-21) (-588 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) 17 T ELT)) (-2291 (($ $ |#1|) 68 T ELT)) (-2293 (($ $) 39 T ELT)) (-2294 (($ $) 37 T ELT)) (-3152 (((-3 |#1| "failed") $) 60 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2289 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3527 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-483)) 55 T ELT)) (-2295 ((|#1| $ (-483)) 35 T ELT)) (-2296 ((|#2| $ (-483)) 34 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2287 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2292 (($) 13 T ELT)) (-2298 (($ |#1| |#2|) 24 T ELT)) (-2297 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|)))) 25 T ELT)) (-2299 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 14 T ELT)) (-2290 (($ |#1| $) 69 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2288 (((-85) $ $) 74 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 27 T ELT))) +(((-591 |#1| |#2| |#3|) (-13 (-1012) (-950 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-483))) (-15 -2299 ((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $)) (-15 -2298 ($ |#1| |#2|)) (-15 -2297 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))))) (-15 -2296 (|#2| $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -2294 ($ $)) (-15 -2293 ($ $)) (-15 -3131 ((-694) $)) (-15 -2292 ($)) (-15 -2291 ($ $ |#1|)) (-15 -2290 ($ |#1| $)) (-15 -2289 ($ |#1| |#2| $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-85) $ $)) (-15 -2287 ($ (-1 |#2| |#2|) $)) (-15 -2286 ($ (-1 |#1| |#1|) $)))) (-1012) (-23) |#2|) (T -591)) +((-3527 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-483)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2296 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1012)) (-14 *5 *2))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2294 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2289 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2289 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2288 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2197 (((-483) $) 30 T ELT)) (-2300 (($ |#2| $ (-483)) 26 T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) 12 T ELT)) (-2200 (((-85) (-483) $) 17 T ELT)) (-3796 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT))) +(((-592 |#1| |#2|) (-10 -7 (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -2197 ((-483) |#1|)) (-15 -2199 ((-583 (-483)) |#1|)) (-15 -2200 ((-85) (-483) |#1|))) (-593 |#2|) (-1127)) (T -592)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-593 |#1|) (-113) (-1127)) (T -593)) +((-3608 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3796 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2300 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-2300 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3990)) (-4 *1 (-593 *2)) (-4 *2 (-1127))))) +(-13 (-538 (-483) |t#1|) (-124 |t#1|) (-241 (-1144 (-483)) $) (-10 -8 (-15 -3608 ($ (-694) |t#1|)) (-15 -3796 ($ $ |t#1|)) (-15 -3796 ($ |t#1| $)) (-15 -3796 ($ $ $)) (-15 -3796 ($ (-583 $))) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2301 ($ $ (-483))) (-15 -2301 ($ $ (-1144 (-483)))) (-15 -2300 ($ |t#1| $ (-483))) (-15 -2300 ($ $ $ (-483))) (IF (|has| $ (-6 -3990)) (-15 -3782 (|t#1| $ (-1144 (-483)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 15 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-714)) ELT)) (-3718 (($) NIL T CONST)) (-3181 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2994 ((|#1| $) 23 T ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3237 (((-1071) $) 48 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#3| $) 24 T ELT)) (-3940 (((-772) $) 43 T ELT)) (-1262 (((-85) $ $) 22 T ELT)) (-3377 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2656 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2681 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3943 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3831 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3943 ($ $ |#3|)) (-15 -3943 ($ |#1| |#3|)) (-15 -2994 (|#1| $)) (-15 -2993 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594)) +((-3943 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3943 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2993 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))) +((-3567 (((-3 |#2| #1="failed") |#3| |#2| (-1088) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) #1#) |#3| |#2| (-1088)) 44 T ELT))) +(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) #1="failed") |#3| |#2| (-1088))) (-15 -3567 ((-3 |#2| #1#) |#3| |#2| (-1088) |#2| (-583 |#2|)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871)) (-600 |#2|)) (T -595)) +((-3567 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) 28 (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) 31 (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) 24 T ELT)) (-2306 (($ $ $) 33 (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 8 T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) NIL (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-597 |#1|) (-600 |#1|) (-190)) (T -597)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) NIL (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3752 ($ $))))) (T -598)) +NIL +((-2302 (($ $) 29 T ELT)) (-2516 (($ $) 27 T ELT)) (-2665 (($) 13 T ELT))) +(((-599 |#1| |#2|) (-10 -7 (-15 -2302 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2665 (|#1|))) (-600 |#2|) (-961)) (T -599)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2302 (($ $) 94 (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) 96 (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) 95 (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2532 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1="failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #2="failed") $) 86 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #2#) $) 83 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #2#) $) 80 T ELT)) (-3151 (((-483) $) 85 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 82 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 81 T ELT)) (-3953 (($ $) 75 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 73 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 68 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) 77 T ELT)) (-2538 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) 76 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ #1#) $ |#1|) 70 (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) 99 T ELT)) (-2306 (($ $ $) 93 (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) 78 T ELT)) (-2813 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 84 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 79 T ELT)) (-3811 (((-583 |#1|) $) 72 T ELT)) (-3671 ((|#1| $ (-694)) 74 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2541 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2516 (($ $) 97 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($) 98 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) +(((-600 |#1|) (-113) (-961)) (T -600)) +((-2665 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2516 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2304 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-311)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2306 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2665 ($)) (-15 -2516 ($ $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -2304 ($ $ $)) (-15 -2305 ($ $ (-694))) (-15 -2302 ($ $)) (-15 -2306 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-352 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-761 |#1|) . T)) +((-2303 (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3726 (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT))) +(((-601 |#1| |#2|) (-10 -7 (-15 -3726 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3726 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)))) (-15 -2303 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))))) |%noBranch|)) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -601)) +((-2303 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-347 *5))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-347 *5))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-597 (-347 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-347 *6)))))) +((-2304 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2305 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2306 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-602 |#1| |#2|) (-10 -7 (-15 -2304 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2305 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2306 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-311) (-600 |#1|)) (T -602)) +((-2306 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2305 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2304 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4))))) +((-2307 (($ $ $) 9 T ELT))) +(((-603 |#1|) (-10 -7 (-15 -2307 (|#1| |#1| |#1|))) (-604)) (T -603)) +NIL +((-2309 (($ $) 8 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-2308 (($ $ $) 7 T ELT))) +(((-604) (-113)) (T -604)) +((-2309 (*1 *1 *1) (-4 *1 (-604))) (-2308 (*1 *1 *1 *1) (-4 *1 (-604))) (-2307 (*1 *1 *1 *1) (-4 *1 (-604)))) +(-13 (-1127) (-10 -8 (-15 -2309 ($ $)) (-15 -2308 ($ $ $)) (-15 -2307 ($ $ $)))) +(((-13) . T) ((-1127) . T)) +((-2310 (((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|)) 33 T ELT))) +(((-605 |#1|) (-10 -7 (-15 -2310 ((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|)))) (-821)) (T -605)) +((-2310 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 85 T ELT)) (-3941 (($ $ (-694)) 95 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 50 T ELT)) (-3152 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3151 (((-614 |#1|) $) NIL T ELT)) (-3953 (($ $) 94 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3930 (($ $) 90 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 49 T ELT)) (-1746 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-614 |#1|) $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3942 (((-694) $) 92 T ELT)) (-3524 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1193 |#1| |#2|) $) 60 T ELT) (((-1202 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3948 ((|#2| (-1202 |#1| |#2|) $) 45 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 23 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3939 (((-3 $ #1#) (-1193 |#1| |#2|)) 62 T ELT)) (-1730 (($ (-614 |#1|)) 14 T ELT)) (-3052 (((-85) $ $) 46 T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT))) +(((-606 |#1| |#2|) (-13 (-323 |#1| |#2|) (-332 |#2| (-614 |#1|)) (-10 -8 (-15 -3939 ((-3 $ "failed") (-1193 |#1| |#2|))) (-15 -3524 ($ (-614 |#1|) (-614 |#1|))) (-15 -3524 ($ (-614 |#1|) $)) (-15 -3524 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606)) +((-3939 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3524 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3524 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))) +((-1729 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1727 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1567 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2293 (($ $) 65 T ELT)) (-2364 (($ $) 74 T ELT)) (-3399 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3413 (((-483) |#2| $ (-483)) 71 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) (-1 (-85) |#2|) $) 54 T ELT)) (-3608 (($ (-694) |#2|) 63 T ELT)) (-2852 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3512 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3528 (($ |#2|) 15 T ELT)) (-3603 (($ $ $ (-483)) 42 T ELT) (($ |#2| $ (-483)) 40 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1568 (($ $ (-1144 (-483))) 51 T ELT) (($ $ (-483)) 44 T ELT)) (-1728 (($ $ $ (-483)) 70 T ELT)) (-3394 (($ $) 68 T ELT)) (-2681 (((-85) $ $) 76 T ELT))) +(((-607 |#1| |#2|) (-10 -7 (-15 -3528 (|#1| |#2|)) (-15 -1568 (|#1| |#1| (-483))) (-15 -1568 (|#1| |#1| (-1144 (-483)))) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3603 (|#1| |#2| |#1| (-483))) (-15 -3603 (|#1| |#1| |#1| (-483))) (-15 -2852 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1567 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3512 (|#1| |#1| |#1|)) (-15 -1729 ((-85) |#1|)) (-15 -1728 (|#1| |#1| |#1| (-483))) (-15 -2293 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2681 ((-85) |#1| |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3608 (|#1| (-694) |#2|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3394 (|#1| |#1|))) (-608 |#2|) (-1127)) (T -607)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) 153 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1727 (($ $) 157 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 152 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 155 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 145 T ELT)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2364 (($ $) 142 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 141 (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3400 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-3413 (((-483) |#1| $ (-483)) 150 (|has| |#1| (-1012)) ELT) (((-483) |#1| $) 149 (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) 148 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 163 (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) 143 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3512 (($ $ $) 151 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 162 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3528 (($ |#1|) 133 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3603 (($ $ $ (-483)) 138 T ELT) (($ |#1| $ (-483)) 137 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) 94 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-1568 (($ $ (-1144 (-483))) 135 T ELT) (($ $ (-483)) 134 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 154 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 159 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 158 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-608 |#1|) (-113) (-1127)) (T -608)) +((-3528 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1127))))) +(-13 (-1062 |t#1|) (-321 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3528 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-237 |#1|) . T) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T)) +((-3567 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2008 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2008 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3104 (((-694) |#4| |#3|) 18 T ELT)) (-3334 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2311 (((-85) |#4| |#3|) 14 T ELT))) +(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|)) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2008 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3334 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2311 ((-85) |#4| |#3|)) (-15 -3104 ((-694) |#4| |#3|))) (-311) (-13 (-321 |#1|) (-10 -7 (-6 -3990))) (-13 (-321 |#1|) (-10 -7 (-6 -3990))) (-627 |#1| |#2| |#3|)) (T -609)) +((-3104 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3334 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2008 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +((-3567 (((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|))))) (-583 (-583 |#1|)) (-583 (-1177 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-630 |#1|) (-583 (-1177 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-583 (-583 |#1|)) (-1177 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)) 14 T ELT)) (-3104 (((-694) (-630 |#1|) (-1177 |#1|)) 30 T ELT)) (-3334 (((-3 (-1177 |#1|) #1#) (-630 |#1|) (-1177 |#1|)) 24 T ELT)) (-2311 (((-85) (-630 |#1|) (-1177 |#1|)) 27 T ELT))) +(((-610 |#1|) (-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|))) (-15 -3567 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-583 (-583 |#1|)) (-1177 |#1|))) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-630 |#1|) (-583 (-1177 |#1|)))) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-583 (-583 |#1|)) (-583 (-1177 |#1|)))) (-15 -3334 ((-3 (-1177 |#1|) #1#) (-630 |#1|) (-1177 |#1|))) (-15 -2311 ((-85) (-630 |#1|) (-1177 |#1|))) (-15 -3104 ((-694) (-630 |#1|) (-1177 |#1|)))) (-311)) (T -610)) +((-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3334 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *1 (-610 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1177 *5) #1="failed")) (|:| -2008 (-583 (-1177 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1177 *5)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1177 *5))))) +((-2312 (((-2 (|:| |particular| (-3 (-1177 (-347 |#4|)) "failed")) (|:| -2008 (-583 (-1177 (-347 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2312 ((-2 (|:| |particular| (-3 (-1177 (-347 |#4|)) "failed")) (|:| -2008 (-583 (-1177 (-347 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-494) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611)) +((-2312 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 (-347 *8)) "failed")) (|:| -2008 (-583 (-1177 (-347 *8)))))) (-5 *1 (-611 *5 *6 *7 *8))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| |#2| (-494)) ELT)) (-3324 ((|#2| $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#2|))) NIL T ELT) (((-1177 (-630 |#2|)) (-1177 $)) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-1726 (((-1177 $)) 41 T ELT)) (-3327 (($ |#2|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3107 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1700 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1785 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1783 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1177 $)) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1897 (((-1083 (-857 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#2| $) NIL T ELT)) (-1702 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1787 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1720 (((-1083 |#2|) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-1789 (($ (-1177 |#2|)) NIL T ELT) (($ (-1177 |#2|) (-1177 $)) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3104 (((-694) $) NIL (|has| |#2| (-494)) ELT) (((-830)) 42 T ELT)) (-3108 ((|#2| $ (-483) (-483)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3103 (((-694) $) NIL (|has| |#2| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#2| $) NIL (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#2|))) NIL T ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3588 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1786 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1784 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1177 $)) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1901 (((-1083 (-857 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#2| $) NIL T ELT)) (-1703 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1788 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1721 (((-1083 |#2|) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3584 (((-3 $ #1#) $) NIL (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) 27 T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) NIL T ELT)) (-3326 (($ (-583 |#2|)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3325 (((-197 |#1| |#2|) $) NIL T ELT)) (-3322 ((|#2| $) NIL (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3219 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $ (-1177 $)) 30 T ELT)) (-3966 (($ (-1177 |#2|)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT)) (-1889 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1177 $)) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3106 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 40 T ELT)) (-1704 (((-583 (-1177 |#2|))) NIL (|has| |#2| (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2541 (($ (-630 |#2|) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-612 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-358 |#2|)) (-830) (-146)) (T -612)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3243 (((-583 (-1047)) $) 12 T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-613) (-13 (-994) (-10 -8 (-15 -3243 ((-583 (-1047)) $))))) (T -613)) +((-3243 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-613))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) NIL T ELT)) (-3132 (($ $) 62 T ELT)) (-2660 (((-85) $) NIL T ELT)) (-3152 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2315 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2317 (((-85) (-739 |#1|)) 18 T ELT)) (-2316 (($ (-739 |#1|)) 29 T ELT)) (-2507 (((-85) $ $) 36 T ELT)) (-3827 (((-830) $) 43 T ELT)) (-3133 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3726 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3940 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2314 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2313 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 63 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 46 T ELT))) +(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2660 ((-85) $)) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3827 ((-830) $)) (-15 -2507 ((-85) $ $)) (-15 -3940 ((-739 |#1|) $)) (-15 -3940 ((-618 |#1|) $)) (-15 -3726 ((-583 $) (-739 |#1|))) (-15 -2317 ((-85) (-739 |#1|))) (-15 -2316 ($ (-739 |#1|))) (-15 -2315 ((-3 $ "failed") (-739 |#1|))) (-15 -3928 ((-583 |#1|) $)) (-15 -2314 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2313 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614)) +((-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3132 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2315 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5))))) +((-3396 ((|#2| $) 100 T ELT)) (-3791 (($ $) 121 T ELT)) (-3436 (((-85) $ (-694)) 35 T ELT)) (-3793 (($ $) 109 T ELT) (($ $ (-694)) 112 T ELT)) (-3437 (((-85) $) 122 T ELT)) (-3027 (((-583 $) $) 96 T ELT)) (-3023 (((-85) $ $) 92 T ELT)) (-3713 (((-85) $ (-694)) 33 T ELT)) (-2196 (((-483) $) 66 T ELT)) (-2197 (((-483) $) 65 T ELT)) (-3710 (((-85) $ (-694)) 31 T ELT)) (-3521 (((-85) $) 98 T ELT)) (-3792 ((|#2| $) 113 T ELT) (($ $ (-694)) 117 T ELT)) (-2300 (($ $ $ (-483)) 83 T ELT) (($ |#2| $ (-483)) 82 T ELT)) (-2199 (((-583 (-483)) $) 64 T ELT)) (-2200 (((-85) (-483) $) 59 T ELT)) (-3795 ((|#2| $) NIL T ELT) (($ $ (-694)) 108 T ELT)) (-3763 (($ $ (-483)) 125 T ELT)) (-3438 (((-85) $) 124 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2201 (((-583 |#2|) $) 46 T ELT)) (-3794 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1144 (-483))) 79 T ELT) ((|#2| $ (-483)) 57 T ELT) ((|#2| $ (-483) |#2|) 58 T ELT)) (-3025 (((-483) $ $) 91 T ELT)) (-2301 (($ $ (-1144 (-483))) 78 T ELT) (($ $ (-483)) 72 T ELT)) (-3627 (((-85) $) 87 T ELT)) (-3786 (($ $) 105 T ELT)) (-3787 (((-694) $) 104 T ELT)) (-3788 (($ $) 103 T ELT)) (-3524 (($ (-583 |#2|)) 53 T ELT)) (-2887 (($ $) 126 T ELT)) (-3516 (((-583 $) $) 90 T ELT)) (-3024 (((-85) $ $) 89 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-3951 (((-694) $) 39 T ELT))) +(((-615 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -2887 (|#1| |#1|)) (-15 -3763 (|#1| |#1| (-483))) (-15 -3436 ((-85) |#1| (-694))) (-15 -3713 ((-85) |#1| (-694))) (-15 -3710 ((-85) |#1| (-694))) (-15 -3437 ((-85) |#1|)) (-15 -3438 ((-85) |#1|)) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -2201 ((-583 |#2|) |#1|)) (-15 -2200 ((-85) (-483) |#1|)) (-15 -2199 ((-583 (-483)) |#1|)) (-15 -2197 ((-483) |#1|)) (-15 -2196 ((-483) |#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -3786 (|#1| |#1|)) (-15 -3787 ((-694) |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| "last")) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-694))) (-15 -3794 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -3795 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| "first")) (-15 -3795 (|#2| |#1|)) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3024 ((-85) |#1| |#1|)) (-15 -3025 ((-483) |#1| |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| "value")) (-15 -3396 (|#2| |#1|)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-616 |#2|) (-1127)) (T -615)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-2319 (($ $) 135 T ELT)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2318 (((-694) $) 134 T ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-2321 (($ $) 137 T ELT)) (-2322 (((-85) $) 138 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2320 ((|#1| $) 136 T ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-483)) 133 T ELT)) (-3438 (((-85) $) 94 T ELT)) (-2323 (((-85) $) 139 T ELT)) (-2324 (((-85) $) 140 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2887 (($ $) 132 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-616 |#1|) (-113) (-1127)) (T -616)) +((-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2321 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-2887 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127))))) +(-13 (-1062 |t#1|) (-10 -8 (-15 -3400 ($ (-1 (-85) |t#1|) $)) (-15 -3704 ($ (-1 (-85) |t#1|) $)) (-15 -2324 ((-85) $)) (-15 -2323 ((-85) $)) (-15 -2322 ((-85) $)) (-15 -2321 ($ $)) (-15 -2320 (|t#1| $)) (-15 -2319 ($ $)) (-15 -2318 ((-694) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3173 (((-420) $) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 17 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-617) (-13 (-994) (-10 -8 (-15 -3173 ((-420) $)) (-15 -3228 ((-1047) $))))) (T -617)) +((-3173 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-617)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-617))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 15 T ELT)) (-3132 (($ $) 19 T ELT)) (-2660 (((-85) $) 20 T ELT)) (-3152 (((-3 |#1| "failed") $) 23 T ELT)) (-3151 ((|#1| $) 21 T ELT)) (-3793 (($ $) 37 T ELT)) (-3930 (($ $) 25 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2507 (((-85) $ $) 46 T ELT)) (-3827 (((-830) $) 40 T ELT)) (-3133 (($ $) 18 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) 36 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3940 ((-739 |#1|) $)) (-15 -3795 (|#1| $)) (-15 -3133 ($ $)) (-15 -3827 ((-830) $)) (-15 -2507 ((-85) $ $)) (-15 -3930 ($ $)) (-15 -3793 ($ $)) (-15 -2660 ((-85) $)) (-15 -3132 ($ $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -618)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3795 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3132 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))) +((-2333 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2325 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT))) +(((-619 |#1|) (-10 -7 (-15 -2325 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2333 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1012)) (T -619)) +((-2333 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2)))) (-2325 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2))))) +((-2327 ((|#2| |#1| |#2|) 9 T ELT)) (-2326 ((|#1| |#1| |#2|) 8 T ELT))) +(((-620 |#1| |#2|) (-10 -7 (-15 -2326 (|#1| |#1| |#2|)) (-15 -2327 (|#2| |#1| |#2|))) (-1012) (-1012)) (T -620)) +((-2327 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) +((-2328 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2328 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1012) (-1012) (-1012)) (T -621)) +((-2328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)) (-5 *1 (-621 *5 *6 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 22 T ELT)) (-3312 (((-583 (-1128)) $) 20 T ELT)) (-2329 (($ (-583 (-1128)) (-1128)) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 30 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 23 T ELT) (($ (-1027)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-622) (-13 (-994) (-552 (-1128)) (-10 -8 (-15 -3940 ($ (-1027))) (-15 -2329 ($ (-583 (-1128)) (-1128))) (-15 -3312 ((-583 (-1128)) $)) (-15 -3313 ((-1128) $))))) (T -622)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-622)))) (-2329 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1128))) (-5 *3 (-1128)) (-5 *1 (-622)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-622)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-622))))) +((-2333 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2330 (((-1 |#1|) |#1|) 8 T ELT)) (-2332 ((|#1| |#1|) 19 T ELT)) (-2331 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-483)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3940 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT))) +(((-623 |#1|) (-10 -7 (-15 -2330 ((-1 |#1|) |#1|)) (-15 -3940 ((-1 |#1|) |#1|)) (-15 -2331 (|#1| (-1 |#1| |#1|))) (-15 -2331 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-483))) (-15 -2332 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2333 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1012)) (T -623)) +((-2333 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1012)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1012)) (-5 *1 (-623 *4)))) (-2332 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1012)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-483)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1012)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1012)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012)))) (-2330 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012))))) +((-2336 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2335 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3946 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2334 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-624 |#1| |#2|) (-10 -7 (-15 -2334 ((-1 |#2| |#1|) |#2|)) (-15 -2335 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3946 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2336 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1012) (-1012)) (T -624)) +((-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1012)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1012))))) +((-2341 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2337 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2338 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2339 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2340 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2338 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2339 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2340 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2341 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1012) (-1012) (-1012)) (T -625)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1012)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1012)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) +((-3832 (($ (-694) (-694)) 42 T ELT)) (-2346 (($ $ $) 73 T ELT)) (-3408 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3116 (((-85) $) 36 T ELT)) (-2345 (($ $ (-483) (-483)) 84 T ELT)) (-2344 (($ $ (-483) (-483)) 85 T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) 90 T ELT)) (-2348 (($ $) 71 T ELT)) (-3118 (((-85) $) 15 T ELT)) (-2342 (($ $ (-483) (-483) $) 91 T ELT)) (-3782 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) 89 T ELT)) (-3327 (($ (-694) |#2|) 55 T ELT)) (-3119 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-483) (-483))) 53 T ELT)) (-3588 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2347 (($ $ $) 72 T ELT)) (-3460 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3794 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) 88 T ELT)) (-3326 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3117 (((-85) $) 28 T ELT)) (-3940 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3115 (((-85) $) 38 T ELT)) (-3943 (($ $ |#2|) 124 T ELT)) (-3831 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3833 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-483)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-483) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3943 (|#1| |#1| |#2|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| (-483) (-483) |#1|)) (-15 -2343 (|#1| |#1| (-483) (-483) (-483) (-483))) (-15 -2344 (|#1| |#1| (-483) (-483))) (-15 -2345 (|#1| |#1| (-483) (-483))) (-15 -3782 (|#1| |#1| (-583 (-483)) (-583 (-483)) |#1|)) (-15 -3794 (|#1| |#1| (-583 (-483)) (-583 (-483)))) (-15 -3588 ((-583 (-583 |#2|)) |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3408 (|#1| |#3|)) (-15 -3940 (|#1| |#4|)) (-15 -3326 (|#1| (-583 |#1|))) (-15 -3326 (|#1| (-583 |#2|))) (-15 -3327 (|#1| (-694) |#2|)) (-15 -3119 (|#1| (-694) (-694) (-1 |#2| (-483) (-483)))) (-15 -3119 (|#1| (-583 (-583 |#2|)))) (-15 -3832 (|#1| (-694) (-694))) (-15 -3115 ((-85) |#1|)) (-15 -3116 ((-85) |#1|)) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3782 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483)))) (-627 |#2| |#3| |#4|) (-961) (-321 |#2|) (-321 |#2|)) (T -626)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) 103 T ELT)) (-2346 (($ $ $) 92 T ELT)) (-3408 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3116 (((-85) $) 105 T ELT)) (-2345 (($ $ (-483) (-483)) 88 T ELT)) (-2344 (($ $ (-483) (-483)) 87 T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) 86 T ELT)) (-2348 (($ $) 94 T ELT)) (-3118 (((-85) $) 107 T ELT)) (-2342 (($ $ (-483) (-483) $) 85 T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 48 T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) 89 T ELT)) (-1254 (($ $ (-483) |#2|) 46 T ELT)) (-1253 (($ $ (-483) |#3|) 45 T ELT)) (-3327 (($ (-694) |#1|) 100 T ELT)) (-3718 (($) 7 T CONST)) (-3105 (($ $) 72 (|has| |#1| (-257)) ELT)) (-3107 ((|#2| $ (-483)) 50 T ELT)) (-3104 (((-694) $) 71 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2885 (((-583 |#1|) $) 30 T ELT)) (-3103 (((-694) $) 70 (|has| |#1| (-494)) ELT)) (-3102 (((-583 |#3|) $) 69 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) 55 T ELT)) (-3608 (($ (-694) (-694) |#1|) 61 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3321 ((|#1| $) 67 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-3119 (($ (-583 (-583 |#1|))) 102 T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) 101 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3588 (((-583 (-583 |#1|)) $) 91 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ "failed") $) 66 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) 93 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) 60 T ELT)) (-3460 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT) (($ $ (-583 (-483)) (-583 (-483))) 90 T ELT)) (-3326 (($ (-583 |#1|)) 99 T ELT) (($ (-583 $)) 98 T ELT)) (-3117 (((-85) $) 106 T ELT)) (-3322 ((|#1| $) 68 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3106 ((|#3| $ (-483)) 49 T ELT)) (-3940 (($ |#3|) 97 T ELT) (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 104 T ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) 73 (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3833 (($ $ $) 84 T ELT)) (** (($ $ (-694)) 75 T ELT) (($ $ (-483)) 65 (|has| |#1| (-311)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-483) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-627 |#1| |#2| |#3|) (-113) (-961) (-321 |t#1|) (-321 |t#1|)) (T -627)) +((-3118 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3832 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3119 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-3327 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (-3408 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2348 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2347 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-583 (-583 *3))))) (-3794 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3782 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2345 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2344 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2343 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2342 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-494)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-257)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-583 *5)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3991 #1="*"))) (-4 *2 (-961)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3991 #1#))) (-4 *2 (-961)))) (-3584 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-311))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3116 ((-85) $)) (-15 -3115 ((-85) $)) (-15 -3832 ($ (-694) (-694))) (-15 -3119 ($ (-583 (-583 |t#1|)))) (-15 -3119 ($ (-694) (-694) (-1 |t#1| (-483) (-483)))) (-15 -3327 ($ (-694) |t#1|)) (-15 -3326 ($ (-583 |t#1|))) (-15 -3326 ($ (-583 $))) (-15 -3940 ($ |t#3|)) (-15 -3408 ($ |t#2|)) (-15 -3408 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -3588 ((-583 (-583 |t#1|)) $)) (-15 -3794 ($ $ (-583 (-483)) (-583 (-483)))) (-15 -3782 ($ $ (-583 (-483)) (-583 (-483)) $)) (-15 -2345 ($ $ (-483) (-483))) (-15 -2344 ($ $ (-483) (-483))) (-15 -2343 ($ $ (-483) (-483) (-483) (-483))) (-15 -2342 ($ $ (-483) (-483) $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3831 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-483) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-257)) (-15 -3105 ($ $)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3104 ((-694) $)) (-15 -3103 ((-694) $)) (-15 -3102 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3991 "*"))) (PROGN (-15 -3322 (|t#1| $)) (-15 -3321 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3584 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-57 |#1| |#2| |#3|) . T) ((-1127) . T)) +((-3836 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3952 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3952 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3836 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|) (-961) (-321 |#5|) (-321 |#5|) (-627 |#5| |#6| |#7|)) (T -628)) +((-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8))))) +((-3105 ((|#4| |#4|) 90 (|has| |#1| (-257)) ELT)) (-3104 (((-694) |#4|) 92 (|has| |#1| (-494)) ELT)) (-3103 (((-694) |#4|) 94 (|has| |#1| (-494)) ELT)) (-3102 (((-583 |#3|) |#4|) 101 (|has| |#1| (-494)) ELT)) (-2376 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 124 (|has| |#1| (-257)) ELT)) (-3321 ((|#1| |#4|) 52 T ELT)) (-2353 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-494)) ELT)) (-3584 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-311)) ELT)) (-2352 ((|#4| |#4|) 76 (|has| |#1| (-494)) ELT)) (-2350 ((|#4| |#4| |#1| (-483) (-483)) 60 T ELT)) (-2349 ((|#4| |#4| (-483) (-483)) 55 T ELT)) (-2351 ((|#4| |#4| |#1| (-483) (-483)) 65 T ELT)) (-3322 ((|#1| |#4|) 96 T ELT)) (-2516 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-494)) ELT))) +(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3322 (|#1| |#4|)) (-15 -3321 (|#1| |#4|)) (-15 -2349 (|#4| |#4| (-483) (-483))) (-15 -2350 (|#4| |#4| |#1| (-483) (-483))) (-15 -2351 (|#4| |#4| |#1| (-483) (-483))) (IF (|has| |#1| (-494)) (PROGN (-15 -3104 ((-694) |#4|)) (-15 -3103 ((-694) |#4|)) (-15 -3102 ((-583 |#3|) |#4|)) (-15 -2352 (|#4| |#4|)) (-15 -2353 ((-3 |#4| #1="failed") |#4|)) (-15 -2516 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-257)) (PROGN (-15 -3105 (|#4| |#4|)) (-15 -2376 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3584 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -629)) +((-3584 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2376 (*1 *2 *3 *3) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2516 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2353 (*1 *2 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2351 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2350 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2349 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) 63 T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) 22 T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3327 (($ (-694) |#1|) 37 T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 46 (|has| |#1| (-257)) ELT)) (-3107 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3104 (((-694) $) 48 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 68 T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) 50 (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-1177 |#1|)) $) 53 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) 32 T ELT)) (-3608 (($ (-694) (-694) |#1|) 28 T ELT)) (-3109 (((-694) $) 33 T ELT)) (-3321 ((|#1| $) 44 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 10 T ELT)) (-3112 (((-483) $) 11 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 14 T ELT)) (-3111 (((-483) $) 64 T ELT)) (-3119 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) 57 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1177 |#1|)) 69 T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) 42 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 79 (|has| |#1| (-553 (-472))) ELT)) (-3106 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3940 (($ (-1177 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-483)) 61 (|has| |#1| (-311)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) NIL T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-630 |#1|) (-13 (-627 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 -3326 ($ (-1177 |#1|))) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3584 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630)) +((-3584 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-311)) (-4 *2 (-961)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))) +((-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2355 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2356 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2357 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2354 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT))) +(((-631 |#1|) (-10 -7 (-15 -2354 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2355 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2356 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2356 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2357 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2360 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2357 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2356 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2356 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2355 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +((-3152 (((-3 |#1| "failed") $) 18 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2361 (($) 7 T CONST)) (-2362 (($ |#1|) 8 T ELT)) (-3940 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3560 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2361)) 11 T ELT)) (-3566 ((|#1| $) 15 T ELT))) +(((-632 |#1|) (-13 (-1173) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2362 ($ |#1|)) (-15 -3560 ((-85) $ (|[\|\|]| |#1|))) (-15 -3560 ((-85) $ (|[\|\|]| -2361))) (-15 -3566 (|#1| $)) (-15 -2361 ($) -3946))) (-552 (-772))) (T -632)) +((-2362 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3566 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2361 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) +((-3735 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3733 ((|#1| (-630 |#2|)) 9 T ELT)) (-3734 (((-630 |#1|) (-630 |#2|)) 18 T ELT))) +(((-633 |#1| |#2|) (-10 -7 (-15 -3733 (|#1| (-630 |#2|))) (-15 -3734 ((-630 |#1|) (-630 |#2|))) (-15 -3735 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-494) (-904 |#1|)) (T -633)) +((-3735 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-633 *2 *4))))) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-634 |#1|) (-113) (-1012)) (T -634)) +((-3603 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1012)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1012)))) (-2363 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1943 (-694)))))))) +(-13 (-193 |t#1|) (-10 -8 (-15 -3603 ($ |t#1| $ (-694))) (-15 -2364 ($ $)) (-15 -2363 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1943 (-694)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2367 (((-583 |#1|) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) (-483)) 66 T ELT)) (-2365 ((|#1| |#1| (-483)) 63 T ELT)) (-3139 ((|#1| |#1| |#1| (-483)) 46 T ELT)) (-3726 (((-583 |#1|) |#1| (-483)) 49 T ELT)) (-2368 ((|#1| |#1| (-483) |#1| (-483)) 40 T ELT)) (-2366 (((-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) |#1| (-483)) 62 T ELT))) +(((-635 |#1|) (-10 -7 (-15 -3139 (|#1| |#1| |#1| (-483))) (-15 -2365 (|#1| |#1| (-483))) (-15 -3726 ((-583 |#1|) |#1| (-483))) (-15 -2366 ((-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) |#1| (-483))) (-15 -2367 ((-583 |#1|) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) (-483))) (-15 -2368 (|#1| |#1| (-483) |#1| (-483)))) (-1153 (-483))) (T -635)) +((-2368 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3726 *5) (|:| -3942 (-483))))) (-5 *4 (-483)) (-4 *5 (-1153 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -3942 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))) (-3139 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3))))) +((-2372 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2369 (((-1045 (-179)) (-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 53 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 55 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 57 T ELT)) (-2371 (((-1045 (-179)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-583 (-221))) NIL T ELT)) (-2370 (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 58 T ELT))) +(((-636) (-10 -7 (-15 -2369 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2369 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2369 ((-1045 (-179)) (-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2370 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2371 ((-1045 (-179)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2372 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636)) +((-2372 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2371 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2370 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2369 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2369 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2369 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636))))) +((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|)) 87 T ELT) (((-345 |#4|) |#4|) 270 T ELT))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|)) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|)))) (-756) (-717) (-298) (-861 |#3| |#2| |#1|)) (T -637)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2375 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3105 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2374 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2373 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2376 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 84 T ELT))) +(((-638 |#1|) (-10 -7 (-15 -2373 ((-630 |#1|) (-630 |#1|))) (-15 -3105 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2374 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2375 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2376 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|))) (-257)) (T -638)) +((-2376 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-638 *3)) (-4 *3 (-257)))) (-2375 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-3105 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3))))) +((-2382 (((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)) 19 T ELT)) (-2377 (((-1 |#4| |#2| |#3|) (-1088)) 12 T ELT))) +(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2377 ((-1 |#4| |#2| |#3|) (-1088))) (-15 -2382 ((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)))) (-553 (-472)) (-1127) (-1127) (-1127)) (T -639)) +((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127))))) +((-2378 (((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1088)) 48 T ELT))) +(((-640 |#1|) (-10 -7 (-15 -2378 ((-1 (-179) (-179)) |#1| (-1088))) (-15 -2378 ((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)))) (-553 (-472))) (T -640)) +((-2378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-472))))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-472)))))) +((-2379 (((-1088) |#1| (-1088) (-583 (-1088))) 10 T ELT) (((-1088) |#1| (-1088) (-1088) (-1088)) 13 T ELT) (((-1088) |#1| (-1088) (-1088)) 12 T ELT) (((-1088) |#1| (-1088)) 11 T ELT))) +(((-641 |#1|) (-10 -7 (-15 -2379 ((-1088) |#1| (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-1088) (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-583 (-1088))))) (-553 (-472))) (T -641)) +((-2379 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1088))) (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472)))))) +((-2380 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-642 |#1| |#2|) (-10 -7 (-15 -2380 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1127) (-1127)) (T -642)) +((-2380 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1127)) (-4 *4 (-1127))))) +((-2381 (((-1 |#3| |#2|) (-1088)) 11 T ELT)) (-2382 (((-1 |#3| |#2|) |#1| (-1088)) 21 T ELT))) +(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2381 ((-1 |#3| |#2|) (-1088))) (-15 -2382 ((-1 |#3| |#2|) |#1| (-1088)))) (-553 (-472)) (-1127) (-1127)) (T -643)) +((-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) +((-2385 (((-3 (-583 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1177 (-583 (-1083 |#3|))) |#3|) 92 T ELT)) (-2384 (((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2383 (((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1083 |#4|)) (-1177 (-583 (-1083 |#3|))) |#3|) 48 T ELT))) +(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2383 ((-3 (-583 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1083 |#4|)) (-1177 (-583 (-1083 |#3|))) |#3|)) (-15 -2384 ((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2385 ((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1177 (-583 (-1083 |#3|))) |#3|))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -644)) +((-2385 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1177 (-583 (-1083 *10)))) (-4 *12 (-756)) (-4 *10 (-257)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2384 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1083 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-257)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1083 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2383 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1177 (-583 (-1083 *8)))) (-4 *10 (-756)) (-4 *8 (-257)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 54 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 52 T ELT)) (-2816 (((-694) $) 56 T ELT)) (-3169 ((|#1| $) 55 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 (((-694) $) 57 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 51 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ (-694)) 53 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 59 T ELT) (($ |#1| $) 58 T ELT))) +(((-645 |#1|) (-113) (-961)) (T -645)) +((-3942 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))) +(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3942 ((-694) $)) (-15 -2816 ((-694) $)) (-15 -3169 (|t#1| $)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ (-694))) (-15 -2889 ($ |t#1| (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3952 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 (|#6| (-1 |#4| |#1|) |#3|))) (-494) (-1153 |#1|) (-1153 (-347 |#2|)) (-494) (-1153 |#4|) (-1153 (-347 |#5|))) (T -646)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5)) (-4 *2 (-1153 (-347 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1153 (-347 *6))) (-4 *8 (-1153 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2386 (((-1071) (-772)) 36 T ELT)) (-3611 (((-1183) (-1071)) 29 T ELT)) (-2388 (((-1071) (-772)) 26 T ELT)) (-2387 (((-1071) (-772)) 27 T ELT)) (-3940 (((-772) $) NIL T ELT) (((-1071) (-772)) 25 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-647) (-13 (-1012) (-10 -7 (-15 -3940 ((-1071) (-772))) (-15 -2388 ((-1071) (-772))) (-15 -2387 ((-1071) (-772))) (-15 -2386 ((-1071) (-772))) (-15 -3611 ((-1183) (-1071)))))) (T -647)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-647))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3836 (($ |#1| |#2|) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 ((|#2| $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-311) (-10 -8 (-15 -2610 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3836 ($ |#1| |#2|)) (-15 -2398 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648)) +((-2610 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3836 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 55 (|has| |#1| (-317)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-2395 ((|#2| |#2|) 51 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 72 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3836 (($ |#2|) 49 T ELT)) (-3461 (((-3 $ #1#) $) 98 T ELT)) (-2990 (($) 59 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2391 (((-869 $)) 89 T ELT)) (-1621 (($ $ |#1| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 86 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2610 ((|#2|) 52 T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 48 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) 35 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2389 (($ $) 88 (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 99 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 39 T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2390 (((-869 $)) 43 T ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 69 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-993)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) 71 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 26 T CONST)) (-2394 (((-1177 |#1|) $) 84 T ELT)) (-2393 (($ (-1177 |#1|)) 58 T ELT)) (-2662 (($) 9 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-2392 (((-1177 |#1|) $) NIL T ELT)) (-3052 (((-85) $ $) 77 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-649 |#1| |#2|) (-13 (-1153 |#1|) (-555 |#2|) (-10 -8 (-15 -2395 (|#2| |#2|)) (-15 -2610 (|#2|)) (-15 -3836 ($ |#2|)) (-15 -3075 (|#2| $)) (-15 -2394 ((-1177 |#1|) $)) (-15 -2393 ($ (-1177 |#1|))) (-15 -2392 ((-1177 |#1|) $)) (-15 -2391 ((-869 $))) (-15 -2390 ((-869 $))) (IF (|has| |#1| (-298)) (-15 -2389 ($ $)) |%noBranch|) (IF (|has| |#1| (-317)) (-6 (-317)) |%noBranch|))) (-961) (-1153 |#1|)) (T -649)) +((-2395 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))) (-2610 (*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3836 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2392 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2391 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2390 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2389 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1153 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2397 ((|#2| $) 12 T ELT)) (-3524 (($ |#1| |#2|) 16 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) 15 T ELT) (((-2 (|:| -2396 |#1|) (|:| -2397 |#2|)) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 11 T ELT))) +(((-650 |#1| |#2| |#3|) (-13 (-756) (-427 (-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) (-10 -8 (-15 -2397 (|#2| $)) (-15 -2396 (|#1| $)) (-15 -3524 ($ |#1| |#2|)))) (-756) (-1012) (-1 (-85) (-2 (|:| -2396 |#1|) (|:| -2397 |#2|)) (-2 (|:| -2396 |#1|) (|:| -2397 |#2|)))) (T -650)) +((-2397 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *2)) (-2 (|:| -2396 *3) (|:| -2397 *2)))))) (-2396 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) (-2 (|:| -2396 *2) (|:| -2397 *3)))))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) (-2 (|:| -2396 *2) (|:| -2397 *3))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 66 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3461 (((-3 $ #1#) $) 102 T ELT)) (-2512 ((|#2| (-86) |#2|) 93 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2511 (($ |#1| (-309 (-86))) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2513 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2514 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3794 ((|#2| $ |#2|) 33 T ELT)) (-2515 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3940 (((-772) $) 73 T ELT) (($ (-483)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 37 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2516 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 9 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -2515 (|#1| |#1|))) |%noBranch|) (-15 -2514 ($ $ (-1 |#2| |#2|))) (-15 -2513 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2512 (|#2| (-86) |#2|)) (-15 -2511 ($ |#1| (-309 (-86)))))) (-961) (-590 |#1|)) (T -651)) +((-2516 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2515 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 33 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ |#1| |#2|) 25 T ELT)) (-3461 (((-3 $ #1#) $) 51 T ELT)) (-2406 (((-85) $) 35 T ELT)) (-2610 ((|#2| $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 52 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) 50 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-483)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3121 (((-694)) 28 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-2662 (($) 30 T CONST)) (-3052 (((-85) $ $) 41 T ELT)) (-3831 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3833 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2610 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3836 ($ |#1| |#2|)) (-15 -2398 ((-3 $ #1="failed") $ $)) (-15 -3461 ((-3 $ #1#) $)) (-15 -2480 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652)) +((-3461 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2610 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3836 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-654 |#1|) (-113) (-146)) (T -654)) +NIL +(-13 (-82 |t#1| |t#1|) (-582 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2437 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3841 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2399 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 39 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 9 T CONST)) (-3052 (((-85) $ $) 48 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-655 |#1|) (-13 (-410) (-10 -8 (-15 -2399 ($ |#1| |#1| |#1| |#1|)) (-15 -2437 ($ |#1|)) (-15 -3841 ($ |#1|)) (-15 -3461 ($)) (-15 -2437 ($ $ |#1|)) (-15 -3841 ($ $ |#1|)) (-15 -3461 ($ $)) (-15 -3762 (|#1| $ |#1|)) (-15 -3762 ((-743 |#1|) $ (-743 |#1|))))) (-311)) (T -655)) +((-2399 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-2437 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3841 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3461 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-2437 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3461 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-311)) (-5 *1 (-655 *3))))) +((-2403 (($ $ (-830)) 19 T ELT)) (-2402 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT))) +(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2402 (|#1| |#1| (-830))) (-15 -2403 (|#1| |#1| (-830)))) (-657)) (T -656)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-2403 (($ $ (-830)) 19 T ELT)) (-2402 (($ $ (-830)) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-657) (-113)) (T -657)) +((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))) +(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 -2403 ($ $ (-830))) (-15 -2402 ($ $ (-830))) (-15 ** ($ $ (-830))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2403 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2406 (((-85) $) 10 T ELT)) (-2402 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT))) +(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2402 (|#1| |#1| (-694))) (-15 -2403 (|#1| |#1| (-694))) (-15 -2406 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2402 (|#1| |#1| (-830))) (-15 -2403 (|#1| |#1| (-830)))) (-659)) (T -658)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-2400 (((-3 $ "failed") $) 22 T ELT)) (-2403 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3461 (((-3 $ "failed") $) 24 T ELT)) (-2406 (((-85) $) 28 T ELT)) (-2401 (((-3 $ "failed") $) 23 T ELT)) (-2402 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-659) (-113)) (T -659)) +((-2662 (*1 *1) (-4 *1 (-659))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3461 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2401 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2400 (*1 *1 *1) (|partial| -4 *1 (-659)))) +(-13 (-657) (-10 -8 (-15 -2662 ($) -3946) (-15 -2406 ((-85) $)) (-15 -2403 ($ $ (-694))) (-15 -2402 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3461 ((-3 $ "failed") $)) (-15 -2401 ((-3 $ "failed") $)) (-15 -2400 ((-3 $ "failed") $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1012) . T) ((-1127) . T)) +((-3131 (((-694)) 39 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3836 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) 49 T ELT)) (-3461 (((-3 $ #1#) $) 69 T ELT)) (-2990 (($) 43 T ELT)) (-3127 ((|#2| $) 21 T ELT)) (-2405 (($) 18 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2404 (((-630 |#2|) (-1177 $) (-1 |#2| |#2|)) 64 T ELT)) (-3966 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2445 ((|#3| $) 36 T ELT)) (-2008 (((-1177 $)) 33 T ELT))) +(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2990 (|#1|)) (-15 -3131 ((-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2404 ((-630 |#2|) (-1177 |#1|) (-1 |#2| |#2|))) (-15 -3836 ((-3 |#1| #1="failed") (-347 |#3|))) (-15 -3966 (|#1| |#3|)) (-15 -3836 (|#1| |#3|)) (-15 -2405 (|#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 (|#3| |#1|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -2008 ((-1177 |#1|))) (-15 -2445 (|#3| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3461 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1153 |#2|)) (T -660)) +((-3131 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (|has| |#1| (-311)) ELT)) (-2059 (($ $) 113 (|has| |#1| (-311)) ELT)) (-2057 (((-85) $) 115 (|has| |#1| (-311)) ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 132 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 133 (|has| |#1| (-311)) ELT)) (-1605 (((-85) $ $) 123 (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 106 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 188 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) 127 (|has| |#1| (-311)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 182 T ELT) (((-630 |#1|) (-630 $)) 181 T ELT)) (-3836 (($ |#2|) 176 T ELT) (((-3 $ "failed") (-347 |#2|)) 173 (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 126 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| |#1| (-311)) ELT)) (-2829 (($) 167 (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) 134 (|has| |#1| (-311)) ELT)) (-3766 (((-830) $) 170 (|has| |#1| (-298)) ELT) (((-743 (-830)) $) 156 (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-3439 (((-632 $) $) 160 (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| |#1| (-311)) ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 180 T ELT) (((-630 |#1|) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (|has| |#1| (-311)) ELT) (($ $ $) 118 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3440 (($) 161 (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 117 (|has| |#1| (-311)) ELT) (($ $ $) 116 (|has| |#1| (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| |#1| (-298)) ELT)) (-3726 (((-345 $) $) 131 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ "failed") $ $) 111 (|has| |#1| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) 124 (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| |#1| (-311)) ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1762 (((-694) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-694)) 154 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 152 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088) (-694)) 147 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088))) 146 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088)) 144 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-311)) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3180 ((|#2|) 177 T ELT)) (-1671 (($) 166 (|has| |#1| (-298)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT) ((|#2| $) 193 T ELT) (($ |#2|) 175 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (|has| |#1| (-298)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ $) 110 (|has| |#1| (-311)) ELT) (($ (-347 (-483))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (($ $) 162 (|has| |#1| (-298)) ELT) (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2058 (((-85) $ $) 114 (|has| |#1| (-311)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-694)) 155 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 153 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088) (-694)) 150 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088))) 149 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088)) 145 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 141 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 140 (|has| |#1| (-311)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-311)) ELT))) +(((-661 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -661)) +((-2405 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1153 *2)))) (-3180 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3836 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) (-3966 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3836 (*1 *1 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-311)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *5))))) +(-13 (-350 |t#1| |t#2|) (-146) (-553 |t#2|) (-352 |t#1|) (-326 |t#1|) (-10 -8 (-15 -2405 ($)) (-15 -3180 (|t#2|)) (-15 -3836 ($ |t#2|)) (-15 -3966 ($ |t#2|)) (-15 -3075 (|t#2| $)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-311)) (-6 (-184 |t#1|)) (-15 -3836 ((-3 $ "failed") (-347 |t#2|))) (-15 -2404 ((-630 |t#1|) (-1177 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-184 |#1|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-189) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-225 |#1|) |has| |#1| (-311)) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-245) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| |#2|) . T) ((-350 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-494) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))))) ((-809 (-1088)) -12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) ((-811 (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))))) ((-832) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-298)) ((-1127) . T) ((-1132) OR (|has| |#1| (-298)) (|has| |#1| (-311)))) +((-3718 (($) 11 T CONST)) (-3461 (((-3 $ "failed") $) 14 T ELT)) (-2406 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT))) +(((-662 |#1|) (-10 -7 (-15 -3461 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2406 ((-85) |#1|)) (-15 -3718 (|#1|) -3946) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-663) (-113)) (T -663)) +((-2662 (*1 *1) (-4 *1 (-663))) (-3718 (*1 *1) (-4 *1 (-663))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3461 (*1 *1 *1) (|partial| -4 *1 (-663)))) +(-13 (-1024) (-10 -8 (-15 -2662 ($) -3946) (-15 -3718 ($) -3946) (-15 -2406 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3461 ((-3 $ "failed") $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2408 ((|#1| $) 13 T ELT)) (-2407 (($ (-1 |#1| |#1| |#1|) |#1|) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) 11 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-664 |#1|) (-13 (-665 |#1|) (-1012) (-10 -8 (-15 -2407 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664)) +((-2407 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) +((-2408 ((|#1| $) 8 T ELT)) (-3794 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-665 |#1|) (-113) (-72)) (T -665)) +((-2408 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) +(-13 (-1022 |t#1|) (-10 -8 (-15 -2408 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1022 |#1|) . T) ((-1127) . T)) +((-2409 (((-2 (|:| -3085 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3412 (((-2 (|:| -3085 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2410 ((|#2| (-347 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3429 (((-2 (|:| |poly| |#2|) (|:| -3085 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-666 |#1| |#2|) (-10 -7 (-15 -3412 ((-2 (|:| -3085 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2409 ((-2 (|:| -3085 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2410 (|#2| (-347 |#2|) (-1 |#2| |#2|))) (-15 -3429 ((-2 (|:| |poly| |#2|) (|:| -3085 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -666)) +((-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3085 (-347 *6)) (|:| |special| (-347 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-347 *6)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-311)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3085 (-345 *3)) (|:| |special| (-345 *3)))) (-5 *1 (-666 *5 *3)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3085 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))) +((-2411 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3952 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3952 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2411 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667)) +((-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) +((-3952 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3952 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))) +((-3726 (((-345 |#4|) |#4|) 42 T ELT))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-257) (-861 (-857 |#3|) |#1| |#2|)) (T -669)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-468 (-773 |#1|)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-468 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-468 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-468 (-773 |#1|)) (-468 (-773 |#1|))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-468 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-494)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-468 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-670 |#1| |#2|) (-861 |#2| (-468 (-773 |#1|)) (-773 |#1|)) (-583 (-1088)) (-961)) (T -670)) +NIL +((-2412 (((-2 (|:| -2479 (-857 |#3|)) (|:| -2054 (-857 |#3|))) |#4|) 14 T ELT)) (-2982 ((|#4| |#4| |#2|) 33 T ELT)) (-2415 ((|#4| (-347 (-857 |#3|)) |#2|) 62 T ELT)) (-2414 ((|#4| (-1083 (-857 |#3|)) |#2|) 74 T ELT)) (-2413 ((|#4| (-1083 |#4|) |#2|) 49 T ELT)) (-2981 ((|#4| |#4| |#2|) 52 T ELT)) (-3726 (((-345 |#4|) |#4|) 40 T ELT))) +(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2412 ((-2 (|:| -2479 (-857 |#3|)) (|:| -2054 (-857 |#3|))) |#4|)) (-15 -2981 (|#4| |#4| |#2|)) (-15 -2413 (|#4| (-1083 |#4|) |#2|)) (-15 -2982 (|#4| |#4| |#2|)) (-15 -2414 (|#4| (-1083 (-857 |#3|)) |#2|)) (-15 -2415 (|#4| (-347 (-857 |#3|)) |#2|)) (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))) (-494) (-861 (-347 (-857 |#3|)) |#1| |#2|)) (T -671)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *6 (-494)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-347 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-857 *6))) (-4 *6 (-494)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))) (-2982 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)))) (-2981 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-2 (|:| -2479 (-857 *6)) (|:| -2054 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5))))) +((-3726 (((-345 |#4|) |#4|) 54 T ELT))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-756) (-13 (-257) (-120)) (-861 (-347 |#3|) |#1| |#2|)) (T -672)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-347 *6) *4 *5))))) +((-3952 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT))) +(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 36 T ELT)) (-3768 (((-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))) $) 37 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) 22 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3151 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3461 (((-3 $ #1#) $) 83 T ELT)) (-2990 (($) 48 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 70 T ELT)) (-2817 (((-583 $) $) 52 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) 17 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2006 (((-830) $) 43 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2890 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3169 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 35 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 96 T ELT) (($ (-483)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|)))) 11 T ELT)) (-3811 (((-583 |#1|) $) 54 T ELT)) (-3671 ((|#1| $ |#2|) 114 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 12 T CONST)) (-2662 (($) 44 T CONST)) (-3052 (((-85) $ $) 104 T ELT)) (-3831 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2889 ($ |#1| |#2|)) (-15 -3671 (|#1| $ |#2|)) (-15 -3940 ($ (-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))))) (-15 -3768 ((-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))) $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (-15 -3931 ((-85) $)) (-15 -3811 ((-583 |#1|) $)) (-15 -2817 ((-583 $) $)) (-15 -2416 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2890 (|#2| $)) (-15 -3169 (|#1| $)) (-15 -3953 ($ $))) |%noBranch|))) (-961) (-663)) (T -674)) +((-2889 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2890 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3169 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3229 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3231 (($ $ $) 99 T ELT)) (-3230 (((-85) $ $) 107 T ELT)) (-3234 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2364 (($ $) 88 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 71 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT) (($ |#1| $ (-483)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 81 T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $ (-483)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 84 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 106 T ELT)) (-2417 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2604 (((-583 |#1|) $) 38 T ELT)) (-3240 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 97 T ELT)) (-1271 ((|#1| $) 63 T ELT)) (-3603 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1272 ((|#1| $) 62 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 57 T ELT)) (-3559 (($) 14 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 56 T ELT)) (-3232 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1463 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 69 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 82 T ELT)) (-3966 (((-472) $) 36 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 22 T ELT)) (-3940 (((-772) $) 50 T ELT)) (-3235 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 |#1|)) 24 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 103 T ELT)) (-3951 (((-694) $) 68 (|has| $ (-6 -3989)) ELT))) +(((-675 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -2417 ($)) (-15 -2417 ($ |#1|)) (-15 -2417 ($ (-583 |#1|))) (-15 -2604 ((-583 |#1|) $)) (-15 -3400 ($ |#1| $ (-483))) (-15 -3400 ($ (-1 (-85) |#1|) $ (-483))) (-15 -3399 ($ |#1| $ (-483))) (-15 -3399 ($ (-1 (-85) |#1|) $ (-483))))) (-1012)) (T -675)) +((-2417 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-2417 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-675 *3)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1012)))) (-3400 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-3400 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4)))) (-3399 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-3399 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4))))) +((-2564 (((-85) $ $) 19 T ELT)) (-3229 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3231 (($ $ $) 77 T ELT)) (-3230 (((-85) $ $) 78 T ELT)) (-3234 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 69 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 74 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-3232 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-3235 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-676 |#1|) (-113) (-1012)) (T -676)) +NIL +(-13 (-634 |t#1|) (-1010 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-634 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2418 (((-1183) (-1071)) 8 T ELT))) +(((-677) (-10 -7 (-15 -2418 ((-1183) (-1071))))) (T -677)) +((-2418 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-677))))) +((-2419 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT))) +(((-678 |#1|) (-10 -7 (-15 -2419 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678)) +((-2419 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#2|) $) 157 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 150 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 149 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 147 (|has| |#1| (-494)) ELT)) (-3486 (($ $) 106 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 89 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 88 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 105 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 90 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) 104 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 91 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 141 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 119 T ELT) (((-857 |#1|) $ (-694) (-694)) 118 T ELT)) (-2888 (((-85) $) 158 T ELT)) (-3621 (($) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ |#2|) 121 T ELT) (((-694) $ |#2| (-694)) 120 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 87 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) 139 T ELT)) (-2889 (($ $ (-583 |#2|) (-583 (-468 |#2|))) 156 T ELT) (($ $ |#2| (-468 |#2|)) 155 T ELT) (($ |#1| (-468 |#2|)) 140 T ELT) (($ $ |#2| (-694)) 123 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 122 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3936 (($ $) 113 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 136 T ELT)) (-3169 ((|#1| $) 135 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3806 (($ $ |#2|) 117 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ (-694)) 124 T ELT)) (-3460 (((-3 $ "failed") $ $) 151 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 114 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ |#2| $) 132 T ELT) (($ $ (-583 |#2|) (-583 $)) 131 T ELT) (($ $ (-583 (-248 $))) 130 T ELT) (($ $ (-248 $)) 129 T ELT) (($ $ $ $) 128 T ELT) (($ $ (-583 $) (-583 $)) 127 T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) 50 T ELT) (($ $ |#2| (-694)) 49 T ELT) (($ $ (-583 |#2|)) 48 T ELT) (($ $ |#2|) 46 T ELT)) (-3942 (((-468 |#2|) $) 137 T ELT)) (-3489 (($ $) 103 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 92 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 93 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 101 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 94 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 159 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 154 (|has| |#1| (-146)) ELT) (($ $) 152 (|has| |#1| (-494)) ELT) (($ (-347 (-483))) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3671 ((|#1| $ (-468 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 126 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 125 T ELT)) (-2698 (((-632 $) $) 153 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 100 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 148 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 111 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 99 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 110 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 98 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) 109 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 97 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 96 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 107 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 95 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) 53 T ELT) (($ $ |#2| (-694)) 52 T ELT) (($ $ (-583 |#2|)) 51 T ELT) (($ $ |#2|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 143 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ $) 115 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 86 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 146 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 134 T ELT) (($ $ |#1|) 133 T ELT))) +(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679)) +((-3671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3766 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3806 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-347 (-483))))))) +(-13 (-809 |t#2|) (-886 |t#1| (-468 |t#2|) |t#2|) (-452 |t#2| $) (-259 $) (-10 -8 (-15 -3671 ($ $ |t#2| (-694))) (-15 -3671 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3763 ($ $ (-694))) (-15 -2889 ($ $ |t#2| (-694))) (-15 -2889 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3766 ((-694) $ |t#2|)) (-15 -3766 ((-694) $ |t#2| (-694))) (-15 -3808 ((-857 |t#1|) $ (-694))) (-15 -3808 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ |t#2|)) (-6 (-915)) (-6 (-1113))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-468 |#2|)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-245) |has| |#1| (-494)) ((-259 $) . T) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-452 |#2| $) . T) ((-452 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-468 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T)) +((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|)) 30 T ELT) (((-345 |#4|) |#4|) 26 T ELT))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|)) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|)))) (-756) (-717) (-13 (-257) (-120)) (-861 |#3| |#2| |#1|)) (T -680)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2422 (((-345 |#4|) |#4| |#2|) 142 T ELT)) (-2420 (((-345 |#4|) |#4|) NIL T ELT)) (-3965 (((-345 (-1083 |#4|)) (-1083 |#4|)) 129 T ELT) (((-345 |#4|) |#4|) 52 T ELT)) (-2424 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 |#4|)) (|:| -2397 (-483)))))) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2428 (((-1083 |#3|) (-1083 |#3|) (-483)) 169 T ELT)) (-2427 (((-583 (-694)) (-1083 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3075 (((-3 (-583 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2425 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2423 (((-2 (|:| -2000 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483)) 72 T ELT)) (-2421 (((-483) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) 165 T ELT)) (-2426 ((|#4| (-483) (-345 |#4|)) 73 T ELT)) (-3351 (((-85) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) NIL T ELT))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 ((-345 |#4|) |#4|)) (-15 -3965 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2420 ((-345 |#4|) |#4|)) (-15 -2421 ((-483) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))))) (-15 -2422 ((-345 |#4|) |#4| |#2|)) (-15 -2423 ((-2 (|:| -2000 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483))) (-15 -2424 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 |#4|)) (|:| -2397 (-483)))))) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2425 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2426 (|#4| (-483) (-345 |#4|))) (-15 -3351 ((-85) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))))) (-15 -3075 ((-3 (-583 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2427 ((-583 (-694)) (-1083 |#4|) (-583 |#2|) (-694))) (-15 -2428 ((-1083 |#3|) (-1083 |#3|) (-483)))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -681)) +((-2428 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-257)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3075 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-257)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1083 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-3351 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-345 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-257)))) (-2425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 *8)) (|:| -2397 (-483))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 *9)) (|:| -2397 (-483))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-483)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2000 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-2422 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2420 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) +((-2429 (($ $ (-830)) 17 T ELT))) +(((-682 |#1| |#2|) (-10 -7 (-15 -2429 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2403 (($ $ (-830)) 36 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-683 |#1|) (-113) (-146)) (T -683)) +((-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) +(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2429 ($ $ (-830))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2431 (($ $ $) 10 T ELT)) (-2432 (($ $ $ $) 9 T ELT)) (-2430 (($ $ $) 12 T ELT))) +(((-684 |#1|) (-10 -7 (-15 -2430 (|#1| |#1| |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1| |#1|))) (-685)) (T -684)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2403 (($ $ (-830)) 36 T ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-685) (-113)) (T -685)) +((-2432 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2431 (*1 *1 *1 *1) (-4 *1 (-685))) (-2430 (*1 *1 *1 *1) (-4 *1 (-685)))) +(-13 (-21) (-657) (-10 -8 (-15 -2432 ($ $ $ $)) (-15 -2431 ($ $ $)) (-15 -2430 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-657) . T) ((-1012) . T) ((-1127) . T)) +((-3940 (((-772) $) NIL T ELT) (($ (-483)) 10 T ELT))) +(((-686 |#1|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-687)) (T -686)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2400 (((-3 $ #1="failed") $) 48 T ELT)) (-2403 (($ $ (-830)) 36 T ELT) (($ $ (-694)) 43 T ELT)) (-3461 (((-3 $ #1#) $) 46 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2401 (((-3 $ #1#) $) 47 T ELT)) (-2402 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 40 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 41 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-687) (-113)) (T -687)) +((-3121 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-687))))) +(-13 (-685) (-659) (-10 -8 (-15 -3121 ((-694)) -3946) (-15 -3940 ($ (-483))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1012) . T) ((-1127) . T)) +((-2434 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-347 (-483)))) |#1|) 33 T ELT)) (-2433 (((-583 (-142 |#1|)) (-630 (-142 (-347 (-483)))) |#1|) 23 T ELT)) (-2445 (((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))) (-1088)) 20 T ELT) (((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483))))) 19 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -2445 ((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))))) (-15 -2445 ((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))) (-1088))) (-15 -2433 ((-583 (-142 |#1|)) (-630 (-142 (-347 (-483)))) |#1|)) (-15 -2434 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-347 (-483)))) |#1|))) (-13 (-311) (-755))) (T -688)) +((-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *4 (-1088)) (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-311) (-755))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755)))))) +((-2612 (((-148 (-483)) |#1|) 27 T ELT))) +(((-689 |#1|) (-10 -7 (-15 -2612 ((-148 (-483)) |#1|))) (-344)) (T -689)) +((-2612 (*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-689 *3)) (-4 *3 (-344))))) +((-2538 ((|#1| |#1| |#1|) 28 T ELT)) (-2539 ((|#1| |#1| |#1|) 27 T ELT)) (-2528 ((|#1| |#1| |#1|) 38 T ELT)) (-2536 ((|#1| |#1| |#1|) 33 T ELT)) (-2537 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2544 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 26 T ELT))) +(((-690 |#1| |#2|) (-10 -7 (-15 -2544 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|))) (-645 |#2|) (-311)) (T -690)) +((-2528 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2536 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2537 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2538 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2539 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2544 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))) +((-2551 (((-632 (-1136)) $ (-1136)) 27 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 26 T ELT)) (-2550 (((-694) $ (-102)) 28 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 25 T ELT)) (-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-2435 (((-85) $) 32 T ELT)) (-2436 (((-632 $) |#1| (-865)) 33 T ELT)) (-1697 (($ $) 6 T ELT))) +(((-691 |#1|) (-113) (-1012)) (T -691)) +((-2436 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1012)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(-13 (-511) (-10 -8 (-15 -2436 ((-632 $) |t#1| (-865))) (-15 -2435 ((-85) $)))) +(((-147) . T) ((-464) . T) ((-511) . T) ((-770) . T)) +((-3913 (((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))) (-483)) 72 T ELT)) (-3912 (((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483))))) 70 T ELT)) (-3751 (((-483)) 86 T ELT))) +(((-692 |#1| |#2|) (-10 -7 (-15 -3751 ((-483))) (-15 -3912 ((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))))) (-15 -3913 ((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))) (-483)))) (-1153 (-483)) (-350 (-483) |#1|)) (T -692)) +((-3913 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3912 (*1 *2) (-12 (-4 *3 (-1153 (-483))) (-5 *2 (-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-350 (-483) *3)))) (-3751 (*1 *2) (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-692 *3 *4)) (-4 *4 (-350 *2 *3))))) +((-2504 (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088))) 18 T ELT)) (-3567 (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088))) 20 T ELT))) +(((-693 |#1|) (-10 -7 (-15 -2504 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2504 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))))) (-494)) (T -693)) +((-3567 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2479 (($ $ $) 10 T ELT)) (-1309 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2437 (($ $ (-483)) 11 T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 6 T CONST)) (-2662 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2559 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -3139 ($ $ $)) (-15 -2875 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3460 ((-3 $ "failed") $ $)) (-15 -2437 ($ $ (-483))) (-15 -2990 ($ $)) (-6 (-3991 "*"))))) (T -694)) +((-2559 (*1 *1 *1 *1) (-5 *1 (-694))) (-2560 (*1 *1 *1 *1) (-5 *1 (-694))) (-3139 (*1 *1 *1 *1) (-5 *1 (-694))) (-2875 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1970 (-694)) (|:| -2898 (-694)))) (-5 *1 (-694)))) (-3460 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2437 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-694)))) (-2990 (*1 *1 *1) (-5 *1 (-694)))) +((-483) (|%not| (|%ilt| |#1| 0))) +((-3567 (((-3 |#2| "failed") |#2| |#2| (-86) (-1088)) 37 T ELT))) +(((-695 |#1| |#2|) (-10 -7 (-15 -3567 ((-3 |#2| "failed") |#2| |#2| (-86) (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -695)) +((-3567 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1113) (-871)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT))) +(((-696) (-1012)) (T -696)) +NIL +((-3940 (((-696) |#1|) 8 T ELT))) +(((-697 |#1|) (-10 -7 (-15 -3940 ((-696) |#1|))) (-1127)) (T -697)) +((-3940 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1127))))) +((-3127 ((|#2| |#4|) 35 T ELT))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3127 (|#2| |#4|))) (-389) (-1153 |#1|) (-661 |#1| |#2|) (-1153 |#3|)) (T -698)) +((-3127 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1153 *5))))) +((-3461 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2440 (((-1183) (-1071) (-1071) |#4| |#5|) 33 T ELT)) (-2438 ((|#4| |#4| |#5|) 74 T ELT)) (-2439 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 79 T ELT)) (-2441 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 16 T ELT))) +(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3461 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2438 (|#4| |#4| |#5|)) (-15 -2439 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -2440 ((-1183) (-1071) (-1071) |#4| |#5|)) (-15 -2441 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -699)) +((-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2440 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1071)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-982 *6 *7 *8 *4)))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2438 (*1 *2 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-976 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2)))) (-3461 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) +((-3152 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 53 T ELT)) (-2442 (((-583 |#4|) |#4|) 22 T ELT)) (-3922 ((|#4| |#4|) 17 T ELT))) +(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2442 ((-583 |#4|) |#4|)) (-15 -3152 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3922 (|#4| |#4|))) (-298) (-279 |#1|) (-1153 |#2|) (-1153 |#3|) (-830)) (T -700)) +((-3922 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1153 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-830)))) (-3152 (*1 *2 *3) (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830)))) (-2442 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830))))) +((-2443 (((-2 (|:| |deter| (-583 (-1083 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1083 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2444 (((-583 (-694)) |#1|) 20 T ELT))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2443 ((-2 (|:| |deter| (-583 (-1083 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1083 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2444 ((-583 (-694)) |#1|))) (-1153 |#4|) (-717) (-756) (-257) (-861 |#4| |#2| |#3|)) (T -701)) +((-2444 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2443 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1153 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-257)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1083 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) +((-2447 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-347 (-483))) |#1|) 31 T ELT)) (-2446 (((-583 |#1|) (-630 (-347 (-483))) |#1|) 21 T ELT)) (-2445 (((-857 (-347 (-483))) (-630 (-347 (-483))) (-1088)) 18 T ELT) (((-857 (-347 (-483))) (-630 (-347 (-483)))) 17 T ELT))) +(((-702 |#1|) (-10 -7 (-15 -2445 ((-857 (-347 (-483))) (-630 (-347 (-483))))) (-15 -2445 ((-857 (-347 (-483))) (-630 (-347 (-483))) (-1088))) (-15 -2446 ((-583 |#1|) (-630 (-347 (-483))) |#1|)) (-15 -2447 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-347 (-483))) |#1|))) (-13 (-311) (-755))) (T -702)) +((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *4 (-1088)) (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-311) (-755))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 36 T ELT)) (-3077 (((-583 |#2|) $) NIL T ELT)) (-3079 (((-1083 $) $ |#2|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3791 (($ $) 30 T ELT)) (-3161 (((-85) $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) 110 (|has| |#1| (-494)) ELT)) (-3143 (((-583 $) $ $) 123 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (((-3 $ #1#) (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-904 (-483)))))) ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 21 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (($ (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-904 (-483)))))) ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3750 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-494)) ELT)) (-3953 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3688 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3167 (((-85) $) NIL T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 81 T ELT)) (-3138 (($ $) 136 (|has| |#1| (-389)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3149 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3150 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3160 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3159 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1621 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) 57 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3689 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3140 (($ $ $ $ $) 107 (|has| |#1| (-494)) ELT)) (-3175 ((|#2| $) 22 T ELT)) (-3080 (($ (-1083 |#1|) |#2|) NIL T ELT) (($ (-1083 $) |#2|) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3154 (($ $ $) 63 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3168 (((-85) $) NIL T ELT)) (-2816 (((-468 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3174 (((-694) $) 23 T ELT)) (-1622 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3078 (((-3 |#2| #1#) $) NIL T ELT)) (-3135 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3136 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3163 (((-583 $) $) NIL T ELT)) (-3166 (($ $) 39 T ELT)) (-3137 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3164 (((-583 $) $) 43 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3165 (($ $) 41 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 96 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 78 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) NIL T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3158 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3157 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3185 (($ $ $) 125 (|has| |#1| (-494)) ELT)) (-3171 (((-583 $) $) 32 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3685 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3680 (($ $ $) NIL T ELT)) (-3440 (($ $) 24 T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-3686 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3681 (($ $ $) NIL T ELT)) (-3173 (($ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 56 T ELT)) (-1793 ((|#1| $) 58 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 ((|#1| |#1| $) 133 (|has| |#1| (-389)) ELT) (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-494)) ELT)) (-3147 (($ $ |#1|) 129 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3148 (($ $ |#1|) 128 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3751 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3942 (((-468 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3172 (($ $) NIL T ELT)) (-3170 (($ $) 35 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT) (($ (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (($ (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1088))) ELT) (((-1071) $) NIL (-12 (|has| |#1| (-950 (-483))) (|has| |#2| (-553 (-1088)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1088))) ELT)) (-2813 ((|#1| $) 132 (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1088))) ELT) (((-1037 |#1| |#2|) $) 18 T ELT) (($ (-1037 |#1| |#2|)) 19 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 13 T CONST)) (-3162 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2662 (($) 37 T CONST)) (-3141 (($ $ $ $ (-694)) 105 (|has| |#1| (-494)) ELT)) (-3142 (($ $ $ (-694)) 104 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3833 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-703 |#1| |#2|) (-13 (-976 |#1| (-468 |#2|) |#2|) (-552 (-1037 |#1| |#2|)) (-950 (-1037 |#1| |#2|))) (-961) (-756)) (T -703)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 12 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2451 (((-583 $) $ $) 54 (|has| |#1| (-494)) ELT)) (-3749 (($ $ $) 50 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT) (((-3 (-1083 |#1|) #1#) $) 10 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) 87 (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) 86 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3154 (($ $ $) 27 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3475 (-694))) $ $) 37 T ELT)) (-2453 (($ $ $) 41 T ELT)) (-2452 (($ $ $) 47 T ELT)) (-3155 (((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 46 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3185 (($ $ $) 56 (|has| |#1| (-494)) ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-494)) ELT)) (-2448 (((-2 (|:| -3750 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-494)) ELT)) (-2449 (((-2 (|:| -3750 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 13 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3732 (($ $ (-694) |#1| $) 26 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-494)) ELT)) (-2450 (((-2 (|:| -3750 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-993)) NIL T ELT) (((-1083 |#1|) $) 7 T ELT) (($ (-1083 |#1|)) 8 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 32 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-704 |#1|) (-13 (-1153 |#1|) (-552 (-1083 |#1|)) (-950 (-1083 |#1|)) (-10 -8 (-15 -3732 ($ $ (-694) |#1| $)) (-15 -3154 ($ $ $)) (-15 -3153 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3475 (-694))) $ $)) (-15 -2453 ($ $ $)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2452 ($ $ $)) (IF (|has| |#1| (-494)) (PROGN (-15 -2451 ((-583 $) $ $)) (-15 -3185 ($ $ $)) (-15 -3146 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3145 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -3144 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -2450 ((-2 (|:| -3750 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2449 ((-2 (|:| -3750 |#1|) (|:| |coef1| $)) $ $)) (-15 -2448 ((-2 (|:| -3750 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704)) +((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3154 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3475 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2453 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3155 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3948 *3) (|:| |gap| (-694)) (|:| -1970 (-704 *3)) (|:| -2898 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2452 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3185 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-494)) (-4 *2 (-961)))) (-3146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3144 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2450 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2449 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2448 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961))))) +((-3952 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT))) +(((-705 |#1| |#2|) (-10 -7 (-15 -3952 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))) +((-2455 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2797 ((|#1| (-694) |#1|) 23 T ELT)) (-2454 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-706 |#1|) (-10 -7 (-15 -2797 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -2454 (|#1| (-694) |#1|)) (-15 -2455 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706)) +((-2455 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2454 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-707 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -707)) +NIL +(-13 (-982 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) +((-2458 (((-3 (-327) #1="failed") (-264 |#1|) (-830)) 60 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-327) #1#) (-264 |#1|)) 52 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-327) #1#) (-347 (-857 |#1|)) (-830)) 39 (|has| |#1| (-494)) ELT) (((-3 (-327) #1#) (-347 (-857 |#1|))) 35 (|has| |#1| (-494)) ELT) (((-3 (-327) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-327) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2456 (((-327) (-264 |#1|) (-830)) 92 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-327) (-264 |#1|)) 87 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-327) (-347 (-857 |#1|)) (-830)) 84 (|has| |#1| (-494)) ELT) (((-327) (-347 (-857 |#1|))) 81 (|has| |#1| (-494)) ELT) (((-327) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-327) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-327) |#1| (-830)) 73 T ELT) (((-327) |#1|) 22 T ELT)) (-2459 (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|))) 58 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|) (-830)) 61 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|)) 59 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|)))) 43 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)) (-830)) 38 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 |#1|))) 37 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-327)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-327)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-327)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2457 (((-142 (-327)) (-264 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 (-142 |#1|))) 94 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 |#1|) (-830)) 93 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 |#1|)) 91 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-347 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 (-142 |#1|)))) 85 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 |#1|)) (-830)) 83 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 |#1|))) 82 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-327)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-327)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-327)) |#1| (-830)) 27 T ELT) (((-142 (-327)) |#1|) 25 T ELT))) +(((-708 |#1|) (-10 -7 (-15 -2456 ((-327) |#1|)) (-15 -2456 ((-327) |#1| (-830))) (-15 -2457 ((-142 (-327)) |#1|)) (-15 -2457 ((-142 (-327)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2457 ((-142 (-327)) (-142 |#1|))) (-15 -2457 ((-142 (-327)) (-142 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-857 (-142 |#1|)))) (-15 -2457 ((-142 (-327)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2456 ((-327) (-857 |#1|))) (-15 -2456 ((-327) (-857 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-857 |#1|))) (-15 -2457 ((-142 (-327)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2456 ((-327) (-347 (-857 |#1|)))) (-15 -2456 ((-327) (-347 (-857 |#1|)) (-830))) (-15 -2457 ((-142 (-327)) (-347 (-857 |#1|)))) (-15 -2457 ((-142 (-327)) (-347 (-857 |#1|)) (-830))) (-15 -2457 ((-142 (-327)) (-347 (-857 (-142 |#1|))))) (-15 -2457 ((-142 (-327)) (-347 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2456 ((-327) (-264 |#1|))) (-15 -2456 ((-327) (-264 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-264 |#1|))) (-15 -2457 ((-142 (-327)) (-264 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-264 (-142 |#1|)))) (-15 -2457 ((-142 (-327)) (-264 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2459 ((-3 (-142 (-327)) #1="failed") (-857 (-142 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-857 |#1|))) (-15 -2458 ((-3 (-327) #1#) (-857 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 |#1|))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-347 (-857 |#1|)))) (-15 -2458 ((-3 (-327) #1#) (-347 (-857 |#1|)) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-264 |#1|))) (-15 -2458 ((-3 (-327) #1#) (-264 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 |#1|))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-327))) (T -708)) +((-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327))))) (-2457 (*1 *2 *3) (-12 (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2456 (*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))) +((-2463 (((-830) (-1071)) 90 T ELT)) (-2465 (((-3 (-327) "failed") (-1071)) 36 T ELT)) (-2464 (((-327) (-1071)) 34 T ELT)) (-2461 (((-830) (-1071)) 64 T ELT)) (-2462 (((-1071) (-830)) 74 T ELT)) (-2460 (((-1071) (-830)) 63 T ELT))) +(((-709) (-10 -7 (-15 -2460 ((-1071) (-830))) (-15 -2461 ((-830) (-1071))) (-15 -2462 ((-1071) (-830))) (-15 -2463 ((-830) (-1071))) (-15 -2464 ((-327) (-1071))) (-15 -2465 ((-3 (-327) "failed") (-1071))))) (T -709)) +((-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709))))) +((-2468 (((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327))) 54 T ELT) (((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 51 T ELT)) (-2469 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 61 T ELT)) (-2467 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 49 T ELT)) (-2466 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327))) 63 T ELT) (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 62 T ELT))) +(((-710) (-10 -7 (-15 -2466 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2466 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)))) (-15 -2467 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2468 ((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2468 ((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)))) (-15 -2469 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))))) (T -710)) +((-2469 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2468 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2468 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2467 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2466 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2466 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))) +((-2478 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 65 T ELT)) (-2475 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 40 T ELT)) (-2477 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 64 T ELT)) (-2474 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 38 T ELT)) (-2476 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 63 T ELT)) (-2473 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 24 T ELT)) (-2472 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 41 T ELT)) (-2471 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 39 T ELT)) (-2470 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 37 T ELT))) +(((-711) (-10 -7 (-15 -2470 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2471 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2472 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2473 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2474 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2475 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2476 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2477 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2478 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))))) (T -711)) +((-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2473 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2472 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2471 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2470 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483))))) +((-3699 (((-1123 |#1|) |#1| (-179) (-483)) 69 T ELT))) +(((-712 |#1|) (-10 -7 (-15 -3699 ((-1123 |#1|) |#1| (-179) (-483)))) (-887)) (T -712)) +((-3699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887))))) +((-3617 (((-483) $) 17 T ELT)) (-3182 (((-85) $) 10 T ELT)) (-3377 (($ $) 19 T ELT))) +(((-713 |#1|) (-10 -7 (-15 -3377 (|#1| |#1|)) (-15 -3617 ((-483) |#1|)) (-15 -3182 ((-85) |#1|))) (-714)) (T -713)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3617 (((-483) $) 37 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-3182 (((-85) $) 38 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 (($ $) 36 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3831 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-483) $) 39 T ELT))) +(((-714) (-113)) (T -714)) +((-3182 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-483)))) (-3377 (*1 *1 *1) (-4 *1 (-714)))) +(-13 (-721) (-21) (-10 -8 (-15 -3182 ((-85) $)) (-15 -3617 ((-483) $)) (-15 -3377 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-3181 (((-85) $) 10 T ELT))) +(((-715 |#1|) (-10 -7 (-15 -3181 ((-85) |#1|))) (-716)) (T -715)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) +(((-716) (-113)) (T -716)) +((-3181 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))) +(-13 (-718) (-23) (-10 -8 (-15 -3181 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-2479 (($ $ $) 35 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) +(((-717) (-113)) (T -717)) +((-2479 (*1 *1 *1 *1) (-4 *1 (-717)))) +(-13 (-721) (-10 -8 (-15 -2479 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT))) +(((-718) (-113)) (T -718)) +NIL +(-13 (-756) (-25)) +(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-3183 (((-85) $) 42 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 78 T ELT)) (-3019 (((-85) $) 72 T ELT)) (-3018 (((-347 (-483)) $) 76 T ELT)) (-3127 ((|#2| $) 26 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2480 (($ $) 58 T ELT)) (-3966 (((-472) $) 67 T ELT)) (-3005 (($ $) 21 T ELT)) (-3940 (((-772) $) 53 T ELT) (($ (-483)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 10 T CONST)) (-3377 ((|#2| $) 71 T ELT)) (-3052 (((-85) $ $) 30 T ELT)) (-2681 (((-85) $ $) 69 T ELT)) (-3831 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-719 |#1| |#2|) (-10 -7 (-15 -2681 ((-85) |#1| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719)) +((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3131 (((-694)) 65 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3151 (((-483) $) 106 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 102 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 91 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 78 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 80 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 79 (|has| |#1| (-482)) ELT)) (-2990 (($) 68 (|has| |#1| (-317)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2485 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 82 T ELT)) (-3127 ((|#1| $) 83 T ELT)) (-2527 (($ $ $) 69 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 70 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-2006 (((-830) $) 67 (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 77 (|has| |#1| (-311)) ELT)) (-2396 (($ (-830)) 66 (|has| |#1| (-317)) ELT)) (-2482 ((|#1| $) 88 T ELT)) (-2483 ((|#1| $) 89 T ELT)) (-2484 ((|#1| $) 90 T ELT)) (-3002 ((|#1| $) 84 T ELT)) (-3003 ((|#1| $) 85 T ELT)) (-3004 ((|#1| $) 86 T ELT)) (-2481 ((|#1| $) 87 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 98 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 97 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 96 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 95 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 94 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) 100 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3966 (((-472) $) 75 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 92 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 105 (|has| |#1| (-950 (-347 (-483)))) ELT)) (-2698 (((-632 $) $) 76 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 ((|#1| $) 81 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 71 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 72 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-720 |#1|) (-113) (-146)) (T -720)) +((-3005 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2485 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) +(-13 (-38 |t#1|) (-352 |t#1|) (-287 |t#1|) (-10 -8 (-15 -3005 ($ $)) (-15 -3637 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -2482 (|t#1| $)) (-15 -2481 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -2485 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -2480 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-317) |has| |#1| (-317)) ((-287 |#1|) . T) ((-352 |#1|) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) +(((-721) (-113)) (T -721)) +NIL +(-13 (-716) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-483) $) NIL (OR (|has| (-909 |#1|) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT) (((-347 (-483)) $) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 16 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2485 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2482 ((|#1| $) 22 T ELT)) (-2483 ((|#1| $) 20 T ELT)) (-2484 ((|#1| $) 18 T ELT)) (-3002 ((|#1| $) 26 T ELT)) (-3003 ((|#1| $) 25 T ELT)) (-3004 ((|#1| $) 24 T ELT)) (-2481 ((|#1| $) 23 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-347 (-483))) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 12 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-722 |#1|) (-13 (-720 |#1|) (-352 (-909 |#1|)) (-10 -8 (-15 -2485 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722)) +((-2485 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) +((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))) +((-2486 (((-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#3| |#2| (-1088)) 19 T ELT))) +(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2486 ((-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#3| |#2| (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871)) (-600 |#2|)) (T -724)) +((-2486 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) +((-3567 (((-3 |#2| #1="failed") |#2| (-86) (-248 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1088)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1088)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1088)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 (-248 |#2|)) (-583 (-86)) (-1088)) 26 T ELT) (((-3 (-583 (-1177 |#2|)) #1#) (-630 |#2|) (-1088)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-630 |#2|) (-1177 |#2|) (-1088)) 35 T ELT))) +(((-725 |#1| |#2|) (-10 -7 (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1="failed") (-630 |#2|) (-1177 |#2|) (-1088))) (-15 -3567 ((-3 (-583 (-1177 |#2|)) #1#) (-630 |#2|) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 (-248 |#2|)) (-583 (-86)) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1088))) (-15 -3567 ((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|))) (-15 -3567 ((-3 |#2| #1#) |#2| (-86) (-248 |#2|) (-583 |#2|)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -725)) +((-3567 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-725 *6 *2)))) (-3567 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))))) (-3567 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2008 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-871))))) (-3567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2008 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1088)) (-4 *6 (-13 (-29 *5) (-1113) (-871))) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-1177 *6))) (-5 *1 (-725 *5 *6)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1177 *7))))) +((-3464 ((|#2| |#2| (-1088)) 17 T ELT)) (-2487 ((|#2| |#2| (-1088)) 56 T ELT)) (-2488 (((-1 |#2| |#2|) (-1088)) 11 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -3464 (|#2| |#2| (-1088))) (-15 -2487 (|#2| |#2| (-1088))) (-15 -2488 ((-1 |#2| |#2|) (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -726)) +((-2488 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1113) (-871))))) (-2487 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871))))) (-3464 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871)))))) +((-2489 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2008 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2008 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -727)) +((-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-290 *5 *6 *7)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4))))) +((-3735 (((-2 (|:| -3261 |#3|) (|:| |rh| (-583 (-347 |#2|)))) |#4| (-583 (-347 |#2|))) 53 T ELT)) (-2491 (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3|) 21 T ELT)) (-2492 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2490 ((|#2| |#3| (-583 (-347 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-347 |#2|)) 105 T ELT))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2490 ((-3 |#2| "failed") |#3| (-347 |#2|))) (-15 -2490 (|#2| |#3| (-583 (-347 |#2|)))) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3| |#2|)) (-15 -2492 (|#2| |#3| |#1|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4| |#2|)) (-15 -2492 (|#2| |#4| |#1|)) (-15 -3735 ((-2 (|:| -3261 |#3|) (|:| |rh| (-583 (-347 |#2|)))) |#4| (-583 (-347 |#2|))))) (-13 (-311) (-120) (-950 (-347 (-483)))) (-1153 |#1|) (-600 |#2|) (-600 (-347 |#2|))) (T -728)) +((-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -3261 *7) (|:| |rh| (-583 (-347 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-347 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-347 *6))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-347 *2))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-347 *4))))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-347 *5))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-347 *2))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-347 *4))))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-347 *2))))) (-2490 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))) +((-2500 (((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1083 |#2|)) (-1 (-345 |#2|) |#2|)) 156 T ELT)) (-2501 (((-583 (-2 (|:| |poly| |#2|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2494 (((-583 (-2 (|:| |deg| (-694)) (|:| -3261 |#2|))) |#3|) 123 T ELT)) (-2493 ((|#2| |#3|) 42 T ELT)) (-2495 (((-583 (-2 (|:| -3946 |#1|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2496 ((|#3| |#3| (-347 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 (|#2| |#3|)) (-15 -2494 ((-583 (-2 (|:| |deg| (-694)) (|:| -3261 |#2|))) |#3|)) (-15 -2495 ((-583 (-2 (|:| -3946 |#1|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2501 ((-583 (-2 (|:| |poly| |#2|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2500 ((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1083 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2496 (|#3| |#3| |#2|)) (-15 -2496 (|#3| |#3| (-347 |#2|)))) (-13 (-311) (-120) (-950 (-347 (-483)))) (-1153 |#1|) (-600 |#2|) (-600 (-347 |#2|))) (T -729)) +((-2496 (*1 *2 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2496 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-1153 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-347 *3))))) (-2500 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1083 *7))) (-5 *5 (-1 (-345 *7) *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |frac| (-347 *7)) (|:| -3261 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-347 *7))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3946 *5) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3261 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))) (-2493 (*1 *2 *3) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-347 *2)))))) +((-2497 (((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-347 |#2|)) (-583 (-347 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2008 (-583 (-347 |#2|)))) (-598 |#2| (-347 |#2|)) (-347 |#2|)) 145 T ELT) (((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-347 |#2|)) (-583 (-347 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2008 (-583 (-347 |#2|)))) (-597 (-347 |#2|)) (-347 |#2|)) 138 T ELT)) (-2498 ((|#2| (-598 |#2| (-347 |#2|))) 86 T ELT) ((|#2| (-597 (-347 |#2|))) 89 T ELT))) +(((-730 |#1| |#2|) (-10 -7 (-15 -2497 ((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2008 (-583 (-347 |#2|)))) (-597 (-347 |#2|)) (-347 |#2|))) (-15 -2497 ((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-347 |#2|)) (-583 (-347 |#2|)))) (-15 -2497 ((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2008 (-583 (-347 |#2|)))) (-598 |#2| (-347 |#2|)) (-347 |#2|))) (-15 -2497 ((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-347 |#2|)) (-583 (-347 |#2|)))) (-15 -2498 (|#2| (-597 (-347 |#2|)))) (-15 -2498 (|#2| (-598 |#2| (-347 |#2|))))) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -730)) +((-2498 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-597 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-730 *5 *6))))) +((-2499 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|) 49 T ELT))) +(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2499 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|))) (-311) (-600 |#1|) (-1153 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731)) +((-2499 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *7 (-1153 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) +((-2500 (((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 47 T ELT)) (-2502 (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 38 T ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 36 T ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2501 (((-583 (-2 (|:| |poly| |#2|) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT))) +(((-732 |#1| |#2|) (-10 -7 (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2500 ((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2501 ((-583 (-2 (|:| |poly| |#2|) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)))) (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)))) |%noBranch|)) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -732)) +((-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-597 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 (-598 *6 (-347 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |frac| (-347 *6)) (|:| -3261 (-598 *6 (-347 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6))))) +((-2503 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) (-630 |#2|) (-1177 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3261 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1177 |#1|)) 15 T ELT)) (-2504 (((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2008 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3567 (((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2008 (-630 |#1|))) #1#) (-630 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-733 |#1| |#2|) (-10 -7 (-15 -2503 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3261 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1177 |#1|))) (-15 -2503 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) (-630 |#2|) (-1177 |#1|))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2008 (-630 |#1|))) #1="failed") (-630 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2504 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2008 (-583 |#1|))) |#2| |#1|)))) (-311) (-600 |#1|)) (T -733)) +((-2504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2008 (-583 *6))) *7 *6)) (-4 *6 (-311)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *6) "failed")) (|:| -2008 (-583 (-1177 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1177 *6)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2008 (-583 *6))) "failed") *7 *6)) (-4 *6 (-311)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2008 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *6)))) (-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *5)))) (-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5)) (|:| -3261 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *6 (-600 *5))))) +((-2505 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2506 (((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3334 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2505 ((-630 |#1|) (-583 |#1|))) (-15 -2505 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2506 ((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3334 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-311) (-600 |#1|)) (T -734)) +((-3334 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2506 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-1177 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4))))) +((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#2| (-23)) CONST)) (-2662 (($) NIL (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1177 |#2|) (-1177 |#2|))) (T -735)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1088)) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3077 (((-583 (-738 (-1088))) $) NIL T ELT)) (-3079 (((-1083 $) $ (-738 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1088)))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-738 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-738 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3750 (($ $ $ (-738 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-738 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-738 (-1088))) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-738 (-1088)) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-738 (-1088)) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-738 (-1088))) NIL T ELT) (($ (-1083 $) (-738 (-1088))) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-738 (-1088))) NIL T ELT)) (-2816 (((-468 (-738 (-1088))) $) NIL T ELT) (((-694) $ (-738 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1088)))) NIL T ELT)) (-1622 (($ (-1 (-468 (-738 (-1088))) (-468 (-738 (-1088)))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) (-1088)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 (-738 (-1088)) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 (((-738 (-1088)) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-738 (-1088))) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1088)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1088)) $) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ (-738 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 (-1088)) $) NIL T ELT)) (-3942 (((-468 (-738 (-1088))) $) NIL T ELT) (((-694) $ (-738 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1088)))) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-738 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-736 |#1|) (-13 (-213 |#1| (-1088) (-738 (-1088)) (-468 (-738 (-1088)))) (-950 (-1037 |#1| (-1088)))) (-961)) (T -736)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-311)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-311)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#2| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#2| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 20 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-1604 (((-694) $) NIL (|has| |#2| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-311)) ELT) (($ $) NIL (|has| |#2| (-311)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) 15 (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-483)) 18 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-311)) ELT))) +(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-427 |#2|) (-10 -7 (IF (|has| |#2| (-311)) (-6 (-311)) |%noBranch|))) (-1012) (-809 |#1|) |#1|) (T -737)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) NIL T ELT)) (-3825 ((|#1| $) 10 T ELT)) (-3152 (((-3 |#1| "failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3766 (((-694) $) 11 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-1520 (($ |#1| (-694)) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-738 |#1|) (-228 |#1|) (-756)) (T -738)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 39 T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3793 (($ $) 43 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-694) $ (-483)) NIL T ELT)) (-3930 (($ $) 55 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2287 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3934 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2507 (((-85) $ $) 52 T ELT)) (-3827 (((-694) $) 35 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1748 (($ $ $) NIL T ELT)) (-1749 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) 42 T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) NIL T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2561 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-739 |#1|) (-13 (-333 |#1|) (-754) (-10 -8 (-15 -3795 (|#1| $)) (-15 -3793 ($ $)) (-15 -3930 ($ $)) (-15 -2507 ((-85) $ $)) (-15 -3934 ((-3 $ #1="failed") $ |#1|)) (-15 -3933 ((-3 $ #1#) $ |#1|)) (-15 -2561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3827 ((-694) $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -739)) +((-3795 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3934 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3933 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2561 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3617 (((-483) $) 66 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3181 (((-85) $) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3182 (((-85) $) 65 T ELT)) (-2527 (($ $ $) 58 T ELT)) (-2853 (($ $ $) 59 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 67 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 60 T ELT)) (-2563 (((-85) $ $) 62 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 61 T ELT)) (-2681 (((-85) $ $) 63 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-740) (-113)) (T -740)) +NIL +(-13 (-494) (-755)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2508 ((|#1| $) 10 T ELT)) (-2509 (($ |#1|) 9 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) NIL T ELT)) (-2816 (((-694) $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2509 ($ |#1|)) (-15 -2508 (|#1| $)))) (-645 |#2|) (-961)) (T -741)) +((-2509 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2508 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) +((-2564 (((-85) $ $) 19 T ELT)) (-3229 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3231 (($ $ $) 77 T ELT)) (-3230 (((-85) $ $) 78 T ELT)) (-3234 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 69 T ELT)) (-2527 ((|#1| $) 83 T ELT)) (-2852 (($ $ $) 86 T ELT)) (-3512 (($ $ $) 85 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 84 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 74 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-3232 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-3235 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-742 |#1|) (-113) (-756)) (T -742)) +((-2527 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756))))) +(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2527 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL (|has| |#1| (-21)) CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3461 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 51 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 46 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 48 (|has| |#1| (-482)) ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2510 (($) 13 T ELT)) (-2520 (((-85) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2521 (((-85) $) 11 T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ELT)) (-3121 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1262 (((-85) $ $) 53 T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) 23 (|has| |#1| (-21)) CONST)) (-2662 (($) 33 (|has| |#1| (-755)) CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-483) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) +(((-743 |#1|) (-13 (-1012) (-352 |#1|) (-10 -8 (-15 -2510 ($)) (-15 -2521 ((-85) $)) (-15 -2520 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -743)) +((-2510 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1012)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))) +((-3952 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT))) +(((-744 |#1| |#2|) (-10 -7 (-15 -3952 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3952 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1012) (-1012)) (T -744)) +((-3952 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-744 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2512 ((|#1| (-86) |#1|) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2511 (($ |#1| (-309 (-86))) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2513 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2514 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT)) (-2515 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2516 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -2515 (|#1| |#1|))) |%noBranch|) (-15 -2514 ($ $ (-1 |#1| |#1|))) (-15 -2513 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2512 (|#1| (-86) |#1|)) (-15 -2511 ($ |#1| (-309 (-86)))))) (-961)) (T -745)) +((-2516 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2516 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2515 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) +((-2629 (((-85) $ |#2|) 14 T ELT)) (-3940 (((-772) $) 11 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -2629 ((-85) |#1| |#2|)) (-15 -3940 ((-772) |#1|))) (-747 |#2|) (-1012)) (T -746)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3536 ((|#1| $) 19 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2629 (((-85) $ |#1|) 17 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2517 (((-55) $) 18 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-747 |#1|) (-113) (-1012)) (T -747)) +((-3536 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1012)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-55)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(-13 (-1012) (-10 -8 (-15 -3536 (|t#1| $)) (-15 -2517 ((-55) $)) (-15 -2629 ((-85) $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2518 (((-167 (-439)) (-1071)) 9 T ELT))) +(((-748) (-10 -7 (-15 -2518 ((-167 (-439)) (-1071))))) (T -748)) +((-2518 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-439))) (-5 *1 (-748))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 10 T ELT)) (-3536 (((-444) $) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3524 (($ (-444) (-1027)) 8 T ELT)) (-3940 (((-772) $) 25 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 20 T ELT)) (-3052 (((-85) $ $) 12 T ELT))) +(((-749) (-13 (-747 (-444)) (-10 -8 (-15 -3314 ((-1027) $)) (-15 -3524 ($ (-444) (-1027)))))) (T -749)) +((-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-749)))) (-3524 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-749))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2519 (((-1032) $) 31 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL (|has| |#1| (-21)) CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3461 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 65 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 60 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 63 (|has| |#1| (-482)) ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2523 (($) 14 T ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2522 (($) 16 T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2520 (((-85) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2521 (((-85) $) 11 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ELT)) (-3121 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) 37 (|has| |#1| (-21)) CONST)) (-2662 (($) 47 (|has| |#1| (-755)) CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-483) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) +(((-750 |#1|) (-13 (-1012) (-352 |#1|) (-10 -8 (-15 -2523 ($)) (-15 -2522 ($)) (-15 -2521 ((-85) $)) (-15 -2520 ((-85) $)) (-15 -2519 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -750)) +((-2523 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))) (-2522 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))) +((-3952 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT))) +(((-751 |#1| |#2|) (-10 -7 (-15 -3952 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3952 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1012) (-1012)) (T -751)) +((-3952 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-751 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694)) 27 T ELT)) (-2990 (($) 30 T ELT)) (-2527 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2853 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2396 (($ (-830)) 28 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT))) +(((-752) (-113)) (T -752)) +((-2527 (*1 *1) (-4 *1 (-752))) (-2853 (*1 *1) (-4 *1 (-752)))) +(-13 (-756) (-317) (-10 -8 (-15 -2527 ($) -3946) (-15 -2853 ($) -3946))) +(((-72) . T) ((-552 (-772)) . T) ((-317) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-2525 (((-85) (-1177 |#2|) (-1177 |#2|)) 19 T ELT)) (-2526 (((-85) (-1177 |#2|) (-1177 |#2|)) 20 T ELT)) (-2524 (((-85) (-1177 |#2|) (-1177 |#2|)) 16 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -2524 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2525 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2526 ((-85) (-1177 |#2|) (-1177 |#2|)))) (-694) (-716)) (T -753)) +((-2526 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2525 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 29 T CONST)) (-3461 (((-3 $ "failed") $) 32 T ELT)) (-2406 (((-85) $) 30 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 28 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +(((-754) (-113)) (T -754)) +NIL +(-13 (-766) (-663)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3617 (((-483) $) 37 T ELT)) (-3718 (($) 30 T CONST)) (-3461 (((-3 $ "failed") $) 53 T ELT)) (-3181 (((-85) $) 28 T ELT)) (-2406 (((-85) $) 51 T ELT)) (-3182 (((-85) $) 38 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 54 T ELT)) (-3121 (((-694)) 55 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 (($ $) 36 T ELT)) (-2656 (($) 29 T CONST)) (-2662 (($) 50 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3831 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3833 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 52 T ELT) (($ $ (-830)) 48 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-483) $) 39 T ELT) (($ $ $) 49 T ELT))) +(((-755) (-113)) (T -755)) +NIL +(-13 (-714) (-961) (-663)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT))) +(((-756) (-113)) (T -756)) +NIL +(-13 (-1012) (-759)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3940 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 12 T ELT))) +(((-757 |#1| |#2|) (-13 (-759) (-427 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1127) (-1 (-85) |#1| |#1|)) (T -757)) +NIL +((-2527 (($ $ $) 16 T ELT)) (-2853 (($ $ $) 15 T ELT)) (-1262 (((-85) $ $) 17 T ELT)) (-2562 (((-85) $ $) 12 T ELT)) (-2563 (((-85) $ $) 9 T ELT)) (-3052 (((-85) $ $) 14 T ELT)) (-2680 (((-85) $ $) 11 T ELT))) +(((-758 |#1|) (-10 -7 (-15 -2527 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2562 ((-85) |#1| |#1|)) (-15 -2680 ((-85) |#1| |#1|)) (-15 -2563 ((-85) |#1| |#1|)) (-15 -1262 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-759)) (T -758)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 10 T ELT)) (-2853 (($ $ $) 11 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 12 T ELT)) (-2563 (((-85) $ $) 14 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 13 T ELT)) (-2681 (((-85) $ $) 15 T ELT))) +(((-759) (-113)) (T -759)) +((-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2563 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2680 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2853 (*1 *1 *1 *1) (-4 *1 (-759))) (-2527 (*1 *1 *1 *1) (-4 *1 (-759)))) +(-13 (-72) (-10 -8 (-15 -2681 ((-85) $ $)) (-15 -2563 ((-85) $ $)) (-15 -2680 ((-85) $ $)) (-15 -2562 ((-85) $ $)) (-15 -2853 ($ $ $)) (-15 -2527 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1127) . T)) +((-2532 (($ $ $) 49 T ELT)) (-2533 (($ $ $) 48 T ELT)) (-2534 (($ $ $) 46 T ELT)) (-2530 (($ $ $) 55 T ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 50 T ELT)) (-2531 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3497 (($ $) 39 T ELT)) (-2538 (($ $ $) 43 T ELT)) (-2539 (($ $ $) 42 T ELT)) (-2528 (($ $ $) 51 T ELT)) (-2536 (($ $ $) 57 T ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 45 T ELT)) (-2537 (((-3 $ #1#) $ $) 52 T ELT)) (-3460 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2813 ((|#2| $) 36 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3811 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-760 |#1| |#2|) (-10 -7 (-15 -2528 (|#1| |#1| |#1|)) (-15 -2529 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2531 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3811 ((-583 |#2|) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3940 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2532 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ "failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1="failed") $) 86 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 83 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 80 T ELT)) (-3151 (((-483) $) 85 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 82 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 81 T ELT)) (-3953 (($ $) 75 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 73 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 68 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) 77 T ELT)) (-2538 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ "failed") $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) 76 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-494)) ELT)) (-3942 (((-694) $) 78 T ELT)) (-2813 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 84 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 79 T ELT)) (-3811 (((-583 |#1|) $) 72 T ELT)) (-3671 ((|#1| $ (-694)) 74 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2541 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) +(((-761 |#1|) (-113) (-961)) (T -761)) +((-3942 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2541 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2543 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) (-2544 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-761 *3)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2531 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2529 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-761 *3)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(-13 (-961) (-82 |t#1| |t#1|) (-352 |t#1|) (-10 -8 (-15 -3942 ((-694) $)) (-15 -2816 ((-694) $)) (-15 -3169 (|t#1| $)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ (-694))) (-15 -2889 ($ |t#1| (-694))) (-15 -3811 ((-583 |t#1|) $)) (-15 -2541 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3460 ((-3 $ "failed") $ |t#1|)) (-15 -2542 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2543 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2813 (|t#1| $)) (-15 -3497 ($ $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -2544 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -2534 ($ $ $)) (-15 -2545 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2533 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -2531 ((-3 $ "failed") $ $)) (-15 -2530 ($ $ $)) (-15 -2529 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -2528 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-352 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2540 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2545 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-311)) ELT)) (-2543 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-494)) ELT)) (-2544 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-311)) ELT)) (-2541 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-762 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2541 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-494)) (PROGN (-15 -2542 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2543 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -2544 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2545 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762)) +((-2545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2544 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2543 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2542 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2541 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2540 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 34 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3527 (((-772) $ (-772)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 30 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 28 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 32 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 23 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763)) +((-3527 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) 17 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (($ (-1174 |#1|)) 19 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 13 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1174 |#1|))) (-1088) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764)) +NIL +((-2548 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2547 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2546 ((|#1| (-694) |#1|) 40 T ELT)) (-2796 ((|#1| (-694) |#1|) 38 T ELT)) (-2795 ((|#1| (-694) |#1|) 37 T ELT))) +(((-765 |#1|) (-10 -7 (-15 -2795 (|#1| (-694) |#1|)) (-15 -2796 (|#1| (-694) |#1|)) (-15 -2546 (|#1| (-694) |#1|)) (-15 -2547 (|#1| (-694) |#1|)) (-15 -2547 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -2548 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765)) +((-2548 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2547 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2547 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2546 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2795 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) +((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-766) (-113)) (T -766)) +NIL +(-13 (-756) (-1024)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3396 (((-483) $) 14 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-483)) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 12 T ELT))) +(((-767) (-13 (-756) (-10 -8 (-15 -3940 ($ (-483))) (-15 -3396 ((-483) $))))) (T -767)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-767)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-767))))) +((-2549 (((-1183) (-583 (-51))) 23 T ELT)) (-3454 (((-1183) (-1071) (-772)) 13 T ELT) (((-1183) (-772)) 8 T ELT) (((-1183) (-1071)) 10 T ELT))) +(((-768) (-10 -7 (-15 -3454 ((-1183) (-1071))) (-15 -3454 ((-1183) (-772))) (-15 -3454 ((-1183) (-1071) (-772))) (-15 -2549 ((-1183) (-583 (-51)))))) (T -768)) +((-2549 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-768))))) +((-2551 (((-632 (-1136)) $ (-1136)) 15 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 12 T ELT)) (-2550 (((-694) $ (-102)) 30 T ELT))) +(((-769 |#1|) (-10 -7 (-15 -2550 ((-694) |#1| (-102))) (-15 -2551 ((-632 (-1136)) |#1| (-1136))) (-15 -2552 ((-632 (-487)) |#1| (-487)))) (-770)) (T -769)) +NIL +((-2551 (((-632 (-1136)) $ (-1136)) 8 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 9 T ELT)) (-2550 (((-694) $ (-102)) 7 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1697 (($ $) 6 T ELT))) +(((-770) (-113)) (T -770)) +((-2553 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2552 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-487))) (-5 *3 (-487)))) (-2551 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1136))) (-5 *3 (-1136)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) +(-13 (-147) (-10 -8 (-15 -2553 ((-632 (-101)) $ (-101))) (-15 -2552 ((-632 (-487)) $ (-487))) (-15 -2551 ((-632 (-1136)) $ (-1136))) (-15 -2550 ((-694) $ (-102))))) +(((-147) . T)) +((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) NIL T ELT)) (-2553 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2555 (($ (-335)) 12 T ELT) (($ (-1071)) 14 T ELT)) (-2554 (((-85) $) 19 T ELT)) (-3940 (((-772) $) 26 T ELT)) (-1697 (($ $) 23 T ELT))) +(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2555 ($ (-335))) (-15 -2555 ($ (-1071))) (-15 -2554 ((-85) $))))) (T -771)) +((-2555 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-771)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) +((-2564 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2585 (($ $ $) 125 T ELT)) (-2600 (((-483) $) 31 T ELT) (((-483)) 36 T ELT)) (-2595 (($ (-483)) 53 T ELT)) (-2592 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2576 (($ $ (-583 $)) 82 T ELT)) (-2597 (((-483) $) 34 T ELT)) (-2579 (($ $ $) 73 T ELT)) (-3526 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2598 (((-483) $) 33 T ELT)) (-2580 (($ $ $) 72 T ELT)) (-3529 (($ $) 114 T ELT)) (-2583 (($ $ $) 129 T ELT)) (-2566 (($ (-583 $)) 61 T ELT)) (-3534 (($ $ (-583 $)) 79 T ELT)) (-2594 (($ (-483) (-483)) 55 T ELT)) (-2607 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3132 (($ $ (-483)) 43 T ELT) (($ $) 46 T ELT)) (-2560 (($ $ $) 97 T ELT)) (-2581 (($ $ $) 132 T ELT)) (-2575 (($ $) 115 T ELT)) (-2559 (($ $ $) 98 T ELT)) (-2571 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2833 (((-1183) $) 10 T ELT)) (-2574 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2577 (($ $ $) 75 T ELT)) (-2578 (($ $ $) 74 T ELT)) (-2591 (($ $ (-583 $)) 110 T ELT)) (-2589 (($ $ $) 113 T ELT)) (-2568 (($ (-583 $)) 59 T ELT)) (-2569 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2572 (($ $ $) 123 T ELT)) (-2573 (($ $) 116 T ELT)) (-2584 (($ $ $) 128 T ELT)) (-3527 (($ (-483)) 21 T ELT) (($ (-1088)) 23 T ELT) (($ (-1071)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2557 (($ $ $) 101 T ELT)) (-2556 (($ $) 102 T ELT)) (-2602 (((-1183) (-1071)) 15 T ELT)) (-2603 (($ (-1071)) 14 T ELT)) (-3119 (($ (-583 (-583 $))) 58 T ELT)) (-3133 (($ $ (-483)) 42 T ELT) (($ $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2587 (($ $ $) 131 T ELT)) (-3464 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2588 (((-85) $) 108 T ELT)) (-2590 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2596 (($ (-483)) 39 T ELT)) (-2599 (((-483) $) 32 T ELT) (((-483)) 35 T ELT)) (-2593 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (($ $ $) 99 T ELT)) (-3559 (($) 13 T ELT)) (-3794 (($ $ (-583 $)) 109 T ELT)) (-2601 (((-1071) (-1071)) 8 T ELT)) (-3830 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2561 (($ $ $) 96 T ELT)) (-3752 (($ $ (-694)) 139 T ELT)) (-2567 (($ (-583 $)) 60 T ELT)) (-3940 (((-772) $) 19 T ELT)) (-3767 (($ $ (-483)) 41 T ELT) (($ $) 44 T ELT)) (-2570 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3235 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2586 (($ $) 124 T ELT)) (-2565 (($ (-583 $)) 65 T ELT)) (-3097 (($ $ $) 105 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2582 (($ $ $) 130 T ELT)) (-2558 (($ $ $) 100 T ELT)) (-3731 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2562 (($ $ $) 89 T ELT)) (-2563 (($ $ $) 87 T ELT)) (-3052 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2680 (($ $ $) 88 T ELT)) (-2681 (($ $ $) 86 T ELT)) (-3943 (($ $ $) 94 T ELT)) (-3831 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3833 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-772) (-13 (-1012) (-10 -8 (-15 -2833 ((-1183) $)) (-15 -2603 ($ (-1071))) (-15 -2602 ((-1183) (-1071))) (-15 -3527 ($ (-483))) (-15 -3527 ($ (-1088))) (-15 -3527 ($ (-1071))) (-15 -3527 ($ (-179))) (-15 -3559 ($)) (-15 -2601 ((-1071) (-1071))) (-15 -2600 ((-483) $)) (-15 -2599 ((-483) $)) (-15 -2600 ((-483))) (-15 -2599 ((-483))) (-15 -2598 ((-483) $)) (-15 -2597 ((-483) $)) (-15 -2596 ($ (-483))) (-15 -2595 ($ (-483))) (-15 -2594 ($ (-483) (-483))) (-15 -3133 ($ $ (-483))) (-15 -3132 ($ $ (-483))) (-15 -3767 ($ $ (-483))) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3767 ($ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -2593 ($ (-583 $))) (-15 -2592 ($ (-583 $))) (-15 -2591 ($ $ (-583 $))) (-15 -2590 ($ $ (-583 $))) (-15 -2590 ($ $ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ((-85) $)) (-15 -3794 ($ $ (-583 $))) (-15 -3529 ($ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $)) (-15 -3119 ($ (-583 (-583 $)))) (-15 -2585 ($ $ $)) (-15 -2607 ($ $)) (-15 -2607 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -3752 ($ $ (-694))) (-15 -3097 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2579 ($ $ $)) (-15 -2578 ($ $ $)) (-15 -2577 ($ $ $)) (-15 -3534 ($ $ (-583 $))) (-15 -2576 ($ $ (-583 $))) (-15 -2575 ($ $)) (-15 -3830 ($ $)) (-15 -3830 ($ $ (-694))) (-15 -2574 ($ $)) (-15 -2574 ($ $ (-694))) (-15 -2573 ($ $)) (-15 -2572 ($ $ $)) (-15 -3526 ($ $)) (-15 -3526 ($ $ $)) (-15 -3526 ($ $ $ $)) (-15 -2571 ($ $)) (-15 -2571 ($ $ $)) (-15 -2571 ($ $ $ $)) (-15 -3464 ($ $)) (-15 -3464 ($ $ $)) (-15 -3464 ($ $ $ $)) (-15 -3235 ($ $)) (-15 -3235 ($ (-583 $))) (-15 -2570 ($ $)) (-15 -2570 ($ (-583 $))) (-15 -2569 ($ $)) (-15 -2569 ($ (-583 $))) (-15 -2568 ($ (-583 $))) (-15 -2567 ($ (-583 $))) (-15 -2566 ($ (-583 $))) (-15 -2565 ($ (-583 $))) (-15 -3052 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2680 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3831 ($ $)) (-15 * ($ $ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $ $)) (-15 -3460 ($ $ $)) (-15 -2558 ($ $ $)) (-15 -2557 ($ $ $)) (-15 -2556 ($ $)) (-15 -3731 ($ $ $)) (-15 -3731 ($ $))))) (T -772)) +((-2833 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-772)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3559 (*1 *1) (-5 *1 (-772))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2600 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2599 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2594 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3133 (*1 *1 *1) (-5 *1 (-772))) (-3132 (*1 *1 *1) (-5 *1 (-772))) (-3767 (*1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2590 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3529 (*1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1) (-5 *1 (-772))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-2607 (*1 *1 *1) (-5 *1 (-772))) (-2607 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-2581 (*1 *1 *1 *1) (-5 *1 (-772))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3097 (*1 *1 *1 *1) (-5 *1 (-772))) (-2580 (*1 *1 *1 *1) (-5 *1 (-772))) (-2579 (*1 *1 *1 *1) (-5 *1 (-772))) (-2578 (*1 *1 *1 *1) (-5 *1 (-772))) (-2577 (*1 *1 *1 *1) (-5 *1 (-772))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2576 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-3830 (*1 *1 *1) (-5 *1 (-772))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2573 (*1 *1 *1) (-5 *1 (-772))) (-2572 (*1 *1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3235 (*1 *1 *1) (-5 *1 (-772))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *1) (-5 *1 (-772))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2569 (*1 *1 *1) (-5 *1 (-772))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3052 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-2681 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-2680 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-3833 (*1 *1 *1 *1) (-5 *1 (-772))) (-3831 (*1 *1 *1 *1) (-5 *1 (-772))) (-3831 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3943 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1 *1) (-5 *1 (-772))) (-2560 (*1 *1 *1 *1) (-5 *1 (-772))) (-2559 (*1 *1 *1 *1) (-5 *1 (-772))) (-3460 (*1 *1 *1 *1) (-5 *1 (-772))) (-2558 (*1 *1 *1 *1) (-5 *1 (-772))) (-2557 (*1 *1 *1 *1) (-5 *1 (-772))) (-2556 (*1 *1 *1) (-5 *1 (-772))) (-3731 (*1 *1 *1 *1) (-5 *1 (-772))) (-3731 (*1 *1 *1) (-5 *1 (-772)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3825 (((-3 $ "failed") (-1088)) 36 T ELT)) (-3131 (((-694)) 32 T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) 43 T ELT)) (-2396 (($ (-830)) 28 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-1088) $) 13 T ELT) (((-472) $) 19 T ELT) (((-800 (-327)) $) 26 T ELT) (((-800 (-483)) $) 22 T ELT)) (-3940 (((-772) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 40 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 38 T ELT))) +(((-773 |#1|) (-13 (-752) (-553 (-1088)) (-553 (-472)) (-553 (-800 (-327))) (-553 (-800 (-483))) (-10 -8 (-15 -3825 ((-3 $ "failed") (-1088))))) (-583 (-1088))) (T -773)) +((-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-444) $) 12 T ELT)) (-2604 (((-583 (-378)) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT))) +(((-774) (-13 (-1012) (-10 -8 (-15 -3536 ((-444) $)) (-15 -2604 ((-583 (-378)) $))))) (T -774)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-774)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-583 (-378))) (-5 *1 (-774))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3917 (((-1183) (-694)) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-427 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3917 ((-1183) (-694))))) (-961) (-583 (-1088)) (-583 (-694)) (-694)) (T -775)) +((-3943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 *3)) (-14 *7 *3)))) +((-2605 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2606 (((-3 (-347 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT))) +(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-3 (-347 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2605 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-311) (-1170 |#1|) (-1153 |#1|)) (T -776)) +((-2605 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))) (-2606 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-347 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5))))) +((-2606 (((-3 (-347 (-1146 |#2| |#1|)) #1="failed") (-694) (-694) (-1167 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-347 (-1146 |#2| |#1|)) #1#) (-694) (-694) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 28 T ELT))) +(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-3 (-347 (-1146 |#2| |#1|)) #1="failed") (-694) (-694) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (-15 -2606 ((-3 (-347 (-1146 |#2| |#1|)) #1#) (-694) (-694) (-1167 |#1| |#2| |#3|)))) (-311) (-1088) |#1|) (T -777)) +((-2606 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2606 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) (-5 *1 (-777 *5 *6 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2608 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) NIL T ELT)) (-2609 (((-483) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-1067 (-483)) $) NIL T ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-778 |#1|) (-779 |#1|) (-483)) (T -778)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $ (-483)) 76 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2607 (($ (-1083 (-483)) (-483)) 75 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2608 (($ $) 78 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3766 (((-694) $) 83 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2610 (((-483)) 80 T ELT)) (-2609 (((-483) $) 79 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3763 (($ $ (-483)) 82 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-1067 (-483)) $) 84 T ELT)) (-2887 (($ $) 81 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3764 (((-483) $ (-483)) 77 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-779 |#1|) (-113) (-483)) (T -779)) +((-2611 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1067 (-483))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2887 (*1 *1 *1) (-4 *1 (-779 *2))) (-2610 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2608 (*1 *1 *1) (-4 *1 (-779 *2))) (-3764 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-779 *4))))) +(-13 (-257) (-120) (-10 -8 (-15 -2611 ((-1067 (-483)) $)) (-15 -3766 ((-694) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $)) (-15 -2610 ((-483))) (-15 -2609 ((-483) $)) (-15 -2608 ($ $)) (-15 -3764 ((-483) $ (-483))) (-15 -3033 ($ $ (-483))) (-15 -2607 ($ (-1083 (-483)) (-483))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT)) (-3151 (((-778 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1177 (-778 |#1|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-778 |#1|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-778 |#1|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-778 |#1|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-778 |#1|) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-778 |#1|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3952 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1177 (-778 |#1|)))) (-1177 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-778 |#1|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-778 |#1|) (-257)) ELT)) (-3125 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-248 (-778 |#1|))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-583 (-248 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-583 (-1088)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) ELT) (($ $ (-1088) (-778 |#1|)) NIL (|has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-778 |#1|) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-778 |#1|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) NIL T ELT)) (-3377 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT))) +(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483)) (T -780)) +((-3764 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-780 *3)) (-14 *3 (-483)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-483)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-780 *3)) (-14 *3 *2)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#2| $) NIL (|has| |#2| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#2| (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#2| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT)) (-3151 ((|#2| $) NIL T ELT) (((-1088) $) NIL (|has| |#2| (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT)) (-3724 (($ $) 35 T ELT) (($ (-483) $) 38 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 64 T ELT)) (-2990 (($) NIL (|has| |#2| (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#2| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#2| (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 ((|#2| $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 60 T ELT)) (-3440 (($) NIL (|has| |#2| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3125 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-248 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-583 (-248 |#2|))) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) NIL (|has| |#2| (-452 (-1088) |#2|)) ELT) (($ $ (-1088) |#2|) NIL (|has| |#2| (-452 (-1088) |#2|)) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 ((|#2| $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#2| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#2| (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| |#2| (-553 (-472))) ELT) (((-327) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) 78 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) 105 T ELT) (($ (-483)) 20 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1088)) NIL (|has| |#2| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) 71 T ELT)) (-3377 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2656 (($) 15 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 46 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3943 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3831 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3833 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483) (-779 |#1|)) (T -781)) +((-3764 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-347 (-483))) (-5 *1 (-781 *4 *5)) (-5 *3 (-483)) (-4 *5 (-779 *4)))) (-2612 (*1 *2 *1) (-12 (-14 *3 (-483)) (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3724 (*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))) +((-2564 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3790 ((|#2| $) 12 T ELT)) (-2613 (($ |#1| |#2|) 9 T ELT)) (-3237 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3238 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#1| $) 11 T ELT)) (-3524 (($ |#1| |#2|) 10 T ELT)) (-3940 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))) ELT)) (-1262 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3052 (((-85) $ $) 23 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT))) +(((-782 |#1| |#2|) (-13 (-1127) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1012)) (IF (|has| |#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -2613 ($ |#1| |#2|)) (-15 -3524 ($ |#1| |#2|)) (-15 -3795 (|#1| $)) (-15 -3790 (|#2| $)))) (-1127) (-1127)) (T -782)) +((-2613 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3795 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1127)))) (-3790 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1127))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2953 (((-483) $) 16 T ELT)) (-2615 (($ (-130)) 13 T ELT)) (-2614 (($ (-130)) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2952 (((-130) $) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2617 (($ (-130)) 11 T ELT)) (-2618 (($ (-130)) 10 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2616 (($ (-130)) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-783) (-13 (-1012) (-555 (-130)) (-10 -8 (-15 -2618 ($ (-130))) (-15 -2617 ($ (-130))) (-15 -2616 ($ (-130))) (-15 -2615 ($ (-130))) (-15 -2614 ($ (-130))) (-15 -2952 ((-130) $)) (-15 -2953 ((-483) $))))) (T -783)) +((-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-783))))) +((-3940 (((-264 (-483)) (-347 (-857 (-48)))) 23 T ELT) (((-264 (-483)) (-857 (-48))) 18 T ELT))) +(((-784) (-10 -7 (-15 -3940 ((-264 (-483)) (-857 (-48)))) (-15 -3940 ((-264 (-483)) (-347 (-857 (-48))))))) (T -784)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 (-48)))) (-5 *2 (-264 (-483))) (-5 *1 (-784)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-264 (-483))) (-5 *1 (-784))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3560 (((-85) $ (|[\|\|]| (-444))) 9 T ELT) (((-85) $ (|[\|\|]| (-1071))) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-444) $) 10 T ELT) (((-1071) $) 14 T ELT)) (-3052 (((-85) $ $) 15 T ELT))) +(((-785) (-13 (-994) (-1173) (-10 -8 (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3566 ((-444) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3566 ((-1071) $))))) (T -785)) +((-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-785)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-785))))) +((-3952 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT))) +(((-786 |#1| |#2|) (-10 -7 (-15 -3952 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1127) (-1127)) (T -786)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))) +((-3365 (($ |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT))) +(((-787 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -787)) +((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1127)))) (-3365 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1127))))) +((-3952 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3952 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1127) (-1127)) (T -788)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) +((-3365 (($ |#1| |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT))) +(((-789 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -789)) +((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1127)))) (-3365 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1127))))) +((-2619 (((-583 (-1093)) (-1071)) 9 T ELT))) +(((-790) (-10 -7 (-15 -2619 ((-583 (-1093)) (-1071))))) (T -790)) +((-2619 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-790))))) +((-3952 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT))) +(((-791 |#1| |#2|) (-10 -7 (-15 -3952 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1127) (-1127)) (T -791)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) +((-2620 (($ |#1| |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT))) +(((-792 |#1|) (-10 -8 (-15 -2620 ($ |#1| |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -792)) +((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1127)))) (-2620 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1127))))) +((-2624 (((-1067 (-583 (-483))) (-583 (-483)) (-1067 (-583 (-483)))) 41 T ELT)) (-2623 (((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483))) 31 T ELT)) (-2625 (((-1067 (-583 (-483))) (-583 (-483))) 53 T ELT) (((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483))) 50 T ELT)) (-2626 (((-1067 (-583 (-483))) (-483)) 55 T ELT)) (-2622 (((-1067 (-583 (-830))) (-1067 (-583 (-830)))) 22 T ELT)) (-3005 (((-583 (-830)) (-583 (-830))) 18 T ELT))) +(((-793) (-10 -7 (-15 -3005 ((-583 (-830)) (-583 (-830)))) (-15 -2622 ((-1067 (-583 (-830))) (-1067 (-583 (-830))))) (-15 -2623 ((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483)))) (-15 -2624 ((-1067 (-583 (-483))) (-583 (-483)) (-1067 (-583 (-483))))) (-15 -2625 ((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483)))) (-15 -2625 ((-1067 (-583 (-483))) (-583 (-483)))) (-15 -2626 ((-1067 (-583 (-483))) (-483))))) (T -793)) +((-2626 (*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-483)))) (-2625 (*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2625 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2624 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *3 (-583 (-483))) (-5 *1 (-793)))) (-2623 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-1067 (-583 (-830)))) (-5 *1 (-793)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))) +((-3966 (((-800 (-327)) $) 9 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-800 (-483)) $) 8 (|has| |#1| (-553 (-800 (-483)))) ELT))) +(((-794 |#1|) (-113) (-1127)) (T -794)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-483)))) (-6 (-553 (-800 (-483)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-327)))) (-6 (-553 (-800 (-327)))) |%noBranch|))) +(((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3608 (($) 14 T ELT)) (-2628 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2627 (((-798 |#1| |#3|) $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2636 (((-85) $) 22 T ELT)) (-2635 (($) 19 T ELT)) (-3940 (((-772) $) 31 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2846 (((-798 |#1| |#2|) $) 15 T ELT)) (-3052 (((-85) $ $) 26 T ELT))) +(((-795 |#1| |#2| |#3|) (-13 (-1012) (-10 -8 (-15 -2636 ((-85) $)) (-15 -2635 ($)) (-15 -3608 ($)) (-15 -2628 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2846 ((-798 |#1| |#2|) $)) (-15 -2627 ((-798 |#1| |#3|) $)))) (-1012) (-1012) (-608 |#2|)) (T -795)) +((-2636 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4)))) (-2635 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-608 *3)))) (-3608 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-608 *3)))) (-2628 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2846 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4)))) (-2627 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-2792 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-796 |#1|) (-113) (-1012)) (T -796)) +((-2792 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1012))))) +(-13 (-1012) (-10 -8 (-15 -2792 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2629 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2630 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2556 (|has| |#2| (-950 (-1088)))) (-2556 (|has| |#2| (-961)))) ELT) (((-583 (-248 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2556 (|has| |#2| (-950 (-1088))))) ELT) (((-583 (-248 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1088))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT))) +(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2629 ((-85) |#2| |#3|)) (-15 -2629 ((-85) (-583 |#2|) |#3|)) (-15 -2630 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1088))) (-15 -2630 ((-583 (-248 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2630 ((-583 (-248 (-857 |#2|))) |#2| |#3|)) (-15 -2630 ((-798 |#1| |#2|) |#2| |#3|))))) (-1012) (-796 |#1|) (-553 (-800 |#1|))) (T -797)) +((-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2556 (-4 *3 (-950 (-1088)))) (-2556 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2556 (-4 *3 (-950 (-1088)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1088))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2629 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3229 (($ $ $) 40 T ELT)) (-2657 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3608 (($) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2632 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2634 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2636 (((-85) $) 15 T ELT)) (-2635 (($) 13 T ELT)) (-3252 (((-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|)))) 23 T ELT)) (-3940 (((-772) $) 45 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2631 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2633 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3052 (((-85) $ $) 42 T ELT))) +(((-798 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2636 ((-85) $)) (-15 -2635 ($)) (-15 -3608 ($)) (-15 -3229 ($ $ $)) (-15 -2634 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2633 ($ (-800 |#1|) |#2| $)) (-15 -2632 ($ (-800 |#1|) |#2| $)) (-15 -2631 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3252 ((-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))) $)) (-15 -3524 ($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))))) (-15 -2657 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1012) (-1012)) (T -798)) +((-2636 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2635 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3608 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3229 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2634 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-798 *4 *2)))) (-2633 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-2632 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-2631 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)))) (-2657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1012))))) +((-3952 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1012) (-1012) (-1012)) (T -799)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2644 (($ $ (-583 (-51))) 74 T ELT)) (-3077 (((-583 $) $) 139 T ELT)) (-2641 (((-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51))) $) 30 T ELT)) (-3255 (((-85) $) 35 T ELT)) (-2642 (($ $ (-583 (-1088)) (-51)) 31 T ELT)) (-2645 (($ $ (-583 (-51))) 73 T ELT)) (-3152 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1088) #1#) $) 167 T ELT)) (-3151 ((|#1| $) 68 T ELT) (((-1088) $) NIL T ELT)) (-2639 (($ $) 126 T ELT)) (-2651 (((-85) $) 55 T ELT)) (-2646 (((-583 (-51)) $) 50 T ELT)) (-2643 (($ (-1088) (-85) (-85) (-85)) 75 T ELT)) (-2637 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2648 (((-85) $) 58 T ELT)) (-2649 (((-85) $) 57 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2654 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 $)) #1#) $) 97 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2655 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2653 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2820 (((-3 (-2 (|:| |val| $) (|:| -2397 (-694))) #1#) $) 45 T ELT)) (-2652 (((-85) $) 34 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2640 (((-85) $) 28 T ELT)) (-2647 (((-85) $) 52 T ELT)) (-2638 (((-583 (-51)) $) 130 T ELT)) (-2650 (((-85) $) 56 T ELT)) (-3794 (($ (-86) (-583 $)) 104 T ELT)) (-3317 (((-694) $) 33 T ELT)) (-3394 (($ $) 72 T ELT)) (-3966 (($ (-583 $)) 69 T ELT)) (-3947 (((-85) $) 32 T ELT)) (-3940 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1088)) 76 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2658 (($ $ (-51)) 129 T ELT)) (-2656 (($) 103 T CONST)) (-2662 (($) 83 T CONST)) (-3052 (((-85) $ $) 93 T ELT)) (-3943 (($ $ $) 117 T ELT)) (-3833 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-800 |#1|) (-13 (-1012) (-950 |#1|) (-950 (-1088)) (-10 -8 (-15 -2656 ($) -3946) (-15 -2662 ($) -3946) (-15 -2818 ((-3 (-583 $) #1="failed") $)) (-15 -2819 ((-3 (-583 $) #1#) $)) (-15 -2655 ((-3 (-583 $) #1#) $ (-86))) (-15 -2655 ((-3 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2820 ((-3 (-2 (|:| |val| $) (|:| -2397 (-694))) #1#) $)) (-15 -2654 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2653 ((-3 (-583 $) #1#) $)) (-15 -2821 ((-3 (-2 (|:| |val| $) (|:| -2397 $)) #1#) $)) (-15 -3794 ($ (-86) (-583 $))) (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3317 ((-694) $)) (-15 -3966 ($ (-583 $))) (-15 -3394 ($ $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -3255 ((-85) $)) (-15 -3947 ((-85) $)) (-15 -2650 ((-85) $)) (-15 -2649 ((-85) $)) (-15 -2648 ((-85) $)) (-15 -2647 ((-85) $)) (-15 -2646 ((-583 (-51)) $)) (-15 -2645 ($ $ (-583 (-51)))) (-15 -2644 ($ $ (-583 (-51)))) (-15 -2643 ($ (-1088) (-85) (-85) (-85))) (-15 -2642 ($ $ (-583 (-1088)) (-51))) (-15 -2641 ((-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51))) $)) (-15 -2640 ((-85) $)) (-15 -2639 ($ $)) (-15 -2658 ($ $ (-51))) (-15 -2638 ((-583 (-51)) $)) (-15 -3077 ((-583 $) $)) (-15 -2637 ((-3 (-583 $) #1#) (-583 $))))) (-1012)) (T -800)) +((-2656 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2662 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2818 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2819 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2655 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2655 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2820 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2654 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2653 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-3833 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2643 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2639 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2658 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2637 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +((-3204 (((-800 |#1|) (-800 |#1|) (-583 (-1088)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2657 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3525 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2659 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2658 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT))) +(((-801 |#1| |#2|) (-10 -7 (-15 -3204 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3204 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3204 ((-800 |#1|) (-800 |#1|) (-583 (-1088)) (-1 (-85) (-583 |#2|)))) (-15 -3525 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2657 ((-85) |#2| (-800 |#1|))) (-15 -2657 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2658 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2659 ((-583 |#2|) (-800 |#1|)))) (-1012) (-1127)) (T -801)) +((-2659 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1127)))) (-2658 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1127)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1127)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1127)))) (-3204 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1088))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-801 *5 *6)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-801 *4 *5)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-801 *4 *5))))) +((-3952 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT))) +(((-802 |#1| |#2|) (-10 -7 (-15 -3952 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1012) (-1012)) (T -802)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 20 T ELT)) (-2660 (((-85) $) 49 T ELT)) (-3152 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3151 (((-614 |#1|) $) 53 T ELT)) (-3793 (($ $) 24 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3827 (((-694) $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-614 |#1|) $) 22 T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 11 T CONST)) (-2661 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 66 T ELT))) +(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2662 ($) -3946) (-15 -3940 ((-739 |#1|) $)) (-15 -3940 ($ |#1|)) (-15 -3795 ((-614 |#1|) $)) (-15 -3827 ((-694) $)) (-15 -2661 ((-583 (-614 |#1|)) $)) (-15 -3793 ($ $)) (-15 -2660 ((-85) $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -803)) +((-2662 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3940 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +((-3468 ((|#1| |#1| |#1|) 19 T ELT))) +(((-804 |#1| |#2|) (-10 -7 (-15 -3468 (|#1| |#1| |#1|))) (-1153 |#2|) (-961)) (T -804)) +((-3468 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1153 *3))))) +((-2665 ((|#2| $ |#3|) 10 T ELT))) +(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1127) (-1127)) (T -805)) +NIL +((-3752 ((|#1| $ |#2|) 7 T ELT)) (-2665 ((|#1| $ |#2|) 6 T ELT))) +(((-806 |#1| |#2|) (-113) (-1127) (-1127)) (T -806)) +((-3752 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) (-2665 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127))))) +(-13 (-1127) (-10 -8 (-15 -3752 (|t#1| $ |t#2|)) (-15 -2665 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1127) . T)) +((-2664 ((|#1| |#1| (-694)) 26 T ELT)) (-2663 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3429 (((-3 (-2 (|:| -3133 |#1|) (|:| -3132 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT))) +(((-807 |#1| |#2|) (-10 -7 (-15 -3429 ((-583 |#1|) |#1|)) (-15 -3429 ((-3 (-2 (|:| -3133 |#1|) (|:| -3132 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2663 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2664 (|#1| |#1| (-694)))) (-1153 |#2|) (-311)) (T -807)) +((-2664 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1153 *4)))) (-2663 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1153 *3)))) (-3429 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1153 *5)))) (-3429 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) 44 T ELT) (($ $ |#2| (-694)) 43 T ELT) (($ $ (-583 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) 47 T ELT) (($ $ |#2| (-694)) 46 T ELT) (($ $ (-583 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-808 |#1| |#2|) (-113) (-961) (-1012)) (T -808)) +NIL +(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-583 |#1|) (-583 (-694))) 50 T ELT) (($ $ |#1| (-694)) 49 T ELT) (($ $ (-583 |#1|)) 48 T ELT) (($ $ |#1|) 46 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#1|) (-583 (-694))) 53 T ELT) (($ $ |#1| (-694)) 52 T ELT) (($ $ (-583 |#1|)) 51 T ELT) (($ $ |#1|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-809 |#1|) (-113) (-1012)) (T -809)) +NIL +(-13 (-961) (-811 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3752 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2665 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2665 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2665 (|#1| |#1| |#2| (-694))) (-15 -2665 (|#1| |#1| (-583 |#2|))) (-15 -3752 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3752 (|#1| |#1| |#2| (-694))) (-15 -3752 (|#1| |#1| (-583 |#2|))) (-15 -2665 (|#1| |#1| |#2|)) (-15 -3752 (|#1| |#1| |#2|))) (-811 |#2|) (-1012)) (T -810)) +NIL +((-3752 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2665 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT))) +(((-811 |#1|) (-113) (-1012)) (T -811)) +((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1012)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1012))))) +(-13 (-806 $ |t#1|) (-10 -8 (-15 -3752 ($ $ (-583 |t#1|))) (-15 -3752 ($ $ |t#1| (-694))) (-15 -3752 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2665 ($ $ (-583 |t#1|))) (-15 -2665 ($ $ |t#1| (-694))) (-15 -2665 ($ $ (-583 |t#1|) (-583 (-694)))))) +(((-13) . T) ((-806 $ |#1|) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 26 T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 25 T ELT)) (-2666 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 23 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 20 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1114 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1114 |#1|)) (-10 -8 (-15 -2666 ($ |#1|)) (-15 -2666 ($ $ $)))) (-1012)) (T -812)) +((-2666 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012)))) (-2666 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2682 (((-1008 |#1|) $) 61 T ELT)) (-2905 (((-583 $) (-583 $)) 104 T ELT)) (-3617 (((-483) $) 84 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-3766 (((-694) $) 81 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 71 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2669 (((-85) $) 89 T ELT)) (-2671 (((-694) $) 85 T ELT)) (-2527 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2853 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2675 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 131 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2668 (((-1008 |#1|) $) 136 (|has| |#1| (-317)) ELT)) (-2670 (((-85) $) 82 T ELT)) (-3794 ((|#1| $ |#1|) 69 T ELT)) (-3942 (((-694) $) 63 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2672 (((-884) $) 75 T ELT)) (-2678 (($ (-583 |#1|)) 32 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-2674 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2673 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2667 (($ (-583 |#1|)) 133 T ELT)) (-3940 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2563 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-3052 (((-85) $ $) 67 T ELT)) (-2680 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2681 (((-85) $ $) 91 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2675 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2674 ($ (-583 (-583 |#1|)))) (-15 -3940 ($ (-583 (-583 |#1|)))) (-15 -3940 ($ (-583 |#1|))) (-15 -2673 ($ (-583 (-583 |#1|)))) (-15 -3942 ((-694) $)) (-15 -2672 ((-884) $)) (-15 -3766 ((-694) $)) (-15 -2671 ((-694) $)) (-15 -3617 ((-483) $)) (-15 -2670 ((-85) $)) (-15 -2669 ((-85) $)) (-15 -2905 ((-583 $) (-583 $))) (IF (|has| |#1| (-317)) (-15 -2668 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-482)) (-15 -2667 ($ (-583 |#1|))) (IF (|has| |#1| (-317)) (-15 -2667 ($ (-583 |#1|))) |%noBranch|)))) (-1012)) (T -813)) +((-2675 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2674 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2905 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-813 *3)) (-4 *3 (-317)) (-4 *3 (-1012)))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3))))) +((-2676 ((|#2| (-1054 |#1| |#2|)) 48 T ELT))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| (-1054 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (T -814)) +((-2676 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (-5 *1 (-814 *4 *2))))) +((-2564 (((-85) $ $) 7 T ELT)) (-2682 (((-1008 |#1|) $) 42 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 41 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-2527 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2853 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3794 ((|#1| $ |#1|) 45 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2678 (($ (-583 |#1|)) 44 T ELT)) (-3005 (($ $ $) 27 T ELT)) (-2431 (($ $ $) 26 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2563 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2681 (((-85) $ $) 40 T ELT)) (-3943 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-815 |#1|) (-113) (-1012)) (T -815)) +((-2678 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-815 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-4 *1 (-815 *3)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(-13 (-410) (-241 |t#1| |t#1|) (-10 -8 (-15 -2678 ($ (-583 |t#1|))) (-15 -2677 ($ (-583 (-583 |t#1|)))) (-15 -2682 ((-1008 |t#1|) $)) (-15 -2686 ((-1008 |t#1|) $ |t#1|)) (-15 -2681 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-756)) |%noBranch|))) +(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-410) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-317))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-317))) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2688 (((-583 (-583 (-694))) $) 163 T ELT)) (-2684 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2683 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2682 (((-1008 |#1|) $) 155 T ELT)) (-2689 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2990 (((-813 |#1|) $ (-483)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2687 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3766 (((-694) $) 159 T ELT)) (-2685 (((-1008 (-1008 |#1|)) $) 189 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 180 T ELT) (((-1008 (-1008 |#1|)) $ (-1008 |#1|)) 201 T ELT) (((-1008 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3240 (((-85) (-813 |#1|) $) 140 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2679 (((-1183) $) 145 T ELT) (((-1183) $ (-483) (-483)) 205 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2691 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3794 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3942 (((-694) $) 160 T ELT)) (-3940 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-583 |#1|) $) 162 T ELT)) (-3052 (((-85) $ $) 198 T ELT)) (-2680 (((-85) $ $) 195 T ELT)) (-2681 (((-85) $ $) 194 T ELT))) +(((-816 |#1|) (-13 (-1012) (-10 -8 (-15 -3940 ((-583 (-813 |#1|)) $)) (-15 -2691 ((-583 (-813 |#1|)) $)) (-15 -3794 ((-813 |#1|) $ (-694))) (-15 -2990 ((-813 |#1|) $ (-483))) (-15 -2990 ((-813 |#1|) $)) (-15 -3766 ((-694) $)) (-15 -3942 ((-694) $)) (-15 -2690 ((-583 |#1|) $)) (-15 -2689 ((-583 (-813 |#1|)) $)) (-15 -2688 ((-583 (-583 (-694))) $)) (-15 -3940 ($ (-583 (-813 |#1|)))) (-15 -2687 ($ (-583 (-813 |#1|)))) (-15 -2686 ((-1008 |#1|) $ |#1|)) (-15 -2685 ((-1008 (-1008 |#1|)) $)) (-15 -2686 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -2686 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -3240 ((-85) (-813 |#1|) $)) (-15 -2684 ((-583 (-694)) (-813 |#1|) $)) (-15 -2683 ((-583 (-694)) (-813 |#1|) $)) (-15 -2682 ((-1008 |#1|) $)) (-15 -2681 ((-85) $ $)) (-15 -2680 ((-85) $ $)) (-15 -2679 ((-1183) $)) (-15 -2679 ((-1183) $ (-483) (-483))))) (-1012)) (T -816)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) (-2990 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))) (-2686 (*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1008 *4)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2684 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2683 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2681 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2679 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-816 *4)) (-4 *4 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 $ #1#) $) NIL T ELT)) (-3151 (($ $) NIL T ELT)) (-1789 (($ (-1177 $)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL T ELT)) (-1677 (((-85) $) NIL T ELT)) (-1761 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| $ (-317)) ELT)) (-2007 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3127 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 $) $ (-830)) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL T ELT)) (-2006 (((-830) $) NIL T ELT)) (-1624 (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1623 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1625 (($ $ (-1083 $)) NIL (|has| $ (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) NIL T ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| $ (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3942 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3180 (((-1083 $)) NIL T ELT)) (-1671 (($) NIL T ELT)) (-1626 (($) NIL (|has| $ (-317)) ELT)) (-3219 (((-630 $) (-1177 $)) NIL T ELT) (((-1177 $) $) NIL T ELT)) (-3966 (((-483) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $) (-830)) NIL T ELT) (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $ (-694)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-817 |#1|) (-13 (-298) (-279 $) (-553 (-483))) (-830)) (T -817)) +NIL +((-2693 (((-3 (-583 (-1083 |#4|)) #1="failed") (-583 (-1083 |#4|)) (-1083 |#4|)) 164 T ELT)) (-2696 ((|#1|) 101 T ELT)) (-2695 (((-345 (-1083 |#4|)) (-1083 |#4|)) 173 T ELT)) (-2697 (((-345 (-1083 |#4|)) (-583 |#3|) (-1083 |#4|)) 83 T ELT)) (-2694 (((-345 (-1083 |#4|)) (-1083 |#4|)) 183 T ELT)) (-2692 (((-3 (-583 (-1083 |#4|)) #1#) (-583 (-1083 |#4|)) (-1083 |#4|) |#3|) 117 T ELT))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 ((-3 (-583 (-1083 |#4|)) #1="failed") (-583 (-1083 |#4|)) (-1083 |#4|))) (-15 -2694 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2695 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2696 (|#1|)) (-15 -2692 ((-3 (-583 (-1083 |#4|)) #1#) (-583 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -2697 ((-345 (-1083 |#4|)) (-583 |#3|) (-1083 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818)) +((-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2692 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2696 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2693 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7))))) +((-2693 (((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)) 39 T ELT)) (-2696 ((|#1|) 71 T ELT)) (-2695 (((-345 (-1083 |#2|)) (-1083 |#2|)) 125 T ELT)) (-2697 (((-345 (-1083 |#2|)) (-1083 |#2|)) 109 T ELT)) (-2694 (((-345 (-1083 |#2|)) (-1083 |#2|)) 136 T ELT))) +(((-819 |#1| |#2|) (-10 -7 (-15 -2693 ((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|))) (-15 -2694 ((-345 (-1083 |#2|)) (-1083 |#2|))) (-15 -2695 ((-345 (-1083 |#2|)) (-1083 |#2|))) (-15 -2696 (|#1|)) (-15 -2697 ((-345 (-1083 |#2|)) (-1083 |#2|)))) (-821) (-1153 |#1|)) (T -819)) +((-2697 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2696 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1153 *2)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2693 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) +((-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 46 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 18 T ELT)) (-2698 (((-632 $) $) 40 T ELT))) +(((-820 |#1|) (-10 -7 (-15 -2698 ((-632 |#1|) |#1|)) (-15 -2700 ((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-821)) (T -820)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 73 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 70 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 71 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 72 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 69 (|has| $ (-118)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-2698 (((-632 $) $) 68 (|has| $ (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-821) (-113)) (T -821)) +((-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-821)))) (-2703 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2702 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2701 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-821)))) (-2699 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1177 *1)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) +(-13 (-1132) (-10 -8 (-15 -2703 ((-345 (-1083 $)) (-1083 $))) (-15 -2702 ((-345 (-1083 $)) (-1083 $))) (-15 -2701 ((-345 (-1083 $)) (-1083 $))) (-15 -2704 ((-1083 $) (-1083 $) (-1083 $))) (-15 -2700 ((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $))) (IF (|has| $ (-118)) (PROGN (-15 -2699 ((-3 (-1177 $) "failed") (-630 $))) (-15 -2698 ((-632 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-2706 (((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#5|)) #1="failed") (-282 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2705 (((-85) (-282 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3766 (((-3 (-694) #1#) (-282 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-3 (-694) #1="failed") (-282 |#2| |#3| |#4| |#5|))) (-15 -2705 ((-85) (-282 |#2| |#3| |#4| |#5|))) (-15 -2706 ((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#5|)) #1#) (-282 |#2| |#3| |#4| |#5|)))) (-13 (-494) (-950 (-483))) (-361 |#1|) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -822)) +((-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8))))) +((-2706 (((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#3|)) #1="failed") (-282 (-347 (-483)) |#1| |#2| |#3|)) 64 T ELT)) (-2705 (((-85) (-282 (-347 (-483)) |#1| |#2| |#3|)) 16 T ELT)) (-3766 (((-3 (-694) #1#) (-282 (-347 (-483)) |#1| |#2| |#3|)) 14 T ELT))) +(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3766 ((-3 (-694) #1="failed") (-282 (-347 (-483)) |#1| |#2| |#3|))) (-15 -2705 ((-85) (-282 (-347 (-483)) |#1| |#2| |#3|))) (-15 -2706 ((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#3|)) #1#) (-282 (-347 (-483)) |#1| |#2| |#3|)))) (-1153 (-347 (-483))) (-1153 (-347 |#1|)) (-290 (-347 (-483)) |#1| |#2|)) (T -823)) +((-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))) +((-2711 ((|#2| |#2|) 26 T ELT)) (-2709 (((-483) (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) 15 T ELT)) (-2707 (((-830) (-483)) 38 T ELT)) (-2710 (((-483) |#2|) 45 T ELT)) (-2708 (((-483) |#2|) 21 T ELT) (((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|) 20 T ELT))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2707 ((-830) (-483))) (-15 -2708 ((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|)) (-15 -2708 ((-483) |#2|)) (-15 -2709 ((-483) (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))))) (-15 -2710 ((-483) |#2|)) (-15 -2711 (|#2| |#2|))) (-1153 (-347 (-483))) (-1153 (-347 |#1|))) (T -824)) +((-2711 (*1 *2 *2) (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1153 (-347 *3))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4))))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-2708 (*1 *2 *3) (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1153 (-347 *3))))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-347 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#1| $) 99 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 93 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2719 (($ |#1| (-345 |#1|)) 91 T ELT)) (-2713 (((-1083 |#1|) |#1| |#1|) 52 T ELT)) (-2712 (($ $) 60 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2714 (((-483) $) 96 T ELT)) (-2715 (($ $ (-483)) 98 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2716 ((|#1| $) 95 T ELT)) (-2717 (((-345 |#1|) $) 94 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 92 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2718 (($ $) 49 T ELT)) (-3940 (((-772) $) 123 T ELT) (($ (-483)) 72 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 40 T ELT) (((-347 |#1|) $) 77 T ELT) (($ (-347 (-345 |#1|))) 85 T ELT)) (-3121 (((-694)) 70 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 24 T CONST)) (-2662 (($) 12 T CONST)) (-3052 (((-85) $ $) 86 T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-825 |#1|) (-13 (-311) (-38 |#1|) (-10 -8 (-15 -3940 ((-347 |#1|) $)) (-15 -3940 ($ (-347 (-345 |#1|)))) (-15 -2718 ($ $)) (-15 -2717 ((-345 |#1|) $)) (-15 -2716 (|#1| $)) (-15 -2715 ($ $ (-483))) (-15 -2714 ((-483) $)) (-15 -2713 ((-1083 |#1|) |#1| |#1|)) (-15 -2712 ($ $)) (-15 -2719 ($ |#1| (-345 |#1|))) (-15 -3124 (|#1| $)))) (-257)) (T -825)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-825 *3)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2716 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2713 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2719 (*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-825 *2)))) (-3124 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257))))) +((-2719 (((-51) (-857 |#1|) (-345 (-857 |#1|)) (-1088)) 17 T ELT) (((-51) (-347 (-857 |#1|)) (-1088)) 18 T ELT))) +(((-826 |#1|) (-10 -7 (-15 -2719 ((-51) (-347 (-857 |#1|)) (-1088))) (-15 -2719 ((-51) (-857 |#1|) (-345 (-857 |#1|)) (-1088)))) (-13 (-257) (-120))) (T -826)) +((-2719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-345 (-857 *6))) (-5 *5 (-1088)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5))))) +((-2720 ((|#4| (-583 |#4|)) 148 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3139 (((-1083 |#4|) (-583 (-1083 |#4|))) 141 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3139 (|#4| |#4| |#4|)) (-15 -3139 (|#4| (-583 |#4|))) (-15 -3139 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3139 ((-1083 |#4|) (-583 (-1083 |#4|)))) (-15 -2720 (|#4| |#4| |#4|)) (-15 -2720 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2720 (|#4| (-583 |#4|)))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -827)) +((-2720 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))) (-2720 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2720 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 (-1083 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-1083 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4))))) +((-2733 (((-816 (-483)) (-884)) 38 T ELT) (((-816 (-483)) (-583 (-483))) 34 T ELT)) (-2721 (((-816 (-483)) (-583 (-483))) 66 T ELT) (((-816 (-483)) (-830)) 67 T ELT)) (-2732 (((-816 (-483))) 39 T ELT)) (-2730 (((-816 (-483))) 53 T ELT) (((-816 (-483)) (-583 (-483))) 52 T ELT)) (-2729 (((-816 (-483))) 51 T ELT) (((-816 (-483)) (-583 (-483))) 50 T ELT)) (-2728 (((-816 (-483))) 49 T ELT) (((-816 (-483)) (-583 (-483))) 48 T ELT)) (-2727 (((-816 (-483))) 47 T ELT) (((-816 (-483)) (-583 (-483))) 46 T ELT)) (-2726 (((-816 (-483))) 45 T ELT) (((-816 (-483)) (-583 (-483))) 44 T ELT)) (-2731 (((-816 (-483))) 55 T ELT) (((-816 (-483)) (-583 (-483))) 54 T ELT)) (-2725 (((-816 (-483)) (-583 (-483))) 71 T ELT) (((-816 (-483)) (-830)) 73 T ELT)) (-2724 (((-816 (-483)) (-583 (-483))) 68 T ELT) (((-816 (-483)) (-830)) 69 T ELT)) (-2722 (((-816 (-483)) (-583 (-483))) 64 T ELT) (((-816 (-483)) (-830)) 65 T ELT)) (-2723 (((-816 (-483)) (-583 (-830))) 57 T ELT))) +(((-828) (-10 -7 (-15 -2721 ((-816 (-483)) (-830))) (-15 -2721 ((-816 (-483)) (-583 (-483)))) (-15 -2722 ((-816 (-483)) (-830))) (-15 -2722 ((-816 (-483)) (-583 (-483)))) (-15 -2723 ((-816 (-483)) (-583 (-830)))) (-15 -2724 ((-816 (-483)) (-830))) (-15 -2724 ((-816 (-483)) (-583 (-483)))) (-15 -2725 ((-816 (-483)) (-830))) (-15 -2725 ((-816 (-483)) (-583 (-483)))) (-15 -2726 ((-816 (-483)) (-583 (-483)))) (-15 -2726 ((-816 (-483)))) (-15 -2727 ((-816 (-483)) (-583 (-483)))) (-15 -2727 ((-816 (-483)))) (-15 -2728 ((-816 (-483)) (-583 (-483)))) (-15 -2728 ((-816 (-483)))) (-15 -2729 ((-816 (-483)) (-583 (-483)))) (-15 -2729 ((-816 (-483)))) (-15 -2730 ((-816 (-483)) (-583 (-483)))) (-15 -2730 ((-816 (-483)))) (-15 -2731 ((-816 (-483)) (-583 (-483)))) (-15 -2731 ((-816 (-483)))) (-15 -2732 ((-816 (-483)))) (-15 -2733 ((-816 (-483)) (-583 (-483)))) (-15 -2733 ((-816 (-483)) (-884))))) (T -828)) +((-2733 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2730 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2729 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2728 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2727 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2726 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +((-2735 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))) 14 T ELT)) (-2734 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))) 13 T ELT))) +(((-829 |#1|) (-10 -7 (-15 -2734 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2735 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))))) (-389)) (T -829)) +((-2735 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-829 *4)))) (-2734 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-829 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3139 ($ $ $)) (-6 (-3991 "*"))))) (T -830)) +((-3139 (*1 *1 *1 *1) (-5 *1 (-830)))) +((-694) (|%ilt| 0 |#1|)) +((-3940 (((-264 |#1|) (-414)) 16 T ELT))) +(((-831 |#1|) (-10 -7 (-15 -3940 ((-264 |#1|) (-414)))) (-494)) (T -831)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-831 *4)) (-4 *4 (-494))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-832) (-113)) (T -832)) +((-2737 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3948 (-583 *1)) (|:| -2405 *1))) (-5 *3 (-583 *1)))) (-2736 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) +(-13 (-389) (-10 -8 (-15 -2737 ((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $))) (-15 -2736 ((-632 (-583 $)) (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3101 (((-1083 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3101 ((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3101 ((-1083 |#2|) (-583 |#2|) (-583 |#2|)))) (-1088) (-311)) (T -833)) +((-3101 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-311)) (-5 *2 (-1083 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1088)))) (-3101 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1088)) (-4 *5 (-311)) (-5 *1 (-833 *4 *5))))) +((-2738 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2738 (|#2| (-583 |#1|) (-583 |#1|)))) (-311) (-1153 |#1|)) (T -834)) +((-2738 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-4 *2 (-1153 *4)) (-5 *1 (-834 *4 *2))))) +((-2740 (((-483) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071)) 175 T ELT)) (-2759 ((|#4| |#4|) 194 T ELT)) (-2744 (((-583 (-347 (-857 |#1|))) (-583 (-1088))) 146 T ELT)) (-2758 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-483)) 88 T ELT)) (-2748 (((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2757 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2741 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071)) 187 T ELT)) (-2739 (((-483) (-630 |#4|) (-830) (-1071)) 167 T ELT) (((-483) (-630 |#4|) (-583 (-1088)) (-830) (-1071)) 166 T ELT) (((-483) (-630 |#4|) (-583 |#4|) (-830) (-1071)) 165 T ELT) (((-483) (-630 |#4|) (-1071)) 154 T ELT) (((-483) (-630 |#4|) (-583 (-1088)) (-1071)) 153 T ELT) (((-483) (-630 |#4|) (-583 |#4|) (-1071)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2745 ((|#4| (-857 |#1|)) 80 T ELT)) (-2755 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2754 (((-583 (-583 (-483))) (-483) (-483)) 161 T ELT)) (-2753 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2752 (((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2751 (((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2760 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2746 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2750 (((-583 |#4|) |#4|) 57 T ELT)) (-2743 (((-583 (-347 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-347 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-347 (-857 |#1|)) |#4|) 139 T ELT)) (-2742 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))))) (|:| |rgsz| (-483))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-694) (-1071) (-483)) 112 T ELT)) (-2747 (((-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2756 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-630 |#4|) (-694)) 121 T ELT)) (-2749 (((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-347 (-857 |#1|)))) (|:| |vec| (-583 (-347 (-857 |#1|)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) 56 T ELT))) +(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)) (-830))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2739 ((-483) (-630 |#4|) (-583 |#4|) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 (-1088)) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 |#4|) (-830) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 (-1088)) (-830) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-830) (-1071))) (-15 -2740 ((-483) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071))) (-15 -2741 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071))) (-15 -2742 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))))) (|:| |rgsz| (-483))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-694) (-1071) (-483))) (-15 -2743 ((-347 (-857 |#1|)) |#4|)) (-15 -2743 ((-630 (-347 (-857 |#1|))) (-630 |#4|))) (-15 -2743 ((-583 (-347 (-857 |#1|))) (-583 |#4|))) (-15 -2744 ((-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -2745 (|#4| (-857 |#1|))) (-15 -2746 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2747 ((-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2748 ((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-583 |#4|))) (-15 -2749 ((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-347 (-857 |#1|)))) (|:| |vec| (-583 (-347 (-857 |#1|)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (-15 -2750 ((-583 |#4|) |#4|)) (-15 -2751 ((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2752 ((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2753 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2754 ((-583 (-583 (-483))) (-483) (-483))) (-15 -2755 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2756 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-630 |#4|) (-694))) (-15 -2757 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2758 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-483))) (-15 -2759 (|#4| |#4|)) (-15 -2760 ((-85) (-583 |#4|))) (-15 -2760 ((-85) (-583 (-857 |#1|))))) (-13 (-257) (-120)) (-13 (-756) (-553 (-1088))) (-717) (-861 |#1| |#3| |#2|)) (T -835)) +((-2760 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2759 (*1 *2 *2) (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2758 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-347 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-483)) (-4 *9 (-13 (-257) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1088)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *9)))) (|:| -2008 (-583 (-1177 (-347 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2757 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-483)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *6 *5)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-347 (-857 *4)))) (|:| |vec| (-583 (-347 (-857 *4)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2748 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2746 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-630 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-347 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2742 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-347 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1071)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1088)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *8)))) (|:| -2008 (-583 (-1177 (-347 (-857 *8)))))))))) (|:| |rgsz| (-483)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-483)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *4 (-1071)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-5 *6 (-1071)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2739 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1071)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1071)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1088))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +((-3868 (($ $ (-1000 (-179))) 125 T ELT) (($ $ (-1000 (-179)) (-1000 (-179))) 126 T ELT)) (-2892 (((-1000 (-179)) $) 73 T ELT)) (-2893 (((-1000 (-179)) $) 72 T ELT)) (-2784 (((-1000 (-179)) $) 74 T ELT)) (-2765 (((-483) (-483)) 66 T ELT)) (-2769 (((-483) (-483)) 61 T ELT)) (-2767 (((-483) (-483)) 64 T ELT)) (-2763 (((-85) (-85)) 68 T ELT)) (-2766 (((-483)) 65 T ELT)) (-3129 (($ $ (-1000 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2786 (($ (-1 (-854 (-179)) (-179)) (-1000 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 149 T ELT)) (-2772 (($ (-1 (-179) (-179)) (-1000 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2785 (($ (-1 (-179) (-179)) (-1000 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1000 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 147 T ELT) (($ $ (-1000 (-179))) 131 T ELT)) (-2771 (((-85) $) 69 T ELT)) (-2762 (((-483)) 70 T ELT)) (-2770 (((-483)) 59 T ELT)) (-2768 (((-483)) 62 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2761 (((-85) (-85)) 71 T ELT)) (-3940 (((-772) $) 174 T ELT)) (-2764 (((-85)) 67 T ELT))) +(((-836) (-13 (-866) (-10 -8 (-15 -2785 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-583 (-1 (-179) (-179))) (-1000 (-179)))) (-15 -2785 ($ (-583 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2772 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2772 ($ (-1 (-179) (-179)))) (-15 -2785 ($ $ (-1000 (-179)))) (-15 -2771 ((-85) $)) (-15 -3868 ($ $ (-1000 (-179)))) (-15 -3868 ($ $ (-1000 (-179)) (-1000 (-179)))) (-15 -3129 ($ $ (-1000 (-179)))) (-15 -3129 ($ $)) (-15 -2784 ((-1000 (-179)) $)) (-15 -2770 ((-483))) (-15 -2769 ((-483) (-483))) (-15 -2768 ((-483))) (-15 -2767 ((-483) (-483))) (-15 -2766 ((-483))) (-15 -2765 ((-483) (-483))) (-15 -2764 ((-85))) (-15 -2763 ((-85) (-85))) (-15 -2762 ((-483))) (-15 -2761 ((-85) (-85)))))) (T -836)) +((-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2786 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2786 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3868 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3129 (*1 *1 *1) (-5 *1 (-836))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-2770 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2768 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2766 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2764 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2762 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +((-2772 (((-836) |#1| (-1088)) 17 T ELT) (((-836) |#1| (-1088) (-1000 (-179))) 21 T ELT)) (-2785 (((-836) |#1| |#1| (-1088) (-1000 (-179))) 19 T ELT) (((-836) |#1| (-1088) (-1000 (-179))) 15 T ELT))) +(((-837 |#1|) (-10 -7 (-15 -2785 ((-836) |#1| (-1088) (-1000 (-179)))) (-15 -2785 ((-836) |#1| |#1| (-1088) (-1000 (-179)))) (-15 -2772 ((-836) |#1| (-1088) (-1000 (-179)))) (-15 -2772 ((-836) |#1| (-1088)))) (-553 (-472))) (T -837)) +((-2772 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2772 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2785 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472)))))) +((-3868 (($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 123 T ELT)) (-2891 (((-1000 (-179)) $) 64 T ELT)) (-2892 (((-1000 (-179)) $) 63 T ELT)) (-2893 (((-1000 (-179)) $) 62 T ELT)) (-2783 (((-583 (-583 (-179))) $) 69 T ELT)) (-2784 (((-1000 (-179)) $) 65 T ELT)) (-2777 (((-483) (-483)) 57 T ELT)) (-2781 (((-483) (-483)) 52 T ELT)) (-2779 (((-483) (-483)) 55 T ELT)) (-2775 (((-85) (-85)) 59 T ELT)) (-2778 (((-483)) 56 T ELT)) (-3129 (($ $ (-1000 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2786 (($ (-1 (-854 (-179)) (-179)) (-1000 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 134 T ELT)) (-2785 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 141 T ELT) (($ $ (-1000 (-179))) 129 T ELT)) (-2774 (((-483)) 60 T ELT)) (-2782 (((-483)) 50 T ELT)) (-2780 (((-483)) 53 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2773 (((-85) (-85)) 61 T ELT)) (-3940 (((-772) $) 155 T ELT)) (-2776 (((-85)) 58 T ELT))) +(((-838) (-13 (-887) (-10 -8 (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ $ (-1000 (-179)))) (-15 -3868 ($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -3129 ($ $ (-1000 (-179)))) (-15 -3129 ($ $)) (-15 -2784 ((-1000 (-179)) $)) (-15 -2783 ((-583 (-583 (-179))) $)) (-15 -2782 ((-483))) (-15 -2781 ((-483) (-483))) (-15 -2780 ((-483))) (-15 -2779 ((-483) (-483))) (-15 -2778 ((-483))) (-15 -2777 ((-483) (-483))) (-15 -2776 ((-85))) (-15 -2775 ((-85) (-85))) (-15 -2774 ((-483))) (-15 -2773 ((-85) (-85)))))) (T -838)) +((-2786 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2786 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3868 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3129 (*1 *1 *1) (-5 *1 (-838))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2782 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2780 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2778 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2776 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2774 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +((-2787 (((-583 (-1000 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT))) +(((-839) (-10 -7 (-15 -2787 ((-583 (-1000 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839)) +((-2787 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1000 (-179)))) (-5 *1 (-839))))) +((-2789 (((-264 (-483)) (-1088)) 16 T ELT)) (-2790 (((-264 (-483)) (-1088)) 14 T ELT)) (-3946 (((-264 (-483)) (-1088)) 12 T ELT)) (-2788 (((-264 (-483)) (-1088) (-444)) 19 T ELT))) +(((-840) (-10 -7 (-15 -2788 ((-264 (-483)) (-1088) (-444))) (-15 -3946 ((-264 (-483)) (-1088))) (-15 -2789 ((-264 (-483)) (-1088))) (-15 -2790 ((-264 (-483)) (-1088))))) (T -840)) +((-2790 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-444)) (-5 *2 (-264 (-483))) (-5 *1 (-840))))) +((-2789 ((|#2| |#2|) 28 T ELT)) (-2790 ((|#2| |#2|) 29 T ELT)) (-3946 ((|#2| |#2|) 27 T ELT)) (-2788 ((|#2| |#2| (-444)) 26 T ELT))) +(((-841 |#1| |#2|) (-10 -7 (-15 -2788 (|#2| |#2| (-444))) (-15 -3946 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2790 (|#2| |#2|))) (-1012) (-361 |#1|)) (T -841)) +((-2790 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-2788 (*1 *2 *2 *3) (-12 (-5 *3 (-444)) (-4 *4 (-1012)) (-5 *1 (-841 *4 *2)) (-4 *2 (-361 *4))))) +((-2792 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2791 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2791 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2792 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-796 |#1|) (-13 (-1012) (-950 |#2|))) (T -842)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) +((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-13 (-494) (-796 |#1|)) (-13 (-361 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-361 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-494) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))) +((-2792 (((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|)) 13 T ELT))) +(((-844 |#1|) (-10 -7 (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|)))) (-482)) (T -844)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-483) *3)) (-5 *4 (-800 (-483))) (-4 *3 (-482)) (-5 *1 (-844 *3))))) +((-2792 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT))) +(((-845 |#1| |#2|) (-10 -7 (-15 -2792 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1012) (-13 (-1012) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6))))) +((-2792 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1012) (-796 |#1|) (-608 |#2|)) (T -846)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))) +((-2792 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT))) +(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2792 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2792 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1012) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2792 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1012)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))) +((-3204 (((-264 (-483)) (-1088) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-264 (-483)) (-1088) (-1 (-85) |#1|)) 15 T ELT))) +(((-848 |#1|) (-10 -7 (-15 -3204 ((-264 (-483)) (-1088) (-1 (-85) |#1|))) (-15 -3204 ((-264 (-483)) (-1088) (-583 (-1 (-85) |#1|))))) (-1127)) (T -848)) +((-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-5 *2 (-264 (-483))) (-5 *1 (-848 *5)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127)) (-5 *2 (-264 (-483))) (-5 *1 (-848 *5))))) +((-3204 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3204 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3204 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1012) (-361 |#1|) (-1127)) (T -849)) +((-3204 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4))))) +((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT))) +(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-13 (-494) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-494) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3))))) +((-2792 (((-798 |#1| (-1088)) (-1088) (-800 |#1|) (-798 |#1| (-1088))) 18 T ELT))) +(((-851 |#1|) (-10 -7 (-15 -2792 ((-798 |#1| (-1088)) (-1088) (-800 |#1|) (-798 |#1| (-1088))))) (-1012)) (T -851)) +((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *1 (-851 *5))))) +((-2793 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2792 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT))) +(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2793 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1012) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852)) +((-2793 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1012)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1012)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) +((-2801 (((-1083 (-347 (-483))) (-483)) 80 T ELT)) (-2800 (((-1083 (-483)) (-483)) 83 T ELT)) (-3328 (((-1083 (-483)) (-483)) 77 T ELT)) (-2799 (((-483) (-1083 (-483))) 73 T ELT)) (-2798 (((-1083 (-347 (-483))) (-483)) 66 T ELT)) (-2797 (((-1083 (-483)) (-483)) 49 T ELT)) (-2796 (((-1083 (-483)) (-483)) 85 T ELT)) (-2795 (((-1083 (-483)) (-483)) 84 T ELT)) (-2794 (((-1083 (-347 (-483))) (-483)) 68 T ELT))) +(((-853) (-10 -7 (-15 -2794 ((-1083 (-347 (-483))) (-483))) (-15 -2795 ((-1083 (-483)) (-483))) (-15 -2796 ((-1083 (-483)) (-483))) (-15 -2797 ((-1083 (-483)) (-483))) (-15 -2798 ((-1083 (-347 (-483))) (-483))) (-15 -2799 ((-483) (-1083 (-483)))) (-15 -3328 ((-1083 (-483)) (-483))) (-15 -2800 ((-1083 (-483)) (-483))) (-15 -2801 ((-1083 (-347 (-483))) (-483))))) (T -853)) +((-2801 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-3328 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-853)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-3700 (($ (-583 |#1|)) 9 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-583 |#1|)) 25 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3905 (((-830) $) 13 T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) 23 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 11 (|has| $ (-6 -3989)) ELT))) +(((-854 |#1|) (-893 |#1|) (-961)) (T -854)) +NIL +((-2804 (((-418 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2807 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2805 (((-857 |#2|) (-418 |#1| |#2|)) 27 T ELT)) (-2803 (((-206 |#1| |#2|) (-418 |#1| |#2|)) 57 T ELT)) (-2806 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2802 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) +(((-855 |#1| |#2|) (-10 -7 (-15 -2802 ((-418 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2803 ((-206 |#1| |#2|) (-418 |#1| |#2|))) (-15 -2804 ((-418 |#1| |#2|) (-857 |#2|))) (-15 -2805 ((-857 |#2|) (-418 |#1| |#2|))) (-15 -2806 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2807 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1088)) (-961)) (T -855)) +((-2807 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5))))) +((-2808 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2811 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2809 (((-583 |#2|) |#2|) 11 T ELT)) (-2812 (((-694) (-583 |#1|) (-483) (-483)) 45 (|has| |#1| (-755)) ELT)) (-2810 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT))) +(((-856 |#1| |#2|) (-10 -7 (-15 -2808 ((-583 |#2|) |#2| |#2|)) (-15 -2809 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2810 (|#1| |#2|)) (-15 -2811 ((-694) (-583 |#1|))) (-15 -2812 ((-694) (-583 |#1|) (-483) (-483)))) |%noBranch|)) (-311) (-1153 |#1|)) (T -856)) +((-2812 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-483)) (-4 *5 (-755)) (-4 *5 (-311)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1153 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1153 *4)))) (-2810 (*1 *2 *3) (-12 (-4 *2 (-311)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1153 *2)))) (-2809 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1153 *4)))) (-2808 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-1088)) $) 16 T ELT)) (-3079 (((-1083 $) $ (-1088)) 21 T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1088))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-1088) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-1088) $) NIL T ELT)) (-3750 (($ $ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-1088)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1088) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1088) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-1088)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-1088)) NIL T ELT)) (-2816 (((-468 (-1088)) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT) (((-583 (-694)) $ (-583 (-1088))) NIL T ELT)) (-1622 (($ (-1 (-468 (-1088)) (-468 (-1088))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3078 (((-3 (-1088) #1#) $) 19 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-1088)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $ (-1088)) 29 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1088) |#1|) NIL T ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL T ELT) (($ $ (-1088) $) NIL T ELT) (($ $ (-583 (-1088)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3942 (((-468 (-1088)) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT) (((-583 (-694)) $ (-583 (-1088))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-1088) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1088) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-1088) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 25 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1088)) 27 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-857 |#1|) (-13 (-861 |#1| (-468 (-1088)) (-1088)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1088))) |%noBranch|))) (-961)) (T -857)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961))))) +((-3952 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT))) +(((-858 |#1| |#2|) (-10 -7 (-15 -3952 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))) +((-3079 (((-1146 |#1| (-857 |#2|)) (-857 |#2|) (-1174 |#1|)) 18 T ELT))) +(((-859 |#1| |#2|) (-10 -7 (-15 -3079 ((-1146 |#1| (-857 |#2|)) (-857 |#2|) (-1174 |#1|)))) (-1088) (-961)) (T -859)) +((-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-961)) (-5 *2 (-1146 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))) +((-2815 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3769 (($ $) 214 T ELT)) (-3965 (((-345 $) $) 206 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 141 T ELT)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3750 (($ $ $ |#4|) 95 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3497 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2814 (((-583 $) $) 77 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 240 T ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 233 T ELT)) (-2817 (((-583 $) $) 34 T ELT)) (-2889 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#4|) 203 T ELT)) (-2819 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#4|) (|:| -2397 (-694))) #1#) $) 57 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 134 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 147 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 145 T ELT)) (-3726 (((-345 $) $) 165 T ELT)) (-3762 (($ $ (-583 (-248 $))) 24 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3751 (($ $ |#4|) 97 T ELT)) (-3966 (((-800 (-327)) $) 254 T ELT) (((-800 (-483)) $) 247 T ELT) (((-472) $) 262 T ELT)) (-2813 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 185 T ELT)) (-3671 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2698 (((-632 $) $) 195 T ELT)) (-1262 (((-85) $ $) 227 T ELT))) +(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -2698 ((-632 |#1|) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1="failed") (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2699 ((-3 (-1177 |#1|) #1#) (-630 |#1|))) (-15 -3497 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -3751 (|#1| |#1| |#4|)) (-15 -3750 (|#1| |#1| |#1| |#4|)) (-15 -2814 ((-583 |#1|) |#1|)) (-15 -2815 ((-694) |#1| (-583 |#4|))) (-15 -2815 ((-694) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| |#4|) (|:| -2397 (-694))) #1#) |#1|)) (-15 -2819 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2818 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2889 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2889 (|#1| |#1| |#4| (-694))) (-15 -3757 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -2817 ((-583 |#1|) |#1|)) (-15 -3671 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3671 (|#1| |#1| |#4| (-694))) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#4| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -2889 (|#1| |#2| |#3|)) (-15 -3671 (|#2| |#1| |#3|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1262 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| |#2| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-2816 ((|#2| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3078 (((-3 |#3| "failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2819 (((-3 (-583 $) "failed") $) 125 T ELT)) (-2818 (((-3 (-583 $) "failed") $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) "failed") $) 124 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3942 ((|#2| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ $) 96 (|has| |#1| (-494)) ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) +(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861)) +((-3497 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1083 *3)))) (-3078 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2816 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3757 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2818 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-694)))))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3750 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3751 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-389)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-389)))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3965 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-345 *1)) (-4 *1 (-861 *3 *4 *5))))) +(-13 (-809 |t#3|) (-276 |t#1| |t#2|) (-259 $) (-452 |t#3| |t#1|) (-452 |t#3| $) (-950 |t#3|) (-326 |t#1|) (-10 -8 (-15 -3942 ((-694) $ |t#3|)) (-15 -3942 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3671 ($ $ |t#3| (-694))) (-15 -3671 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2817 ((-583 $) $)) (-15 -3079 ((-1083 $) $ |t#3|)) (-15 -3079 ((-1083 |t#1|) $)) (-15 -3078 ((-3 |t#3| "failed") $)) (-15 -2816 ((-694) $ |t#3|)) (-15 -2816 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3757 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |t#3|)) (-15 -2889 ($ $ |t#3| (-694))) (-15 -2889 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3080 ($ (-1083 |t#1|) |t#3|)) (-15 -3080 ($ (-1083 $) |t#3|)) (-15 -2818 ((-3 (-583 $) "failed") $)) (-15 -2819 ((-3 (-583 $) "failed") $)) (-15 -2820 ((-3 (-2 (|:| |var| |t#3|) (|:| -2397 (-694))) "failed") $)) (-15 -2815 ((-694) $)) (-15 -2815 ((-694) $ (-583 |t#3|))) (-15 -3077 ((-583 |t#3|) $)) (-15 -2814 ((-583 $) $)) (IF (|has| |t#1| (-553 (-472))) (IF (|has| |t#3| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-483)))) (IF (|has| |t#3| (-553 (-800 (-483)))) (-6 (-553 (-800 (-483)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-327)))) (IF (|has| |t#3| (-553 (-800 (-327)))) (-6 (-553 (-800 (-327)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-483))) (IF (|has| |t#3| (-796 (-483))) (-6 (-796 (-483))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-327))) (IF (|has| |t#3| (-796 (-327))) (-6 (-796 (-327))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3750 ($ $ $ |t#3|)) (-15 -3751 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-6 (-389)) (-15 -2813 ($ $ |t#3|)) (-15 -3497 ($ $)) (-15 -3497 ($ $ |t#3|)) (-15 -3965 ((-345 $) $)) (-15 -3769 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3987)) (-6 -3987) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821))) +((-3077 (((-583 |#2|) |#5|) 40 T ELT)) (-3079 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23 T ELT) (((-347 (-1083 |#5|)) |#5| |#2|) 16 T ELT)) (-3080 ((|#5| (-347 (-1083 |#5|)) |#2|) 30 T ELT)) (-3078 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2819 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2821 (((-3 (-2 (|:| |val| |#5|) (|:| -2397 (-483))) #1#) |#5|) 53 T ELT)) (-2818 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-483))) #1#) |#5|) 56 T ELT))) +(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3077 ((-583 |#2|) |#5|)) (-15 -3078 ((-3 |#2| #1="failed") |#5|)) (-15 -3079 ((-347 (-1083 |#5|)) |#5| |#2|)) (-15 -3080 (|#5| (-347 (-1083 |#5|)) |#2|)) (-15 -3079 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -2818 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2819 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2820 ((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-483))) #1#) |#5|)) (-15 -2821 ((-3 (-2 (|:| |val| |#5|) (|:| -2397 (-483))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -862)) +((-2821 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2397 (-483)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2820 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-483)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2819 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2818 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-3079 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1083 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3079 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1083 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-3078 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *6)) (-15 -2994 (*6 $)) (-15 -2993 (*6 $))))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) +((-3952 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3952 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863)) +((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))) +((-2822 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2823 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) (-347 (-483)) (-694)) 43 T ELT)) (-2825 (((-2 (|:| -2397 (-694)) (|:| -3948 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2824 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-389)) ELT))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2822 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2823 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) (-347 (-483)) (-694))) (IF (|has| |#3| (-389)) (-15 -2824 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2825 ((-2 (|:| -2397 (-694)) (|:| -3948 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -864)) +((-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3940 ($ *3)) (-15 -2994 (*3 $)) (-15 -2993 (*3 $))))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *7 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-483))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-311) (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))) (-2822 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-494)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2826 (($ (-1032)) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT) (((-1032) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT))) +(((-865) (-13 (-1012) (-552 (-1032)) (-10 -8 (-15 -2826 ($ (-1032)))))) (T -865)) +((-2826 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-865))))) +((-2892 (((-1000 (-179)) $) 8 T ELT)) (-2893 (((-1000 (-179)) $) 9 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3940 (((-772) $) 6 T ELT))) +(((-866) (-113)) (T -866)) +((-2894 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179))))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179)))))) +(-13 (-552 (-772)) (-10 -8 (-15 -2894 ((-583 (-583 (-854 (-179)))) $)) (-15 -2893 ((-1000 (-179)) $)) (-15 -2892 ((-1000 (-179)) $)))) +(((-552 (-772)) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 80 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 81 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) 32 T ELT)) (-3461 (((-3 $ #1#) $) 43 T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| |#2| $) 64 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 18 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2816 ((|#2| $) 25 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2890 (($ $) 29 T ELT)) (-3169 ((|#1| $) 27 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 52 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-3732 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-494))) ELT)) (-3460 (((-3 $ #1#) $ $) 92 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 23 T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 47 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 42 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ |#2|) 38 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 15 T CONST)) (-1620 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) 86 (|has| |#1| (-494)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 12 T CONST)) (-3052 (((-85) $ $) 85 T ELT)) (-3943 (($ $ |#1|) 93 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-867 |#1| |#2|) (-13 (-276 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| |#2| (-104)) (-15 -3732 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961) (-716)) (T -867)) +((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-961)) (-4 *2 (-716))))) +((-2827 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT))) +(((-868 |#1| |#2|) (-10 -7 (-15 -2827 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-494) (-600 |#1|)) (T -868)) +((-2827 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-494)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 20 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 19 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 17 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 16 T ELT)) (-2196 (((-483) $) 11 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 21 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 13 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 22 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 15 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 8 (|has| $ (-6 -3989)) ELT))) +(((-869 |#1|) (-19 |#1|) (-1127)) (T -869)) +NIL +((-3835 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3952 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT))) +(((-870 |#1| |#2|) (-10 -7 (-15 -3835 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3952 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1127) (-1127)) (T -870)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-870 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))) +((-2828 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT))) +(((-871) (-113)) (T -871)) +((-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-871)))) (-2828 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1088))))) +(-13 (-10 -8 (-15 -2828 ($ $ (-1088))) (-15 -2828 ($ $ (-1003 $))))) +((-2829 (((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)) (-1088)) 26 T ELT) (((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088))) 27 T ELT) (((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-857 |#1|) (-1088) (-857 |#1|) (-1088)) 49 T ELT))) +(((-872 |#1|) (-10 -7 (-15 -2829 ((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-857 |#1|) (-1088) (-857 |#1|) (-1088))) (-15 -2829 ((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2829 ((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)) (-1088)))) (-13 (-311) (-120))) (T -872)) +((-2829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-5 *5 (-1088)) (-4 *6 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-872 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-872 *5)))) (-2829 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5)))) (-5 *1 (-872 *5))))) +((-2832 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3717 (((-85) |#1|) 44 T ELT)) (-2831 ((|#1| |#1|) 80 T ELT)) (-2830 ((|#1| |#1|) 79 T ELT))) +(((-873 |#1|) (-10 -7 (-15 -3717 ((-85) |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2832 ((-583 |#1|) |#1| |#1|))) (-482)) (T -873)) +((-2832 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-482)))) (-2831 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))) (-2830 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-482))))) +((-2833 (((-1183) (-772)) 9 T ELT))) +(((-874) (-10 -7 (-15 -2833 ((-1183) (-772))))) (T -874)) +((-2833 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-874))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2479 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1309 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3131 (((-694)) 36 (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-2834 ((|#2| $) 22 T ELT)) (-2835 ((|#1| $) 21 T ELT)) (-3718 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2990 (($) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3181 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-2406 (((-85) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2836 (($ |#1| |#2|) 20 T ELT)) (-2006 (((-830) $) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 39 (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2396 (($ (-830)) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3005 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2431 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3940 (((-772) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2662 (($) 25 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3052 (((-85) $ $) 19 T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2681 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3943 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3831 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3833 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-483)) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-483) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT))) +(((-875 |#1| |#2|) (-13 (-1012) (-10 -8 (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-410)) (IF (|has| |#2| (-410)) (-6 (-410)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2836 ($ |#1| |#2|)) (-15 -2835 (|#1| $)) (-15 -2834 (|#2| $)))) (-1012) (-1012)) (T -875)) +((-2836 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1012)))) (-2834 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1012))))) +((-3396 (((-1014) $) 13 T ELT)) (-2837 (($ (-444) (-1014)) 15 T ELT)) (-3536 (((-444) $) 11 T ELT)) (-3940 (((-772) $) 25 T ELT))) +(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3536 ((-444) $)) (-15 -3396 ((-1014) $)) (-15 -2837 ($ (-444) (-1014)))))) (T -876)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-876)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-876)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-876))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 29 T ELT)) (-2851 (($) 17 T CONST)) (-2557 (($ $ $) NIL T ELT)) (-2556 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2842 (((-632 (-782 $ $)) $) 62 T ELT)) (-2844 (((-632 $) $) 52 T ELT)) (-2841 (((-632 (-782 $ $)) $) 63 T ELT)) (-2840 (((-632 (-782 $ $)) $) 64 T ELT)) (-2845 (((-632 |#1|) $) 43 T ELT)) (-2843 (((-632 (-782 $ $)) $) 61 T ELT)) (-2849 (($ $ $) 38 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 16 T CONST)) (-2848 (($ $ $) 39 T ELT)) (-2838 (($ $ $) 36 T ELT)) (-2839 (($ $ $) 34 T ELT)) (-3940 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) NIL T ELT)) (-2307 (($ $ $) 37 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) 35 T ELT))) +(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2845 ((-632 |#1|) $)) (-15 -2844 ((-632 $) $)) (-15 -2843 ((-632 (-782 $ $)) $)) (-15 -2842 ((-632 (-782 $ $)) $)) (-15 -2841 ((-632 (-782 $ $)) $)) (-15 -2840 ((-632 (-782 $ $)) $)) (-15 -2839 ($ $ $)) (-15 -2838 ($ $ $)))) (-1012)) (T -877)) +((-2845 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2839 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012)))) (-2838 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012))))) +((-3643 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2847 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2846 (((-1008 |#1|) (-877 |#1|)) 41 T ELT))) +(((-878 |#1|) (-13 (-1127) (-10 -7 (-15 -2847 ((-877 |#1|) (-877 |#1|))) (-15 -2846 ((-1008 |#1|) (-877 |#1|))) (-15 -3643 ((-877 |#1|) (-877 |#1|))))) (-1012)) (T -878)) +((-2847 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-878 *4)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3))))) +((-3952 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT))) +(((-879 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3952 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1012) (-1012)) (T -879)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))) +((-2564 (((-85) $ $) 19 T ELT)) (-2309 (($ $) 8 T ELT)) (-2851 (($) 17 T CONST)) (-2557 (($ $ $) 9 T ELT)) (-2556 (($ $) 11 T ELT)) (-3237 (((-1071) $) 23 T ELT)) (-2849 (($ $ $) 15 T ELT)) (-3238 (((-1032) $) 22 T ELT)) (-2850 (($) 16 T CONST)) (-2848 (($ $ $) 14 T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-2308 (($ $ $) 7 T ELT))) +(((-880) (-113)) (T -880)) +((-2851 (*1 *1) (-4 *1 (-880))) (-2850 (*1 *1) (-4 *1 (-880))) (-2849 (*1 *1 *1 *1) (-4 *1 (-880))) (-2848 (*1 *1 *1 *1) (-4 *1 (-880)))) +(-13 (-84) (-1012) (-10 -8 (-15 -2851 ($) -3946) (-15 -2850 ($) -3946) (-15 -2849 ($ $ $)) (-15 -2848 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2852 (($ $ $) 47 T ELT)) (-3512 (($ $ $) 48 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 49 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-881 |#1|) (-113) (-756)) (T -881)) +((-2853 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -2853 (|t#1| $)) (-15 -3512 ($ $ $)) (-15 -2852 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 105 T ELT)) (-3749 ((|#2| |#2| |#2|) 103 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 107 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 109 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|) 132 (|has| |#1| (-389)) ELT)) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 56 T ELT)) (-2855 (((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 80 T ELT)) (-2856 (((-2 (|:| |coef1| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 82 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|) 121 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2871 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2879 ((|#1| |#2| |#2|) 50 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|) 130 (|has| |#1| (-389)) ELT)) (-2872 ((|#1| |#2| |#2|) 128 (|has| |#1| (-389)) ELT)) (-2880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 54 T ELT)) (-2854 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 79 T ELT)) (-3750 ((|#1| |#2| |#2|) 76 T ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|) 41 T ELT)) (-2878 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3185 ((|#2| |#2| |#2|) 93 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2857 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3139 ((|#2| |#2| |#2|) 136 (|has| |#1| (-389)) ELT)) (-3460 (((-1177 |#2|) (-1177 |#2|) |#1|) 22 T ELT)) (-2875 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|) 46 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|) 119 T ELT)) (-3751 ((|#1| |#2|) 116 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2860 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2870 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2877 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2876 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1177 |#2|) |#1| (-1177 |#2|)) 17 T ELT))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3750 (|#1| |#2| |#2|)) (-15 -2854 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2855 ((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2856 ((-2 (|:| |coef1| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2857 (|#2| |#2| |#2| (-694))) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2860 (|#2| |#2| |#2| (-694))) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3185 (|#2| |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -3751 (|#1| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|)) (-15 -2870 ((-583 |#2|) |#2| |#2|)) (-15 -2871 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-389)) (PROGN (-15 -2872 (|#1| |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|)) (-15 -3139 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1177 |#2|) |#1| (-1177 |#2|))) (-15 -3460 ((-1177 |#2|) (-1177 |#2|) |#1|)) (-15 -3746 ((-2 (|:| -3948 |#1|) (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|)) (-15 -2875 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|)) (-15 -2876 (|#1| |#1| |#1| (-694))) (-15 -2877 (|#2| |#2| |#1| |#1| (-694))) (-15 -2878 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2879 (|#1| |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|))) (-494) (-1153 |#1|)) (T -882)) +((-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2878 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2877 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2876 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-494)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1153 *2)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3746 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3948 *4) (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3460 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-882 *3 *4)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-389)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-4 *2 (-389)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2869 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3751 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3751 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3751 (*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3185 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2861 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2860 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))) (-2859 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2858 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2857 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3750 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-883) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -883)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-883)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-883))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 40 T ELT)) (-1309 (((-3 $ "failed") $ $) 54 T ELT)) (-3718 (($) NIL T CONST)) (-2883 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2882 (((-830) $) 91 T ELT)) (-2885 (((-583 (-830)) $) 17 T ELT)) (-2884 (((-1067 $) (-694)) 39 T ELT)) (-2886 (($ (-583 (-830))) 16 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3005 (($ $) 67 T ELT)) (-3940 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 44 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 42 T ELT)) (-3833 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3951 (((-694) $) 22 T ELT))) +(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2886 ($ (-583 (-830)))) (-15 -2885 ((-583 (-830)) $)) (-15 -3951 ((-694) $)) (-15 -2884 ((-1067 $) (-694))) (-15 -2883 ((-583 (-782 (-830) (-830))) $)) (-15 -2882 ((-830) $)) (-15 -3005 ($ $))))) (T -884)) +((-2886 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1067 (-884))) (-5 *1 (-884)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3005 (*1 *1 *1) (-5 *1 (-884)))) +((-3943 (($ $ |#2|) 31 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-347 (-483)) $) 27 T ELT) (($ $ (-347 (-483))) 29 T ELT))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3943 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 93 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT) (($ $ |#3| |#2|) 95 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886)) +((-3169 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2887 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2889 ($ $ |t#3| |t#2|)) (-15 -2889 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2890 ($ $)) (-15 -3169 (|t#1| $)) (-15 -3942 (|t#2| $)) (-15 -3077 ((-583 |t#3|) $)) (-15 -2888 ((-85) $)) (-15 -2887 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2891 (((-1000 (-179)) $) 8 T ELT)) (-2892 (((-1000 (-179)) $) 9 T ELT)) (-2893 (((-1000 (-179)) $) 10 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3940 (((-772) $) 6 T ELT))) +(((-887) (-113)) (T -887)) +((-2894 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179)))))) +(-13 (-552 (-772)) (-10 -8 (-15 -2894 ((-583 (-583 (-854 (-179)))) $)) (-15 -2893 ((-1000 (-179)) $)) (-15 -2892 ((-1000 (-179)) $)) (-15 -2891 ((-1000 (-179)) $)))) +(((-552 (-772)) . T)) +((-3077 (((-583 |#4|) $) 23 T ELT)) (-2904 (((-85) $) 55 T ELT)) (-2895 (((-85) $) 54 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2900 (((-85) $) 56 T ELT)) (-2902 (((-85) $ $) 62 T ELT)) (-2901 (((-85) $ $) 65 T ELT)) (-2903 (((-85) $) 60 T ELT)) (-2896 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2897 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2898 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2910 (((-583 |#4|) $) 27 T ELT)) (-2909 (((-85) |#4| $) 34 T ELT)) (-2899 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2906 (($ $ |#4|) 39 T ELT)) (-2908 (($ $ |#4|) 38 T ELT)) (-2907 (($ $ |#4|) 40 T ELT)) (-3052 (((-85) $ $) 46 T ELT))) +(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2895 ((-85) |#1|)) (-15 -2896 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2897 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2898 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2899 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2900 ((-85) |#1|)) (-15 -2901 ((-85) |#1| |#1|)) (-15 -2902 ((-85) |#1| |#1|)) (-15 -2903 ((-85) |#1|)) (-15 -2904 ((-85) |#1|)) (-15 -2905 ((-2 (|:| |under| |#1|) (|:| -3125 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2906 (|#1| |#1| |#4|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -2909 ((-85) |#4| |#1|)) (-15 -2910 ((-583 |#4|) |#1|)) (-15 -3077 ((-583 |#4|) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -888)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -889)) +((-3152 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-756)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2909 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2906 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2905 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3125 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2902 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2901 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2899 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2898 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2897 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2896 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) +(-13 (-1012) (-124 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-6 -3989) (-15 -3152 ((-3 $ "failed") (-583 |t#4|))) (-15 -3151 ($ (-583 |t#4|))) (-15 -3175 (|t#3| $)) (-15 -3077 ((-583 |t#3|) $)) (-15 -2910 ((-583 |t#3|) $)) (-15 -2909 ((-85) |t#3| $)) (-15 -2908 ($ $ |t#3|)) (-15 -2907 ($ $ |t#3|)) (-15 -2906 ($ $ |t#3|)) (-15 -2905 ((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |t#3|)) (-15 -2904 ((-85) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -2903 ((-85) $)) (-15 -2902 ((-85) $ $)) (-15 -2901 ((-85) $ $)) (-15 -2900 ((-85) $)) (-15 -2899 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2898 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2897 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2896 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2895 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2912 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2935 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-389)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-389)) ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2921 (((-85) |#4|) 43 T ELT)) (-2934 (((-583 |#4|) |#4|) 120 (|has| |#1| (-389)) ELT)) (-2917 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2918 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2919 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2930 (((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2932 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2933 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2911 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2927 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2928 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-389)) ELT)) (-2938 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-389)) ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-389)) ELT)) (-2913 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2920 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2916 (((-85) (-583 |#4|)) 79 T ELT)) (-2915 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2923 (((-85) |#4|) 36 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2939 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2929 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2931 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2914 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2926 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2925 (((-85) |#4|) 45 T ELT))) +(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2913 ((-583 |#4|) (-583 |#4|))) (-15 -2913 ((-583 |#4|) |#4| |#4|)) (-15 -2911 ((-583 |#4|) (-583 |#4|))) (-15 -2912 ((-583 |#4|) |#4| |#4|)) (-15 -2913 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2913 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2913 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2914 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2915 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2916 ((-85) (-583 |#4|))) (-15 -2917 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2919 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2920 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2921 ((-85) |#4|)) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2923 ((-85) |#4|)) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2927 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2927 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2928 (|#4| |#4| (-583 |#4|))) (-15 -2929 ((-583 |#4|) (-583 |#4|))) (-15 -2930 ((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|))) (-15 -2932 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2933 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-389)) (PROGN (-15 -2934 ((-583 |#4|) |#4|)) (-15 -2935 ((-583 |#4|) (-583 |#4|))) (-15 -2935 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2936 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2938 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (PROGN (-15 -2939 ((-583 |#4|) (-583 |#4|))) (-15 -2940 ((-583 |#4|) (-583 |#4|))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -890)) +((-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2937 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2936 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2933 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2932 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2930 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3318 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2928 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2927 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2927 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2920 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2913 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2913 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2913 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) +((-2942 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2944 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)) 45 T ELT)) (-2943 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-891 |#1|) (-10 -7 (-15 -2942 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2943 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2944 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)))) (-311)) (T -891)) +((-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)))) (-2943 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-891 *5)))) (-2942 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) +((-3965 (((-345 |#4|) |#4|) 61 T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 ((-345 |#4|) |#4|))) (-756) (-717) (-389) (-861 |#3| |#2| |#1|)) (T -892)) +((-3965 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-389)) (-5 *2 (-345 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-3700 (($ (-583 |#1|)) 127 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3826 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3827 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-583 |#1|)) 125 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3830 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-3905 (((-830) $) 126 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3828 (($ $ $) 113 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT) (($ (-583 |#1|)) 128 T ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-893 |#1|) (-113) (-961)) (T -893)) +((-3700 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3828 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))) +(-13 (-1176 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3700 ($ (-583 |t#1|))) (-15 -3905 ((-830) $)) (-15 -3828 ($ $ $)) (-15 -3763 ($ $ (-583 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T) ((-1176 |#1|) . T)) +((-3952 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT))) +(((-894 |#1| |#2|) (-10 -7 (-15 -3952 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))) +((-2947 ((|#1| (-854 |#1|)) 14 T ELT)) (-2946 ((|#1| (-854 |#1|)) 13 T ELT)) (-2945 ((|#1| (-854 |#1|)) 12 T ELT)) (-2949 ((|#1| (-854 |#1|)) 16 T ELT)) (-2953 ((|#1| (-854 |#1|)) 24 T ELT)) (-2948 ((|#1| (-854 |#1|)) 15 T ELT)) (-2950 ((|#1| (-854 |#1|)) 17 T ELT)) (-2952 ((|#1| (-854 |#1|)) 23 T ELT)) (-2951 ((|#1| (-854 |#1|)) 22 T ELT))) +(((-895 |#1|) (-10 -7 (-15 -2945 (|#1| (-854 |#1|))) (-15 -2946 (|#1| (-854 |#1|))) (-15 -2947 (|#1| (-854 |#1|))) (-15 -2948 (|#1| (-854 |#1|))) (-15 -2949 (|#1| (-854 |#1|))) (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|)))) (-961)) (T -895)) +((-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +((-2971 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2954 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2956 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-896 |#1|) (-113) (-1113)) (T -896)) +((-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2954 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(-13 (-10 -7 (-15 -2954 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)))) +((-2982 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2981 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3952 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT))) +(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2981 (|#4| |#4| |#3|)) (-15 -2981 (|#4| |#4| (-583 |#3|))) (-15 -2982 (|#4| |#4| |#3|)) (-15 -2982 (|#4| |#4| (-583 |#3|))) (-15 -3952 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897)) +((-3952 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1="failed") (-1088)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2982 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2982 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2981 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))) +((-2983 ((|#2| |#3|) 35 T ELT)) (-3913 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT))) +(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2983 (|#2| |#3|))) (-298) (-1153 |#1|) (-1153 |#2|) (-661 |#2| |#3|)) (T -898)) +((-2983 (*1 *2 *3) (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-298)) (-4 *5 (-661 *2 *3)))) (-3913 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3912 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3395 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3643 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2987 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2988 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2984 (($ $) 69 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3397 (((-85) $) 70 T ELT)) (-3559 (($) 30 T ELT)) (-2985 ((|#4| $) 74 T ELT)) (-2986 (((-583 |#4|) $) 73 T ELT)) (-3940 (((-772) $) 68 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-13 (-1012) (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -2988 ($ (-583 |#4|) |#4|)) (-15 -3395 ((-3 (-85) #1="failed") $)) (-15 -2987 ($ $ (-3 (-85) #1#))) (-15 -3397 ((-85) $)) (-15 -2986 ((-583 |#4|) $)) (-15 -2985 (|#4| $)) (-15 -2984 ($ $)) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (-15 -3643 ($ $)) |%noBranch|) |%noBranch|))) (-389) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899)) +((-3559 (*1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3395 (*1 *2 *1) (|partial| -12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2986 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2985 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2984 (*1 *1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3643 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))) +((-2989 (((-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483)))) (-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483))))) 82 T ELT))) +(((-900 |#1| |#2|) (-10 -7 (-15 -2989 ((-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483)))) (-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483))))))) (-583 (-1088)) (-694)) (T -900)) +((-2989 (*1 *2 *2) (-12 (-5 *2 (-899 (-347 (-483)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-347 (-483))))) (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) +((-3264 (((-85) |#5| |#5|) 44 T ELT)) (-3267 (((-85) |#5| |#5|) 59 T ELT)) (-3272 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3268 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3274 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 70 T ELT)) (-3263 (((-1183)) 32 T ELT)) (-3262 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3273 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3275 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) 92 T ELT)) (-3276 (((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3266 (((-85) |#5| |#5|) 53 T ELT)) (-3271 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3269 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3270 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3693 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3277 (((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3265 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) +(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3262 ((-1183) (-1071) (-1071) (-1071))) (-15 -3263 ((-1183))) (-15 -3264 ((-85) |#5| |#5|)) (-15 -3265 ((-583 |#5|) (-583 |#5|))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3269 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3270 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3693 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3271 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| (-583 |#5|))) (-15 -3273 ((-583 |#5|) (-583 |#5|))) (-15 -3274 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3275 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-15 -3276 ((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3277 ((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -901)) +((-3277 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3276 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3263 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) +((-3825 (((-1088) $) 15 T ELT)) (-3396 (((-1071) $) 16 T ELT)) (-3221 (($ (-1088) (-1071)) 14 T ELT)) (-3940 (((-772) $) 13 T ELT))) +(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3221 ($ (-1088) (-1071))) (-15 -3825 ((-1088) $)) (-15 -3396 ((-1071) $))))) (T -902)) +((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-902)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-902)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-902))))) +((-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 72 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) 102 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-1088) $) 67 T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) 99 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2990 (($) 105 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 82 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 91 T ELT)) (-2992 (($ $) 10 T ELT)) (-3439 (((-632 $) $) 27 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3440 (($) 16 T CONST)) (-3123 (($ $) 61 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2991 (($ $) 12 T ELT)) (-3966 (((-800 (-483)) $) 77 T ELT) (((-800 (-327)) $) 86 T ELT) (((-472) $) 47 T ELT) (((-327) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1088)) 64 T ELT)) (-3121 (((-694)) 38 T CONST)) (-2681 (((-85) $ $) 57 T ELT))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2681 ((-85) |#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3940 (|#1| (-1088))) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -2990 (|#1|)) (-15 -3123 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| |#1|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-904 |#2|) (-494)) (T -903)) +((-3121 (*1 *2) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 ((|#1| $) 171 (|has| |#1| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 162 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 165 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 152 (|has| |#1| (-740)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 201 T ELT) (((-3 (-1088) #2#) $) 160 (|has| |#1| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #2#) $) 143 (|has| |#1| (-950 (-483))) ELT) (((-3 (-483) #2#) $) 141 (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 202 T ELT) (((-1088) $) 161 (|has| |#1| (-950 (-1088))) ELT) (((-347 (-483)) $) 144 (|has| |#1| (-950 (-483))) ELT) (((-483) $) 142 (|has| |#1| (-950 (-483))) ELT)) (-2560 (($ $ $) 69 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 169 (|has| |#1| (-482)) ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3181 (((-85) $) 154 (|has| |#1| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 178 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 177 (|has| |#1| (-796 (-327))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2992 (($ $) 173 T ELT)) (-2994 ((|#1| $) 175 T ELT)) (-3439 (((-632 $) $) 140 (|has| |#1| (-1064)) ELT)) (-3182 (((-85) $) 153 (|has| |#1| (-740)) ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 145 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 146 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 193 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 188 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 187 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 182 T ELT) (((-630 |#1|) (-1177 $)) 181 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 139 (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 170 (|has| |#1| (-257)) ELT)) (-3125 ((|#1| $) 167 (|has| |#1| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 164 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 163 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 199 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 198 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 197 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 196 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 195 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 194 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) 72 T ELT)) (-3794 (($ $ |#1|) 200 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 138 (|has| |#1| (-189)) ELT) (($ $ (-694)) 136 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 134 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 132 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 131 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 130 (|has| |#1| (-811 (-1088))) ELT)) (-2991 (($ $) 172 T ELT)) (-2993 ((|#1| $) 174 T ELT)) (-3966 (((-800 (-483)) $) 180 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 179 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) 157 (|has| |#1| (-553 (-472))) ELT) (((-327) $) 156 (|has| |#1| (-933)) ELT) (((-179) $) 155 (|has| |#1| (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 166 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 205 T ELT) (($ (-1088)) 159 (|has| |#1| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) 158 (OR (|has| |#1| (-118)) (-2558 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 ((|#1| $) 168 (|has| |#1| (-482)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 151 (|has| |#1| (-740)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 190 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 189 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-694)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 133 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 129 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 128 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 127 (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) 147 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 148 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-3943 (($ $ $) 81 T ELT) (($ |#1| |#1|) 176 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ |#1| $) 204 T ELT) (($ $ |#1|) 203 T ELT))) +(((-904 |#1|) (-113) (-494)) (T -904)) +((-3943 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2991 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) (-2990 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-482)) (-4 *2 (-494)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482))))) +(-13 (-311) (-38 |t#1|) (-950 |t#1|) (-287 |t#1|) (-184 |t#1|) (-326 |t#1|) (-794 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3943 ($ |t#1| |t#1|)) (-15 -2994 (|t#1| $)) (-15 -2993 (|t#1| $)) (-15 -2992 ($ $)) (-15 -2991 ($ $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-950 (-483))) (PROGN (-6 (-950 (-483))) (-6 (-950 (-347 (-483))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1088))) (-6 (-950 (-1088))) |%noBranch|) (IF (|has| |t#1| (-257)) (PROGN (-15 -3124 (|t#1| $)) (-15 -3123 ($ $))) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -2990 ($)) (-15 -3126 (|t#1| $)) (-15 -3125 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 (-1088)) |has| |#1| (-950 (-1088))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-327)) |has| |#1| (-933)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) . T) ((-257) . T) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-389) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-347 (-483))) |has| |#1| (-950 (-483))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-1088)) |has| |#1| (-950 (-1088))) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) . T)) +((-3952 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#2| |#1|) |#3|))) (-494) (-494) (-904 |#1|) (-904 |#2|)) (T -905)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2995 (($ (-1054 |#1| |#2|)) 11 T ELT)) (-3119 (((-1054 |#1| |#2|) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT))) +(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2995 ($ (-1054 |#1| |#2|))) (-15 -3119 ((-1054 |#1| |#2|) $)))) (-830) (-311)) (T -906)) +((-2995 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311)) (-5 *1 (-906 *3 *4)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-907) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $))))) (T -907)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-907))))) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2998 (($ $) 50 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3827 (((-694) $) 49 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 48 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3000 ((|#1| |#1| $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2999 ((|#1| $) 51 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-2996 ((|#1| $) 47 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-908 |#1|) (-113) (-1127)) (T -908)) +((-3000 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -3000 (|t#1| |t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2998 ($ $)) (-15 -3827 ((-694) $)) (-15 -2997 (|t#1| $)) (-15 -2996 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 12 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3001 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3002 ((|#1| $) 15 T ELT)) (-3003 ((|#1| $) 14 T ELT)) (-3004 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT))) +(((-909 |#1|) (-911 |#1|) (-146)) (T -909)) +NIL +((-3183 (((-85) $) 43 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 78 T ELT)) (-3019 (((-85) $) 72 T ELT)) (-3018 (((-347 (-483)) $) 76 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#2| $) 22 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2480 (($ $) 58 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3966 (((-472) $) 67 T ELT)) (-3005 (($ $) 17 T ELT)) (-3940 (((-772) $) 53 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 10 T CONST)) (-3377 ((|#2| $) 71 T ELT)) (-3052 (((-85) $ $) 26 T ELT)) (-2681 (((-85) $ $) 69 T ELT)) (-3831 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| (-347 (-483)))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -2681 ((-85) |#1| |#1|)) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 * (|#1| |#1| (-347 (-483)))) (-15 -2480 (|#1| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -2406 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910)) +((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 141 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 139 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 136 T ELT)) (-3151 (((-483) $) 140 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 138 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 137 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 121 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 120 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 119 T ELT) (((-630 |#1|) (-630 $)) 118 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 109 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 105 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 107 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 106 (|has| |#1| (-482)) ELT)) (-3001 (($ |#1| |#1| |#1| |#1|) 110 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 111 T ELT)) (-2527 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 94 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 123 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 122 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 117 T ELT) (((-630 |#1|) (-1177 $)) 116 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 102 (|has| |#1| (-311)) ELT)) (-3002 ((|#1| $) 112 T ELT)) (-3003 ((|#1| $) 113 T ELT)) (-3004 ((|#1| $) 114 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 130 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 129 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 128 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 127 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 126 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 125 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) 131 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 92 (|has| |#1| (-189)) ELT) (($ $ (-694)) 90 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 88 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 86 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 85 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 84 (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) 103 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 115 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 80 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) 104 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 ((|#1| $) 108 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 133 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 132 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-694)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 87 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 83 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 82 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 81 (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 101 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ $ (-347 (-483))) 100 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) 99 (|has| |#1| (-311)) ELT))) +(((-911 |#1|) (-113) (-146)) (T -911)) +((-3005 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3001 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483)))))) +(-13 (-38 |t#1|) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-326 |t#1|) (-10 -8 (-15 -3005 ($ $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3001 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3637 (|t#1| $)) (IF (|has| |t#1| (-245)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-311)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-311)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-311)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-311)) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-311)) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-311)) ((-582 |#1|) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-311)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-311)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-968 (-347 (-483))) |has| |#1| (-311)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3718 (($) NIL T CONST)) (-2998 (($ $) 24 T ELT)) (-3006 (($ (-583 |#1|)) 34 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3827 (((-694) $) 27 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 29 T ELT)) (-3603 (($ |#1| $) 18 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 28 T ELT)) (-1272 ((|#1| $) 23 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| |#1| $) 17 T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) NIL T ELT)) (-2999 ((|#1| $) 22 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-2996 ((|#1| $) 31 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3006 ($ (-583 |#1|))))) (-1012)) (T -913)) +((-3006 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-913 *3))))) +((-3033 (($ $) 12 T ELT)) (-3007 (($ $ (-483)) 13 T ELT))) +(((-914 |#1|) (-10 -7 (-15 -3033 (|#1| |#1|)) (-15 -3007 (|#1| |#1| (-483)))) (-915)) (T -914)) +NIL +((-3033 (($ $) 6 T ELT)) (-3007 (($ $ (-483)) 7 T ELT)) (** (($ $ (-347 (-483))) 8 T ELT))) +(((-915) (-113)) (T -915)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-347 (-483))))) (-3007 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-483)))) (-3033 (*1 *1 *1) (-4 *1 (-915)))) +(-13 (-10 -8 (-15 -3033 ($ $)) (-15 -3007 ($ $ (-483))) (-15 ** ($ $ (-347 (-483)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|))) NIL T ELT)) (-3324 (((-347 |#2|) $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#2|))) 79 T ELT) (($ (-1177 |#2|) |#2|) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-630 $)) NIL T ELT)) (-1649 (((-1177 $) (-1177 $)) NIL T ELT)) (-3836 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1636 (((-583 (-583 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) NIL T ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) NIL T ELT)) (-1655 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2559 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) NIL T ELT)) (-2829 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3371 (((-694)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) NIL T ELT)) (-3127 (((-347 |#2|) $) NIL T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) NIL (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1645 (((-630 (-347 |#2|))) 57 T ELT)) (-1647 (((-630 (-347 |#2|))) 56 T ELT)) (-2480 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 80 T ELT)) (-1646 (((-630 (-347 |#2|))) 55 T ELT)) (-1648 (((-630 (-347 |#2|))) 54 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1654 (((-1177 $)) 51 T ELT)) (-3912 (((-1177 $)) 50 T ELT)) (-1653 (((-85) $) NIL T ELT)) (-1652 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3440 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| #1#)) 70 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1663 (((-694)) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1640 (((-3 |#2| #1#)) 68 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) NIL T ELT) (((-347 |#2|)) 47 T ELT)) (-1762 (((-694) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 58 T ELT)) (-1671 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 |#2|)) $) 81 T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-3966 (((-1177 (-347 |#2|)) $) NIL T ELT) (($ (-1177 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1660 (((-85)) 65 T ELT)) (-1659 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1662 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| (-347 |#2|) (-311)) ELT))) +(((-916 |#1| |#2| |#3| |#4| |#5|) (-290 |#1| |#2| |#3|) (-1132) (-1153 |#1|) (-1153 (-347 |#2|)) (-347 |#2|) (-694)) (T -916)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3013 (((-583 (-483)) $) 73 T ELT)) (-3009 (($ (-583 (-483))) 81 T ELT)) (-3124 (((-483) $) 48 (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) 60 T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) 57 (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) 60 (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3011 (((-583 (-483)) $) 79 T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) 45 T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) 50 T ELT)) (-3012 (((-1067 (-483)) $) 78 T ELT)) (-3008 (($ (-583 (-483)) (-583 (-483))) 82 T ELT)) (-3125 (((-483) $) 64 (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) 15 (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) 47 T ELT)) (-3010 (((-583 (-483)) $) 80 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) 108 T ELT) (($ (-483)) 51 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 27 T ELT) (($ (-483)) 51 T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) 25 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) 13 T CONST)) (-3126 (((-483) $) 62 (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) 14 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) 40 (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) 36 T ELT) (($ (-483) (-483)) 38 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3833 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ (-483)) NIL T ELT))) +(((-917 |#1|) (-13 (-904 (-483)) (-552 (-347 (-483))) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -3013 ((-583 (-483)) $)) (-15 -3012 ((-1067 (-483)) $)) (-15 -3011 ((-583 (-483)) $)) (-15 -3010 ((-583 (-483)) $)) (-15 -3009 ($ (-583 (-483)))) (-15 -3008 ($ (-583 (-483)) (-583 (-483)))))) (-483)) (T -917)) +((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3008 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +((-3014 (((-51) (-347 (-483)) (-483)) 9 T ELT))) +(((-918) (-10 -7 (-15 -3014 ((-51) (-347 (-483)) (-483))))) (T -918)) +((-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-918))))) +((-3131 (((-483)) 21 T ELT)) (-3017 (((-483)) 26 T ELT)) (-3016 (((-1183) (-483)) 24 T ELT)) (-3015 (((-483) (-483)) 27 T ELT) (((-483)) 20 T ELT))) +(((-919) (-10 -7 (-15 -3015 ((-483))) (-15 -3131 ((-483))) (-15 -3015 ((-483) (-483))) (-15 -3016 ((-1183) (-483))) (-15 -3017 ((-483))))) (T -919)) +((-3017 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-919)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3131 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3015 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919))))) +((-3727 (((-345 |#1|) |#1|) 43 T ELT)) (-3726 (((-345 |#1|) |#1|) 41 T ELT))) +(((-920 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1|))) (-1153 (-347 (-483)))) (T -920)) +((-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483)))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483))))))) +((-3020 (((-3 (-347 (-483)) "failed") |#1|) 15 T ELT)) (-3019 (((-85) |#1|) 14 T ELT)) (-3018 (((-347 (-483)) |#1|) 10 T ELT))) +(((-921 |#1|) (-10 -7 (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3020 ((-3 (-347 (-483)) "failed") |#1|))) (-950 (-347 (-483)))) (T -921)) +((-3020 (*1 *2 *3) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3019 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-347 (-483)))))) (-3018 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) +((-3782 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3794 ((|#2| $ #1#) 10 T ELT)) (-3024 (((-85) $ $) 18 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3782 (|#2| |#1| #1="value" |#2|)) (-15 -3024 ((-85) |#1| |#1|)) (-15 -3794 (|#2| |#1| #1#))) (-923 |#2|) (-1127)) (T -922)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ "value") 51 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-923 |#1|) (-113) (-1127)) (T -923)) +((-3516 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3027 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3023 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3990)) (-4 *1 (-923 *3)) (-4 *3 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3021 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127))))) +(-13 (-426 |t#1|) (-10 -8 (-15 -3516 ((-583 $) $)) (-15 -3027 ((-583 $) $)) (-15 -3521 ((-85) $)) (-15 -3396 (|t#1| $)) (-15 -3794 (|t#1| $ "value")) (-15 -3627 ((-85) $)) (-15 -3026 ((-583 |t#1|) $)) (-15 -3025 ((-483) $ $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3024 ((-85) $ $)) (-15 -3023 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3022 ($ $ (-583 $))) (-15 -3782 (|t#1| $ "value" |t#1|)) (-15 -3021 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-3033 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-347 (-483))) 13 T ELT) (($ (-483)) 15 T ELT)) (-3178 (((-3 $ #1="failed") (-1083 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1083 $) (-830)) 32 T ELT)) (-3007 (($ $ (-483)) 58 T ELT)) (-3121 (((-694)) 18 T CONST)) (-3179 (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 (-347 (-483)))) 63 T ELT) (((-583 $) (-1083 (-483))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-347 (-483)))) 76 T ELT) (((-583 $) (-857 (-483))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-347 (-483))) 53 T ELT))) +(((-924 |#1|) (-10 -7 (-15 -3033 (|#1| (-483))) (-15 -3033 (|#1| (-347 (-483)))) (-15 -3033 (|#1| |#1| (-830))) (-15 -3179 ((-583 |#1|) (-857 (-483)))) (-15 -3179 ((-583 |#1|) (-857 (-347 (-483))))) (-15 -3179 ((-583 |#1|) (-857 |#1|))) (-15 -3179 ((-583 |#1|) (-1083 (-483)))) (-15 -3179 ((-583 |#1|) (-1083 (-347 (-483))))) (-15 -3179 ((-583 |#1|) (-1083 |#1|))) (-15 -3178 ((-3 |#1| #1="failed") (-1083 |#1|) (-830))) (-15 -3178 ((-3 |#1| #1#) (-1083 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -3007 (|#1| |#1| (-483))) (-15 -3033 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3121 ((-694)) -3946) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924)) +((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 109 T ELT)) (-2059 (($ $) 110 T ELT)) (-2057 (((-85) $) 112 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 129 T ELT)) (-3965 (((-345 $) $) 130 T ELT)) (-3033 (($ $) 93 T ELT) (($ $ (-830)) 79 T ELT) (($ (-347 (-483))) 78 T ELT) (($ (-483)) 77 T ELT)) (-1605 (((-85) $ $) 120 T ELT)) (-3617 (((-483) $) 146 T ELT)) (-3718 (($) 22 T CONST)) (-3178 (((-3 $ "failed") (-1083 $) (-830) (-772)) 87 T ELT) (((-3 $ "failed") (-1083 $) (-830)) 86 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 106 (|has| (-347 (-483)) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) 101 T ELT)) (-3151 (((-483) $) 105 (|has| (-347 (-483)) (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-347 (-483)) $) 102 T ELT)) (-3029 (($ $ (-772)) 76 T ELT)) (-3028 (($ $ (-772)) 75 T ELT)) (-2560 (($ $ $) 124 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 123 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 118 T ELT)) (-3717 (((-85) $) 131 T ELT)) (-3181 (((-85) $) 144 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 92 T ELT)) (-3182 (((-85) $) 145 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 127 T ELT)) (-2527 (($ $ $) 138 T ELT)) (-2853 (($ $ $) 139 T ELT)) (-3030 (((-3 (-1083 $) "failed") $) 88 T ELT)) (-3032 (((-3 (-772) "failed") $) 90 T ELT)) (-3031 (((-3 (-1083 $) "failed") $) 89 T ELT)) (-1888 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 132 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 117 T ELT)) (-3139 (($ (-583 $)) 114 T ELT) (($ $ $) 113 T ELT)) (-3726 (((-345 $) $) 128 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 126 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 125 T ELT)) (-3460 (((-3 $ "failed") $ $) 108 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 119 T ELT)) (-1604 (((-694) $) 121 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 122 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 136 T ELT) (($ $) 107 T ELT) (($ (-347 (-483))) 100 T ELT) (($ (-483)) 99 T ELT) (($ (-347 (-483))) 96 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 111 T ELT)) (-3764 (((-347 (-483)) $ $) 74 T ELT)) (-3179 (((-583 $) (-1083 $)) 85 T ELT) (((-583 $) (-1083 (-347 (-483)))) 84 T ELT) (((-583 $) (-1083 (-483))) 83 T ELT) (((-583 $) (-857 $)) 82 T ELT) (((-583 $) (-857 (-347 (-483)))) 81 T ELT) (((-583 $) (-857 (-483))) 80 T ELT)) (-3377 (($ $) 147 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 140 T ELT)) (-2563 (((-85) $ $) 142 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 141 T ELT)) (-2681 (((-85) $ $) 143 T ELT)) (-3943 (($ $ $) 137 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 133 T ELT) (($ $ (-347 (-483))) 91 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-483)) $) 135 T ELT) (($ $ (-347 (-483))) 134 T ELT) (($ (-483) $) 98 T ELT) (($ $ (-483)) 97 T ELT) (($ (-347 (-483)) $) 95 T ELT) (($ $ (-347 (-483))) 94 T ELT))) +(((-925) (-113)) (T -925)) +((-3033 (*1 *1 *1) (-4 *1 (-925))) (-3032 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3031 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))) (-3178 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3178 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-925)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-925)))) (-3029 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3028 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-347 (-483)))))) +(-13 (-120) (-755) (-146) (-311) (-352 (-347 (-483))) (-38 (-483)) (-38 (-347 (-483))) (-915) (-10 -8 (-15 -3032 ((-3 (-772) "failed") $)) (-15 -3031 ((-3 (-1083 $) "failed") $)) (-15 -3030 ((-3 (-1083 $) "failed") $)) (-15 -3178 ((-3 $ "failed") (-1083 $) (-830) (-772))) (-15 -3178 ((-3 $ "failed") (-1083 $) (-830))) (-15 -3179 ((-583 $) (-1083 $))) (-15 -3179 ((-583 $) (-1083 (-347 (-483))))) (-15 -3179 ((-583 $) (-1083 (-483)))) (-15 -3179 ((-583 $) (-857 $))) (-15 -3179 ((-583 $) (-857 (-347 (-483))))) (-15 -3179 ((-583 $) (-857 (-483)))) (-15 -3033 ($ $ (-830))) (-15 -3033 ($ $)) (-15 -3033 ($ (-347 (-483)))) (-15 -3033 ($ (-483))) (-15 -3029 ($ $ (-772))) (-15 -3028 ($ $ (-772))) (-15 -3764 ((-347 (-483)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 (-483)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 (-483) (-483)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-352 (-347 (-483))) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 (-483)) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 (-483)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) |has| (-347 (-483)) (-950 (-483))) ((-963 (-347 (-483))) . T) ((-963 (-483)) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 (-483)) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-3034 (((-2 (|:| |ans| |#2|) (|:| -3132 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3034 ((-2 (|:| |ans| |#2|) (|:| -3132 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-27) (-361 |#1|))) (T -926)) +((-3034 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4))))) +((-3035 (((-3 (-583 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3035 ((-3 (-583 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-27) (-361 |#1|))) (T -927)) +((-3035 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) +((-3038 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)) 39 T ELT)) (-3036 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3089 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3037 (((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|)) 76 T ELT))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3036 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3089 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3037 ((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|))) (-15 -3038 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -928)) +((-3038 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 *4))) (-5 *4 (-483)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3037 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-347 *5)))) (-3036 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3089 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-347 *6))))) +((-3039 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3089 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3040 (((-3 (-583 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 34 T ELT))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3089 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3040 ((-3 (-583 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -929)) +((-3040 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-347 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5)))) (-3039 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) (|:| |c2| (-347 *6)) (|:| -3089 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6))))) +((-3041 (((-1 |#1|) (-583 (-2 (|:| -3396 |#1|) (|:| -1519 (-483))))) 34 T ELT)) (-3096 (((-1 |#1|) (-1008 |#1|)) 42 T ELT)) (-3042 (((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)) 31 T ELT))) +(((-930 |#1|) (-10 -7 (-15 -3096 ((-1 |#1|) (-1008 |#1|))) (-15 -3041 ((-1 |#1|) (-583 (-2 (|:| -3396 |#1|) (|:| -1519 (-483)))))) (-15 -3042 ((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)))) (-1012)) (T -930)) +((-3042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3396 *4) (|:| -1519 (-483))))) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) +((-3766 (((-694) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-694) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-13 (-317) (-311))) (T -931)) +((-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) (-4 *9 (-13 (-317) (-311))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3589 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-932) (-13 (-994) (-10 -8 (-15 -3589 ((-1047) $)) (-15 -3228 ((-1047) $))))) (T -932)) +((-3589 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932))))) +((-3966 (((-179) $) 6 T ELT) (((-327) $) 9 T ELT))) +(((-933) (-113)) (T -933)) +NIL +(-13 (-553 (-179)) (-553 (-327))) +(((-553 (-179)) . T) ((-553 (-327)) . T)) +((-3129 (((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 32 T ELT) (((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 29 T ELT)) (-3045 (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 34 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483))) 30 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 33 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|) 28 T ELT)) (-3044 (((-583 (-347 (-483))) (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) 20 T ELT)) (-3043 (((-347 (-483)) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 17 T ELT))) +(((-934 |#1|) (-10 -7 (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|)) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483)))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3043 ((-347 (-483)) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3044 ((-583 (-347 (-483))) (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))))) (-1153 (-483))) (T -934)) +((-3044 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *2 (-583 (-347 (-483)))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *2 (-347 (-483))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))) (-3129 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) (-3129 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *4 (-347 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-347 (-483))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))))) +((-3129 (((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 35 T ELT) (((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 32 T ELT)) (-3045 (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 30 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483))) 26 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 28 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|) 24 T ELT))) +(((-935 |#1|) (-10 -7 (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|)) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483)))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-1153 (-347 (-483)))) (T -935)) +((-3129 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))))) (-3129 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *4 (-347 (-483))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *5)) (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *4) (|:| -3132 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))) (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483))))))) +((-3567 (((-583 (-327)) (-857 (-483)) (-327)) 28 T ELT) (((-583 (-327)) (-857 (-347 (-483))) (-327)) 27 T ELT)) (-3963 (((-583 (-583 (-327))) (-583 (-857 (-483))) (-583 (-1088)) (-327)) 37 T ELT))) +(((-936) (-10 -7 (-15 -3567 ((-583 (-327)) (-857 (-347 (-483))) (-327))) (-15 -3567 ((-583 (-327)) (-857 (-483)) (-327))) (-15 -3963 ((-583 (-583 (-327))) (-583 (-857 (-483))) (-583 (-1088)) (-327))))) (T -936)) +((-3963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 (-327)))) (-5 *1 (-936)) (-5 *5 (-327)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) (-5 *4 (-327)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) (-5 *4 (-327))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 75 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) 70 T ELT)) (-3718 (($) NIL T CONST)) (-3178 (((-3 $ #1#) (-1083 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1083 $) (-830)) 55 T ELT)) (-3152 (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-347 (-483)) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT)) (-3151 (((-347 (-483)) $) 17 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-347 (-483)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-483) $) NIL (OR (|has| (-347 (-483)) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT)) (-3029 (($ $ (-772)) 47 T ELT)) (-3028 (($ $ (-772)) 48 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3177 (((-347 (-483)) $ $) 21 T ELT)) (-3461 (((-3 $ #1#) $) 88 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) 66 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3182 (((-85) $) 69 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3030 (((-3 (-1083 $) #1#) $) 83 T ELT)) (-3032 (((-3 (-772) #1#) $) 82 T ELT)) (-3031 (((-3 (-1083 $) #1#) $) 80 T ELT)) (-3046 (((-3 (-973 $ (-1083 $)) #1#) $) 78 T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 89 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) 87 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) 63 T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ $) 27 T ELT)) (-3179 (((-583 $) (-1083 $)) 61 T ELT) (((-583 $) (-1083 (-347 (-483)))) NIL T ELT) (((-583 $) (-1083 (-483))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-347 (-483)))) NIL T ELT) (((-583 $) (-857 (-483))) NIL T ELT)) (-3047 (($ (-973 $ (-1083 $)) (-772)) 46 T ELT)) (-3377 (($ $) 22 T ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 39 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 76 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 24 T ELT)) (-3943 (($ $ $) 37 T ELT)) (-3831 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3833 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ (-483)) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-937 |#1|) (-13 (-925) (-352 |#1|) (-38 |#1|) (-10 -8 (-15 -3047 ($ (-973 $ (-1083 $)) (-772))) (-15 -3046 ((-3 (-973 $ (-1083 $)) "failed") $)) (-15 -3177 ((-347 (-483)) $ $)))) (-13 (-755) (-311) (-933))) (T -937)) +((-3047 (*1 *1 *2 *3) (-12 (-5 *2 (-973 (-937 *4) (-1083 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-311) (-933))))) (-3046 (*1 *2 *1) (|partial| -12 (-5 *2 (-973 (-937 *3) (-1083 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-311) (-933))))) (-3177 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-311) (-933)))))) +((-3048 (((-2 (|:| -3261 |#2|) (|:| -2509 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3048 (|#2| |#2| |#1|)) (-15 -3048 ((-2 (|:| -3261 |#2|) (|:| -2509 (-583 |#1|))) |#2| (-583 |#1|)))) (-311) (-600 |#1|)) (T -938)) +((-3048 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3261 *3) (|:| -2509 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3048 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3049 ((|#1| $ |#1|) 12 T ELT)) (-3051 (($ |#1|) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3050 ((|#1| $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT))) +(((-939 |#1|) (-13 (-1012) (-10 -8 (-15 -3051 ($ |#1|)) (-15 -3050 (|#1| $)) (-15 -3049 (|#1| $ |#1|)) (-15 -3052 ((-85) $ $)))) (-1127)) (T -939)) +((-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1127)))) (-3051 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))) (-3050 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))) (-3049 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 114 T ELT) (((-583 $) (-583 |#4|) (-85)) 115 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 113 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 108 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) 66 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3190 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3432 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 129 T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 106 T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3187 (((-583 $) |#4| $) 89 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3233 (((-583 $) |#4| $) 111 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 112 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3433 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3434 (($ |#4| $) 78 T ELT) (($ (-583 |#4|) $) 79 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3763 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 91 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 85 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3184 (((-583 $) |#4| $) 88 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3191 (((-85) |#4| $) NIL T ELT)) (-3927 (((-85) |#3| $) 62 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-940 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3434 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3433 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3432 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -940)) +((-3434 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3676 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +((-3053 (((-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483))))))) (-630 (-347 (-857 (-483))))) 67 T ELT)) (-3054 (((-583 (-630 (-264 (-483)))) (-264 (-483)) (-630 (-347 (-857 (-483))))) 52 T ELT)) (-3055 (((-583 (-264 (-483))) (-630 (-347 (-857 (-483))))) 45 T ELT)) (-3059 (((-583 (-630 (-264 (-483)))) (-630 (-347 (-857 (-483))))) 85 T ELT)) (-3057 (((-630 (-264 (-483))) (-630 (-264 (-483)))) 38 T ELT)) (-3058 (((-583 (-630 (-264 (-483)))) (-583 (-630 (-264 (-483))))) 74 T ELT)) (-3056 (((-3 (-630 (-264 (-483))) "failed") (-630 (-347 (-857 (-483))))) 82 T ELT))) +(((-941) (-10 -7 (-15 -3053 ((-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483))))))) (-630 (-347 (-857 (-483)))))) (-15 -3054 ((-583 (-630 (-264 (-483)))) (-264 (-483)) (-630 (-347 (-857 (-483)))))) (-15 -3055 ((-583 (-264 (-483))) (-630 (-347 (-857 (-483)))))) (-15 -3056 ((-3 (-630 (-264 (-483))) "failed") (-630 (-347 (-857 (-483)))))) (-15 -3057 ((-630 (-264 (-483))) (-630 (-264 (-483))))) (-15 -3058 ((-583 (-630 (-264 (-483)))) (-583 (-630 (-264 (-483)))))) (-15 -3059 ((-583 (-630 (-264 (-483)))) (-630 (-347 (-857 (-483)))))))) (T -941)) +((-3059 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))) (-3056 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-264 (-483)))) (-5 *1 (-941)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)) (-5 *3 (-264 (-483))))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483)))))))) (-5 *1 (-941))))) +((-3063 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3062 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3064 (((-583 (-630 (-483))) (-583 (-583 (-483)))) 80 T ELT) (((-583 (-630 (-483))) (-583 (-813 (-483))) (-483)) 79 T ELT) (((-630 (-483)) (-583 (-483))) 76 T ELT) (((-630 (-483)) (-813 (-483)) (-483)) 74 T ELT)) (-3061 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3060 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3991 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3991 #1#))) ELT))) +(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3991 #1="*"))) (-15 -3060 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3991 #1#))) (-15 -3060 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3061 ((-630 (-857 |#1|)) (-694))) (-15 -3062 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3062 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3063 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3063 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3063 ((-630 |#1|) (-630 |#1|))) (-15 -3063 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3064 ((-630 (-483)) (-813 (-483)) (-483))) (-15 -3064 ((-630 (-483)) (-583 (-483)))) (-15 -3064 ((-583 (-630 (-483))) (-583 (-813 (-483))) (-483))) (-15 -3064 ((-583 (-630 (-483))) (-583 (-583 (-483)))))) (-961)) (T -942)) +((-3064 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-483)))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-483)))) (-5 *4 (-483)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-483))) (-5 *4 (-483)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4))))) +((-3068 (((-630 |#1|) (-583 (-630 |#1|)) (-1177 |#1|)) 69 (|has| |#1| (-257)) ELT)) (-3412 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 (-1177 |#1|))) 107 (|has| |#1| (-311)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 |#1|)) 104 (|has| |#1| (-311)) ELT)) (-3072 (((-1177 |#1|) (-583 (-1177 |#1|)) (-483)) 113 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3071 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-483) (-483)) 116 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3070 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-311)) ELT) (((-85) (-583 (-630 |#1|)) (-483)) 100 (|has| |#1| (-311)) ELT)) (-3067 (((-1177 (-1177 |#1|)) (-583 (-630 |#1|)) (-1177 |#1|)) 66 (|has| |#1| (-257)) ELT)) (-3066 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3065 (((-630 |#1|) (-1177 (-1177 |#1|))) 39 T ELT)) (-3069 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-483)) 93 (|has| |#1| (-311)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-311)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-483)) 91 (|has| |#1| (-311)) ELT))) +(((-943 |#1|) (-10 -7 (-15 -3065 ((-630 |#1|) (-1177 (-1177 |#1|)))) (-15 -3066 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-257)) (PROGN (-15 -3067 ((-1177 (-1177 |#1|)) (-583 (-630 |#1|)) (-1177 |#1|))) (-15 -3068 ((-630 |#1|) (-583 (-630 |#1|)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-483))) (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-483))) (-15 -3070 ((-85) (-583 (-630 |#1|)) (-483))) (-15 -3070 ((-85) (-583 (-630 |#1|)))) (-15 -3412 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 |#1|))) (-15 -3412 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 (-1177 |#1|))))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-311)) (PROGN (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-483) (-483))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3072 ((-1177 |#1|) (-583 (-1177 |#1|)) (-483)))) |%noBranch|) |%noBranch|)) (-961)) (T -943)) +((-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5)) (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3071 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-311)) (-4 *6 (-317)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3069 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-961)))) (-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-311)) (-4 *4 (-961)))) (-3069 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-311)) (-4 *6 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-257)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-257)) (-4 *5 (-961)) (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1177 *5)))) (-3066 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))))) +((-3073 ((|#1| (-830) |#1|) 18 T ELT))) +(((-944 |#1|) (-10 -7 (-15 -3073 (|#1| (-830) |#1|))) (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $))))) (T -944)) +((-3073 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)))))))) +((-3074 ((|#1| |#1| (-830)) 18 T ELT))) +(((-945 |#1|) (-10 -7 (-15 -3074 (|#1| |#1| (-830)))) (-13 (-1012) (-10 -8 (-15 * ($ $ $))))) (T -945)) +((-3074 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $)))))))) +((-3940 ((|#1| (-261)) 11 T ELT) (((-1183) |#1|) 9 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3940 ((-1183) |#1|)) (-15 -3940 (|#1| (-261)))) (-1127)) (T -946)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-946 *2)) (-4 *2 (-1127)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-946 *3)) (-4 *3 (-1127))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ |#4|) 24 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3075 ((|#4| $) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 45 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3121 (((-694)) 42 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 22 T CONST)) (-3052 (((-85) $ $) 39 T ELT)) (-3831 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3836 ($ |#4|)) (-15 -3940 ($ |#4|)) (-15 -3075 (|#4| $)))) (-311) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947)) +((-3836 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-948) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $))))) (T -948)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-948))))) +((-3151 ((|#2| $) 10 T ELT))) +(((-949 |#1| |#2|) (-10 -7 (-15 -3151 (|#2| |#1|))) (-950 |#2|) (-1127)) (T -949)) +NIL +((-3152 (((-3 |#1| "failed") $) 9 T ELT)) (-3151 ((|#1| $) 8 T ELT)) (-3940 (($ |#1|) 6 T ELT))) +(((-950 |#1|) (-113) (-1127)) (T -950)) +((-3152 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1127)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1127))))) +(-13 (-555 |t#1|) (-10 -8 (-15 -3152 ((-3 |t#1| "failed") $)) (-15 -3151 (|t#1| $)))) +(((-555 |#1|) . T)) +((-3076 (((-583 (-583 (-248 (-347 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1088))) 38 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3076 ((-583 (-583 (-248 (-347 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1088))))) (-494) (-13 (-494) (-950 |#1|))) (T -951)) +((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-13 (-494) (-950 *5))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) +((-3077 (((-583 (-1088)) (-347 (-857 |#1|))) 17 T ELT)) (-3079 (((-347 (-1083 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088)) 24 T ELT)) (-3080 (((-347 (-857 |#1|)) (-347 (-1083 (-347 (-857 |#1|)))) (-1088)) 26 T ELT)) (-3078 (((-3 (-1088) "failed") (-347 (-857 |#1|))) 20 T ELT)) (-3762 (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-248 (-347 (-857 |#1|))))) 32 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 33 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-1088)) (-583 (-347 (-857 |#1|)))) 28 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))) 29 T ELT)) (-3940 (((-347 (-857 |#1|)) |#1|) 11 T ELT))) +(((-952 |#1|) (-10 -7 (-15 -3077 ((-583 (-1088)) (-347 (-857 |#1|)))) (-15 -3078 ((-3 (-1088) "failed") (-347 (-857 |#1|)))) (-15 -3079 ((-347 (-1083 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088))) (-15 -3080 ((-347 (-857 |#1|)) (-347 (-1083 (-347 (-857 |#1|)))) (-1088))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-1088)) (-583 (-347 (-857 |#1|))))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3940 ((-347 (-857 |#1|)) |#1|))) (-494)) (T -952)) +((-3940 (*1 *2 *3) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-494)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3762 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-5 *4 (-583 (-347 (-857 *5)))) (-5 *2 (-347 (-857 *5))) (-4 *5 (-494)) (-5 *1 (-952 *5)))) (-3762 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1083 (-347 (-857 *5))))) (-5 *4 (-1088)) (-5 *2 (-347 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-494)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-347 (-1083 (-347 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-347 (-857 *5))))) (-3078 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-1088)) (-5 *1 (-952 *4)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-1088))) (-5 *1 (-952 *4))))) +((-3081 (((-327)) 17 T ELT)) (-3096 (((-1 (-327)) (-327) (-327)) 22 T ELT)) (-3089 (((-1 (-327)) (-694)) 48 T ELT)) (-3082 (((-327)) 37 T ELT)) (-3085 (((-1 (-327)) (-327) (-327)) 38 T ELT)) (-3083 (((-327)) 29 T ELT)) (-3086 (((-1 (-327)) (-327)) 30 T ELT)) (-3084 (((-327) (-694)) 43 T ELT)) (-3087 (((-1 (-327)) (-694)) 44 T ELT)) (-3088 (((-1 (-327)) (-694) (-694)) 47 T ELT)) (-3378 (((-1 (-327)) (-694) (-694)) 45 T ELT))) +(((-953) (-10 -7 (-15 -3081 ((-327))) (-15 -3082 ((-327))) (-15 -3083 ((-327))) (-15 -3084 ((-327) (-694))) (-15 -3096 ((-1 (-327)) (-327) (-327))) (-15 -3085 ((-1 (-327)) (-327) (-327))) (-15 -3086 ((-1 (-327)) (-327))) (-15 -3087 ((-1 (-327)) (-694))) (-15 -3378 ((-1 (-327)) (-694) (-694))) (-15 -3088 ((-1 (-327)) (-694) (-694))) (-15 -3089 ((-1 (-327)) (-694))))) (T -953)) +((-3089 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3378 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3096 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-327)) (-5 *1 (-953)))) (-3083 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))) (-3082 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))) (-3081 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953))))) +((-3726 (((-345 |#1|) |#1|) 33 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|))) (-1153 (-347 (-857 (-483))))) (T -954)) +((-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1153 (-347 (-857 (-483)))))))) +((-3090 (((-347 (-345 (-857 |#1|))) (-347 (-857 |#1|))) 14 T ELT))) +(((-955 |#1|) (-10 -7 (-15 -3090 ((-347 (-345 (-857 |#1|))) (-347 (-857 |#1|))))) (-257)) (T -955)) +((-3090 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-857 *4)))) (-5 *1 (-955 *4))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3094 ((|#1| $) 28 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3093 ((|#1| $) 27 T ELT)) (-3091 ((|#1|) 25 T CONST)) (-3940 (((-772) $) 13 T ELT)) (-3092 ((|#1| $) 26 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT))) +(((-956 |#1|) (-113) (-23)) (T -956)) +((-3094 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3091 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3094 (|t#1| $)) (-15 -3093 (|t#1| $)) (-15 -3092 (|t#1| $)) (-15 -3091 (|t#1|) -3946))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3095 (($) 30 T CONST)) (-3718 (($) 22 T CONST)) (-3094 ((|#1| $) 28 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3093 ((|#1| $) 27 T ELT)) (-3091 ((|#1|) 25 T CONST)) (-3940 (((-772) $) 13 T ELT)) (-3092 ((|#1| $) 26 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT))) +(((-957 |#1|) (-113) (-23)) (T -957)) +((-3095 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(-13 (-956 |t#1|) (-10 -8 (-15 -3095 ($) -3946))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3676 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3077 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3704 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2896 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3151 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3793 (((-3 $ #1#) $) NIL T ELT)) (-3679 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-3400 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3677 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3836 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1699 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3192 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3190 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3193 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2885 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 (((-773 |#2|) $) NIL T ELT)) (-2604 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-1946 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2910 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2909 (((-85) (-773 |#2|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3792 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3187 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3189 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3233 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3434 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3691 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3685 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1351 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3763 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-248 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2906 (($ $ (-773 |#2|)) NIL T ELT)) (-2908 (($ $ (-773 |#2|)) NIL T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ (-773 |#2|)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3672 (((-694) $) NIL (|has| (-773 |#2|) (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3184 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3191 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3927 (((-85) (-773 |#2|) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-958 |#1| |#2|) (-13 (-982 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3676 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-389) (-583 (-1088))) (T -958)) +((-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))) +((-3096 (((-1 (-483)) (-1000 (-483))) 32 T ELT)) (-3100 (((-483) (-483) (-483) (-483) (-483)) 29 T ELT)) (-3098 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3099 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3097 (((-1 (-483)) (-483) |RationalNumber|) NIL T ELT))) +(((-959) (-10 -7 (-15 -3096 ((-1 (-483)) (-1000 (-483)))) (-15 -3097 ((-1 (-483)) (-483) |RationalNumber|)) (-15 -3098 ((-1 (-483)) |RationalNumber|)) (-15 -3099 ((-1 (-483)) |RationalNumber|)) (-15 -3100 ((-483) (-483) (-483) (-483) (-483))))) (T -959)) +((-3100 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-959)))) (-3099 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))) (-3098 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)) (-5 *3 (-483)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-959))))) +((-3940 (((-772) $) NIL T ELT) (($ (-483)) 10 T ELT))) +(((-960 |#1|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-961)) (T -960)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-961) (-113)) (T -961)) +((-3121 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))) +(-13 (-969) (-1059) (-590 $) (-555 (-483)) (-10 -7 (-15 -3121 ((-694)) -3946) (-6 -3986))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3101 (((-347 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT))) +(((-962 |#1| |#2|) (-10 -7 (-15 -3101 ((-347 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1088) (-311)) (T -962)) +((-3101 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-311)) (-5 *2 (-347 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1088))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-963 |#1|) (-113) (-1024)) (T -963)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1024))))) +(-13 (-1012) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3116 (((-85) $) 38 T ELT)) (-3118 (((-85) $) 17 T ELT)) (-3110 (((-694) $) 13 T ELT)) (-3109 (((-694) $) 14 T ELT)) (-3117 (((-85) $) 30 T ELT)) (-3115 (((-85) $) 40 T ELT))) +(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3109 ((-694) |#1|)) (-15 -3110 ((-694) |#1|)) (-15 -3115 ((-85) |#1|)) (-15 -3116 ((-85) |#1|)) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3116 (((-85) $) 61 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3118 (((-85) $) 63 T ELT)) (-3718 (($) 22 T CONST)) (-3105 (($ $) 44 (|has| |#3| (-257)) ELT)) (-3107 ((|#4| $ (-483)) 49 T ELT)) (-3104 (((-694) $) 43 (|has| |#3| (-494)) ELT)) (-3108 ((|#3| $ (-483) (-483)) 51 T ELT)) (-2885 (((-583 |#3|) $) 75 (|has| $ (-6 -3989)) ELT)) (-3103 (((-694) $) 42 (|has| |#3| (-494)) ELT)) (-3102 (((-583 |#5|) $) 41 (|has| |#3| (-494)) ELT)) (-3110 (((-694) $) 55 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#3|) $) 76 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-3119 (($ (-583 (-583 |#3|))) 64 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3588 (((-583 (-583 |#3|)) $) 53 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#3|) (-583 |#3|)) 82 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) 80 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 (-248 |#3|))) 79 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) 65 T ELT)) (-3397 (((-85) $) 68 T ELT)) (-3559 (($) 67 T ELT)) (-3794 ((|#3| $ (-483) (-483)) 52 T ELT) ((|#3| $ (-483) (-483) |#3|) 50 T ELT)) (-3117 (((-85) $) 62 T ELT)) (-1943 (((-694) |#3| $) 77 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 66 T ELT)) (-3106 ((|#5| $ (-483)) 48 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 60 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#3|) 45 (|has| |#3| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3951 (((-694) $) 69 (|has| $ (-6 -3989)) ELT))) +(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965)) +((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3794 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3107 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-257)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-583 *7))))) +(-13 (-82 |t#3| |t#3|) (-426 |t#3|) (-10 -8 (-6 -3989) (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3119 ($ (-583 (-583 |t#3|)))) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3116 ((-85) $)) (-15 -3115 ((-85) $)) (-15 -3114 ((-483) $)) (-15 -3113 ((-483) $)) (-15 -3112 ((-483) $)) (-15 -3111 ((-483) $)) (-15 -3110 ((-694) $)) (-15 -3109 ((-694) $)) (-15 -3588 ((-583 (-583 |t#3|)) $)) (-15 -3794 (|t#3| $ (-483) (-483))) (-15 -3108 (|t#3| $ (-483) (-483))) (-15 -3794 (|t#3| $ (-483) (-483) |t#3|)) (-15 -3107 (|t#4| $ (-483))) (-15 -3106 (|t#5| $ (-483))) (-15 -3952 ($ (-1 |t#3| |t#3|) $)) (-15 -3952 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -3943 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-257)) (-15 -3105 ($ $)) |%noBranch|) (IF (|has| |t#3| (-494)) (PROGN (-15 -3104 ((-694) $)) (-15 -3103 ((-694) $)) (-15 -3102 ((-583 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-259 |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ((-426 |#3|) . T) ((-452 |#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ((-13) . T) ((-588 (-483)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 47 (|has| |#3| (-257)) ELT)) (-3107 (((-197 |#2| |#3|) $ (-483)) 36 T ELT)) (-3120 (($ (-630 |#3|)) 45 T ELT)) (-3104 (((-694) $) 49 (|has| |#3| (-494)) ELT)) (-3108 ((|#3| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3103 (((-694) $) 51 (|has| |#3| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#3|)) $) 55 (|has| |#3| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#3|))) 31 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3588 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) (-483)) NIL T ELT) ((|#3| $ (-483) (-483) |#3|) NIL T ELT)) (-3905 (((-107)) 59 (|has| |#3| (-311)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-1943 (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT) (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 66 (|has| |#3| (-553 (-472))) ELT)) (-3106 (((-197 |#1| |#3|) $ (-483)) 40 T ELT)) (-3940 (((-772) $) 19 T ELT) (((-630 |#3|) $) 42 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-311)) (-6 (-1185 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (-15 -3120 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966)) +((-3120 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))))) +((-3836 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3952 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3952 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3836 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967)) +((-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-968 |#1|) (-113) (-969)) (T -968)) +NIL +(-13 (-21) (-963 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-963 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-969) (-113)) (T -969)) +NIL +(-13 (-21) (-1024)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3825 (((-1088) $) 11 T ELT)) (-3730 ((|#1| $) 12 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3221 (($ (-1088) |#1|) 10 T ELT)) (-3940 (((-772) $) 22 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3052 (((-85) $ $) 17 (|has| |#1| (-1012)) ELT))) +(((-970 |#1| |#2|) (-13 (-1127) (-10 -8 (-15 -3221 ($ (-1088) |#1|)) (-15 -3825 ((-1088) $)) (-15 -3730 (|#1| $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1005 |#2|) (-1127)) (T -970)) +((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3825 (*1 *2 *1) (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3730 (*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127))))) +((-3765 (($ $) 17 T ELT)) (-3122 (($ $) 25 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 54 T ELT)) (-3127 (($ $) 27 T ELT)) (-3123 (($ $) 12 T ELT)) (-3125 (($ $) 40 T ELT)) (-3966 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-327)) $) 36 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 31 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) 31 T ELT)) (-3121 (((-694)) 9 T CONST)) (-3126 (($ $) 44 T ELT))) +(((-971 |#1|) (-10 -7 (-15 -3122 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| |#1|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-972)) (T -971)) +((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-971 *3)) (-4 *3 (-972))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 (((-483) $) 106 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3765 (($ $) 104 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 114 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 131 T ELT)) (-3718 (($) 22 T CONST)) (-3122 (($ $) 103 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 119 T ELT) (((-3 (-347 (-483)) #1#) $) 116 T ELT)) (-3151 (((-483) $) 120 T ELT) (((-347 (-483)) $) 117 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3181 (((-85) $) 129 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 110 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 113 T ELT)) (-3127 (($ $) 109 T ELT)) (-3182 (((-85) $) 130 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 123 T ELT)) (-2853 (($ $ $) 124 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 105 T ELT)) (-3125 (($ $) 107 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3966 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-800 (-327)) $) 111 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-483)) 118 T ELT) (($ (-347 (-483))) 115 T ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 (($ $) 108 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 132 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 125 T ELT)) (-2563 (((-85) $ $) 127 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 126 T ELT)) (-2681 (((-85) $ $) 128 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 112 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT))) +(((-972) (-113)) (T -972)) +((-3127 (*1 *1 *1) (-4 *1 (-972))) (-3126 (*1 *1 *1) (-4 *1 (-972))) (-3125 (*1 *1 *1) (-4 *1 (-972))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483)))) (-3123 (*1 *1 *1) (-4 *1 (-972))) (-3765 (*1 *1 *1) (-4 *1 (-972))) (-3122 (*1 *1 *1) (-4 *1 (-972)))) +(-13 (-311) (-755) (-933) (-950 (-483)) (-950 (-347 (-483))) (-915) (-553 (-800 (-327))) (-796 (-327)) (-120) (-10 -8 (-15 -3127 ($ $)) (-15 -3126 ($ $)) (-15 -3125 ($ $)) (-15 -3124 ((-483) $)) (-15 -3123 ($ $)) (-15 -3765 ($ $)) (-15 -3122 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-800 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-327)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) |#2| $) 26 T ELT)) (-3131 ((|#1| $) 10 T ELT)) (-3617 (((-483) |#2| $) 119 T ELT)) (-3178 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3132 ((|#1| $) 31 T ELT)) (-3177 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3129 (($ $) 28 T ELT)) (-3461 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3181 (((-85) |#2| $) NIL T ELT)) (-3182 (((-85) |#2| $) NIL T ELT)) (-3128 (((-85) |#2| $) 27 T ELT)) (-3130 ((|#1| $) 120 T ELT)) (-3133 ((|#1| $) 30 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3180 ((|#2| $) 104 T ELT)) (-3940 (((-772) $) 95 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3764 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3179 (((-583 $) |#2|) 78 T ELT)) (-3052 (((-85) $ $) 99 T ELT))) +(((-973 |#1| |#2|) (-13 (-979 |#1| |#2|) (-10 -8 (-15 -3133 (|#1| $)) (-15 -3132 (|#1| $)) (-15 -3131 (|#1| $)) (-15 -3130 (|#1| $)) (-15 -3129 ($ $)) (-15 -3128 ((-85) |#2| $)) (-15 -3177 (|#1| |#2| $ |#1|)))) (-13 (-755) (-311)) (-1153 |#1|)) (T -973)) +((-3177 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3132 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3131 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3129 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3128 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-311))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3134 (($ (-1088)) 10 T ELT) (($ (-483)) 7 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) NIL T ELT) (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2669 (((-85) $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2040 (($ $) NIL T ELT)) (-3827 (($ $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2042 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) NIL T ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-483) $) 16 T ELT) (((-472) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1088)) 9 T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-483)) 6 T ELT) (($ $) NIL T ELT) (($ (-483)) 6 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT))) +(((-974) (-13 (-482) (-557 (-1088)) (-10 -8 (-6 -3976) (-6 -3981) (-6 -3977) (-15 -3134 ($ (-1088))) (-15 -3134 ($ (-483)))))) (T -974)) +((-3134 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974))))) +((-3791 (($ $) 46 T ELT)) (-3161 (((-85) $ $) 82 T ELT)) (-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-347 (-483)))) 247 T ELT) (((-3 $ #1#) (-857 (-483))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-347 (-483)))) 235 T ELT) (($ (-857 (-483))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3953 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3688 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3167 (((-85) $) 60 T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 T ELT)) (-3138 (($ $) 160 T ELT)) (-3149 (($ $) 156 T ELT)) (-3150 (($ $) 155 T ELT)) (-3160 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3159 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3689 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3175 ((|#4| $) 32 T ELT)) (-3154 (($ $ $) 128 T ELT)) (-3168 (((-85) $) 59 T ELT)) (-3174 (((-694) $) 35 T ELT)) (-3135 (($ $) 174 T ELT)) (-3136 (($ $) 171 T ELT)) (-3163 (((-583 $) $) 72 T ELT)) (-3166 (($ $) 62 T ELT)) (-3137 (($ $) 167 T ELT)) (-3164 (((-583 $) $) 69 T ELT)) (-3165 (($ $) 64 T ELT)) (-3169 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 130 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 126 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#4|) 127 T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) 121 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#4|) 123 T ELT)) (-3158 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3157 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3171 (((-583 $) $) 54 T ELT)) (-3685 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3680 (($ $ $) 116 T ELT)) (-3440 (($ $) 37 T ELT)) (-3693 (((-85) $ $) 80 T ELT)) (-3686 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3681 (($ $ $) 112 T ELT)) (-3173 (($ $) 41 T ELT)) (-3139 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3147 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3148 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3172 (($ $) 49 T ELT)) (-3170 (($ $) 55 T ELT)) (-3966 (((-800 (-327)) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-472) $) NIL T ELT) (($ (-857 (-347 (-483)))) 237 T ELT) (($ (-857 (-483))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1071) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3940 (((-772) $) 29 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3162 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#1| |#1|)) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 ((-857 |#2|) |#1|)) (-15 -3966 ((-857 |#2|) |#1|)) (-15 -3966 ((-1071) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1| |#2|)) (-15 -3148 (|#1| |#1| |#2|)) (-15 -3149 (|#1| |#1|)) (-15 -3150 (|#1| |#1|)) (-15 -3966 (|#1| (-857 |#2|))) (-15 -3151 (|#1| (-857 |#2|))) (-15 -3152 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3966 (|#1| (-857 (-483)))) (-15 -3151 (|#1| (-857 (-483)))) (-15 -3152 ((-3 |#1| #1#) (-857 (-483)))) (-15 -3966 (|#1| (-857 (-347 (-483))))) (-15 -3151 (|#1| (-857 (-347 (-483))))) (-15 -3152 ((-3 |#1| #1#) (-857 (-347 (-483))))) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|)) (-15 -3153 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3475 (-694))) |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3746 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3156 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -3156 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3157 (|#1| |#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#1| |#4|)) (-15 -3157 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1| |#4|)) (-15 -3160 (|#1| |#1| |#1| |#4|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3689 ((-85) |#1| (-583 |#1|))) (-15 -3689 ((-85) |#1| |#1|)) (-15 -3685 ((-85) |#1| (-583 |#1|))) (-15 -3685 ((-85) |#1| |#1|)) (-15 -3686 ((-85) |#1| (-583 |#1|))) (-15 -3686 ((-85) |#1| |#1|)) (-15 -3688 ((-85) |#1| (-583 |#1|))) (-15 -3688 ((-85) |#1| |#1|)) (-15 -3161 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3162 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3163 ((-583 |#1|) |#1|)) (-15 -3164 ((-583 |#1|) |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3167 ((-85) |#1|)) (-15 -3168 ((-85) |#1|)) (-15 -3953 (|#1| |#1| |#4|)) (-15 -3169 (|#1| |#1| |#4|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 ((-583 |#1|) |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 -3174 ((-694) |#1|)) (-15 -3175 (|#4| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3940 (|#1| |#4|)) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -3169 (|#2| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-976 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -975)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-3791 (($ $) 291 T ELT)) (-3161 (((-85) $ $) 277 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3749 (($ $ $) 236 (|has| |#1| (-494)) ELT)) (-3143 (((-583 $) $ $) 231 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 $ "failed") (-857 (-347 (-483)))) 251 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (((-3 $ "failed") (-857 (-483))) 248 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (((-3 $ "failed") (-857 |#1|)) 245 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483)))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-482))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-904 (-483)))) (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT) (($ (-857 (-347 (-483)))) 250 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (($ (-857 (-483))) 247 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (($ (-857 |#1|)) 244 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483)))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-482))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-904 (-483)))) (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT) (($ $ $) 232 (|has| |#1| (-494)) ELT)) (-3953 (($ $) 169 T ELT) (($ $ |#3|) 286 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3688 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3167 (((-85) $) 284 T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 256 T ELT)) (-3138 (($ $) 225 (|has| |#1| (-389)) ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-3149 (($ $) 241 (|has| |#1| (-494)) ELT)) (-3150 (($ $) 242 (|has| |#1| (-494)) ELT)) (-3160 (($ $ $) 268 T ELT) (($ $ $ |#3|) 266 T ELT)) (-3159 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-1621 (($ $ |#1| |#2| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3689 (((-85) $ $) 270 T ELT) (((-85) $ (-583 $)) 269 T ELT)) (-3140 (($ $ $ $ $) 227 (|has| |#1| (-494)) ELT)) (-3175 ((|#3| $) 295 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3154 (($ $ $) 255 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-3168 (((-85) $) 285 T ELT)) (-2816 ((|#2| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-3174 (((-694) $) 294 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3078 (((-3 |#3| #3="failed") $) 134 T ELT)) (-3135 (($ $) 222 (|has| |#1| (-389)) ELT)) (-3136 (($ $) 223 (|has| |#1| (-389)) ELT)) (-3163 (((-583 $) $) 280 T ELT)) (-3166 (($ $) 283 T ELT)) (-3137 (($ $) 224 (|has| |#1| (-389)) ELT)) (-3164 (((-583 $) $) 281 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-3165 (($ $) 282 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT) (($ $ |#3|) 287 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 254 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 258 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 257 T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) 260 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#3|) 259 T ELT)) (-3158 (($ $ $) 264 T ELT) (($ $ $ |#3|) 262 T ELT)) (-3157 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3185 (($ $ $) 230 (|has| |#1| (-494)) ELT)) (-3171 (((-583 $) $) 289 T ELT)) (-2819 (((-3 (-583 $) #3#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #3#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #3#) $) 124 T ELT)) (-3685 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3680 (($ $ $) 252 T ELT)) (-3440 (($ $) 293 T ELT)) (-3693 (((-85) $ $) 278 T ELT)) (-3686 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3681 (($ $ $) 253 T ELT)) (-3173 (($ $) 292 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 233 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 234 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 ((|#1| |#1| $) 226 (|has| |#1| (-389)) ELT) (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3147 (($ $ |#1|) 239 (|has| |#1| (-494)) ELT) (($ $ $) 237 (|has| |#1| (-494)) ELT)) (-3148 (($ $ |#1|) 240 (|has| |#1| (-494)) ELT) (($ $ $) 238 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3942 ((|#2| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT)) (-3172 (($ $) 290 T ELT)) (-3170 (($ $) 288 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT) (($ (-857 (-347 (-483)))) 249 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (($ (-857 (-483))) 246 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (($ (-857 |#1|)) 243 (|has| |#3| (-553 (-1088))) ELT) (((-1071) $) 221 (-12 (|has| |#1| (-950 (-483))) (|has| |#3| (-553 (-1088)))) ELT) (((-857 |#1|) $) 220 (|has| |#3| (-553 (-1088))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (((-857 |#1|) $) 219 (|has| |#3| (-553 (-1088))) ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-3162 (((-3 (-85) "failed") $ $) 279 T ELT)) (-2662 (($) 43 T CONST)) (-3141 (($ $ $ $ (-694)) 228 (|has| |#1| (-494)) ELT)) (-3142 (($ $ $ (-694)) 229 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) +(((-976 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -976)) +((-3175 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3169 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3163 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3162 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3685 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3159 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3157 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3157 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3156 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3155 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3155 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3475 (-694)))) (-4 *1 (-976 *3 *4 *5)))) (-3681 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3680 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3152 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3152 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3151 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3966 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3152 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3151 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *5 (-553 (-1088))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3148 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3147 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3147 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3146 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3144 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3750 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3143 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3185 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3142 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-494)))) (-3141 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-494)))) (-3140 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3139 (*1 *2 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389))))) +(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3175 (|t#3| $)) (-15 -3174 ((-694) $)) (-15 -3440 ($ $)) (-15 -3173 ($ $)) (-15 -3791 ($ $)) (-15 -3172 ($ $)) (-15 -3171 ((-583 $) $)) (-15 -3170 ($ $)) (-15 -3169 ($ $ |t#3|)) (-15 -3953 ($ $ |t#3|)) (-15 -3168 ((-85) $)) (-15 -3167 ((-85) $)) (-15 -3166 ($ $)) (-15 -3165 ($ $)) (-15 -3164 ((-583 $) $)) (-15 -3163 ((-583 $) $)) (-15 -3162 ((-3 (-85) "failed") $ $)) (-15 -3693 ((-85) $ $)) (-15 -3161 ((-85) $ $)) (-15 -3688 ((-85) $ $)) (-15 -3688 ((-85) $ (-583 $))) (-15 -3686 ((-85) $ $)) (-15 -3686 ((-85) $ (-583 $))) (-15 -3685 ((-85) $ $)) (-15 -3685 ((-85) $ (-583 $))) (-15 -3689 ((-85) $ $)) (-15 -3689 ((-85) $ (-583 $))) (-15 -3160 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -3160 ($ $ $ |t#3|)) (-15 -3159 ($ $ $ |t#3|)) (-15 -3158 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3158 ($ $ $ |t#3|)) (-15 -3157 ($ $ $ |t#3|)) (-15 -3156 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $)) (-15 -3156 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |t#3|)) (-15 -3155 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3155 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |t#3|)) (-15 -3746 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3154 ($ $ $)) (-15 -3153 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $)) (-15 -3681 ($ $ $)) (-15 -3680 ($ $ $)) (IF (|has| |t#3| (-553 (-1088))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3152 ((-3 $ "failed") (-857 (-347 (-483))))) (-15 -3151 ($ (-857 (-347 (-483))))) (-15 -3966 ($ (-857 (-347 (-483))))) (-15 -3152 ((-3 $ "failed") (-857 (-483)))) (-15 -3151 ($ (-857 (-483)))) (-15 -3966 ($ (-857 (-483)))) (IF (|has| |t#1| (-904 (-483))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) (IF (|has| |t#1| (-38 (-347 (-483)))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 (-483)))) (-15 -3151 ($ (-857 (-483)))) (-15 -3966 ($ (-857 (-483)))) (IF (|has| |t#1| (-482)) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) |%noBranch| (IF (|has| |t#1| (-38 (-347 (-483)))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|)))))) (-15 -3966 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-483))) (-6 (-553 (-1071))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3150 ($ $)) (-15 -3149 ($ $)) (-15 -3148 ($ $ |t#1|)) (-15 -3147 ($ $ |t#1|)) (-15 -3148 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3146 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3145 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -3144 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -3750 ($ $ $)) (-15 -3143 ((-583 $) $ $)) (-15 -3185 ($ $ $)) (-15 -3142 ($ $ $ (-694))) (-15 -3141 ($ $ $ $ (-694))) (-15 -3140 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -3139 (|t#1| |t#1| $)) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3136 ($ $)) (-15 -3135 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1088))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1088))) ((-553 (-1071)) -12 (|has| |#1| (-950 (-483))) (|has| |#3| (-553 (-1088)))) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3176 (((-583 (-1047)) $) 18 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-977) (-13 (-994) (-10 -8 (-15 -3176 ((-583 (-1047)) $)) (-15 -3228 ((-1047) $))))) (T -977)) +((-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-977)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977))))) +((-3183 (((-85) |#3| $) 15 T ELT)) (-3178 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3461 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3181 (((-85) |#3| $) 19 T ELT)) (-3182 (((-85) |#3| $) 17 T ELT))) +(((-978 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3461 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3181 ((-85) |#3| |#1|)) (-15 -3182 ((-85) |#3| |#1|)) (-15 -3183 ((-85) |#3| |#1|))) (-979 |#2| |#3|) (-13 (-755) (-311)) (-1153 |#2|)) (T -978)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) |#2| $) 25 T ELT)) (-3617 (((-483) |#2| $) 26 T ELT)) (-3178 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3177 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3461 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3181 (((-85) |#2| $) 23 T ELT)) (-3182 (((-85) |#2| $) 24 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3180 ((|#2| $) 21 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3764 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3179 (((-583 $) |#2|) 20 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-979 |#1| |#2|) (-113) (-13 (-755) (-311)) (-1153 |t#1|)) (T -979)) +((-3617 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-483)))) (-3183 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3182 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3461 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3)))) (-3179 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-583 *1)) (-4 *1 (-979 *4 *3)))) (-3178 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-311))) (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4)))) (-3764 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2)))) (-3177 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2))))) +(-13 (-1012) (-10 -8 (-15 -3617 ((-483) |t#2| $)) (-15 -3183 ((-85) |t#2| $)) (-15 -3182 ((-85) |t#2| $)) (-15 -3181 ((-85) |t#2| $)) (-15 -3461 ((-3 |t#2| "failed") |t#2| $)) (-15 -3180 (|t#2| $)) (-15 -3179 ((-583 $) |t#2|)) (-15 -3178 ((-3 $ "failed") |t#2| (-830))) (-15 -3764 (|t#1| |t#2| $ |t#1|)) (-15 -3177 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3430 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694)) 114 T ELT)) (-3427 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3431 (((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)) 99 T ELT)) (-3425 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3428 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3429 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3966 (((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 92 T ELT)) (-3426 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3424 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) +(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3424 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3425 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3426 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-85))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3430 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694))) (-15 -3966 ((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3431 ((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -980)) +((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) (-5 *1 (-980 *4 *5 *6 *7 *8)))) (-3430 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-980 *7 *8 *9 *10 *11)))) (-3429 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9))))) +((-3192 (((-85) |#5| $) 26 T ELT)) (-3190 (((-85) |#5| $) 29 T ELT)) (-3193 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3233 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3763 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3184 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3191 (((-85) |#5| $) 32 T ELT))) +(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3763 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3763 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3763 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3763 ((-583 |#1|) |#5| |#1|)) (-15 -3184 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3184 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3184 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3184 ((-583 |#1|) |#5| |#1|)) (-15 -3233 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3233 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3233 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3233 ((-583 |#1|) |#5| |#1|)) (-15 -3190 ((-85) |#5| |#1|)) (-15 -3193 ((-85) |#1|)) (-15 -3191 ((-85) |#5| |#1|)) (-15 -3192 ((-85) |#5| |#1|)) (-15 -3193 ((-85) |#5| |#1|)) (-15 -3763 (|#1| |#1| |#5|))) (-982 |#2| |#3| |#4| |#5|) (-389) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -981)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-982 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -982)) +((-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3186 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3185 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3233 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3233 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3233 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3233 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3184 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3434 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)))) (-3763 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3763 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3763 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *5 *6 *7 *8))))) +(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-85) |t#4| $)) (-15 -3191 ((-85) |t#4| $)) (-15 -3193 ((-85) $)) (-15 -3190 ((-85) |t#4| $)) (-15 -3189 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3188 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |t#4| $)) (-15 -3188 ((-85) |t#4| $)) (-15 -3187 ((-583 $) |t#4| $)) (-15 -3186 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3185 ((-583 (-2 (|:| |val| |t#4|) (|:| -1597 $))) |t#4| |t#4| $)) (-15 -3769 ((-583 (-2 (|:| |val| |t#4|) (|:| -1597 $))) |t#4| $)) (-15 -3233 ((-583 $) |t#4| $)) (-15 -3233 ((-583 $) (-583 |t#4|) $)) (-15 -3233 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3233 ((-583 $) |t#4| (-583 $))) (-15 -3184 ((-583 $) |t#4| $)) (-15 -3184 ((-583 $) |t#4| (-583 $))) (-15 -3184 ((-583 $) (-583 |t#4|) $)) (-15 -3184 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3434 ($ |t#4| $)) (-15 -3434 ($ (-583 |t#4|) $)) (-15 -3763 ((-583 $) |t#4| $)) (-15 -3763 ((-583 $) |t#4| (-583 $))) (-15 -3763 ((-583 $) (-583 |t#4|) $)) (-15 -3763 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3676 ((-583 $) (-583 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) +((-3200 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 86 T ELT)) (-3197 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3199 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3198 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3281 (((-1183)) 36 T ELT)) (-3279 (((-1183)) 25 T ELT)) (-3280 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3278 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3195 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3196 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-1183) (-1071) (-1071) (-1071))) (-15 -3279 ((-1183))) (-15 -3280 ((-1183) (-1071) (-1071) (-1071))) (-15 -3281 ((-1183))) (-15 -3194 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3195 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3195 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85))) (-15 -3196 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3197 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3198 ((-85) |#4| |#5|)) (-15 -3198 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3199 ((-583 |#5|) |#4| |#5|)) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -983)) +((-3200 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) (-5 *1 (-983 *6 *7 *4 *8 *9)))) (-3195 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3194 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3279 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3278 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-984) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -984)) +((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984))))) +((-3261 (((-85) $ $) 7 T ELT))) +(((-985) (-13 (-1127) (-10 -8 (-15 -3261 ((-85) $ $))))) (T -985)) +((-3261 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3204 (($ $ (-583 (-1088)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3205 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1088))) 21 T ELT)) (-3522 ((|#3| $) 13 T ELT)) (-3152 (((-3 (-248 |#3|) "failed") $) 60 T ELT)) (-3151 (((-248 |#3|) $) NIL T ELT)) (-3202 (((-583 (-1088)) $) 16 T ELT)) (-3203 (((-800 |#1|) $) 11 T ELT)) (-3523 ((|#3| $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3940 (((-772) $) 89 T ELT) (($ (-248 |#3|)) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 38 T ELT))) +(((-986 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-950 (-248 |#3|)) (-10 -8 (-15 -3205 ($ |#3| |#3|)) (-15 -3205 ($ |#3| |#3| (-583 (-1088)))) (-15 -3204 ($ $ (-583 (-1088)) (-1 (-85) (-583 |#3|)))) (-15 -3203 ((-800 |#1|) $)) (-15 -3523 (|#3| $)) (-15 -3522 (|#3| $)) (-15 -3794 (|#3| $ |#3| (-830))) (-15 -3202 ((-583 (-1088)) $)))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -986)) +((-3205 (*1 *1 *2 *2) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))) (-3205 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-3204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *6)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 *2))))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3794 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-3202 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1088))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-3237 (((-1071) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT))) +(((-987 |#1|) (-13 (-1012) (-10 -8 (-15 -3536 ((-1088) $)))) (-1088)) (T -987)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3207 (($ (-583 (-986 |#1| |#2| |#3|))) 15 T ELT)) (-3206 (((-583 (-986 |#1| |#2| |#3|)) $) 22 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 21 T ELT))) +(((-988 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-10 -8 (-15 -3207 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3206 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -3794 (|#3| $ |#3| (-830))))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -988)) +((-3207 (*1 *1 *2) (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-988 *3 *4 *5)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))) (-3794 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4))))))) +((-3208 (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT))) +(((-989 |#1| |#2|) (-10 -7 (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-257) (-120)) (-583 (-1088))) (T -989)) +((-3208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-989 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 132 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-311)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-1779 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3324 ((|#1| $) 121 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 43 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) 46 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3836 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-347 |#2|)) NIL (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3104 (((-830)) 80 T ELT)) (-2990 (($) 47 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-2829 (($) NIL (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-298)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2010 ((|#2| $) 87 (|has| |#1| (-311)) ELT)) (-2006 (((-830) $) 140 (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 59 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3440 (($) NIL (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 131 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 123 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3751 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-311)) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3180 ((|#2|) 77 T ELT)) (-1671 (($) NIL (|has| |#1| (-298)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 92 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 72 T ELT) (((-630 |#1|) (-1177 $)) 88 T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-298)) ELT)) (-3940 (((-772) $) 58 T ELT) (($ (-483)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (($ $) NIL (|has| |#1| (-298)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 85 T ELT)) (-3121 (((-694)) 79 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 84 T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 19 T CONST)) (-2665 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-311)) ELT)) (-3052 (((-85) $ $) 64 T ELT)) (-3943 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT))) +(((-990 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1153 |#1|) |#2|) (T -990)) +NIL +((-3726 (((-345 |#3|) |#3|) 18 T ELT))) +(((-991 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3|))) (-1153 (-347 (-483))) (-13 (-311) (-120) (-661 (-347 (-483)) |#1|)) (-1153 |#2|)) (T -991)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-13 (-311) (-120) (-661 (-347 (-483)) *4))) (-5 *2 (-345 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5))))) +((-3726 (((-345 |#3|) |#3|) 19 T ELT))) +(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3|))) (-1153 (-347 (-857 (-483)))) (-13 (-311) (-120) (-661 (-347 (-857 (-483))) |#1|)) (-1153 |#2|)) (T -992)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 (-857 (-483))))) (-4 *5 (-13 (-311) (-120) (-661 (-347 (-857 (-483))) *4))) (-5 *2 (-345 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) 16 T ELT)) (-2853 (($ $ $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3209 (($) 6 T ELT)) (-3966 (((-1088) $) 20 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 9 T ELT))) +(((-993) (-13 (-756) (-553 (-1088)) (-10 -8 (-15 -3209 ($))))) (T -993)) +((-3209 (*1 *1) (-5 *1 (-993)))) +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-994) (-113)) (T -994)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-552 (-1086)) . T) ((-549 (-767)) . T) ((-549 (-1086)) . T) ((-425 (-1086)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3202 ((|#1| |#1| (-1 (-480) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-83) |#1|)) 33 T ELT)) (-3200 (((-1176)) 21 T ELT)) (-3201 (((-580 |#1|)) 13 T ELT))) -(((-990 |#1|) (-10 -7 (-15 -3200 ((-1176))) (-15 -3201 ((-580 |#1|))) (-15 -3202 (|#1| |#1| (-1 (-83) |#1|))) (-15 -3202 (|#1| |#1| (-1 (-480) |#1| |#1|)))) (-103)) (T -990)) -((-3202 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-480) *2 *2)) (-4 *2 (-103)) (-5 *1 (-990 *2)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-990 *2)))) (-3201 (*1 *2) (-12 (-5 *2 (-580 *3)) (-5 *1 (-990 *3)) (-4 *3 (-103)))) (-3200 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-990 *3)) (-4 *3 (-103))))) -((-3205 (($ (-78) $) 20 T ELT)) (-3206 (((-629 (-78)) (-441) $) 19 T ELT)) (-3548 (($) 7 T ELT)) (-3204 (($) 21 T ELT)) (-3203 (($) 22 T ELT)) (-3207 (((-580 (-147)) $) 10 T ELT)) (-3929 (((-767) $) 25 T ELT))) -(((-991) (-13 (-549 (-767)) (-10 -8 (-15 -3548 ($)) (-15 -3207 ((-580 (-147)) $)) (-15 -3206 ((-629 (-78)) (-441) $)) (-15 -3205 ($ (-78) $)) (-15 -3204 ($)) (-15 -3203 ($))))) (T -991)) -((-3548 (*1 *1) (-5 *1 (-991))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-580 (-147))) (-5 *1 (-991)))) (-3206 (*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-78))) (-5 *1 (-991)))) (-3205 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-991)))) (-3204 (*1 *1) (-5 *1 (-991))) (-3203 (*1 *1) (-5 *1 (-991)))) -((-3208 (((-1170 (-627 |#1|)) (-580 (-627 |#1|))) 45 T ELT) (((-1170 (-627 (-852 |#1|))) (-580 (-1081)) (-627 (-852 |#1|))) 75 T ELT) (((-1170 (-627 (-345 (-852 |#1|)))) (-580 (-1081)) (-627 (-345 (-852 |#1|)))) 92 T ELT)) (-3209 (((-1170 |#1|) (-627 |#1|) (-580 (-627 |#1|))) 39 T ELT))) -(((-992 |#1|) (-10 -7 (-15 -3208 ((-1170 (-627 (-345 (-852 |#1|)))) (-580 (-1081)) (-627 (-345 (-852 |#1|))))) (-15 -3208 ((-1170 (-627 (-852 |#1|))) (-580 (-1081)) (-627 (-852 |#1|)))) (-15 -3208 ((-1170 (-627 |#1|)) (-580 (-627 |#1|)))) (-15 -3209 ((-1170 |#1|) (-627 |#1|) (-580 (-627 |#1|))))) (-309)) (T -992)) -((-3209 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-309)) (-5 *2 (-1170 *5)) (-5 *1 (-992 *5)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-580 (-627 *4))) (-4 *4 (-309)) (-5 *2 (-1170 (-627 *4))) (-5 *1 (-992 *4)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-1081))) (-4 *5 (-309)) (-5 *2 (-1170 (-627 (-852 *5)))) (-5 *1 (-992 *5)) (-5 *4 (-627 (-852 *5))))) (-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-1081))) (-4 *5 (-309)) (-5 *2 (-1170 (-627 (-345 (-852 *5))))) (-5 *1 (-992 *5)) (-5 *4 (-627 (-345 (-852 *5))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1477 (((-580 (-689)) $) NIL T ELT) (((-580 (-689)) $ (-1081)) NIL T ELT)) (-1511 (((-689) $) NIL T ELT) (((-689) $ (-1081)) NIL T ELT)) (-3067 (((-580 (-994 (-1081))) $) NIL T ELT)) (-3069 (((-1076 $) $ (-994 (-1081))) NIL T ELT) (((-1076 |#1|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-994 (-1081)))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-1473 (($ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-994 (-1081)) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL T ELT) (((-3 (-1030 |#1| (-1081)) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-994 (-1081)) $) NIL T ELT) (((-1081) $) NIL T ELT) (((-1030 |#1| (-1081)) $) NIL T ELT)) (-3739 (($ $ $ (-994 (-1081))) NIL (|has| |#1| (-144)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ (-994 (-1081))) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-465 (-994 (-1081))) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-994 (-1081)) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-994 (-1081)) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ (-1081)) NIL T ELT) (((-689) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3070 (($ (-1076 |#1|) (-994 (-1081))) NIL T ELT) (($ (-1076 $) (-994 (-1081))) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-465 (-994 (-1081)))) NIL T ELT) (($ $ (-994 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-994 (-1081))) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-994 (-1081))) NIL T ELT)) (-2806 (((-465 (-994 (-1081))) $) NIL T ELT) (((-689) $ (-994 (-1081))) NIL T ELT) (((-580 (-689)) $ (-580 (-994 (-1081)))) NIL T ELT)) (-1614 (($ (-1 (-465 (-994 (-1081))) (-465 (-994 (-1081)))) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1512 (((-1 $ (-689)) (-1081)) NIL T ELT) (((-1 $ (-689)) $) NIL (|has| |#1| (-188)) ELT)) (-3068 (((-3 (-994 (-1081)) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1475 (((-994 (-1081)) $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1476 (((-83) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-994 (-1081))) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-994 (-1081)) |#1|) NIL T ELT) (($ $ (-580 (-994 (-1081))) (-580 |#1|)) NIL T ELT) (($ $ (-994 (-1081)) $) NIL T ELT) (($ $ (-580 (-994 (-1081))) (-580 $)) NIL T ELT) (($ $ (-1081) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 (-1081)) (-580 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-580 (-1081)) (-580 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3740 (($ $ (-994 (-1081))) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-994 (-1081))) (-580 (-689))) NIL T ELT) (($ $ (-994 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-994 (-1081)))) NIL T ELT) (($ $ (-994 (-1081))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-1478 (((-580 (-1081)) $) NIL T ELT)) (-3931 (((-465 (-994 (-1081))) $) NIL T ELT) (((-689) $ (-994 (-1081))) NIL T ELT) (((-580 (-689)) $ (-580 (-994 (-1081)))) NIL T ELT) (((-689) $ (-1081)) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-994 (-1081)) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-994 (-1081)) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-994 (-1081)) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT) (($ $ (-994 (-1081))) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994 (-1081))) NIL T ELT) (($ (-1081)) NIL T ELT) (($ (-1030 |#1| (-1081))) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-465 (-994 (-1081)))) NIL T ELT) (($ $ (-994 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-994 (-1081))) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-994 (-1081))) (-580 (-689))) NIL T ELT) (($ $ (-994 (-1081)) (-689)) NIL T ELT) (($ $ (-580 (-994 (-1081)))) NIL T ELT) (($ $ (-994 (-1081))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-689)) NIL (|has| |#1| (-187)) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-993 |#1|) (-13 (-211 |#1| (-1081) (-994 (-1081)) (-465 (-994 (-1081)))) (-945 (-1030 |#1| (-1081)))) (-956)) (T -993)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-1511 (((-689) $) NIL T ELT)) (-3814 ((|#1| $) 10 T ELT)) (-3142 (((-3 |#1| "failed") $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT)) (-3755 (((-689) $) 11 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-1512 (($ |#1| (-689)) 9 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3741 (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2655 (($ $ (-689)) NIL T ELT) (($ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 16 T ELT))) -(((-994 |#1|) (-226 |#1|) (-751)) (T -994)) -NIL -((-2554 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3719 (($ |#1| |#1|) 16 T ELT)) (-3941 (((-580 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-750)) ELT)) (-3214 ((|#1| $) 12 T ELT)) (-3216 ((|#1| $) 11 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3212 (((-480) $) 15 T ELT)) (-3213 ((|#1| $) 14 T ELT)) (-3215 ((|#1| $) 13 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3946 (((-580 |#1|) $) 42 (|has| |#1| (-750)) ELT) (((-580 |#1|) (-580 $)) 41 (|has| |#1| (-750)) ELT)) (-3955 (($ |#1|) 29 T ELT)) (-3929 (((-767) $) 28 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3720 (($ |#1| |#1|) 10 T ELT)) (-3217 (($ $ (-480)) 17 T ELT)) (-3042 (((-83) $ $) 22 (|has| |#1| (-1007)) ELT))) -(((-995 |#1|) (-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-750)) (-6 (-1001 |#1| (-580 |#1|))) |%noBranch|))) (-1120)) (T -995)) -NIL -((-3941 (((-580 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 27 (|has| |#1| (-750)) ELT) (((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 14 T ELT))) -(((-996 |#1| |#2|) (-10 -7 (-15 -3941 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|))) (IF (|has| |#1| (-750)) (-15 -3941 ((-580 |#2|) (-1 |#2| |#1|) (-995 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -996)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-750)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-580 *6)) (-5 *1 (-996 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-995 *6)) (-5 *1 (-996 *5 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 16 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3210 (((-580 (-1040)) $) 10 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-997) (-13 (-989) (-10 -8 (-15 -3210 ((-580 (-1040)) $))))) (T -997)) -((-3210 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-997))))) -((-2554 (((-83) $ $) NIL (|has| (-995 |#1|) (-1007)) ELT)) (-3814 (((-1081) $) NIL T ELT)) (-3719 (((-995 |#1|) $) NIL T ELT)) (-3227 (((-1064) $) NIL (|has| (-995 |#1|) (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| (-995 |#1|) (-1007)) ELT)) (-3211 (($ (-1081) (-995 |#1|)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| (-995 |#1|) (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| (-995 |#1|) (-1007)) ELT)) (-3042 (((-83) $ $) NIL (|has| (-995 |#1|) (-1007)) ELT))) -(((-998 |#1|) (-13 (-1120) (-10 -8 (-15 -3211 ($ (-1081) (-995 |#1|))) (-15 -3814 ((-1081) $)) (-15 -3719 ((-995 |#1|) $)) (IF (|has| (-995 |#1|) (-1007)) (-6 (-1007)) |%noBranch|))) (-1120)) (T -998)) -((-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-995 *4)) (-4 *4 (-1120)) (-5 *1 (-998 *4)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-998 *3)) (-4 *3 (-1120)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-995 *3)) (-5 *1 (-998 *3)) (-4 *3 (-1120))))) -((-3941 (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 19 T ELT))) -(((-999 |#1| |#2|) (-10 -7 (-15 -3941 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)))) (-1120) (-1120)) (T -999)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-998 *6)) (-5 *1 (-999 *5 *6))))) -((-3719 (($ |#1| |#1|) 8 T ELT)) (-3214 ((|#1| $) 11 T ELT)) (-3216 ((|#1| $) 13 T ELT)) (-3212 (((-480) $) 9 T ELT)) (-3213 ((|#1| $) 10 T ELT)) (-3215 ((|#1| $) 12 T ELT)) (-3955 (($ |#1|) 6 T ELT)) (-3720 (($ |#1| |#1|) 15 T ELT)) (-3217 (($ $ (-480)) 14 T ELT))) -(((-1000 |#1|) (-111) (-1120)) (T -1000)) -((-3720 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) (-3217 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-1000 *3)) (-4 *3 (-1120)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1120)) (-5 *2 (-480)))) (-3719 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120))))) -(-13 (-554 |t#1|) (-10 -8 (-15 -3720 ($ |t#1| |t#1|)) (-15 -3217 ($ $ (-480))) (-15 -3216 (|t#1| $)) (-15 -3215 (|t#1| $)) (-15 -3214 (|t#1| $)) (-15 -3213 (|t#1| $)) (-15 -3212 ((-480) $)) (-15 -3719 ($ |t#1| |t#1|)))) -(((-554 |#1|) . T)) -((-3719 (($ |#1| |#1|) 8 T ELT)) (-3941 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3214 ((|#1| $) 11 T ELT)) (-3216 ((|#1| $) 13 T ELT)) (-3212 (((-480) $) 9 T ELT)) (-3213 ((|#1| $) 10 T ELT)) (-3215 ((|#1| $) 12 T ELT)) (-3946 ((|#2| (-580 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3955 (($ |#1|) 6 T ELT)) (-3720 (($ |#1| |#1|) 15 T ELT)) (-3217 (($ $ (-480)) 14 T ELT))) -(((-1001 |#1| |#2|) (-111) (-750) (-1055 |t#1|)) (T -1001)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-580 *1)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-750)) (-4 *2 (-1055 *4)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *2)) (-4 *3 (-750)) (-4 *2 (-1055 *3)))) (-3941 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-750)) (-4 *2 (-1055 *4))))) -(-13 (-1000 |t#1|) (-10 -8 (-15 -3946 (|t#2| (-580 $))) (-15 -3946 (|t#2| $)) (-15 -3941 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-554 |#1|) . T) ((-1000 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3781 (((-1040) $) 14 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 20 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-3218 (((-580 (-1040)) $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1002) (-13 (-989) (-10 -8 (-15 -3218 ((-580 (-1040)) $)) (-15 -3781 ((-1040) $))))) (T -1002)) -((-3218 (*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-1002)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1002))))) -((-2554 (((-83) $ $) NIL T ELT)) (-1791 (($) NIL (|has| |#1| (-315)) ELT)) (-3219 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3221 (($ $ $) 81 T ELT)) (-3220 (((-83) $ $) 83 T ELT)) (-3121 (((-689)) NIL (|has| |#1| (-315)) ELT)) (-3224 (($ (-580 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1559 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3388 (($ |#1| $) 75 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3978)) ELT)) (-2980 (($) NIL (|has| |#1| (-315)) ELT)) (-2875 (((-580 |#1|) $) 20 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) NIL T ELT)) (-2517 ((|#1| $) 56 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 74 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2843 ((|#1| $) 54 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1998 (((-825) $) NIL (|has| |#1| (-315)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3223 (($ $ $) 79 T ELT)) (-1264 ((|#1| $) 26 T ELT)) (-3592 (($ |#1| $) 70 T ELT)) (-2388 (($ (-825)) NIL (|has| |#1| (-315)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 32 T ELT)) (-1265 ((|#1| $) 28 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 22 T ELT)) (-3548 (($) 12 T ELT)) (-3222 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1455 (($) NIL T ELT) (($ (-580 |#1|)) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 17 T ELT)) (-3955 (((-469) $) 51 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 63 T ELT)) (-1792 (($ $) NIL (|has| |#1| (-315)) ELT)) (-3929 (((-767) $) NIL T ELT)) (-1793 (((-689) $) NIL T ELT)) (-3225 (($ (-580 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-1266 (($ (-580 |#1|)) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 53 T ELT)) (-3940 (((-689) $) 11 (|has| $ (-6 -3978)) ELT))) -(((-1003 |#1|) (-364 |#1|) (-1007)) (T -1003)) -NIL -((-3219 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3221 (($ $ $) 10 T ELT)) (-3222 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1004 |#1| |#2|) (-10 -7 (-15 -3219 (|#1| |#2| |#1|)) (-15 -3219 (|#1| |#1| |#2|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3221 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1| |#2|)) (-15 -3222 (|#1| |#1| |#1|))) (-1005 |#2|) (-1007)) (T -1004)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3219 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3221 (($ $ $) 24 T ELT)) (-3220 (((-83) $ $) 23 T ELT)) (-3224 (($) 29 T ELT) (($ (-580 |#1|)) 28 T ELT)) (-3693 (($ (-1 (-83) |#1|) $) 57 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 37 T CONST)) (-1342 (($ $) 60 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 59 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 56 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3978)) ELT)) (-2875 (((-580 |#1|) $) 44 (|has| $ (-6 -3978)) ELT)) (-3226 (((-83) $ $) 32 T ELT)) (-2594 (((-580 |#1|) $) 45 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 47 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 53 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 42 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#1|) (-580 |#1|)) 51 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 49 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 (-246 |#1|))) 48 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 33 T ELT)) (-3386 (((-83) $) 36 T ELT)) (-3548 (($) 35 T ELT)) (-3222 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1935 (((-689) |#1| $) 46 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#1|) $) 43 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 34 T ELT)) (-3955 (((-469) $) 61 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 52 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-3225 (($) 31 T ELT) (($ (-580 |#1|)) 30 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 41 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 38 (|has| $ (-6 -3978)) ELT))) -(((-1005 |#1|) (-111) (-1007)) (T -1005)) -((-3226 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-3225 (*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-1005 *3)))) (-3224 (*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-1005 *3)))) (-3223 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3222 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3220 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1007)) (-5 *2 (-83)))) (-3219 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3219 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) (-3219 (*1 *1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(-13 (-1007) (-122 |t#1|) (-10 -8 (-6 -3968) (-15 -3226 ((-83) $ $)) (-15 -3225 ($)) (-15 -3225 ($ (-580 |t#1|))) (-15 -3224 ($)) (-15 -3224 ($ (-580 |t#1|))) (-15 -3223 ($ $ $)) (-15 -3222 ($ $ $)) (-15 -3222 ($ $ |t#1|)) (-15 -3221 ($ $ $)) (-15 -3220 ((-83) $ $)) (-15 -3219 ($ $ $)) (-15 -3219 ($ $ |t#1|)) (-15 -3219 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-549 (-767)) . T) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-3227 (((-1064) $) 10 T ELT)) (-3228 (((-1025) $) 8 T ELT))) -(((-1006 |#1|) (-10 -7 (-15 -3227 ((-1064) |#1|)) (-15 -3228 ((-1025) |#1|))) (-1007)) (T -1006)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-1007) (-111)) (T -1007)) -((-3228 (*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-1025)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-1064))))) -(-13 (-72) (-549 (-767)) (-10 -8 (-15 -3228 ((-1025) $)) (-15 -3227 ((-1064) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) 36 T ELT)) (-3232 (($ (-580 (-825))) 70 T ELT)) (-3234 (((-3 $ #1="failed") $ (-825) (-825)) 81 T ELT)) (-2980 (($) 40 T ELT)) (-3230 (((-83) (-825) $) 42 T ELT)) (-1998 (((-825) $) 64 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 39 T ELT)) (-3235 (((-3 $ #1#) $ (-825)) 77 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3231 (((-1170 $)) 47 T ELT)) (-3233 (((-580 (-825)) $) 27 T ELT)) (-3229 (((-689) $ (-825) (-825)) 78 T ELT)) (-3929 (((-767) $) 32 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 24 T ELT))) -(((-1008 |#1| |#2|) (-13 (-315) (-10 -8 (-15 -3235 ((-3 $ #1="failed") $ (-825))) (-15 -3234 ((-3 $ #1#) $ (-825) (-825))) (-15 -3233 ((-580 (-825)) $)) (-15 -3232 ($ (-580 (-825)))) (-15 -3231 ((-1170 $))) (-15 -3230 ((-83) (-825) $)) (-15 -3229 ((-689) $ (-825) (-825))))) (-825) (-825)) (T -1008)) -((-3235 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-825)) (-5 *1 (-1008 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3234 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-825)) (-5 *1 (-1008 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) (-3231 (*1 *2) (-12 (-5 *2 (-1170 (-1008 *3 *4))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) (-3230 (*1 *2 *3 *1) (-12 (-5 *3 (-825)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-689)) (-5 *1 (-1008 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3241 (((-1081) $) NIL T ELT)) (-3246 (((-83) $) NIL T ELT)) (-3518 (((-1064) $) NIL T ELT)) (-3248 (((-83) $) NIL T ELT)) (-3250 (((-83) $) NIL T ELT)) (-3247 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3244 (((-83) $) NIL T ELT)) (-3240 (((-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3239 (((-177) $) NIL T ELT)) (-3238 (((-767) $) NIL T ELT)) (-3251 (((-83) $ $) NIL T ELT)) (-3783 (($ $ (-480)) NIL T ELT) (($ $ (-580 (-480))) NIL T ELT)) (-3242 (((-580 $) $) NIL T ELT)) (-3955 (($ (-1064)) NIL T ELT) (($ (-1081)) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-177)) NIL T ELT) (($ (-767)) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3236 (($ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3249 (((-83) $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-480) $) NIL T ELT))) -(((-1009) (-1010 (-1064) (-1081) (-480) (-177) (-767))) (T -1009)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3245 (((-83) $) 36 T ELT)) (-3241 ((|#2| $) 31 T ELT)) (-3246 (((-83) $) 37 T ELT)) (-3518 ((|#1| $) 32 T ELT)) (-3248 (((-83) $) 39 T ELT)) (-3250 (((-83) $) 41 T ELT)) (-3247 (((-83) $) 38 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3244 (((-83) $) 35 T ELT)) (-3240 ((|#3| $) 30 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3243 (((-83) $) 34 T ELT)) (-3239 ((|#4| $) 29 T ELT)) (-3238 ((|#5| $) 28 T ELT)) (-3251 (((-83) $ $) 42 T ELT)) (-3783 (($ $ (-480)) 44 T ELT) (($ $ (-580 (-480))) 43 T ELT)) (-3242 (((-580 $) $) 33 T ELT)) (-3955 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-580 $)) 45 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-3236 (($ $) 26 T ELT)) (-3237 (($ $) 27 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3249 (((-83) $) 40 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-480) $) 25 T ELT))) -(((-1010 |#1| |#2| |#3| |#4| |#5|) (-111) (-1007) (-1007) (-1007) (-1007) (-1007)) (T -1010)) -((-3251 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83)))) (-3242 (*1 *2 *1) (-12 (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-1010 *3 *4 *5 *6 *7)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *2 *4 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *2 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *2)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *2 (-1007)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *2 (-1007)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-480))))) -(-13 (-1007) (-554 |t#1|) (-554 |t#2|) (-554 |t#3|) (-554 |t#4|) (-554 |t#4|) (-554 |t#5|) (-554 (-580 $)) (-239 (-480) $) (-239 (-580 (-480)) $) (-10 -8 (-15 -3251 ((-83) $ $)) (-15 -3250 ((-83) $)) (-15 -3249 ((-83) $)) (-15 -3248 ((-83) $)) (-15 -3247 ((-83) $)) (-15 -3246 ((-83) $)) (-15 -3245 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -3242 ((-580 $) $)) (-15 -3518 (|t#1| $)) (-15 -3241 (|t#2| $)) (-15 -3240 (|t#3| $)) (-15 -3239 (|t#4| $)) (-15 -3238 (|t#5| $)) (-15 -3237 ($ $)) (-15 -3236 ($ $)) (-15 -3940 ((-480) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-554 (-580 $)) . T) ((-554 |#1|) . T) ((-554 |#2|) . T) ((-554 |#3|) . T) ((-554 |#4|) . T) ((-554 |#5|) . T) ((-239 (-480) $) . T) ((-239 (-580 (-480)) $) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3245 (((-83) $) 45 T ELT)) (-3241 ((|#2| $) 48 T ELT)) (-3246 (((-83) $) 20 T ELT)) (-3518 ((|#1| $) 21 T ELT)) (-3248 (((-83) $) 42 T ELT)) (-3250 (((-83) $) 14 T ELT)) (-3247 (((-83) $) 44 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3244 (((-83) $) 46 T ELT)) (-3240 ((|#3| $) 50 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3243 (((-83) $) 47 T ELT)) (-3239 ((|#4| $) 49 T ELT)) (-3238 ((|#5| $) 51 T ELT)) (-3251 (((-83) $ $) 41 T ELT)) (-3783 (($ $ (-480)) 62 T ELT) (($ $ (-580 (-480))) 64 T ELT)) (-3242 (((-580 $) $) 27 T ELT)) (-3955 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-580 $)) 52 T ELT)) (-3929 (((-767) $) 28 T ELT)) (-3236 (($ $) 26 T ELT)) (-3237 (($ $) 58 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3249 (((-83) $) 23 T ELT)) (-3042 (((-83) $ $) 40 T ELT)) (-3940 (((-480) $) 60 T ELT))) -(((-1011 |#1| |#2| |#3| |#4| |#5|) (-1010 |#1| |#2| |#3| |#4| |#5|) (-1007) (-1007) (-1007) (-1007) (-1007)) (T -1011)) -NIL -((-3254 (((-83) |#5| |#5|) 44 T ELT)) (-3257 (((-83) |#5| |#5|) 59 T ELT)) (-3262 (((-83) |#5| (-580 |#5|)) 82 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3258 (((-83) (-580 |#4|) (-580 |#4|)) 65 T ELT)) (-3264 (((-83) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) 70 T ELT)) (-3253 (((-1176)) 32 T ELT)) (-3252 (((-1176) (-1064) (-1064) (-1064)) 28 T ELT)) (-3263 (((-580 |#5|) (-580 |#5|)) 101 T ELT)) (-3265 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) 93 T ELT)) (-3266 (((-580 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|)))) (-580 |#4|) (-580 |#5|) (-83) (-83)) 123 T ELT)) (-3256 (((-83) |#5| |#5|) 53 T ELT)) (-3261 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3259 (((-83) (-580 |#4|) (-580 |#4|)) 64 T ELT)) (-3260 (((-83) (-580 |#4|) (-580 |#4|)) 66 T ELT)) (-3682 (((-83) (-580 |#4|) (-580 |#4|)) 67 T ELT)) (-3267 (((-3 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|))) #1#) (-580 |#4|) |#5| (-580 |#4|) (-83) (-83) (-83) (-83) (-83)) 118 T ELT)) (-3255 (((-580 |#5|) (-580 |#5|)) 49 T ELT))) -(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3252 ((-1176) (-1064) (-1064) (-1064))) (-15 -3253 ((-1176))) (-15 -3254 ((-83) |#5| |#5|)) (-15 -3255 ((-580 |#5|) (-580 |#5|))) (-15 -3256 ((-83) |#5| |#5|)) (-15 -3257 ((-83) |#5| |#5|)) (-15 -3258 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3259 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3260 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3682 ((-83) (-580 |#4|) (-580 |#4|))) (-15 -3261 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3262 ((-83) |#5| |#5|)) (-15 -3262 ((-83) |#5| (-580 |#5|))) (-15 -3263 ((-580 |#5|) (-580 |#5|))) (-15 -3264 ((-83) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) (-15 -3265 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-15 -3266 ((-580 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|)))) (-580 |#4|) (-580 |#5|) (-83) (-83))) (-15 -3267 ((-3 (-2 (|:| -3251 (-580 |#4|)) (|:| -1589 |#5|) (|:| |ineq| (-580 |#4|))) #1#) (-580 |#4|) |#5| (-580 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1012)) -((-3267 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *4) (|:| |ineq| (-580 *9)))) (-5 *1 (-1012 *6 *7 *8 *9 *4)) (-5 *3 (-580 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-3266 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-580 *10)) (-5 *5 (-83)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *10) (|:| |ineq| (-580 *9))))) (-5 *1 (-1012 *6 *7 *8 *9 *10)) (-5 *3 (-580 *9)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-580 (-2 (|:| |val| (-580 *6)) (|:| -1589 *7)))) (-4 *6 (-971 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1012 *5 *6 *7 *8 *3)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3261 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3682 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3253 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3252 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -((-3282 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|) 106 T ELT)) (-3272 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3275 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3277 (((-580 |#5|) |#4| |#5|) 122 T ELT)) (-3279 (((-580 |#5|) |#4| |#5|) 129 T ELT)) (-3281 (((-580 |#5|) |#4| |#5|) 130 T ELT)) (-3276 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|) 107 T ELT)) (-3278 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|) 128 T ELT)) (-3280 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3273 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#3| (-83)) 91 T ELT) (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3274 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3271 (((-1176)) 36 T ELT)) (-3269 (((-1176)) 25 T ELT)) (-3270 (((-1176) (-1064) (-1064) (-1064)) 32 T ELT)) (-3268 (((-1176) (-1064) (-1064) (-1064)) 21 T ELT))) -(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1176) (-1064) (-1064) (-1064))) (-15 -3269 ((-1176))) (-15 -3270 ((-1176) (-1064) (-1064) (-1064))) (-15 -3271 ((-1176))) (-15 -3272 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3273 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3273 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) |#3| (-83))) (-15 -3274 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3275 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#4| |#5|)) (-15 -3280 ((-83) |#4| |#5|)) (-15 -3276 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|)) (-15 -3277 ((-580 |#5|) |#4| |#5|)) (-15 -3278 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|)) (-15 -3279 ((-580 |#5|) |#4| |#5|)) (-15 -3280 ((-580 (-2 (|:| |val| (-83)) (|:| -1589 |#5|))) |#4| |#5|)) (-15 -3281 ((-580 |#5|) |#4| |#5|)) (-15 -3282 ((-580 (-2 (|:| |val| |#4|) (|:| -1589 |#5|))) |#4| |#5|))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1013)) -((-3282 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3279 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3275 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *5 (-83)) (-4 *8 (-971 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *4 (-751)) (-5 *2 (-580 (-2 (|:| |val| *8) (|:| -1589 *9)))) (-5 *1 (-1013 *6 *7 *4 *8 *9)))) (-3273 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1013 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3272 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3271 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) 90 T ELT)) (-3665 (((-580 $) (-580 |#4|)) 91 T ELT) (((-580 $) (-580 |#4|) (-83)) 118 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3671 ((|#4| |#4| $) 97 T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 133 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-3782 (((-3 $ #1#) $) 87 T ELT)) (-3668 ((|#4| |#4| $) 94 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3666 ((|#4| |#4| $) 92 T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) 110 T ELT)) (-3182 (((-83) |#4| $) 143 T ELT)) (-3180 (((-83) |#4| $) 140 T ELT)) (-3183 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) 135 T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 134 T ELT)) (-3781 (((-3 |#4| #1#) $) 88 T ELT)) (-3177 (((-580 $) |#4| $) 136 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) 139 T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3223 (((-580 $) |#4| $) 132 T ELT) (((-580 $) (-580 |#4|) $) 131 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 130 T ELT) (((-580 $) |#4| (-580 $)) 129 T ELT)) (-3423 (($ |#4| $) 124 T ELT) (($ (-580 |#4|) $) 123 T ELT)) (-3680 (((-580 |#4|) $) 112 T ELT)) (-3674 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3669 ((|#4| |#4| $) 95 T ELT)) (-3682 (((-83) $ $) 115 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3670 ((|#4| |#4| $) 96 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-3 |#4| #1#) $) 89 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3752 (($ $ |#4|) 82 T ELT) (((-580 $) |#4| $) 122 T ELT) (((-580 $) |#4| (-580 $)) 121 T ELT) (((-580 $) (-580 |#4|) $) 120 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 119 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-3931 (((-689) $) 111 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-3667 (($ $) 93 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-3661 (((-689) $) 81 (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) 103 T ELT)) (-3174 (((-580 $) |#4| $) 128 T ELT) (((-580 $) |#4| (-580 $)) 127 T ELT) (((-580 $) (-580 |#4|) $) 126 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 125 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) 86 T ELT)) (-3181 (((-83) |#4| $) 142 T ELT)) (-3916 (((-83) |#3| $) 85 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-1014 |#1| |#2| |#3| |#4|) (-111) (-387) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -1014)) -NIL -(-13 (-977 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-884 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1007) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-3293 (((-580 (-480)) (-480) (-480) (-480)) 40 T ELT)) (-3292 (((-580 (-480)) (-480) (-480) (-480)) 30 T ELT)) (-3291 (((-580 (-480)) (-480) (-480) (-480)) 35 T ELT)) (-3290 (((-480) (-480) (-480)) 22 T ELT)) (-3289 (((-1170 (-480)) (-580 (-480)) (-1170 (-480)) (-480)) 78 T ELT) (((-1170 (-480)) (-1170 (-480)) (-1170 (-480)) (-480)) 73 T ELT)) (-3288 (((-580 (-480)) (-580 (-825)) (-580 (-480)) (-83)) 56 T ELT)) (-3287 (((-627 (-480)) (-580 (-480)) (-580 (-480)) (-627 (-480))) 77 T ELT)) (-3286 (((-627 (-480)) (-580 (-825)) (-580 (-480))) 61 T ELT)) (-3285 (((-580 (-627 (-480))) (-580 (-825))) 66 T ELT)) (-3284 (((-580 (-480)) (-580 (-480)) (-580 (-480)) (-627 (-480))) 81 T ELT)) (-3283 (((-627 (-480)) (-580 (-480)) (-580 (-480)) (-580 (-480))) 91 T ELT))) -(((-1015) (-10 -7 (-15 -3283 ((-627 (-480)) (-580 (-480)) (-580 (-480)) (-580 (-480)))) (-15 -3284 ((-580 (-480)) (-580 (-480)) (-580 (-480)) (-627 (-480)))) (-15 -3285 ((-580 (-627 (-480))) (-580 (-825)))) (-15 -3286 ((-627 (-480)) (-580 (-825)) (-580 (-480)))) (-15 -3287 ((-627 (-480)) (-580 (-480)) (-580 (-480)) (-627 (-480)))) (-15 -3288 ((-580 (-480)) (-580 (-825)) (-580 (-480)) (-83))) (-15 -3289 ((-1170 (-480)) (-1170 (-480)) (-1170 (-480)) (-480))) (-15 -3289 ((-1170 (-480)) (-580 (-480)) (-1170 (-480)) (-480))) (-15 -3290 ((-480) (-480) (-480))) (-15 -3291 ((-580 (-480)) (-480) (-480) (-480))) (-15 -3292 ((-580 (-480)) (-480) (-480) (-480))) (-15 -3293 ((-580 (-480)) (-480) (-480) (-480))))) (T -1015)) -((-3293 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480)))) (-3292 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480)))) (-3291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480)))) (-3290 (*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-1015)))) (-3289 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1170 (-480))) (-5 *3 (-580 (-480))) (-5 *4 (-480)) (-5 *1 (-1015)))) (-3289 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1170 (-480))) (-5 *3 (-480)) (-5 *1 (-1015)))) (-3288 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-580 (-480))) (-5 *3 (-580 (-825))) (-5 *4 (-83)) (-5 *1 (-1015)))) (-3287 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-627 (-480))) (-5 *3 (-580 (-480))) (-5 *1 (-1015)))) (-3286 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-825))) (-5 *4 (-580 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-1015)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-1015)))) (-3284 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-580 (-480))) (-5 *3 (-627 (-480))) (-5 *1 (-1015)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-1015))))) -((** (($ $ (-825)) 10 T ELT))) -(((-1016 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-825)))) (-1017)) (T -1016)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (** (($ $ (-825)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1017) (-111)) (T -1017)) -((* (*1 *1 *1 *1) (-4 *1 (-1017))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-825))))) -(-13 (-1007) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-825))))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-3173 (((-83) $) NIL (|has| |#3| (-23)) ELT)) (-3690 (($ (-825)) NIL (|has| |#3| (-956)) ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-2469 (($ $ $) NIL (|has| |#3| (-712)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-102)) ELT)) (-3121 (((-689)) NIL (|has| |#3| (-315)) ELT)) (-3771 ((|#3| $ (-480) |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1007)) ELT)) (-3141 (((-480) $) NIL (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT) ((|#3| $) NIL (|has| |#3| (-1007)) ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 $) (-1170 $)) NIL (|has| |#3| (-956)) ELT) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-956)) ELT)) (-3450 (((-3 $ #1#) $) NIL (|has| |#3| (-956)) ELT)) (-2980 (($) NIL (|has| |#3| (-315)) ELT)) (-1565 ((|#3| $ (-480) |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#3| $ (-480)) 12 T ELT)) (-3171 (((-83) $) NIL (|has| |#3| (-712)) ELT)) (-2875 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL (|has| |#3| (-956)) ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#3| (-751)) ELT)) (-2594 (((-580 |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#3| (-751)) ELT)) (-1938 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1998 (((-825) $) NIL (|has| |#3| (-315)) ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#3| (-577 (-480))) (|has| |#3| (-956))) ELT) (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-1170 $) $) NIL (|has| |#3| (-956)) ELT) (((-627 |#3|) (-1170 $)) NIL (|has| |#3| (-956)) ELT)) (-3227 (((-1064) $) NIL (|has| |#3| (-1007)) ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-2388 (($ (-825)) NIL (|has| |#3| (-315)) ELT)) (-3228 (((-1025) $) NIL (|has| |#3| (-1007)) ELT)) (-3784 ((|#3| $) NIL (|has| (-480) (-751)) ELT)) (-2187 (($ $ |#3|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#3|))) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-246 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT) (($ $ (-580 |#3|) (-580 |#3|)) NIL (-12 (|has| |#3| (-257 |#3|)) (|has| |#3| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-2193 (((-580 |#3|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#3| $ (-480) |#3|) NIL T ELT) ((|#3| $ (-480)) NIL T ELT)) (-3819 ((|#3| $ $) NIL (|has| |#3| (-956)) ELT)) (-1457 (($ (-1170 |#3|)) NIL T ELT)) (-3894 (((-105)) NIL (|has| |#3| (-309)) ELT)) (-3741 (($ $ (-689)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-956))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-956)) ELT) (($ $ (-1 |#3| |#3|) (-689)) NIL (|has| |#3| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#3| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#3| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3929 (((-1170 |#3|) $) NIL T ELT) (($ (-480)) NIL (OR (-12 (|has| |#3| (-945 (-480))) (|has| |#3| (-1007))) (|has| |#3| (-956))) ELT) (($ (-345 (-480))) NIL (-12 (|has| |#3| (-945 (-345 (-480)))) (|has| |#3| (-1007))) ELT) (($ |#3|) NIL (|has| |#3| (-1007)) ELT) (((-767) $) NIL (|has| |#3| (-549 (-767))) ELT)) (-3111 (((-689)) NIL (|has| |#3| (-956)) CONST)) (-1255 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2646 (($) NIL (|has| |#3| (-23)) CONST)) (-2652 (($) NIL (|has| |#3| (-956)) CONST)) (-2655 (($ $ (-689)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-956))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-956))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1081)) NIL (-12 (|has| |#3| (-806 (-1081))) (|has| |#3| (-956))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-956)) ELT) (($ $ (-1 |#3| |#3|) (-689)) NIL (|has| |#3| (-956)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#3| (-751)) ELT)) (-2671 (((-83) $ $) 24 (|has| |#3| (-751)) ELT)) (-3932 (($ $ |#3|) NIL (|has| |#3| (-309)) ELT)) (-3820 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-689)) NIL (|has| |#3| (-956)) ELT) (($ $ (-825)) NIL (|has| |#3| (-956)) ELT)) (* (($ $ $) NIL (|has| |#3| (-956)) ELT) (($ $ |#3|) NIL (|has| |#3| (-660)) ELT) (($ |#3| $) NIL (|has| |#3| (-660)) ELT) (($ (-480) $) NIL (|has| |#3| (-21)) ELT) (($ (-689) $) NIL (|has| |#3| (-23)) ELT) (($ (-825) $) NIL (|has| |#3| (-25)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1018 |#1| |#2| |#3|) (-194 |#1| |#3|) (-689) (-689) (-712)) (T -1018)) -NIL -((-3294 (((-580 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 50 T ELT)) (-3300 (((-480) (-1139 |#2| |#1|)) 95 (|has| |#1| (-387)) ELT)) (-3298 (((-480) (-1139 |#2| |#1|)) 79 T ELT)) (-3295 (((-580 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 58 T ELT)) (-3299 (((-480) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 81 (|has| |#1| (-387)) ELT)) (-3296 (((-580 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 61 T ELT)) (-3297 (((-480) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 78 T ELT))) -(((-1019 |#1| |#2|) (-10 -7 (-15 -3294 ((-580 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3295 ((-580 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3296 ((-580 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3297 ((-480) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3298 ((-480) (-1139 |#2| |#1|))) (IF (|has| |#1| (-387)) (PROGN (-15 -3299 ((-480) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3300 ((-480) (-1139 |#2| |#1|)))) |%noBranch|)) (-735) (-1081)) (T -1019)) -((-3300 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-387)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) (-5 *1 (-1019 *4 *5)))) (-3299 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-387)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) (-5 *1 (-1019 *4 *5)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) (-5 *1 (-1019 *4 *5)))) (-3297 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) (-5 *1 (-1019 *4 *5)))) (-3296 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 *4)) (-5 *1 (-1019 *4 *5)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 (-1139 *5 *4))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-1139 *5 *4)))) (-3294 (*1 *2 *3 *3) (-12 (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 (-1139 *5 *4))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-1139 *5 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3302 (((-1086) $) 12 T ELT)) (-3301 (((-580 (-1086)) $) 14 T ELT)) (-3303 (($ (-580 (-1086)) (-1086)) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 29 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 17 T ELT))) -(((-1020) (-13 (-1007) (-10 -8 (-15 -3303 ($ (-580 (-1086)) (-1086))) (-15 -3302 ((-1086) $)) (-15 -3301 ((-580 (-1086)) $))))) (T -1020)) -((-3303 (*1 *1 *2 *3) (-12 (-5 *2 (-580 (-1086))) (-5 *3 (-1086)) (-5 *1 (-1020)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1020)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1020))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3304 (($ (-441) (-1020)) 14 T ELT)) (-3303 (((-1020) $) 20 T ELT)) (-3525 (((-441) $) 17 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 27 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1021) (-13 (-989) (-10 -8 (-15 -3304 ($ (-441) (-1020))) (-15 -3525 ((-441) $)) (-15 -3303 ((-1020) $))))) (T -1021)) -((-3304 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1020)) (-5 *1 (-1021)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1021)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1021))))) -((-3606 (((-3 (-480) #1="failed") |#2| (-1081) |#2| (-1064)) 19 T ELT) (((-3 (-480) #1#) |#2| (-1081) (-745 |#2|)) 17 T ELT) (((-3 (-480) #1#) |#2|) 60 T ELT))) -(((-1022 |#1| |#2|) (-10 -7 (-15 -3606 ((-3 (-480) #1="failed") |#2|)) (-15 -3606 ((-3 (-480) #1#) |#2| (-1081) (-745 |#2|))) (-15 -3606 ((-3 (-480) #1#) |#2| (-1081) |#2| (-1064)))) (-13 (-491) (-945 (-480)) (-577 (-480)) (-387)) (-13 (-27) (-1106) (-359 |#1|))) (T -1022)) -((-3606 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-1064)) (-4 *6 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) (-5 *1 (-1022 *6 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))))) (-3606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-745 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) (-4 *6 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) (-5 *1 (-1022 *6 *3)))) (-3606 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) (-5 *1 (-1022 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4)))))) -((-3606 (((-3 (-480) #1="failed") (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|)) (-1064)) 38 T ELT) (((-3 (-480) #1#) (-345 (-852 |#1|)) (-1081) (-745 (-345 (-852 |#1|)))) 33 T ELT) (((-3 (-480) #1#) (-345 (-852 |#1|))) 14 T ELT))) -(((-1023 |#1|) (-10 -7 (-15 -3606 ((-3 (-480) #1="failed") (-345 (-852 |#1|)))) (-15 -3606 ((-3 (-480) #1#) (-345 (-852 |#1|)) (-1081) (-745 (-345 (-852 |#1|))))) (-15 -3606 ((-3 (-480) #1#) (-345 (-852 |#1|)) (-1081) (-345 (-852 |#1|)) (-1064)))) (-387)) (T -1023)) -((-3606 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-345 (-852 *6))) (-5 *4 (-1081)) (-5 *5 (-1064)) (-4 *6 (-387)) (-5 *2 (-480)) (-5 *1 (-1023 *6)))) (-3606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-745 (-345 (-852 *6)))) (-5 *3 (-345 (-852 *6))) (-4 *6 (-387)) (-5 *2 (-480)) (-5 *1 (-1023 *6)))) (-3606 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-387)) (-5 *2 (-480)) (-5 *1 (-1023 *4))))) -((-3632 (((-262 (-480)) (-48)) 12 T ELT))) -(((-1024) (-10 -7 (-15 -3632 ((-262 (-480)) (-48))))) (T -1024)) -((-3632 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-262 (-480))) (-5 *1 (-1024))))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 22 T ELT)) (-3173 (((-83) $) 49 T ELT)) (-3305 (($ $ $) 28 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 75 T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2030 (($ $ $ $) 59 T ELT)) (-3758 (($ $) NIL T ELT)) (-3954 (((-343 $) $) NIL T ELT)) (-1597 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) 61 T ELT)) (-3606 (((-480) $) NIL T ELT)) (-2427 (($ $ $) 56 T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL T ELT)) (-2550 (($ $ $) 42 T ELT)) (-2267 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 70 T ELT) (((-627 (-480)) (-627 $)) 8 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3010 (((-3 (-345 (-480)) #1#) $) NIL T ELT)) (-3009 (((-83) $) NIL T ELT)) (-3008 (((-345 (-480)) $) NIL T ELT)) (-2980 (($) 73 T ELT) (($ $) 72 T ELT)) (-2549 (($ $ $) 41 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL T ELT)) (-3706 (((-83) $) NIL T ELT)) (-2028 (($ $ $ $) NIL T ELT)) (-2036 (($ $ $) 71 T ELT)) (-3171 (((-83) $) 76 T ELT)) (-1358 (($ $ $) NIL T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL T ELT)) (-2547 (($ $ $) 27 T ELT)) (-2398 (((-83) $) 50 T ELT)) (-2659 (((-83) $) 47 T ELT)) (-2546 (($ $) 23 T ELT)) (-3428 (((-629 $) $) NIL T ELT)) (-3172 (((-83) $) 60 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL T ELT)) (-2029 (($ $ $ $) 57 T ELT)) (-2517 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2843 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2032 (($ $) NIL T ELT)) (-1998 (((-825) $) 66 T ELT)) (-3816 (($ $) 55 T ELT)) (-2268 (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL T ELT) (((-627 (-480)) (-1170 $)) NIL T ELT)) (-1880 (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2027 (($ $ $) NIL T ELT)) (-3429 (($) NIL T CONST)) (-2388 (($ (-825)) 65 T ELT)) (-2034 (($ $) 33 T ELT)) (-3228 (((-1025) $) 54 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL T ELT)) (-3129 (($ $ $) 45 T ELT) (($ (-580 $)) NIL T ELT)) (-1356 (($ $) NIL T ELT)) (-3715 (((-343 $) $) NIL T ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL T ELT)) (-2660 (((-83) $) 48 T ELT)) (-1596 (((-689) $) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 44 T ELT)) (-3741 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2033 (($ $) 34 T ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-480) $) 12 T ELT) (((-469) $) NIL T ELT) (((-795 (-480)) $) NIL T ELT) (((-325) $) NIL T ELT) (((-177) $) NIL T ELT)) (-3929 (((-767) $) 11 T ELT) (($ (-480)) 13 T ELT) (($ $) NIL T ELT) (($ (-480)) 13 T ELT)) (-3111 (((-689)) NIL T CONST)) (-2037 (((-83) $ $) NIL T ELT)) (-3087 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2680 (($) 17 T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2548 (($ $ $) 26 T ELT)) (-2031 (($ $ $ $) 58 T ELT)) (-3366 (($ $) 46 T ELT)) (-2299 (($ $ $) 25 T ELT)) (-2646 (($) 15 T CONST)) (-2652 (($) 16 T CONST)) (-2655 (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2552 (((-83) $ $) 32 T ELT)) (-2553 (((-83) $ $) 30 T ELT)) (-3042 (((-83) $ $) 21 T ELT)) (-2670 (((-83) $ $) 31 T ELT)) (-2671 (((-83) $ $) 29 T ELT)) (-2300 (($ $ $) 24 T ELT)) (-3820 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3822 (($ $ $) 36 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 40 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-480) $) 14 T ELT))) -(((-1025) (-13 (-479) (-747) (-82) (-10 -8 (-6 -3965) (-6 -3970) (-6 -3966) (-15 -3305 ($ $ $))))) (T -1025)) -((-3305 (*1 *1 *1 *1) (-5 *1 (-1025)))) -((-480) (|%ismall?| |#1|)) -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3307 ((|#1| $) 48 T ELT)) (-3707 (($) 7 T CONST)) (-3309 ((|#1| |#1| $) 50 T ELT)) (-3308 ((|#1| $) 49 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 43 T ELT)) (-3592 (($ |#1| $) 44 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3306 (((-689) $) 47 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) 46 T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1026 |#1|) (-111) (-1120)) (T -1026)) -((-3309 (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1120)) (-5 *2 (-689))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3978) (-15 -3309 (|t#1| |t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 ((-689) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-3313 ((|#3| $) 87 T ELT)) (-3142 (((-3 (-480) #1="failed") $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3141 (((-480) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL T ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL T ELT) (((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 $) (-1170 $)) 84 T ELT) (((-627 |#3|) (-627 $)) 76 T ELT)) (-3741 (($ $ (-1 |#3| |#3|) (-689)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-3312 ((|#3| $) 89 T ELT)) (-3314 ((|#4| $) 43 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 24 T ELT) (($ $ (-480)) 95 T ELT))) -(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 ** (|#1| |#1| (-480))) (-15 -3312 (|#3| |#1|)) (-15 -3313 (|#3| |#1|)) (-15 -3314 (|#4| |#1|)) (-15 -2267 ((-627 |#3|) (-627 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 |#3|)) (|:| |vec| (-1170 |#3|))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 |#1|) (-1170 |#1|))) (-15 -2267 ((-627 (-480)) (-627 |#1|))) (-15 -3929 (|#1| |#3|)) (-15 -3142 ((-3 |#3| #1="failed") |#1|)) (-15 -3141 (|#3| |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3741 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3741 (|#1| |#1| (-1 |#3| |#3|) (-689))) (-15 -3929 (|#1| (-480))) (-15 ** (|#1| |#1| (-689))) (-15 ** (|#1| |#1| (-825))) (-15 -3929 ((-767) |#1|))) (-1028 |#2| |#3| |#4| |#5|) (-689) (-956) (-194 |#2| |#3|) (-194 |#2| |#3|)) (T -1027)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3313 ((|#2| $) 88 T ELT)) (-3106 (((-83) $) 129 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-83) $) 127 T ELT)) (-3316 (($ |#2|) 91 T ELT)) (-3707 (($) 22 T CONST)) (-3095 (($ $) 146 (|has| |#2| (-255)) ELT)) (-3097 ((|#3| $ (-480)) 141 T ELT)) (-3142 (((-3 (-480) #1="failed") $) 107 (|has| |#2| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) 104 (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 |#2| #1#) $) 101 T ELT)) (-3141 (((-480) $) 106 (|has| |#2| (-945 (-480))) ELT) (((-345 (-480)) $) 103 (|has| |#2| (-945 (-345 (-480)))) ELT) ((|#2| $) 102 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 97 (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 96 (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 95 T ELT) (((-627 |#2|) (-627 $)) 94 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3094 (((-689) $) 147 (|has| |#2| (-491)) ELT)) (-3098 ((|#2| $ (-480) (-480)) 139 T ELT)) (-2875 (((-580 |#2|) $) 115 (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-3093 (((-689) $) 148 (|has| |#2| (-491)) ELT)) (-3092 (((-580 |#4|) $) 149 (|has| |#2| (-491)) ELT)) (-3100 (((-689) $) 135 T ELT)) (-3099 (((-689) $) 136 T ELT)) (-3310 ((|#2| $) 83 (|has| |#2| (-6 (-3980 #2="*"))) ELT)) (-3104 (((-480) $) 131 T ELT)) (-3102 (((-480) $) 133 T ELT)) (-2594 (((-580 |#2|) $) 114 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) 112 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3103 (((-480) $) 132 T ELT)) (-3101 (((-480) $) 134 T ELT)) (-3109 (($ (-580 (-580 |#2|))) 126 T ELT)) (-1938 (($ (-1 |#2| |#2|) $) 119 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2| |#2|) $ $) 143 T ELT) (($ (-1 |#2| |#2|) $) 120 T ELT)) (-3577 (((-580 (-580 |#2|)) $) 137 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 99 (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 98 (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) 93 T ELT) (((-627 |#2|) (-1170 $)) 92 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3573 (((-3 $ "failed") $) 82 (|has| |#2| (-309)) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3449 (((-3 $ "failed") $ |#2|) 144 (|has| |#2| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 117 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) 111 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) 110 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) 109 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 108 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) 125 T ELT)) (-3386 (((-83) $) 122 T ELT)) (-3548 (($) 123 T ELT)) (-3783 ((|#2| $ (-480) (-480) |#2|) 140 T ELT) ((|#2| $ (-480) (-480)) 138 T ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) 63 T ELT) (($ $ (-1 |#2| |#2|)) 62 T ELT) (($ $) 53 (|has| |#2| (-187)) ELT) (($ $ (-689)) 51 (|has| |#2| (-187)) ELT) (($ $ (-1081)) 61 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 59 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 58 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 57 (|has| |#2| (-806 (-1081))) ELT)) (-3312 ((|#2| $) 87 T ELT)) (-3315 (($ (-580 |#2|)) 90 T ELT)) (-3107 (((-83) $) 128 T ELT)) (-3314 ((|#3| $) 89 T ELT)) (-3311 ((|#2| $) 84 (|has| |#2| (-6 (-3980 #2#))) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) 116 (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) 113 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 124 T ELT)) (-3096 ((|#4| $ (-480)) 142 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 105 (|has| |#2| (-945 (-345 (-480)))) ELT) (($ |#2|) 100 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) 118 (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) 130 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 52 (|has| |#2| (-187)) ELT) (($ $ (-689)) 50 (|has| |#2| (-187)) ELT) (($ $ (-1081)) 60 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 56 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 55 (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 54 (|has| |#2| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#2|) 145 (|has| |#2| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 81 (|has| |#2| (-309)) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 151 T ELT) (($ |#2| $) 150 T ELT) ((|#4| $ |#4|) 86 T ELT) ((|#3| |#3| $) 85 T ELT)) (-3940 (((-689) $) 121 (|has| $ (-6 -3978)) ELT))) -(((-1028 |#1| |#2| |#3| |#4|) (-111) (-689) (-956) (-194 |t#1| |t#2|) (-194 |t#1| |t#2|)) (T -1028)) -((-3316 (*1 *1 *2) (-12 (-4 *2 (-956)) (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-580 *4)) (-4 *4 (-956)) (-4 *1 (-1028 *3 *4 *5 *6)) (-4 *5 (-194 *3 *4)) (-4 *6 (-194 *3 *4)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *2 *5)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) (-4 *2 (-194 *3 *4)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) (-4 *2 (-956)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) (-4 *2 (-956)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1028 *3 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) (-4 *2 (-194 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *2 *5)) (-4 *4 (-956)) (-4 *2 (-194 *3 *4)) (-4 *5 (-194 *3 *4)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) (|has| *2 (-6 (-3980 #1="*"))) (-4 *2 (-956)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) (|has| *2 (-6 (-3980 #1#))) (-4 *2 (-956)))) (-3573 (*1 *1 *1) (|partial| -12 (-4 *1 (-1028 *2 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-194 *2 *3)) (-4 *5 (-194 *2 *3)) (-4 *3 (-309)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-1028 *3 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) (-4 *6 (-194 *3 *4)) (-4 *4 (-309))))) -(-13 (-182 |t#2|) (-80 |t#2| |t#2|) (-960 |t#1| |t#1| |t#2| |t#3| |t#4|) (-350 |t#2|) (-324 |t#2|) (-10 -8 (IF (|has| |t#2| (-144)) (-6 (-651 |t#2|)) |%noBranch|) (-15 -3316 ($ |t#2|)) (-15 -3315 ($ (-580 |t#2|))) (-15 -3314 (|t#3| $)) (-15 -3313 (|t#2| $)) (-15 -3312 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3980 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3311 (|t#2| $)) (-15 -3310 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-309)) (PROGN (-15 -3573 ((-3 $ "failed") $)) (-15 ** ($ $ (-480)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3980 #1="*"))) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-552 (-345 (-480))) |has| |#2| (-945 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#2|) . T) ((-549 (-767)) . T) ((-184 $) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-182 |#2|) . T) ((-188) |has| |#2| (-188)) ((-187) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-223 |#2|) . T) ((-257 |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-324 |#2|) . T) ((-350 |#2|) . T) ((-424 |#2|) . T) ((-449 |#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-13) . T) ((-585 (-480)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-587 (-480)) |has| |#2| (-577 (-480))) ((-587 |#2|) . T) ((-587 $) . T) ((-579 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3980 #1#)))) ((-577 (-480)) |has| |#2| (-577 (-480))) ((-577 |#2|) . T) ((-651 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3980 #1#)))) ((-660) . T) ((-801 $ (-1081)) OR (|has| |#2| (-806 (-1081))) (|has| |#2| (-804 (-1081)))) ((-804 (-1081)) |has| |#2| (-804 (-1081))) ((-806 (-1081)) OR (|has| |#2| (-806 (-1081))) (|has| |#2| (-804 (-1081)))) ((-960 |#1| |#1| |#2| |#3| |#4|) . T) ((-945 (-345 (-480))) |has| |#2| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#2| (-945 (-480))) ((-945 |#2|) . T) ((-958 |#2|) . T) ((-963 |#2|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3319 ((|#4| |#4|) 81 T ELT)) (-3317 ((|#4| |#4|) 76 T ELT)) (-3321 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2000 (-580 |#3|))) |#4| |#3|) 91 T ELT)) (-3320 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3318 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1029 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3317 (|#4| |#4|)) (-15 -3318 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3319 (|#4| |#4|)) (-15 -3320 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3321 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2000 (-580 |#3|))) |#4| |#3|))) (-255) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|)) (T -1029)) -((-3321 (*1 *2 *3 *4) (-12 (-4 *5 (-255)) (-4 *6 (-319 *5)) (-4 *4 (-319 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2000 (-580 *4)))) (-5 *1 (-1029 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-255)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1029 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3319 (*1 *2 *2) (-12 (-4 *3 (-255)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-1029 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-255)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1029 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-255)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-1029 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 18 T ELT)) (-3067 (((-580 |#2|) $) 174 T ELT)) (-3069 (((-1076 $) $ |#2|) 60 T ELT) (((-1076 |#1|) $) 49 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 116 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 118 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 120 (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 |#2|)) 214 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3141 ((|#1| $) 165 T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) ((|#2| $) NIL T ELT)) (-3739 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3942 (($ $) 218 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) 90 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT) (($ $ |#2|) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-465 |#2|) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| |#1| (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| |#1| (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-2398 (((-83) $) 20 T ELT)) (-2406 (((-689) $) 30 T ELT)) (-3070 (($ (-1076 |#1|) |#2|) 54 T ELT) (($ (-1076 $) |#2|) 71 T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) 38 T ELT)) (-2879 (($ |#1| (-465 |#2|)) 78 T ELT) (($ $ |#2| (-689)) 58 T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ |#2|) NIL T ELT)) (-2806 (((-465 |#2|) $) 205 T ELT) (((-689) $ |#2|) 206 T ELT) (((-580 (-689)) $ (-580 |#2|)) 207 T ELT)) (-1614 (($ (-1 (-465 |#2|) (-465 |#2|)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3068 (((-3 |#2| #1#) $) 177 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) 217 T ELT)) (-3159 ((|#1| $) 43 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| |#2|) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) 39 T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 148 (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) 153 (|has| |#1| (-387)) ELT) (($ $ $) 138 (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-816)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-491)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-580 |#2|) (-580 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-580 |#2|) (-580 $)) 194 T ELT)) (-3740 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3931 (((-465 |#2|) $) 201 T ELT) (((-689) $ |#2|) 196 T ELT) (((-580 (-689)) $ (-580 |#2|)) 199 T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| |#1| (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| |#1| (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| |#1| (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#1| $) 134 (|has| |#1| (-387)) ELT) (($ $ |#2|) 137 (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3929 (((-767) $) 159 T ELT) (($ (-480)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3800 (((-580 |#1|) $) 162 T ELT)) (-3660 ((|#1| $ (-465 |#2|)) 80 T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 87 T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) 123 (|has| |#1| (-491)) ELT)) (-2646 (($) 12 T CONST)) (-2652 (($) 14 T CONST)) (-2655 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3042 (((-83) $ $) 106 T ELT)) (-3932 (($ $ |#1|) 132 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3822 (($ $ $) 55 T ELT)) (** (($ $ (-825)) 110 T ELT) (($ $ (-689)) 109 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1030 |#1| |#2|) (-856 |#1| (-465 |#2|) |#2|) (-956) (-751)) (T -1030)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 |#2|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3475 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 125 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 121 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3477 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 129 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3797 (((-852 |#1|) $ (-689)) NIL T ELT) (((-852 |#1|) $ (-689) (-689)) NIL T ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $ |#2|) NIL T ELT) (((-689) $ |#2| (-689)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ $ (-580 |#2|) (-580 (-465 |#2|))) NIL T ELT) (($ $ |#2| (-465 |#2|)) NIL T ELT) (($ |#1| (-465 |#2|)) NIL T ELT) (($ $ |#2| (-689)) 63 T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) 119 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3795 (($ $ |#2|) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3659 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3752 (($ $ (-689)) 17 T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3926 (($ $) 117 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (($ $ |#2| $) 104 T ELT) (($ $ (-580 |#2|) (-580 $)) 99 T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT)) (-3741 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3931 (((-465 |#2|) $) NIL T ELT)) (-3322 (((-1 (-1060 |#3|) |#3|) (-580 |#2|) (-580 (-1060 |#3|))) 87 T ELT)) (-3478 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 131 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 127 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 123 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 19 T ELT)) (-3929 (((-767) $) 194 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3660 ((|#1| $ (-465 |#2|)) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) ((|#3| $ (-689)) 43 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 137 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 133 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3484 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 139 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 135 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 52 T CONST)) (-2652 (($) 62 T CONST)) (-2655 (($ $ (-580 |#2|) (-580 (-689))) NIL T ELT) (($ $ |#2| (-689)) NIL T ELT) (($ $ (-580 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) 196 (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 66 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 109 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-345 (-480))) 114 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 112 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1031 |#1| |#2| |#3|) (-13 (-674 |#1| |#2|) (-10 -8 (-15 -3660 (|#3| $ (-689))) (-15 -3929 ($ |#2|)) (-15 -3929 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3322 ((-1 (-1060 |#3|) |#3|) (-580 |#2|) (-580 (-1060 |#3|)))) (IF (|has| |#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $ |#2| |#1|)) (-15 -3659 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-956) (-751) (-856 |#1| (-465 |#2|) |#2|)) (T -1031)) -((-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *2 (-856 *4 (-465 *5) *5)) (-5 *1 (-1031 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-751)))) (-3929 (*1 *1 *2) (-12 (-4 *3 (-956)) (-4 *2 (-751)) (-5 *1 (-1031 *3 *2 *4)) (-4 *4 (-856 *3 (-465 *2) *2)))) (-3929 (*1 *1 *2) (-12 (-4 *3 (-956)) (-4 *4 (-751)) (-5 *1 (-1031 *3 *4 *2)) (-4 *2 (-856 *3 (-465 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-956)) (-4 *4 (-751)) (-5 *1 (-1031 *3 *4 *2)) (-4 *2 (-856 *3 (-465 *4) *4)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-1060 *7))) (-4 *6 (-751)) (-4 *7 (-856 *5 (-465 *6) *6)) (-4 *5 (-956)) (-5 *2 (-1 (-1060 *7) *7)) (-5 *1 (-1031 *5 *6 *7)))) (-3795 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-4 *2 (-751)) (-5 *1 (-1031 *3 *2 *4)) (-4 *4 (-856 *3 (-465 *2) *2)))) (-3659 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1031 *4 *3 *5))) (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956)) (-4 *3 (-751)) (-5 *1 (-1031 *4 *3 *5)) (-4 *5 (-856 *4 (-465 *3) *3))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) 90 T ELT)) (-3665 (((-580 $) (-580 |#4|)) 91 T ELT) (((-580 $) (-580 |#4|) (-83)) 118 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3671 ((|#4| |#4| $) 97 T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 133 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-3782 (((-3 $ #1#) $) 87 T ELT)) (-3668 ((|#4| |#4| $) 94 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3666 ((|#4| |#4| $) 92 T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) 110 T ELT)) (-3182 (((-83) |#4| $) 143 T ELT)) (-3180 (((-83) |#4| $) 140 T ELT)) (-3183 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) 135 T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 134 T ELT)) (-3781 (((-3 |#4| #1#) $) 88 T ELT)) (-3177 (((-580 $) |#4| $) 136 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) 139 T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3223 (((-580 $) |#4| $) 132 T ELT) (((-580 $) (-580 |#4|) $) 131 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 130 T ELT) (((-580 $) |#4| (-580 $)) 129 T ELT)) (-3423 (($ |#4| $) 124 T ELT) (($ (-580 |#4|) $) 123 T ELT)) (-3680 (((-580 |#4|) $) 112 T ELT)) (-3674 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3669 ((|#4| |#4| $) 95 T ELT)) (-3682 (((-83) $ $) 115 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3670 ((|#4| |#4| $) 96 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-3 |#4| #1#) $) 89 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3752 (($ $ |#4|) 82 T ELT) (((-580 $) |#4| $) 122 T ELT) (((-580 $) |#4| (-580 $)) 121 T ELT) (((-580 $) (-580 |#4|) $) 120 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 119 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-3931 (((-689) $) 111 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-3667 (($ $) 93 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-3661 (((-689) $) 81 (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) 103 T ELT)) (-3174 (((-580 $) |#4| $) 128 T ELT) (((-580 $) |#4| (-580 $)) 127 T ELT) (((-580 $) (-580 |#4|) $) 126 T ELT) (((-580 $) (-580 |#4|) (-580 $)) 125 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) 86 T ELT)) (-3181 (((-83) |#4| $) 142 T ELT)) (-3916 (((-83) |#3| $) 85 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-1032 |#1| |#2| |#3| |#4|) (-111) (-387) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -1032)) -NIL -(-13 (-1014 |t#1| |t#2| |t#3| |t#4|) (-702 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-702 |#1| |#2| |#3| |#4|) . T) ((-884 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1007) . T) ((-1014 |#1| |#2| |#3| |#4|) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-3556 (((-580 |#2|) |#1|) 15 T ELT)) (-3328 (((-580 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-580 |#2|) |#1|) 61 T ELT)) (-3326 (((-580 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-580 |#2|) |#1|) 59 T ELT)) (-3323 ((|#2| |#1|) 54 T ELT)) (-3324 (((-2 (|:| |solns| (-580 |#2|)) (|:| |maps| (-580 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3325 (((-580 |#2|) |#2| |#2|) 42 T ELT) (((-580 |#2|) |#1|) 58 T ELT)) (-3327 (((-580 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-580 |#2|) |#1|) 60 T ELT)) (-3332 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3330 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3329 ((|#2| |#2| |#2|) 50 T ELT)) (-3331 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -3556 ((-580 |#2|) |#1|)) (-15 -3323 (|#2| |#1|)) (-15 -3324 ((-2 (|:| |solns| (-580 |#2|)) (|:| |maps| (-580 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3325 ((-580 |#2|) |#1|)) (-15 -3326 ((-580 |#2|) |#1|)) (-15 -3327 ((-580 |#2|) |#1|)) (-15 -3328 ((-580 |#2|) |#1|)) (-15 -3325 ((-580 |#2|) |#2| |#2|)) (-15 -3326 ((-580 |#2|) |#2| |#2| |#2|)) (-15 -3327 ((-580 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3328 ((-580 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3329 (|#2| |#2| |#2|)) (-15 -3330 (|#2| |#2| |#2| |#2|)) (-15 -3331 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3332 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1146 |#2|) (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (T -1033)) -((-3332 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2)))) (-3331 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2)))) (-3330 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2)))) (-3329 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2)))) (-3328 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3)))) (-3327 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3)))) (-3326 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-2 (|:| |solns| (-580 *5)) (|:| |maps| (-580 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1033 *3 *5)) (-4 *3 (-1146 *5)))) (-3323 (*1 *2 *3) (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4))))) -((-3333 (((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-345 (-852 |#1|))))) 119 T ELT) (((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-345 (-852 |#1|)))) (-580 (-1081))) 118 T ELT) (((-580 (-580 (-246 (-262 |#1|)))) (-580 (-345 (-852 |#1|)))) 116 T ELT) (((-580 (-580 (-246 (-262 |#1|)))) (-580 (-345 (-852 |#1|))) (-580 (-1081))) 113 T ELT) (((-580 (-246 (-262 |#1|))) (-246 (-345 (-852 |#1|)))) 97 T ELT) (((-580 (-246 (-262 |#1|))) (-246 (-345 (-852 |#1|))) (-1081)) 98 T ELT) (((-580 (-246 (-262 |#1|))) (-345 (-852 |#1|))) 92 T ELT) (((-580 (-246 (-262 |#1|))) (-345 (-852 |#1|)) (-1081)) 82 T ELT)) (-3334 (((-580 (-580 (-262 |#1|))) (-580 (-345 (-852 |#1|))) (-580 (-1081))) 111 T ELT) (((-580 (-262 |#1|)) (-345 (-852 |#1|)) (-1081)) 54 T ELT)) (-3335 (((-1071 (-580 (-262 |#1|)) (-580 (-246 (-262 |#1|)))) (-345 (-852 |#1|)) (-1081)) 123 T ELT) (((-1071 (-580 (-262 |#1|)) (-580 (-246 (-262 |#1|)))) (-246 (-345 (-852 |#1|))) (-1081)) 122 T ELT))) -(((-1034 |#1|) (-10 -7 (-15 -3333 ((-580 (-246 (-262 |#1|))) (-345 (-852 |#1|)) (-1081))) (-15 -3333 ((-580 (-246 (-262 |#1|))) (-345 (-852 |#1|)))) (-15 -3333 ((-580 (-246 (-262 |#1|))) (-246 (-345 (-852 |#1|))) (-1081))) (-15 -3333 ((-580 (-246 (-262 |#1|))) (-246 (-345 (-852 |#1|))))) (-15 -3333 ((-580 (-580 (-246 (-262 |#1|)))) (-580 (-345 (-852 |#1|))) (-580 (-1081)))) (-15 -3333 ((-580 (-580 (-246 (-262 |#1|)))) (-580 (-345 (-852 |#1|))))) (-15 -3333 ((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-345 (-852 |#1|)))) (-580 (-1081)))) (-15 -3333 ((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-345 (-852 |#1|)))))) (-15 -3334 ((-580 (-262 |#1|)) (-345 (-852 |#1|)) (-1081))) (-15 -3334 ((-580 (-580 (-262 |#1|))) (-580 (-345 (-852 |#1|))) (-580 (-1081)))) (-15 -3335 ((-1071 (-580 (-262 |#1|)) (-580 (-246 (-262 |#1|)))) (-246 (-345 (-852 |#1|))) (-1081))) (-15 -3335 ((-1071 (-580 (-262 |#1|)) (-580 (-246 (-262 |#1|)))) (-345 (-852 |#1|)) (-1081)))) (-13 (-255) (-118))) (T -1034)) -((-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-1071 (-580 (-262 *5)) (-580 (-246 (-262 *5))))) (-5 *1 (-1034 *5)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-246 (-345 (-852 *5)))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-1071 (-580 (-262 *5)) (-580 (-246 (-262 *5))))) (-5 *1 (-1034 *5)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-262 *5)))) (-5 *1 (-1034 *5)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-262 *5))) (-5 *1 (-1034 *5)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-580 (-246 (-345 (-852 *4))))) (-4 *4 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *4))))) (-5 *1 (-1034 *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-246 (-345 (-852 *5))))) (-5 *4 (-580 (-1081))) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *5))))) (-5 *1 (-1034 *5)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-580 (-345 (-852 *4)))) (-4 *4 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *4))))) (-5 *1 (-1034 *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *5))))) (-5 *1 (-1034 *5)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-246 (-345 (-852 *4)))) (-4 *4 (-13 (-255) (-118))) (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1034 *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-246 (-345 (-852 *5)))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1034 *5)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-13 (-255) (-118))) (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1034 *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1034 *5))))) -((-3337 (((-345 (-1076 (-262 |#1|))) (-1170 (-262 |#1|)) (-345 (-1076 (-262 |#1|))) (-480)) 36 T ELT)) (-3336 (((-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|)))) 48 T ELT))) -(((-1035 |#1|) (-10 -7 (-15 -3336 ((-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|))) (-345 (-1076 (-262 |#1|))))) (-15 -3337 ((-345 (-1076 (-262 |#1|))) (-1170 (-262 |#1|)) (-345 (-1076 (-262 |#1|))) (-480)))) (-491)) (T -1035)) -((-3337 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-345 (-1076 (-262 *5)))) (-5 *3 (-1170 (-262 *5))) (-5 *4 (-480)) (-4 *5 (-491)) (-5 *1 (-1035 *5)))) (-3336 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-345 (-1076 (-262 *3)))) (-4 *3 (-491)) (-5 *1 (-1035 *3))))) -((-3556 (((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-262 |#1|))) (-580 (-1081))) 244 T ELT) (((-580 (-246 (-262 |#1|))) (-262 |#1|) (-1081)) 23 T ELT) (((-580 (-246 (-262 |#1|))) (-246 (-262 |#1|)) (-1081)) 29 T ELT) (((-580 (-246 (-262 |#1|))) (-246 (-262 |#1|))) 28 T ELT) (((-580 (-246 (-262 |#1|))) (-262 |#1|)) 24 T ELT))) -(((-1036 |#1|) (-10 -7 (-15 -3556 ((-580 (-246 (-262 |#1|))) (-262 |#1|))) (-15 -3556 ((-580 (-246 (-262 |#1|))) (-246 (-262 |#1|)))) (-15 -3556 ((-580 (-246 (-262 |#1|))) (-246 (-262 |#1|)) (-1081))) (-15 -3556 ((-580 (-246 (-262 |#1|))) (-262 |#1|) (-1081))) (-15 -3556 ((-580 (-580 (-246 (-262 |#1|)))) (-580 (-246 (-262 |#1|))) (-580 (-1081))))) (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (T -1036)) -((-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-1081))) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *5))))) (-5 *1 (-1036 *5)) (-5 *3 (-580 (-246 (-262 *5)))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-262 *5)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-246 (-262 *5))))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1036 *4)) (-5 *3 (-246 (-262 *4))))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1036 *4)) (-5 *3 (-262 *4))))) -((-3339 ((|#2| |#2|) 28 (|has| |#1| (-751)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 25 T ELT)) (-3338 ((|#2| |#2|) 27 (|has| |#1| (-751)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 22 T ELT))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -3338 (|#2| |#2| (-1 (-83) |#1| |#1|))) (-15 -3339 (|#2| |#2| (-1 (-83) |#1| |#1|))) (IF (|has| |#1| (-751)) (PROGN (-15 -3338 (|#2| |#2|)) (-15 -3339 (|#2| |#2|))) |%noBranch|)) (-1120) (-13 (-535 (-480) |#1|) (-10 -7 (-6 -3978) (-6 -3979)))) (T -1037)) -((-3339 (*1 *2 *2) (-12 (-4 *3 (-751)) (-4 *3 (-1120)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-13 (-535 (-480) *3) (-10 -7 (-6 -3978) (-6 -3979)))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-751)) (-4 *3 (-1120)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-13 (-535 (-480) *3) (-10 -7 (-6 -3978) (-6 -3979)))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1037 *4 *2)) (-4 *2 (-13 (-535 (-480) *4) (-10 -7 (-6 -3978) (-6 -3979)))))) (-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1037 *4 *2)) (-4 *2 (-13 (-535 (-480) *4) (-10 -7 (-6 -3978) (-6 -3979))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3871 (((-1070 3 |#1|) $) 141 T ELT)) (-3349 (((-83) $) 101 T ELT)) (-3350 (($ $ (-580 (-849 |#1|))) 44 T ELT) (($ $ (-580 (-580 |#1|))) 104 T ELT) (($ (-580 (-849 |#1|))) 103 T ELT) (((-580 (-849 |#1|)) $) 102 T ELT)) (-3355 (((-83) $) 72 T ELT)) (-3689 (($ $ (-849 |#1|)) 76 T ELT) (($ $ (-580 |#1|)) 81 T ELT) (($ $ (-689)) 83 T ELT) (($ (-849 |#1|)) 77 T ELT) (((-849 |#1|) $) 75 T ELT)) (-3341 (((-2 (|:| -3833 (-689)) (|:| |curves| (-689)) (|:| |polygons| (-689)) (|:| |constructs| (-689))) $) 139 T ELT)) (-3359 (((-689) $) 53 T ELT)) (-3360 (((-689) $) 52 T ELT)) (-3870 (($ $ (-689) (-849 |#1|)) 67 T ELT)) (-3347 (((-83) $) 111 T ELT)) (-3348 (($ $ (-580 (-580 (-849 |#1|))) (-580 (-143)) (-143)) 118 T ELT) (($ $ (-580 (-580 (-580 |#1|))) (-580 (-143)) (-143)) 120 T ELT) (($ $ (-580 (-580 (-849 |#1|))) (-83) (-83)) 115 T ELT) (($ $ (-580 (-580 (-580 |#1|))) (-83) (-83)) 127 T ELT) (($ (-580 (-580 (-849 |#1|)))) 116 T ELT) (($ (-580 (-580 (-849 |#1|))) (-83) (-83)) 117 T ELT) (((-580 (-580 (-849 |#1|))) $) 114 T ELT)) (-3501 (($ (-580 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3342 (((-580 (-143)) $) 133 T ELT)) (-3346 (((-580 (-849 |#1|)) $) 130 T ELT)) (-3343 (((-580 (-580 (-143))) $) 132 T ELT)) (-3344 (((-580 (-580 (-580 (-849 |#1|)))) $) NIL T ELT)) (-3345 (((-580 (-580 (-580 (-689)))) $) 131 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3356 (((-689) $ (-580 (-849 |#1|))) 65 T ELT)) (-3353 (((-83) $) 84 T ELT)) (-3354 (($ $ (-580 (-849 |#1|))) 86 T ELT) (($ $ (-580 (-580 |#1|))) 92 T ELT) (($ (-580 (-849 |#1|))) 87 T ELT) (((-580 (-849 |#1|)) $) 85 T ELT)) (-3361 (($) 48 T ELT) (($ (-1070 3 |#1|)) 49 T ELT)) (-3383 (($ $) 63 T ELT)) (-3357 (((-580 $) $) 62 T ELT)) (-3737 (($ (-580 $)) 59 T ELT)) (-3358 (((-580 $) $) 61 T ELT)) (-3929 (((-767) $) 146 T ELT)) (-3351 (((-83) $) 94 T ELT)) (-3352 (($ $ (-580 (-849 |#1|))) 96 T ELT) (($ $ (-580 (-580 |#1|))) 99 T ELT) (($ (-580 (-849 |#1|))) 97 T ELT) (((-580 (-849 |#1|)) $) 95 T ELT)) (-3340 (($ $) 140 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1038 |#1|) (-1039 |#1|) (-956)) (T -1038)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3871 (((-1070 3 |#1|) $) 17 T ELT)) (-3349 (((-83) $) 33 T ELT)) (-3350 (($ $ (-580 (-849 |#1|))) 37 T ELT) (($ $ (-580 (-580 |#1|))) 36 T ELT) (($ (-580 (-849 |#1|))) 35 T ELT) (((-580 (-849 |#1|)) $) 34 T ELT)) (-3355 (((-83) $) 48 T ELT)) (-3689 (($ $ (-849 |#1|)) 53 T ELT) (($ $ (-580 |#1|)) 52 T ELT) (($ $ (-689)) 51 T ELT) (($ (-849 |#1|)) 50 T ELT) (((-849 |#1|) $) 49 T ELT)) (-3341 (((-2 (|:| -3833 (-689)) (|:| |curves| (-689)) (|:| |polygons| (-689)) (|:| |constructs| (-689))) $) 19 T ELT)) (-3359 (((-689) $) 62 T ELT)) (-3360 (((-689) $) 63 T ELT)) (-3870 (($ $ (-689) (-849 |#1|)) 54 T ELT)) (-3347 (((-83) $) 25 T ELT)) (-3348 (($ $ (-580 (-580 (-849 |#1|))) (-580 (-143)) (-143)) 32 T ELT) (($ $ (-580 (-580 (-580 |#1|))) (-580 (-143)) (-143)) 31 T ELT) (($ $ (-580 (-580 (-849 |#1|))) (-83) (-83)) 30 T ELT) (($ $ (-580 (-580 (-580 |#1|))) (-83) (-83)) 29 T ELT) (($ (-580 (-580 (-849 |#1|)))) 28 T ELT) (($ (-580 (-580 (-849 |#1|))) (-83) (-83)) 27 T ELT) (((-580 (-580 (-849 |#1|))) $) 26 T ELT)) (-3501 (($ (-580 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3342 (((-580 (-143)) $) 20 T ELT)) (-3346 (((-580 (-849 |#1|)) $) 24 T ELT)) (-3343 (((-580 (-580 (-143))) $) 21 T ELT)) (-3344 (((-580 (-580 (-580 (-849 |#1|)))) $) 22 T ELT)) (-3345 (((-580 (-580 (-580 (-689)))) $) 23 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3356 (((-689) $ (-580 (-849 |#1|))) 55 T ELT)) (-3353 (((-83) $) 43 T ELT)) (-3354 (($ $ (-580 (-849 |#1|))) 47 T ELT) (($ $ (-580 (-580 |#1|))) 46 T ELT) (($ (-580 (-849 |#1|))) 45 T ELT) (((-580 (-849 |#1|)) $) 44 T ELT)) (-3361 (($) 65 T ELT) (($ (-1070 3 |#1|)) 64 T ELT)) (-3383 (($ $) 56 T ELT)) (-3357 (((-580 $) $) 57 T ELT)) (-3737 (($ (-580 $)) 59 T ELT)) (-3358 (((-580 $) $) 58 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-3351 (((-83) $) 38 T ELT)) (-3352 (($ $ (-580 (-849 |#1|))) 42 T ELT) (($ $ (-580 (-580 |#1|))) 41 T ELT) (($ (-580 (-849 |#1|))) 40 T ELT) (((-580 (-849 |#1|)) $) 39 T ELT)) (-3340 (($ $) 18 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-1039 |#1|) (-111) (-956)) (T -1039)) -((-3929 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-767)))) (-3361 (*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-1070 3 *3)) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3501 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) (-3737 (*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3358 (*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)))) (-3357 (*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)))) (-3383 (*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) (-3356 (*1 *2 *1 *3) (-12 (-5 *3 (-580 (-849 *4))) (-4 *1 (-1039 *4)) (-4 *4 (-956)) (-5 *2 (-689)))) (-3870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-849 *4)) (-4 *1 (-1039 *4)) (-4 *4 (-956)))) (-3689 (*1 *1 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3689 (*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3689 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-849 *3)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3352 (*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) (-3350 (*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83)))) (-3348 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-580 (-580 (-849 *5)))) (-5 *3 (-580 (-143))) (-5 *4 (-143)) (-4 *1 (-1039 *5)) (-4 *5 (-956)))) (-3348 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-580 (-580 (-580 *5)))) (-5 *3 (-580 (-143))) (-5 *4 (-143)) (-4 *1 (-1039 *5)) (-4 *5 (-956)))) (-3348 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-580 (-580 (-849 *4)))) (-5 *3 (-83)) (-4 *1 (-1039 *4)) (-4 *4 (-956)))) (-3348 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-580 (-580 (-580 *4)))) (-5 *3 (-83)) (-4 *1 (-1039 *4)) (-4 *4 (-956)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-849 *3)))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) (-3348 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-580 (-580 (-849 *4)))) (-5 *3 (-83)) (-4 *4 (-956)) (-4 *1 (-1039 *4)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-849 *3)))))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-580 (-689))))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-580 (-849 *3))))))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-143)))))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-143))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -3833 (-689)) (|:| |curves| (-689)) (|:| |polygons| (-689)) (|:| |constructs| (-689)))))) (-3340 (*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-1070 3 *3))))) -(-13 (-1007) (-10 -8 (-15 -3361 ($)) (-15 -3361 ($ (-1070 3 |t#1|))) (-15 -3360 ((-689) $)) (-15 -3359 ((-689) $)) (-15 -3501 ($ (-580 $))) (-15 -3501 ($ $ $)) (-15 -3737 ($ (-580 $))) (-15 -3358 ((-580 $) $)) (-15 -3357 ((-580 $) $)) (-15 -3383 ($ $)) (-15 -3356 ((-689) $ (-580 (-849 |t#1|)))) (-15 -3870 ($ $ (-689) (-849 |t#1|))) (-15 -3689 ($ $ (-849 |t#1|))) (-15 -3689 ($ $ (-580 |t#1|))) (-15 -3689 ($ $ (-689))) (-15 -3689 ($ (-849 |t#1|))) (-15 -3689 ((-849 |t#1|) $)) (-15 -3355 ((-83) $)) (-15 -3354 ($ $ (-580 (-849 |t#1|)))) (-15 -3354 ($ $ (-580 (-580 |t#1|)))) (-15 -3354 ($ (-580 (-849 |t#1|)))) (-15 -3354 ((-580 (-849 |t#1|)) $)) (-15 -3353 ((-83) $)) (-15 -3352 ($ $ (-580 (-849 |t#1|)))) (-15 -3352 ($ $ (-580 (-580 |t#1|)))) (-15 -3352 ($ (-580 (-849 |t#1|)))) (-15 -3352 ((-580 (-849 |t#1|)) $)) (-15 -3351 ((-83) $)) (-15 -3350 ($ $ (-580 (-849 |t#1|)))) (-15 -3350 ($ $ (-580 (-580 |t#1|)))) (-15 -3350 ($ (-580 (-849 |t#1|)))) (-15 -3350 ((-580 (-849 |t#1|)) $)) (-15 -3349 ((-83) $)) (-15 -3348 ($ $ (-580 (-580 (-849 |t#1|))) (-580 (-143)) (-143))) (-15 -3348 ($ $ (-580 (-580 (-580 |t#1|))) (-580 (-143)) (-143))) (-15 -3348 ($ $ (-580 (-580 (-849 |t#1|))) (-83) (-83))) (-15 -3348 ($ $ (-580 (-580 (-580 |t#1|))) (-83) (-83))) (-15 -3348 ($ (-580 (-580 (-849 |t#1|))))) (-15 -3348 ($ (-580 (-580 (-849 |t#1|))) (-83) (-83))) (-15 -3348 ((-580 (-580 (-849 |t#1|))) $)) (-15 -3347 ((-83) $)) (-15 -3346 ((-580 (-849 |t#1|)) $)) (-15 -3345 ((-580 (-580 (-580 (-689)))) $)) (-15 -3344 ((-580 (-580 (-580 (-849 |t#1|)))) $)) (-15 -3343 ((-580 (-580 (-143))) $)) (-15 -3342 ((-580 (-143)) $)) (-15 -3341 ((-2 (|:| -3833 (-689)) (|:| |curves| (-689)) (|:| |polygons| (-689)) (|:| |constructs| (-689))) $)) (-15 -3340 ($ $)) (-15 -3871 ((-1070 3 |t#1|) $)) (-15 -3929 ((-767) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 185 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) 7 T ELT)) (-3549 (((-83) $ (|[\|\|]| (-458))) 19 T ELT) (((-83) $ (|[\|\|]| (-170))) 23 T ELT) (((-83) $ (|[\|\|]| (-614))) 27 T ELT) (((-83) $ (|[\|\|]| (-1181))) 31 T ELT) (((-83) $ (|[\|\|]| (-109))) 35 T ELT) (((-83) $ (|[\|\|]| (-536))) 39 T ELT) (((-83) $ (|[\|\|]| (-104))) 43 T ELT) (((-83) $ (|[\|\|]| (-1021))) 47 T ELT) (((-83) $ (|[\|\|]| (-67))) 51 T ELT) (((-83) $ (|[\|\|]| (-619))) 55 T ELT) (((-83) $ (|[\|\|]| (-452))) 59 T ELT) (((-83) $ (|[\|\|]| (-972))) 63 T ELT) (((-83) $ (|[\|\|]| (-1182))) 67 T ELT) (((-83) $ (|[\|\|]| (-459))) 71 T ELT) (((-83) $ (|[\|\|]| (-1058))) 75 T ELT) (((-83) $ (|[\|\|]| (-125))) 79 T ELT) (((-83) $ (|[\|\|]| (-610))) 83 T ELT) (((-83) $ (|[\|\|]| (-260))) 87 T ELT) (((-83) $ (|[\|\|]| (-943))) 91 T ELT) (((-83) $ (|[\|\|]| (-152))) 95 T ELT) (((-83) $ (|[\|\|]| (-878))) 99 T ELT) (((-83) $ (|[\|\|]| (-979))) 103 T ELT) (((-83) $ (|[\|\|]| (-997))) 107 T ELT) (((-83) $ (|[\|\|]| (-1002))) 111 T ELT) (((-83) $ (|[\|\|]| (-562))) 116 T ELT) (((-83) $ (|[\|\|]| (-1072))) 120 T ELT) (((-83) $ (|[\|\|]| (-127))) 124 T ELT) (((-83) $ (|[\|\|]| (-108))) 128 T ELT) (((-83) $ (|[\|\|]| (-413))) 132 T ELT) (((-83) $ (|[\|\|]| (-524))) 136 T ELT) (((-83) $ (|[\|\|]| (-441))) 140 T ELT) (((-83) $ (|[\|\|]| (-1064))) 144 T ELT) (((-83) $ (|[\|\|]| (-480))) 148 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3555 (((-458) $) 20 T ELT) (((-170) $) 24 T ELT) (((-614) $) 28 T ELT) (((-1181) $) 32 T ELT) (((-109) $) 36 T ELT) (((-536) $) 40 T ELT) (((-104) $) 44 T ELT) (((-1021) $) 48 T ELT) (((-67) $) 52 T ELT) (((-619) $) 56 T ELT) (((-452) $) 60 T ELT) (((-972) $) 64 T ELT) (((-1182) $) 68 T ELT) (((-459) $) 72 T ELT) (((-1058) $) 76 T ELT) (((-125) $) 80 T ELT) (((-610) $) 84 T ELT) (((-260) $) 88 T ELT) (((-943) $) 92 T ELT) (((-152) $) 96 T ELT) (((-878) $) 100 T ELT) (((-979) $) 104 T ELT) (((-997) $) 108 T ELT) (((-1002) $) 112 T ELT) (((-562) $) 117 T ELT) (((-1072) $) 121 T ELT) (((-127) $) 125 T ELT) (((-108) $) 129 T ELT) (((-413) $) 133 T ELT) (((-524) $) 137 T ELT) (((-441) $) 141 T ELT) (((-1064) $) 145 T ELT) (((-480) $) 149 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1040) (-1042)) (T -1040)) -NIL -((-3362 (((-580 (-1086)) (-1064)) 9 T ELT))) -(((-1041) (-10 -7 (-15 -3362 ((-580 (-1086)) (-1064))))) (T -1041)) -((-3362 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-1086))) (-5 *1 (-1041))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-1086)) 20 T ELT) (((-1086) $) 19 T ELT)) (-3549 (((-83) $ (|[\|\|]| (-458))) 88 T ELT) (((-83) $ (|[\|\|]| (-170))) 86 T ELT) (((-83) $ (|[\|\|]| (-614))) 84 T ELT) (((-83) $ (|[\|\|]| (-1181))) 82 T ELT) (((-83) $ (|[\|\|]| (-109))) 80 T ELT) (((-83) $ (|[\|\|]| (-536))) 78 T ELT) (((-83) $ (|[\|\|]| (-104))) 76 T ELT) (((-83) $ (|[\|\|]| (-1021))) 74 T ELT) (((-83) $ (|[\|\|]| (-67))) 72 T ELT) (((-83) $ (|[\|\|]| (-619))) 70 T ELT) (((-83) $ (|[\|\|]| (-452))) 68 T ELT) (((-83) $ (|[\|\|]| (-972))) 66 T ELT) (((-83) $ (|[\|\|]| (-1182))) 64 T ELT) (((-83) $ (|[\|\|]| (-459))) 62 T ELT) (((-83) $ (|[\|\|]| (-1058))) 60 T ELT) (((-83) $ (|[\|\|]| (-125))) 58 T ELT) (((-83) $ (|[\|\|]| (-610))) 56 T ELT) (((-83) $ (|[\|\|]| (-260))) 54 T ELT) (((-83) $ (|[\|\|]| (-943))) 52 T ELT) (((-83) $ (|[\|\|]| (-152))) 50 T ELT) (((-83) $ (|[\|\|]| (-878))) 48 T ELT) (((-83) $ (|[\|\|]| (-979))) 46 T ELT) (((-83) $ (|[\|\|]| (-997))) 44 T ELT) (((-83) $ (|[\|\|]| (-1002))) 42 T ELT) (((-83) $ (|[\|\|]| (-562))) 40 T ELT) (((-83) $ (|[\|\|]| (-1072))) 38 T ELT) (((-83) $ (|[\|\|]| (-127))) 36 T ELT) (((-83) $ (|[\|\|]| (-108))) 34 T ELT) (((-83) $ (|[\|\|]| (-413))) 32 T ELT) (((-83) $ (|[\|\|]| (-524))) 30 T ELT) (((-83) $ (|[\|\|]| (-441))) 28 T ELT) (((-83) $ (|[\|\|]| (-1064))) 26 T ELT) (((-83) $ (|[\|\|]| (-480))) 24 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3555 (((-458) $) 87 T ELT) (((-170) $) 85 T ELT) (((-614) $) 83 T ELT) (((-1181) $) 81 T ELT) (((-109) $) 79 T ELT) (((-536) $) 77 T ELT) (((-104) $) 75 T ELT) (((-1021) $) 73 T ELT) (((-67) $) 71 T ELT) (((-619) $) 69 T ELT) (((-452) $) 67 T ELT) (((-972) $) 65 T ELT) (((-1182) $) 63 T ELT) (((-459) $) 61 T ELT) (((-1058) $) 59 T ELT) (((-125) $) 57 T ELT) (((-610) $) 55 T ELT) (((-260) $) 53 T ELT) (((-943) $) 51 T ELT) (((-152) $) 49 T ELT) (((-878) $) 47 T ELT) (((-979) $) 45 T ELT) (((-997) $) 43 T ELT) (((-1002) $) 41 T ELT) (((-562) $) 39 T ELT) (((-1072) $) 37 T ELT) (((-127) $) 35 T ELT) (((-108) $) 33 T ELT) (((-413) $) 31 T ELT) (((-524) $) 29 T ELT) (((-441) $) 27 T ELT) (((-1064) $) 25 T ELT) (((-480) $) 23 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-1042) (-111)) (T -1042)) -((-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-458)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-170)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-614)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1181)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-109)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-536)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-104)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1021)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-67)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-619)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-452))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-452)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-972)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1182)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-459)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1058)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-125)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-610)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-260))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-260)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-943))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-943)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-152)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-878))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-878)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-979)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-997))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-997)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1002)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-562)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1072)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-127)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-108)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-413))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-413)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-524)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-441)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1064)))) (-3549 (*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-83)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-480))))) -(-13 (-989) (-1166) (-10 -8 (-15 -3549 ((-83) $ (|[\|\|]| (-458)))) (-15 -3555 ((-458) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-170)))) (-15 -3555 ((-170) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-614)))) (-15 -3555 ((-614) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1181)))) (-15 -3555 ((-1181) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-109)))) (-15 -3555 ((-109) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-536)))) (-15 -3555 ((-536) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-104)))) (-15 -3555 ((-104) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1021)))) (-15 -3555 ((-1021) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-67)))) (-15 -3555 ((-67) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-619)))) (-15 -3555 ((-619) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-452)))) (-15 -3555 ((-452) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-972)))) (-15 -3555 ((-972) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1182)))) (-15 -3555 ((-1182) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-459)))) (-15 -3555 ((-459) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1058)))) (-15 -3555 ((-1058) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-125)))) (-15 -3555 ((-125) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-610)))) (-15 -3555 ((-610) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-260)))) (-15 -3555 ((-260) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-943)))) (-15 -3555 ((-943) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-152)))) (-15 -3555 ((-152) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-878)))) (-15 -3555 ((-878) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-979)))) (-15 -3555 ((-979) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-997)))) (-15 -3555 ((-997) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1002)))) (-15 -3555 ((-1002) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-562)))) (-15 -3555 ((-562) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1072)))) (-15 -3555 ((-1072) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-127)))) (-15 -3555 ((-127) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-108)))) (-15 -3555 ((-108) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-413)))) (-15 -3555 ((-413) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-524)))) (-15 -3555 ((-524) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-441)))) (-15 -3555 ((-441) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-1064)))) (-15 -3555 ((-1064) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-480)))) (-15 -3555 ((-480) $)))) -(((-64) . T) ((-72) . T) ((-552 (-1086)) . T) ((-549 (-767)) . T) ((-549 (-1086)) . T) ((-425 (-1086)) . T) ((-13) . T) ((-1007) . T) ((-989) . T) ((-1120) . T) ((-1166) . T)) -((-3365 (((-1176) (-580 (-767))) 22 T ELT) (((-1176) (-767)) 21 T ELT)) (-3364 (((-1176) (-580 (-767))) 20 T ELT) (((-1176) (-767)) 19 T ELT)) (-3363 (((-1176) (-580 (-767))) 18 T ELT) (((-1176) (-767)) 10 T ELT) (((-1176) (-1064) (-767)) 16 T ELT))) -(((-1043) (-10 -7 (-15 -3363 ((-1176) (-1064) (-767))) (-15 -3363 ((-1176) (-767))) (-15 -3364 ((-1176) (-767))) (-15 -3365 ((-1176) (-767))) (-15 -3363 ((-1176) (-580 (-767)))) (-15 -3364 ((-1176) (-580 (-767)))) (-15 -3365 ((-1176) (-580 (-767)))))) (T -1043)) -((-3365 (*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-1064)) (-5 *4 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043))))) -((-3369 (($ $ $) 10 T ELT)) (-3368 (($ $) 9 T ELT)) (-3372 (($ $ $) 13 T ELT)) (-3374 (($ $ $) 15 T ELT)) (-3371 (($ $ $) 12 T ELT)) (-3373 (($ $ $) 14 T ELT)) (-3376 (($ $) 17 T ELT)) (-3375 (($ $) 16 T ELT)) (-3366 (($ $) 6 T ELT)) (-3370 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3367 (($ $ $) 8 T ELT))) -(((-1044) (-111)) (T -1044)) -((-3376 (*1 *1 *1) (-4 *1 (-1044))) (-3375 (*1 *1 *1) (-4 *1 (-1044))) (-3374 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3373 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3372 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3371 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3370 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3369 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3368 (*1 *1 *1) (-4 *1 (-1044))) (-3367 (*1 *1 *1 *1) (-4 *1 (-1044))) (-3370 (*1 *1 *1) (-4 *1 (-1044))) (-3366 (*1 *1 *1) (-4 *1 (-1044)))) -(-13 (-10 -8 (-15 -3366 ($ $)) (-15 -3370 ($ $)) (-15 -3367 ($ $ $)) (-15 -3368 ($ $)) (-15 -3369 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3371 ($ $ $)) (-15 -3372 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3374 ($ $ $)) (-15 -3375 ($ $)) (-15 -3376 ($ $)))) -((-2554 (((-83) $ $) 44 T ELT)) (-3385 ((|#1| $) 17 T ELT)) (-3377 (((-83) $ $ (-1 (-83) |#2| |#2|)) 39 T ELT)) (-3384 (((-83) $) 19 T ELT)) (-3382 (($ $ |#1|) 30 T ELT)) (-3380 (($ $ (-83)) 32 T ELT)) (-3379 (($ $) 33 T ELT)) (-3381 (($ $ |#2|) 31 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3378 (((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|)) 38 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3386 (((-83) $) 16 T ELT)) (-3548 (($) 13 T ELT)) (-3383 (($ $) 29 T ELT)) (-3513 (($ |#1| |#2| (-83)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1589 |#2|))) 23 T ELT) (((-580 $) (-580 (-2 (|:| |val| |#1|) (|:| -1589 |#2|)))) 26 T ELT) (((-580 $) |#1| (-580 |#2|)) 28 T ELT)) (-3905 ((|#2| $) 18 T ELT)) (-3929 (((-767) $) 53 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 42 T ELT))) -(((-1045 |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -3548 ($)) (-15 -3386 ((-83) $)) (-15 -3385 (|#1| $)) (-15 -3905 (|#2| $)) (-15 -3384 ((-83) $)) (-15 -3513 ($ |#1| |#2| (-83))) (-15 -3513 ($ |#1| |#2|)) (-15 -3513 ($ (-2 (|:| |val| |#1|) (|:| -1589 |#2|)))) (-15 -3513 ((-580 $) (-580 (-2 (|:| |val| |#1|) (|:| -1589 |#2|))))) (-15 -3513 ((-580 $) |#1| (-580 |#2|))) (-15 -3383 ($ $)) (-15 -3382 ($ $ |#1|)) (-15 -3381 ($ $ |#2|)) (-15 -3380 ($ $ (-83))) (-15 -3379 ($ $)) (-15 -3378 ((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|))) (-15 -3377 ((-83) $ $ (-1 (-83) |#2| |#2|))))) (-13 (-1007) (-34)) (-13 (-1007) (-34))) (T -1045)) -((-3548 (*1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))))) (-3385 (*1 *2 *1) (-12 (-4 *2 (-13 (-1007) (-34))) (-5 *1 (-1045 *2 *3)) (-4 *3 (-13 (-1007) (-34))))) (-3905 (*1 *2 *1) (-12 (-4 *2 (-13 (-1007) (-34))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-13 (-1007) (-34))))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))))) (-3513 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3513 (*1 *1 *2 *3) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1589 *4))) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1045 *3 *4)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-580 (-2 (|:| |val| *4) (|:| -1589 *5)))) (-4 *4 (-13 (-1007) (-34))) (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-580 (-1045 *4 *5))) (-5 *1 (-1045 *4 *5)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-580 *5)) (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-580 (-1045 *3 *5))) (-5 *1 (-1045 *3 *5)) (-4 *3 (-13 (-1007) (-34))))) (-3383 (*1 *1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3382 (*1 *1 *1 *2) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3381 (*1 *1 *1 *2) (-12 (-5 *1 (-1045 *3 *2)) (-4 *3 (-13 (-1007) (-34))) (-4 *2 (-13 (-1007) (-34))))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))))) (-3379 (*1 *1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3378 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1007) (-34))) (-4 *6 (-13 (-1007) (-34))) (-5 *2 (-83)) (-5 *1 (-1045 *5 *6)))) (-3377 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-83)) (-5 *1 (-1045 *4 *5)) (-4 *4 (-13 (-1007) (-34)))))) -((-2554 (((-83) $ $) NIL (|has| (-1045 |#1| |#2|) (-72)) ELT)) (-3385 (((-1045 |#1| |#2|) $) 27 T ELT)) (-3394 (($ $) 91 T ELT)) (-3390 (((-83) (-1045 |#1| |#2|) $ (-1 (-83) |#2| |#2|)) 100 T ELT)) (-3387 (($ $ $ (-580 (-1045 |#1| |#2|))) 108 T ELT) (($ $ $ (-580 (-1045 |#1| |#2|)) (-1 (-83) |#2| |#2|)) 109 T ELT)) (-3011 (((-1045 |#1| |#2|) $ (-1045 |#1| |#2|)) 46 (|has| $ (-6 -3979)) ELT)) (-3771 (((-1045 |#1| |#2|) $ #1="value" (-1045 |#1| |#2|)) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 44 (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-3392 (((-580 (-2 (|:| |val| |#1|) (|:| -1589 |#2|))) $) 95 T ELT)) (-3388 (($ (-1045 |#1| |#2|) $) 42 T ELT)) (-3389 (($ (-1045 |#1| |#2|) $) 34 T ELT)) (-2875 (((-580 (-1045 |#1| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3391 (((-83) (-1045 |#1| |#2|) $) 97 T ELT)) (-3013 (((-83) $ $) NIL (|has| (-1045 |#1| |#2|) (-1007)) ELT)) (-2594 (((-580 (-1045 |#1| |#2|)) $) 58 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-1045 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-1045 |#1| |#2|) (-1007))) ELT)) (-1938 (($ (-1 (-1045 |#1| |#2|) (-1045 |#1| |#2|)) $) 50 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-1045 |#1| |#2|) (-1045 |#1| |#2|)) $) 49 T ELT)) (-3016 (((-580 (-1045 |#1| |#2|)) $) 56 T ELT)) (-3510 (((-83) $) 45 T ELT)) (-3227 (((-1064) $) NIL (|has| (-1045 |#1| |#2|) (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| (-1045 |#1| |#2|) (-1007)) ELT)) (-3395 (((-3 $ "failed") $) 89 T ELT)) (-1936 (((-83) (-1 (-83) (-1045 |#1| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-1045 |#1| |#2|)))) NIL (-12 (|has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|))) (|has| (-1045 |#1| |#2|) (-1007))) ELT) (($ $ (-246 (-1045 |#1| |#2|))) NIL (-12 (|has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|))) (|has| (-1045 |#1| |#2|) (-1007))) ELT) (($ $ (-1045 |#1| |#2|) (-1045 |#1| |#2|)) NIL (-12 (|has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|))) (|has| (-1045 |#1| |#2|) (-1007))) ELT) (($ $ (-580 (-1045 |#1| |#2|)) (-580 (-1045 |#1| |#2|))) NIL (-12 (|has| (-1045 |#1| |#2|) (-257 (-1045 |#1| |#2|))) (|has| (-1045 |#1| |#2|) (-1007))) ELT)) (-1212 (((-83) $ $) 53 T ELT)) (-3386 (((-83) $) 24 T ELT)) (-3548 (($) 26 T ELT)) (-3783 (((-1045 |#1| |#2|) $ #1#) NIL T ELT)) (-3015 (((-480) $ $) NIL T ELT)) (-3616 (((-83) $) 47 T ELT)) (-1935 (((-689) (-1 (-83) (-1045 |#1| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-1045 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-1045 |#1| |#2|) (-1007))) ELT)) (-3383 (($ $) 52 T ELT)) (-3513 (($ (-1045 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-580 $)) 13 T ELT) (($ |#1| |#2| (-580 (-1045 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-580 |#2|)) 18 T ELT)) (-3393 (((-580 |#2|) $) 96 T ELT)) (-3929 (((-767) $) 87 (|has| (-1045 |#1| |#2|) (-549 (-767))) ELT)) (-3505 (((-580 $) $) 31 T ELT)) (-3014 (((-83) $ $) NIL (|has| (-1045 |#1| |#2|) (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| (-1045 |#1| |#2|) (-72)) ELT)) (-1937 (((-83) (-1 (-83) (-1045 |#1| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 70 (|has| (-1045 |#1| |#2|) (-72)) ELT)) (-3940 (((-689) $) 64 (|has| $ (-6 -3978)) ELT))) -(((-1046 |#1| |#2|) (-13 (-918 (-1045 |#1| |#2|)) (-10 -8 (-6 -3979) (-6 -3978) (-15 -3395 ((-3 $ "failed") $)) (-15 -3394 ($ $)) (-15 -3513 ($ (-1045 |#1| |#2|))) (-15 -3513 ($ |#1| |#2| (-580 $))) (-15 -3513 ($ |#1| |#2| (-580 (-1045 |#1| |#2|)))) (-15 -3513 ($ |#1| |#2| |#1| (-580 |#2|))) (-15 -3393 ((-580 |#2|) $)) (-15 -3392 ((-580 (-2 (|:| |val| |#1|) (|:| -1589 |#2|))) $)) (-15 -3391 ((-83) (-1045 |#1| |#2|) $)) (-15 -3390 ((-83) (-1045 |#1| |#2|) $ (-1 (-83) |#2| |#2|))) (-15 -3389 ($ (-1045 |#1| |#2|) $)) (-15 -3388 ($ (-1045 |#1| |#2|) $)) (-15 -3387 ($ $ $ (-580 (-1045 |#1| |#2|)))) (-15 -3387 ($ $ $ (-580 (-1045 |#1| |#2|)) (-1 (-83) |#2| |#2|))))) (-13 (-1007) (-34)) (-13 (-1007) (-34))) (T -1046)) -((-3395 (*1 *1 *1) (|partial| -12 (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4)))) (-3513 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-580 (-1046 *2 *3))) (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) (-3513 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-580 (-1045 *2 *3))) (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))) (-5 *1 (-1046 *2 *3)))) (-3513 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-580 *3)) (-4 *3 (-13 (-1007) (-34))) (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-580 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1046 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))))) (-3391 (*1 *2 *3 *1) (-12 (-5 *3 (-1045 *4 *5)) (-4 *4 (-13 (-1007) (-34))) (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-83)) (-5 *1 (-1046 *4 *5)))) (-3390 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1045 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1007) (-34))) (-4 *6 (-13 (-1007) (-34))) (-5 *2 (-83)) (-5 *1 (-1046 *5 *6)))) (-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4)))) (-3387 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-580 (-1045 *3 *4))) (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4)))) (-3387 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1045 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) (-4 *4 (-13 (-1007) (-34))) (-4 *5 (-13 (-1007) (-34))) (-5 *1 (-1046 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3313 ((|#2| $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3396 (($ (-627 |#2|)) 55 T ELT)) (-3108 (((-83) $) NIL T ELT)) (-3316 (($ |#2|) 14 T ELT)) (-3707 (($) NIL T CONST)) (-3095 (($ $) 68 (|has| |#2| (-255)) ELT)) (-3097 (((-195 |#1| |#2|) $ (-480)) 42 T ELT)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) ((|#2| $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) 82 T ELT)) (-3094 (((-689) $) 70 (|has| |#2| (-491)) ELT)) (-3098 ((|#2| $ (-480) (-480)) NIL T ELT)) (-2875 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-3093 (((-689) $) 72 (|has| |#2| (-491)) ELT)) (-3092 (((-580 (-195 |#1| |#2|)) $) 76 (|has| |#2| (-491)) ELT)) (-3100 (((-689) $) NIL T ELT)) (-3597 (($ |#2|) 25 T ELT)) (-3099 (((-689) $) NIL T ELT)) (-3310 ((|#2| $) 66 (|has| |#2| (-6 (-3980 #2="*"))) ELT)) (-3104 (((-480) $) NIL T ELT)) (-3102 (((-480) $) NIL T ELT)) (-2594 (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3103 (((-480) $) NIL T ELT)) (-3101 (((-480) $) NIL T ELT)) (-3109 (($ (-580 (-580 |#2|))) 37 T ELT)) (-1938 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3577 (((-580 (-580 |#2|)) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3573 (((-3 $ #1#) $) 79 (|has| |#2| (-309)) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ (-480) (-480) |#2|) NIL T ELT) ((|#2| $ (-480) (-480)) NIL T ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3315 (($ (-580 |#2|)) 50 T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3314 (((-195 |#1| |#2|) $) NIL T ELT)) (-3311 ((|#2| $) 64 (|has| |#2| (-6 (-3980 #2#))) ELT)) (-1935 (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) 89 (|has| |#2| (-550 (-469))) ELT)) (-3096 (((-195 |#1| |#2|) $ (-480)) 44 T ELT)) (-3929 (((-767) $) 47 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (($ |#2|) NIL T ELT) (((-627 |#2|) $) 52 T ELT)) (-3111 (((-689)) 23 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-2646 (($) 16 T CONST)) (-2652 (($) 21 T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-689)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 62 T ELT) (($ $ (-480)) 81 (|has| |#2| (-309)) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-195 |#1| |#2|) $ (-195 |#1| |#2|)) 58 T ELT) (((-195 |#1| |#2|) (-195 |#1| |#2|) $) 60 T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1047 |#1| |#2|) (-13 (-1028 |#1| |#2| (-195 |#1| |#2|) (-195 |#1| |#2|)) (-549 (-627 |#2|)) (-10 -8 (-15 -3597 ($ |#2|)) (-15 -3397 ($ $)) (-15 -3396 ($ (-627 |#2|))) (IF (|has| |#2| (-6 (-3980 #1="*"))) (-6 -3967) |%noBranch|) (IF (|has| |#2| (-6 (-3980 #1#))) (IF (|has| |#2| (-6 -3975)) (-6 -3975) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-550 (-469))) (-6 (-550 (-469))) |%noBranch|))) (-689) (-956)) (T -1047)) -((-3597 (*1 *1 *2) (-12 (-5 *1 (-1047 *3 *2)) (-14 *3 (-689)) (-4 *2 (-956)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-1047 *2 *3)) (-14 *2 (-689)) (-4 *3 (-956)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-627 *4)) (-4 *4 (-956)) (-5 *1 (-1047 *3 *4)) (-14 *3 (-689))))) -((-3410 (($ $) 19 T ELT)) (-3400 (($ $ (-115)) 10 T ELT) (($ $ (-112)) 14 T ELT)) (-3408 (((-83) $ $) 24 T ELT)) (-3412 (($ $) 17 T ELT)) (-3783 (((-115) $ (-480) (-115)) NIL T ELT) (((-115) $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT) (($ $ $) 31 T ELT)) (-3929 (($ (-115)) 29 T ELT) (((-767) $) NIL T ELT))) -(((-1048 |#1|) (-10 -7 (-15 -3929 ((-767) |#1|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#1| (-112))) (-15 -3400 (|#1| |#1| (-115))) (-15 -3929 (|#1| (-115))) (-15 -3408 ((-83) |#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3783 (|#1| |#1| (-1137 (-480)))) (-15 -3783 ((-115) |#1| (-480))) (-15 -3783 ((-115) |#1| (-480) (-115)))) (-1049)) (T -1048)) -NIL -((-2554 (((-83) $ $) 19 (|has| (-115) (-72)) ELT)) (-3409 (($ $) 129 T ELT)) (-3410 (($ $) 130 T ELT)) (-3400 (($ $ (-115)) 117 T ELT) (($ $ (-112)) 116 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-3407 (((-83) $ $) 127 T ELT)) (-3406 (((-83) $ $ (-480)) 126 T ELT)) (-3401 (((-580 $) $ (-115)) 119 T ELT) (((-580 $) $ (-112)) 118 T ELT)) (-1721 (((-83) (-1 (-83) (-115) (-115)) $) 107 T ELT) (((-83) $) 101 (|has| (-115) (-751)) ELT)) (-1719 (($ (-1 (-83) (-115) (-115)) $) 98 (|has| $ (-6 -3979)) ELT) (($ $) 97 (-12 (|has| (-115) (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) (-115) (-115)) $) 108 T ELT) (($ $) 102 (|has| (-115) (-751)) ELT)) (-3771 (((-115) $ (-480) (-115)) 56 (|has| $ (-6 -3979)) ELT) (((-115) $ (-1137 (-480)) (-115)) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) (-115)) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-3398 (($ $ (-115)) 113 T ELT) (($ $ (-112)) 112 T ELT)) (-2285 (($ $) 99 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 109 T ELT)) (-3403 (($ $ (-1137 (-480)) $) 123 T ELT)) (-1342 (($ $) 84 (-12 (|has| (-115) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ (-115) $) 83 (-12 (|has| (-115) (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-115)) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) 82 (-12 (|has| (-115) (-1007)) (|has| $ (-6 -3978))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) 79 (|has| $ (-6 -3978)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 (((-115) $ (-480) (-115)) 57 (|has| $ (-6 -3979)) ELT)) (-3098 (((-115) $ (-480)) 55 T ELT)) (-3408 (((-83) $ $) 128 T ELT)) (-3402 (((-480) (-1 (-83) (-115)) $) 106 T ELT) (((-480) (-115) $) 105 (|has| (-115) (-1007)) ELT) (((-480) (-115) $ (-480)) 104 (|has| (-115) (-1007)) ELT) (((-480) $ $ (-480)) 122 T ELT) (((-480) (-112) $ (-480)) 121 T ELT)) (-2875 (((-580 (-115)) $) 30 (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) (-115)) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 91 (|has| (-115) (-751)) ELT)) (-3501 (($ (-1 (-83) (-115) (-115)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-115) (-751)) ELT)) (-2594 (((-580 (-115)) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-115) $) 27 (-12 (|has| (-115) (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 92 (|has| (-115) (-751)) ELT)) (-3404 (((-83) $ $ (-115)) 124 T ELT)) (-3405 (((-689) $ $ (-115)) 125 T ELT)) (-1938 (($ (-1 (-115) (-115)) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-115) (-115)) $) 35 T ELT) (($ (-1 (-115) (-115) (-115)) $ $) 69 T ELT)) (-3411 (($ $) 131 T ELT)) (-3412 (($ $) 132 T ELT)) (-3399 (($ $ (-115)) 115 T ELT) (($ $ (-112)) 114 T ELT)) (-3227 (((-1064) $) 22 (|has| (-115) (-1007)) ELT)) (-2292 (($ (-115) $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| (-115) (-1007)) ELT)) (-3784 (((-115) $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-115) "failed") (-1 (-83) (-115)) $) 77 T ELT)) (-2187 (($ $ (-115)) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-115)))) 26 (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-246 (-115))) 25 (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-115) (-115)) 24 (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-580 (-115)) (-580 (-115))) 23 (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) (-115) $) 49 (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-2193 (((-580 (-115)) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 (((-115) $ (-480) (-115)) 54 T ELT) (((-115) $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT) (($ $ $) 111 T ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-1935 (((-689) (-1 (-83) (-115)) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) (-115) $) 28 (-12 (|has| (-115) (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 100 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| (-115) (-550 (-469))) ELT)) (-3513 (($ (-580 (-115))) 76 T ELT)) (-3785 (($ $ (-115)) 73 T ELT) (($ (-115) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (($ (-115)) 120 T ELT) (((-767) $) 17 (|has| (-115) (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| (-115) (-72)) ELT)) (-1937 (((-83) (-1 (-83) (-115)) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 93 (|has| (-115) (-751)) ELT)) (-2553 (((-83) $ $) 95 (|has| (-115) (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| (-115) (-72)) ELT)) (-2670 (((-83) $ $) 94 (|has| (-115) (-751)) ELT)) (-2671 (((-83) $ $) 96 (|has| (-115) (-751)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1049) (-111)) (T -1049)) -((-3412 (*1 *1 *1) (-4 *1 (-1049))) (-3411 (*1 *1 *1) (-4 *1 (-1049))) (-3410 (*1 *1 *1) (-4 *1 (-1049))) (-3409 (*1 *1 *1) (-4 *1 (-1049))) (-3408 (*1 *2 *1 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-83)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-83)))) (-3406 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-480)) (-5 *2 (-83)))) (-3405 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-115)) (-5 *2 (-689)))) (-3404 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-115)) (-5 *2 (-83)))) (-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1137 (-480))))) (-3402 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-480)))) (-3402 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-480)) (-5 *3 (-112)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1049)))) (-3401 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-580 *1)) (-4 *1 (-1049)))) (-3401 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-580 *1)) (-4 *1 (-1049)))) (-3400 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115)))) (-3400 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) (-3783 (*1 *1 *1 *1) (-4 *1 (-1049)))) -(-13 (-19 (-115)) (-10 -8 (-15 -3412 ($ $)) (-15 -3411 ($ $)) (-15 -3410 ($ $)) (-15 -3409 ($ $)) (-15 -3408 ((-83) $ $)) (-15 -3407 ((-83) $ $)) (-15 -3406 ((-83) $ $ (-480))) (-15 -3405 ((-689) $ $ (-115))) (-15 -3404 ((-83) $ $ (-115))) (-15 -3403 ($ $ (-1137 (-480)) $)) (-15 -3402 ((-480) $ $ (-480))) (-15 -3402 ((-480) (-112) $ (-480))) (-15 -3929 ($ (-115))) (-15 -3401 ((-580 $) $ (-115))) (-15 -3401 ((-580 $) $ (-112))) (-15 -3400 ($ $ (-115))) (-15 -3400 ($ $ (-112))) (-15 -3399 ($ $ (-115))) (-15 -3399 ($ $ (-112))) (-15 -3398 ($ $ (-115))) (-15 -3398 ($ $ (-112))) (-15 -3783 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-115) (-1007)) (|has| (-115) (-751)) (|has| (-115) (-72))) ((-549 (-767)) OR (|has| (-115) (-1007)) (|has| (-115) (-751)) (|has| (-115) (-549 (-767)))) ((-122 (-115)) . T) ((-550 (-469)) |has| (-115) (-550 (-469))) ((-239 (-480) (-115)) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) (-115)) . T) ((-257 (-115)) -12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ((-319 (-115)) . T) ((-424 (-115)) . T) ((-535 (-480) (-115)) . T) ((-449 (-115) (-115)) -12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ((-13) . T) ((-590 (-115)) . T) ((-19 (-115)) . T) ((-751) |has| (-115) (-751)) ((-754) |has| (-115) (-751)) ((-1007) OR (|has| (-115) (-1007)) (|has| (-115) (-751))) ((-1120) . T)) -((-3419 (((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 |#4|) (-580 |#5|) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-689)) 112 T ELT)) (-3416 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689)) 61 T ELT)) (-3420 (((-1176) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-689)) 97 T ELT)) (-3414 (((-689) (-580 |#4|) (-580 |#5|)) 30 T ELT)) (-3417 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689)) 63 T ELT) (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689) (-83)) 65 T ELT)) (-3418 (((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83) (-83) (-83) (-83)) 84 T ELT) (((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83)) 85 T ELT)) (-3955 (((-1064) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) 90 T ELT)) (-3415 (((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|) 60 T ELT)) (-3413 (((-689) (-580 |#4|) (-580 |#5|)) 21 T ELT))) -(((-1050 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3413 ((-689) (-580 |#4|) (-580 |#5|))) (-15 -3414 ((-689) (-580 |#4|) (-580 |#5|))) (-15 -3415 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|)) (-15 -3416 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689))) (-15 -3416 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|)) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689) (-83))) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5| (-689))) (-15 -3417 ((-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) |#4| |#5|)) (-15 -3418 ((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83))) (-15 -3418 ((-580 |#5|) (-580 |#4|) (-580 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3419 ((-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-580 |#4|) (-580 |#5|) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-2 (|:| |done| (-580 |#5|)) (|:| |todo| (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))))) (-689))) (-15 -3955 ((-1064) (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|)))) (-15 -3420 ((-1176) (-580 (-2 (|:| |val| (-580 |#4|)) (|:| -1589 |#5|))) (-689)))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|) (-1014 |#1| |#2| |#3| |#4|)) (T -1050)) -((-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *4 (-689)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-1176)) (-5 *1 (-1050 *5 *6 *7 *8 *9)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-1014 *4 *5 *6 *7)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1064)) (-5 *1 (-1050 *4 *5 *6 *7 *8)))) (-3419 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-580 *11)) (|:| |todo| (-580 (-2 (|:| |val| *3) (|:| -1589 *11)))))) (-5 *6 (-689)) (-5 *2 (-580 (-2 (|:| |val| (-580 *10)) (|:| -1589 *11)))) (-5 *3 (-580 *10)) (-5 *4 (-580 *11)) (-4 *10 (-971 *7 *8 *9)) (-4 *11 (-1014 *7 *8 *9 *10)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) (-5 *1 (-1050 *7 *8 *9 *10 *11)))) (-3418 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1050 *5 *6 *7 *8 *9)))) (-3418 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1050 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) (-3417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-689)) (-5 *6 (-83)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) (-4 *3 (-971 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *7 *8 *9 *3 *4)) (-4 *4 (-1014 *7 *8 *9 *3)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-580 *4)) (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-689)) (-5 *1 (-1050 *5 *6 *7 *8 *9)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-689)) (-5 *1 (-1050 *5 *6 *7 *8 *9))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) NIL T ELT)) (-3665 (((-580 $) (-580 |#4|)) 118 T ELT) (((-580 $) (-580 |#4|) (-83)) 119 T ELT) (((-580 $) (-580 |#4|) (-83) (-83)) 117 T ELT) (((-580 $) (-580 |#4|) (-83) (-83) (-83) (-83)) 120 T ELT)) (-3067 (((-580 |#3|) $) NIL T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3758 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| $) 91 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3693 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1#) (-580 |#4|)) NIL T ELT)) (-3141 (($ (-580 |#4|)) NIL T ELT)) (-3782 (((-3 $ #1#) $) 45 T ELT)) (-3668 ((|#4| |#4| $) 73 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3389 (($ |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 ((|#4| |#4| $) NIL T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) NIL T ELT)) (-3182 (((-83) |#4| $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3183 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3421 (((-2 (|:| |val| (-580 |#4|)) (|:| |towers| (-580 $))) (-580 |#4|) (-83) (-83)) 133 T ELT)) (-2875 (((-580 |#4|) $) 18 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 19 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2900 (((-580 |#3|) $) NIL T ELT)) (-2899 (((-83) |#3| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3176 (((-3 |#4| (-580 $)) |#4| |#4| $) NIL T ELT)) (-3175 (((-580 (-2 (|:| |val| |#4|) (|:| -1589 $))) |#4| |#4| $) 111 T ELT)) (-3781 (((-3 |#4| #1#) $) 42 T ELT)) (-3177 (((-580 $) |#4| $) 96 T ELT)) (-3179 (((-3 (-83) (-580 $)) |#4| $) NIL T ELT)) (-3178 (((-580 (-2 (|:| |val| (-83)) (|:| -1589 $))) |#4| $) 106 T ELT) (((-83) |#4| $) 62 T ELT)) (-3223 (((-580 $) |#4| $) 115 T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) 116 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT)) (-3422 (((-580 $) (-580 |#4|) (-83) (-83) (-83)) 128 T ELT)) (-3423 (($ |#4| $) 82 T ELT) (($ (-580 |#4|) $) 83 T ELT) (((-580 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 81 T ELT)) (-3680 (((-580 |#4|) $) NIL T ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3682 (((-83) $ $) NIL T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-3 |#4| #1#) $) 40 T ELT)) (-1343 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3662 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3752 (($ $ |#4|) NIL T ELT) (((-580 $) |#4| $) 98 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) 93 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 17 T ELT)) (-3548 (($) 14 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-1935 (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 13 T ELT)) (-3955 (((-469) $) NIL (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 22 T ELT)) (-2896 (($ $ |#3|) 49 T ELT)) (-2898 (($ $ |#3|) 51 T ELT)) (-3667 (($ $) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3929 (((-767) $) 35 T ELT) (((-580 |#4|) $) 46 T ELT)) (-3661 (((-689) $) NIL (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) NIL T ELT)) (-3174 (((-580 $) |#4| $) 63 T ELT) (((-580 $) |#4| (-580 $)) NIL T ELT) (((-580 $) (-580 |#4|) $) NIL T ELT) (((-580 $) (-580 |#4|) (-580 $)) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT)) (-3916 (((-83) |#3| $) 69 T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1051 |#1| |#2| |#3| |#4|) (-13 (-1014 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3423 ((-580 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3665 ((-580 $) (-580 |#4|) (-83) (-83))) (-15 -3665 ((-580 $) (-580 |#4|) (-83) (-83) (-83) (-83))) (-15 -3422 ((-580 $) (-580 |#4|) (-83) (-83) (-83))) (-15 -3421 ((-2 (|:| |val| (-580 |#4|)) (|:| |towers| (-580 $))) (-580 |#4|) (-83) (-83))))) (-387) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -1051)) -((-3423 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *3))) (-5 *1 (-1051 *5 *6 *7 *3)) (-4 *3 (-971 *5 *6 *7)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) (-5 *1 (-1051 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) (-5 *1 (-1051 *5 *6 *7 *8)))) (-3422 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) (-5 *1 (-1051 *5 *6 *7 *8)))) (-3421 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-580 *8)) (|:| |towers| (-580 (-1051 *5 *6 *7 *8))))) (-5 *1 (-1051 *5 *6 *7 *8)) (-5 *3 (-580 *8))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 31 T ELT)) (-2398 (((-83) $) 29 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 28 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-689)) 30 T ELT) (($ $ (-825)) 27 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1052) (-111)) (T -1052)) -NIL -(-13 (-23) (-660)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-660) . T) ((-1017) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3307 ((|#1| $) 38 T ELT)) (-3424 (($ (-580 |#1|)) 46 T ELT)) (-3707 (($) NIL T CONST)) (-3309 ((|#1| |#1| $) 41 T ELT)) (-3308 ((|#1| $) 36 T ELT)) (-2875 (((-580 |#1|) $) 19 (|has| $ (-6 -3978)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-1264 ((|#1| $) 39 T ELT)) (-3592 (($ |#1| $) 42 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1265 ((|#1| $) 37 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 33 T ELT)) (-3548 (($) 44 T ELT)) (-3306 (((-689) $) 31 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 28 T ELT)) (-3929 (((-767) $) 15 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-580 |#1|)) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 32 (|has| $ (-6 -3978)) ELT))) -(((-1053 |#1|) (-13 (-1026 |#1|) (-10 -8 (-15 -3424 ($ (-580 |#1|))))) (-1120)) (T -1053)) -((-3424 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1053 *3))))) -((-3771 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1137 (-480)) |#2|) 53 T ELT) ((|#2| $ (-480) |#2|) 50 T ELT)) (-3426 (((-83) $) 12 T ELT)) (-1938 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3784 ((|#2| $) NIL T ELT) (($ $ (-689)) 17 T ELT)) (-2187 (($ $ |#2|) 49 T ELT)) (-3427 (((-83) $) 11 T ELT)) (-3783 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1137 (-480))) 36 T ELT) ((|#2| $ (-480)) 25 T ELT) ((|#2| $ (-480) |#2|) NIL T ELT)) (-3774 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3785 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-580 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1054 |#1| |#2|) (-10 -7 (-15 -3426 ((-83) |#1|)) (-15 -3427 ((-83) |#1|)) (-15 -3771 (|#2| |#1| (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480) |#2|)) (-15 -3783 (|#2| |#1| (-480))) (-15 -2187 (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#1| (-1137 (-480)))) (-15 -3785 (|#1| |#1| |#2|)) (-15 -3785 (|#1| (-580 |#1|))) (-15 -3771 (|#2| |#1| (-1137 (-480)) |#2|)) (-15 -3771 (|#2| |#1| #1="last" |#2|)) (-15 -3771 (|#1| |#1| #2="rest" |#1|)) (-15 -3771 (|#2| |#1| #3="first" |#2|)) (-15 -3774 (|#1| |#1| |#2|)) (-15 -3774 (|#1| |#1| |#1|)) (-15 -3783 (|#2| |#1| #1#)) (-15 -3783 (|#1| |#1| #2#)) (-15 -3784 (|#1| |#1| (-689))) (-15 -3783 (|#2| |#1| #3#)) (-15 -3784 (|#2| |#1|)) (-15 -3785 (|#1| |#2| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3771 (|#2| |#1| #4="value" |#2|)) (-15 -3783 (|#2| |#1| #4#)) (-15 -1938 (|#1| (-1 |#2| |#2|) |#1|))) (-1055 |#2|) (-1120)) (T -1054)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3778 ((|#1| $) 71 T ELT)) (-3780 (($ $) 73 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 107 (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 58 (|has| $ (-6 -3979)) ELT)) (-3425 (((-83) $ (-689)) 90 T ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 62 (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) 60 (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 127 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) 96 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3978)) ELT)) (-3779 ((|#1| $) 72 T ELT)) (-3707 (($) 7 T CONST)) (-3782 (($ $) 79 T ELT) (($ $ (-689)) 77 T ELT)) (-1342 (($ $) 109 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3978)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1565 ((|#1| $ (-480) |#1|) 95 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 97 T ELT)) (-3426 (((-83) $) 93 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-3597 (($ (-689) |#1|) 119 T ELT)) (-3702 (((-83) $ (-689)) 91 T ELT)) (-2188 (((-480) $) 105 (|has| (-480) (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 104 (|has| (-480) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3699 (((-83) $ (-689)) 92 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) 76 T ELT) (($ $ (-689)) 74 T ELT)) (-2292 (($ $ $ (-480)) 126 T ELT) (($ |#1| $ (-480)) 125 T ELT)) (-2191 (((-580 (-480)) $) 102 T ELT)) (-2192 (((-83) (-480) $) 101 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 82 T ELT) (($ $ (-689)) 80 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2187 (($ $ |#1|) 106 (|has| $ (-6 -3979)) ELT)) (-3427 (((-83) $) 94 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 100 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1137 (-480))) 118 T ELT) ((|#1| $ (-480)) 99 T ELT) ((|#1| $ (-480) |#1|) 98 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-2293 (($ $ (-1137 (-480))) 124 T ELT) (($ $ (-480)) 123 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-3775 (($ $) 68 T ELT)) (-3773 (($ $) 65 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) 69 T ELT)) (-3777 (($ $) 70 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 108 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 117 T ELT)) (-3774 (($ $ $) 67 (|has| $ (-6 -3979)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3979)) ELT)) (-3785 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-580 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1055 |#1|) (-111) (-1120)) (T -1055)) -((-3427 (*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) (-3699 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) (-3425 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83))))) -(-13 (-1159 |t#1|) (-590 |t#1|) (-10 -8 (-15 -3427 ((-83) $)) (-15 -3426 ((-83) $)) (-15 -3699 ((-83) $ (-689))) (-15 -3702 ((-83) $ (-689))) (-15 -3425 ((-83) $ (-689))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T) ((-1159 |#1|) . T)) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) NIL T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1056 |#1| |#2| |#3|) (-1098 |#1| |#2|) (-1007) (-1007) |#2|) (T -1056)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3428 (((-629 $) $) 17 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3429 (($) 18 T CONST)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3042 (((-83) $ $) 8 T ELT))) -(((-1057) (-111)) (T -1057)) -((-3429 (*1 *1) (-4 *1 (-1057))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1057))))) -(-13 (-1007) (-10 -8 (-15 -3429 ($) -3935) (-15 -3428 ((-629 $) $)))) -(((-72) . T) ((-549 (-767)) . T) ((-13) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3431 (((-629 (-1040)) $) 28 T ELT)) (-3430 (((-1040) $) 16 T ELT)) (-3432 (((-1040) $) 18 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3433 (((-441) $) 14 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 38 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1058) (-13 (-989) (-10 -8 (-15 -3433 ((-441) $)) (-15 -3432 ((-1040) $)) (-15 -3431 ((-629 (-1040)) $)) (-15 -3430 ((-1040) $))))) (T -1058)) -((-3433 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1058)))) (-3432 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1058)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-629 (-1040))) (-5 *1 (-1058)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1058))))) -((-3436 (((-1060 |#1|) (-1060 |#1|)) 17 T ELT)) (-3434 (((-1060 |#1|) (-1060 |#1|)) 13 T ELT)) (-3437 (((-1060 |#1|) (-1060 |#1|) (-480) (-480)) 20 T ELT)) (-3435 (((-1060 |#1|) (-1060 |#1|)) 15 T ELT))) -(((-1059 |#1|) (-10 -7 (-15 -3434 ((-1060 |#1|) (-1060 |#1|))) (-15 -3435 ((-1060 |#1|) (-1060 |#1|))) (-15 -3436 ((-1060 |#1|) (-1060 |#1|))) (-15 -3437 ((-1060 |#1|) (-1060 |#1|) (-480) (-480)))) (-13 (-491) (-118))) (T -1059)) -((-3437 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-13 (-491) (-118))) (-5 *1 (-1059 *4)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) NIL T ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3780 (($ $) 60 T ELT)) (-2186 (((-1176) $ (-480) (-480)) 93 (|has| $ (-6 -3979)) ELT)) (-3768 (($ $ (-480)) 122 (|has| $ (-6 -3979)) ELT)) (-3425 (((-83) $ (-689)) NIL T ELT)) (-3442 (((-767) $) 46 (|has| |#1| (-1007)) ELT)) (-3441 (((-83)) 49 (|has| |#1| (-1007)) ELT)) (-3011 ((|#1| $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 109 (|has| $ (-6 -3979)) ELT) (($ $ (-480) $) 135 T ELT)) (-3769 ((|#1| $ |#1|) 119 (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 114 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3979)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3979)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 106 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-480) |#1|) 72 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 75 T ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2311 (($ $) 11 T ELT)) (-3782 (($ $) 35 T ELT) (($ $ (-689)) 105 T ELT)) (-3447 (((-83) (-580 |#1|) $) 128 (|has| |#1| (-1007)) ELT)) (-3448 (($ (-580 |#1|)) 124 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) 74 T ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3426 (((-83) $) NIL T ELT)) (-2875 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3443 (((-1176) (-480) $) 133 (|has| |#1| (-1007)) ELT)) (-2310 (((-689) $) 131 T ELT)) (-3017 (((-580 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-3702 (((-83) $ (-689)) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3699 (((-83) $ (-689)) NIL T ELT)) (-3016 (((-580 |#1|) $) NIL T ELT)) (-3510 (((-83) $) NIL T ELT)) (-2313 (($ $) 107 T ELT)) (-2314 (((-83) $) 10 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) NIL T ELT) (($ $ (-689)) NIL T ELT)) (-2292 (($ $ $ (-480)) NIL T ELT) (($ |#1| $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) 90 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3440 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2312 ((|#1| $) 7 T ELT)) (-3784 ((|#1| $) 34 T ELT) (($ $ (-689)) 58 T ELT)) (-3446 (((-2 (|:| |cycle?| (-83)) (|:| -2581 (-689)) (|:| |period| (-689))) (-689) $) 29 T ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-3439 (($ (-1 (-83) |#1|) $) 139 T ELT)) (-3438 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-2187 (($ $ |#1|) 85 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-480)) 40 T ELT)) (-3427 (((-83) $) 88 T ELT)) (-2315 (((-83) $) 9 T ELT)) (-2316 (((-83) $) 130 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 25 T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) 14 T ELT)) (-3548 (($) 53 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT) ((|#1| $ (-480)) 70 T ELT) ((|#1| $ (-480) |#1|) NIL T ELT)) (-3015 (((-480) $ $) 57 T ELT)) (-2293 (($ $ (-1137 (-480))) NIL T ELT) (($ $ (-480)) NIL T ELT)) (-3445 (($ (-1 $)) 56 T ELT)) (-3616 (((-83) $) 86 T ELT)) (-3775 (($ $) 87 T ELT)) (-3773 (($ $) 110 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 52 T ELT)) (-3955 (((-469) $) NIL (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 68 T ELT)) (-3444 (($ |#1| $) 108 T ELT)) (-3774 (($ $ $) 112 (|has| $ (-6 -3979)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3979)) ELT)) (-3785 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-580 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2877 (($ $) 59 T ELT)) (-3929 (($ (-580 |#1|)) 123 T ELT) (((-767) $) 50 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) NIL T ELT)) (-3014 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 126 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1060 |#1|) (-13 (-613 |#1|) (-552 (-580 |#1|)) (-10 -8 (-6 -3979) (-15 -3448 ($ (-580 |#1|))) (IF (|has| |#1| (-1007)) (-15 -3447 ((-83) (-580 |#1|) $)) |%noBranch|) (-15 -3446 ((-2 (|:| |cycle?| (-83)) (|:| -2581 (-689)) (|:| |period| (-689))) (-689) $)) (-15 -3445 ($ (-1 $))) (-15 -3444 ($ |#1| $)) (IF (|has| |#1| (-1007)) (PROGN (-15 -3443 ((-1176) (-480) $)) (-15 -3442 ((-767) $)) (-15 -3441 ((-83)))) |%noBranch|) (-15 -3770 ($ $ (-480) $)) (-15 -3440 ($ (-1 |#1|))) (-15 -3440 ($ (-1 |#1| |#1|) |#1|)) (-15 -3439 ($ (-1 (-83) |#1|) $)) (-15 -3438 ($ (-1 (-83) |#1|) $)))) (-1120)) (T -1060)) -((-3448 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3)))) (-3447 (*1 *2 *3 *1) (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-4 *4 (-1120)) (-5 *2 (-83)) (-5 *1 (-1060 *4)))) (-3446 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2581 (-689)) (|:| |period| (-689)))) (-5 *1 (-1060 *4)) (-4 *4 (-1120)) (-5 *3 (-689)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-1 (-1060 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-1120)))) (-3444 (*1 *1 *2 *1) (-12 (-5 *1 (-1060 *2)) (-4 *2 (-1120)))) (-3443 (*1 *2 *3 *1) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1060 *4)) (-4 *4 (-1007)) (-4 *4 (-1120)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1060 *3)) (-4 *3 (-1007)) (-4 *3 (-1120)))) (-3441 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1060 *3)) (-4 *3 (-1007)) (-4 *3 (-1120)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1060 *3)) (-4 *3 (-1120)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3)))) (-3440 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3))))) -((-3785 (((-1060 |#1|) (-1060 (-1060 |#1|))) 15 T ELT))) -(((-1061 |#1|) (-10 -7 (-15 -3785 ((-1060 |#1|) (-1060 (-1060 |#1|))))) (-1120)) (T -1061)) -((-3785 (*1 *2 *3) (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-1120))))) -((-3824 (((-1060 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1060 |#1|)) 25 T ELT)) (-3825 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1060 |#1|)) 26 T ELT)) (-3941 (((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 16 T ELT))) -(((-1062 |#1| |#2|) (-10 -7 (-15 -3941 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (-15 -3824 ((-1060 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1060 |#1|))) (-15 -3825 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1060 |#1|)))) (-1120) (-1120)) (T -1062)) -((-3825 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1060 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1062 *5 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1060 *6)) (-4 *6 (-1120)) (-4 *3 (-1120)) (-5 *2 (-1060 *3)) (-5 *1 (-1062 *6 *3)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1060 *6)) (-5 *1 (-1062 *5 *6))))) -((-3941 (((-1060 |#3|) (-1 |#3| |#1| |#2|) (-1060 |#1|) (-1060 |#2|)) 21 T ELT))) -(((-1063 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-1060 |#3|) (-1 |#3| |#1| |#2|) (-1060 |#1|) (-1060 |#2|)))) (-1120) (-1120) (-1120)) (T -1063)) -((-3941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1060 *6)) (-5 *5 (-1060 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) (-5 *1 (-1063 *6 *7 *8))))) -((-2554 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-3409 (($ $) 42 T ELT)) (-3410 (($ $) NIL T ELT)) (-3400 (($ $ (-115)) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3407 (((-83) $ $) 67 T ELT)) (-3406 (((-83) $ $ (-480)) 62 T ELT)) (-3518 (($ (-480)) 7 T ELT) (($ (-177)) 9 T ELT) (($ (-441)) 11 T ELT)) (-3401 (((-580 $) $ (-115)) 76 T ELT) (((-580 $) $ (-112)) 77 T ELT)) (-1721 (((-83) (-1 (-83) (-115) (-115)) $) NIL T ELT) (((-83) $) NIL (|has| (-115) (-751)) ELT)) (-1719 (($ (-1 (-83) (-115) (-115)) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-751))) ELT)) (-2895 (($ (-1 (-83) (-115) (-115)) $) NIL T ELT) (($ $) NIL (|has| (-115) (-751)) ELT)) (-3771 (((-115) $ (-480) (-115)) 59 (|has| $ (-6 -3979)) ELT) (((-115) $ (-1137 (-480)) (-115)) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-3398 (($ $ (-115)) 80 T ELT) (($ $ (-112)) 81 T ELT)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-3403 (($ $ (-1137 (-480)) $) 57 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-3389 (($ (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT) (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3978)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 (((-115) $ (-480) (-115)) NIL (|has| $ (-6 -3979)) ELT)) (-3098 (((-115) $ (-480)) NIL T ELT)) (-3408 (((-83) $ $) 91 T ELT)) (-3402 (((-480) (-1 (-83) (-115)) $) NIL T ELT) (((-480) (-115) $) NIL (|has| (-115) (-1007)) ELT) (((-480) (-115) $ (-480)) 64 (|has| (-115) (-1007)) ELT) (((-480) $ $ (-480)) 63 T ELT) (((-480) (-112) $ (-480)) 66 T ELT)) (-2875 (((-580 (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3597 (($ (-689) (-115)) 14 T ELT)) (-2188 (((-480) $) 36 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| (-115) (-751)) ELT)) (-3501 (($ (-1 (-83) (-115) (-115)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-115) (-751)) ELT)) (-2594 (((-580 (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-2189 (((-480) $) 50 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| (-115) (-751)) ELT)) (-3404 (((-83) $ $ (-115)) 92 T ELT)) (-3405 (((-689) $ $ (-115)) 88 T ELT)) (-1938 (($ (-1 (-115) (-115)) $) 41 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-115) (-115)) $) NIL T ELT) (($ (-1 (-115) (-115) (-115)) $ $) NIL T ELT)) (-3411 (($ $) 45 T ELT)) (-3412 (($ $) NIL T ELT)) (-3399 (($ $ (-115)) 78 T ELT) (($ $ (-112)) 79 T ELT)) (-3227 (((-1064) $) 46 (|has| (-115) (-1007)) ELT)) (-2292 (($ (-115) $ (-480)) NIL T ELT) (($ $ $ (-480)) 31 T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) 87 (|has| (-115) (-1007)) ELT)) (-3784 (((-115) $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-2187 (($ $ (-115)) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-115)))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-246 (-115))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT) (($ $ (-580 (-115)) (-580 (-115))) NIL (-12 (|has| (-115) (-257 (-115))) (|has| (-115) (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-2193 (((-580 (-115)) $) NIL T ELT)) (-3386 (((-83) $) 19 T ELT)) (-3548 (($) 16 T ELT)) (-3783 (((-115) $ (-480) (-115)) NIL T ELT) (((-115) $ (-480)) 69 T ELT) (($ $ (-1137 (-480))) 29 T ELT) (($ $ $) NIL T ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-115) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-1007))) ELT)) (-1720 (($ $ $ (-480)) 83 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 24 T ELT)) (-3955 (((-469) $) NIL (|has| (-115) (-550 (-469))) ELT)) (-3513 (($ (-580 (-115))) NIL T ELT)) (-3785 (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-580 $)) 84 T ELT)) (-3929 (($ (-115)) NIL T ELT) (((-767) $) 35 (|has| (-115) (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-1937 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-115) (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| (-115) (-751)) ELT)) (-3042 (((-83) $ $) 21 (|has| (-115) (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-115) (-751)) ELT)) (-2671 (((-83) $ $) 22 (|has| (-115) (-751)) ELT)) (-3940 (((-689) $) 20 (|has| $ (-6 -3978)) ELT))) -(((-1064) (-13 (-1049) (-10 -8 (-15 -3518 ($ (-480))) (-15 -3518 ($ (-177))) (-15 -3518 ($ (-441)))))) (T -1064)) -((-3518 (*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-1064)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1064)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-1064))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-2186 (((-1176) $ (-1064) (-1064)) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ (-1064) |#1|) NIL T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#1| #1="failed") (-1064) $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#1| #1#) (-1064) $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-1064) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-1064)) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-1064) $) NIL (|has| (-1064) (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007)) (|has| |#1| (-1007))) ELT)) (-2220 (((-580 (-1064)) $) NIL T ELT)) (-2221 (((-83) (-1064) $) NIL T ELT)) (-1264 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2191 (((-580 (-1064)) $) NIL T ELT)) (-2192 (((-83) (-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007)) (|has| |#1| (-1007))) ELT)) (-3784 ((|#1| $) NIL (|has| (-1064) (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-257 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-1064)) NIL T ELT) ((|#1| $ (-1064) |#1|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-1007))) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-549 (-767))) (|has| |#1| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 (-1064)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1065 |#1|) (-13 (-1098 (-1064) |#1|) (-10 -7 (-6 -3978))) (-1007)) (T -1065)) -NIL -((-3788 (((-1060 |#1|) (-1060 |#1|)) 83 T ELT)) (-3450 (((-3 (-1060 |#1|) #1="failed") (-1060 |#1|)) 39 T ELT)) (-3461 (((-1060 |#1|) (-345 (-480)) (-1060 |#1|)) 131 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3464 (((-1060 |#1|) |#1| (-1060 |#1|)) 135 (|has| |#1| (-309)) ELT)) (-3791 (((-1060 |#1|) (-1060 |#1|)) 97 T ELT)) (-3452 (((-1060 (-480)) (-480)) 63 T ELT)) (-3460 (((-1060 |#1|) (-1060 (-1060 |#1|))) 116 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3787 (((-1060 |#1|) (-480) (-480) (-1060 |#1|)) 103 T ELT)) (-3921 (((-1060 |#1|) |#1| (-480)) 51 T ELT)) (-3454 (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 66 T ELT)) (-3462 (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 133 (|has| |#1| (-309)) ELT)) (-3459 (((-1060 |#1|) |#1| (-1 (-1060 |#1|))) 115 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3463 (((-1060 |#1|) (-1 |#1| (-480)) |#1| (-1 (-1060 |#1|))) 134 (|has| |#1| (-309)) ELT)) (-3792 (((-1060 |#1|) (-1060 |#1|)) 96 T ELT)) (-3793 (((-1060 |#1|) (-1060 |#1|)) 82 T ELT)) (-3786 (((-1060 |#1|) (-480) (-480) (-1060 |#1|)) 104 T ELT)) (-3795 (((-1060 |#1|) |#1| (-1060 |#1|)) 113 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3451 (((-1060 (-480)) (-480)) 62 T ELT)) (-3453 (((-1060 |#1|) |#1|) 65 T ELT)) (-3789 (((-1060 |#1|) (-1060 |#1|) (-480) (-480)) 100 T ELT)) (-3456 (((-1060 |#1|) (-1 |#1| (-480)) (-1060 |#1|)) 72 T ELT)) (-3449 (((-3 (-1060 |#1|) #1#) (-1060 |#1|) (-1060 |#1|)) 37 T ELT)) (-3790 (((-1060 |#1|) (-1060 |#1|)) 98 T ELT)) (-3751 (((-1060 |#1|) (-1060 |#1|) |#1|) 77 T ELT)) (-3455 (((-1060 |#1|) (-1060 |#1|)) 68 T ELT)) (-3457 (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 78 T ELT)) (-3929 (((-1060 |#1|) |#1|) 73 T ELT)) (-3458 (((-1060 |#1|) (-1060 (-1060 |#1|))) 88 T ELT)) (-3932 (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 38 T ELT)) (-3820 (((-1060 |#1|) (-1060 |#1|)) 21 T ELT) (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 23 T ELT)) (-3822 (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 17 T ELT)) (* (((-1060 |#1|) (-1060 |#1|) |#1|) 29 T ELT) (((-1060 |#1|) |#1| (-1060 |#1|)) 26 T ELT) (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 27 T ELT))) -(((-1066 |#1|) (-10 -7 (-15 -3822 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3820 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3820 ((-1060 |#1|) (-1060 |#1|))) (-15 * ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 * ((-1060 |#1|) |#1| (-1060 |#1|))) (-15 * ((-1060 |#1|) (-1060 |#1|) |#1|)) (-15 -3449 ((-3 (-1060 |#1|) #1="failed") (-1060 |#1|) (-1060 |#1|))) (-15 -3932 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3450 ((-3 (-1060 |#1|) #1#) (-1060 |#1|))) (-15 -3921 ((-1060 |#1|) |#1| (-480))) (-15 -3451 ((-1060 (-480)) (-480))) (-15 -3452 ((-1060 (-480)) (-480))) (-15 -3453 ((-1060 |#1|) |#1|)) (-15 -3454 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3455 ((-1060 |#1|) (-1060 |#1|))) (-15 -3456 ((-1060 |#1|) (-1 |#1| (-480)) (-1060 |#1|))) (-15 -3929 ((-1060 |#1|) |#1|)) (-15 -3751 ((-1060 |#1|) (-1060 |#1|) |#1|)) (-15 -3457 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3793 ((-1060 |#1|) (-1060 |#1|))) (-15 -3788 ((-1060 |#1|) (-1060 |#1|))) (-15 -3458 ((-1060 |#1|) (-1060 (-1060 |#1|)))) (-15 -3792 ((-1060 |#1|) (-1060 |#1|))) (-15 -3791 ((-1060 |#1|) (-1060 |#1|))) (-15 -3790 ((-1060 |#1|) (-1060 |#1|))) (-15 -3789 ((-1060 |#1|) (-1060 |#1|) (-480) (-480))) (-15 -3787 ((-1060 |#1|) (-480) (-480) (-1060 |#1|))) (-15 -3786 ((-1060 |#1|) (-480) (-480) (-1060 |#1|))) (IF (|has| |#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ((-1060 |#1|) |#1| (-1060 |#1|))) (-15 -3459 ((-1060 |#1|) |#1| (-1 (-1060 |#1|)))) (-15 -3460 ((-1060 |#1|) (-1060 (-1060 |#1|)))) (-15 -3461 ((-1060 |#1|) (-345 (-480)) (-1060 |#1|)))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-15 -3462 ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3463 ((-1060 |#1|) (-1 |#1| (-480)) |#1| (-1 (-1060 |#1|)))) (-15 -3464 ((-1060 |#1|) |#1| (-1060 |#1|)))) |%noBranch|)) (-956)) (T -1066)) -((-3464 (*1 *2 *3 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-309)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-480))) (-5 *5 (-1 (-1060 *4))) (-4 *4 (-309)) (-4 *4 (-956)) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4)))) (-3462 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-309)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3461 (*1 *2 *3 *2) (-12 (-5 *2 (-1060 *4)) (-4 *4 (-38 *3)) (-4 *4 (-956)) (-5 *3 (-345 (-480))) (-5 *1 (-1066 *4)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4)) (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1060 *3))) (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)))) (-3795 (*1 *2 *3 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3786 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) (-3787 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) (-3789 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3792 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4)) (-4 *4 (-956)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3457 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3929 (*1 *2 *3) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *2 (-1060 *4)) (-5 *3 (-1 *4 (-480))) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3454 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3453 (*1 *2 *3) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956)))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-1066 *4)) (-4 *4 (-956)) (-5 *3 (-480)))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-1066 *4)) (-4 *4 (-956)) (-5 *3 (-480)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956)))) (-3450 (*1 *2 *2) (|partial| -12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3932 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3449 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) (-3822 (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) -((-3475 (((-1060 |#1|) (-1060 |#1|)) 102 T ELT)) (-3622 (((-1060 |#1|) (-1060 |#1|)) 59 T ELT)) (-3466 (((-2 (|:| -3473 (-1060 |#1|)) (|:| -3474 (-1060 |#1|))) (-1060 |#1|)) 98 T ELT)) (-3473 (((-1060 |#1|) (-1060 |#1|)) 99 T ELT)) (-3465 (((-2 (|:| -3621 (-1060 |#1|)) (|:| -3617 (-1060 |#1|))) (-1060 |#1|)) 54 T ELT)) (-3621 (((-1060 |#1|) (-1060 |#1|)) 55 T ELT)) (-3477 (((-1060 |#1|) (-1060 |#1|)) 104 T ELT)) (-3620 (((-1060 |#1|) (-1060 |#1|)) 66 T ELT)) (-3925 (((-1060 |#1|) (-1060 |#1|)) 40 T ELT)) (-3926 (((-1060 |#1|) (-1060 |#1|)) 37 T ELT)) (-3478 (((-1060 |#1|) (-1060 |#1|)) 105 T ELT)) (-3619 (((-1060 |#1|) (-1060 |#1|)) 67 T ELT)) (-3476 (((-1060 |#1|) (-1060 |#1|)) 103 T ELT)) (-3618 (((-1060 |#1|) (-1060 |#1|)) 62 T ELT)) (-3474 (((-1060 |#1|) (-1060 |#1|)) 100 T ELT)) (-3617 (((-1060 |#1|) (-1060 |#1|)) 56 T ELT)) (-3481 (((-1060 |#1|) (-1060 |#1|)) 113 T ELT)) (-3469 (((-1060 |#1|) (-1060 |#1|)) 88 T ELT)) (-3479 (((-1060 |#1|) (-1060 |#1|)) 107 T ELT)) (-3467 (((-1060 |#1|) (-1060 |#1|)) 84 T ELT)) (-3483 (((-1060 |#1|) (-1060 |#1|)) 117 T ELT)) (-3471 (((-1060 |#1|) (-1060 |#1|)) 92 T ELT)) (-3484 (((-1060 |#1|) (-1060 |#1|)) 119 T ELT)) (-3472 (((-1060 |#1|) (-1060 |#1|)) 94 T ELT)) (-3482 (((-1060 |#1|) (-1060 |#1|)) 115 T ELT)) (-3470 (((-1060 |#1|) (-1060 |#1|)) 90 T ELT)) (-3480 (((-1060 |#1|) (-1060 |#1|)) 109 T ELT)) (-3468 (((-1060 |#1|) (-1060 |#1|)) 86 T ELT)) (** (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 41 T ELT))) -(((-1067 |#1|) (-10 -7 (-15 -3926 ((-1060 |#1|) (-1060 |#1|))) (-15 -3925 ((-1060 |#1|) (-1060 |#1|))) (-15 ** ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3465 ((-2 (|:| -3621 (-1060 |#1|)) (|:| -3617 (-1060 |#1|))) (-1060 |#1|))) (-15 -3621 ((-1060 |#1|) (-1060 |#1|))) (-15 -3617 ((-1060 |#1|) (-1060 |#1|))) (-15 -3622 ((-1060 |#1|) (-1060 |#1|))) (-15 -3618 ((-1060 |#1|) (-1060 |#1|))) (-15 -3620 ((-1060 |#1|) (-1060 |#1|))) (-15 -3619 ((-1060 |#1|) (-1060 |#1|))) (-15 -3467 ((-1060 |#1|) (-1060 |#1|))) (-15 -3468 ((-1060 |#1|) (-1060 |#1|))) (-15 -3469 ((-1060 |#1|) (-1060 |#1|))) (-15 -3470 ((-1060 |#1|) (-1060 |#1|))) (-15 -3471 ((-1060 |#1|) (-1060 |#1|))) (-15 -3472 ((-1060 |#1|) (-1060 |#1|))) (-15 -3466 ((-2 (|:| -3473 (-1060 |#1|)) (|:| -3474 (-1060 |#1|))) (-1060 |#1|))) (-15 -3473 ((-1060 |#1|) (-1060 |#1|))) (-15 -3474 ((-1060 |#1|) (-1060 |#1|))) (-15 -3475 ((-1060 |#1|) (-1060 |#1|))) (-15 -3476 ((-1060 |#1|) (-1060 |#1|))) (-15 -3477 ((-1060 |#1|) (-1060 |#1|))) (-15 -3478 ((-1060 |#1|) (-1060 |#1|))) (-15 -3479 ((-1060 |#1|) (-1060 |#1|))) (-15 -3480 ((-1060 |#1|) (-1060 |#1|))) (-15 -3481 ((-1060 |#1|) (-1060 |#1|))) (-15 -3482 ((-1060 |#1|) (-1060 |#1|))) (-15 -3483 ((-1060 |#1|) (-1060 |#1|))) (-15 -3484 ((-1060 |#1|) (-1060 |#1|)))) (-38 (-345 (-480)))) (T -1067)) -((-3484 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3466 (*1 *2 *3) (-12 (-4 *4 (-38 (-345 (-480)))) (-5 *2 (-2 (|:| -3473 (-1060 *4)) (|:| -3474 (-1060 *4)))) (-5 *1 (-1067 *4)) (-5 *3 (-1060 *4)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3465 (*1 *2 *3) (-12 (-4 *4 (-38 (-345 (-480)))) (-5 *2 (-2 (|:| -3621 (-1060 *4)) (|:| -3617 (-1060 *4)))) (-5 *1 (-1067 *4)) (-5 *3 (-1060 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3))))) -((-3475 (((-1060 |#1|) (-1060 |#1|)) 60 T ELT)) (-3622 (((-1060 |#1|) (-1060 |#1|)) 42 T ELT)) (-3473 (((-1060 |#1|) (-1060 |#1|)) 56 T ELT)) (-3621 (((-1060 |#1|) (-1060 |#1|)) 38 T ELT)) (-3477 (((-1060 |#1|) (-1060 |#1|)) 63 T ELT)) (-3620 (((-1060 |#1|) (-1060 |#1|)) 45 T ELT)) (-3925 (((-1060 |#1|) (-1060 |#1|)) 34 T ELT)) (-3926 (((-1060 |#1|) (-1060 |#1|)) 29 T ELT)) (-3478 (((-1060 |#1|) (-1060 |#1|)) 64 T ELT)) (-3619 (((-1060 |#1|) (-1060 |#1|)) 46 T ELT)) (-3476 (((-1060 |#1|) (-1060 |#1|)) 61 T ELT)) (-3618 (((-1060 |#1|) (-1060 |#1|)) 43 T ELT)) (-3474 (((-1060 |#1|) (-1060 |#1|)) 58 T ELT)) (-3617 (((-1060 |#1|) (-1060 |#1|)) 40 T ELT)) (-3481 (((-1060 |#1|) (-1060 |#1|)) 68 T ELT)) (-3469 (((-1060 |#1|) (-1060 |#1|)) 50 T ELT)) (-3479 (((-1060 |#1|) (-1060 |#1|)) 66 T ELT)) (-3467 (((-1060 |#1|) (-1060 |#1|)) 48 T ELT)) (-3483 (((-1060 |#1|) (-1060 |#1|)) 71 T ELT)) (-3471 (((-1060 |#1|) (-1060 |#1|)) 53 T ELT)) (-3484 (((-1060 |#1|) (-1060 |#1|)) 72 T ELT)) (-3472 (((-1060 |#1|) (-1060 |#1|)) 54 T ELT)) (-3482 (((-1060 |#1|) (-1060 |#1|)) 70 T ELT)) (-3470 (((-1060 |#1|) (-1060 |#1|)) 52 T ELT)) (-3480 (((-1060 |#1|) (-1060 |#1|)) 69 T ELT)) (-3468 (((-1060 |#1|) (-1060 |#1|)) 51 T ELT)) (** (((-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) 36 T ELT))) -(((-1068 |#1|) (-10 -7 (-15 -3926 ((-1060 |#1|) (-1060 |#1|))) (-15 -3925 ((-1060 |#1|) (-1060 |#1|))) (-15 ** ((-1060 |#1|) (-1060 |#1|) (-1060 |#1|))) (-15 -3621 ((-1060 |#1|) (-1060 |#1|))) (-15 -3617 ((-1060 |#1|) (-1060 |#1|))) (-15 -3622 ((-1060 |#1|) (-1060 |#1|))) (-15 -3618 ((-1060 |#1|) (-1060 |#1|))) (-15 -3620 ((-1060 |#1|) (-1060 |#1|))) (-15 -3619 ((-1060 |#1|) (-1060 |#1|))) (-15 -3467 ((-1060 |#1|) (-1060 |#1|))) (-15 -3468 ((-1060 |#1|) (-1060 |#1|))) (-15 -3469 ((-1060 |#1|) (-1060 |#1|))) (-15 -3470 ((-1060 |#1|) (-1060 |#1|))) (-15 -3471 ((-1060 |#1|) (-1060 |#1|))) (-15 -3472 ((-1060 |#1|) (-1060 |#1|))) (-15 -3473 ((-1060 |#1|) (-1060 |#1|))) (-15 -3474 ((-1060 |#1|) (-1060 |#1|))) (-15 -3475 ((-1060 |#1|) (-1060 |#1|))) (-15 -3476 ((-1060 |#1|) (-1060 |#1|))) (-15 -3477 ((-1060 |#1|) (-1060 |#1|))) (-15 -3478 ((-1060 |#1|) (-1060 |#1|))) (-15 -3479 ((-1060 |#1|) (-1060 |#1|))) (-15 -3480 ((-1060 |#1|) (-1060 |#1|))) (-15 -3481 ((-1060 |#1|) (-1060 |#1|))) (-15 -3482 ((-1060 |#1|) (-1060 |#1|))) (-15 -3483 ((-1060 |#1|) (-1060 |#1|))) (-15 -3484 ((-1060 |#1|) (-1060 |#1|)))) (-38 (-345 (-480)))) (T -1068)) -((-3484 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) -((-3485 (((-864 |#2|) |#2| |#2|) 51 T ELT)) (-3486 ((|#2| |#2| |#1|) 19 (|has| |#1| (-255)) ELT))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -3485 ((-864 |#2|) |#2| |#2|)) (IF (|has| |#1| (-255)) (-15 -3486 (|#2| |#2| |#1|)) |%noBranch|)) (-491) (-1146 |#1|)) (T -1069)) -((-3486 (*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-4 *3 (-491)) (-5 *1 (-1069 *3 *2)) (-4 *2 (-1146 *3)))) (-3485 (*1 *2 *3 *3) (-12 (-4 *4 (-491)) (-5 *2 (-864 *3)) (-5 *1 (-1069 *4 *3)) (-4 *3 (-1146 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3494 (($ $ (-580 (-689))) 79 T ELT)) (-3871 (($) 33 T ELT)) (-3503 (($ $) 51 T ELT)) (-3734 (((-580 $) $) 60 T ELT)) (-3509 (((-83) $) 19 T ELT)) (-3487 (((-580 (-849 |#2|)) $) 86 T ELT)) (-3488 (($ $) 80 T ELT)) (-3504 (((-689) $) 47 T ELT)) (-3597 (($) 32 T ELT)) (-3497 (($ $ (-580 (-689)) (-849 |#2|)) 72 T ELT) (($ $ (-580 (-689)) (-689)) 73 T ELT) (($ $ (-689) (-849 |#2|)) 75 T ELT)) (-3501 (($ $ $) 57 T ELT) (($ (-580 $)) 59 T ELT)) (-3489 (((-689) $) 87 T ELT)) (-3510 (((-83) $) 15 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3508 (((-83) $) 22 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3490 (((-143) $) 85 T ELT)) (-3493 (((-849 |#2|) $) 81 T ELT)) (-3492 (((-689) $) 82 T ELT)) (-3491 (((-83) $) 84 T ELT)) (-3495 (($ $ (-580 (-689)) (-143)) 78 T ELT)) (-3502 (($ $) 52 T ELT)) (-3929 (((-767) $) 99 T ELT)) (-3496 (($ $ (-580 (-689)) (-83)) 77 T ELT)) (-3505 (((-580 $) $) 11 T ELT)) (-3506 (($ $ (-689)) 46 T ELT)) (-3507 (($ $) 43 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3498 (($ $ $ (-849 |#2|) (-689)) 68 T ELT)) (-3499 (($ $ (-849 |#2|)) 67 T ELT)) (-3500 (($ $ (-580 (-689)) (-849 |#2|)) 66 T ELT) (($ $ (-580 (-689)) (-689)) 70 T ELT) (((-689) $ (-849 |#2|)) 71 T ELT)) (-3042 (((-83) $ $) 92 T ELT))) -(((-1070 |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -3510 ((-83) $)) (-15 -3509 ((-83) $)) (-15 -3508 ((-83) $)) (-15 -3597 ($)) (-15 -3871 ($)) (-15 -3507 ($ $)) (-15 -3506 ($ $ (-689))) (-15 -3505 ((-580 $) $)) (-15 -3504 ((-689) $)) (-15 -3503 ($ $)) (-15 -3502 ($ $)) (-15 -3501 ($ $ $)) (-15 -3501 ($ (-580 $))) (-15 -3734 ((-580 $) $)) (-15 -3500 ($ $ (-580 (-689)) (-849 |#2|))) (-15 -3499 ($ $ (-849 |#2|))) (-15 -3498 ($ $ $ (-849 |#2|) (-689))) (-15 -3497 ($ $ (-580 (-689)) (-849 |#2|))) (-15 -3500 ($ $ (-580 (-689)) (-689))) (-15 -3497 ($ $ (-580 (-689)) (-689))) (-15 -3500 ((-689) $ (-849 |#2|))) (-15 -3497 ($ $ (-689) (-849 |#2|))) (-15 -3496 ($ $ (-580 (-689)) (-83))) (-15 -3495 ($ $ (-580 (-689)) (-143))) (-15 -3494 ($ $ (-580 (-689)))) (-15 -3493 ((-849 |#2|) $)) (-15 -3492 ((-689) $)) (-15 -3491 ((-83) $)) (-15 -3490 ((-143) $)) (-15 -3489 ((-689) $)) (-15 -3488 ($ $)) (-15 -3487 ((-580 (-849 |#2|)) $)))) (-825) (-956)) (T -1070)) -((-3510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3597 (*1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3871 (*1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3507 (*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3503 (*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3502 (*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3501 (*1 *1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)))) (-3499 (*1 *1 *1 *2) (-12 (-5 *2 (-849 *4)) (-4 *4 (-956)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)))) (-3498 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-849 *5)) (-5 *3 (-689)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-689)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)) (-4 *5 (-956)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-689)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)) (-4 *5 (-956)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *2 (-689)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)))) (-3496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-83)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)) (-4 *5 (-956)))) (-3495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-689))) (-5 *3 (-143)) (-5 *1 (-1070 *4 *5)) (-14 *4 (-825)) (-4 *5 (-956)))) (-3494 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-849 *4)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956)))) (-3488 (*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-580 (-849 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3511 ((|#2| $) 11 T ELT)) (-3512 ((|#1| $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3513 (($ |#1| |#2|) 9 T ELT)) (-3929 (((-767) $) 16 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1071 |#1| |#2|) (-13 (-1007) (-10 -8 (-15 -3513 ($ |#1| |#2|)) (-15 -3512 (|#1| $)) (-15 -3511 (|#2| $)))) (-1007) (-1007)) (T -1071)) -((-3513 (*1 *1 *2 *3) (-12 (-5 *1 (-1071 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-3512 (*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-1071 *2 *3)) (-4 *3 (-1007)))) (-3511 (*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-1071 *3 *2)) (-4 *3 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3514 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 16 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1072) (-13 (-989) (-10 -8 (-15 -3514 ((-1040) $))))) (T -1072)) -((-3514 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1072))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-255)) (|has| |#1| (-309))) ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 11 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2051 (($ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2049 (((-83) $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-3754 (($ $ (-480)) NIL T ELT) (($ $ (-480) (-480)) 75 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) NIL T ELT)) (-3714 (((-1080 |#1| |#2| |#3|) $) 42 T ELT)) (-3711 (((-3 (-1080 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3712 (((-1080 |#1| |#2| |#3|) $) 33 T ELT)) (-3475 (($ $) 116 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 92 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) 112 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 88 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3606 (((-480) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) 120 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 96 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1081) #1#) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT) (((-3 (-480) #1#) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT)) (-3141 (((-1080 |#1| |#2| |#3|) $) 140 T ELT) (((-1081) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (((-345 (-480)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT) (((-480) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT)) (-3713 (($ $) 37 T ELT) (($ (-480) $) 38 T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-1080 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-1080 |#1| |#2| |#3|))) (|:| |vec| (-1170 (-1080 |#1| |#2| |#3|)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT)) (-3450 (((-3 $ #1#) $) 54 T ELT)) (-3710 (((-345 (-852 |#1|)) $ (-480)) 74 (|has| |#1| (-491)) ELT) (((-345 (-852 |#1|)) $ (-480) (-480)) 76 (|has| |#1| (-491)) ELT)) (-2980 (($) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-3171 (((-83) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-2878 (((-83) $) 28 T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-791 (-325))) (|has| |#1| (-309))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-791 (-480))) (|has| |#1| (-309))) ELT)) (-3755 (((-480) $) NIL T ELT) (((-480) $ (-480)) 26 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2984 (((-1080 |#1| |#2| |#3|) $) 44 (|has| |#1| (-309)) ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3428 (((-629 $) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-1057)) (|has| |#1| (-309))) ELT)) (-3172 (((-83) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-3760 (($ $ (-825)) NIL T ELT)) (-3798 (($ (-1 |#1| (-480)) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-480)) 19 T ELT) (($ $ (-988) (-480)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-480))) NIL T ELT)) (-2517 (($ $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2843 (($ $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-309)) ELT)) (-3925 (($ $) 81 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2268 (((-627 (-1080 |#1| |#2| |#3|)) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-1080 |#1| |#2| |#3|))) (|:| |vec| (-1170 (-1080 |#1| |#2| |#3|)))) (-1170 $) $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3762 (($ (-480) (-1080 |#1| |#2| |#3|)) 36 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) 79 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 80 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-1057)) (|has| |#1| (-309))) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3113 (($ $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-255)) (|has| |#1| (-309))) ELT)) (-3115 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-480)) 158 T ELT)) (-3449 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) 82 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT) (($ $ (-1081) (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-449 (-1081) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1081)) (-580 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-449 (-1081) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-246 (-1080 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-246 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1080 |#1| |#2| |#3|)) (-580 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-257 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-480)) NIL T ELT) (($ $ $) 61 (|has| (-480) (-1017)) ELT) (($ $ (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-239 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) NIL (|has| |#1| (-309)) ELT) (($ $ (-1167 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2981 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2983 (((-1080 |#1| |#2| |#3|) $) 46 (|has| |#1| (-309)) ELT)) (-3931 (((-480) $) 43 T ELT)) (-3478 (($ $) 122 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 98 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 118 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 94 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 114 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 90 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3955 (((-469) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-550 (-469))) (|has| |#1| (-309))) ELT) (((-325) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-928)) (|has| |#1| (-309))) ELT) (((-177) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-928)) (|has| |#1| (-309))) ELT) (((-795 (-325)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-550 (-795 (-325)))) (|has| |#1| (-309))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-550 (-795 (-480)))) (|has| |#1| (-309))) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) 162 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1080 |#1| |#2| |#3|)) 30 T ELT) (($ (-1167 |#2|)) 25 T ELT) (($ (-1081)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (($ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT) (($ (-345 (-480))) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) (|has| |#1| (-38 (-345 (-480))))) ELT)) (-3660 ((|#1| $ (-480)) 77 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-116)) (|has| |#1| (-309))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 12 T ELT)) (-3116 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 128 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 104 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-3479 (($ $) 124 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 100 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 132 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 108 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-480)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 134 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 110 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 130 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 106 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 126 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 102 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3366 (($ $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 16 T CONST)) (-2655 (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) NIL (|has| |#1| (-309)) ELT) (($ $ (-1167 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2553 (((-83) $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2671 (((-83) $ $) NIL (OR (-12 (|has| (-1080 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) 49 (|has| |#1| (-309)) ELT) (($ (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) 50 (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 23 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 60 T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 137 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1080 |#1| |#2| |#3|)) 48 (|has| |#1| (-309)) ELT) (($ (-1080 |#1| |#2| |#3|) $) 47 (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1073 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1080 |#1| |#2| |#3|)) (-801 $ (-1167 |#2|)) (-10 -8 (-15 -3929 ($ (-1167 |#2|))) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1073)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-956)) (-14 *5 *3))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-3515 ((|#2| |#2| (-998 |#2|)) 26 T ELT) ((|#2| |#2| (-1081)) 28 T ELT))) -(((-1074 |#1| |#2|) (-10 -7 (-15 -3515 (|#2| |#2| (-1081))) (-15 -3515 (|#2| |#2| (-998 |#2|)))) (-13 (-491) (-945 (-480)) (-577 (-480))) (-13 (-359 |#1|) (-131) (-27) (-1106))) (T -1074)) -((-3515 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-359 *4) (-131) (-27) (-1106))) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1074 *4 *2)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1074 *4 *2)) (-4 *2 (-13 (-359 *4) (-131) (-27) (-1106)))))) -((-3515 (((-3 (-345 (-852 |#1|)) (-262 |#1|)) (-345 (-852 |#1|)) (-998 (-345 (-852 |#1|)))) 31 T ELT) (((-345 (-852 |#1|)) (-852 |#1|) (-998 (-852 |#1|))) 44 T ELT) (((-3 (-345 (-852 |#1|)) (-262 |#1|)) (-345 (-852 |#1|)) (-1081)) 33 T ELT) (((-345 (-852 |#1|)) (-852 |#1|) (-1081)) 36 T ELT))) -(((-1075 |#1|) (-10 -7 (-15 -3515 ((-345 (-852 |#1|)) (-852 |#1|) (-1081))) (-15 -3515 ((-3 (-345 (-852 |#1|)) (-262 |#1|)) (-345 (-852 |#1|)) (-1081))) (-15 -3515 ((-345 (-852 |#1|)) (-852 |#1|) (-998 (-852 |#1|)))) (-15 -3515 ((-3 (-345 (-852 |#1|)) (-262 |#1|)) (-345 (-852 |#1|)) (-998 (-345 (-852 |#1|)))))) (-13 (-491) (-945 (-480)))) (T -1075)) -((-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-3 *3 (-262 *5))) (-5 *1 (-1075 *5)))) (-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-852 *5))) (-5 *3 (-852 *5)) (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-345 *3)) (-5 *1 (-1075 *5)))) (-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-3 (-345 (-852 *5)) (-262 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-345 (-852 *5))))) (-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-345 (-852 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-852 *5))))) -((-2554 (((-83) $ $) 172 T ELT)) (-3173 (((-83) $) 44 T ELT)) (-3750 (((-1170 |#1|) $ (-689)) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3748 (($ (-1076 |#1|)) NIL T ELT)) (-3069 (((-1076 $) $ (-988)) 83 T ELT) (((-1076 |#1|) $) 72 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) 166 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-988))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3738 (($ $ $) 160 (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 97 (|has| |#1| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) 117 (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3744 (($ $ (-689)) 62 T ELT)) (-3743 (($ $ (-689)) 64 T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-387)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-988) #1#) $) NIL T ELT)) (-3141 ((|#1| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-988) $) NIL T ELT)) (-3739 (($ $ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 162 (|has| |#1| (-144)) ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) 81 T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#1|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3742 (($ $ $) 133 T ELT)) (-3736 (($ $ $) NIL (|has| |#1| (-491)) ELT)) (-3735 (((-2 (|:| -3937 |#1|) (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3486 (($ $) 167 (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-689) $) 70 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-988) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-988) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3516 (((-767) $ (-767)) 150 T ELT)) (-3755 (((-689) $ $) NIL (|has| |#1| (-491)) ELT)) (-2398 (((-83) $) 49 T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#1| (-1057)) ELT)) (-3070 (($ (-1076 |#1|) (-988)) 74 T ELT) (($ (-1076 $) (-988)) 91 T ELT)) (-3760 (($ $ (-689)) 52 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) 89 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-988)) NIL T ELT) (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 155 T ELT)) (-2806 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-1614 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3749 (((-1076 |#1|) $) NIL T ELT)) (-3068 (((-3 (-988) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) NIL T ELT) (((-627 |#1|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) 77 T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) NIL (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) 61 T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-988)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3795 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (|has| |#1| (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) 51 T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 105 (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-387)) ELT) (($ $ $) 169 (|has| |#1| (-387)) ELT)) (-3721 (($ $ (-689) |#1| $) 125 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 103 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 102 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 110 (|has| |#1| (-816)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-988) |#1|) NIL T ELT) (($ $ (-580 (-988)) (-580 |#1|)) NIL T ELT) (($ $ (-988) $) NIL T ELT) (($ $ (-580 (-988)) (-580 $)) NIL T ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-345 $) (-345 $) (-345 $)) NIL (|has| |#1| (-491)) ELT) ((|#1| (-345 $) |#1|) NIL (|has| |#1| (-309)) ELT) (((-345 $) $ (-345 $)) NIL (|has| |#1| (-491)) ELT)) (-3747 (((-3 $ #1#) $ (-689)) 55 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 173 (|has| |#1| (-309)) ELT)) (-3740 (($ $ (-988)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) 158 (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3931 (((-689) $) 79 T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-988) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-988) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-988) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) 164 (|has| |#1| (-387)) ELT) (($ $ (-988)) NIL (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3737 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT) (((-3 (-345 $) #1#) (-345 $) $) NIL (|has| |#1| (-491)) ELT)) (-3929 (((-767) $) 151 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-988)) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) 42 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 18 T CONST)) (-2652 (($) 20 T CONST)) (-2655 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#1| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 122 T ELT)) (-3932 (($ $ |#1|) 174 (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 92 T ELT)) (** (($ $ (-825)) 14 T ELT) (($ $ (-689)) 12 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1076 |#1|) (-13 (-1146 |#1|) (-10 -8 (-15 -3516 ((-767) $ (-767))) (-15 -3721 ($ $ (-689) |#1| $)))) (-956)) (T -1076)) -((-3516 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1076 *3)) (-4 *3 (-956)))) (-3721 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1076 *3)) (-4 *3 (-956))))) -((-3941 (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 13 T ELT))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -3941 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)))) (-956) (-956)) (T -1077)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-5 *2 (-1076 *6)) (-5 *1 (-1077 *5 *6))))) -((-3954 (((-343 (-1076 (-345 |#4|))) (-1076 (-345 |#4|))) 51 T ELT)) (-3715 (((-343 (-1076 (-345 |#4|))) (-1076 (-345 |#4|))) 52 T ELT))) -(((-1078 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 ((-343 (-1076 (-345 |#4|))) (-1076 (-345 |#4|)))) (-15 -3954 ((-343 (-1076 (-345 |#4|))) (-1076 (-345 |#4|))))) (-712) (-751) (-387) (-856 |#3| |#1| |#2|)) (T -1078)) -((-3954 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-387)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-343 (-1076 (-345 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1076 (-345 *7))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-387)) (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-343 (-1076 (-345 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1076 (-345 *7)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 11 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) NIL T ELT) (($ $ (-345 (-480)) (-345 (-480))) NIL T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-1073 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1080 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3141 (((-1073 |#1| |#2| |#3|) $) NIL T ELT) (((-1080 |#1| |#2| |#3|) $) NIL T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3764 (((-345 (-480)) $) 59 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3765 (($ (-345 (-480)) (-1073 |#1| |#2| |#3|)) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) NIL T ELT) (((-345 (-480)) $ (-345 (-480))) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-345 (-480))) 20 T ELT) (($ $ (-988) (-345 (-480))) NIL T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3763 (((-1073 |#1| |#2| |#3|) $) 41 T ELT)) (-3761 (((-3 (-1073 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3762 (((-1073 |#1| |#2| |#3|) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) 39 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 40 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) NIL T ELT) (($ $ $) NIL (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) 38 T ELT)) (-3931 (((-345 (-480)) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) 62 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1073 |#1| |#2| |#3|)) 30 T ELT) (($ (-1080 |#1| |#2| |#3|)) 31 T ELT) (($ (-1167 |#2|)) 26 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 22 T CONST)) (-2652 (($) 16 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 24 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1079 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1073 |#1| |#2| |#3|)) (-801 $ (-1167 |#2|)) (-945 (-1080 |#1| |#2| |#3|)) (-552 (-1167 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1079)) -((-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 129 T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 119 T ELT)) (-3794 (((-1139 |#2| |#1|) $ (-689)) 69 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-689)) 85 T ELT) (($ $ (-689) (-689)) 82 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|))) $) 105 T ELT)) (-3475 (($ $) 173 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1060 |#1|)) 113 T ELT)) (-3477 (($ $) 177 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 25 T ELT)) (-3799 (($ $) 28 T ELT)) (-3797 (((-852 |#1|) $ (-689)) 81 T ELT) (((-852 |#1|) $ (-689) (-689)) 83 T ELT)) (-2878 (((-83) $) 124 T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $) 126 T ELT) (((-689) $ (-689)) 128 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) NIL T ELT)) (-3798 (($ (-1 |#1| (-480)) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) 13 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) 135 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3795 (($ $) 133 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 134 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3752 (($ $ (-689)) 15 T ELT)) (-3449 (((-3 $ #1#) $ $) 26 (|has| |#1| (-491)) ELT)) (-3926 (($ $) 137 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-689)))) ELT)) (-3783 ((|#1| $ (-689)) 122 T ELT) (($ $ $) 132 (|has| (-689) (-1017)) ELT)) (-3741 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-1167 |#2|)) 31 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-3478 (($ $) 179 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 175 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) 206 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ |#1|) 130 (|has| |#1| (-144)) ELT) (($ (-1139 |#2| |#1|)) 55 T ELT) (($ (-1167 |#2|)) 36 T ELT)) (-3800 (((-1060 |#1|) $) 101 T ELT)) (-3660 ((|#1| $ (-689)) 121 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 58 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 185 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) 181 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 189 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-689)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-689)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 191 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 187 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 183 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 17 T CONST)) (-2652 (($) 20 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-1167 |#2|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3822 (($ $ $) 35 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-309)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1080 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-801 $ (-1167 |#2|)) (-10 -8 (-15 -3929 ($ (-1139 |#2| |#1|))) (-15 -3794 ((-1139 |#2| |#1|) $ (-689))) (-15 -3929 ($ (-1167 |#2|))) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1080)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) (-5 *1 (-1080 *3 *4 *5)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1080 *4 *5 *6)) (-4 *4 (-956)) (-14 *5 (-1081)) (-14 *6 *4))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-956)) (-14 *5 *3))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3520 (($ $ (-580 (-767))) 48 T ELT)) (-3521 (($ $ (-580 (-767))) 46 T ELT)) (-3518 (((-1064) $) 88 T ELT)) (-3523 (((-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767)))) $) 95 T ELT)) (-3524 (((-83) $) 86 T ELT)) (-3522 (($ $ (-580 (-580 (-767)))) 45 T ELT) (($ $ (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767))))) 85 T ELT)) (-3707 (($) 151 T CONST)) (-3142 (((-3 (-441) "failed") $) 155 T ELT)) (-3141 (((-441) $) NIL T ELT)) (-3526 (((-1176)) 123 T ELT)) (-2782 (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 55 T ELT) (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 62 T ELT)) (-3597 (($) 109 T ELT) (($ $) 118 T ELT)) (-3525 (($ $) 87 T ELT)) (-2517 (($ $ $) NIL T ELT)) (-2843 (($ $ $) NIL T ELT)) (-3517 (((-580 $) $) 124 T ELT)) (-3227 (((-1064) $) 101 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3783 (($ $ (-580 (-767))) 47 T ELT)) (-3955 (((-469) $) 33 T ELT) (((-1081) $) 34 T ELT) (((-795 (-480)) $) 66 T ELT) (((-795 (-325)) $) 64 T ELT)) (-3929 (((-767) $) 41 T ELT) (($ (-1064)) 35 T ELT) (($ (-441)) 153 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3519 (($ $ (-580 (-767))) 49 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 37 T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) 38 T ELT))) -(((-1081) (-13 (-751) (-550 (-469)) (-550 (-1081)) (-552 (-1064)) (-945 (-441)) (-550 (-795 (-480))) (-550 (-795 (-325))) (-791 (-480)) (-791 (-325)) (-10 -8 (-15 -3597 ($)) (-15 -3597 ($ $)) (-15 -3526 ((-1176))) (-15 -3525 ($ $)) (-15 -3524 ((-83) $)) (-15 -3523 ((-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767)))) $)) (-15 -3522 ($ $ (-580 (-580 (-767))))) (-15 -3522 ($ $ (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767)))))) (-15 -3521 ($ $ (-580 (-767)))) (-15 -3520 ($ $ (-580 (-767)))) (-15 -3519 ($ $ (-580 (-767)))) (-15 -3783 ($ $ (-580 (-767)))) (-15 -3518 ((-1064) $)) (-15 -3517 ((-580 $) $)) (-15 -3707 ($) -3935)))) (T -1081)) -((-3597 (*1 *1) (-5 *1 (-1081))) (-3597 (*1 *1 *1) (-5 *1 (-1081))) (-3526 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1081)))) (-3525 (*1 *1 *1) (-5 *1 (-1081))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1081)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767))))) (-5 *1 (-1081)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-580 (-767)))) (-5 *1 (-1081)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) (|:| |args| (-580 (-767))))) (-5 *1 (-1081)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1081)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1081)))) (-3707 (*1 *1) (-5 *1 (-1081)))) -((-3527 (((-1170 |#1|) |#1| (-825)) 18 T ELT) (((-1170 |#1|) (-580 |#1|)) 25 T ELT))) -(((-1082 |#1|) (-10 -7 (-15 -3527 ((-1170 |#1|) (-580 |#1|))) (-15 -3527 ((-1170 |#1|) |#1| (-825)))) (-956)) (T -1082)) -((-3527 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-5 *2 (-1170 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-956)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-956)) (-5 *2 (-1170 *4)) (-5 *1 (-1082 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3141 (((-480) $) NIL (|has| |#1| (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| |#1| (-945 (-345 (-480)))) ELT) ((|#1| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-387)) ELT)) (-1613 (($ $ |#1| (-879) $) NIL T ELT)) (-2398 (((-83) $) 18 T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-879)) NIL T ELT)) (-2806 (((-879) $) NIL T ELT)) (-1614 (($ (-1 (-879) (-879)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#1| $) NIL T ELT)) (-3721 (($ $ (-879) |#1| $) NIL (-12 (|has| (-879) (-102)) (|has| |#1| (-491))) ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-491)) ELT)) (-3931 (((-879) $) NIL T ELT)) (-2803 ((|#1| $) NIL (|has| |#1| (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ |#1|) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-945 (-345 (-480))))) ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-879)) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2646 (($) 13 T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 22 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1083 |#1|) (-13 (-274 |#1| (-879)) (-10 -8 (IF (|has| |#1| (-491)) (IF (|has| (-879) (-102)) (-15 -3721 ($ $ (-879) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|))) (-956)) (T -1083)) -((-3721 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-879)) (-4 *2 (-102)) (-5 *1 (-1083 *3)) (-4 *3 (-491)) (-4 *3 (-956))))) -((-3528 (((-1085) (-1081) $) 26 T ELT)) (-3538 (($) 30 T ELT)) (-3530 (((-3 (|:| |fst| (-372)) (|:| -3893 #1="void")) (-1081) $) 23 T ELT)) (-3532 (((-1176) (-1081) (-3 (|:| |fst| (-372)) (|:| -3893 #1#)) $) 42 T ELT) (((-1176) (-1081) (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) 43 T ELT) (((-1176) (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) 44 T ELT)) (-3540 (((-1176) (-1081)) 59 T ELT)) (-3531 (((-1176) (-1081) $) 56 T ELT) (((-1176) (-1081)) 57 T ELT) (((-1176)) 58 T ELT)) (-3536 (((-1176) (-1081)) 38 T ELT)) (-3534 (((-1081)) 37 T ELT)) (-3548 (($) 35 T ELT)) (-3547 (((-374) (-1081) (-374) (-1081) $) 46 T ELT) (((-374) (-580 (-1081)) (-374) (-1081) $) 50 T ELT) (((-374) (-1081) (-374)) 47 T ELT) (((-374) (-1081) (-374) (-1081)) 51 T ELT)) (-3535 (((-1081)) 36 T ELT)) (-3929 (((-767) $) 29 T ELT)) (-3537 (((-1176)) 31 T ELT) (((-1176) (-1081)) 34 T ELT)) (-3529 (((-580 (-1081)) (-1081) $) 25 T ELT)) (-3533 (((-1176) (-1081) (-580 (-1081)) $) 39 T ELT) (((-1176) (-1081) (-580 (-1081))) 40 T ELT) (((-1176) (-580 (-1081))) 41 T ELT))) -(((-1084) (-13 (-549 (-767)) (-10 -8 (-15 -3538 ($)) (-15 -3537 ((-1176))) (-15 -3537 ((-1176) (-1081))) (-15 -3547 ((-374) (-1081) (-374) (-1081) $)) (-15 -3547 ((-374) (-580 (-1081)) (-374) (-1081) $)) (-15 -3547 ((-374) (-1081) (-374))) (-15 -3547 ((-374) (-1081) (-374) (-1081))) (-15 -3536 ((-1176) (-1081))) (-15 -3535 ((-1081))) (-15 -3534 ((-1081))) (-15 -3533 ((-1176) (-1081) (-580 (-1081)) $)) (-15 -3533 ((-1176) (-1081) (-580 (-1081)))) (-15 -3533 ((-1176) (-580 (-1081)))) (-15 -3532 ((-1176) (-1081) (-3 (|:| |fst| (-372)) (|:| -3893 #1="void")) $)) (-15 -3532 ((-1176) (-1081) (-3 (|:| |fst| (-372)) (|:| -3893 #1#)))) (-15 -3532 ((-1176) (-3 (|:| |fst| (-372)) (|:| -3893 #1#)))) (-15 -3531 ((-1176) (-1081) $)) (-15 -3531 ((-1176) (-1081))) (-15 -3531 ((-1176))) (-15 -3540 ((-1176) (-1081))) (-15 -3548 ($)) (-15 -3530 ((-3 (|:| |fst| (-372)) (|:| -3893 #1#)) (-1081) $)) (-15 -3529 ((-580 (-1081)) (-1081) $)) (-15 -3528 ((-1085) (-1081) $))))) (T -1084)) -((-3538 (*1 *1) (-5 *1 (-1084))) (-3537 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3547 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) (-3547 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-374)) (-5 *3 (-580 (-1081))) (-5 *4 (-1081)) (-5 *1 (-1084)))) (-3547 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) (-3547 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3535 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1084)))) (-3534 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1084)))) (-3533 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-580 (-1081))) (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-1081))) (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3532 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1081)) (-5 *4 (-3 (|:| |fst| (-372)) (|:| -3893 #1="void"))) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3531 (*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3531 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) (-3548 (*1 *1) (-5 *1 (-1084))) (-3530 (*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *1 (-1084)))) (-3529 (*1 *2 *3 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1084)) (-5 *3 (-1081)))) (-3528 (*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-1085)) (-5 *1 (-1084))))) -((-3542 (((-580 (-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480))))))))) $) 66 T ELT)) (-3544 (((-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480)))))))) (-372) $) 47 T ELT)) (-3539 (($ (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| (-374))))) 17 T ELT)) (-3540 (((-1176) $) 73 T ELT)) (-3545 (((-580 (-1081)) $) 22 T ELT)) (-3541 (((-1009) $) 60 T ELT)) (-3546 (((-374) (-1081) $) 27 T ELT)) (-3543 (((-580 (-1081)) $) 30 T ELT)) (-3548 (($) 19 T ELT)) (-3547 (((-374) (-580 (-1081)) (-374) $) 25 T ELT) (((-374) (-1081) (-374) $) 24 T ELT)) (-3929 (((-767) $) 12 T ELT) (((-1093 (-1081) (-374)) $) 13 T ELT))) -(((-1085) (-13 (-549 (-767)) (-10 -8 (-15 -3929 ((-1093 (-1081) (-374)) $)) (-15 -3548 ($)) (-15 -3547 ((-374) (-580 (-1081)) (-374) $)) (-15 -3547 ((-374) (-1081) (-374) $)) (-15 -3546 ((-374) (-1081) $)) (-15 -3545 ((-580 (-1081)) $)) (-15 -3544 ((-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480)))))))) (-372) $)) (-15 -3543 ((-580 (-1081)) $)) (-15 -3542 ((-580 (-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480))))))))) $)) (-15 -3541 ((-1009) $)) (-15 -3540 ((-1176) $)) (-15 -3539 ($ (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| (-374))))))))) (T -1085)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-1093 (-1081) (-374))) (-5 *1 (-1085)))) (-3548 (*1 *1) (-5 *1 (-1085))) (-3547 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-374)) (-5 *3 (-580 (-1081))) (-5 *1 (-1085)))) (-3547 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1085)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-374)) (-5 *1 (-1085)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1085)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-372)) (-5 *2 (-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480))))))))) (-5 *1 (-1085)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1085)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-3 (|:| -3525 (-1081)) (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480)))))))))) (-5 *1 (-1085)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1085)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1085)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| (-374))))) (-5 *1 (-1085))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3142 (((-3 (-480) #1="failed") $) 29 T ELT) (((-3 (-177) #1#) $) 35 T ELT) (((-3 (-441) #1#) $) 43 T ELT) (((-3 (-1064) #1#) $) 47 T ELT)) (-3141 (((-480) $) 30 T ELT) (((-177) $) 36 T ELT) (((-441) $) 40 T ELT) (((-1064) $) 48 T ELT)) (-3553 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3552 (((-3 (-480) (-177) (-441) (-1064) $) $) 56 T ELT)) (-3551 (((-580 $) $) 58 T ELT)) (-3955 (((-1009) $) 24 T ELT) (($ (-1009)) 25 T ELT)) (-3550 (((-83) $) 57 T ELT)) (-3929 (((-767) $) 23 T ELT) (($ (-480)) 26 T ELT) (($ (-177)) 32 T ELT) (($ (-441)) 38 T ELT) (($ (-1064)) 44 T ELT) (((-469) $) 60 T ELT) (((-480) $) 31 T ELT) (((-177) $) 37 T ELT) (((-441) $) 41 T ELT) (((-1064) $) 49 T ELT)) (-3549 (((-83) $ (|[\|\|]| (-480))) 10 T ELT) (((-83) $ (|[\|\|]| (-177))) 13 T ELT) (((-83) $ (|[\|\|]| (-441))) 19 T ELT) (((-83) $ (|[\|\|]| (-1064))) 16 T ELT)) (-3554 (($ (-441) (-580 $)) 51 T ELT) (($ $ (-580 $)) 52 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3555 (((-480) $) 27 T ELT) (((-177) $) 33 T ELT) (((-441) $) 39 T ELT) (((-1064) $) 45 T ELT)) (-3042 (((-83) $ $) 7 T ELT))) -(((-1086) (-13 (-1166) (-1007) (-945 (-480)) (-945 (-177)) (-945 (-441)) (-945 (-1064)) (-549 (-469)) (-10 -8 (-15 -3955 ((-1009) $)) (-15 -3955 ($ (-1009))) (-15 -3929 ((-480) $)) (-15 -3555 ((-480) $)) (-15 -3929 ((-177) $)) (-15 -3555 ((-177) $)) (-15 -3929 ((-441) $)) (-15 -3555 ((-441) $)) (-15 -3929 ((-1064) $)) (-15 -3555 ((-1064) $)) (-15 -3554 ($ (-441) (-580 $))) (-15 -3554 ($ $ (-580 $))) (-15 -3553 ((-83) $)) (-15 -3552 ((-3 (-480) (-177) (-441) (-1064) $) $)) (-15 -3551 ((-580 $) $)) (-15 -3550 ((-83) $)) (-15 -3549 ((-83) $ (|[\|\|]| (-480)))) (-15 -3549 ((-83) $ (|[\|\|]| (-177)))) (-15 -3549 ((-83) $ (|[\|\|]| (-441)))) (-15 -3549 ((-83) $ (|[\|\|]| (-1064))))))) (T -1086)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1086)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-1086)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1086)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1086)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1086)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1086)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1086)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1086)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1086)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1086)))) (-3554 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-1086))) (-5 *1 (-1086)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1086)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1086)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-3 (-480) (-177) (-441) (-1064) (-1086))) (-5 *1 (-1086)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1086)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1086)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-83)) (-5 *1 (-1086)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1086)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)) (-5 *1 (-1086)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)) (-5 *1 (-1086))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3121 (((-689)) 21 T ELT)) (-3707 (($) 10 T CONST)) (-2980 (($) 25 T ELT)) (-2517 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2843 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1998 (((-825) $) 23 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) 22 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT))) -(((-1087 |#1|) (-13 (-747) (-10 -8 (-15 -3707 ($) -3935))) (-825)) (T -1087)) -((-3707 (*1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-825))))) -((-480) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) 24 T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) 18 T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2843 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3708 (($ $ $) 20 T ELT)) (-3709 (($ $ $) 19 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) 22 T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) 21 T ELT))) -(((-1088 |#1|) (-13 (-747) (-601) (-10 -8 (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935))) (-825)) (T -1088)) -((-3709 (*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825)))) (-3708 (*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825)))) (-3707 (*1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825))))) -((-689) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 9 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 7 T ELT))) -(((-1089) (-1007)) (T -1089)) -NIL -((-3557 (((-580 (-580 (-852 |#1|))) (-580 (-345 (-852 |#1|))) (-580 (-1081))) 69 T ELT)) (-3556 (((-580 (-246 (-345 (-852 |#1|)))) (-246 (-345 (-852 |#1|)))) 81 T ELT) (((-580 (-246 (-345 (-852 |#1|)))) (-345 (-852 |#1|))) 77 T ELT) (((-580 (-246 (-345 (-852 |#1|)))) (-246 (-345 (-852 |#1|))) (-1081)) 82 T ELT) (((-580 (-246 (-345 (-852 |#1|)))) (-345 (-852 |#1|)) (-1081)) 76 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-246 (-345 (-852 |#1|))))) 108 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-345 (-852 |#1|)))) 107 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-246 (-345 (-852 |#1|)))) (-580 (-1081))) 109 T ELT) (((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-345 (-852 |#1|))) (-580 (-1081))) 106 T ELT))) -(((-1090 |#1|) (-10 -7 (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-345 (-852 |#1|))) (-580 (-1081)))) (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-246 (-345 (-852 |#1|)))) (-580 (-1081)))) (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-345 (-852 |#1|))))) (-15 -3556 ((-580 (-580 (-246 (-345 (-852 |#1|))))) (-580 (-246 (-345 (-852 |#1|)))))) (-15 -3556 ((-580 (-246 (-345 (-852 |#1|)))) (-345 (-852 |#1|)) (-1081))) (-15 -3556 ((-580 (-246 (-345 (-852 |#1|)))) (-246 (-345 (-852 |#1|))) (-1081))) (-15 -3556 ((-580 (-246 (-345 (-852 |#1|)))) (-345 (-852 |#1|)))) (-15 -3556 ((-580 (-246 (-345 (-852 |#1|)))) (-246 (-345 (-852 |#1|))))) (-15 -3557 ((-580 (-580 (-852 |#1|))) (-580 (-345 (-852 |#1|))) (-580 (-1081))))) (-491)) (T -1090)) -((-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-852 *5)))) (-5 *1 (-1090 *5)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-246 (-345 (-852 *4)))))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-345 (-852 *4))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-246 (-345 (-852 *5)))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-345 (-852 *5))))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-1090 *4)) (-5 *3 (-580 (-246 (-345 (-852 *4))))))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-580 (-345 (-852 *4)))) (-4 *4 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-1090 *4)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-580 (-1081))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-1090 *5)) (-5 *3 (-580 (-246 (-345 (-852 *5))))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-1090 *5))))) -((-3562 (((-1064)) 7 T ELT)) (-3559 (((-1064)) 11 T CONST)) (-3558 (((-1176) (-1064)) 13 T ELT)) (-3561 (((-1064)) 8 T CONST)) (-3560 (((-101)) 10 T CONST))) -(((-1091) (-13 (-1120) (-10 -7 (-15 -3562 ((-1064))) (-15 -3561 ((-1064)) -3935) (-15 -3560 ((-101)) -3935) (-15 -3559 ((-1064)) -3935) (-15 -3558 ((-1176) (-1064)))))) (T -1091)) -((-3562 (*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091)))) (-3561 (*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091)))) (-3560 (*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1091)))) (-3559 (*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1091))))) -((-3566 (((-580 (-580 |#1|)) (-580 (-580 |#1|)) (-580 (-580 (-580 |#1|)))) 56 T ELT)) (-3569 (((-580 (-580 (-580 |#1|))) (-580 (-580 |#1|))) 38 T ELT)) (-3570 (((-1094 (-580 |#1|)) (-580 |#1|)) 49 T ELT)) (-3572 (((-580 (-580 |#1|)) (-580 |#1|)) 45 T ELT)) (-3575 (((-2 (|:| |f1| (-580 |#1|)) (|:| |f2| (-580 (-580 (-580 |#1|)))) (|:| |f3| (-580 (-580 |#1|))) (|:| |f4| (-580 (-580 (-580 |#1|))))) (-580 (-580 (-580 |#1|)))) 53 T ELT)) (-3574 (((-2 (|:| |f1| (-580 |#1|)) (|:| |f2| (-580 (-580 (-580 |#1|)))) (|:| |f3| (-580 (-580 |#1|))) (|:| |f4| (-580 (-580 (-580 |#1|))))) (-580 |#1|) (-580 (-580 (-580 |#1|))) (-580 (-580 |#1|)) (-580 (-580 (-580 |#1|))) (-580 (-580 (-580 |#1|))) (-580 (-580 (-580 |#1|)))) 52 T ELT)) (-3571 (((-580 (-580 |#1|)) (-580 (-580 |#1|))) 43 T ELT)) (-3573 (((-580 |#1|) (-580 |#1|)) 46 T ELT)) (-3565 (((-580 (-580 (-580 |#1|))) (-580 |#1|) (-580 (-580 (-580 |#1|)))) 32 T ELT)) (-3564 (((-580 (-580 (-580 |#1|))) (-1 (-83) |#1| |#1|) (-580 |#1|) (-580 (-580 (-580 |#1|)))) 29 T ELT)) (-3563 (((-2 (|:| |fs| (-83)) (|:| |sd| (-580 |#1|)) (|:| |td| (-580 (-580 |#1|)))) (-1 (-83) |#1| |#1|) (-580 |#1|) (-580 (-580 |#1|))) 24 T ELT)) (-3567 (((-580 (-580 |#1|)) (-580 (-580 (-580 |#1|)))) 58 T ELT)) (-3568 (((-580 (-580 |#1|)) (-1094 (-580 |#1|))) 60 T ELT))) -(((-1092 |#1|) (-10 -7 (-15 -3563 ((-2 (|:| |fs| (-83)) (|:| |sd| (-580 |#1|)) (|:| |td| (-580 (-580 |#1|)))) (-1 (-83) |#1| |#1|) (-580 |#1|) (-580 (-580 |#1|)))) (-15 -3564 ((-580 (-580 (-580 |#1|))) (-1 (-83) |#1| |#1|) (-580 |#1|) (-580 (-580 (-580 |#1|))))) (-15 -3565 ((-580 (-580 (-580 |#1|))) (-580 |#1|) (-580 (-580 (-580 |#1|))))) (-15 -3566 ((-580 (-580 |#1|)) (-580 (-580 |#1|)) (-580 (-580 (-580 |#1|))))) (-15 -3567 ((-580 (-580 |#1|)) (-580 (-580 (-580 |#1|))))) (-15 -3568 ((-580 (-580 |#1|)) (-1094 (-580 |#1|)))) (-15 -3569 ((-580 (-580 (-580 |#1|))) (-580 (-580 |#1|)))) (-15 -3570 ((-1094 (-580 |#1|)) (-580 |#1|))) (-15 -3571 ((-580 (-580 |#1|)) (-580 (-580 |#1|)))) (-15 -3572 ((-580 (-580 |#1|)) (-580 |#1|))) (-15 -3573 ((-580 |#1|) (-580 |#1|))) (-15 -3574 ((-2 (|:| |f1| (-580 |#1|)) (|:| |f2| (-580 (-580 (-580 |#1|)))) (|:| |f3| (-580 (-580 |#1|))) (|:| |f4| (-580 (-580 (-580 |#1|))))) (-580 |#1|) (-580 (-580 (-580 |#1|))) (-580 (-580 |#1|)) (-580 (-580 (-580 |#1|))) (-580 (-580 (-580 |#1|))) (-580 (-580 (-580 |#1|))))) (-15 -3575 ((-2 (|:| |f1| (-580 |#1|)) (|:| |f2| (-580 (-580 (-580 |#1|)))) (|:| |f3| (-580 (-580 |#1|))) (|:| |f4| (-580 (-580 (-580 |#1|))))) (-580 (-580 (-580 |#1|)))))) (-751)) (T -1092)) -((-3575 (*1 *2 *3) (-12 (-4 *4 (-751)) (-5 *2 (-2 (|:| |f1| (-580 *4)) (|:| |f2| (-580 (-580 (-580 *4)))) (|:| |f3| (-580 (-580 *4))) (|:| |f4| (-580 (-580 (-580 *4)))))) (-5 *1 (-1092 *4)) (-5 *3 (-580 (-580 (-580 *4)))))) (-3574 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-751)) (-5 *3 (-580 *6)) (-5 *5 (-580 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-580 *5)) (|:| |f3| *5) (|:| |f4| (-580 *5)))) (-5 *1 (-1092 *6)) (-5 *4 (-580 *5)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-1092 *3)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-751)) (-5 *2 (-580 (-580 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-580 *4)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-751)) (-5 *1 (-1092 *3)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-751)) (-5 *2 (-1094 (-580 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-580 *4)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-751)) (-5 *2 (-580 (-580 (-580 *4)))) (-5 *1 (-1092 *4)) (-5 *3 (-580 (-580 *4))))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-1094 (-580 *4))) (-4 *4 (-751)) (-5 *2 (-580 (-580 *4))) (-5 *1 (-1092 *4)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-580 (-580 (-580 *4)))) (-5 *2 (-580 (-580 *4))) (-5 *1 (-1092 *4)) (-4 *4 (-751)))) (-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-580 (-580 (-580 *4)))) (-5 *2 (-580 (-580 *4))) (-4 *4 (-751)) (-5 *1 (-1092 *4)))) (-3565 (*1 *2 *3 *2) (-12 (-5 *2 (-580 (-580 (-580 *4)))) (-5 *3 (-580 *4)) (-4 *4 (-751)) (-5 *1 (-1092 *4)))) (-3564 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-580 (-580 (-580 *5)))) (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-580 *5)) (-4 *5 (-751)) (-5 *1 (-1092 *5)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-751)) (-5 *4 (-580 *6)) (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-580 *4)))) (-5 *1 (-1092 *6)) (-5 *5 (-580 *4))))) -((-2554 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3582 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2186 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2189 ((|#1| $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-2220 (((-580 |#1|) $) NIL T ELT)) (-2221 (((-83) |#1| $) NIL T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2191 (((-580 |#1|) $) NIL T ELT)) (-2192 (((-83) |#1| $) NIL T ELT)) (-3228 (((-1025) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ELT)) (-3784 ((|#2| $) NIL (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2187 (($ $ |#2|) NIL (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1455 (($) NIL T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (((-689) |#2| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT) (((-689) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3929 (((-767) $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-549 (-767)))) ELT)) (-1255 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1093 |#1| |#2|) (-13 (-1098 |#1| |#2|) (-10 -7 (-6 -3978))) (-1007) (-1007)) (T -1093)) -NIL -((-3576 (($ (-580 (-580 |#1|))) 10 T ELT)) (-3577 (((-580 (-580 |#1|)) $) 11 T ELT)) (-3929 (((-767) $) 33 T ELT))) -(((-1094 |#1|) (-10 -8 (-15 -3576 ($ (-580 (-580 |#1|)))) (-15 -3577 ((-580 (-580 |#1|)) $)) (-15 -3929 ((-767) $))) (-1007)) (T -1094)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1094 *3)) (-4 *3 (-1007)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 *3))) (-5 *1 (-1094 *3)) (-4 *3 (-1007)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-1094 *3))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3578 (($ |#1| (-55)) 11 T ELT)) (-3525 ((|#1| $) 13 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2619 (((-83) $ |#1|) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2507 (((-55) $) 15 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1095 |#1|) (-13 (-742 |#1|) (-10 -8 (-15 -3578 ($ |#1| (-55))))) (-1007)) (T -1095)) -((-3578 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1095 *2)) (-4 *2 (-1007))))) -((-3579 ((|#1| (-580 |#1|)) 46 T ELT)) (-3581 ((|#1| |#1| (-480)) 24 T ELT)) (-3580 (((-1076 |#1|) |#1| (-825)) 20 T ELT))) -(((-1096 |#1|) (-10 -7 (-15 -3579 (|#1| (-580 |#1|))) (-15 -3580 ((-1076 |#1|) |#1| (-825))) (-15 -3581 (|#1| |#1| (-480)))) (-309)) (T -1096)) -((-3581 (*1 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-1096 *2)) (-4 *2 (-309)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *4 (-825)) (-5 *2 (-1076 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-309)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-1096 *2)) (-4 *2 (-309))))) -((-3582 (($) 10 T ELT) (($ (-580 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3388 (($ (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-580 |#3|) $) 41 T ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1264 (((-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3592 (($ (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2191 (((-580 |#2|) $) 19 T ELT)) (-2192 (((-83) |#2| $) 65 T ELT)) (-1343 (((-3 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1265 (((-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 73 T ELT)) (-2193 (((-580 |#3|) $) 43 T ELT)) (-3783 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-689) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-689) |#3| $) NIL T ELT) (((-689) (-1 (-83) |#3|) $) 79 T ELT)) (-3929 (((-767) $) 27 T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 71 T ELT)) (-3042 (((-83) $ $) 51 T ELT))) -(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3929 ((-767) |#1|)) (-15 -3941 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3582 (|#1| (-580 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))))) (-15 -3582 (|#1|)) (-15 -3941 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1938 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1937 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1935 ((-689) (-1 (-83) |#3|) |#1|)) (-15 -2875 ((-580 |#3|) |#1|)) (-15 -1935 ((-689) |#3| |#1|)) (-15 -3783 (|#3| |#1| |#2| |#3|)) (-15 -3783 (|#3| |#1| |#2|)) (-15 -2193 ((-580 |#3|) |#1|)) (-15 -2192 ((-83) |#2| |#1|)) (-15 -2191 ((-580 |#2|) |#1|)) (-15 -3388 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3388 (|#1| (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3388 (|#1| (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1343 ((-3 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1264 ((-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3592 (|#1| (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1265 ((-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1935 ((-689) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2875 ((-580 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1935 ((-689) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1936 ((-83) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1937 ((-83) (-1 (-83) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1938 (|#1| (-1 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3941 (|#1| (-1 (-2 (|:| -3843 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3843 |#2|) (|:| |entry| |#3|))) |#1|))) (-1098 |#2| |#3|) (-1007) (-1007)) (T -1097)) -NIL -((-2554 (((-83) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3582 (($) 77 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2186 (((-1176) $ |#1| |#1|) 104 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1559 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3978)) ELT)) (-3693 (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3978)) ELT)) (-2219 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3707 (($) 7 T CONST)) (-1342 (($ $) 62 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT)) (-3388 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3978)) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3978)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3389 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3978)) ELT)) (-3825 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#2| $ |#1|) 93 T ELT)) (-2875 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) 84 (|has| $ (-6 -3978)) ELT)) (-2188 ((|#1| $) 101 (|has| |#1| (-751)) ELT)) (-2594 (((-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3978)) ELT) (((-580 |#2|) $) 85 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 ((|#1| $) 100 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3979)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3227 (((-1064) $) 22 (OR (|has| |#2| (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-2220 (((-580 |#1|) $) 67 T ELT)) (-2221 (((-83) |#1| $) 68 T ELT)) (-1264 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3592 (($ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2191 (((-580 |#1|) $) 98 T ELT)) (-2192 (((-83) |#1| $) 97 T ELT)) (-3228 (((-1025) $) 21 (OR (|has| |#2| (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT)) (-3784 ((|#2| $) 102 (|has| |#1| (-751)) ELT)) (-1343 (((-3 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2187 (($ $ |#2|) 103 (|has| $ (-6 -3979)) ELT)) (-1265 (((-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-246 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 91 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-246 |#2|)) 89 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT) (($ $ (-580 (-246 |#2|))) 88 (-12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3978)) (|has| |#2| (-1007))) ELT)) (-2193 (((-580 |#2|) $) 96 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1455 (($) 53 T ELT) (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1935 (((-689) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) |#2| $) 86 (-12 (|has| |#2| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 63 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ELT)) (-3513 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3929 (((-767) $) 17 (OR (|has| |#2| (-549 (-767))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767)))) ELT)) (-1255 (((-83) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1266 (($ (-580 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1937 (((-83) (-1 (-83) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3978)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1098 |#1| |#2|) (-111) (-1007) (-1007)) (T -1098)) -((-3771 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) (-3582 (*1 *1) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-580 (-2 (|:| -3843 *3) (|:| |entry| *4)))) (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *1 (-1098 *3 *4)))) (-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1098 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -(-13 (-546 |t#1| |t#2|) (-535 |t#1| |t#2|) (-10 -8 (-15 -3771 (|t#2| $ |t#1| |t#2|)) (-15 -3582 ($)) (-15 -3582 ($ (-580 (-2 (|:| -3843 |t#1|) (|:| |entry| |t#2|))))) (-15 -3941 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1007)) (|has| |#2| (-72))) ((-549 (-767)) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-549 (-767))) (|has| |#2| (-1007)) (|has| |#2| (-549 (-767)))) ((-122 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-550 (-469)) |has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-550 (-469))) ((-181 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-191 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-239 |#1| |#2|) . T) ((-241 |#1| |#2|) . T) ((-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-257 |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-424 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) . T) ((-424 |#2|) . T) ((-535 |#1| |#2|) . T) ((-449 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3843 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-257 (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007))) ((-449 |#2| |#2|) -12 (|has| |#2| (-257 |#2|)) (|has| |#2| (-1007))) ((-13) . T) ((-546 |#1| |#2|) . T) ((-1007) OR (|has| (-2 (|:| -3843 |#1|) (|:| |entry| |#2|)) (-1007)) (|has| |#2| (-1007))) ((-1120) . T)) -((-3588 (((-83)) 29 T ELT)) (-3585 (((-1176) (-1064)) 31 T ELT)) (-3589 (((-83)) 41 T ELT)) (-3586 (((-1176)) 39 T ELT)) (-3584 (((-1176) (-1064) (-1064)) 30 T ELT)) (-3590 (((-83)) 42 T ELT)) (-3592 (((-1176) |#1| |#2|) 53 T ELT)) (-3583 (((-1176)) 26 T ELT)) (-3591 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3587 (((-1176)) 40 T ELT))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -3583 ((-1176))) (-15 -3584 ((-1176) (-1064) (-1064))) (-15 -3585 ((-1176) (-1064))) (-15 -3586 ((-1176))) (-15 -3587 ((-1176))) (-15 -3588 ((-83))) (-15 -3589 ((-83))) (-15 -3590 ((-83))) (-15 -3591 ((-3 |#2| "failed") |#1|)) (-15 -3592 ((-1176) |#1| |#2|))) (-1007) (-1007)) (T -1099)) -((-3592 (*1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3591 (*1 *2 *3) (|partial| -12 (-4 *2 (-1007)) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1007)))) (-3590 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3589 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3588 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3587 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3586 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1099 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)))) (-3584 (*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1099 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)))) (-3583 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3598 (((-580 (-1064)) $) 37 T ELT)) (-3594 (((-580 (-1064)) $ (-580 (-1064))) 40 T ELT)) (-3593 (((-580 (-1064)) $ (-580 (-1064))) 39 T ELT)) (-3595 (((-580 (-1064)) $ (-580 (-1064))) 41 T ELT)) (-3596 (((-580 (-1064)) $) 36 T ELT)) (-3597 (($) 26 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3599 (((-580 (-1064)) $) 38 T ELT)) (-3600 (((-1176) $ (-480)) 33 T ELT) (((-1176) $) 34 T ELT)) (-3955 (($ (-767) (-480)) 31 T ELT) (($ (-767) (-480) (-767)) NIL T ELT)) (-3929 (((-767) $) 47 T ELT) (($ (-767)) 30 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1100) (-13 (-1007) (-552 (-767)) (-10 -8 (-15 -3955 ($ (-767) (-480))) (-15 -3955 ($ (-767) (-480) (-767))) (-15 -3600 ((-1176) $ (-480))) (-15 -3600 ((-1176) $)) (-15 -3599 ((-580 (-1064)) $)) (-15 -3598 ((-580 (-1064)) $)) (-15 -3597 ($)) (-15 -3596 ((-580 (-1064)) $)) (-15 -3595 ((-580 (-1064)) $ (-580 (-1064)))) (-15 -3594 ((-580 (-1064)) $ (-580 (-1064)))) (-15 -3593 ((-580 (-1064)) $ (-580 (-1064))))))) (T -1100)) -((-3955 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-480)) (-5 *1 (-1100)))) (-3955 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-767)) (-5 *3 (-480)) (-5 *1 (-1100)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1100)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1100)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100)))) (-3597 (*1 *1) (-5 *1 (-1100))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100)))) (-3595 (*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100)))) (-3594 (*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100)))) (-3593 (*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -((-3929 (((-1100) |#1|) 11 T ELT))) -(((-1101 |#1|) (-10 -7 (-15 -3929 ((-1100) |#1|))) (-1007)) (T -1101)) -((-3929 (*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1101 *3)) (-4 *3 (-1007))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3605 (((-1064) $ (-1064)) 21 T ELT) (((-1064) $) 20 T ELT)) (-1686 (((-1064) $ (-1064)) 19 T ELT)) (-1690 (($ $ (-1064)) NIL T ELT)) (-3603 (((-3 (-1064) #1="failed") $) 11 T ELT)) (-3604 (((-1064) $) 8 T ELT)) (-3602 (((-3 (-1064) #1#) $) 12 T ELT)) (-1687 (((-1064) $) 9 T ELT)) (-1691 (($ (-333)) NIL T ELT) (($ (-333) (-1064)) NIL T ELT)) (-3525 (((-333) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-1688 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3601 (((-83) $) 25 T ELT)) (-3929 (((-767) $) NIL T ELT)) (-1689 (($ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1102) (-13 (-311 (-333) (-1064)) (-10 -8 (-15 -3605 ((-1064) $ (-1064))) (-15 -3605 ((-1064) $)) (-15 -3604 ((-1064) $)) (-15 -3603 ((-3 (-1064) #1="failed") $)) (-15 -3602 ((-3 (-1064) #1#) $)) (-15 -3601 ((-83) $))))) (T -1102)) -((-3605 (*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1102)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1102)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1102)))) (-3603 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-1102)))) (-3602 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-1102)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1102))))) -((-3606 (((-3 (-480) #1="failed") |#1|) 19 T ELT)) (-3607 (((-3 (-480) #1#) |#1|) 14 T ELT)) (-3608 (((-480) (-1064)) 33 T ELT))) -(((-1103 |#1|) (-10 -7 (-15 -3606 ((-3 (-480) #1="failed") |#1|)) (-15 -3607 ((-3 (-480) #1#) |#1|)) (-15 -3608 ((-480) (-1064)))) (-956)) (T -1103)) -((-3608 (*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-480)) (-5 *1 (-1103 *4)) (-4 *4 (-956)))) (-3607 (*1 *2 *3) (|partial| -12 (-5 *2 (-480)) (-5 *1 (-1103 *3)) (-4 *3 (-956)))) (-3606 (*1 *2 *3) (|partial| -12 (-5 *2 (-480)) (-5 *1 (-1103 *3)) (-4 *3 (-956))))) -((-3609 (((-1038 (-177))) 9 T ELT))) -(((-1104) (-10 -7 (-15 -3609 ((-1038 (-177)))))) (T -1104)) -((-3609 (*1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1104))))) -((-3610 (($) 12 T ELT)) (-3481 (($ $) 36 T ELT)) (-3479 (($ $) 34 T ELT)) (-3467 (($ $) 26 T ELT)) (-3483 (($ $) 18 T ELT)) (-3484 (($ $) 16 T ELT)) (-3482 (($ $) 20 T ELT)) (-3470 (($ $) 31 T ELT)) (-3480 (($ $) 35 T ELT)) (-3468 (($ $) 30 T ELT))) -(((-1105 |#1|) (-10 -7 (-15 -3610 (|#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3468 (|#1| |#1|))) (-1106)) (T -1105)) -NIL -((-3475 (($ $) 26 T ELT)) (-3622 (($ $) 11 T ELT)) (-3473 (($ $) 27 T ELT)) (-3621 (($ $) 10 T ELT)) (-3477 (($ $) 28 T ELT)) (-3620 (($ $) 9 T ELT)) (-3610 (($) 16 T ELT)) (-3925 (($ $) 19 T ELT)) (-3926 (($ $) 18 T ELT)) (-3478 (($ $) 29 T ELT)) (-3619 (($ $) 8 T ELT)) (-3476 (($ $) 30 T ELT)) (-3618 (($ $) 7 T ELT)) (-3474 (($ $) 31 T ELT)) (-3617 (($ $) 6 T ELT)) (-3481 (($ $) 20 T ELT)) (-3469 (($ $) 32 T ELT)) (-3479 (($ $) 21 T ELT)) (-3467 (($ $) 33 T ELT)) (-3483 (($ $) 22 T ELT)) (-3471 (($ $) 34 T ELT)) (-3484 (($ $) 23 T ELT)) (-3472 (($ $) 35 T ELT)) (-3482 (($ $) 24 T ELT)) (-3470 (($ $) 36 T ELT)) (-3480 (($ $) 25 T ELT)) (-3468 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1106) (-111)) (T -1106)) -((-3610 (*1 *1) (-4 *1 (-1106)))) -(-13 (-1109) (-66) (-428) (-35) (-237) (-10 -8 (-15 -3610 ($)))) -(((-35) . T) ((-66) . T) ((-237) . T) ((-428) . T) ((-1109) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 19 T ELT)) (-3615 (($ |#1| (-580 $)) 28 T ELT) (($ (-580 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3011 ((|#1| $ |#1|) 14 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 13 (|has| $ (-6 -3979)) ELT)) (-3707 (($) NIL T CONST)) (-2875 (((-580 |#1|) $) 70 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 59 T ELT)) (-3013 (((-83) $ $) 50 (|has| |#1| (-1007)) ELT)) (-2594 (((-580 |#1|) $) 71 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 69 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3016 (((-580 |#1|) $) 55 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 67 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 102 T ELT)) (-3386 (((-83) $) 9 T ELT)) (-3548 (($) 10 T ELT)) (-3783 ((|#1| $ #1#) NIL T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3611 (((-580 $) $) 84 T ELT)) (-3612 (((-83) $ $) 105 T ELT)) (-3613 (((-580 $) $) 100 T ELT)) (-3614 (($ $) 101 T ELT)) (-3616 (((-83) $) 77 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 25 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 17 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3383 (($ $) 83 T ELT)) (-3929 (((-767) $) 86 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 12 T ELT)) (-3014 (((-83) $ $) 39 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 66 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 37 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 81 (|has| $ (-6 -3978)) ELT))) -(((-1107 |#1|) (-13 (-918 |#1|) (-10 -8 (-6 -3978) (-6 -3979) (-15 -3615 ($ |#1| (-580 $))) (-15 -3615 ($ (-580 |#1|))) (-15 -3615 ($ |#1|)) (-15 -3616 ((-83) $)) (-15 -3614 ($ $)) (-15 -3613 ((-580 $) $)) (-15 -3612 ((-83) $ $)) (-15 -3611 ((-580 $) $)))) (-1007)) (T -1107)) -((-3616 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1107 *3)) (-4 *3 (-1007)))) (-3615 (*1 *1 *2 *3) (-12 (-5 *3 (-580 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1007)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-1107 *3)))) (-3615 (*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1007)))) (-3614 (*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1007)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-580 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1007)))) (-3612 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1107 *3)) (-4 *3 (-1007)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-580 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1007))))) -((-3622 (($ $) 15 T ELT)) (-3620 (($ $) 12 T ELT)) (-3619 (($ $) 10 T ELT)) (-3618 (($ $) 17 T ELT))) -(((-1108 |#1|) (-10 -7 (-15 -3618 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3622 (|#1| |#1|))) (-1109)) (T -1108)) -NIL -((-3622 (($ $) 11 T ELT)) (-3621 (($ $) 10 T ELT)) (-3620 (($ $) 9 T ELT)) (-3619 (($ $) 8 T ELT)) (-3618 (($ $) 7 T ELT)) (-3617 (($ $) 6 T ELT))) -(((-1109) (-111)) (T -1109)) -((-3622 (*1 *1 *1) (-4 *1 (-1109))) (-3621 (*1 *1 *1) (-4 *1 (-1109))) (-3620 (*1 *1 *1) (-4 *1 (-1109))) (-3619 (*1 *1 *1) (-4 *1 (-1109))) (-3618 (*1 *1 *1) (-4 *1 (-1109))) (-3617 (*1 *1 *1) (-4 *1 (-1109)))) -(-13 (-10 -8 (-15 -3617 ($ $)) (-15 -3618 ($ $)) (-15 -3619 ($ $)) (-15 -3620 ($ $)) (-15 -3621 ($ $)) (-15 -3622 ($ $)))) -((-3625 ((|#2| |#2|) 95 T ELT)) (-3628 (((-83) |#2|) 29 T ELT)) (-3626 ((|#2| |#2|) 33 T ELT)) (-3627 ((|#2| |#2|) 35 T ELT)) (-3623 ((|#2| |#2| (-1081)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3629 (((-140 |#2|) |#2|) 31 T ELT)) (-3624 ((|#2| |#2| (-1081)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -3623 (|#2| |#2|)) (-15 -3623 (|#2| |#2| (-1081))) (-15 -3624 (|#2| |#2|)) (-15 -3624 (|#2| |#2| (-1081))) (-15 -3625 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3628 ((-83) |#2|)) (-15 -3629 ((-140 |#2|) |#2|))) (-13 (-387) (-945 (-480)) (-577 (-480))) (-13 (-27) (-1106) (-359 |#1|))) (T -1110)) -((-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-140 *3)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3628 (*1 *2 *3) (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-83)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3))))) (-3624 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3))))) (-3623 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *3)))))) -((-3630 ((|#4| |#4| |#1|) 31 T ELT)) (-3631 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1111 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3630 (|#4| |#4| |#1|)) (-15 -3631 (|#4| |#4| |#1|))) (-491) (-319 |#1|) (-319 |#1|) (-624 |#1| |#2| |#3|)) (T -1111)) -((-3631 (*1 *2 *2 *3) (-12 (-4 *3 (-491)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-3630 (*1 *2 *2 *3) (-12 (-4 *3 (-491)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) -((-3649 ((|#2| |#2|) 148 T ELT)) (-3651 ((|#2| |#2|) 145 T ELT)) (-3648 ((|#2| |#2|) 136 T ELT)) (-3650 ((|#2| |#2|) 133 T ELT)) (-3647 ((|#2| |#2|) 141 T ELT)) (-3646 ((|#2| |#2|) 129 T ELT)) (-3635 ((|#2| |#2|) 44 T ELT)) (-3634 ((|#2| |#2|) 105 T ELT)) (-3632 ((|#2| |#2|) 88 T ELT)) (-3645 ((|#2| |#2|) 143 T ELT)) (-3644 ((|#2| |#2|) 131 T ELT)) (-3657 ((|#2| |#2|) 153 T ELT)) (-3655 ((|#2| |#2|) 151 T ELT)) (-3656 ((|#2| |#2|) 152 T ELT)) (-3654 ((|#2| |#2|) 150 T ELT)) (-3633 ((|#2| |#2|) 163 T ELT)) (-3658 ((|#2| |#2|) 30 (-12 (|has| |#2| (-550 (-795 |#1|))) (|has| |#2| (-791 |#1|)) (|has| |#1| (-550 (-795 |#1|))) (|has| |#1| (-791 |#1|))) ELT)) (-3636 ((|#2| |#2|) 89 T ELT)) (-3637 ((|#2| |#2|) 154 T ELT)) (-3946 ((|#2| |#2|) 155 T ELT)) (-3643 ((|#2| |#2|) 142 T ELT)) (-3642 ((|#2| |#2|) 130 T ELT)) (-3641 ((|#2| |#2|) 149 T ELT)) (-3653 ((|#2| |#2|) 147 T ELT)) (-3640 ((|#2| |#2|) 137 T ELT)) (-3652 ((|#2| |#2|) 135 T ELT)) (-3639 ((|#2| |#2|) 139 T ELT)) (-3638 ((|#2| |#2|) 127 T ELT))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (IF (|has| |#1| (-791 |#1|)) (IF (|has| |#1| (-550 (-795 |#1|))) (IF (|has| |#2| (-550 (-795 |#1|))) (IF (|has| |#2| (-791 |#1|)) (-15 -3658 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-387) (-13 (-359 |#1|) (-1106))) (T -1112)) -((-3658 (*1 *2 *2) (-12 (-4 *3 (-550 (-795 *3))) (-4 *3 (-791 *3)) (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-550 (-795 *3))) (-4 *2 (-791 *3)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-1081)) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3797 (((-852 |#1|) $ (-689)) 18 T ELT) (((-852 |#1|) $ (-689) (-689)) NIL T ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $ (-1081)) NIL T ELT) (((-689) $ (-1081) (-689)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ $ (-580 (-1081)) (-580 (-465 (-1081)))) NIL T ELT) (($ $ (-1081) (-465 (-1081))) NIL T ELT) (($ |#1| (-465 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3795 (($ $ (-1081)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081) |#1|) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3659 (($ (-1 $) (-1081) |#1|) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3752 (($ $ (-689)) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (($ $ (-1081) $) NIL T ELT) (($ $ (-580 (-1081)) (-580 $)) NIL T ELT) (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT)) (-3741 (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT)) (-3931 (((-465 (-1081)) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-1081)) NIL T ELT) (($ (-852 |#1|)) NIL T ELT)) (-3660 ((|#1| $ (-465 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (((-852 |#1|) $ (-689)) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-2655 (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1113 |#1|) (-13 (-674 |#1| (-1081)) (-10 -8 (-15 -3660 ((-852 |#1|) $ (-689))) (-15 -3929 ($ (-1081))) (-15 -3929 ($ (-852 |#1|))) (IF (|has| |#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $ (-1081) |#1|)) (-15 -3659 ($ (-1 $) (-1081) |#1|))) |%noBranch|))) (-956)) (T -1113)) -((-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-852 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-956)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1113 *3)) (-4 *3 (-956)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-852 *3)) (-4 *3 (-956)) (-5 *1 (-1113 *3)))) (-3795 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *1 (-1113 *3)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)))) (-3659 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1113 *4))) (-5 *3 (-1081)) (-5 *1 (-1113 *4)) (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956))))) -((-3676 (((-83) |#5| $) 68 T ELT) (((-83) $) 109 T ELT)) (-3671 ((|#5| |#5| $) 83 T ELT)) (-3693 (($ (-1 (-83) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3672 (((-580 |#5|) (-580 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 81 T ELT)) (-3142 (((-3 $ #1#) (-580 |#5|)) 134 T ELT)) (-3782 (((-3 $ #1#) $) 119 T ELT)) (-3668 ((|#5| |#5| $) 101 T ELT)) (-3677 (((-83) |#5| $ (-1 (-83) |#5| |#5|)) 36 T ELT)) (-3666 ((|#5| |#5| $) 105 T ELT)) (-3825 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 77 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#5|)) (|:| -1691 (-580 |#5|))) $) 63 T ELT)) (-3678 (((-83) |#5| $) 66 T ELT) (((-83) $) 110 T ELT)) (-3165 ((|#4| $) 115 T ELT)) (-3781 (((-3 |#5| #1#) $) 117 T ELT)) (-3680 (((-580 |#5|) $) 55 T ELT)) (-3674 (((-83) |#5| $) 75 T ELT) (((-83) $) 114 T ELT)) (-3669 ((|#5| |#5| $) 89 T ELT)) (-3682 (((-83) $ $) 29 T ELT)) (-3675 (((-83) |#5| $) 71 T ELT) (((-83) $) 112 T ELT)) (-3670 ((|#5| |#5| $) 86 T ELT)) (-3784 (((-3 |#5| #1#) $) 116 T ELT)) (-3752 (($ $ |#5|) 135 T ELT)) (-3931 (((-689) $) 60 T ELT)) (-3513 (($ (-580 |#5|)) 132 T ELT)) (-2896 (($ $ |#4|) 130 T ELT)) (-2898 (($ $ |#4|) 128 T ELT)) (-3667 (($ $) 127 T ELT)) (-3929 (((-767) $) NIL T ELT) (((-580 |#5|) $) 120 T ELT)) (-3661 (((-689) $) 139 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#5|))) #1#) (-580 |#5|) (-1 (-83) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#5|))) #1#) (-580 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|)) 51 T ELT)) (-3673 (((-83) $ (-1 (-83) |#5| (-580 |#5|))) 107 T ELT)) (-3663 (((-580 |#4|) $) 122 T ELT)) (-3916 (((-83) |#4| $) 125 T ELT)) (-3042 (((-83) $ $) 20 T ELT))) -(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3661 ((-689) |#1|)) (-15 -3752 (|#1| |#1| |#5|)) (-15 -3693 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3916 ((-83) |#4| |#1|)) (-15 -3663 ((-580 |#4|) |#1|)) (-15 -3782 ((-3 |#1| #1#) |#1|)) (-15 -3781 ((-3 |#5| #1#) |#1|)) (-15 -3784 ((-3 |#5| #1#) |#1|)) (-15 -3666 (|#5| |#5| |#1|)) (-15 -3667 (|#1| |#1|)) (-15 -3668 (|#5| |#5| |#1|)) (-15 -3669 (|#5| |#5| |#1|)) (-15 -3670 (|#5| |#5| |#1|)) (-15 -3671 (|#5| |#5| |#1|)) (-15 -3672 ((-580 |#5|) (-580 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3825 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3674 ((-83) |#1|)) (-15 -3675 ((-83) |#1|)) (-15 -3676 ((-83) |#1|)) (-15 -3673 ((-83) |#1| (-1 (-83) |#5| (-580 |#5|)))) (-15 -3674 ((-83) |#5| |#1|)) (-15 -3675 ((-83) |#5| |#1|)) (-15 -3676 ((-83) |#5| |#1|)) (-15 -3677 ((-83) |#5| |#1| (-1 (-83) |#5| |#5|))) (-15 -3678 ((-83) |#1|)) (-15 -3678 ((-83) |#5| |#1|)) (-15 -3679 ((-2 (|:| -3844 (-580 |#5|)) (|:| -1691 (-580 |#5|))) |#1|)) (-15 -3931 ((-689) |#1|)) (-15 -3680 ((-580 |#5|) |#1|)) (-15 -3681 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-580 |#5|))) #1#) (-580 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|))) (-15 -3681 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-580 |#5|))) #1#) (-580 |#5|) (-1 (-83) |#5| |#5|))) (-15 -3682 ((-83) |#1| |#1|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2898 (|#1| |#1| |#4|)) (-15 -3165 (|#4| |#1|)) (-15 -3142 ((-3 |#1| #1#) (-580 |#5|))) (-15 -3929 ((-580 |#5|) |#1|)) (-15 -3513 (|#1| (-580 |#5|))) (-15 -3825 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3825 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3693 (|#1| (-1 (-83) |#5|) |#1|)) (-15 -3825 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3929 ((-767) |#1|)) (-15 -3042 ((-83) |#1| |#1|))) (-1115 |#2| |#3| |#4| |#5|) (-491) (-712) (-751) (-971 |#2| |#3| |#4|)) (T -1114)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) 90 T ELT)) (-3665 (((-580 $) (-580 |#4|)) 91 T ELT)) (-3067 (((-580 |#3|) $) 37 T ELT)) (-2894 (((-83) $) 30 T ELT)) (-2885 (((-83) $) 21 (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3671 ((|#4| |#4| $) 97 T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3693 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3978)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3707 (($) 46 T CONST)) (-2890 (((-83) $) 26 (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) 28 (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) 27 (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) 29 (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 22 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) 23 (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ "failed") (-580 |#4|)) 40 T ELT)) (-3141 (($ (-580 |#4|)) 39 T ELT)) (-3782 (((-3 $ "failed") $) 87 T ELT)) (-3668 ((|#4| |#4| $) 94 T ELT)) (-1342 (($ $) 69 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#4| $) 68 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3666 ((|#4| |#4| $) 92 T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) 110 T ELT)) (-2875 (((-580 |#4|) $) 53 (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3165 ((|#3| $) 38 T ELT)) (-2594 (((-580 |#4|) $) 54 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2900 (((-580 |#3|) $) 36 T ELT)) (-2899 (((-83) |#3| $) 35 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3781 (((-3 |#4| "failed") $) 88 T ELT)) (-3680 (((-580 |#4|) $) 112 T ELT)) (-3674 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3669 ((|#4| |#4| $) 95 T ELT)) (-3682 (((-83) $ $) 115 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3670 ((|#4| |#4| $) 96 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3784 (((-3 |#4| "failed") $) 89 T ELT)) (-1343 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3662 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3752 (($ $ |#4|) 82 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) 60 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) 58 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) 57 (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) 42 T ELT)) (-3386 (((-83) $) 45 T ELT)) (-3548 (($) 44 T ELT)) (-3931 (((-689) $) 111 T ELT)) (-1935 (((-689) |#4| $) 55 (-12 (|has| |#4| (-1007)) (|has| $ (-6 -3978))) ELT) (((-689) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) 43 T ELT)) (-3955 (((-469) $) 70 (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) 61 T ELT)) (-2896 (($ $ |#3|) 32 T ELT)) (-2898 (($ $ |#3|) 34 T ELT)) (-3667 (($ $) 93 T ELT)) (-2897 (($ $ |#3|) 33 T ELT)) (-3929 (((-767) $) 13 T ELT) (((-580 |#4|) $) 41 T ELT)) (-3661 (((-689) $) 81 (|has| |#3| (-315)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) "failed") (-580 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) "failed") (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) 103 T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) 86 T ELT)) (-3916 (((-83) |#3| $) 85 T ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3940 (((-689) $) 47 (|has| $ (-6 -3978)) ELT))) -(((-1115 |#1| |#2| |#3| |#4|) (-111) (-491) (-712) (-751) (-971 |t#1| |t#2| |t#3|)) (T -1115)) -((-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3681 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-580 *8)))) (-5 *3 (-580 *8)) (-4 *1 (-1115 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) (-4 *8 (-751)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-580 *9)))) (-5 *3 (-580 *9)) (-4 *1 (-1115 *6 *7 *8 *9)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *6)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-689)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-2 (|:| -3844 (-580 *6)) (|:| -1691 (-580 *6)))))) (-3678 (*1 *2 *3 *1) (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3677 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1115 *5 *6 *7 *3)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-83)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3675 (*1 *2 *3 *1) (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3674 (*1 *2 *3 *1) (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-83) *7 (-580 *7))) (-4 *1 (-1115 *4 *5 *6 *7)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) (-3825 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) (-4 *1 (-1115 *5 *6 *7 *2)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *2 (-971 *5 *6 *7)))) (-3672 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-580 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) (-4 *1 (-1115 *5 *6 *7 *8)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)))) (-3671 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3670 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3669 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3668 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *2 (-491)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-971 *2 *3 *4)))) (-3666 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-1115 *4 *5 *6 *7)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-580 (-2 (|:| -3844 *1) (|:| -1691 (-580 *7))))) (-5 *3 (-580 *7)) (-4 *1 (-1115 *4 *5 *6 *7)))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3782 (*1 *1 *1) (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *2 (-491)) (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-971 *2 *3 *4)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5)))) (-3916 (*1 *2 *3 *1) (-12 (-4 *1 (-1115 *4 *5 *3 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *3 (-751)) (-4 *6 (-971 *4 *5 *3)) (-5 *2 (-83)))) (-3693 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1115 *4 *5 *3 *2)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *3 (-751)) (-4 *2 (-971 *4 *5 *3)))) (-3662 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *5 (-315)) (-5 *2 (-689))))) -(-13 (-884 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3978) (-6 -3979) (-15 -3682 ((-83) $ $)) (-15 -3681 ((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |t#4|))) "failed") (-580 |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3681 ((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |t#4|))) "failed") (-580 |t#4|) (-1 (-83) |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3680 ((-580 |t#4|) $)) (-15 -3931 ((-689) $)) (-15 -3679 ((-2 (|:| -3844 (-580 |t#4|)) (|:| -1691 (-580 |t#4|))) $)) (-15 -3678 ((-83) |t#4| $)) (-15 -3678 ((-83) $)) (-15 -3677 ((-83) |t#4| $ (-1 (-83) |t#4| |t#4|))) (-15 -3676 ((-83) |t#4| $)) (-15 -3675 ((-83) |t#4| $)) (-15 -3674 ((-83) |t#4| $)) (-15 -3673 ((-83) $ (-1 (-83) |t#4| (-580 |t#4|)))) (-15 -3676 ((-83) $)) (-15 -3675 ((-83) $)) (-15 -3674 ((-83) $)) (-15 -3825 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3672 ((-580 |t#4|) (-580 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3671 (|t#4| |t#4| $)) (-15 -3670 (|t#4| |t#4| $)) (-15 -3669 (|t#4| |t#4| $)) (-15 -3668 (|t#4| |t#4| $)) (-15 -3667 ($ $)) (-15 -3666 (|t#4| |t#4| $)) (-15 -3665 ((-580 $) (-580 |t#4|))) (-15 -3664 ((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |t#4|)))) (-580 |t#4|))) (-15 -3784 ((-3 |t#4| "failed") $)) (-15 -3781 ((-3 |t#4| "failed") $)) (-15 -3782 ((-3 $ "failed") $)) (-15 -3663 ((-580 |t#3|) $)) (-15 -3916 ((-83) |t#3| $)) (-15 -3693 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3662 ((-3 $ "failed") $ |t#4|)) (-15 -3752 ($ $ |t#4|)) (IF (|has| |t#3| (-315)) (-15 -3661 ((-689) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-549 (-580 |#4|)) . T) ((-549 (-767)) . T) ((-122 |#4|) . T) ((-550 (-469)) |has| |#4| (-550 (-469))) ((-257 |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-424 |#4|) . T) ((-449 |#4| |#4|) -12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ((-13) . T) ((-884 |#1| |#2| |#3| |#4|) . T) ((-1007) . T) ((-1120) . T)) -((-3688 (($ |#1| (-580 (-580 (-849 (-177)))) (-83)) 19 T ELT)) (-3687 (((-83) $ (-83)) 18 T ELT)) (-3686 (((-83) $) 17 T ELT)) (-3684 (((-580 (-580 (-849 (-177)))) $) 13 T ELT)) (-3683 ((|#1| $) 8 T ELT)) (-3685 (((-83) $) 15 T ELT))) -(((-1116 |#1|) (-10 -8 (-15 -3683 (|#1| $)) (-15 -3684 ((-580 (-580 (-849 (-177)))) $)) (-15 -3685 ((-83) $)) (-15 -3686 ((-83) $)) (-15 -3687 ((-83) $ (-83))) (-15 -3688 ($ |#1| (-580 (-580 (-849 (-177)))) (-83)))) (-882)) (T -1116)) -((-3688 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-83)) (-5 *1 (-1116 *2)) (-4 *2 (-882)))) (-3687 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-1116 *3)) (-4 *3 (-882)))) (-3683 (*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-882))))) -((-3690 (((-849 (-177)) (-849 (-177))) 31 T ELT)) (-3689 (((-849 (-177)) (-177) (-177) (-177) (-177)) 10 T ELT)) (-3692 (((-580 (-849 (-177))) (-849 (-177)) (-849 (-177)) (-849 (-177)) (-177) (-580 (-580 (-177)))) 57 T ELT)) (-3819 (((-177) (-849 (-177)) (-849 (-177))) 27 T ELT)) (-3817 (((-849 (-177)) (-849 (-177)) (-849 (-177))) 28 T ELT)) (-3691 (((-580 (-580 (-177))) (-480)) 45 T ELT)) (-3820 (((-849 (-177)) (-849 (-177)) (-849 (-177))) 26 T ELT)) (-3822 (((-849 (-177)) (-849 (-177)) (-849 (-177))) 24 T ELT)) (* (((-849 (-177)) (-177) (-849 (-177))) 22 T ELT))) -(((-1117) (-10 -7 (-15 -3689 ((-849 (-177)) (-177) (-177) (-177) (-177))) (-15 * ((-849 (-177)) (-177) (-849 (-177)))) (-15 -3822 ((-849 (-177)) (-849 (-177)) (-849 (-177)))) (-15 -3820 ((-849 (-177)) (-849 (-177)) (-849 (-177)))) (-15 -3819 ((-177) (-849 (-177)) (-849 (-177)))) (-15 -3817 ((-849 (-177)) (-849 (-177)) (-849 (-177)))) (-15 -3690 ((-849 (-177)) (-849 (-177)))) (-15 -3691 ((-580 (-580 (-177))) (-480))) (-15 -3692 ((-580 (-849 (-177))) (-849 (-177)) (-849 (-177)) (-849 (-177)) (-177) (-580 (-580 (-177))))))) (T -1117)) -((-3692 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-580 (-580 (-177)))) (-5 *4 (-177)) (-5 *2 (-580 (-849 *4))) (-5 *1 (-1117)) (-5 *3 (-849 *4)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-580 (-580 (-177)))) (-5 *1 (-1117)))) (-3690 (*1 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) (-3817 (*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) (-3819 (*1 *2 *3 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-177)) (-5 *1 (-1117)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) (-3822 (*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-849 (-177))) (-5 *3 (-177)) (-5 *1 (-1117)))) (-3689 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)) (-5 *3 (-177))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3693 ((|#1| $ (-689)) 18 T ELT)) (-3816 (((-689) $) 13 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3929 (((-864 |#1|) $) 12 T ELT) (($ (-864 |#1|)) 11 T ELT) (((-767) $) 29 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3042 (((-83) $ $) 22 (|has| |#1| (-1007)) ELT))) -(((-1118 |#1|) (-13 (-425 (-864 |#1|)) (-10 -8 (-15 -3693 (|#1| $ (-689))) (-15 -3816 ((-689) $)) (IF (|has| |#1| (-549 (-767))) (-6 (-549 (-767))) |%noBranch|) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|))) (-1120)) (T -1118)) -((-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1118 *3)) (-4 *3 (-1120))))) -((-3696 (((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|)) (-480)) 92 T ELT)) (-3694 (((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|))) 84 T ELT)) (-3695 (((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|))) 68 T ELT))) -(((-1119 |#1|) (-10 -7 (-15 -3694 ((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|)))) (-15 -3695 ((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|)))) (-15 -3696 ((-343 (-1076 (-1076 |#1|))) (-1076 (-1076 |#1|)) (-480)))) (-296)) (T -1119)) -((-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-480)) (-4 *5 (-296)) (-5 *2 (-343 (-1076 (-1076 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-1076 (-1076 *5))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-343 (-1076 (-1076 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1076 (-1076 *4))))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-343 (-1076 (-1076 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1076 (-1076 *4)))))) -NIL -(((-1120) (-111)) (T -1120)) +(((-64) . T) ((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3212 ((|#1| |#1| (-1 (-483) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3210 (((-1183)) 21 T ELT)) (-3211 (((-583 |#1|)) 13 T ELT))) +(((-995 |#1|) (-10 -7 (-15 -3210 ((-1183))) (-15 -3211 ((-583 |#1|))) (-15 -3212 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3212 (|#1| |#1| (-1 (-483) |#1| |#1|)))) (-105)) (T -995)) +((-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3211 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105)))) (-3210 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) +((-3215 (($ (-78) $) 20 T ELT)) (-3216 (((-632 (-78)) (-444) $) 19 T ELT)) (-3559 (($) 7 T ELT)) (-3214 (($) 21 T ELT)) (-3213 (($) 22 T ELT)) (-3217 (((-583 (-149)) $) 10 T ELT)) (-3940 (((-772) $) 25 T ELT))) +(((-996) (-13 (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -3217 ((-583 (-149)) $)) (-15 -3216 ((-632 (-78)) (-444) $)) (-15 -3215 ($ (-78) $)) (-15 -3214 ($)) (-15 -3213 ($))))) (T -996)) +((-3559 (*1 *1) (-5 *1 (-996))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-996)))) (-3216 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-996)))) (-3215 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996)))) (-3214 (*1 *1) (-5 *1 (-996))) (-3213 (*1 *1) (-5 *1 (-996)))) +((-3218 (((-1177 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1177 (-630 (-857 |#1|))) (-583 (-1088)) (-630 (-857 |#1|))) 75 T ELT) (((-1177 (-630 (-347 (-857 |#1|)))) (-583 (-1088)) (-630 (-347 (-857 |#1|)))) 92 T ELT)) (-3219 (((-1177 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT))) +(((-997 |#1|) (-10 -7 (-15 -3218 ((-1177 (-630 (-347 (-857 |#1|)))) (-583 (-1088)) (-630 (-347 (-857 |#1|))))) (-15 -3218 ((-1177 (-630 (-857 |#1|))) (-583 (-1088)) (-630 (-857 |#1|)))) (-15 -3218 ((-1177 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3219 ((-1177 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-311)) (T -997)) +((-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-1177 *5)) (-5 *1 (-997 *5)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-997 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-857 *5)))) (-5 *1 (-997 *5)) (-5 *4 (-630 (-857 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-347 (-857 *5))))) (-5 *1 (-997 *5)) (-5 *4 (-630 (-347 (-857 *5))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1088)) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3077 (((-583 (-999 (-1088))) $) NIL T ELT)) (-3079 (((-1083 $) $ (-999 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-999 (-1088)))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-999 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-999 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3750 (($ $ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-999 (-1088))) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-999 (-1088)) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-999 (-1088)) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-999 (-1088))) NIL T ELT) (($ (-1083 $) (-999 (-1088))) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-999 (-1088))) NIL T ELT)) (-2816 (((-468 (-999 (-1088))) $) NIL T ELT) (((-694) $ (-999 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-999 (-1088)))) NIL T ELT)) (-1622 (($ (-1 (-468 (-999 (-1088))) (-468 (-999 (-1088)))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) (-1088)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 (-999 (-1088)) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 (((-999 (-1088)) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-999 (-1088))) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-999 (-1088)) |#1|) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 |#1|)) NIL T ELT) (($ $ (-999 (-1088)) $) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 (-1088)) $) NIL T ELT)) (-3942 (((-468 (-999 (-1088))) $) NIL T ELT) (((-694) $ (-999 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-999 (-1088)))) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-999 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-998 |#1|) (-13 (-213 |#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) (-950 (-1037 |#1| (-1088)))) (-961)) (T -998)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) NIL T ELT)) (-3825 ((|#1| $) 10 T ELT)) (-3152 (((-3 |#1| "failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3766 (((-694) $) 11 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-1520 (($ |#1| (-694)) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 16 T ELT))) +(((-999 |#1|) (-228 |#1|) (-756)) (T -999)) +NIL +((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3730 (($ |#1| |#1|) 16 T ELT)) (-3952 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3224 ((|#1| $) 12 T ELT)) (-3226 ((|#1| $) 11 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3222 (((-483) $) 15 T ELT)) (-3223 ((|#1| $) 14 T ELT)) (-3225 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3957 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3966 (($ |#1|) 29 T ELT)) (-3940 (((-772) $) 28 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3731 (($ |#1| |#1|) 10 T ELT)) (-3227 (($ $ (-483)) 17 T ELT)) (-3052 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT))) +(((-1000 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1006 |#1| (-583 |#1|))) |%noBranch|))) (-1127)) (T -1000)) +NIL +((-3952 (((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 14 T ELT))) +(((-1001 |#1| |#2|) (-10 -7 (-15 -3952 ((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) (IF (|has| |#1| (-755)) (-15 -3952 ((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1001)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-1001 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3220 (((-583 (-1047)) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1002) (-13 (-994) (-10 -8 (-15 -3220 ((-583 (-1047)) $))))) (T -1002)) +((-3220 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1002))))) +((-2564 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3825 (((-1088) $) NIL T ELT)) (-3730 (((-1000 |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3221 (($ (-1088) (-1000 |#1|)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3052 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT))) +(((-1003 |#1|) (-13 (-1127) (-10 -8 (-15 -3221 ($ (-1088) (-1000 |#1|))) (-15 -3825 ((-1088) $)) (-15 -3730 ((-1000 |#1|) $)) (IF (|has| (-1000 |#1|) (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1003)) +((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127))))) +((-3952 (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 19 T ELT))) +(((-1004 |#1| |#2|) (-10 -7 (-15 -3952 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)))) (-1127) (-1127)) (T -1004)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))) +((-3730 (($ |#1| |#1|) 8 T ELT)) (-3224 ((|#1| $) 11 T ELT)) (-3226 ((|#1| $) 13 T ELT)) (-3222 (((-483) $) 9 T ELT)) (-3223 ((|#1| $) 10 T ELT)) (-3225 ((|#1| $) 12 T ELT)) (-3966 (($ |#1|) 6 T ELT)) (-3731 (($ |#1| |#1|) 15 T ELT)) (-3227 (($ $ (-483)) 14 T ELT))) +(((-1005 |#1|) (-113) (-1127)) (T -1005)) +((-3731 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3227 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3730 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) +(-13 (-557 |t#1|) (-10 -8 (-15 -3731 ($ |t#1| |t#1|)) (-15 -3227 ($ $ (-483))) (-15 -3226 (|t#1| $)) (-15 -3225 (|t#1| $)) (-15 -3224 (|t#1| $)) (-15 -3223 (|t#1| $)) (-15 -3222 ((-483) $)) (-15 -3730 ($ |t#1| |t#1|)))) +(((-557 |#1|) . T)) +((-3730 (($ |#1| |#1|) 8 T ELT)) (-3952 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3224 ((|#1| $) 11 T ELT)) (-3226 ((|#1| $) 13 T ELT)) (-3222 (((-483) $) 9 T ELT)) (-3223 ((|#1| $) 10 T ELT)) (-3225 ((|#1| $) 12 T ELT)) (-3957 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3966 (($ |#1|) 6 T ELT)) (-3731 (($ |#1| |#1|) 15 T ELT)) (-3227 (($ $ (-483)) 14 T ELT))) +(((-1006 |#1| |#2|) (-113) (-755) (-1062 |t#1|)) (T -1006)) +((-3957 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1062 *4)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1062 *3)))) (-3952 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1062 *4))))) +(-13 (-1005 |t#1|) (-10 -8 (-15 -3957 (|t#2| (-583 $))) (-15 -3957 (|t#2| $)) (-15 -3952 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-557 |#1|) . T) ((-1005 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-1047) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1007) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $)) (-15 -3792 ((-1047) $))))) (T -1007)) +((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1007)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007))))) +((-2564 (((-85) $ $) NIL T ELT)) (-1799 (($) NIL (|has| |#1| (-317)) ELT)) (-3229 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3231 (($ $ $) 81 T ELT)) (-3230 (((-85) $ $) 83 T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3234 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 75 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3989)) ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2885 (((-583 |#1|) $) 20 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-2527 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2853 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 79 T ELT)) (-1271 ((|#1| $) 26 T ELT)) (-3603 (($ |#1| $) 70 T ELT)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1272 ((|#1| $) 28 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 22 T ELT)) (-3559 (($) 12 T ELT)) (-3232 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 17 T ELT)) (-3966 (((-472) $) 51 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 63 T ELT)) (-1800 (($ $) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT)) (-1801 (((-694) $) NIL T ELT)) (-3235 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 53 T ELT)) (-3951 (((-694) $) 11 (|has| $ (-6 -3989)) ELT))) +(((-1008 |#1|) (-366 |#1|) (-1012)) (T -1008)) +NIL +((-3229 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3231 (($ $ $) 10 T ELT)) (-3232 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1009 |#1| |#2|) (-10 -7 (-15 -3229 (|#1| |#2| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#1| |#1|))) (-1010 |#2|) (-1012)) (T -1009)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3229 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3231 (($ $ $) 24 T ELT)) (-3230 (((-85) $ $) 23 T ELT)) (-3234 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 37 T CONST)) (-1350 (($ $) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 59 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 44 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 32 T ELT)) (-2604 (((-583 |#1|) $) 45 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3233 (($ $ $) 27 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 51 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 49 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-248 |#1|))) 48 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 33 T ELT)) (-3397 (((-85) $) 36 T ELT)) (-3559 (($) 35 T ELT)) (-3232 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1943 (((-694) |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 34 T ELT)) (-3966 (((-472) $) 61 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 52 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3235 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 38 (|has| $ (-6 -3989)) ELT))) +(((-1010 |#1|) (-113) (-1012)) (T -1010)) +((-3236 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3235 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3234 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3232 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3230 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3229 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3229 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3229 (*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(-13 (-1012) (-124 |t#1|) (-10 -8 (-6 -3979) (-15 -3236 ((-85) $ $)) (-15 -3235 ($)) (-15 -3235 ($ (-583 |t#1|))) (-15 -3234 ($)) (-15 -3234 ($ (-583 |t#1|))) (-15 -3233 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -3232 ($ $ |t#1|)) (-15 -3231 ($ $ $)) (-15 -3230 ((-85) $ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ |t#1|)) (-15 -3229 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-3237 (((-1071) $) 10 T ELT)) (-3238 (((-1032) $) 8 T ELT))) +(((-1011 |#1|) (-10 -7 (-15 -3237 ((-1071) |#1|)) (-15 -3238 ((-1032) |#1|))) (-1012)) (T -1011)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-1012) (-113)) (T -1012)) +((-3238 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071))))) +(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3238 ((-1032) $)) (-15 -3237 ((-1071) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 36 T ELT)) (-3242 (($ (-583 (-830))) 70 T ELT)) (-3244 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2990 (($) 40 T ELT)) (-3240 (((-85) (-830) $) 42 T ELT)) (-2006 (((-830) $) 64 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 39 T ELT)) (-3245 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3241 (((-1177 $)) 47 T ELT)) (-3243 (((-583 (-830)) $) 27 T ELT)) (-3239 (((-694) $ (-830) (-830)) 78 T ELT)) (-3940 (((-772) $) 32 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 24 T ELT))) +(((-1013 |#1| |#2|) (-13 (-317) (-10 -8 (-15 -3245 ((-3 $ #1="failed") $ (-830))) (-15 -3244 ((-3 $ #1#) $ (-830) (-830))) (-15 -3243 ((-583 (-830)) $)) (-15 -3242 ($ (-583 (-830)))) (-15 -3241 ((-1177 $))) (-15 -3240 ((-85) (-830) $)) (-15 -3239 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1013)) +((-3245 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3244 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3241 (*1 *2) (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3255 (((-85) $) NIL T ELT)) (-3251 (((-1088) $) NIL T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3529 (((-1071) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3254 (((-85) $) NIL T ELT)) (-3250 (((-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3253 (((-85) $) NIL T ELT)) (-3249 (((-179) $) NIL T ELT)) (-3248 (((-772) $) NIL T ELT)) (-3261 (((-85) $ $) NIL T ELT)) (-3794 (($ $ (-483)) NIL T ELT) (($ $ (-583 (-483))) NIL T ELT)) (-3252 (((-583 $) $) NIL T ELT)) (-3966 (($ (-1071)) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3246 (($ $) NIL T ELT)) (-3247 (($ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-483) $) NIL T ELT))) +(((-1014) (-1015 (-1071) (-1088) (-483) (-179) (-772))) (T -1014)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3255 (((-85) $) 36 T ELT)) (-3251 ((|#2| $) 31 T ELT)) (-3256 (((-85) $) 37 T ELT)) (-3529 ((|#1| $) 32 T ELT)) (-3258 (((-85) $) 39 T ELT)) (-3260 (((-85) $) 41 T ELT)) (-3257 (((-85) $) 38 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3254 (((-85) $) 35 T ELT)) (-3250 ((|#3| $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3253 (((-85) $) 34 T ELT)) (-3249 ((|#4| $) 29 T ELT)) (-3248 ((|#5| $) 28 T ELT)) (-3261 (((-85) $ $) 42 T ELT)) (-3794 (($ $ (-483)) 44 T ELT) (($ $ (-583 (-483))) 43 T ELT)) (-3252 (((-583 $) $) 33 T ELT)) (-3966 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3246 (($ $) 26 T ELT)) (-3247 (($ $) 27 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3259 (((-85) $) 40 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-483) $) 25 T ELT))) +(((-1015 |#1| |#2| |#3| |#4| |#5|) (-113) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1015)) +((-3261 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3252 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3247 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483))))) +(-13 (-1012) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-483) $) (-241 (-583 (-483)) $) (-10 -8 (-15 -3261 ((-85) $ $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3256 ((-85) $)) (-15 -3255 ((-85) $)) (-15 -3254 ((-85) $)) (-15 -3253 ((-85) $)) (-15 -3252 ((-583 $) $)) (-15 -3529 (|t#1| $)) (-15 -3251 (|t#2| $)) (-15 -3250 (|t#3| $)) (-15 -3249 (|t#4| $)) (-15 -3248 (|t#5| $)) (-15 -3247 ($ $)) (-15 -3246 ($ $)) (-15 -3951 ((-483) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-483) $) . T) ((-241 (-583 (-483)) $) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3255 (((-85) $) 45 T ELT)) (-3251 ((|#2| $) 48 T ELT)) (-3256 (((-85) $) 20 T ELT)) (-3529 ((|#1| $) 21 T ELT)) (-3258 (((-85) $) 42 T ELT)) (-3260 (((-85) $) 14 T ELT)) (-3257 (((-85) $) 44 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3254 (((-85) $) 46 T ELT)) (-3250 ((|#3| $) 50 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3253 (((-85) $) 47 T ELT)) (-3249 ((|#4| $) 49 T ELT)) (-3248 ((|#5| $) 51 T ELT)) (-3261 (((-85) $ $) 41 T ELT)) (-3794 (($ $ (-483)) 62 T ELT) (($ $ (-583 (-483))) 64 T ELT)) (-3252 (((-583 $) $) 27 T ELT)) (-3966 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3940 (((-772) $) 28 T ELT)) (-3246 (($ $) 26 T ELT)) (-3247 (($ $) 58 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) 23 T ELT)) (-3052 (((-85) $ $) 40 T ELT)) (-3951 (((-483) $) 60 T ELT))) +(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1015 |#1| |#2| |#3| |#4| |#5|) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1016)) +NIL +((-3264 (((-85) |#5| |#5|) 44 T ELT)) (-3267 (((-85) |#5| |#5|) 59 T ELT)) (-3272 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3268 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3274 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 70 T ELT)) (-3263 (((-1183)) 32 T ELT)) (-3262 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3273 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3275 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) 93 T ELT)) (-3276 (((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3266 (((-85) |#5| |#5|) 53 T ELT)) (-3271 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3269 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3270 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3693 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3277 (((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3265 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) +(((-1017 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3262 ((-1183) (-1071) (-1071) (-1071))) (-15 -3263 ((-1183))) (-15 -3264 ((-85) |#5| |#5|)) (-15 -3265 ((-583 |#5|) (-583 |#5|))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3269 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3270 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3693 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3271 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| (-583 |#5|))) (-15 -3273 ((-583 |#5|) (-583 |#5|))) (-15 -3274 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3275 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-15 -3276 ((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3277 ((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1017)) +((-3277 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3276 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1017 *5 *6 *7 *8 *3)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3263 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) +((-3292 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 106 T ELT)) (-3282 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3285 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3287 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3289 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3291 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3286 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 107 T ELT)) (-3288 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 128 T ELT)) (-3290 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3283 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3284 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3281 (((-1183)) 36 T ELT)) (-3279 (((-1183)) 25 T ELT)) (-3280 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3278 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-1183) (-1071) (-1071) (-1071))) (-15 -3279 ((-1183))) (-15 -3280 ((-1183) (-1071) (-1071) (-1071))) (-15 -3281 ((-1183))) (-15 -3282 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3283 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3283 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85))) (-15 -3284 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3285 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-85) |#4| |#5|)) (-15 -3286 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3287 ((-583 |#5|) |#4| |#5|)) (-15 -3288 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3289 ((-583 |#5|) |#4| |#5|)) (-15 -3290 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3291 ((-583 |#5|) |#4| |#5|)) (-15 -3292 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1018)) +((-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3285 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) (-5 *1 (-1018 *6 *7 *4 *8 *9)))) (-3283 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3279 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3278 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-1019 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1019)) +NIL +(-13 (-982 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) +((-3303 (((-583 (-483)) (-483) (-483) (-483)) 40 T ELT)) (-3302 (((-583 (-483)) (-483) (-483) (-483)) 30 T ELT)) (-3301 (((-583 (-483)) (-483) (-483) (-483)) 35 T ELT)) (-3300 (((-483) (-483) (-483)) 22 T ELT)) (-3299 (((-1177 (-483)) (-583 (-483)) (-1177 (-483)) (-483)) 78 T ELT) (((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483)) 73 T ELT)) (-3298 (((-583 (-483)) (-583 (-830)) (-583 (-483)) (-85)) 56 T ELT)) (-3297 (((-630 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483))) 77 T ELT)) (-3296 (((-630 (-483)) (-583 (-830)) (-583 (-483))) 61 T ELT)) (-3295 (((-583 (-630 (-483))) (-583 (-830))) 66 T ELT)) (-3294 (((-583 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483))) 81 T ELT)) (-3293 (((-630 (-483)) (-583 (-483)) (-583 (-483)) (-583 (-483))) 91 T ELT))) +(((-1020) (-10 -7 (-15 -3293 ((-630 (-483)) (-583 (-483)) (-583 (-483)) (-583 (-483)))) (-15 -3294 ((-583 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483)))) (-15 -3295 ((-583 (-630 (-483))) (-583 (-830)))) (-15 -3296 ((-630 (-483)) (-583 (-830)) (-583 (-483)))) (-15 -3297 ((-630 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483)))) (-15 -3298 ((-583 (-483)) (-583 (-830)) (-583 (-483)) (-85))) (-15 -3299 ((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483))) (-15 -3299 ((-1177 (-483)) (-583 (-483)) (-1177 (-483)) (-483))) (-15 -3300 ((-483) (-483) (-483))) (-15 -3301 ((-583 (-483)) (-483) (-483) (-483))) (-15 -3302 ((-583 (-483)) (-483) (-483) (-483))) (-15 -3303 ((-583 (-483)) (-483) (-483) (-483))))) (T -1020)) +((-3303 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3302 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3301 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3300 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020)))) (-3299 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-583 (-483))) (-5 *4 (-483)) (-5 *1 (-1020)))) (-3299 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020)))) (-3298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-483))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1020)))) (-3297 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-483))) (-5 *3 (-583 (-483))) (-5 *1 (-1020)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-1020)))) (-3294 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *3 (-630 (-483))) (-5 *1 (-1020)))) (-3293 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3304 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1021 |#1|) (-13 (-1022 |#1|) (-1012) (-10 -8 (-15 -3304 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1021)) +((-3304 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3))))) +((-3794 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1022 |#1|) (-113) (-72)) (T -1022)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) +((** (($ $ (-830)) 10 T ELT))) +(((-1023 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1024)) (T -1023)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1024) (-113)) (T -1024)) +((* (*1 *1 *1 *1) (-4 *1 (-1024))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-830))))) +(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#3| (-317)) ELT)) (-3782 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) ((|#3| $) NIL (|has| |#3| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2990 (($) NIL (|has| |#3| (-317)) ELT)) (-1573 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#3| $ (-483)) 12 T ELT)) (-3181 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#3| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1177 $)) NIL (|has| |#3| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#3| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#3| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#3| (-1012)) ELT)) (-3795 ((|#3| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2201 (((-583 |#3|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) NIL T ELT)) (-3830 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1465 (($ (-1177 |#3|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#3| (-23)) CONST)) (-2662 (($) NIL (|has| |#3| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2681 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-483) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1025 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1025)) +NIL +((-3305 (((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 50 T ELT)) (-3311 (((-483) (-1146 |#2| |#1|)) 95 (|has| |#1| (-389)) ELT)) (-3309 (((-483) (-1146 |#2| |#1|)) 79 T ELT)) (-3306 (((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 58 T ELT)) (-3310 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 81 (|has| |#1| (-389)) ELT)) (-3307 (((-583 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 61 T ELT)) (-3308 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 78 T ELT))) +(((-1026 |#1| |#2|) (-10 -7 (-15 -3305 ((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3306 ((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3307 ((-583 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3308 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3309 ((-483) (-1146 |#2| |#1|))) (IF (|has| |#1| (-389)) (PROGN (-15 -3310 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3311 ((-483) (-1146 |#2| |#1|)))) |%noBranch|)) (-740) (-1088)) (T -1026)) +((-3311 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3310 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3308 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3307 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 *4)) (-5 *1 (-1026 *4 *5)))) (-3306 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1093) $) 12 T ELT)) (-3312 (((-583 (-1093)) $) 14 T ELT)) (-3314 (($ (-583 (-1093)) (-1093)) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 29 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT))) +(((-1027) (-13 (-1012) (-10 -8 (-15 -3314 ($ (-583 (-1093)) (-1093))) (-15 -3313 ((-1093) $)) (-15 -3312 ((-583 (-1093)) $))))) (T -1027)) +((-3314 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1027))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3315 (($ (-444) (-1027)) 14 T ELT)) (-3314 (((-1027) $) 20 T ELT)) (-3536 (((-444) $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1028) (-13 (-994) (-10 -8 (-15 -3315 ($ (-444) (-1027))) (-15 -3536 ((-444) $)) (-15 -3314 ((-1027) $))))) (T -1028)) +((-3315 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-1028)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1028)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028))))) +((-3617 (((-3 (-483) #1="failed") |#2| (-1088) |#2| (-1071)) 19 T ELT) (((-3 (-483) #1#) |#2| (-1088) (-750 |#2|)) 17 T ELT) (((-3 (-483) #1#) |#2|) 60 T ELT))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") |#2|)) (-15 -3617 ((-3 (-483) #1#) |#2| (-1088) (-750 |#2|))) (-15 -3617 ((-3 (-483) #1#) |#2| (-1088) |#2| (-1071)))) (-13 (-494) (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|))) (T -1029)) +((-3617 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))))) (-3617 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)))) (-3617 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))) +((-3617 (((-3 (-483) #1="failed") (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)) (-1071)) 38 T ELT) (((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-750 (-347 (-857 |#1|)))) 33 T ELT) (((-3 (-483) #1#) (-347 (-857 |#1|))) 14 T ELT))) +(((-1030 |#1|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") (-347 (-857 |#1|)))) (-15 -3617 ((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-750 (-347 (-857 |#1|))))) (-15 -3617 ((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)) (-1071)))) (-389)) (T -1030)) +((-3617 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3617 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 (-347 (-857 *6)))) (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *4))))) +((-3643 (((-264 (-483)) (-48)) 12 T ELT))) +(((-1031) (-10 -7 (-15 -3643 ((-264 (-483)) (-48))))) (T -1031)) +((-3643 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-483))) (-5 *1 (-1031))))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 22 T ELT)) (-3183 (((-85) $) 49 T ELT)) (-3316 (($ $ $) 28 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 75 T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) 59 T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 61 T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) 56 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) 42 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 70 T ELT) (((-630 (-483)) (-630 $)) 8 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) 73 T ELT) (($ $) 72 T ELT)) (-2559 (($ $ $) 41 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) 71 T ELT)) (-3181 (((-85) $) 76 T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2557 (($ $ $) 27 T ELT)) (-2406 (((-85) $) 50 T ELT)) (-2669 (((-85) $) 47 T ELT)) (-2556 (($ $) 23 T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) 60 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) 57 T ELT)) (-2527 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2853 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2040 (($ $) NIL T ELT)) (-2006 (((-830) $) 66 T ELT)) (-3827 (($ $) 55 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) 65 T ELT)) (-2042 (($ $) 33 T ELT)) (-3238 (((-1032) $) 54 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) 48 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 44 T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) 34 T ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-483) $) 12 T ELT) (((-472) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (($ (-483)) 13 T ELT) (($ $) NIL T ELT) (($ (-483)) 13 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) 17 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 26 T ELT)) (-2039 (($ $ $ $) 58 T ELT)) (-3377 (($ $) 46 T ELT)) (-2307 (($ $ $) 25 T ELT)) (-2656 (($) 15 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 32 T ELT)) (-2563 (((-85) $ $) 30 T ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) 31 T ELT)) (-2681 (((-85) $ $) 29 T ELT)) (-2308 (($ $ $) 24 T ELT)) (-3831 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3833 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-483) $) 14 T ELT))) +(((-1032) (-13 (-482) (-752) (-84) (-10 -8 (-6 -3976) (-6 -3981) (-6 -3977) (-15 -3316 ($ $ $))))) (T -1032)) +((-3316 (*1 *1 *1 *1) (-5 *1 (-1032)))) +((-483) (|%ismall?| |#1|)) +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 48 T ELT)) (-3718 (($) 7 T CONST)) (-3320 ((|#1| |#1| $) 50 T ELT)) (-3319 ((|#1| $) 49 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3317 (((-694) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1033 |#1|) (-113) (-1127)) (T -1033)) +((-3320 (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -3320 (|t#1| |t#1| $)) (-15 -3319 (|t#1| $)) (-15 -3318 (|t#1| $)) (-15 -3317 ((-694) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-3324 ((|#3| $) 87 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3752 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3323 ((|#3| $) 89 T ELT)) (-3325 ((|#4| $) 43 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-483)) 95 T ELT))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3323 (|#3| |#1|)) (-15 -3324 (|#3| |#1|)) (-15 -3325 (|#4| |#1|)) (-15 -2275 ((-630 |#3|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3152 ((-3 |#3| #1="failed") |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3940 (|#1| (-483))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3940 ((-772) |#1|))) (-1035 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1034)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3324 ((|#2| $) 88 T ELT)) (-3116 (((-85) $) 129 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3118 (((-85) $) 127 T ELT)) (-3327 (($ |#2|) 91 T ELT)) (-3718 (($) 22 T CONST)) (-3105 (($ $) 146 (|has| |#2| (-257)) ELT)) (-3107 ((|#3| $ (-483)) 141 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) 101 T ELT)) (-3151 (((-483) $) 106 (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) 102 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 97 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 96 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 95 T ELT) (((-630 |#2|) (-630 $)) 94 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-694) $) 147 (|has| |#2| (-494)) ELT)) (-3108 ((|#2| $ (-483) (-483)) 139 T ELT)) (-2885 (((-583 |#2|) $) 115 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3103 (((-694) $) 148 (|has| |#2| (-494)) ELT)) (-3102 (((-583 |#4|) $) 149 (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) 135 T ELT)) (-3109 (((-694) $) 136 T ELT)) (-3321 ((|#2| $) 83 (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) 131 T ELT)) (-3112 (((-483) $) 133 T ELT)) (-2604 (((-583 |#2|) $) 114 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 112 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 132 T ELT)) (-3111 (((-483) $) 134 T ELT)) (-3119 (($ (-583 (-583 |#2|))) 126 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 119 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) 143 T ELT) (($ (-1 |#2| |#2|) $) 120 T ELT)) (-3588 (((-583 (-583 |#2|)) $) 137 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 99 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 98 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 93 T ELT) (((-630 |#2|) (-1177 $)) 92 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3584 (((-3 $ "failed") $) 82 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#2|) 144 (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 111 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 110 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 109 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 108 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 125 T ELT)) (-3397 (((-85) $) 122 T ELT)) (-3559 (($) 123 T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) 140 T ELT) ((|#2| $ (-483) (-483)) 138 T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) 63 T ELT) (($ $ (-1 |#2| |#2|)) 62 T ELT) (($ $) 53 (|has| |#2| (-189)) ELT) (($ $ (-694)) 51 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 61 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 59 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 58 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 57 (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) 87 T ELT)) (-3326 (($ (-583 |#2|)) 90 T ELT)) (-3117 (((-85) $) 128 T ELT)) (-3325 ((|#3| $) 89 T ELT)) (-3322 ((|#2| $) 84 (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 113 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 124 T ELT)) (-3106 ((|#4| $ (-483)) 142 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 105 (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) 100 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 130 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-694)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 60 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 56 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 55 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 54 (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#2|) 145 (|has| |#2| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 151 T ELT) (($ |#2| $) 150 T ELT) ((|#4| $ |#4|) 86 T ELT) ((|#3| |#3| $) 85 T ELT)) (-3951 (((-694) $) 121 (|has| $ (-6 -3989)) ELT))) +(((-1035 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1035)) +((-3327 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3991 #1="*"))) (-4 *2 (-961)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3991 #1#))) (-4 *2 (-961)))) (-3584 (*1 *1 *1) (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-352 |t#2|) (-326 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3327 ($ |t#2|)) (-15 -3326 ($ (-583 |t#2|))) (-15 -3325 (|t#3| $)) (-15 -3324 (|t#2| $)) (-15 -3323 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3991 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3322 (|t#2| $)) (-15 -3321 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-311)) (PROGN (-15 -3584 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3991 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#2| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-326 |#2|) . T) ((-352 |#2|) . T) ((-426 |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-483)) |has| |#2| (-580 (-483))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3991 #1#)))) ((-580 (-483)) |has| |#2| (-580 (-483))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3991 #1#)))) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#2| (-811 (-1088))) (|has| |#2| (-809 (-1088)))) ((-809 (-1088)) |has| |#2| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#2| (-811 (-1088))) (|has| |#2| (-809 (-1088)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-347 (-483))) |has| |#2| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#2| (-950 (-483))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3330 ((|#4| |#4|) 81 T ELT)) (-3328 ((|#4| |#4|) 76 T ELT)) (-3332 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3331 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3329 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1036 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#4| |#4|)) (-15 -3329 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3330 (|#4| |#4|)) (-15 -3331 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3332 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|))) (-257) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -1036)) +((-3332 (*1 *2 *3 *4) (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 18 T ELT)) (-3077 (((-583 |#2|) $) 174 T ELT)) (-3079 (((-1083 $) $ |#2|) 60 T ELT) (((-1083 |#1|) $) 49 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 116 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 118 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 120 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#1| $) 165 T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#2| $) NIL T ELT)) (-3750 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) 218 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 90 T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) 20 T ELT)) (-2416 (((-694) $) 30 T ELT)) (-3080 (($ (-1083 |#1|) |#2|) 54 T ELT) (($ (-1083 $) |#2|) 71 T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) 38 T ELT)) (-2889 (($ |#1| (-468 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-2816 (((-468 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1622 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3078 (((-3 |#2| #1#) $) 177 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) 217 T ELT)) (-3169 ((|#1| $) 43 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 39 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 148 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 153 (|has| |#1| (-389)) ELT) (($ $ $) 138 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3751 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3942 (((-468 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 134 (|has| |#1| (-389)) ELT) (($ $ |#2|) 137 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 159 T ELT) (($ (-483)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 162 T ELT)) (-3671 ((|#1| $ (-468 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 87 T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) 123 (|has| |#1| (-494)) ELT)) (-2656 (($) 12 T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) 106 T ELT)) (-3943 (($ $ |#1|) 132 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3833 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1037 |#1| |#2|) (-861 |#1| (-468 |#2|) |#2|) (-961) (-756)) (T -1037)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3486 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 125 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 121 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 129 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3808 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ $ (-583 |#2|) (-583 (-468 |#2|))) NIL T ELT) (($ $ |#2| (-468 |#2|)) NIL T ELT) (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) 119 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $ |#2|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3670 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3763 (($ $ (-694)) 17 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) 117 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3942 (((-468 |#2|) $) NIL T ELT)) (-3333 (((-1 (-1067 |#3|) |#3|) (-583 |#2|) (-583 (-1067 |#3|))) 87 T ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 131 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 127 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 123 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 19 T ELT)) (-3940 (((-772) $) 194 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3671 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 133 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 139 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 135 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 52 T CONST)) (-2662 (($) 62 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) 196 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 109 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-347 (-483))) 114 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1038 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3671 (|#3| $ (-694))) (-15 -3940 ($ |#2|)) (-15 -3940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3333 ((-1 (-1067 |#3|) |#3|) (-583 |#2|) (-583 (-1067 |#3|)))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ |#2| |#1|)) (-15 -3670 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-468 |#2|) |#2|)) (T -1038)) +((-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-861 *3 (-468 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-861 *3 (-468 *4) *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1067 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-468 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1067 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))) (-3806 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-861 *4 (-468 *3) *3))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-1039 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1039)) +NIL +(-13 (-1019 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1019 |#1| |#2| |#3| |#4|) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) +((-3567 (((-583 |#2|) |#1|) 15 T ELT)) (-3339 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3337 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3334 ((|#2| |#1|) 54 T ELT)) (-3335 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3336 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3338 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3343 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3341 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3340 ((|#2| |#2| |#2|) 50 T ELT)) (-3342 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1040 |#1| |#2|) (-10 -7 (-15 -3567 ((-583 |#2|) |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -3335 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3336 ((-583 |#2|) |#1|)) (-15 -3337 ((-583 |#2|) |#1|)) (-15 -3338 ((-583 |#2|) |#1|)) (-15 -3339 ((-583 |#2|) |#1|)) (-15 -3336 ((-583 |#2|) |#2| |#2|)) (-15 -3337 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3338 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3339 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3340 (|#2| |#2| |#2|)) (-15 -3341 (|#2| |#2| |#2| |#2|)) (-15 -3342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3343 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1153 |#2|) (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (T -1040)) +((-3343 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3342 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3341 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3340 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3339 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3338 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3337 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))) +((-3344 (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088))) 118 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 113 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|)))) 97 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))) (-1088)) 98 T ELT) (((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|))) 92 T ELT) (((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)) (-1088)) 82 T ELT)) (-3345 (((-583 (-583 (-264 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 111 T ELT) (((-583 (-264 |#1|)) (-347 (-857 |#1|)) (-1088)) 54 T ELT)) (-3346 (((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-347 (-857 |#1|)) (-1088)) 123 T ELT) (((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088)) 122 T ELT))) +(((-1041 |#1|) (-10 -7 (-15 -3344 ((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088)))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3345 ((-583 (-264 |#1|)) (-347 (-857 |#1|)) (-1088))) (-15 -3345 ((-583 (-583 (-264 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3346 ((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3346 ((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-347 (-857 |#1|)) (-1088)))) (-13 (-257) (-120))) (T -1041)) +((-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-264 *5)))) (-5 *1 (-1041 *5)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-264 *5))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 *5))))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5))))) +((-3348 (((-347 (-1083 (-264 |#1|))) (-1177 (-264 |#1|)) (-347 (-1083 (-264 |#1|))) (-483)) 36 T ELT)) (-3347 (((-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|)))) 48 T ELT))) +(((-1042 |#1|) (-10 -7 (-15 -3347 ((-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))))) (-15 -3348 ((-347 (-1083 (-264 |#1|))) (-1177 (-264 |#1|)) (-347 (-1083 (-264 |#1|))) (-483)))) (-494)) (T -1042)) +((-3348 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-347 (-1083 (-264 *5)))) (-5 *3 (-1177 (-264 *5))) (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-347 (-1083 (-264 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3))))) +((-3567 (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-264 |#1|))) (-583 (-1088))) 244 T ELT) (((-583 (-248 (-264 |#1|))) (-264 |#1|) (-1088)) 23 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1088)) 29 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|))) 28 T ELT) (((-583 (-248 (-264 |#1|))) (-264 |#1|)) 24 T ELT))) +(((-1043 |#1|) (-10 -7 (-15 -3567 ((-583 (-248 (-264 |#1|))) (-264 |#1|))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1088))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-264 |#1|) (-1088))) (-15 -3567 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-264 |#1|))) (-583 (-1088))))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (T -1043)) +((-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-583 (-248 (-264 *5)))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-264 *5)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-248 (-264 *5))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-248 (-264 *4))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-264 *4))))) +((-3350 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3349 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -3349 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3350 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3349 (|#2| |#2|)) (-15 -3350 (|#2| |#2|))) |%noBranch|)) (-1127) (-13 (-538 (-483) |#1|) (-10 -7 (-6 -3989) (-6 -3990)))) (T -1044)) +((-3350 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3349 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3882 (((-1077 3 |#1|) $) 141 T ELT)) (-3360 (((-85) $) 101 T ELT)) (-3361 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3366 (((-85) $) 72 T ELT)) (-3700 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3352 (((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3370 (((-694) $) 53 T ELT)) (-3371 (((-694) $) 52 T ELT)) (-3881 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3358 (((-85) $) 111 T ELT)) (-3359 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3512 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3353 (((-583 (-145)) $) 133 T ELT)) (-3357 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3354 (((-583 (-583 (-145))) $) 132 T ELT)) (-3355 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3356 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3367 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3364 (((-85) $) 84 T ELT)) (-3365 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3372 (($) 48 T ELT) (($ (-1077 3 |#1|)) 49 T ELT)) (-3394 (($ $) 63 T ELT)) (-3368 (((-583 $) $) 62 T ELT)) (-3748 (($ (-583 $)) 59 T ELT)) (-3369 (((-583 $) $) 61 T ELT)) (-3940 (((-772) $) 146 T ELT)) (-3362 (((-85) $) 94 T ELT)) (-3363 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3351 (($ $) 140 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1045 |#1|) (-1046 |#1|) (-961)) (T -1045)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3882 (((-1077 3 |#1|) $) 17 T ELT)) (-3360 (((-85) $) 33 T ELT)) (-3361 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3366 (((-85) $) 48 T ELT)) (-3700 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3352 (((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3370 (((-694) $) 62 T ELT)) (-3371 (((-694) $) 63 T ELT)) (-3881 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3358 (((-85) $) 25 T ELT)) (-3359 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3512 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3353 (((-583 (-145)) $) 20 T ELT)) (-3357 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3354 (((-583 (-583 (-145))) $) 21 T ELT)) (-3355 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3356 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3367 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3364 (((-85) $) 43 T ELT)) (-3365 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3372 (($) 65 T ELT) (($ (-1077 3 |#1|)) 64 T ELT)) (-3394 (($ $) 56 T ELT)) (-3368 (((-583 $) $) 57 T ELT)) (-3748 (($ (-583 $)) 59 T ELT)) (-3369 (((-583 $) $) 58 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3362 (((-85) $) 38 T ELT)) (-3363 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3351 (($ $) 18 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-1046 |#1|) (-113) (-961)) (T -1046)) +((-3940 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3372 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3369 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))) (-3394 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3367 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3881 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3359 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-961)))) (-3359 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-961)))) (-3359 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3359 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3359 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1046 *4)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3351 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-1077 3 *3))))) +(-13 (-1012) (-10 -8 (-15 -3372 ($)) (-15 -3372 ($ (-1077 3 |t#1|))) (-15 -3371 ((-694) $)) (-15 -3370 ((-694) $)) (-15 -3512 ($ (-583 $))) (-15 -3512 ($ $ $)) (-15 -3748 ($ (-583 $))) (-15 -3369 ((-583 $) $)) (-15 -3368 ((-583 $) $)) (-15 -3394 ($ $)) (-15 -3367 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3881 ($ $ (-694) (-854 |t#1|))) (-15 -3700 ($ $ (-854 |t#1|))) (-15 -3700 ($ $ (-583 |t#1|))) (-15 -3700 ($ $ (-694))) (-15 -3700 ($ (-854 |t#1|))) (-15 -3700 ((-854 |t#1|) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-583 (-854 |t#1|)))) (-15 -3365 ($ $ (-583 (-583 |t#1|)))) (-15 -3365 ($ (-583 (-854 |t#1|)))) (-15 -3365 ((-583 (-854 |t#1|)) $)) (-15 -3364 ((-85) $)) (-15 -3363 ($ $ (-583 (-854 |t#1|)))) (-15 -3363 ($ $ (-583 (-583 |t#1|)))) (-15 -3363 ($ (-583 (-854 |t#1|)))) (-15 -3363 ((-583 (-854 |t#1|)) $)) (-15 -3362 ((-85) $)) (-15 -3361 ($ $ (-583 (-854 |t#1|)))) (-15 -3361 ($ $ (-583 (-583 |t#1|)))) (-15 -3361 ($ (-583 (-854 |t#1|)))) (-15 -3361 ((-583 (-854 |t#1|)) $)) (-15 -3360 ((-85) $)) (-15 -3359 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3359 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3359 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3359 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3359 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3359 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3359 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3358 ((-85) $)) (-15 -3357 ((-583 (-854 |t#1|)) $)) (-15 -3356 ((-583 (-583 (-583 (-694)))) $)) (-15 -3355 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3354 ((-583 (-583 (-145))) $)) (-15 -3353 ((-583 (-145)) $)) (-15 -3352 ((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3351 ($ $)) (-15 -3882 ((-1077 3 |t#1|) $)) (-15 -3940 ((-772) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 185 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) 7 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-461))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1188))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1028))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-455))) 59 T ELT) (((-85) $ (|[\|\|]| (-977))) 63 T ELT) (((-85) $ (|[\|\|]| (-1189))) 67 T ELT) (((-85) $ (|[\|\|]| (-462))) 71 T ELT) (((-85) $ (|[\|\|]| (-1065))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-262))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-984))) 103 T ELT) (((-85) $ (|[\|\|]| (-1002))) 107 T ELT) (((-85) $ (|[\|\|]| (-1007))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1079))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-415))) 132 T ELT) (((-85) $ (|[\|\|]| (-527))) 136 T ELT) (((-85) $ (|[\|\|]| (-444))) 140 T ELT) (((-85) $ (|[\|\|]| (-1071))) 144 T ELT) (((-85) $ (|[\|\|]| (-483))) 148 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-461) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1188) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1028) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-455) $) 60 T ELT) (((-977) $) 64 T ELT) (((-1189) $) 68 T ELT) (((-462) $) 72 T ELT) (((-1065) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-262) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-984) $) 104 T ELT) (((-1002) $) 108 T ELT) (((-1007) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1079) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-415) $) 133 T ELT) (((-527) $) 137 T ELT) (((-444) $) 141 T ELT) (((-1071) $) 145 T ELT) (((-483) $) 149 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1047) (-1049)) (T -1047)) +NIL +((-3373 (((-583 (-1093)) (-1071)) 9 T ELT))) +(((-1048) (-10 -7 (-15 -3373 ((-583 (-1093)) (-1071))))) (T -1048)) +((-3373 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-1048))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-461))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1188))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1028))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-455))) 68 T ELT) (((-85) $ (|[\|\|]| (-977))) 66 T ELT) (((-85) $ (|[\|\|]| (-1189))) 64 T ELT) (((-85) $ (|[\|\|]| (-462))) 62 T ELT) (((-85) $ (|[\|\|]| (-1065))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-262))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-984))) 46 T ELT) (((-85) $ (|[\|\|]| (-1002))) 44 T ELT) (((-85) $ (|[\|\|]| (-1007))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1079))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-415))) 32 T ELT) (((-85) $ (|[\|\|]| (-527))) 30 T ELT) (((-85) $ (|[\|\|]| (-444))) 28 T ELT) (((-85) $ (|[\|\|]| (-1071))) 26 T ELT) (((-85) $ (|[\|\|]| (-483))) 24 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3566 (((-461) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1188) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1028) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-455) $) 67 T ELT) (((-977) $) 65 T ELT) (((-1189) $) 63 T ELT) (((-462) $) 61 T ELT) (((-1065) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-262) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-984) $) 45 T ELT) (((-1002) $) 43 T ELT) (((-1007) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1079) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-415) $) 31 T ELT) (((-527) $) 29 T ELT) (((-444) $) 27 T ELT) (((-1071) $) 25 T ELT) (((-483) $) 23 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-1049) (-113)) (T -1049)) +((-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-617)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-539)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-622)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-455))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-455)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-613)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-262)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-948)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-883)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-565)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-415)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-444)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483))))) +(-13 (-994) (-1173) (-10 -8 (-15 -3560 ((-85) $ (|[\|\|]| (-461)))) (-15 -3566 ((-461) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-172)))) (-15 -3566 ((-172) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-617)))) (-15 -3566 ((-617) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1188)))) (-15 -3566 ((-1188) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-111)))) (-15 -3566 ((-111) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-539)))) (-15 -3566 ((-539) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-106)))) (-15 -3566 ((-106) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1028)))) (-15 -3566 ((-1028) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-67)))) (-15 -3566 ((-67) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-622)))) (-15 -3566 ((-622) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-455)))) (-15 -3566 ((-455) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-977)))) (-15 -3566 ((-977) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3566 ((-1189) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-462)))) (-15 -3566 ((-462) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1065)))) (-15 -3566 ((-1065) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-127)))) (-15 -3566 ((-127) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-613)))) (-15 -3566 ((-613) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-262)))) (-15 -3566 ((-262) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-948)))) (-15 -3566 ((-948) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-154)))) (-15 -3566 ((-154) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-883)))) (-15 -3566 ((-883) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-984)))) (-15 -3566 ((-984) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1002)))) (-15 -3566 ((-1002) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1007)))) (-15 -3566 ((-1007) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-565)))) (-15 -3566 ((-565) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1079)))) (-15 -3566 ((-1079) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-129)))) (-15 -3566 ((-129) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-110)))) (-15 -3566 ((-110) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-415)))) (-15 -3566 ((-415) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-527)))) (-15 -3566 ((-527) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3566 ((-444) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3566 ((-1071) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-483)))) (-15 -3566 ((-483) $)))) +(((-64) . T) ((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-994) . T) ((-1127) . T) ((-1173) . T)) +((-3376 (((-1183) (-583 (-772))) 22 T ELT) (((-1183) (-772)) 21 T ELT)) (-3375 (((-1183) (-583 (-772))) 20 T ELT) (((-1183) (-772)) 19 T ELT)) (-3374 (((-1183) (-583 (-772))) 18 T ELT) (((-1183) (-772)) 10 T ELT) (((-1183) (-1071) (-772)) 16 T ELT))) +(((-1050) (-10 -7 (-15 -3374 ((-1183) (-1071) (-772))) (-15 -3374 ((-1183) (-772))) (-15 -3375 ((-1183) (-772))) (-15 -3376 ((-1183) (-772))) (-15 -3374 ((-1183) (-583 (-772)))) (-15 -3375 ((-1183) (-583 (-772)))) (-15 -3376 ((-1183) (-583 (-772)))))) (T -1050)) +((-3376 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050))))) +((-3380 (($ $ $) 10 T ELT)) (-3379 (($ $) 9 T ELT)) (-3383 (($ $ $) 13 T ELT)) (-3385 (($ $ $) 15 T ELT)) (-3382 (($ $ $) 12 T ELT)) (-3384 (($ $ $) 14 T ELT)) (-3387 (($ $) 17 T ELT)) (-3386 (($ $) 16 T ELT)) (-3377 (($ $) 6 T ELT)) (-3381 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3378 (($ $ $) 8 T ELT))) +(((-1051) (-113)) (T -1051)) +((-3387 (*1 *1 *1) (-4 *1 (-1051))) (-3386 (*1 *1 *1) (-4 *1 (-1051))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3382 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3381 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3380 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3379 (*1 *1 *1) (-4 *1 (-1051))) (-3378 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3381 (*1 *1 *1) (-4 *1 (-1051))) (-3377 (*1 *1 *1) (-4 *1 (-1051)))) +(-13 (-10 -8 (-15 -3377 ($ $)) (-15 -3381 ($ $)) (-15 -3378 ($ $ $)) (-15 -3379 ($ $)) (-15 -3380 ($ $ $)) (-15 -3381 ($ $ $)) (-15 -3382 ($ $ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $)) (-15 -3387 ($ $)))) +((-2564 (((-85) $ $) 44 T ELT)) (-3396 ((|#1| $) 17 T ELT)) (-3388 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3395 (((-85) $) 19 T ELT)) (-3393 (($ $ |#1|) 30 T ELT)) (-3391 (($ $ (-85)) 32 T ELT)) (-3390 (($ $) 33 T ELT)) (-3392 (($ $ |#2|) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3389 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3397 (((-85) $) 16 T ELT)) (-3559 (($) 13 T ELT)) (-3394 (($ $) 29 T ELT)) (-3524 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3916 ((|#2| $) 18 T ELT)) (-3940 (((-772) $) 53 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 42 T ELT))) +(((-1052 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3559 ($)) (-15 -3397 ((-85) $)) (-15 -3396 (|#1| $)) (-15 -3916 (|#2| $)) (-15 -3395 ((-85) $)) (-15 -3524 ($ |#1| |#2| (-85))) (-15 -3524 ($ |#1| |#2|)) (-15 -3524 ($ (-2 (|:| |val| |#1|) (|:| -1597 |#2|)))) (-15 -3524 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))))) (-15 -3524 ((-583 $) |#1| (-583 |#2|))) (-15 -3394 ($ $)) (-15 -3393 ($ $ |#1|)) (-15 -3392 ($ $ |#2|)) (-15 -3391 ($ $ (-85))) (-15 -3390 ($ $)) (-15 -3389 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3388 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1052)) +((-3559 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3396 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1012) (-34))))) (-3916 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1597 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1597 *5)))) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-583 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-583 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1012) (-34))))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3393 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3392 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))) (-4 *2 (-13 (-1012) (-34))))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3390 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3389 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *5 *6)))) (-3388 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34)))))) +((-2564 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3396 (((-1052 |#1| |#2|) $) 27 T ELT)) (-3405 (($ $) 91 T ELT)) (-3401 (((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3398 (($ $ $ (-583 (-1052 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3021 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 46 (|has| $ (-6 -3990)) ELT)) (-3782 (((-1052 |#1| |#2|) $ #1="value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 44 (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3403 (((-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) $) 95 T ELT)) (-3399 (($ (-1052 |#1| |#2|) $) 42 T ELT)) (-3400 (($ (-1052 |#1| |#2|) $) 34 T ELT)) (-2885 (((-583 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3402 (((-85) (-1052 |#1| |#2|) $) 97 T ELT)) (-3023 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-2604 (((-583 (-1052 |#1| |#2|)) $) 58 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1946 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 50 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 49 T ELT)) (-3026 (((-583 (-1052 |#1| |#2|)) $) 56 T ELT)) (-3521 (((-85) $) 45 T ELT)) (-3237 (((-1071) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3406 (((-3 $ "failed") $) 89 T ELT)) (-1944 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-248 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-583 (-1052 |#1| |#2|)) (-583 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1219 (((-85) $ $) 53 T ELT)) (-3397 (((-85) $) 24 T ELT)) (-3559 (($) 26 T ELT)) (-3794 (((-1052 |#1| |#2|) $ #1#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-3394 (($ $) 52 T ELT)) (-3524 (($ (-1052 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1052 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3404 (((-583 |#2|) $) 96 T ELT)) (-3940 (((-772) $) 87 (|has| (-1052 |#1| |#2|) (-552 (-772))) ELT)) (-3516 (((-583 $) $) 31 T ELT)) (-3024 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 70 (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3951 (((-694) $) 64 (|has| $ (-6 -3989)) ELT))) +(((-1053 |#1| |#2|) (-13 (-923 (-1052 |#1| |#2|)) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3406 ((-3 $ "failed") $)) (-15 -3405 ($ $)) (-15 -3524 ($ (-1052 |#1| |#2|))) (-15 -3524 ($ |#1| |#2| (-583 $))) (-15 -3524 ($ |#1| |#2| (-583 (-1052 |#1| |#2|)))) (-15 -3524 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3404 ((-583 |#2|) $)) (-15 -3403 ((-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) $)) (-15 -3402 ((-85) (-1052 |#1| |#2|) $)) (-15 -3401 ((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3400 ($ (-1052 |#1| |#2|) $)) (-15 -3399 ($ (-1052 |#1| |#2|) $)) (-15 -3398 ($ $ $ (-583 (-1052 |#1| |#2|)))) (-15 -3398 ($ $ $ (-583 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1053)) +((-3406 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)))) (-3524 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)))) (-3401 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3398 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3398 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *1 (-1053 *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3408 (($ $) NIL T ELT)) (-3324 ((|#2| $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3407 (($ (-630 |#2|)) 55 T ELT)) (-3118 (((-85) $) NIL T ELT)) (-3327 (($ |#2|) 14 T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 68 (|has| |#2| (-257)) ELT)) (-3107 (((-197 |#1| |#2|) $ (-483)) 42 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 82 T ELT)) (-3104 (((-694) $) 70 (|has| |#2| (-494)) ELT)) (-3108 ((|#2| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3103 (((-694) $) 72 (|has| |#2| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#2|)) $) 76 (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ |#2|) 25 T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#2| $) 66 (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#2|))) 37 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3588 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3584 (((-3 $ #1#) $) 79 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) NIL T ELT)) (-3326 (($ (-583 |#2|)) 50 T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3325 (((-197 |#1| |#2|) $) NIL T ELT)) (-3322 ((|#2| $) 64 (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 89 (|has| |#2| (-553 (-472))) ELT)) (-3106 (((-197 |#1| |#2|) $ (-483)) 44 T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 52 T ELT)) (-3121 (((-694)) 23 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-2662 (($) 21 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 62 T ELT) (($ $ (-483)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 58 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 60 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1054 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3608 ($ |#2|)) (-15 -3408 ($ $)) (-15 -3407 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3991 #1="*"))) (-6 -3978) |%noBranch|) (IF (|has| |#2| (-6 (-3991 #1#))) (IF (|has| |#2| (-6 -3986)) (-6 -3986) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|))) (-694) (-961)) (T -1054)) +((-3608 (*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3407 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-694))))) +((-3421 (($ $) 19 T ELT)) (-3411 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3419 (((-85) $ $) 24 T ELT)) (-3423 (($ $) 17 T ELT)) (-3794 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (($ $ $) 31 T ELT)) (-3940 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT))) +(((-1055 |#1|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3411 (|#1| |#1| (-114))) (-15 -3411 (|#1| |#1| (-117))) (-15 -3940 (|#1| (-117))) (-15 -3419 ((-85) |#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3794 ((-117) |#1| (-483))) (-15 -3794 ((-117) |#1| (-483) (-117)))) (-1056)) (T -1055)) +NIL +((-2564 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3420 (($ $) 129 T ELT)) (-3421 (($ $) 130 T ELT)) (-3411 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3418 (((-85) $ $) 127 T ELT)) (-3417 (((-85) $ $ (-483)) 126 T ELT)) (-3412 (((-583 $) $ (-117)) 119 T ELT) (((-583 $) $ (-114)) 118 T ELT)) (-1729 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-756)) ELT)) (-1727 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| (-117) (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-756)) ELT)) (-3782 (((-117) $ (-483) (-117)) 56 (|has| $ (-6 -3990)) ELT) (((-117) $ (-1144 (-483)) (-117)) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-3409 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-3414 (($ $ (-1144 (-483)) $) 123 T ELT)) (-1350 (($ $) 84 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-117) $) 83 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 (((-117) $ (-483) (-117)) 57 (|has| $ (-6 -3990)) ELT)) (-3108 (((-117) $ (-483)) 55 T ELT)) (-3419 (((-85) $ $) 128 T ELT)) (-3413 (((-483) (-1 (-85) (-117)) $) 106 T ELT) (((-483) (-117) $) 105 (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 104 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 122 T ELT) (((-483) (-114) $ (-483)) 121 T ELT)) (-2885 (((-583 (-117)) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-117)) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| (-117) (-756)) ELT)) (-3512 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| (-117) (-756)) ELT)) (-3415 (((-85) $ $ (-117)) 124 T ELT)) (-3416 (((-694) $ $ (-117)) 125 T ELT)) (-1946 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3422 (($ $) 131 T ELT)) (-3423 (($ $) 132 T ELT)) (-3410 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3237 (((-1071) $) 22 (|has| (-117) (-1012)) ELT)) (-2300 (($ (-117) $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| (-117) (-1012)) ELT)) (-3795 (((-117) $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2195 (($ $ (-117)) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-117)))) 26 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) 25 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 23 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2201 (((-583 (-117)) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 (((-117) $ (-483) (-117)) 54 T ELT) (((-117) $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT) (($ $ $) 111 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-117) $) 28 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| (-117) (-553 (-472))) ELT)) (-3524 (($ (-583 (-117))) 76 T ELT)) (-3796 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (($ (-117)) 120 T ELT) (((-772) $) 17 (|has| (-117) (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| (-117) (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| (-117) (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| (-117) (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| (-117) (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1056) (-113)) (T -1056)) +((-3423 (*1 *1 *1) (-4 *1 (-1056))) (-3422 (*1 *1 *1) (-4 *1 (-1056))) (-3421 (*1 *1 *1) (-4 *1 (-1056))) (-3420 (*1 *1 *1) (-4 *1 (-1056))) (-3419 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3418 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3417 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85)))) (-3416 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3415 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3414 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483))))) (-3413 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056)))) (-3412 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))) (-3412 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3410 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3410 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3409 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3409 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3794 (*1 *1 *1 *1) (-4 *1 (-1056)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3423 ($ $)) (-15 -3422 ($ $)) (-15 -3421 ($ $)) (-15 -3420 ($ $)) (-15 -3419 ((-85) $ $)) (-15 -3418 ((-85) $ $)) (-15 -3417 ((-85) $ $ (-483))) (-15 -3416 ((-694) $ $ (-117))) (-15 -3415 ((-85) $ $ (-117))) (-15 -3414 ($ $ (-1144 (-483)) $)) (-15 -3413 ((-483) $ $ (-483))) (-15 -3413 ((-483) (-114) $ (-483))) (-15 -3940 ($ (-117))) (-15 -3412 ((-583 $) $ (-117))) (-15 -3412 ((-583 $) $ (-114))) (-15 -3411 ($ $ (-117))) (-15 -3411 ($ $ (-114))) (-15 -3410 ($ $ (-117))) (-15 -3410 ($ $ (-114))) (-15 -3409 ($ $ (-117))) (-15 -3409 ($ $ (-114))) (-15 -3794 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1012)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1012)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-472)) |has| (-117) (-553 (-472))) ((-241 (-483) (-117)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-117)) . T) ((-259 (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ((-321 (-117)) . T) ((-426 (-117)) . T) ((-538 (-483) (-117)) . T) ((-452 (-117) (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1012) OR (|has| (-117) (-1012)) (|has| (-117) (-756))) ((-1127) . T)) +((-3430 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694)) 112 T ELT)) (-3427 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3431 (((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)) 97 T ELT)) (-3425 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3428 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3429 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3966 (((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 90 T ELT)) (-3426 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 60 T ELT)) (-3424 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) +(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3424 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3425 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3426 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3430 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694))) (-15 -3966 ((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3431 ((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -1057)) +((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3430 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-3429 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 118 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 117 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 91 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) 73 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3190 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3432 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 133 T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 111 T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3187 (((-583 $) |#4| $) 96 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3233 (((-583 $) |#4| $) 115 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 116 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3433 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3434 (($ |#4| $) 82 T ELT) (($ (-583 |#4|) $) 83 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3763 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 98 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 93 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3184 (((-583 $) |#4| $) 63 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3191 (((-85) |#4| $) NIL T ELT)) (-3927 (((-85) |#3| $) 69 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1019 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3434 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3433 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3432 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -1058)) +((-3434 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3676 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 31 T ELT)) (-2406 (((-85) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 30 T ELT) (($ $ (-830)) 27 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1059) (-113)) (T -1059)) +NIL +(-13 (-23) (-663)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 38 T ELT)) (-3435 (($ (-583 |#1|)) 46 T ELT)) (-3718 (($) NIL T CONST)) (-3320 ((|#1| |#1| $) 41 T ELT)) (-3319 ((|#1| $) 36 T ELT)) (-2885 (((-583 |#1|) $) 19 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 39 T ELT)) (-3603 (($ |#1| $) 42 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 37 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 33 T ELT)) (-3559 (($) 44 T ELT)) (-3317 (((-694) $) 31 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 28 T ELT)) (-3940 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 32 (|has| $ (-6 -3989)) ELT))) +(((-1060 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3435 ($ (-583 |#1|))))) (-1127)) (T -1060)) +((-3435 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3))))) +((-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 53 T ELT) ((|#2| $ (-483) |#2|) 50 T ELT)) (-3437 (((-85) $) 12 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3795 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2195 (($ $ |#2|) 49 T ELT)) (-3438 (((-85) $) 11 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) 36 T ELT) ((|#2| $ (-483)) 25 T ELT) ((|#2| $ (-483) |#2|) NIL T ELT)) (-3785 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3796 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -3437 ((-85) |#1|)) (-15 -3438 ((-85) |#1|)) (-15 -3782 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -2195 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3782 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -3782 (|#2| |#1| #1="last" |#2|)) (-15 -3782 (|#1| |#1| #2="rest" |#1|)) (-15 -3782 (|#2| |#1| #3="first" |#2|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3794 (|#2| |#1| #1#)) (-15 -3794 (|#1| |#1| #2#)) (-15 -3795 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| #3#)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3782 (|#2| |#1| #4="value" |#2|)) (-15 -3794 (|#2| |#1| #4#)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|))) (-1062 |#2|) (-1127)) (T -1061)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) 94 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1062 |#1|) (-113) (-1127)) (T -1062)) +((-3438 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))) +(-13 (-1166 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3438 ((-85) $)) (-15 -3437 ((-85) $)) (-15 -3710 ((-85) $ (-694))) (-15 -3713 ((-85) $ (-694))) (-15 -3436 ((-85) $ (-694))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T) ((-1166 |#1|) . T)) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1063 |#1| |#2| |#3|) (-1105 |#1| |#2|) (-1012) (-1012) |#2|) (T -1063)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3439 (((-632 $) $) 17 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3440 (($) 18 T CONST)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT))) +(((-1064) (-113)) (T -1064)) +((-3440 (*1 *1) (-4 *1 (-1064))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1064))))) +(-13 (-1012) (-10 -8 (-15 -3440 ($) -3946) (-15 -3439 ((-632 $) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3442 (((-632 (-1047)) $) 28 T ELT)) (-3441 (((-1047) $) 16 T ELT)) (-3443 (((-1047) $) 18 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3444 (((-444) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 38 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1065) (-13 (-994) (-10 -8 (-15 -3444 ((-444) $)) (-15 -3443 ((-1047) $)) (-15 -3442 ((-632 (-1047)) $)) (-15 -3441 ((-1047) $))))) (T -1065)) +((-3444 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1065)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-632 (-1047))) (-5 *1 (-1065)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) +((-3447 (((-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (-3445 (((-1067 |#1|) (-1067 |#1|)) 13 T ELT)) (-3448 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 20 T ELT)) (-3446 (((-1067 |#1|) (-1067 |#1|)) 15 T ELT))) +(((-1066 |#1|) (-10 -7 (-15 -3445 ((-1067 |#1|) (-1067 |#1|))) (-15 -3446 ((-1067 |#1|) (-1067 |#1|))) (-15 -3447 ((-1067 |#1|) (-1067 |#1|))) (-15 -3448 ((-1067 |#1|) (-1067 |#1|) (-483) (-483)))) (-13 (-494) (-120))) (T -1066)) +((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1066 *4)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) 60 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 93 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 122 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3453 (((-772) $) 46 (|has| |#1| (-1012)) ELT)) (-3452 (((-85)) 49 (|has| |#1| (-1012)) ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 109 (|has| $ (-6 -3990)) ELT) (($ $ (-483) $) 135 T ELT)) (-3780 ((|#1| $ |#1|) 119 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 114 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 106 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 72 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2319 (($ $) 11 T ELT)) (-3793 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3458 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1012)) ELT)) (-3459 (($ (-583 |#1|)) 124 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3454 (((-1183) (-483) $) 133 (|has| |#1| (-1012)) ELT)) (-2318 (((-694) $) 131 T ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-2321 (($ $) 107 T ELT)) (-2322 (((-85) $) 10 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) 90 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3451 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2320 ((|#1| $) 7 T ELT)) (-3795 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3457 (((-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3450 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3449 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2195 (($ $ |#1|) 85 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-483)) 40 T ELT)) (-3438 (((-85) $) 88 T ELT)) (-2323 (((-85) $) 9 T ELT)) (-2324 (((-85) $) 130 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 25 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) 14 T ELT)) (-3559 (($) 53 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 70 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3025 (((-483) $ $) 57 T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3456 (($ (-1 $)) 56 T ELT)) (-3627 (((-85) $) 86 T ELT)) (-3786 (($ $) 87 T ELT)) (-3784 (($ $) 110 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 52 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 68 T ELT)) (-3455 (($ |#1| $) 108 T ELT)) (-3785 (($ $ $) 112 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2887 (($ $) 59 T ELT)) (-3940 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1067 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-10 -8 (-6 -3990) (-15 -3459 ($ (-583 |#1|))) (IF (|has| |#1| (-1012)) (-15 -3458 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3457 ((-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3456 ($ (-1 $))) (-15 -3455 ($ |#1| $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -3454 ((-1183) (-483) $)) (-15 -3453 ((-772) $)) (-15 -3452 ((-85)))) |%noBranch|) (-15 -3781 ($ $ (-483) $)) (-15 -3451 ($ (-1 |#1|))) (-15 -3451 ($ (-1 |#1| |#1|) |#1|)) (-15 -3450 ($ (-1 (-85) |#1|) $)) (-15 -3449 ($ (-1 (-85) |#1|) $)))) (-1127)) (T -1067)) +((-3459 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3458 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)) (-5 *1 (-1067 *4)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694)))) (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-694)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127)))) (-3454 (*1 *2 *3 *1) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3452 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3781 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) +((-3796 (((-1067 |#1|) (-1067 (-1067 |#1|))) 15 T ELT))) +(((-1068 |#1|) (-10 -7 (-15 -3796 ((-1067 |#1|) (-1067 (-1067 |#1|))))) (-1127)) (T -1068)) +((-3796 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-1127))))) +((-3835 (((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 25 T ELT)) (-3836 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 26 T ELT)) (-3952 (((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 16 T ELT))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -3952 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (-15 -3835 ((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|))) (-15 -3836 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)))) (-1127) (-1127)) (T -1069)) +((-3836 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1069 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6))))) +((-3952 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)) 21 T ELT))) +(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -1070)) +((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-1070 *6 *7 *8))))) +((-2564 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3420 (($ $) 42 T ELT)) (-3421 (($ $) NIL T ELT)) (-3411 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3418 (((-85) $ $) 67 T ELT)) (-3417 (((-85) $ $ (-483)) 62 T ELT)) (-3529 (($ (-483)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-444)) 11 T ELT)) (-3412 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1729 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1727 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-117) (-756))) ELT)) (-2905 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3782 (((-117) $ (-483) (-117)) 59 (|has| $ (-6 -3990)) ELT) (((-117) $ (-1144 (-483)) (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-3409 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3414 (($ $ (-1144 (-483)) $) 57 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3400 (($ (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-117) $ (-483) (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-117) $ (-483)) NIL T ELT)) (-3419 (((-85) $ $) 91 T ELT)) (-3413 (((-483) (-1 (-85) (-117)) $) NIL T ELT) (((-483) (-117) $) NIL (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 64 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 63 T ELT) (((-483) (-114) $ (-483)) 66 T ELT)) (-2885 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-117)) 14 T ELT)) (-2196 (((-483) $) 36 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3512 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2197 (((-483) $) 50 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3415 (((-85) $ $ (-117)) 92 T ELT)) (-3416 (((-694) $ $ (-117)) 88 T ELT)) (-1946 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3422 (($ $) 45 T ELT)) (-3423 (($ $) NIL T ELT)) (-3410 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3237 (((-1071) $) 46 (|has| (-117) (-1012)) ELT)) (-2300 (($ (-117) $ (-483)) NIL T ELT) (($ $ $ (-483)) 31 T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) 87 (|has| (-117) (-1012)) ELT)) (-3795 (((-117) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2195 (($ $ (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2201 (((-583 (-117)) $) NIL T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) 16 T ELT)) (-3794 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) 69 T ELT) (($ $ (-1144 (-483))) 29 T ELT) (($ $ $) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-1728 (($ $ $ (-483)) 83 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 24 T ELT)) (-3966 (((-472) $) NIL (|has| (-117) (-553 (-472))) ELT)) (-3524 (($ (-583 (-117))) NIL T ELT)) (-3796 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3940 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3052 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2681 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3951 (((-694) $) 20 (|has| $ (-6 -3989)) ELT))) +(((-1071) (-13 (-1056) (-10 -8 (-15 -3529 ($ (-483))) (-15 -3529 ($ (-179))) (-15 -3529 ($ (-444)))))) (T -1071)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1071))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#1| #1="failed") (-1071) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#1| #1#) (-1071) $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-1071)) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-2228 (((-583 (-1071)) $) NIL T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-3795 ((|#1| $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-1071)) NIL T ELT) ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1072 |#1|) (-13 (-1105 (-1071) |#1|) (-10 -7 (-6 -3989))) (-1012)) (T -1072)) +NIL +((-3799 (((-1067 |#1|) (-1067 |#1|)) 83 T ELT)) (-3461 (((-3 (-1067 |#1|) #1="failed") (-1067 |#1|)) 39 T ELT)) (-3472 (((-1067 |#1|) (-347 (-483)) (-1067 |#1|)) 131 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3475 (((-1067 |#1|) |#1| (-1067 |#1|)) 135 (|has| |#1| (-311)) ELT)) (-3802 (((-1067 |#1|) (-1067 |#1|)) 97 T ELT)) (-3463 (((-1067 (-483)) (-483)) 63 T ELT)) (-3471 (((-1067 |#1|) (-1067 (-1067 |#1|))) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3798 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 103 T ELT)) (-3932 (((-1067 |#1|) |#1| (-483)) 51 T ELT)) (-3465 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3473 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 133 (|has| |#1| (-311)) ELT)) (-3470 (((-1067 |#1|) |#1| (-1 (-1067 |#1|))) 115 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3474 (((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|))) 134 (|has| |#1| (-311)) ELT)) (-3803 (((-1067 |#1|) (-1067 |#1|)) 96 T ELT)) (-3804 (((-1067 |#1|) (-1067 |#1|)) 82 T ELT)) (-3797 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 104 T ELT)) (-3806 (((-1067 |#1|) |#1| (-1067 |#1|)) 113 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3462 (((-1067 (-483)) (-483)) 62 T ELT)) (-3464 (((-1067 |#1|) |#1|) 65 T ELT)) (-3800 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 100 T ELT)) (-3467 (((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|)) 72 T ELT)) (-3460 (((-3 (-1067 |#1|) #1#) (-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3801 (((-1067 |#1|) (-1067 |#1|)) 98 T ELT)) (-3762 (((-1067 |#1|) (-1067 |#1|) |#1|) 77 T ELT)) (-3466 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3468 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 78 T ELT)) (-3940 (((-1067 |#1|) |#1|) 73 T ELT)) (-3469 (((-1067 |#1|) (-1067 (-1067 |#1|))) 88 T ELT)) (-3943 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3831 (((-1067 |#1|) (-1067 |#1|)) 21 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 23 T ELT)) (-3833 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (* (((-1067 |#1|) (-1067 |#1|) |#1|) 29 T ELT) (((-1067 |#1|) |#1| (-1067 |#1|)) 26 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 27 T ELT))) +(((-1073 |#1|) (-10 -7 (-15 -3833 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3831 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3831 ((-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3460 ((-3 (-1067 |#1|) #1="failed") (-1067 |#1|) (-1067 |#1|))) (-15 -3943 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3461 ((-3 (-1067 |#1|) #1#) (-1067 |#1|))) (-15 -3932 ((-1067 |#1|) |#1| (-483))) (-15 -3462 ((-1067 (-483)) (-483))) (-15 -3463 ((-1067 (-483)) (-483))) (-15 -3464 ((-1067 |#1|) |#1|)) (-15 -3465 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3466 ((-1067 |#1|) (-1067 |#1|))) (-15 -3467 ((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|))) (-15 -3940 ((-1067 |#1|) |#1|)) (-15 -3762 ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3468 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3804 ((-1067 |#1|) (-1067 |#1|))) (-15 -3799 ((-1067 |#1|) (-1067 |#1|))) (-15 -3469 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3803 ((-1067 |#1|) (-1067 |#1|))) (-15 -3802 ((-1067 |#1|) (-1067 |#1|))) (-15 -3801 ((-1067 |#1|) (-1067 |#1|))) (-15 -3800 ((-1067 |#1|) (-1067 |#1|) (-483) (-483))) (-15 -3798 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (-15 -3797 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 -3470 ((-1067 |#1|) |#1| (-1 (-1067 |#1|)))) (-15 -3471 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3472 ((-1067 |#1|) (-347 (-483)) (-1067 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3473 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3474 ((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|)))) (-15 -3475 ((-1067 |#1|) |#1| (-1067 |#1|)))) |%noBranch|)) (-961)) (T -1073)) +((-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-347 (-483))) (-5 *1 (-1073 *4)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3797 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3798 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3800 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-961)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3463 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) (-5 *3 (-483)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) (-5 *3 (-483)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3461 (*1 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3460 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) +((-3486 (((-1067 |#1|) (-1067 |#1|)) 102 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 59 T ELT)) (-3477 (((-2 (|:| -3484 (-1067 |#1|)) (|:| -3485 (-1067 |#1|))) (-1067 |#1|)) 98 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 99 T ELT)) (-3476 (((-2 (|:| -3632 (-1067 |#1|)) (|:| -3628 (-1067 |#1|))) (-1067 |#1|)) 54 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 55 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 104 T ELT)) (-3631 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3936 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3937 (((-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 105 T ELT)) (-3630 (((-1067 |#1|) (-1067 |#1|)) 67 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 103 T ELT)) (-3629 (((-1067 |#1|) (-1067 |#1|)) 62 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 100 T ELT)) (-3628 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 113 T ELT)) (-3480 (((-1067 |#1|) (-1067 |#1|)) 88 T ELT)) (-3490 (((-1067 |#1|) (-1067 |#1|)) 107 T ELT)) (-3478 (((-1067 |#1|) (-1067 |#1|)) 84 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 117 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 92 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 119 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 94 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 115 T ELT)) (-3481 (((-1067 |#1|) (-1067 |#1|)) 90 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 109 T ELT)) (-3479 (((-1067 |#1|) (-1067 |#1|)) 86 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 41 T ELT))) +(((-1074 |#1|) (-10 -7 (-15 -3937 ((-1067 |#1|) (-1067 |#1|))) (-15 -3936 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3476 ((-2 (|:| -3632 (-1067 |#1|)) (|:| -3628 (-1067 |#1|))) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3628 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3629 ((-1067 |#1|) (-1067 |#1|))) (-15 -3631 ((-1067 |#1|) (-1067 |#1|))) (-15 -3630 ((-1067 |#1|) (-1067 |#1|))) (-15 -3478 ((-1067 |#1|) (-1067 |#1|))) (-15 -3479 ((-1067 |#1|) (-1067 |#1|))) (-15 -3480 ((-1067 |#1|) (-1067 |#1|))) (-15 -3481 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3477 ((-2 (|:| -3484 (-1067 |#1|)) (|:| -3485 (-1067 |#1|))) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-347 (-483)))) (T -1074)) +((-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-2 (|:| -3484 (-1067 *4)) (|:| -3485 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-2 (|:| -3632 (-1067 *4)) (|:| -3628 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))) +((-3486 (((-1067 |#1|) (-1067 |#1|)) 60 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 42 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 63 T ELT)) (-3631 (((-1067 |#1|) (-1067 |#1|)) 45 T ELT)) (-3936 (((-1067 |#1|) (-1067 |#1|)) 34 T ELT)) (-3937 (((-1067 |#1|) (-1067 |#1|)) 29 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 64 T ELT)) (-3630 (((-1067 |#1|) (-1067 |#1|)) 46 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 61 T ELT)) (-3629 (((-1067 |#1|) (-1067 |#1|)) 43 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 58 T ELT)) (-3628 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3480 (((-1067 |#1|) (-1067 |#1|)) 50 T ELT)) (-3490 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3478 (((-1067 |#1|) (-1067 |#1|)) 48 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 71 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 53 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 72 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 54 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 70 T ELT)) (-3481 (((-1067 |#1|) (-1067 |#1|)) 52 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 69 T ELT)) (-3479 (((-1067 |#1|) (-1067 |#1|)) 51 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 36 T ELT))) +(((-1075 |#1|) (-10 -7 (-15 -3937 ((-1067 |#1|) (-1067 |#1|))) (-15 -3936 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3628 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3629 ((-1067 |#1|) (-1067 |#1|))) (-15 -3631 ((-1067 |#1|) (-1067 |#1|))) (-15 -3630 ((-1067 |#1|) (-1067 |#1|))) (-15 -3478 ((-1067 |#1|) (-1067 |#1|))) (-15 -3479 ((-1067 |#1|) (-1067 |#1|))) (-15 -3480 ((-1067 |#1|) (-1067 |#1|))) (-15 -3481 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-347 (-483)))) (T -1075)) +((-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) +((-3496 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3497 ((|#2| |#2| |#1|) 19 (|has| |#1| (-257)) ELT))) +(((-1076 |#1| |#2|) (-10 -7 (-15 -3496 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-257)) (-15 -3497 (|#2| |#2| |#1|)) |%noBranch|)) (-494) (-1153 |#1|)) (T -1076)) +((-3497 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3)))) (-3496 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-869 *3)) (-5 *1 (-1076 *4 *3)) (-4 *3 (-1153 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3505 (($ $ (-583 (-694))) 79 T ELT)) (-3882 (($) 33 T ELT)) (-3514 (($ $) 51 T ELT)) (-3745 (((-583 $) $) 60 T ELT)) (-3520 (((-85) $) 19 T ELT)) (-3498 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3499 (($ $) 80 T ELT)) (-3515 (((-694) $) 47 T ELT)) (-3608 (($) 32 T ELT)) (-3508 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3512 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3500 (((-694) $) 87 T ELT)) (-3521 (((-85) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3519 (((-85) $) 22 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3501 (((-145) $) 85 T ELT)) (-3504 (((-854 |#2|) $) 81 T ELT)) (-3503 (((-694) $) 82 T ELT)) (-3502 (((-85) $) 84 T ELT)) (-3506 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3513 (($ $) 52 T ELT)) (-3940 (((-772) $) 99 T ELT)) (-3507 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3516 (((-583 $) $) 11 T ELT)) (-3517 (($ $ (-694)) 46 T ELT)) (-3518 (($ $) 43 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3509 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3510 (($ $ (-854 |#2|)) 67 T ELT)) (-3511 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3052 (((-85) $ $) 92 T ELT))) +(((-1077 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3521 ((-85) $)) (-15 -3520 ((-85) $)) (-15 -3519 ((-85) $)) (-15 -3608 ($)) (-15 -3882 ($)) (-15 -3518 ($ $)) (-15 -3517 ($ $ (-694))) (-15 -3516 ((-583 $) $)) (-15 -3515 ((-694) $)) (-15 -3514 ($ $)) (-15 -3513 ($ $)) (-15 -3512 ($ $ $)) (-15 -3512 ($ (-583 $))) (-15 -3745 ((-583 $) $)) (-15 -3511 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3510 ($ $ (-854 |#2|))) (-15 -3509 ($ $ $ (-854 |#2|) (-694))) (-15 -3508 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3511 ($ $ (-583 (-694)) (-694))) (-15 -3508 ($ $ (-583 (-694)) (-694))) (-15 -3511 ((-694) $ (-854 |#2|))) (-15 -3508 ($ $ (-694) (-854 |#2|))) (-15 -3507 ($ $ (-583 (-694)) (-85))) (-15 -3506 ($ $ (-583 (-694)) (-145))) (-15 -3505 ($ $ (-583 (-694)))) (-15 -3504 ((-854 |#2|) $)) (-15 -3503 ((-694) $)) (-15 -3502 ((-85) $)) (-15 -3501 ((-145) $)) (-15 -3500 ((-694) $)) (-15 -3499 ($ $)) (-15 -3498 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1077)) +((-3521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3608 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3882 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3514 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3513 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3512 (*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)))) (-3509 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3506 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3505 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3522 ((|#2| $) 11 T ELT)) (-3523 ((|#1| $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3524 (($ |#1| |#2|) 9 T ELT)) (-3940 (((-772) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1078 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3524 ($ |#1| |#2|)) (-15 -3523 (|#1| $)) (-15 -3522 (|#2| $)))) (-1012) (-1012)) (T -1078)) +((-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3523 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012)))) (-3522 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3525 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1079) (-13 (-994) (-10 -8 (-15 -3525 ((-1047) $))))) (T -1079)) +((-3525 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3765 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) 75 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3725 (((-1087 |#1| |#2| |#3|) $) 42 T ELT)) (-3722 (((-3 (-1087 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3723 (((-1087 |#1| |#2| |#3|) $) 33 T ELT)) (-3486 (($ $) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 92 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 88 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) 120 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 96 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3151 (((-1087 |#1| |#2| |#3|) $) 140 T ELT) (((-1088) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) 37 T ELT) (($ (-483) $) 38 T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-1087 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ #1#) $) 54 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 74 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 76 (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) 28 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) NIL T ELT) (((-483) $ (-483)) 26 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 (((-1087 |#1| |#2| |#3|) $) 44 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 19 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) 81 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 (-1087 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) (-1087 |#1| |#2| |#3|)) 36 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 79 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 80 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3125 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 158 T ELT)) (-3460 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 82 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 (-1087 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1087 |#1| |#2| |#3|)) (-583 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) NIL T ELT) (($ $ $) 61 (|has| (-483) (-1024)) ELT) (($ $ (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 (((-1087 |#1| |#2| |#3|) $) 46 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 43 T ELT)) (-3489 (($ $) 122 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 98 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 118 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 94 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 114 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 90 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-472) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-472))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 162 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1087 |#1| |#2| |#3|)) 30 T ELT) (($ (-1174 |#2|)) 25 T ELT) (($ (-1088)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT) (($ (-347 (-483))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-3126 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 128 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 104 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) 124 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 100 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 132 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 108 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 134 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 110 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 130 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 106 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 126 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 102 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2681 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 49 (|has| |#1| (-311)) ELT) (($ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) 50 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1087 |#1| |#2| |#3|)) 48 (|has| |#1| (-311)) ELT) (($ (-1087 |#1| |#2| |#3|) $) 47 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1080 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1087 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1080)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3526 ((|#2| |#2| (-1003 |#2|)) 26 T ELT) ((|#2| |#2| (-1088)) 28 T ELT))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -3526 (|#2| |#2| (-1088))) (-15 -3526 (|#2| |#2| (-1003 |#2|)))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-361 |#1|) (-133) (-27) (-1113))) (T -1081)) +((-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113)))))) +((-3526 (((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1003 (-347 (-857 |#1|)))) 31 T ELT) (((-347 (-857 |#1|)) (-857 |#1|) (-1003 (-857 |#1|))) 44 T ELT) (((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1088)) 33 T ELT) (((-347 (-857 |#1|)) (-857 |#1|) (-1088)) 36 T ELT))) +(((-1082 |#1|) (-10 -7 (-15 -3526 ((-347 (-857 |#1|)) (-857 |#1|) (-1088))) (-15 -3526 ((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1088))) (-15 -3526 ((-347 (-857 |#1|)) (-857 |#1|) (-1003 (-857 |#1|)))) (-15 -3526 ((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1003 (-347 (-857 |#1|)))))) (-13 (-494) (-950 (-483)))) (T -1082)) +((-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 *3 (-264 *5))) (-5 *1 (-1082 *5)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 *3)) (-5 *1 (-1082 *5)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 (-347 (-857 *5)) (-264 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-347 (-857 *5))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-857 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-857 *5))))) +((-2564 (((-85) $ $) 172 T ELT)) (-3183 (((-85) $) 44 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) 83 T ELT) (((-1083 |#1|) $) 72 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) 166 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) 160 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 97 (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) 117 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) 62 T ELT)) (-3754 (($ $ (-694)) 64 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 81 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) 133 T ELT)) (-3747 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) 167 (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) 70 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3527 (((-772) $ (-772)) 150 T ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) 49 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) 74 T ELT) (($ (-1083 $) (-993)) 91 T ELT)) (-3771 (($ $ (-694)) 52 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 89 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 155 T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) 77 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 61 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 51 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 105 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 169 (|has| |#1| (-389)) ELT)) (-3732 (($ $ (-694) |#1| $) 125 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 173 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 79 T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 164 (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 151 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-993)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 20 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 122 T ELT)) (-3943 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1083 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-772))) (-15 -3732 ($ $ (-694) |#1| $)))) (-961)) (T -1083)) +((-3527 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1083 *3)) (-4 *3 (-961)))) (-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1083 *3)) (-4 *3 (-961))))) +((-3952 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13 T ELT))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -3952 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-961) (-961)) (T -1084)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6))))) +((-3965 (((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))) 51 T ELT)) (-3726 (((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))) 52 T ELT))) +(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|)))) (-15 -3965 ((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))))) (-717) (-756) (-389) (-861 |#3| |#1| |#2|)) (T -1085)) +((-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-347 *7))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-347 *7)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3151 (((-1080 |#1| |#2| |#3|) $) NIL T ELT) (((-1087 |#1| |#2| |#3|) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3775 (((-347 (-483)) $) 59 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) (-1080 |#1| |#2| |#3|)) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 20 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 (((-1080 |#1| |#2| |#3|) $) 41 T ELT)) (-3772 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3773 (((-1080 |#1| |#2| |#3|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 39 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 62 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1080 |#1| |#2| |#3|)) 30 T ELT) (($ (-1087 |#1| |#2| |#3|)) 31 T ELT) (($ (-1174 |#2|)) 26 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 22 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1086 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1080 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-950 (-1087 |#1| |#2| |#3|)) (-555 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1086)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 129 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 119 T ELT)) (-3805 (((-1146 |#2| |#1|) $ (-694)) 69 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3486 (($ $) 173 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1067 |#1|)) 113 T ELT)) (-3488 (($ $) 177 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 25 T ELT)) (-3810 (($ $) 28 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2888 (((-85) $) 124 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 13 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) 135 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $) 133 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 134 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3763 (($ $ (-694)) 15 T ELT)) (-3460 (((-3 $ #1#) $ $) 26 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) 31 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3489 (($ $) 179 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 175 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 206 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 55 T ELT) (($ (-1174 |#2|)) 36 T ELT)) (-3811 (((-1067 |#1|) $) 101 T ELT)) (-3671 ((|#1| $ (-694)) 121 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 58 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 185 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 181 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 189 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 191 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 187 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 183 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 20 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3833 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-311)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1087 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1146 |#2| |#1|))) (-15 -3805 ((-1146 |#2| |#1|) $ (-694))) (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1087)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1087 *3 *4 *5)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3531 (($ $ (-583 (-772))) 48 T ELT)) (-3532 (($ $ (-583 (-772))) 46 T ELT)) (-3529 (((-1071) $) 88 T ELT)) (-3534 (((-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3535 (((-85) $) 86 T ELT)) (-3533 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3718 (($) 151 T CONST)) (-3152 (((-3 (-444) "failed") $) 155 T ELT)) (-3151 (((-444) $) NIL T ELT)) (-3537 (((-1183)) 123 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 55 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 62 T ELT)) (-3608 (($) 109 T ELT) (($ $) 118 T ELT)) (-3536 (($ $) 87 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3528 (((-583 $) $) 124 T ELT)) (-3237 (((-1071) $) 101 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 (($ $ (-583 (-772))) 47 T ELT)) (-3966 (((-472) $) 33 T ELT) (((-1088) $) 34 T ELT) (((-800 (-483)) $) 66 T ELT) (((-800 (-327)) $) 64 T ELT)) (-3940 (((-772) $) 41 T ELT) (($ (-1071)) 35 T ELT) (($ (-444)) 153 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3530 (($ $ (-583 (-772))) 49 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 37 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 38 T ELT))) +(((-1088) (-13 (-756) (-553 (-472)) (-553 (-1088)) (-555 (-1071)) (-950 (-444)) (-553 (-800 (-483))) (-553 (-800 (-327))) (-796 (-483)) (-796 (-327)) (-10 -8 (-15 -3608 ($)) (-15 -3608 ($ $)) (-15 -3537 ((-1183))) (-15 -3536 ($ $)) (-15 -3535 ((-85) $)) (-15 -3534 ((-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3533 ($ $ (-583 (-583 (-772))))) (-15 -3533 ($ $ (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3532 ($ $ (-583 (-772)))) (-15 -3531 ($ $ (-583 (-772)))) (-15 -3530 ($ $ (-583 (-772)))) (-15 -3794 ($ $ (-583 (-772)))) (-15 -3529 ((-1071) $)) (-15 -3528 ((-583 $) $)) (-15 -3718 ($) -3946)))) (T -1088)) +((-3608 (*1 *1) (-5 *1 (-1088))) (-3608 (*1 *1 *1) (-5 *1 (-1088))) (-3537 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088)))) (-3536 (*1 *1 *1) (-5 *1 (-1088))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1088)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1088)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1088)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1088)))) (-3718 (*1 *1) (-5 *1 (-1088)))) +((-3538 (((-1177 |#1|) |#1| (-830)) 18 T ELT) (((-1177 |#1|) (-583 |#1|)) 25 T ELT))) +(((-1089 |#1|) (-10 -7 (-15 -3538 ((-1177 |#1|) (-583 |#1|))) (-15 -3538 ((-1177 |#1|) |#1| (-830)))) (-961)) (T -1089)) +((-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-961)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| (-884) $) NIL T ELT)) (-2406 (((-85) $) 18 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-884)) NIL T ELT)) (-2816 (((-884) $) NIL T ELT)) (-1622 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-3732 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-494))) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3942 (((-884) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-884)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 13 T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1090 |#1|) (-13 (-276 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| (-884) (-104)) (-15 -3732 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961)) (T -1090)) +((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494)) (-4 *3 (-961))))) +((-3539 (((-1092) (-1088) $) 26 T ELT)) (-3549 (($) 30 T ELT)) (-3541 (((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) (-1088) $) 23 T ELT)) (-3543 (((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) $) 42 T ELT) (((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) 43 T ELT) (((-1183) (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) 44 T ELT)) (-3551 (((-1183) (-1088)) 59 T ELT)) (-3542 (((-1183) (-1088) $) 56 T ELT) (((-1183) (-1088)) 57 T ELT) (((-1183)) 58 T ELT)) (-3547 (((-1183) (-1088)) 38 T ELT)) (-3545 (((-1088)) 37 T ELT)) (-3559 (($) 35 T ELT)) (-3558 (((-376) (-1088) (-376) (-1088) $) 46 T ELT) (((-376) (-583 (-1088)) (-376) (-1088) $) 50 T ELT) (((-376) (-1088) (-376)) 47 T ELT) (((-376) (-1088) (-376) (-1088)) 51 T ELT)) (-3546 (((-1088)) 36 T ELT)) (-3940 (((-772) $) 29 T ELT)) (-3548 (((-1183)) 31 T ELT) (((-1183) (-1088)) 34 T ELT)) (-3540 (((-583 (-1088)) (-1088) $) 25 T ELT)) (-3544 (((-1183) (-1088) (-583 (-1088)) $) 39 T ELT) (((-1183) (-1088) (-583 (-1088))) 40 T ELT) (((-1183) (-583 (-1088))) 41 T ELT))) +(((-1091) (-13 (-552 (-772)) (-10 -8 (-15 -3549 ($)) (-15 -3548 ((-1183))) (-15 -3548 ((-1183) (-1088))) (-15 -3558 ((-376) (-1088) (-376) (-1088) $)) (-15 -3558 ((-376) (-583 (-1088)) (-376) (-1088) $)) (-15 -3558 ((-376) (-1088) (-376))) (-15 -3558 ((-376) (-1088) (-376) (-1088))) (-15 -3547 ((-1183) (-1088))) (-15 -3546 ((-1088))) (-15 -3545 ((-1088))) (-15 -3544 ((-1183) (-1088) (-583 (-1088)) $)) (-15 -3544 ((-1183) (-1088) (-583 (-1088)))) (-15 -3544 ((-1183) (-583 (-1088)))) (-15 -3543 ((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $)) (-15 -3543 ((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))) (-15 -3543 ((-1183) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))) (-15 -3542 ((-1183) (-1088) $)) (-15 -3542 ((-1183) (-1088))) (-15 -3542 ((-1183))) (-15 -3551 ((-1183) (-1088))) (-15 -3559 ($)) (-15 -3541 ((-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-1088) $)) (-15 -3540 ((-583 (-1088)) (-1088) $)) (-15 -3539 ((-1092) (-1088) $))))) (T -1091)) +((-3549 (*1 *1) (-5 *1 (-1091))) (-3548 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3546 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3545 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3559 (*1 *1) (-5 *1 (-1091))) (-3541 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *1 (-1091)))) (-3540 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088)))) (-3539 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091))))) +((-3553 (((-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) $) 66 T ELT)) (-3555 (((-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))) (-374) $) 47 T ELT)) (-3550 (($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))) 17 T ELT)) (-3551 (((-1183) $) 73 T ELT)) (-3556 (((-583 (-1088)) $) 22 T ELT)) (-3552 (((-1014) $) 60 T ELT)) (-3557 (((-376) (-1088) $) 27 T ELT)) (-3554 (((-583 (-1088)) $) 30 T ELT)) (-3559 (($) 19 T ELT)) (-3558 (((-376) (-583 (-1088)) (-376) $) 25 T ELT) (((-376) (-1088) (-376) $) 24 T ELT)) (-3940 (((-772) $) 12 T ELT) (((-1100 (-1088) (-376)) $) 13 T ELT))) +(((-1092) (-13 (-552 (-772)) (-10 -8 (-15 -3940 ((-1100 (-1088) (-376)) $)) (-15 -3559 ($)) (-15 -3558 ((-376) (-583 (-1088)) (-376) $)) (-15 -3558 ((-376) (-1088) (-376) $)) (-15 -3557 ((-376) (-1088) $)) (-15 -3556 ((-583 (-1088)) $)) (-15 -3555 ((-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))) (-374) $)) (-15 -3554 ((-583 (-1088)) $)) (-15 -3553 ((-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) $)) (-15 -3552 ((-1014) $)) (-15 -3551 ((-1183) $)) (-15 -3550 ($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))))))) (T -1092)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-376))) (-5 *1 (-1092)))) (-3559 (*1 *1) (-5 *1 (-1092))) (-3558 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *1 (-1092)))) (-3558 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1092)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-376)) (-5 *1 (-1092)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))) (-3555 (*1 *2 *3 *1) (-12 (-5 *3 (-374)) (-5 *2 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) (-5 *1 (-1092)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))))) (-5 *1 (-1092)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))) (-5 *1 (-1092))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3152 (((-3 (-483) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-444) #1#) $) 43 T ELT) (((-3 (-1071) #1#) $) 47 T ELT)) (-3151 (((-483) $) 30 T ELT) (((-179) $) 36 T ELT) (((-444) $) 40 T ELT) (((-1071) $) 48 T ELT)) (-3564 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3563 (((-3 (-483) (-179) (-444) (-1071) $) $) 56 T ELT)) (-3562 (((-583 $) $) 58 T ELT)) (-3966 (((-1014) $) 24 T ELT) (($ (-1014)) 25 T ELT)) (-3561 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-483)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-444)) 38 T ELT) (($ (-1071)) 44 T ELT) (((-472) $) 60 T ELT) (((-483) $) 31 T ELT) (((-179) $) 37 T ELT) (((-444) $) 41 T ELT) (((-1071) $) 49 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-483))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-444))) 19 T ELT) (((-85) $ (|[\|\|]| (-1071))) 16 T ELT)) (-3565 (($ (-444) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-483) $) 27 T ELT) (((-179) $) 33 T ELT) (((-444) $) 39 T ELT) (((-1071) $) 45 T ELT)) (-3052 (((-85) $ $) 7 T ELT))) +(((-1093) (-13 (-1173) (-1012) (-950 (-483)) (-950 (-179)) (-950 (-444)) (-950 (-1071)) (-552 (-472)) (-10 -8 (-15 -3966 ((-1014) $)) (-15 -3966 ($ (-1014))) (-15 -3940 ((-483) $)) (-15 -3566 ((-483) $)) (-15 -3940 ((-179) $)) (-15 -3566 ((-179) $)) (-15 -3940 ((-444) $)) (-15 -3566 ((-444) $)) (-15 -3940 ((-1071) $)) (-15 -3566 ((-1071) $)) (-15 -3565 ($ (-444) (-583 $))) (-15 -3565 ($ $ (-583 $))) (-15 -3564 ((-85) $)) (-15 -3563 ((-3 (-483) (-179) (-444) (-1071) $) $)) (-15 -3562 ((-583 $) $)) (-15 -3561 ((-85) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-483)))) (-15 -3560 ((-85) $ (|[\|\|]| (-179)))) (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3560 ((-85) $ (|[\|\|]| (-1071))))))) (T -1093)) +((-3966 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3565 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-1093))) (-5 *1 (-1093)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-3 (-483) (-179) (-444) (-1071) (-1093))) (-5 *1 (-1093)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 21 T ELT)) (-3718 (($) 10 T CONST)) (-2990 (($) 25 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2006 (((-830) $) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 22 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT))) +(((-1094 |#1|) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946))) (-830)) (T -1094)) +((-3718 (*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-830))))) +((-483) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 24 T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) 18 T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) 20 T ELT)) (-3720 (($ $ $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) 22 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) 21 T ELT))) +(((-1095 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946))) (-830)) (T -1095)) +((-3720 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) (-3718 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830))))) +((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 7 T ELT))) +(((-1096) (-1012)) (T -1096)) +NIL +((-3568 (((-583 (-583 (-857 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 69 T ELT)) (-3567 (((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|)))) 81 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|))) 77 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088)) 82 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088)) 76 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088))) 109 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 106 T ELT))) +(((-1097 |#1|) (-10 -7 (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))))) (-15 -3568 ((-583 (-583 (-857 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))))) (-494)) (T -1097)) +((-3568 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1097 *5)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-248 (-347 (-857 *4)))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-347 (-857 *4))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-248 (-347 (-857 *5)))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-347 (-857 *5))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4)) (-5 *3 (-583 (-248 (-347 (-857 *4))))))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5)) (-5 *3 (-583 (-248 (-347 (-857 *5))))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5))))) +((-3573 (((-1071)) 7 T ELT)) (-3570 (((-1071)) 11 T CONST)) (-3569 (((-1183) (-1071)) 13 T ELT)) (-3572 (((-1071)) 8 T CONST)) (-3571 (((-103)) 10 T CONST))) +(((-1098) (-13 (-1127) (-10 -7 (-15 -3573 ((-1071))) (-15 -3572 ((-1071)) -3946) (-15 -3571 ((-103)) -3946) (-15 -3570 ((-1071)) -3946) (-15 -3569 ((-1183) (-1071)))))) (T -1098)) +((-3573 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3572 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3571 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098)))) (-3570 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098))))) +((-3577 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3580 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3581 (((-1101 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3583 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3586 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3585 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3582 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3584 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3576 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3575 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3574 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3578 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3579 (((-583 (-583 |#1|)) (-1101 (-583 |#1|))) 60 T ELT))) +(((-1099 |#1|) (-10 -7 (-15 -3574 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3575 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3576 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3577 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3578 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3579 ((-583 (-583 |#1|)) (-1101 (-583 |#1|)))) (-15 -3580 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3581 ((-1101 (-583 |#1|)) (-583 |#1|))) (-15 -3582 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3583 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3584 ((-583 |#1|) (-583 |#1|))) (-15 -3585 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3586 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1099)) +((-3586 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3585 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1099 *6)) (-5 *4 (-583 *5)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1099 *3)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-583 *4)))) (-3582 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1099 *3)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1101 (-583 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-583 *4)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 *4))))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1101 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)) (-4 *4 (-756)))) (-3577 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1099 *4)))) (-3576 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1099 *4)))) (-3575 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1099 *5)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1099 *6)) (-5 *5 (-583 *4))))) +((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1100 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012)) (T -1100)) +NIL +((-3587 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3588 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3940 (((-772) $) 33 T ELT))) +(((-1101 |#1|) (-10 -8 (-15 -3587 ($ (-583 (-583 |#1|)))) (-15 -3588 ((-583 (-583 |#1|)) $)) (-15 -3940 ((-772) $))) (-1012)) (T -1101)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3589 (($ |#1| (-55)) 11 T ELT)) (-3536 ((|#1| $) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ |#1|) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 15 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1102 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3589 ($ |#1| (-55))))) (-1012)) (T -1102)) +((-3589 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012))))) +((-3590 ((|#1| (-583 |#1|)) 46 T ELT)) (-3592 ((|#1| |#1| (-483)) 24 T ELT)) (-3591 (((-1083 |#1|) |#1| (-830)) 20 T ELT))) +(((-1103 |#1|) (-10 -7 (-15 -3590 (|#1| (-583 |#1|))) (-15 -3591 ((-1083 |#1|) |#1| (-830))) (-15 -3592 (|#1| |#1| (-483)))) (-311)) (T -1103)) +((-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-311)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-311)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-311))))) +((-3593 (($) 10 T ELT) (($ (-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3399 (($ (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-583 |#3|) $) 41 T ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1271 (((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3603 (($ (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2199 (((-583 |#2|) $) 19 T ELT)) (-2200 (((-85) |#2| $) 65 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1272 (((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2201 (((-583 |#3|) $) 43 T ELT)) (-3794 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-694) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) |#3| $) NIL T ELT) (((-694) (-1 (-85) |#3|) $) 79 T ELT)) (-3940 (((-772) $) 27 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3052 (((-85) $ $) 51 T ELT))) +(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3952 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3593 (|#1| (-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))))) (-15 -3593 (|#1|)) (-15 -3952 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#3|) |#1|)) (-15 -2885 ((-583 |#3|) |#1|)) (-15 -1943 ((-694) |#3| |#1|)) (-15 -3794 (|#3| |#1| |#2| |#3|)) (-15 -3794 (|#3| |#1| |#2|)) (-15 -2201 ((-583 |#3|) |#1|)) (-15 -2200 ((-85) |#2| |#1|)) (-15 -2199 ((-583 |#2|) |#1|)) (-15 -3399 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3399 (|#1| (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3399 (|#1| (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1351 ((-3 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1271 ((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3603 (|#1| (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1272 ((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1943 ((-694) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2885 ((-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1943 ((-694) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1944 ((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 (|#1| (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3952 (|#1| (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|))) (-1105 |#2| |#3|) (-1012) (-1012)) (T -1104)) +NIL +((-2564 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3593 (($) 77 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2194 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 93 T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) 101 (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 100 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3237 (((-1071) $) 22 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2199 (((-583 |#1|) $) 98 T ELT)) (-2200 (((-85) |#1| $) 97 T ELT)) (-3238 (((-1032) $) 21 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3795 ((|#2| $) 102 (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2195 (($ $ |#2|) 103 (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 96 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3940 (((-772) $) 17 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1262 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1105 |#1| |#2|) (-113) (-1012) (-1012)) (T -1105)) +((-3782 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-3593 (*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 *3) (|:| |entry| *4)))) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +(-13 (-549 |t#1| |t#2|) (-538 |t#1| |t#2|) (-10 -8 (-15 -3782 (|t#2| $ |t#1| |t#2|)) (-15 -3593 ($)) (-15 -3593 ($ (-583 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))))) (-15 -3952 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-538 |#1| |#2|) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1012) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ((-1127) . T)) +((-3599 (((-85)) 29 T ELT)) (-3596 (((-1183) (-1071)) 31 T ELT)) (-3600 (((-85)) 41 T ELT)) (-3597 (((-1183)) 39 T ELT)) (-3595 (((-1183) (-1071) (-1071)) 30 T ELT)) (-3601 (((-85)) 42 T ELT)) (-3603 (((-1183) |#1| |#2|) 53 T ELT)) (-3594 (((-1183)) 26 T ELT)) (-3602 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3598 (((-1183)) 40 T ELT))) +(((-1106 |#1| |#2|) (-10 -7 (-15 -3594 ((-1183))) (-15 -3595 ((-1183) (-1071) (-1071))) (-15 -3596 ((-1183) (-1071))) (-15 -3597 ((-1183))) (-15 -3598 ((-1183))) (-15 -3599 ((-85))) (-15 -3600 ((-85))) (-15 -3601 ((-85))) (-15 -3602 ((-3 |#2| "failed") |#1|)) (-15 -3603 ((-1183) |#1| |#2|))) (-1012) (-1012)) (T -1106)) +((-3603 (*1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3602 (*1 *2 *3) (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012)))) (-3601 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3600 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3599 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3598 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3597 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3595 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3594 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3609 (((-583 (-1071)) $) 37 T ELT)) (-3605 (((-583 (-1071)) $ (-583 (-1071))) 40 T ELT)) (-3604 (((-583 (-1071)) $ (-583 (-1071))) 39 T ELT)) (-3606 (((-583 (-1071)) $ (-583 (-1071))) 41 T ELT)) (-3607 (((-583 (-1071)) $) 36 T ELT)) (-3608 (($) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3610 (((-583 (-1071)) $) 38 T ELT)) (-3611 (((-1183) $ (-483)) 33 T ELT) (((-1183) $) 34 T ELT)) (-3966 (($ (-772) (-483)) 31 T ELT) (($ (-772) (-483) (-772)) NIL T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1107) (-13 (-1012) (-555 (-772)) (-10 -8 (-15 -3966 ($ (-772) (-483))) (-15 -3966 ($ (-772) (-483) (-772))) (-15 -3611 ((-1183) $ (-483))) (-15 -3611 ((-1183) $)) (-15 -3610 ((-583 (-1071)) $)) (-15 -3609 ((-583 (-1071)) $)) (-15 -3608 ($)) (-15 -3607 ((-583 (-1071)) $)) (-15 -3606 ((-583 (-1071)) $ (-583 (-1071)))) (-15 -3605 ((-583 (-1071)) $ (-583 (-1071)))) (-15 -3604 ((-583 (-1071)) $ (-583 (-1071))))))) (T -1107)) +((-3966 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3966 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3608 (*1 *1) (-5 *1 (-1107))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3606 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3605 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3604 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +((-3940 (((-1107) |#1|) 11 T ELT))) +(((-1108 |#1|) (-10 -7 (-15 -3940 ((-1107) |#1|))) (-1012)) (T -1108)) +((-3940 (*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3616 (((-1071) $ (-1071)) 21 T ELT) (((-1071) $) 20 T ELT)) (-1694 (((-1071) $ (-1071)) 19 T ELT)) (-1698 (($ $ (-1071)) NIL T ELT)) (-3614 (((-3 (-1071) #1="failed") $) 11 T ELT)) (-3615 (((-1071) $) 8 T ELT)) (-3613 (((-3 (-1071) #1#) $) 12 T ELT)) (-1695 (((-1071) $) 9 T ELT)) (-1699 (($ (-335)) NIL T ELT) (($ (-335) (-1071)) NIL T ELT)) (-3536 (((-335) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1696 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3612 (((-85) $) 25 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1697 (($ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1109) (-13 (-313 (-335) (-1071)) (-10 -8 (-15 -3616 ((-1071) $ (-1071))) (-15 -3616 ((-1071) $)) (-15 -3615 ((-1071) $)) (-15 -3614 ((-3 (-1071) #1="failed") $)) (-15 -3613 ((-3 (-1071) #1#) $)) (-15 -3612 ((-85) $))))) (T -1109)) +((-3616 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3614 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3613 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109))))) +((-3617 (((-3 (-483) #1="failed") |#1|) 19 T ELT)) (-3618 (((-3 (-483) #1#) |#1|) 14 T ELT)) (-3619 (((-483) (-1071)) 33 T ELT))) +(((-1110 |#1|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") |#1|)) (-15 -3618 ((-3 (-483) #1#) |#1|)) (-15 -3619 ((-483) (-1071)))) (-961)) (T -1110)) +((-3619 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-961)))) (-3618 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961))))) +((-3620 (((-1045 (-179))) 9 T ELT))) +(((-1111) (-10 -7 (-15 -3620 ((-1045 (-179)))))) (T -1111)) +((-3620 (*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111))))) +((-3621 (($) 12 T ELT)) (-3492 (($ $) 36 T ELT)) (-3490 (($ $) 34 T ELT)) (-3478 (($ $) 26 T ELT)) (-3494 (($ $) 18 T ELT)) (-3495 (($ $) 16 T ELT)) (-3493 (($ $) 20 T ELT)) (-3481 (($ $) 31 T ELT)) (-3491 (($ $) 35 T ELT)) (-3479 (($ $) 30 T ELT))) +(((-1112 |#1|) (-10 -7 (-15 -3621 (|#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3479 (|#1| |#1|))) (-1113)) (T -1112)) +NIL +((-3486 (($ $) 26 T ELT)) (-3633 (($ $) 11 T ELT)) (-3484 (($ $) 27 T ELT)) (-3632 (($ $) 10 T ELT)) (-3488 (($ $) 28 T ELT)) (-3631 (($ $) 9 T ELT)) (-3621 (($) 16 T ELT)) (-3936 (($ $) 19 T ELT)) (-3937 (($ $) 18 T ELT)) (-3489 (($ $) 29 T ELT)) (-3630 (($ $) 8 T ELT)) (-3487 (($ $) 30 T ELT)) (-3629 (($ $) 7 T ELT)) (-3485 (($ $) 31 T ELT)) (-3628 (($ $) 6 T ELT)) (-3492 (($ $) 20 T ELT)) (-3480 (($ $) 32 T ELT)) (-3490 (($ $) 21 T ELT)) (-3478 (($ $) 33 T ELT)) (-3494 (($ $) 22 T ELT)) (-3482 (($ $) 34 T ELT)) (-3495 (($ $) 23 T ELT)) (-3483 (($ $) 35 T ELT)) (-3493 (($ $) 24 T ELT)) (-3481 (($ $) 36 T ELT)) (-3491 (($ $) 25 T ELT)) (-3479 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1113) (-113)) (T -1113)) +((-3621 (*1 *1) (-4 *1 (-1113)))) +(-13 (-1116) (-66) (-430) (-35) (-239) (-10 -8 (-15 -3621 ($)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-1116) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 19 T ELT)) (-3626 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3021 ((|#1| $ |#1|) 14 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 13 (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-2885 (((-583 |#1|) $) 70 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 59 T ELT)) (-3023 (((-85) $ $) 50 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 71 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3026 (((-583 |#1|) $) 55 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 102 T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) 10 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3622 (((-583 $) $) 84 T ELT)) (-3623 (((-85) $ $) 105 T ELT)) (-3624 (((-583 $) $) 100 T ELT)) (-3625 (($ $) 101 T ELT)) (-3627 (((-85) $) 77 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 17 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 83 T ELT)) (-3940 (((-772) $) 86 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 12 T ELT)) (-3024 (((-85) $ $) 39 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 81 (|has| $ (-6 -3989)) ELT))) +(((-1114 |#1|) (-13 (-923 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -3626 ($ |#1| (-583 $))) (-15 -3626 ($ (-583 |#1|))) (-15 -3626 ($ |#1|)) (-15 -3627 ((-85) $)) (-15 -3625 ($ $)) (-15 -3624 ((-583 $) $)) (-15 -3623 ((-85) $ $)) (-15 -3622 ((-583 $) $)))) (-1012)) (T -1114)) +((-3627 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3626 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3626 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3)))) (-3626 (*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3623 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) +((-3633 (($ $) 15 T ELT)) (-3631 (($ $) 12 T ELT)) (-3630 (($ $) 10 T ELT)) (-3629 (($ $) 17 T ELT))) +(((-1115 |#1|) (-10 -7 (-15 -3629 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|))) (-1116)) (T -1115)) +NIL +((-3633 (($ $) 11 T ELT)) (-3632 (($ $) 10 T ELT)) (-3631 (($ $) 9 T ELT)) (-3630 (($ $) 8 T ELT)) (-3629 (($ $) 7 T ELT)) (-3628 (($ $) 6 T ELT))) +(((-1116) (-113)) (T -1116)) +((-3633 (*1 *1 *1) (-4 *1 (-1116))) (-3632 (*1 *1 *1) (-4 *1 (-1116))) (-3631 (*1 *1 *1) (-4 *1 (-1116))) (-3630 (*1 *1 *1) (-4 *1 (-1116))) (-3629 (*1 *1 *1) (-4 *1 (-1116))) (-3628 (*1 *1 *1) (-4 *1 (-1116)))) +(-13 (-10 -8 (-15 -3628 ($ $)) (-15 -3629 ($ $)) (-15 -3630 ($ $)) (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3633 ($ $)))) +((-3636 ((|#2| |#2|) 95 T ELT)) (-3639 (((-85) |#2|) 29 T ELT)) (-3637 ((|#2| |#2|) 33 T ELT)) (-3638 ((|#2| |#2|) 35 T ELT)) (-3634 ((|#2| |#2| (-1088)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3640 (((-142 |#2|) |#2|) 31 T ELT)) (-3635 ((|#2| |#2| (-1088)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1117 |#1| |#2|) (-10 -7 (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1088))) (-15 -3635 (|#2| |#2|)) (-15 -3635 (|#2| |#2| (-1088))) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 ((-85) |#2|)) (-15 -3640 ((-142 |#2|) |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -1117)) +((-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-142 *3)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3)))))) +((-3641 ((|#4| |#4| |#1|) 31 T ELT)) (-3642 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3641 (|#4| |#4| |#1|)) (-15 -3642 (|#4| |#4| |#1|))) (-494) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -1118)) +((-3642 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3641 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-3660 ((|#2| |#2|) 148 T ELT)) (-3662 ((|#2| |#2|) 145 T ELT)) (-3659 ((|#2| |#2|) 136 T ELT)) (-3661 ((|#2| |#2|) 133 T ELT)) (-3658 ((|#2| |#2|) 141 T ELT)) (-3657 ((|#2| |#2|) 129 T ELT)) (-3646 ((|#2| |#2|) 44 T ELT)) (-3645 ((|#2| |#2|) 105 T ELT)) (-3643 ((|#2| |#2|) 88 T ELT)) (-3656 ((|#2| |#2|) 143 T ELT)) (-3655 ((|#2| |#2|) 131 T ELT)) (-3668 ((|#2| |#2|) 153 T ELT)) (-3666 ((|#2| |#2|) 151 T ELT)) (-3667 ((|#2| |#2|) 152 T ELT)) (-3665 ((|#2| |#2|) 150 T ELT)) (-3644 ((|#2| |#2|) 163 T ELT)) (-3669 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3647 ((|#2| |#2|) 89 T ELT)) (-3648 ((|#2| |#2|) 154 T ELT)) (-3957 ((|#2| |#2|) 155 T ELT)) (-3654 ((|#2| |#2|) 142 T ELT)) (-3653 ((|#2| |#2|) 130 T ELT)) (-3652 ((|#2| |#2|) 149 T ELT)) (-3664 ((|#2| |#2|) 147 T ELT)) (-3651 ((|#2| |#2|) 137 T ELT)) (-3663 ((|#2| |#2|) 135 T ELT)) (-3650 ((|#2| |#2|) 139 T ELT)) (-3649 ((|#2| |#2|) 127 T ELT))) +(((-1119 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3669 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-389) (-13 (-361 |#1|) (-1113))) (T -1119)) +((-3669 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-1088)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3808 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $ (-1088) (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ $ (-583 (-1088)) (-583 (-468 (-1088)))) NIL T ELT) (($ $ (-1088) (-468 (-1088))) NIL T ELT) (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $ (-1088)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3670 (($ (-1 $) (-1088) |#1|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3763 (($ $ (-694)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ (-1088) $) NIL T ELT) (($ $ (-583 (-1088)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3942 (((-468 (-1088)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-1088)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3671 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1120 |#1|) (-13 (-679 |#1| (-1088)) (-10 -8 (-15 -3671 ((-857 |#1|) $ (-694))) (-15 -3940 ($ (-1088))) (-15 -3940 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ (-1088) |#1|)) (-15 -3670 ($ (-1 $) (-1088) |#1|))) |%noBranch|))) (-961)) (T -1120)) +((-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-961)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-961)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1120 *3)))) (-3806 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961))))) +((-3687 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3682 ((|#5| |#5| $) 83 T ELT)) (-3704 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3683 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3152 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3793 (((-3 $ #1#) $) 119 T ELT)) (-3679 ((|#5| |#5| $) 101 T ELT)) (-3688 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3677 ((|#5| |#5| $) 105 T ELT)) (-3836 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#5|)) (|:| -1699 (-583 |#5|))) $) 63 T ELT)) (-3689 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3175 ((|#4| $) 115 T ELT)) (-3792 (((-3 |#5| #1#) $) 117 T ELT)) (-3691 (((-583 |#5|) $) 55 T ELT)) (-3685 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3680 ((|#5| |#5| $) 89 T ELT)) (-3693 (((-85) $ $) 29 T ELT)) (-3686 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3681 ((|#5| |#5| $) 86 T ELT)) (-3795 (((-3 |#5| #1#) $) 116 T ELT)) (-3763 (($ $ |#5|) 135 T ELT)) (-3942 (((-694) $) 60 T ELT)) (-3524 (($ (-583 |#5|)) 132 T ELT)) (-2906 (($ $ |#4|) 130 T ELT)) (-2908 (($ $ |#4|) 128 T ELT)) (-3678 (($ $) 127 T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3672 (((-694) $) 139 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3684 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3674 (((-583 |#4|) $) 122 T ELT)) (-3927 (((-85) |#4| $) 125 T ELT)) (-3052 (((-85) $ $) 20 T ELT))) +(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3672 ((-694) |#1|)) (-15 -3763 (|#1| |#1| |#5|)) (-15 -3704 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3927 ((-85) |#4| |#1|)) (-15 -3674 ((-583 |#4|) |#1|)) (-15 -3793 ((-3 |#1| #1#) |#1|)) (-15 -3792 ((-3 |#5| #1#) |#1|)) (-15 -3795 ((-3 |#5| #1#) |#1|)) (-15 -3677 (|#5| |#5| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3679 (|#5| |#5| |#1|)) (-15 -3680 (|#5| |#5| |#1|)) (-15 -3681 (|#5| |#5| |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3836 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3685 ((-85) |#1|)) (-15 -3686 ((-85) |#1|)) (-15 -3687 ((-85) |#1|)) (-15 -3684 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3685 ((-85) |#5| |#1|)) (-15 -3686 ((-85) |#5| |#1|)) (-15 -3687 ((-85) |#5| |#1|)) (-15 -3688 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3689 ((-85) |#1|)) (-15 -3689 ((-85) |#5| |#1|)) (-15 -3690 ((-2 (|:| -3855 (-583 |#5|)) (|:| -1699 (-583 |#5|))) |#1|)) (-15 -3942 ((-694) |#1|)) (-15 -3691 ((-583 |#5|) |#1|)) (-15 -3692 ((-3 (-2 (|:| |bas| |#1|) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3692 ((-3 (-2 (|:| |bas| |#1|) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -2906 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -3175 (|#4| |#1|)) (-15 -3152 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3940 ((-583 |#5|) |#1|)) (-15 -3524 (|#1| (-583 |#5|))) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3704 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-494) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -1121)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ "failed") $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3792 (((-3 |#4| "failed") $) 88 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| "failed") $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT))) +(((-1122 |#1| |#2| |#3| |#4|) (-113) (-494) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1122)) +((-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))) (-3692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1122 *6 *7 *8 *9)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-694)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-2 (|:| -3855 (-583 *6)) (|:| -1699 (-583 *6)))))) (-3689 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3688 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)))) (-3687 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3686 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3685 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3836 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-976 *5 *6 *7)))) (-3683 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3681 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3680 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3679 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4)))) (-3677 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3675 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3855 *1) (|:| -1699 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3795 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3792 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3793 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3927 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-3704 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-976 *4 *5 *3)))) (-3673 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-694))))) +(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -3693 ((-85) $ $)) (-15 -3692 ((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 ((-583 |t#4|) $)) (-15 -3942 ((-694) $)) (-15 -3690 ((-2 (|:| -3855 (-583 |t#4|)) (|:| -1699 (-583 |t#4|))) $)) (-15 -3689 ((-85) |t#4| $)) (-15 -3689 ((-85) $)) (-15 -3688 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3687 ((-85) |t#4| $)) (-15 -3686 ((-85) |t#4| $)) (-15 -3685 ((-85) |t#4| $)) (-15 -3684 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3687 ((-85) $)) (-15 -3686 ((-85) $)) (-15 -3685 ((-85) $)) (-15 -3836 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3683 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 (|t#4| |t#4| $)) (-15 -3680 (|t#4| |t#4| $)) (-15 -3679 (|t#4| |t#4| $)) (-15 -3678 ($ $)) (-15 -3677 (|t#4| |t#4| $)) (-15 -3676 ((-583 $) (-583 |t#4|))) (-15 -3675 ((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3795 ((-3 |t#4| "failed") $)) (-15 -3792 ((-3 |t#4| "failed") $)) (-15 -3793 ((-3 $ "failed") $)) (-15 -3674 ((-583 |t#3|) $)) (-15 -3927 ((-85) |t#3| $)) (-15 -3704 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3673 ((-3 $ "failed") $ |t#4|)) (-15 -3763 ($ $ |t#4|)) (IF (|has| |t#3| (-317)) (-15 -3672 ((-694) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1127) . T)) +((-3699 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3698 (((-85) $ (-85)) 18 T ELT)) (-3697 (((-85) $) 17 T ELT)) (-3695 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3694 ((|#1| $) 8 T ELT)) (-3696 (((-85) $) 15 T ELT))) +(((-1123 |#1|) (-10 -8 (-15 -3694 (|#1| $)) (-15 -3695 ((-583 (-583 (-854 (-179)))) $)) (-15 -3696 ((-85) $)) (-15 -3697 ((-85) $)) (-15 -3698 ((-85) $ (-85))) (-15 -3699 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1123)) +((-3699 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2)) (-4 *2 (-887)))) (-3698 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3694 (*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-887))))) +((-3701 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3700 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3703 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3830 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3828 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3702 (((-583 (-583 (-179))) (-483)) 45 T ELT)) (-3831 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3833 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT))) +(((-1124) (-10 -7 (-15 -3700 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3833 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3831 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3830 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3828 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3701 ((-854 (-179)) (-854 (-179)))) (-15 -3702 ((-583 (-583 (-179))) (-483))) (-15 -3703 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1124)) +((-3703 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1124)) (-5 *3 (-854 *4)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1124)))) (-3701 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3830 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1124)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1124)))) (-3700 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)) (-5 *3 (-179))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3704 ((|#1| $ (-694)) 18 T ELT)) (-3827 (((-694) $) 13 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3940 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3052 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT))) +(((-1125 |#1|) (-13 (-427 (-869 |#1|)) (-10 -8 (-15 -3704 (|#1| $ (-694))) (-15 -3827 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1125)) +((-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1125 *3)) (-4 *3 (-1127))))) +((-3707 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)) 92 T ELT)) (-3705 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 84 T ELT)) (-3706 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 68 T ELT))) +(((-1126 |#1|) (-10 -7 (-15 -3705 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3706 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3707 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)))) (-298)) (T -1126)) +((-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-298)) (-5 *2 (-345 (-1083 (-1083 *5)))) (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5))))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4))))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4)))))) +NIL +(((-1127) (-113)) (T -1127)) NIL (-13) (((-13) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 9 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1121) (-989)) (T -1121)) -NIL -((-3700 (((-83)) 18 T ELT)) (-3697 (((-1176) (-580 |#1|) (-580 |#1|)) 22 T ELT) (((-1176) (-580 |#1|)) 23 T ELT)) (-3702 (((-83) |#1| |#1|) 37 (|has| |#1| (-751)) ELT)) (-3699 (((-83) |#1| |#1| (-1 (-83) |#1| |#1|)) 29 T ELT) (((-3 (-83) "failed") |#1| |#1|) 27 T ELT)) (-3701 ((|#1| (-580 |#1|)) 38 (|has| |#1| (-751)) ELT) ((|#1| (-580 |#1|) (-1 (-83) |#1| |#1|)) 32 T ELT)) (-3698 (((-2 (|:| -3214 (-580 |#1|)) (|:| -3213 (-580 |#1|)))) 20 T ELT))) -(((-1122 |#1|) (-10 -7 (-15 -3697 ((-1176) (-580 |#1|))) (-15 -3697 ((-1176) (-580 |#1|) (-580 |#1|))) (-15 -3698 ((-2 (|:| -3214 (-580 |#1|)) (|:| -3213 (-580 |#1|))))) (-15 -3699 ((-3 (-83) "failed") |#1| |#1|)) (-15 -3699 ((-83) |#1| |#1| (-1 (-83) |#1| |#1|))) (-15 -3701 (|#1| (-580 |#1|) (-1 (-83) |#1| |#1|))) (-15 -3700 ((-83))) (IF (|has| |#1| (-751)) (PROGN (-15 -3701 (|#1| (-580 |#1|))) (-15 -3702 ((-83) |#1| |#1|))) |%noBranch|)) (-1007)) (T -1122)) -((-3702 (*1 *2 *3 *3) (-12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-751)) (-4 *3 (-1007)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-751)) (-5 *1 (-1122 *2)))) (-3700 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-1007)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1122 *2)) (-4 *2 (-1007)))) (-3699 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1007)) (-5 *2 (-83)) (-5 *1 (-1122 *3)))) (-3699 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-1007)))) (-3698 (*1 *2) (-12 (-5 *2 (-2 (|:| -3214 (-580 *3)) (|:| -3213 (-580 *3)))) (-5 *1 (-1122 *3)) (-4 *3 (-1007)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-5 *2 (-1176)) (-5 *1 (-1122 *4)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-5 *2 (-1176)) (-5 *1 (-1122 *4))))) -((-3703 (((-1176) (-580 (-1081)) (-580 (-1081))) 14 T ELT) (((-1176) (-580 (-1081))) 12 T ELT)) (-3705 (((-1176)) 16 T ELT)) (-3704 (((-2 (|:| -3213 (-580 (-1081))) (|:| -3214 (-580 (-1081))))) 20 T ELT))) -(((-1123) (-10 -7 (-15 -3703 ((-1176) (-580 (-1081)))) (-15 -3703 ((-1176) (-580 (-1081)) (-580 (-1081)))) (-15 -3704 ((-2 (|:| -3213 (-580 (-1081))) (|:| -3214 (-580 (-1081)))))) (-15 -3705 ((-1176))))) (T -1123)) -((-3705 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1123)))) (-3704 (*1 *2) (-12 (-5 *2 (-2 (|:| -3213 (-580 (-1081))) (|:| -3214 (-580 (-1081))))) (-5 *1 (-1123)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1123)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1123))))) -((-3758 (($ $) 17 T ELT)) (-3706 (((-83) $) 27 T ELT))) -(((-1124 |#1|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3706 ((-83) |#1|))) (-1125)) (T -1124)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 64 T ELT)) (-3954 (((-343 $) $) 65 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3706 (((-83) $) 66 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3715 (((-343 $) $) 63 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1125) (-111)) (T -1125)) -((-3706 (*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-83)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1125)))) (-3758 (*1 *1 *1) (-4 *1 (-1125))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1125))))) -(-13 (-387) (-10 -8 (-15 -3706 ((-83) $)) (-15 -3954 ((-343 $) $)) (-15 -3758 ($ $)) (-15 -3715 ((-343 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-243) . T) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 $) . T) ((-587 $) . T) ((-579 $) . T) ((-651 $) . T) ((-660) . T) ((-958 $) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-1126) (-13 (-747) (-601) (-10 -8 (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935)))) (T -1126)) -((-3709 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3708 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3707 (*1 *1) (-5 *1 (-1126)))) -((-689) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-1127) (-13 (-747) (-601) (-10 -8 (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935)))) (T -1127)) -((-3709 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3708 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3707 (*1 *1) (-5 *1 (-1127)))) -((-689) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-1128) (-13 (-747) (-601) (-10 -8 (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935)))) (T -1128)) -((-3709 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3708 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3707 (*1 *1) (-5 *1 (-1128)))) -((-689) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-2301 (($ $) NIL T ELT)) (-3121 (((-689)) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2980 (($) NIL T ELT)) (-2517 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2843 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1998 (((-825) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2388 (($ (-825)) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-2553 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2671 (((-83) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT))) -(((-1129) (-13 (-747) (-601) (-10 -8 (-15 -3709 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3707 ($) -3935)))) (T -1129)) -((-3709 (*1 *1 *1 *1) (-5 *1 (-1129))) (-3708 (*1 *1 *1 *1) (-5 *1 (-1129))) (-3707 (*1 *1) (-5 *1 (-1129)))) -((-689) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3114 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-255)) (|has| |#1| (-309))) ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 10 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2051 (($ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2049 (((-83) $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-3754 (($ $ (-480)) NIL T ELT) (($ $ (-480) (-480)) NIL T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) NIL T ELT)) (-3714 (((-1160 |#1| |#2| |#3|) $) NIL T ELT)) (-3711 (((-3 (-1160 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3712 (((-1160 |#1| |#2| |#3|) $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3606 (((-480) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-1160 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1081) #1#) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT) (((-3 (-480) #1#) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT)) (-3141 (((-1160 |#1| |#2| |#3|) $) NIL T ELT) (((-1081) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (((-345 (-480)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT) (((-480) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) ELT)) (-3713 (($ $) NIL T ELT) (($ (-480) $) NIL T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-1160 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-1160 |#1| |#2| |#3|))) (|:| |vec| (-1170 (-1160 |#1| |#2| |#3|)))) (-627 $) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3710 (((-345 (-852 |#1|)) $ (-480)) NIL (|has| |#1| (-491)) ELT) (((-345 (-852 |#1|)) $ (-480) (-480)) NIL (|has| |#1| (-491)) ELT)) (-2980 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-3171 (((-83) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-791 (-325))) (|has| |#1| (-309))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-791 (-480))) (|has| |#1| (-309))) ELT)) (-3755 (((-480) $) NIL T ELT) (((-480) $ (-480)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2984 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-309)) ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3428 (((-629 $) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1057)) (|has| |#1| (-309))) ELT)) (-3172 (((-83) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-3760 (($ $ (-825)) NIL T ELT)) (-3798 (($ (-1 |#1| (-480)) $) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-480)) 18 T ELT) (($ $ (-988) (-480)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-480))) NIL T ELT)) (-2517 (($ $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2843 (($ $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-309)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2268 (((-627 (-1160 |#1| |#2| |#3|)) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-1160 |#1| |#2| |#3|))) (|:| |vec| (-1170 (-1160 |#1| |#2| |#3|)))) (-1170 $) $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-577 (-480))) (|has| |#1| (-309))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3762 (($ (-480) (-1160 |#1| |#2| |#3|)) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) 27 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 28 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1057)) (|has| |#1| (-309))) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3113 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-255)) (|has| |#1| (-309))) ELT)) (-3115 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-480)) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT) (($ $ (-1081) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-449 (-1081) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1081)) (-580 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-449 (-1081) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-246 (-1160 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-246 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1160 |#1| |#2| |#3|)) (-580 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-257 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-480)) NIL T ELT) (($ $ $) NIL (|has| (-480) (-1017)) ELT) (($ $ (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-239 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-309))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-309)) ELT) (($ $ (-1167 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2981 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2983 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-309)) ELT)) (-3931 (((-480) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3955 (((-469) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-550 (-469))) (|has| |#1| (-309))) ELT) (((-325) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-928)) (|has| |#1| (-309))) ELT) (((-177) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-928)) (|has| |#1| (-309))) ELT) (((-795 (-325)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-550 (-795 (-325)))) (|has| |#1| (-309))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-550 (-795 (-480)))) (|has| |#1| (-309))) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1160 |#1| |#2| |#3|)) NIL T ELT) (($ (-1167 |#2|)) 24 T ELT) (($ (-1081)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-1081))) (|has| |#1| (-309))) ELT) (($ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT) (($ (-345 (-480))) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-945 (-480))) (|has| |#1| (-309))) (|has| |#1| (-38 (-345 (-480))))) ELT)) (-3660 ((|#1| $ (-480)) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-116)) (|has| |#1| (-309))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 11 T ELT)) (-3116 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-479)) (|has| |#1| (-309))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-816)) (|has| |#1| (-309))) (|has| |#1| (-491))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-480)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3366 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) ELT)) (-2646 (($) 20 T CONST)) (-2652 (($) 15 T CONST)) (-2655 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-309)) ELT) (($ $ (-1167 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-188)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-804 (-1081))) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2553 (((-83) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-2671 (((-83) $ $) NIL (OR (-12 (|has| (-1160 |#1| |#2| |#3|) (-735)) (|has| |#1| (-309))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-751)) (|has| |#1| (-309)))) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT) (($ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 22 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-309)) ELT) (($ (-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1130 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1160 |#1| |#2| |#3|)) (-801 $ (-1167 |#2|)) (-10 -8 (-15 -3929 ($ (-1167 |#2|))) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1130)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-956)) (-14 *5 *3))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-3941 (((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)) 23 T ELT))) -(((-1131 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3941 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) (-956) (-956) (-1081) (-1081) |#1| |#2|) (T -1131)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-956)) (-4 *6 (-956)) (-14 *7 (-1081)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1081))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-480)) 122 T ELT) (($ $ (-480) (-480)) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) 128 T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 188 (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) 189 (|has| |#1| (-309)) ELT)) (-3023 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) 179 (|has| |#1| (-309)) ELT)) (-3473 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) 199 T ELT)) (-3477 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-2550 (($ $ $) 183 (|has| |#1| (-309)) ELT)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3710 (((-345 (-852 |#1|)) $ (-480)) 197 (|has| |#1| (-491)) ELT) (((-345 (-852 |#1|)) $ (-480) (-480)) 196 (|has| |#1| (-491)) ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 177 (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) 190 (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) 92 T ELT)) (-3610 (($) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-480) $) 124 T ELT) (((-480) $ (-480)) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 142 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) 125 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 198 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 186 (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| (-480)) 79 T ELT) (($ $ (-988) (-480)) 95 T ELT) (($ $ (-580 (-988)) (-580 (-480))) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-1880 (($ (-580 $)) 175 (|has| |#1| (-309)) ELT) (($ $ $) 174 (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 191 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 195 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 194 (OR (-12 (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106)) (|has| |#1| (-38 (-345 (-480))))) (-12 (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-38 (-345 (-480)))))) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 176 (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) 173 (|has| |#1| (-309)) ELT) (($ $ $) 172 (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) 187 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 184 (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-480)) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 178 (|has| |#1| (-309)) ELT)) (-3926 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT)) (-1596 (((-689) $) 180 (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-480)) 129 T ELT) (($ $ $) 105 (|has| (-480) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 181 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 117 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081))) 115 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081) (-689)) 114 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT) (($ $ (-689)) 107 (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT)) (-3931 (((-480) $) 82 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 156 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-480)) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 154 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-480)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 150 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1081)) 116 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081))) 112 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081) (-689)) 111 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT) (($ $ (-689)) 106 (|has| |#1| (-15 * (|#1| (-480) |#1|))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT) (($ $ $) 193 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 192 (|has| |#1| (-309)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1132 |#1|) (-111) (-956)) (T -1132)) -((-3801 (*1 *1 *2) (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-4 *3 (-956)) (-4 *1 (-1132 *3)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *1 (-1132 *3)) (-4 *3 (-956)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-1132 *4)) (-4 *4 (-956)) (-4 *4 (-491)) (-5 *2 (-345 (-852 *4))))) (-3710 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-4 *1 (-1132 *4)) (-4 *4 (-956)) (-4 *4 (-491)) (-5 *2 (-345 (-852 *4))))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) (-3795 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1081)) (-4 *1 (-1132 *3)) (-4 *3 (-956)) (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) (-4 *3 (-38 (-345 (-480)))))) (-12 (-5 *2 (-1081)) (-4 *1 (-1132 *3)) (-4 *3 (-956)) (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480))))))))) -(-13 (-1149 |t#1| (-480)) (-10 -8 (-15 -3801 ($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |t#1|))))) (-15 -3798 ($ (-1 |t#1| (-480)) $)) (IF (|has| |t#1| (-491)) (PROGN (-15 -3710 ((-345 (-852 |t#1|)) $ (-480))) (-15 -3710 ((-345 (-852 |t#1|)) $ (-480) (-480)))) |%noBranch|) (IF (|has| |t#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $)) (IF (|has| |t#1| (-15 -3795 (|t#1| |t#1| (-1081)))) (IF (|has| |t#1| (-15 -3067 ((-580 (-1081)) |t#1|))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-866)) (IF (|has| |t#1| (-29 (-480))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-910)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-309)) (-6 (-309)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-480)) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-480) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-480) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-480) |#1|))) ((-199) |has| |#1| (-309)) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-239 (-480) |#1|) . T) ((-239 $ $) |has| (-480) (-1017)) ((-243) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-255) |has| |#1| (-309)) ((-309) |has| |#1| (-309)) ((-387) |has| |#1| (-309)) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-491) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-651 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-660) . T) ((-801 $ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ((-804 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ((-806 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ((-881 |#1| (-480) (-988)) . T) ((-827) |has| |#1| (-309)) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-958 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-963 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T) ((-1125) |has| |#1| (-309)) ((-1149 |#1| (-480)) . T)) -((-3173 (((-83) $) 12 T ELT)) (-3142 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1081) #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT)) (-3141 ((|#3| $) 14 T ELT) (((-1081) $) NIL T ELT) (((-345 (-480)) $) NIL T ELT) (((-480) $) NIL T ELT))) -(((-1133 |#1| |#2| |#3|) (-10 -7 (-15 -3142 ((-3 (-480) #1="failed") |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3142 ((-3 (-1081) #1#) |#1|)) (-15 -3141 ((-1081) |#1|)) (-15 -3142 ((-3 |#3| #1#) |#1|)) (-15 -3141 (|#3| |#1|)) (-15 -3173 ((-83) |#1|))) (-1134 |#2| |#3|) (-956) (-1163 |#2|)) (T -1133)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3114 ((|#2| $) 264 (-2548 (|has| |#2| (-255)) (|has| |#1| (-309))) ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-480)) 122 T ELT) (($ $ (-480) (-480)) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) 128 T ELT)) (-3714 ((|#2| $) 300 T ELT)) (-3711 (((-3 |#2| "failed") $) 296 T ELT)) (-3712 ((|#2| $) 297 T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 273 (-2548 (|has| |#2| (-816)) (|has| |#1| (-309))) ELT)) (-3758 (($ $) 188 (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) 189 (|has| |#1| (-309)) ELT)) (-3023 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 270 (-2548 (|has| |#2| (-816)) (|has| |#1| (-309))) ELT)) (-1597 (((-83) $ $) 179 (|has| |#1| (-309)) ELT)) (-3473 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3606 (((-480) $) 282 (-2548 (|has| |#2| (-735)) (|has| |#1| (-309))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) 199 T ELT)) (-3477 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#2| #2="failed") $) 303 T ELT) (((-3 (-480) #2#) $) 293 (-2548 (|has| |#2| (-945 (-480))) (|has| |#1| (-309))) ELT) (((-3 (-345 (-480)) #2#) $) 291 (-2548 (|has| |#2| (-945 (-480))) (|has| |#1| (-309))) ELT) (((-3 (-1081) #2#) $) 275 (-2548 (|has| |#2| (-945 (-1081))) (|has| |#1| (-309))) ELT)) (-3141 ((|#2| $) 304 T ELT) (((-480) $) 292 (-2548 (|has| |#2| (-945 (-480))) (|has| |#1| (-309))) ELT) (((-345 (-480)) $) 290 (-2548 (|has| |#2| (-945 (-480))) (|has| |#1| (-309))) ELT) (((-1081) $) 274 (-2548 (|has| |#2| (-945 (-1081))) (|has| |#1| (-309))) ELT)) (-3713 (($ $) 299 T ELT) (($ (-480) $) 298 T ELT)) (-2550 (($ $ $) 183 (|has| |#1| (-309)) ELT)) (-3942 (($ $) 78 T ELT)) (-2267 (((-627 |#2|) (-627 $)) 252 (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) 251 (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 250 (-2548 (|has| |#2| (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-627 $)) 249 (-2548 (|has| |#2| (-577 (-480))) (|has| |#1| (-309))) ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3710 (((-345 (-852 |#1|)) $ (-480)) 197 (|has| |#1| (-491)) ELT) (((-345 (-852 |#1|)) $ (-480) (-480)) 196 (|has| |#1| (-491)) ELT)) (-2980 (($) 266 (-2548 (|has| |#2| (-479)) (|has| |#1| (-309))) ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 177 (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) 190 (|has| |#1| (-309)) ELT)) (-3171 (((-83) $) 280 (-2548 (|has| |#2| (-735)) (|has| |#1| (-309))) ELT)) (-2878 (((-83) $) 92 T ELT)) (-3610 (($) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 258 (-2548 (|has| |#2| (-791 (-325))) (|has| |#1| (-309))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 257 (-2548 (|has| |#2| (-791 (-480))) (|has| |#1| (-309))) ELT)) (-3755 (((-480) $) 124 T ELT) (((-480) $ (-480)) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2982 (($ $) 262 (|has| |#1| (-309)) ELT)) (-2984 ((|#2| $) 260 (|has| |#1| (-309)) ELT)) (-2997 (($ $ (-480)) 142 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3428 (((-629 $) $) 294 (-2548 (|has| |#2| (-1057)) (|has| |#1| (-309))) ELT)) (-3172 (((-83) $) 281 (-2548 (|has| |#2| (-735)) (|has| |#1| (-309))) ELT)) (-3760 (($ $ (-825)) 125 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 198 T ELT)) (-1594 (((-3 (-580 $) #3="failed") (-580 $) $) 186 (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| (-480)) 79 T ELT) (($ $ (-988) (-480)) 95 T ELT) (($ $ (-580 (-988)) (-580 (-480))) 94 T ELT)) (-2517 (($ $ $) 289 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-2843 (($ $ $) 288 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT) (($ (-1 |#2| |#2|) $) 242 (|has| |#1| (-309)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2268 (((-627 |#2|) (-1170 $)) 254 (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) 253 (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 248 (-2548 (|has| |#2| (-577 (-480))) (|has| |#1| (-309))) ELT) (((-627 (-480)) (-1170 $)) 247 (-2548 (|has| |#2| (-577 (-480))) (|has| |#1| (-309))) ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-1880 (($ (-580 $)) 175 (|has| |#1| (-309)) ELT) (($ $ $) 174 (|has| |#1| (-309)) ELT)) (-3762 (($ (-480) |#2|) 301 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 191 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 195 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 194 (OR (-12 (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106)) (|has| |#1| (-38 (-345 (-480))))) (-12 (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-38 (-345 (-480)))))) ELT)) (-3429 (($) 295 (-2548 (|has| |#2| (-1057)) (|has| |#1| (-309))) CONST)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 176 (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) 173 (|has| |#1| (-309)) ELT) (($ $ $) 172 (|has| |#1| (-309)) ELT)) (-3113 (($ $) 265 (-2548 (|has| |#2| (-255)) (|has| |#1| (-309))) ELT)) (-3115 ((|#2| $) 268 (-2548 (|has| |#2| (-479)) (|has| |#1| (-309))) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 271 (-2548 (|has| |#2| (-816)) (|has| |#1| (-309))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 272 (-2548 (|has| |#2| (-816)) (|has| |#1| (-309))) ELT)) (-3715 (((-343 $) $) 187 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 185 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 184 (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-480)) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 178 (|has| |#1| (-309)) ELT)) (-3926 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT) (($ $ (-1081) |#2|) 241 (-2548 (|has| |#2| (-449 (-1081) |#2|)) (|has| |#1| (-309))) ELT) (($ $ (-580 (-1081)) (-580 |#2|)) 240 (-2548 (|has| |#2| (-449 (-1081) |#2|)) (|has| |#1| (-309))) ELT) (($ $ (-580 (-246 |#2|))) 239 (-2548 (|has| |#2| (-257 |#2|)) (|has| |#1| (-309))) ELT) (($ $ (-246 |#2|)) 238 (-2548 (|has| |#2| (-257 |#2|)) (|has| |#1| (-309))) ELT) (($ $ |#2| |#2|) 237 (-2548 (|has| |#2| (-257 |#2|)) (|has| |#1| (-309))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) 236 (-2548 (|has| |#2| (-257 |#2|)) (|has| |#1| (-309))) ELT)) (-1596 (((-689) $) 180 (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-480)) 129 T ELT) (($ $ $) 105 (|has| (-480) (-1017)) ELT) (($ $ |#2|) 235 (-2548 (|has| |#2| (-239 |#2| |#2|)) (|has| |#1| (-309))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 181 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) 244 (|has| |#1| (-309)) ELT) (($ $ (-1 |#2| |#2|)) 243 (|has| |#1| (-309)) ELT) (($ $) 109 (OR (-2548 (|has| |#2| (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) 107 (OR (-2548 (|has| |#2| (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) 117 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) 115 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) 114 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2981 (($ $) 263 (|has| |#1| (-309)) ELT)) (-2983 ((|#2| $) 261 (|has| |#1| (-309)) ELT)) (-3931 (((-480) $) 82 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 156 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3955 (((-177) $) 279 (-2548 (|has| |#2| (-928)) (|has| |#1| (-309))) ELT) (((-325) $) 278 (-2548 (|has| |#2| (-928)) (|has| |#1| (-309))) ELT) (((-469) $) 277 (-2548 (|has| |#2| (-550 (-469))) (|has| |#1| (-309))) ELT) (((-795 (-325)) $) 256 (-2548 (|has| |#2| (-550 (-795 (-325)))) (|has| |#1| (-309))) ELT) (((-795 (-480)) $) 255 (-2548 (|has| |#2| (-550 (-795 (-480)))) (|has| |#1| (-309))) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 269 (-2548 (-2548 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#1| (-309))) ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT) (($ |#2|) 302 T ELT) (($ (-1081)) 276 (-2548 (|has| |#2| (-945 (-1081))) (|has| |#1| (-309))) ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-480)) 77 T ELT)) (-2688 (((-629 $) $) 66 (OR (-2548 (OR (|has| |#2| (-116)) (-2548 (|has| $ (-116)) (|has| |#2| (-816)))) (|has| |#1| (-309))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-3116 ((|#2| $) 267 (-2548 (|has| |#2| (-479)) (|has| |#1| (-309))) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 154 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-480)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 150 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3366 (($ $) 283 (-2548 (|has| |#2| (-735)) (|has| |#1| (-309))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) 246 (|has| |#1| (-309)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-309)) ELT) (($ $) 108 (OR (-2548 (|has| |#2| (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) 106 (OR (-2548 (|has| |#2| (-187)) (|has| |#1| (-309))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) 116 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081))) 112 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-1081) (-689)) 111 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (OR (-2548 (|has| |#2| (-806 (-1081))) (|has| |#1| (-309))) (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|))))) ELT)) (-2552 (((-83) $ $) 287 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-2553 (((-83) $ $) 285 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-2670 (((-83) $ $) 286 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-2671 (((-83) $ $) 284 (-2548 (|has| |#2| (-751)) (|has| |#1| (-309))) ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT) (($ $ $) 193 (|has| |#1| (-309)) ELT) (($ |#2| |#2|) 259 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 192 (|has| |#1| (-309)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#2|) 234 (|has| |#1| (-309)) ELT) (($ |#2| $) 233 (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1134 |#1| |#2|) (-111) (-956) (-1163 |t#1|)) (T -1134)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1163 *3)) (-5 *2 (-480)))) (-3762 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-4 *4 (-956)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1163 *4)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3)))) (-3713 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1163 *2)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1163 *3)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3)))) (-3711 (*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3))))) -(-13 (-1132 |t#1|) (-945 |t#2|) (-552 |t#2|) (-10 -8 (-15 -3762 ($ (-480) |t#2|)) (-15 -3931 ((-480) $)) (-15 -3714 (|t#2| $)) (-15 -3713 ($ $)) (-15 -3713 ($ (-480) $)) (-15 -3712 (|t#2| $)) (-15 -3711 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-309)) (-6 (-899 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-480)) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 |#2|) |has| |#1| (-309)) ((-38 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-80 |#1| |#1|) . T) ((-80 |#2| |#2|) |has| |#1| (-309)) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-102) . T) ((-116) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-116))) (|has| |#1| (-116))) ((-118) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-552 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 (-1081)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) ((-552 |#1|) |has| |#1| (-144)) ((-552 |#2|) . T) ((-552 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-550 (-177)) -12 (|has| |#1| (-309)) (|has| |#2| (-928))) ((-550 (-325)) -12 (|has| |#1| (-309)) (|has| |#2| (-928))) ((-550 (-469)) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-469)))) ((-550 (-795 (-325))) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-325))))) ((-550 (-795 (-480))) -12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-480))))) ((-184 $) OR (|has| |#1| (-15 * (|#1| (-480) |#1|))) (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (-12 (|has| |#1| (-309)) (|has| |#2| (-188)))) ((-182 |#2|) |has| |#1| (-309)) ((-188) OR (|has| |#1| (-15 * (|#1| (-480) |#1|))) (-12 (|has| |#1| (-309)) (|has| |#2| (-188)))) ((-187) OR (|has| |#1| (-15 * (|#1| (-480) |#1|))) (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (-12 (|has| |#1| (-309)) (|has| |#2| (-188)))) ((-223 |#2|) |has| |#1| (-309)) ((-199) |has| |#1| (-309)) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-239 (-480) |#1|) . T) ((-239 |#2| $) -12 (|has| |#1| (-309)) (|has| |#2| (-239 |#2| |#2|))) ((-239 $ $) |has| (-480) (-1017)) ((-243) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-255) |has| |#1| (-309)) ((-257 |#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ((-309) |has| |#1| (-309)) ((-285 |#2|) |has| |#1| (-309)) ((-324 |#2|) |has| |#1| (-309)) ((-338 |#2|) |has| |#1| (-309)) ((-387) |has| |#1| (-309)) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-449 (-1081) |#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-449 (-1081) |#2|))) ((-449 |#2| |#2|) -12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ((-491) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-309)) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-587 (-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ((-587 |#1|) . T) ((-587 |#2|) |has| |#1| (-309)) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-579 |#1|) |has| |#1| (-144)) ((-579 |#2|) |has| |#1| (-309)) ((-579 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-577 (-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ((-577 |#2|) |has| |#1| (-309)) ((-651 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-651 |#1|) |has| |#1| (-144)) ((-651 |#2|) |has| |#1| (-309)) ((-651 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-660) . T) ((-709) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-711) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-713) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-716) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-735) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-750) -12 (|has| |#1| (-309)) (|has| |#2| (-735))) ((-751) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) (-12 (|has| |#1| (-309)) (|has| |#2| (-735)))) ((-754) OR (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) (-12 (|has| |#1| (-309)) (|has| |#2| (-735)))) ((-801 $ (-1081)) OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081))))) ((-804 (-1081)) OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081))))) ((-806 (-1081)) OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-804 (-1081))))) ((-791 (-325)) -12 (|has| |#1| (-309)) (|has| |#2| (-791 (-325)))) ((-791 (-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-791 (-480)))) ((-789 |#2|) |has| |#1| (-309)) ((-816) -12 (|has| |#1| (-309)) (|has| |#2| (-816))) ((-881 |#1| (-480) (-988)) . T) ((-827) |has| |#1| (-309)) ((-899 |#2|) |has| |#1| (-309)) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-928) -12 (|has| |#1| (-309)) (|has| |#2| (-928))) ((-945 (-345 (-480))) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ((-945 (-480)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ((-945 (-1081)) -12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) ((-945 |#2|) . T) ((-958 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-958 |#1|) . T) ((-958 |#2|) |has| |#1| (-309)) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-963 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-309)) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) -12 (|has| |#1| (-309)) (|has| |#2| (-1057))) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T) ((-1125) |has| |#1| (-309)) ((-1132 |#1|) . T) ((-1149 |#1| (-480)) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 83 T ELT)) (-3114 ((|#2| $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-255))) ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 102 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-480)) 111 T ELT) (($ $ (-480) (-480)) 114 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|))) $) 51 T ELT)) (-3714 ((|#2| $) 11 T ELT)) (-3711 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3712 ((|#2| $) 36 T ELT)) (-3475 (($ $) 208 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 184 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1#) $ $) NIL T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-816))) ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-816))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) 204 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 180 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3606 (((-480) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-480)) (|:| |c| |#1|)))) 59 T ELT)) (-3477 (($ $) 212 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 188 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-480) #1#) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ELT) (((-3 (-1081) #1#) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) ELT)) (-3141 ((|#2| $) 158 T ELT) (((-480) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ELT) (((-345 (-480)) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-480)))) ELT) (((-1081) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) ELT)) (-3713 (($ $) 65 T ELT) (($ (-480) $) 28 T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 |#2|) (-627 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ELT) (((-627 (-480)) (-627 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ELT)) (-3450 (((-3 $ #1#) $) 90 T ELT)) (-3710 (((-345 (-852 |#1|)) $ (-480)) 126 (|has| |#1| (-491)) ELT) (((-345 (-852 |#1|)) $ (-480) (-480)) 128 (|has| |#1| (-491)) ELT)) (-2980 (($) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-479))) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-3171 (((-83) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) ELT)) (-2878 (((-83) $) 76 T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-791 (-480)))) ELT)) (-3755 (((-480) $) 107 T ELT) (((-480) $ (-480)) 109 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2982 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2984 ((|#2| $) 167 (|has| |#1| (-309)) ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3428 (((-629 $) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-1057))) ELT)) (-3172 (((-83) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) ELT)) (-3760 (($ $ (-825)) 150 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 146 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-480)) 20 T ELT) (($ $ (-988) (-480)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-480))) NIL T ELT)) (-2517 (($ $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-2843 (($ $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-309)) ELT)) (-3925 (($ $) 178 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2268 (((-627 |#2|) (-1170 $)) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ELT) (((-627 (-480)) (-1170 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-577 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3762 (($ (-480) |#2|) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 161 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 230 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 235 (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT)) (-3429 (($) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-1057))) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3113 (($ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-255))) ELT)) (-3115 ((|#2| $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-479))) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-816))) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-816))) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-480)) 140 T ELT)) (-3449 (((-3 $ #1#) $ $) 130 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) 176 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) ELT) (($ $ (-1081) |#2|) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-449 (-1081) |#2|))) ELT) (($ $ (-580 (-1081)) (-580 |#2|)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-449 (-1081) |#2|))) ELT) (($ $ (-580 (-246 |#2|))) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ELT) (($ $ (-246 |#2|)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ELT) (($ $ (-580 |#2|) (-580 |#2|)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-257 |#2|))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-480)) 105 T ELT) (($ $ $) 92 (|has| (-480) (-1017)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-239 |#2| |#2|))) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-309)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) 155 (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT)) (-2981 (($ $) NIL (|has| |#1| (-309)) ELT)) (-2983 ((|#2| $) 168 (|has| |#1| (-309)) ELT)) (-3931 (((-480) $) 12 T ELT)) (-3478 (($ $) 214 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 190 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 210 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 186 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 206 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 182 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3955 (((-177) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-928))) ELT) (((-325) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-928))) ELT) (((-469) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-550 (-469)))) ELT) (((-795 (-325)) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-550 (-795 (-480))))) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-309)) (|has| |#2| (-816))) ELT)) (-2877 (($ $) 138 T ELT)) (-3929 (((-767) $) 268 T ELT) (($ (-480)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-144)) ELT) (($ |#2|) 21 T ELT) (($ (-1081)) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-945 (-1081)))) ELT) (($ (-345 (-480))) 171 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-480)) 87 T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-309)) (|has| |#2| (-816))) (|has| |#1| (-116)) (-12 (|has| |#1| (-309)) (|has| |#2| (-116)))) ELT)) (-3111 (((-689)) 157 T CONST)) (-3756 ((|#1| $) 104 T ELT)) (-3116 ((|#2| $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-479))) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 220 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 196 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) 216 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 192 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 224 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 200 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-480)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-480)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 226 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 202 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 222 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 198 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 218 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 194 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3366 (($ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-735))) ELT)) (-2646 (($) 13 T CONST)) (-2652 (($) 18 T CONST)) (-2655 (($ $ (-1 |#2| |#2|) (-689)) NIL (|has| |#1| (-309)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-309)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-689)) NIL (OR (-12 (|has| |#1| (-309)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-580 (-1081))) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-1081) (-689)) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (OR (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-480) |#1|)))) (-12 (|has| |#1| (-309)) (|has| |#2| (-806 (-1081))))) ELT)) (-2552 (((-83) $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-2553 (((-83) $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-3042 (((-83) $ $) 74 T ELT)) (-2670 (((-83) $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-2671 (((-83) $ $) NIL (-12 (|has| |#1| (-309)) (|has| |#2| (-751))) ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) 165 (|has| |#1| (-309)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3822 (($ $ $) 78 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 86 T ELT) (($ $ (-480)) 162 (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 174 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-309)) ELT) (($ |#2| $) 163 (|has| |#1| (-309)) ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1135 |#1| |#2|) (-1134 |#1| |#2|) (-956) (-1163 |#1|)) (T -1135)) -NIL -((-3717 (((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83)) 13 T ELT)) (-3716 (((-343 |#1|) |#1|) 26 T ELT)) (-3715 (((-343 |#1|) |#1|) 24 T ELT))) -(((-1136 |#1|) (-10 -7 (-15 -3715 ((-343 |#1|) |#1|)) (-15 -3716 ((-343 |#1|) |#1|)) (-15 -3717 ((-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| |#1|) (|:| -2383 (-480)))))) |#1| (-83)))) (-1146 (-480))) (T -1136)) -((-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-480)) (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480)))))) -((-2554 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3719 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3941 (((-1060 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-750)) ELT)) (-3214 ((|#1| $) 15 T ELT)) (-3216 ((|#1| $) 12 T ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-3212 (((-480) $) 19 T ELT)) (-3213 ((|#1| $) 18 T ELT)) (-3215 ((|#1| $) 13 T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3718 (((-83) $) 17 T ELT)) (-3946 (((-1060 |#1|) $) 41 (|has| |#1| (-750)) ELT) (((-1060 |#1|) (-580 $)) 40 (|has| |#1| (-750)) ELT)) (-3955 (($ |#1|) 26 T ELT)) (-3929 (($ (-995 |#1|)) 25 T ELT) (((-767) $) 37 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-1007)) ELT)) (-3720 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3217 (($ $ (-480)) 14 T ELT)) (-3042 (((-83) $ $) 30 (|has| |#1| (-1007)) ELT))) -(((-1137 |#1|) (-13 (-1000 |#1|) (-10 -8 (-15 -3720 ($ |#1|)) (-15 -3719 ($ |#1|)) (-15 -3929 ($ (-995 |#1|))) (-15 -3718 ((-83) $)) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-750)) (-6 (-1001 |#1| (-1060 |#1|))) |%noBranch|))) (-1120)) (T -1137)) -((-3720 (*1 *1 *2) (-12 (-5 *1 (-1137 *2)) (-4 *2 (-1120)))) (-3719 (*1 *1 *2) (-12 (-5 *1 (-1137 *2)) (-4 *2 (-1120)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1120)) (-5 *1 (-1137 *3)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1137 *3)) (-4 *3 (-1120))))) -((-3941 (((-1060 |#2|) (-1 |#2| |#1|) (-1137 |#1|)) 23 (|has| |#1| (-750)) ELT) (((-1137 |#2|) (-1 |#2| |#1|) (-1137 |#1|)) 17 T ELT))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -3941 ((-1137 |#2|) (-1 |#2| |#1|) (-1137 |#1|))) (IF (|has| |#1| (-750)) (-15 -3941 ((-1060 |#2|) (-1 |#2| |#1|) (-1137 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -1138)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5)) (-4 *5 (-750)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1060 *6)) (-5 *1 (-1138 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1137 *6)) (-5 *1 (-1138 *5 *6))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3750 (((-1170 |#2|) $ (-689)) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3748 (($ (-1076 |#2|)) NIL T ELT)) (-3069 (((-1076 $) $ (-988)) NIL T ELT) (((-1076 |#2|) $) NIL T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#2| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#2| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#2| (-491)) ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-988))) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3738 (($ $ $) NIL (|has| |#2| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3758 (($ $) NIL (|has| |#2| (-387)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#2| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1#) (-580 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-1597 (((-83) $ $) NIL (|has| |#2| (-309)) ELT)) (-3744 (($ $ (-689)) NIL T ELT)) (-3743 (($ $ (-689)) NIL T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-387)) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-3 (-480) #1#) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-3 (-988) #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT) (((-345 (-480)) $) NIL (|has| |#2| (-945 (-345 (-480)))) ELT) (((-480) $) NIL (|has| |#2| (-945 (-480))) ELT) (((-988) $) NIL T ELT)) (-3739 (($ $ $ (-988)) NIL (|has| |#2| (-144)) ELT) ((|#2| $ $) NIL (|has| |#2| (-144)) ELT)) (-2550 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-2267 (((-627 (-480)) (-627 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-627 $) (-1170 $)) NIL T ELT) (((-627 |#2|) (-627 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#2| (-309)) ELT)) (-3742 (($ $ $) NIL T ELT)) (-3736 (($ $ $) NIL (|has| |#2| (-491)) ELT)) (-3735 (((-2 (|:| -3937 |#2|) (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#2| (-309)) ELT)) (-3486 (($ $) NIL (|has| |#2| (-387)) ELT) (($ $ (-988)) NIL (|has| |#2| (-387)) ELT)) (-2804 (((-580 $) $) NIL T ELT)) (-3706 (((-83) $) NIL (|has| |#2| (-816)) ELT)) (-1613 (($ $ |#2| (-689) $) NIL T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) NIL (-12 (|has| (-988) (-791 (-325))) (|has| |#2| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) NIL (-12 (|has| (-988) (-791 (-480))) (|has| |#2| (-791 (-480)))) ELT)) (-3755 (((-689) $ $) NIL (|has| |#2| (-491)) ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-3428 (((-629 $) $) NIL (|has| |#2| (-1057)) ELT)) (-3070 (($ (-1076 |#2|) (-988)) NIL T ELT) (($ (-1076 $) (-988)) NIL T ELT)) (-3760 (($ $ (-689)) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#2| (-309)) ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#2| (-689)) 18 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-988)) NIL T ELT) (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL T ELT)) (-2806 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-1614 (($ (-1 (-689) (-689)) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3749 (((-1076 |#2|) $) NIL T ELT)) (-3068 (((-3 (-988) #1#) $) NIL T ELT)) (-2268 (((-627 (-480)) (-1170 $)) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) NIL (|has| |#2| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#2|)) (|:| |vec| (-1170 |#2|))) (-1170 $) $) NIL T ELT) (((-627 |#2|) (-1170 $)) NIL T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) NIL T ELT)) (-2809 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-580 $) #1#) $) NIL T ELT)) (-2810 (((-3 (-2 (|:| |var| (-988)) (|:| -2389 (-689))) #1#) $) NIL T ELT)) (-3795 (($ $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT)) (-3429 (($) NIL (|has| |#2| (-1057)) CONST)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 ((|#2| $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#2| (-387)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#2| (-387)) ELT) (($ $ $) NIL (|has| |#2| (-387)) ELT)) (-3721 (($ $ (-689) |#2| $) NIL T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) NIL (|has| |#2| (-816)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#2| (-816)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3449 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-491)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#2| (-309)) ELT)) (-3751 (($ $ (-580 (-246 $))) NIL T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-988) |#2|) NIL T ELT) (($ $ (-580 (-988)) (-580 |#2|)) NIL T ELT) (($ $ (-988) $) NIL T ELT) (($ $ (-580 (-988)) (-580 $)) NIL T ELT)) (-1596 (((-689) $) NIL (|has| |#2| (-309)) ELT)) (-3783 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-345 $) (-345 $) (-345 $)) NIL (|has| |#2| (-491)) ELT) ((|#2| (-345 $) |#2|) NIL (|has| |#2| (-309)) ELT) (((-345 $) $ (-345 $)) NIL (|has| |#2| (-491)) ELT)) (-3747 (((-3 $ #1#) $ (-689)) NIL T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#2| (-309)) ELT)) (-3740 (($ $ (-988)) NIL (|has| |#2| (-144)) ELT) ((|#2| $) NIL (|has| |#2| (-144)) ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3931 (((-689) $) NIL T ELT) (((-689) $ (-988)) NIL T ELT) (((-580 (-689)) $ (-580 (-988))) NIL T ELT)) (-3955 (((-795 (-325)) $) NIL (-12 (|has| (-988) (-550 (-795 (-325)))) (|has| |#2| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) NIL (-12 (|has| (-988) (-550 (-795 (-480)))) (|has| |#2| (-550 (-795 (-480))))) ELT) (((-469) $) NIL (-12 (|has| (-988) (-550 (-469))) (|has| |#2| (-550 (-469)))) ELT)) (-2803 ((|#2| $) NIL (|has| |#2| (-387)) ELT) (($ $ (-988)) NIL (|has| |#2| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-816))) ELT)) (-3737 (((-3 $ #1#) $ $) NIL (|has| |#2| (-491)) ELT) (((-3 (-345 $) #1#) (-345 $) $) NIL (|has| |#2| (-491)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-988)) NIL T ELT) (($ (-1167 |#1|)) 20 T ELT) (($ (-345 (-480))) NIL (OR (|has| |#2| (-38 (-345 (-480)))) (|has| |#2| (-945 (-345 (-480))))) ELT) (($ $) NIL (|has| |#2| (-491)) ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-689)) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-2688 (((-629 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-816))) (|has| |#2| (-116))) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL (|has| |#2| (-491)) ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) 14 T CONST)) (-2655 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1081)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) NIL (|has| |#2| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (|has| |#2| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#2|) NIL (|has| |#2| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-345 (-480))) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) NIL (|has| |#2| (-38 (-345 (-480)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1139 |#1| |#2|) (-13 (-1146 |#2|) (-552 (-1167 |#1|)) (-10 -8 (-15 -3721 ($ $ (-689) |#2| $)))) (-1081) (-956)) (T -1139)) -((-3721 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1081)) (-4 *3 (-956))))) -((-3941 (((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)) 15 T ELT))) -(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 ((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)))) (-1081) (-956) (-1081) (-956)) (T -1140)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1081)) (-4 *6 (-956)) (-4 *8 (-956)) (-5 *2 (-1139 *7 *8)) (-5 *1 (-1140 *5 *6 *7 *8)) (-14 *7 (-1081))))) -((-3724 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3722 ((|#1| |#3|) 13 T ELT)) (-3723 ((|#3| |#3|) 19 T ELT))) -(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -3722 (|#1| |#3|)) (-15 -3723 (|#3| |#3|)) (-15 -3724 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-491) (-899 |#1|) (-1146 |#2|)) (T -1141)) -((-3724 (*1 *2 *3) (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3)) (-4 *3 (-1146 *5)))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-491)) (-4 *4 (-899 *3)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-1146 *4)))) (-3722 (*1 *2 *3) (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-1141 *2 *4 *3)) (-4 *3 (-1146 *4))))) -((-3726 (((-3 |#2| #1="failed") |#2| (-689) |#1|) 35 T ELT)) (-3725 (((-3 |#2| #1#) |#2| (-689)) 36 T ELT)) (-3728 (((-3 (-2 (|:| -3123 |#2|) (|:| -3122 |#2|)) #1#) |#2|) 50 T ELT)) (-3729 (((-580 |#2|) |#2|) 52 T ELT)) (-3727 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1142 |#1| |#2|) (-10 -7 (-15 -3725 ((-3 |#2| #1="failed") |#2| (-689))) (-15 -3726 ((-3 |#2| #1#) |#2| (-689) |#1|)) (-15 -3727 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3728 ((-3 (-2 (|:| -3123 |#2|) (|:| -3122 |#2|)) #1#) |#2|)) (-15 -3729 ((-580 |#2|) |#2|))) (-13 (-491) (-118)) (-1146 |#1|)) (T -1142)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-491) (-118))) (-5 *2 (-580 *3)) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1146 *4)))) (-3728 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-491) (-118))) (-5 *2 (-2 (|:| -3123 *3) (|:| -3122 *3))) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1146 *4)))) (-3727 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1146 *3)))) (-3726 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-689)) (-4 *4 (-13 (-491) (-118))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1146 *4)))) (-3725 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-689)) (-4 *4 (-13 (-491) (-118))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1146 *4))))) -((-3730 (((-3 (-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -3730 ((-3 (-2 (|:| -1962 |#2|) (|:| -2888 |#2|)) "failed") |#2| |#2|))) (-491) (-1146 |#1|)) (T -1143)) -((-3730 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-1143 *4 *3)) (-4 *3 (-1146 *4))))) -((-3731 ((|#2| |#2| |#2|) 22 T ELT)) (-3732 ((|#2| |#2| |#2|) 36 T ELT)) (-3733 ((|#2| |#2| |#2| (-689) (-689)) 44 T ELT))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2| (-689) (-689)))) (-956) (-1146 |#1|)) (T -1144)) -((-3733 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1146 *4)))) (-3732 (*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1146 *3)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1146 *3))))) -((-3750 (((-1170 |#2|) $ (-689)) 129 T ELT)) (-3067 (((-580 (-988)) $) 16 T ELT)) (-3748 (($ (-1076 |#2|)) 80 T ELT)) (-2805 (((-689) $) NIL T ELT) (((-689) $ (-580 (-988))) 21 T ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 217 T ELT)) (-3758 (($ $) 207 T ELT)) (-3954 (((-343 $) $) 205 T ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 95 T ELT)) (-3744 (($ $ (-689)) 84 T ELT)) (-3743 (($ $ (-689)) 86 T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3142 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-345 (-480)) #1#) $) NIL T ELT) (((-3 (-480) #1#) $) NIL T ELT) (((-3 (-988) #1#) $) NIL T ELT)) (-3141 ((|#2| $) 130 T ELT) (((-345 (-480)) $) NIL T ELT) (((-480) $) NIL T ELT) (((-988) $) NIL T ELT)) (-3736 (($ $ $) 182 T ELT)) (-3735 (((-2 (|:| -3937 |#2|) (|:| -1962 $) (|:| -2888 $)) $ $) 185 T ELT)) (-3755 (((-689) $ $) 202 T ELT)) (-3428 (((-629 $) $) 149 T ELT)) (-2879 (($ |#2| (-689)) NIL T ELT) (($ $ (-988) (-689)) 59 T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-2806 (((-689) $) NIL T ELT) (((-689) $ (-988)) 54 T ELT) (((-580 (-689)) $ (-580 (-988))) 55 T ELT)) (-3749 (((-1076 |#2|) $) 72 T ELT)) (-3068 (((-3 (-988) #1#) $) 52 T ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) 83 T ELT)) (-3795 (($ $) 232 T ELT)) (-3429 (($) 134 T CONST)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 214 T ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 101 T ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 99 T ELT)) (-3715 (((-343 $) $) 120 T ELT)) (-3751 (($ $ (-580 (-246 $))) 51 T ELT) (($ $ (-246 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-580 $) (-580 $)) NIL T ELT) (($ $ (-988) |#2|) 39 T ELT) (($ $ (-580 (-988)) (-580 |#2|)) 36 T ELT) (($ $ (-988) $) 32 T ELT) (($ $ (-580 (-988)) (-580 $)) 30 T ELT)) (-1596 (((-689) $) 220 T ELT)) (-3783 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-345 $) (-345 $) (-345 $)) 176 T ELT) ((|#2| (-345 $) |#2|) 219 T ELT) (((-345 $) $ (-345 $)) 201 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 225 T ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988))) NIL T ELT) (($ $ (-988)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-689)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1081)) NIL T ELT) (($ $ (-580 (-1081))) NIL T ELT) (($ $ (-1081) (-689)) NIL T ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL T ELT)) (-3931 (((-689) $) NIL T ELT) (((-689) $ (-988)) 17 T ELT) (((-580 (-689)) $ (-580 (-988))) 23 T ELT)) (-2803 ((|#2| $) NIL T ELT) (($ $ (-988)) 151 T ELT)) (-3737 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-345 $) #1#) (-345 $) $) 189 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-988)) 64 T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#1|)) (-15 -2694 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3741 (|#1| |#1| (-580 (-1081)) (-580 (-689)))) (-15 -3741 (|#1| |#1| (-1081) (-689))) (-15 -3741 (|#1| |#1| (-580 (-1081)))) (-15 -3741 (|#1| |#1| (-1081))) (-15 -3954 ((-343 |#1|) |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3429 (|#1|) -3935) (-15 -3428 ((-629 |#1|) |#1|)) (-15 -3783 ((-345 |#1|) |#1| (-345 |#1|))) (-15 -1596 ((-689) |#1|)) (-15 -2865 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3783 (|#2| (-345 |#1|) |#2|)) (-15 -3734 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3735 ((-2 (|:| -3937 |#2|) (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| |#1|)) (-15 -3736 (|#1| |#1| |#1|)) (-15 -3737 ((-3 (-345 |#1|) #1="failed") (-345 |#1|) |#1|)) (-15 -3737 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3755 ((-689) |#1| |#1|)) (-15 -3783 ((-345 |#1|) (-345 |#1|) (-345 |#1|))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3743 (|#1| |#1| (-689))) (-15 -3744 (|#1| |#1| (-689))) (-15 -3745 ((-2 (|:| -1962 |#1|) (|:| -2888 |#1|)) |#1| (-689))) (-15 -3748 (|#1| (-1076 |#2|))) (-15 -3749 ((-1076 |#2|) |#1|)) (-15 -3750 ((-1170 |#2|) |#1| (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|) (-689))) (-15 -3741 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3741 (|#1| |#1| (-689))) (-15 -3741 (|#1| |#1|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -3783 (|#2| |#1| |#2|)) (-15 -3715 ((-343 |#1|) |#1|)) (-15 -2693 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2692 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2691 ((-343 (-1076 |#1|)) (-1076 |#1|))) (-15 -2690 ((-3 (-580 (-1076 |#1|)) #1#) (-580 (-1076 |#1|)) (-1076 |#1|))) (-15 -2803 (|#1| |#1| (-988))) (-15 -3067 ((-580 (-988)) |#1|)) (-15 -2805 ((-689) |#1| (-580 (-988)))) (-15 -2805 ((-689) |#1|)) (-15 -2879 (|#1| |#1| (-580 (-988)) (-580 (-689)))) (-15 -2879 (|#1| |#1| (-988) (-689))) (-15 -2806 ((-580 (-689)) |#1| (-580 (-988)))) (-15 -2806 ((-689) |#1| (-988))) (-15 -3068 ((-3 (-988) #1#) |#1|)) (-15 -3931 ((-580 (-689)) |#1| (-580 (-988)))) (-15 -3931 ((-689) |#1| (-988))) (-15 -3929 (|#1| (-988))) (-15 -3142 ((-3 (-988) #1#) |#1|)) (-15 -3141 ((-988) |#1|)) (-15 -3751 (|#1| |#1| (-580 (-988)) (-580 |#1|))) (-15 -3751 (|#1| |#1| (-988) |#1|)) (-15 -3751 (|#1| |#1| (-580 (-988)) (-580 |#2|))) (-15 -3751 (|#1| |#1| (-988) |#2|)) (-15 -3751 (|#1| |#1| (-580 |#1|) (-580 |#1|))) (-15 -3751 (|#1| |#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| (-246 |#1|))) (-15 -3751 (|#1| |#1| (-580 (-246 |#1|)))) (-15 -3931 ((-689) |#1|)) (-15 -2879 (|#1| |#2| (-689))) (-15 -3142 ((-3 (-480) #1#) |#1|)) (-15 -3141 ((-480) |#1|)) (-15 -3142 ((-3 (-345 (-480)) #1#) |#1|)) (-15 -3141 ((-345 (-480)) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3142 ((-3 |#2| #1#) |#1|)) (-15 -3929 (|#1| |#2|)) (-15 -2806 ((-689) |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3741 (|#1| |#1| (-988))) (-15 -3741 (|#1| |#1| (-580 (-988)))) (-15 -3741 (|#1| |#1| (-988) (-689))) (-15 -3741 (|#1| |#1| (-580 (-988)) (-580 (-689)))) (-15 -3929 (|#1| (-480))) (-15 -3929 ((-767) |#1|))) (-1146 |#2|) (-956)) (T -1145)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3750 (((-1170 |#1|) $ (-689)) 269 T ELT)) (-3067 (((-580 (-988)) $) 121 T ELT)) (-3748 (($ (-1076 |#1|)) 267 T ELT)) (-3069 (((-1076 $) $ (-988)) 136 T ELT) (((-1076 |#1|) $) 135 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 98 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 99 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 101 (|has| |#1| (-491)) ELT)) (-2805 (((-689) $) 123 T ELT) (((-689) $ (-580 (-988))) 122 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3738 (($ $ $) 254 (|has| |#1| (-491)) ELT)) (-2693 (((-343 (-1076 $)) (-1076 $)) 111 (|has| |#1| (-816)) ELT)) (-3758 (($ $) 109 (|has| |#1| (-387)) ELT)) (-3954 (((-343 $) $) 108 (|has| |#1| (-387)) ELT)) (-2690 (((-3 (-580 (-1076 $)) #1="failed") (-580 (-1076 $)) (-1076 $)) 114 (|has| |#1| (-816)) ELT)) (-1597 (((-83) $ $) 239 (|has| |#1| (-309)) ELT)) (-3744 (($ $ (-689)) 262 T ELT)) (-3743 (($ $ (-689)) 261 T ELT)) (-3734 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 249 (|has| |#1| (-387)) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-345 (-480)) #2#) $) 176 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-3 (-480) #2#) $) 174 (|has| |#1| (-945 (-480))) ELT) (((-3 (-988) #2#) $) 151 T ELT)) (-3141 ((|#1| $) 178 T ELT) (((-345 (-480)) $) 177 (|has| |#1| (-945 (-345 (-480)))) ELT) (((-480) $) 175 (|has| |#1| (-945 (-480))) ELT) (((-988) $) 152 T ELT)) (-3739 (($ $ $ (-988)) 119 (|has| |#1| (-144)) ELT) ((|#1| $ $) 257 (|has| |#1| (-144)) ELT)) (-2550 (($ $ $) 243 (|has| |#1| (-309)) ELT)) (-3942 (($ $) 169 T ELT)) (-2267 (((-627 (-480)) (-627 $)) 147 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-627 $) (-1170 $)) 146 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-627 $) (-1170 $)) 145 T ELT) (((-627 |#1|) (-627 $)) 144 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 242 (|has| |#1| (-309)) ELT)) (-3742 (($ $ $) 260 T ELT)) (-3736 (($ $ $) 251 (|has| |#1| (-491)) ELT)) (-3735 (((-2 (|:| -3937 |#1|) (|:| -1962 $) (|:| -2888 $)) $ $) 250 (|has| |#1| (-491)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 237 (|has| |#1| (-309)) ELT)) (-3486 (($ $) 191 (|has| |#1| (-387)) ELT) (($ $ (-988)) 116 (|has| |#1| (-387)) ELT)) (-2804 (((-580 $) $) 120 T ELT)) (-3706 (((-83) $) 107 (|has| |#1| (-816)) ELT)) (-1613 (($ $ |#1| (-689) $) 187 T ELT)) (-2782 (((-793 (-325) $) $ (-795 (-325)) (-793 (-325) $)) 95 (-12 (|has| (-988) (-791 (-325))) (|has| |#1| (-791 (-325)))) ELT) (((-793 (-480) $) $ (-795 (-480)) (-793 (-480) $)) 94 (-12 (|has| (-988) (-791 (-480))) (|has| |#1| (-791 (-480)))) ELT)) (-3755 (((-689) $ $) 255 (|has| |#1| (-491)) ELT)) (-2398 (((-83) $) 42 T ELT)) (-2406 (((-689) $) 184 T ELT)) (-3428 (((-629 $) $) 235 (|has| |#1| (-1057)) ELT)) (-3070 (($ (-1076 |#1|) (-988)) 128 T ELT) (($ (-1076 $) (-988)) 127 T ELT)) (-3760 (($ $ (-689)) 266 T ELT)) (-1594 (((-3 (-580 $) #3="failed") (-580 $) $) 246 (|has| |#1| (-309)) ELT)) (-2807 (((-580 $) $) 137 T ELT)) (-3920 (((-83) $) 167 T ELT)) (-2879 (($ |#1| (-689)) 168 T ELT) (($ $ (-988) (-689)) 130 T ELT) (($ $ (-580 (-988)) (-580 (-689))) 129 T ELT)) (-3746 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $ (-988)) 131 T ELT) (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 264 T ELT)) (-2806 (((-689) $) 185 T ELT) (((-689) $ (-988)) 133 T ELT) (((-580 (-689)) $ (-580 (-988))) 132 T ELT)) (-1614 (($ (-1 (-689) (-689)) $) 186 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3749 (((-1076 |#1|) $) 268 T ELT)) (-3068 (((-3 (-988) #4="failed") $) 134 T ELT)) (-2268 (((-627 (-480)) (-1170 $)) 149 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 (-480))) (|:| |vec| (-1170 (-480)))) (-1170 $) $) 148 (|has| |#1| (-577 (-480))) ELT) (((-2 (|:| |mat| (-627 |#1|)) (|:| |vec| (-1170 |#1|))) (-1170 $) $) 143 T ELT) (((-627 |#1|) (-1170 $)) 142 T ELT)) (-2880 (($ $) 164 T ELT)) (-3159 ((|#1| $) 163 T ELT)) (-1880 (($ (-580 $)) 105 (|has| |#1| (-387)) ELT) (($ $ $) 104 (|has| |#1| (-387)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3745 (((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689)) 263 T ELT)) (-2809 (((-3 (-580 $) #4#) $) 125 T ELT)) (-2808 (((-3 (-580 $) #4#) $) 126 T ELT)) (-2810 (((-3 (-2 (|:| |var| (-988)) (|:| -2389 (-689))) #4#) $) 124 T ELT)) (-3795 (($ $) 247 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3429 (($) 234 (|has| |#1| (-1057)) CONST)) (-3228 (((-1025) $) 12 T ELT)) (-1786 (((-83) $) 181 T ELT)) (-1785 ((|#1| $) 182 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 106 (|has| |#1| (-387)) ELT)) (-3129 (($ (-580 $)) 103 (|has| |#1| (-387)) ELT) (($ $ $) 102 (|has| |#1| (-387)) ELT)) (-2691 (((-343 (-1076 $)) (-1076 $)) 113 (|has| |#1| (-816)) ELT)) (-2692 (((-343 (-1076 $)) (-1076 $)) 112 (|has| |#1| (-816)) ELT)) (-3715 (((-343 $) $) 110 (|has| |#1| (-816)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 245 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 244 (|has| |#1| (-309)) ELT)) (-3449 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-491)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 238 (|has| |#1| (-309)) ELT)) (-3751 (($ $ (-580 (-246 $))) 160 T ELT) (($ $ (-246 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-580 $) (-580 $)) 157 T ELT) (($ $ (-988) |#1|) 156 T ELT) (($ $ (-580 (-988)) (-580 |#1|)) 155 T ELT) (($ $ (-988) $) 154 T ELT) (($ $ (-580 (-988)) (-580 $)) 153 T ELT)) (-1596 (((-689) $) 240 (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ |#1|) 279 T ELT) (($ $ $) 278 T ELT) (((-345 $) (-345 $) (-345 $)) 256 (|has| |#1| (-491)) ELT) ((|#1| (-345 $) |#1|) 248 (|has| |#1| (-309)) ELT) (((-345 $) $ (-345 $)) 236 (|has| |#1| (-491)) ELT)) (-3747 (((-3 $ "failed") $ (-689)) 265 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 241 (|has| |#1| (-309)) ELT)) (-3740 (($ $ (-988)) 118 (|has| |#1| (-144)) ELT) ((|#1| $) 258 (|has| |#1| (-144)) ELT)) (-3741 (($ $ (-580 (-988)) (-580 (-689))) 50 T ELT) (($ $ (-988) (-689)) 49 T ELT) (($ $ (-580 (-988))) 48 T ELT) (($ $ (-988)) 46 T ELT) (($ $) 277 T ELT) (($ $ (-689)) 275 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 272 T ELT) (($ $ (-1 |#1| |#1|) $) 259 T ELT) (($ $ (-1081)) 233 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 231 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 230 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 229 (|has| |#1| (-806 (-1081))) ELT)) (-3931 (((-689) $) 165 T ELT) (((-689) $ (-988)) 141 T ELT) (((-580 (-689)) $ (-580 (-988))) 140 T ELT)) (-3955 (((-795 (-325)) $) 93 (-12 (|has| (-988) (-550 (-795 (-325)))) (|has| |#1| (-550 (-795 (-325))))) ELT) (((-795 (-480)) $) 92 (-12 (|has| (-988) (-550 (-795 (-480)))) (|has| |#1| (-550 (-795 (-480))))) ELT) (((-469) $) 91 (-12 (|has| (-988) (-550 (-469))) (|has| |#1| (-550 (-469)))) ELT)) (-2803 ((|#1| $) 190 (|has| |#1| (-387)) ELT) (($ $ (-988)) 117 (|has| |#1| (-387)) ELT)) (-2689 (((-3 (-1170 $) #1#) (-627 $)) 115 (-2548 (|has| $ (-116)) (|has| |#1| (-816))) ELT)) (-3737 (((-3 $ "failed") $ $) 253 (|has| |#1| (-491)) ELT) (((-3 (-345 $) "failed") (-345 $) $) 252 (|has| |#1| (-491)) ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 180 T ELT) (($ (-988)) 150 T ELT) (($ (-345 (-480))) 89 (OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ELT) (($ $) 96 (|has| |#1| (-491)) ELT)) (-3800 (((-580 |#1|) $) 183 T ELT)) (-3660 ((|#1| $ (-689)) 170 T ELT) (($ $ (-988) (-689)) 139 T ELT) (($ $ (-580 (-988)) (-580 (-689))) 138 T ELT)) (-2688 (((-629 $) $) 90 (OR (-2548 (|has| $ (-116)) (|has| |#1| (-816))) (|has| |#1| (-116))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1612 (($ $ $ (-689)) 188 (|has| |#1| (-144)) ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 100 (|has| |#1| (-491)) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-580 (-988)) (-580 (-689))) 53 T ELT) (($ $ (-988) (-689)) 52 T ELT) (($ $ (-580 (-988))) 51 T ELT) (($ $ (-988)) 47 T ELT) (($ $) 276 T ELT) (($ $ (-689)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 271 T ELT) (($ $ (-1 |#1| |#1|) (-689)) 270 T ELT) (($ $ (-1081)) 232 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081))) 228 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-1081) (-689)) 227 (|has| |#1| (-806 (-1081))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 226 (|has| |#1| (-806 (-1081))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 171 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 173 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ (-345 (-480)) $) 172 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-1146 |#1|) (-111) (-956)) (T -1146)) -((-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1146 *4)) (-4 *4 (-956)) (-5 *2 (-1170 *4)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-5 *2 (-1076 *3)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-956)) (-4 *1 (-1146 *3)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) (-3747 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-1146 *3)))) (-3745 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-1146 *4)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) (-3742 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)))) (-3741 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-144)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-144)))) (-3783 (*1 *2 *2 *2) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-4 *3 (-491)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-4 *3 (-491)) (-5 *2 (-689)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491)))) (-3737 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491)))) (-3737 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-345 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-4 *3 (-491)))) (-3736 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491)))) (-3735 (*1 *2 *1 *1) (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -3937 *3) (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-1146 *3)))) (-3734 (*1 *2 *1 *1) (-12 (-4 *3 (-387)) (-4 *3 (-956)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1146 *3)))) (-3783 (*1 *2 *3 *2) (-12 (-5 *3 (-345 *1)) (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480))))))) -(-13 (-856 |t#1| (-689) (-988)) (-239 |t#1| |t#1|) (-239 $ $) (-188) (-182 |t#1|) (-10 -8 (-15 -3750 ((-1170 |t#1|) $ (-689))) (-15 -3749 ((-1076 |t#1|) $)) (-15 -3748 ($ (-1076 |t#1|))) (-15 -3760 ($ $ (-689))) (-15 -3747 ((-3 $ "failed") $ (-689))) (-15 -3746 ((-2 (|:| -1962 $) (|:| -2888 $)) $ $)) (-15 -3745 ((-2 (|:| -1962 $) (|:| -2888 $)) $ (-689))) (-15 -3744 ($ $ (-689))) (-15 -3743 ($ $ (-689))) (-15 -3742 ($ $ $)) (-15 -3741 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1057)) (-6 (-1057)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3740 (|t#1| $)) (-15 -3739 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-491)) (PROGN (-6 (-239 (-345 $) (-345 $))) (-15 -3783 ((-345 $) (-345 $) (-345 $))) (-15 -3755 ((-689) $ $)) (-15 -3738 ($ $ $)) (-15 -3737 ((-3 $ "failed") $ $)) (-15 -3737 ((-3 (-345 $) "failed") (-345 $) $)) (-15 -3736 ($ $ $)) (-15 -3735 ((-2 (|:| -3937 |t#1|) (|:| -1962 $) (|:| -2888 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-387)) (-15 -3734 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-309)) (PROGN (-6 (-255)) (-6 -3974) (-15 -3783 (|t#1| (-345 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-345 (-480)))) (-15 -3795 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-689)) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-945 (-345 (-480)))) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 (-988)) . T) ((-552 |#1|) . T) ((-552 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-550 (-469)) -12 (|has| |#1| (-550 (-469))) (|has| (-988) (-550 (-469)))) ((-550 (-795 (-325))) -12 (|has| |#1| (-550 (-795 (-325)))) (|has| (-988) (-550 (-795 (-325))))) ((-550 (-795 (-480))) -12 (|has| |#1| (-550 (-795 (-480)))) (|has| (-988) (-550 (-795 (-480))))) ((-184 $) . T) ((-182 |#1|) . T) ((-188) . T) ((-187) . T) ((-223 |#1|) . T) ((-239 (-345 $) (-345 $)) |has| |#1| (-491)) ((-239 |#1| |#1|) . T) ((-239 $ $) . T) ((-243) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-255) |has| |#1| (-309)) ((-257 $) . T) ((-274 |#1| (-689)) . T) ((-324 |#1|) . T) ((-350 |#1|) . T) ((-387) OR (|has| |#1| (-816)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-449 (-988) |#1|) . T) ((-449 (-988) $) . T) ((-449 $ $) . T) ((-491) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 (-480)) |has| |#1| (-577 (-480))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-577 (-480)) |has| |#1| (-577 (-480))) ((-577 |#1|) . T) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309))) ((-660) . T) ((-801 $ (-988)) . T) ((-801 $ (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-804 (-988)) . T) ((-804 (-1081)) |has| |#1| (-804 (-1081))) ((-806 (-988)) . T) ((-806 (-1081)) OR (|has| |#1| (-806 (-1081))) (|has| |#1| (-804 (-1081)))) ((-791 (-325)) -12 (|has| |#1| (-791 (-325))) (|has| (-988) (-791 (-325)))) ((-791 (-480)) -12 (|has| |#1| (-791 (-480))) (|has| (-988) (-791 (-480)))) ((-856 |#1| (-689) (-988)) . T) ((-816) |has| |#1| (-816)) ((-827) |has| |#1| (-309)) ((-945 (-345 (-480))) |has| |#1| (-945 (-345 (-480)))) ((-945 (-480)) |has| |#1| (-945 (-480))) ((-945 (-988)) . T) ((-945 |#1|) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-816)) (|has| |#1| (-491)) (|has| |#1| (-387)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1057) |has| |#1| (-1057)) ((-1120) . T) ((-1125) |has| |#1| (-816))) -((-3941 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#3| |#1|) |#2|))) (-956) (-1146 |#1|) (-956) (-1146 |#3|)) (T -1147)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-1146 *6)) (-5 *1 (-1147 *5 *4 *6 *2)) (-4 *4 (-1146 *5))))) -((-3067 (((-580 (-988)) $) 34 T ELT)) (-3942 (($ $) 31 T ELT)) (-2879 (($ |#2| |#3|) NIL T ELT) (($ $ (-988) |#3|) 28 T ELT) (($ $ (-580 (-988)) (-580 |#3|)) 27 T ELT)) (-2880 (($ $) 14 T ELT)) (-3159 ((|#2| $) 12 T ELT)) (-3931 ((|#3| $) 10 T ELT))) -(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -3067 ((-580 (-988)) |#1|)) (-15 -2879 (|#1| |#1| (-580 (-988)) (-580 |#3|))) (-15 -2879 (|#1| |#1| (-988) |#3|)) (-15 -3942 (|#1| |#1|)) (-15 -2879 (|#1| |#2| |#3|)) (-15 -3931 (|#3| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -3159 (|#2| |#1|))) (-1149 |#2| |#3|) (-956) (-711)) (T -1148)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ |#2|) 122 T ELT) (($ $ |#2| |#2|) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 128 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2878 (((-83) $) 92 T ELT)) (-3755 ((|#2| $) 124 T ELT) ((|#2| $ |#2|) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3760 (($ $ (-825)) 125 T ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| |#2|) 79 T ELT) (($ $ (-988) |#2|) 95 T ELT) (($ $ (-580 (-988)) (-580 |#2|)) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3752 (($ $ |#2|) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3783 ((|#1| $ |#2|) 129 T ELT) (($ $ $) 105 (|has| |#2| (-1017)) ELT)) (-3741 (($ $ (-1081)) 117 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-580 (-1081))) 115 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1081) (-689)) 114 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-689)) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3931 ((|#2| $) 82 T ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT)) (-3660 ((|#1| $ |#2|) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3753 ((|#1| $ |#2|) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1081)) 116 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-580 (-1081))) 112 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1081) (-689)) 111 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-689)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1149 |#1| |#2|) (-111) (-956) (-711)) (T -1149)) -((-3757 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-1060 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-1081)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3755 (*1 *2 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3754 (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3754 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3753 (*1 *2 *1 *3) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-711)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3929 (*2 (-1081)))) (-4 *2 (-956)))) (-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) (-3751 (*1 *2 *1 *3) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1060 *3))))) -(-13 (-881 |t#1| |t#2| (-988)) (-239 |t#2| |t#1|) (-10 -8 (-15 -3757 ((-1060 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3814 ((-1081) $)) (-15 -3756 (|t#1| $)) (-15 -3760 ($ $ (-825))) (-15 -3755 (|t#2| $)) (-15 -3755 (|t#2| $ |t#2|)) (-15 -3754 ($ $ |t#2|)) (-15 -3754 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3929 (|t#1| (-1081)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3753 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3752 ($ $ |t#2|)) (IF (|has| |t#2| (-1017)) (-6 (-239 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-188)) (IF (|has| |t#1| (-804 (-1081))) (-6 (-804 (-1081))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3751 ((-1060 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-188) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-187) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239 |#2| |#1|) . T) ((-239 $ $) |has| |#2| (-1017)) ((-243) |has| |#1| (-491)) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-801 $ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-804 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-806 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-881 |#1| |#2| (-988)) . T) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-3758 ((|#2| |#2|) 12 T ELT)) (-3954 (((-343 |#2|) |#2|) 14 T ELT)) (-3759 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-480))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-480)))) 30 T ELT))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3954 ((-343 |#2|) |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3759 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-480))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-480)))))) (-491) (-13 (-1146 |#1|) (-491) (-10 -8 (-15 -3129 ($ $ $))))) (T -1150)) -((-3759 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-480)))) (-4 *4 (-13 (-1146 *3) (-491) (-10 -8 (-15 -3129 ($ $ $))))) (-4 *3 (-491)) (-5 *1 (-1150 *3 *4)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-1146 *3) (-491) (-10 -8 (-15 -3129 ($ $ $))))))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-491)) (-5 *2 (-343 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-13 (-1146 *4) (-491) (-10 -8 (-15 -3129 ($ $ $)))))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 11 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) NIL T ELT) (($ $ (-345 (-480)) (-345 (-480))) NIL T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-1130 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1160 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3141 (((-1130 |#1| |#2| |#3|) $) NIL T ELT) (((-1160 |#1| |#2| |#3|) $) NIL T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3764 (((-345 (-480)) $) 68 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3765 (($ (-345 (-480)) (-1130 |#1| |#2| |#3|)) NIL T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) NIL T ELT) (((-345 (-480)) $ (-345 (-480))) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) NIL T ELT) (($ $ (-345 (-480))) NIL T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-345 (-480))) 30 T ELT) (($ $ (-988) (-345 (-480))) NIL T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3763 (((-1130 |#1| |#2| |#3|) $) 71 T ELT)) (-3761 (((-3 (-1130 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3762 (((-1130 |#1| |#2| |#3|) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3795 (($ $) 39 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) NIL (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 40 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) NIL T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) NIL T ELT) (($ $ $) NIL (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) 38 T ELT)) (-3931 (((-345 (-480)) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) NIL T ELT)) (-3929 (((-767) $) 107 T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1130 |#1| |#2| |#3|)) 16 T ELT) (($ (-1160 |#1| |#2| |#3|)) 17 T ELT) (($ (-1167 |#2|)) 36 T ELT) (($ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 12 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 32 T CONST)) (-2652 (($) 26 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-1167 |#2|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 34 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ (-480)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1151 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1130 |#1| |#2| |#3|)) (-801 $ (-1167 |#2|)) (-945 (-1160 |#1| |#2| |#3|)) (-552 (-1167 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1151)) -((-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-3941 (((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)) 24 T ELT))) -(((-1152 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3941 ((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)))) (-956) (-956) (-1081) (-1081) |#1| |#2|) (T -1152)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-956)) (-4 *6 (-956)) (-14 *7 (-1081)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1081))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) 122 T ELT) (($ $ (-345 (-480)) (-345 (-480))) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) 128 T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 188 (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) 189 (|has| |#1| (-309)) ELT)) (-3023 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) 179 (|has| |#1| (-309)) ELT)) (-3473 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) 197 T ELT)) (-3477 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-2550 (($ $ $) 183 (|has| |#1| (-309)) ELT)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-309)) ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 177 (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) 190 (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) 92 T ELT)) (-3610 (($) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) 124 T ELT) (((-345 (-480)) $ (-345 (-480))) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 142 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) 125 T ELT) (($ $ (-345 (-480))) 196 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 186 (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| (-345 (-480))) 79 T ELT) (($ $ (-988) (-345 (-480))) 95 T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-1880 (($ (-580 $)) 175 (|has| |#1| (-309)) ELT) (($ $ $) 174 (|has| |#1| (-309)) ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 191 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 195 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 194 (OR (-12 (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106)) (|has| |#1| (-38 (-345 (-480))))) (-12 (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-38 (-345 (-480)))))) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 176 (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) 173 (|has| |#1| (-309)) ELT) (($ $ $) 172 (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) 187 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 184 (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 178 (|has| |#1| (-309)) ELT)) (-3926 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) 180 (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) 129 T ELT) (($ $ $) 105 (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 181 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 117 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) 115 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) 114 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) 107 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3931 (((-345 (-480)) $) 82 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 156 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 154 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 150 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1081)) 116 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) 112 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) 111 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) 106 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT) (($ $ $) 193 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 192 (|has| |#1| (-309)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1153 |#1|) (-111) (-956)) (T -1153)) -((-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| *4)))) (-4 *4 (-956)) (-4 *1 (-1153 *4)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-4 *1 (-1153 *3)) (-4 *3 (-956)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) (-3795 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1081)) (-4 *1 (-1153 *3)) (-4 *3 (-956)) (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) (-4 *3 (-38 (-345 (-480)))))) (-12 (-5 *2 (-1081)) (-4 *1 (-1153 *3)) (-4 *3 (-956)) (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480))))))))) -(-13 (-1149 |t#1| (-345 (-480))) (-10 -8 (-15 -3801 ($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |t#1|))))) (-15 -3760 ($ $ (-345 (-480)))) (IF (|has| |t#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $)) (IF (|has| |t#1| (-15 -3795 (|t#1| |t#1| (-1081)))) (IF (|has| |t#1| (-15 -3067 ((-580 (-1081)) |t#1|))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-866)) (IF (|has| |t#1| (-29 (-480))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-910)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-309)) (-6 (-309)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-345 (-480))) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-199) |has| |#1| (-309)) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-239 (-345 (-480)) |#1|) . T) ((-239 $ $) |has| (-345 (-480)) (-1017)) ((-243) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-255) |has| |#1| (-309)) ((-309) |has| |#1| (-309)) ((-387) |has| |#1| (-309)) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-491) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-651 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-660) . T) ((-801 $ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-804 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-806 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-881 |#1| (-345 (-480)) (-988)) . T) ((-827) |has| |#1| (-309)) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-958 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-963 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T) ((-1125) |has| |#1| (-309)) ((-1149 |#1| (-345 (-480))) . T)) -((-3173 (((-83) $) 12 T ELT)) (-3142 (((-3 |#3| "failed") $) 17 T ELT)) (-3141 ((|#3| $) 14 T ELT))) -(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -3142 ((-3 |#3| "failed") |#1|)) (-15 -3141 (|#3| |#1|)) (-15 -3173 ((-83) |#1|))) (-1155 |#2| |#3|) (-956) (-1132 |#2|)) (T -1154)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) 122 T ELT) (($ $ (-345 (-480)) (-345 (-480))) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) 128 T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 188 (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) 189 (|has| |#1| (-309)) ELT)) (-3023 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) 179 (|has| |#1| (-309)) ELT)) (-3473 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) 197 T ELT)) (-3477 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#2| "failed") $) 210 T ELT)) (-3141 ((|#2| $) 211 T ELT)) (-2550 (($ $ $) 183 (|has| |#1| (-309)) ELT)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3764 (((-345 (-480)) $) 207 T ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-309)) ELT)) (-3765 (($ (-345 (-480)) |#2|) 208 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 177 (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) 190 (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) 92 T ELT)) (-3610 (($) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) 124 T ELT) (((-345 (-480)) $ (-345 (-480))) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 142 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) 125 T ELT) (($ $ (-345 (-480))) 196 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 186 (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| (-345 (-480))) 79 T ELT) (($ $ (-988) (-345 (-480))) 95 T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-1880 (($ (-580 $)) 175 (|has| |#1| (-309)) ELT) (($ $ $) 174 (|has| |#1| (-309)) ELT)) (-3763 ((|#2| $) 206 T ELT)) (-3761 (((-3 |#2| "failed") $) 204 T ELT)) (-3762 ((|#2| $) 205 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 191 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 195 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 194 (OR (-12 (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106)) (|has| |#1| (-38 (-345 (-480))))) (-12 (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-38 (-345 (-480)))))) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 176 (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) 173 (|has| |#1| (-309)) ELT) (($ $ $) 172 (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) 187 (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 184 (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 178 (|has| |#1| (-309)) ELT)) (-3926 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) 180 (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) 129 T ELT) (($ $ $) 105 (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 181 (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 117 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) 115 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) 114 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) 107 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3931 (((-345 (-480)) $) 82 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 156 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT) (($ |#2|) 209 T ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 154 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 150 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1081)) 116 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) 112 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) 111 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) 106 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT) (($ $ $) 193 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 192 (|has| |#1| (-309)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1155 |#1| |#2|) (-111) (-956) (-1132 |t#1|)) (T -1155)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1132 *3)) (-5 *2 (-345 (-480))))) (-3765 (*1 *1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-4 *4 (-956)) (-4 *1 (-1155 *4 *3)) (-4 *3 (-1132 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1132 *3)) (-5 *2 (-345 (-480))))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3)))) (-3761 (*1 *2 *1) (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3))))) -(-13 (-1153 |t#1|) (-945 |t#2|) (-552 |t#2|) (-10 -8 (-15 -3765 ($ (-345 (-480)) |t#2|)) (-15 -3764 ((-345 (-480)) $)) (-15 -3763 (|t#2| $)) (-15 -3931 ((-345 (-480)) $)) (-15 -3762 (|t#2| $)) (-15 -3761 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-345 (-480))) . T) ((-25) . T) ((-38 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 |#2|) . T) ((-552 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ((-199) |has| |#1| (-309)) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-239 (-345 (-480)) |#1|) . T) ((-239 $ $) |has| (-345 (-480)) (-1017)) ((-243) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-255) |has| |#1| (-309)) ((-309) |has| |#1| (-309)) ((-387) |has| |#1| (-309)) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-491) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-13) . T) ((-585 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-651 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) OR (|has| |#1| (-491)) (|has| |#1| (-309))) ((-660) . T) ((-801 $ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-804 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-806 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ((-881 |#1| (-345 (-480)) (-988)) . T) ((-827) |has| |#1| (-309)) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-945 |#2|) . T) ((-958 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-963 (-345 (-480))) OR (|has| |#1| (-309)) (|has| |#1| (-38 (-345 (-480))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-309)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T) ((-1125) |has| |#1| (-309)) ((-1149 |#1| (-345 (-480))) . T) ((-1153 |#1|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 104 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-345 (-480))) 116 T ELT) (($ $ (-345 (-480)) (-345 (-480))) 118 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|))) $) 54 T ELT)) (-3475 (($ $) 192 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-309)) ELT)) (-3954 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1597 (((-83) $ $) NIL (|has| |#1| (-309)) ELT)) (-3473 (($ $) 188 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-689) (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#1|)))) 65 T ELT)) (-3477 (($ $) 196 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 172 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT)) (-2550 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 85 T ELT)) (-3764 (((-345 (-480)) $) 13 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3765 (($ (-345 (-480)) |#2|) 11 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) NIL (|has| |#1| (-309)) ELT)) (-3706 (((-83) $) NIL (|has| |#1| (-309)) ELT)) (-2878 (((-83) $) 74 T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-345 (-480)) $) 113 T ELT) (((-345 (-480)) $ (-345 (-480))) 114 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) 130 T ELT) (($ $ (-345 (-480))) 128 T ELT)) (-1594 (((-3 (-580 $) #1#) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-345 (-480))) 33 T ELT) (($ $ (-988) (-345 (-480))) NIL T ELT) (($ $ (-580 (-988)) (-580 (-345 (-480)))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3925 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1880 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3763 ((|#2| $) 12 T ELT)) (-3761 (((-3 |#2| #1#) $) 44 T ELT)) (-3762 ((|#2| $) 45 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-2470 (($ $) 101 (|has| |#1| (-309)) ELT)) (-3795 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 151 (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) NIL (|has| |#1| (-309)) ELT)) (-3129 (($ (-580 $)) NIL (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-309)) ELT)) (-3715 (((-343 $) $) NIL (|has| |#1| (-309)) ELT)) (-1595 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-309)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3752 (($ $ (-345 (-480))) 122 T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) NIL (|has| |#1| (-309)) ELT)) (-3926 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) ELT)) (-1596 (((-689) $) NIL (|has| |#1| (-309)) ELT)) (-3783 ((|#1| $ (-345 (-480))) 108 T ELT) (($ $ $) 94 (|has| (-345 (-480)) (-1017)) ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) NIL (|has| |#1| (-309)) ELT)) (-3741 (($ $ (-1081)) 138 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3931 (((-345 (-480)) $) 16 T ELT)) (-3478 (($ $) 198 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 174 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 194 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 190 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 120 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-144)) ELT) (($ |#2|) 34 T ELT) (($ (-345 (-480))) 139 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT)) (-3660 ((|#1| $ (-345 (-480))) 107 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 127 T CONST)) (-3756 ((|#1| $) 106 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) 204 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 180 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) 200 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 176 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 208 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 184 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-345 (-480))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-345 (-480))))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 210 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 186 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 206 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 182 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 202 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 178 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 17 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-345 (-480)) |#1|))) ELT)) (-3042 (((-83) $ $) 72 T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT) (($ $ $) 100 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3822 (($ $ $) 76 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 82 T ELT) (($ $ (-480)) 157 (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1156 |#1| |#2|) (-1155 |#1| |#2|) (-956) (-1132 |#1|)) (T -1156)) -NIL -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 37 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL T ELT)) (-2051 (($ $) NIL T ELT)) (-2049 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 (-480) #1#) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-945 (-480))) ELT) (((-3 (-345 (-480)) #1#) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-945 (-345 (-480)))) ELT) (((-3 (-1151 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3141 (((-480) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-945 (-480))) ELT) (((-345 (-480)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-945 (-345 (-480)))) ELT) (((-1151 |#2| |#3| |#4|) $) NIL T ELT)) (-3942 (($ $) 41 T ELT)) (-3450 (((-3 $ #1#) $) 27 T ELT)) (-3486 (($ $) NIL (|has| (-1151 |#2| |#3| |#4|) (-387)) ELT)) (-1613 (($ $ (-1151 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) 11 T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ (-1151 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|)) 25 T ELT)) (-2806 (((-267 |#2| |#3| |#4|) $) NIL T ELT)) (-1614 (($ (-1 (-267 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|)) $) NIL T ELT)) (-3941 (($ (-1 (-1151 |#2| |#3| |#4|) (-1151 |#2| |#3| |#4|)) $) NIL T ELT)) (-3767 (((-3 (-745 |#2|) #1#) $) 91 T ELT)) (-2880 (($ $) NIL T ELT)) (-3159 (((-1151 |#2| |#3| |#4|) $) 20 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-1786 (((-83) $) NIL T ELT)) (-1785 (((-1151 |#2| |#3| |#4|) $) NIL T ELT)) (-3449 (((-3 $ #1#) $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-491)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3766 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-267 |#2| |#3| |#4|)) (|:| |%expTerms| (-580 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#2|)))))) (|:| |%type| (-1064))) #1#) $) 74 T ELT)) (-3931 (((-267 |#2| |#3| |#4|) $) 17 T ELT)) (-2803 (((-1151 |#2| |#3| |#4|) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-387)) ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ (-1151 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-345 (-480))) NIL (OR (|has| (-1151 |#2| |#3| |#4|) (-945 (-345 (-480)))) (|has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480))))) ELT)) (-3800 (((-580 (-1151 |#2| |#3| |#4|)) $) NIL T ELT)) (-3660 (((-1151 |#2| |#3| |#4|) $ (-267 |#2| |#3| |#4|)) NIL T ELT)) (-2688 (((-629 $) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-1612 (($ $ $ (-689)) NIL (|has| (-1151 |#2| |#3| |#4|) (-144)) ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2050 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1151 |#2| |#3| |#4|)) NIL T ELT) (($ (-1151 |#2| |#3| |#4|) $) NIL T ELT) (($ (-345 (-480)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| (-1151 |#2| |#3| |#4|) (-38 (-345 (-480)))) ELT))) -(((-1157 |#1| |#2| |#3| |#4|) (-13 (-274 (-1151 |#2| |#3| |#4|) (-267 |#2| |#3| |#4|)) (-491) (-10 -8 (-15 -3767 ((-3 (-745 |#2|) #1="failed") $)) (-15 -3766 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-267 |#2| |#3| |#4|)) (|:| |%expTerms| (-580 (-2 (|:| |k| (-345 (-480))) (|:| |c| |#2|)))))) (|:| |%type| (-1064))) #1#) $)))) (-13 (-945 (-480)) (-577 (-480)) (-387)) (-13 (-27) (-1106) (-359 |#1|)) (-1081) |#2|) (T -1157)) -((-3767 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) (-5 *2 (-745 *4)) (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4))) (-3766 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 *4 *5 *6)) (|:| |%expon| (-267 *4 *5 *6)) (|:| |%expTerms| (-580 (-2 (|:| |k| (-345 (-480))) (|:| |c| *4)))))) (|:| |%type| (-1064)))) (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4)))) -((-3385 ((|#2| $) 34 T ELT)) (-3778 ((|#2| $) 18 T ELT)) (-3780 (($ $) 44 T ELT)) (-3768 (($ $ (-480)) 79 T ELT)) (-3011 ((|#2| $ |#2|) 76 T ELT)) (-3769 ((|#2| $ |#2|) 72 T ELT)) (-3771 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3012 (($ $ (-580 $)) 75 T ELT)) (-3779 ((|#2| $) 17 T ELT)) (-3782 (($ $) NIL T ELT) (($ $ (-689)) 52 T ELT)) (-3017 (((-580 $) $) 31 T ELT)) (-3013 (((-83) $ $) 63 T ELT)) (-3510 (((-83) $) 33 T ELT)) (-3781 ((|#2| $) 25 T ELT) (($ $ (-689)) 58 T ELT)) (-3783 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3616 (((-83) $) 23 T ELT)) (-3775 (($ $) 47 T ELT)) (-3773 (($ $) 80 T ELT)) (-3776 (((-689) $) 51 T ELT)) (-3777 (($ $) 50 T ELT)) (-3785 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3505 (((-580 $) $) 32 T ELT)) (-3042 (((-83) $ $) 61 T ELT)) (-3940 (((-689) $) 43 T ELT))) -(((-1158 |#1| |#2|) (-10 -7 (-15 -3042 ((-83) |#1| |#1|)) (-15 -3768 (|#1| |#1| (-480))) (-15 -3771 (|#2| |#1| #1="last" |#2|)) (-15 -3769 (|#2| |#1| |#2|)) (-15 -3771 (|#1| |#1| #2="rest" |#1|)) (-15 -3771 (|#2| |#1| #3="first" |#2|)) (-15 -3773 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3776 ((-689) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3778 (|#2| |#1|)) (-15 -3779 (|#2| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3781 (|#1| |#1| (-689))) (-15 -3783 (|#2| |#1| #1#)) (-15 -3781 (|#2| |#1|)) (-15 -3782 (|#1| |#1| (-689))) (-15 -3783 (|#1| |#1| #2#)) (-15 -3782 (|#1| |#1|)) (-15 -3783 (|#2| |#1| #3#)) (-15 -3785 (|#1| |#2| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3011 (|#2| |#1| |#2|)) (-15 -3771 (|#2| |#1| #4="value" |#2|)) (-15 -3012 (|#1| |#1| (-580 |#1|))) (-15 -3013 ((-83) |#1| |#1|)) (-15 -3616 ((-83) |#1|)) (-15 -3783 (|#2| |#1| #4#)) (-15 -3385 (|#2| |#1|)) (-15 -3510 ((-83) |#1|)) (-15 -3017 ((-580 |#1|) |#1|)) (-15 -3505 ((-580 |#1|) |#1|)) (-15 -3940 ((-689) |#1|))) (-1159 |#2|) (-1120)) (T -1158)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3385 ((|#1| $) 52 T ELT)) (-3778 ((|#1| $) 71 T ELT)) (-3780 (($ $) 73 T ELT)) (-3768 (($ $ (-480)) 58 (|has| $ (-6 -3979)) ELT)) (-3011 ((|#1| $ |#1|) 43 (|has| $ (-6 -3979)) ELT)) (-3770 (($ $ $) 62 (|has| $ (-6 -3979)) ELT)) (-3769 ((|#1| $ |#1|) 60 (|has| $ (-6 -3979)) ELT)) (-3772 ((|#1| $ |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3771 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3979)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3979)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3979)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3979)) ELT)) (-3012 (($ $ (-580 $)) 45 (|has| $ (-6 -3979)) ELT)) (-3779 ((|#1| $) 72 T ELT)) (-3707 (($) 7 T CONST)) (-3782 (($ $) 79 T ELT) (($ $ (-689)) 77 T ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3017 (((-580 $) $) 54 T ELT)) (-3013 (((-83) $ $) 46 (|has| |#1| (-1007)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3016 (((-580 |#1|) $) 49 T ELT)) (-3510 (((-83) $) 53 T ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-3781 ((|#1| $) 76 T ELT) (($ $ (-689)) 74 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 82 T ELT) (($ $ (-689)) 80 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3015 (((-480) $ $) 48 T ELT)) (-3616 (((-83) $) 50 T ELT)) (-3775 (($ $) 68 T ELT)) (-3773 (($ $) 65 (|has| $ (-6 -3979)) ELT)) (-3776 (((-689) $) 69 T ELT)) (-3777 (($ $) 70 T ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3383 (($ $) 10 T ELT)) (-3774 (($ $ $) 67 (|has| $ (-6 -3979)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3979)) ELT)) (-3785 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-3505 (((-580 $) $) 55 T ELT)) (-3014 (((-83) $ $) 47 (|has| |#1| (-1007)) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1159 |#1|) (-111) (-1120)) (T -1159)) -((-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3785 (*1 *1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) (-3782 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3781 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) (-3780 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) (-3775 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3774 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3774 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3773 (*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3772 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3770 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) (-3769 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-480)) (|has| *1 (-6 -3979)) (-4 *1 (-1159 *3)) (-4 *3 (-1120))))) -(-13 (-918 |t#1|) (-10 -8 (-15 -3785 ($ $ $)) (-15 -3785 ($ |t#1| $)) (-15 -3784 (|t#1| $)) (-15 -3783 (|t#1| $ "first")) (-15 -3784 ($ $ (-689))) (-15 -3782 ($ $)) (-15 -3783 ($ $ "rest")) (-15 -3782 ($ $ (-689))) (-15 -3781 (|t#1| $)) (-15 -3783 (|t#1| $ "last")) (-15 -3781 ($ $ (-689))) (-15 -3780 ($ $)) (-15 -3779 (|t#1| $)) (-15 -3778 (|t#1| $)) (-15 -3777 ($ $)) (-15 -3776 ((-689) $)) (-15 -3775 ($ $)) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3774 ($ $ $)) (-15 -3774 ($ $ |t#1|)) (-15 -3773 ($ $)) (-15 -3772 (|t#1| $ |t#1|)) (-15 -3771 (|t#1| $ "first" |t#1|)) (-15 -3770 ($ $ $)) (-15 -3771 ($ $ "rest" $)) (-15 -3769 (|t#1| $ |t#1|)) (-15 -3771 (|t#1| $ "last" |t#1|)) (-15 -3768 ($ $ (-480)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-549 (-767)))) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-424 |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-918 |#1|) . T) ((-1007) |has| |#1| (-1007)) ((-1120) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3067 (((-580 (-988)) $) NIL T ELT)) (-3814 (((-1081) $) 87 T ELT)) (-3794 (((-1139 |#2| |#1|) $ (-689)) 70 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) NIL (|has| |#1| (-491)) ELT)) (-2051 (($ $) NIL (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 139 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-689)) 125 T ELT) (($ $ (-689) (-689)) 127 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|))) $) 42 T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3023 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1060 |#1|)) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) NIL T CONST)) (-3788 (($ $) 131 T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3799 (($ $) 137 T ELT)) (-3797 (((-852 |#1|) $ (-689)) 60 T ELT) (((-852 |#1|) $ (-689) (-689)) 62 T ELT)) (-2878 (((-83) $) NIL T ELT)) (-3610 (($) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $) NIL T ELT) (((-689) $ (-689)) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3791 (($ $) 115 T ELT)) (-2997 (($ $ (-480)) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3787 (($ (-480) (-480) $) 133 T ELT)) (-3760 (($ $ (-825)) 136 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 109 T ELT)) (-3920 (((-83) $) NIL T ELT)) (-2879 (($ |#1| (-689)) 16 T ELT) (($ $ (-988) (-689)) NIL T ELT) (($ $ (-580 (-988)) (-580 (-689))) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3792 (($ $) 113 T ELT)) (-3793 (($ $) 111 T ELT)) (-3786 (($ (-480) (-480) $) 135 T ELT)) (-3795 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 153 (OR (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106))) (-12 (|has| |#1| (-38 (-345 (-480)))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))))) ELT) (($ $ (-1167 |#2|)) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3789 (($ $ (-480) (-480)) 119 T ELT)) (-3752 (($ $ (-689)) 121 T ELT)) (-3449 (((-3 $ #1#) $ $) NIL (|has| |#1| (-491)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3790 (($ $) 117 T ELT)) (-3751 (((-1060 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-689)))) ELT)) (-3783 ((|#1| $ (-689)) 93 T ELT) (($ $ $) 129 (|has| (-689) (-1017)) ELT)) (-3741 (($ $ (-1081)) 106 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-1167 |#2|)) 101 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 123 T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) 26 T ELT) (($ (-345 (-480))) 145 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) NIL (|has| |#1| (-491)) ELT) (($ |#1|) 25 (|has| |#1| (-144)) ELT) (($ (-1139 |#2| |#1|)) 78 T ELT) (($ (-1167 |#2|)) 22 T ELT)) (-3800 (((-1060 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ (-689)) 92 T ELT)) (-2688 (((-629 $) $) NIL (|has| |#1| (-116)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3756 ((|#1| $) 88 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-689)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-689)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 18 T CONST)) (-2652 (($) 13 T CONST)) (-2655 (($ $ (-1081)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) NIL (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) NIL (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-1167 |#2|)) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3932 (($ $ |#1|) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3822 (($ $ $) 20 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-309)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-345 (-480)) $) NIL (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) NIL (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1160 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-801 $ (-1167 |#2|)) (-10 -8 (-15 -3929 ($ (-1139 |#2| |#1|))) (-15 -3794 ((-1139 |#2| |#1|) $ (-689))) (-15 -3929 ($ (-1167 |#2|))) (-15 -3793 ($ $)) (-15 -3792 ($ $)) (-15 -3791 ($ $)) (-15 -3790 ($ $)) (-15 -3789 ($ $ (-480) (-480))) (-15 -3788 ($ $)) (-15 -3787 ($ (-480) (-480) $)) (-15 -3786 ($ (-480) (-480) $)) (IF (|has| |#1| (-38 (-345 (-480)))) (-15 -3795 ($ $ (-1167 |#2|))) |%noBranch|))) (-956) (-1081) |#1|) (T -1160)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) (-5 *1 (-1160 *3 *4 *5)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) (-4 *4 (-956)) (-14 *5 (-1081)) (-14 *6 *4))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *5 *3))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2))) (-3791 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2))) (-3790 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2))) (-3789 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3))) (-3788 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2))) (-3787 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3))) (-3786 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3)))) -((-3941 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1161 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3941 (|#4| (-1 |#2| |#1|) |#3|))) (-956) (-956) (-1163 |#1|) (-1163 |#2|)) (T -1161)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5))))) -((-3173 (((-83) $) 17 T ELT)) (-3475 (($ $) 105 T ELT)) (-3622 (($ $) 81 T ELT)) (-3473 (($ $) 101 T ELT)) (-3621 (($ $) 77 T ELT)) (-3477 (($ $) 109 T ELT)) (-3620 (($ $) 85 T ELT)) (-3925 (($ $) 75 T ELT)) (-3926 (($ $) 73 T ELT)) (-3478 (($ $) 111 T ELT)) (-3619 (($ $) 87 T ELT)) (-3476 (($ $) 107 T ELT)) (-3618 (($ $) 83 T ELT)) (-3474 (($ $) 103 T ELT)) (-3617 (($ $) 79 T ELT)) (-3929 (((-767) $) 61 T ELT) (($ (-480)) NIL T ELT) (($ (-345 (-480))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3481 (($ $) 117 T ELT)) (-3469 (($ $) 93 T ELT)) (-3479 (($ $) 113 T ELT)) (-3467 (($ $) 89 T ELT)) (-3483 (($ $) 121 T ELT)) (-3471 (($ $) 97 T ELT)) (-3484 (($ $) 123 T ELT)) (-3472 (($ $) 99 T ELT)) (-3482 (($ $) 119 T ELT)) (-3470 (($ $) 95 T ELT)) (-3480 (($ $) 115 T ELT)) (-3468 (($ $) 91 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-345 (-480))) 71 T ELT))) -(((-1162 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-345 (-480)))) (-15 -3622 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3929 (|#1| |#2|)) (-15 -3929 (|#1| |#1|)) (-15 -3929 (|#1| (-345 (-480)))) (-15 -3929 (|#1| (-480))) (-15 ** (|#1| |#1| (-689))) (-15 ** (|#1| |#1| (-825))) (-15 -3173 ((-83) |#1|)) (-15 -3929 ((-767) |#1|))) (-1163 |#2|) (-956)) (T -1162)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3067 (((-580 (-988)) $) 93 T ELT)) (-3814 (((-1081) $) 127 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 69 (|has| |#1| (-491)) ELT)) (-2051 (($ $) 70 (|has| |#1| (-491)) ELT)) (-2049 (((-83) $) 72 (|has| |#1| (-491)) ELT)) (-3754 (($ $ (-689)) 122 T ELT) (($ $ (-689) (-689)) 121 T ELT)) (-3757 (((-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|))) $) 128 T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3023 (($ $) 143 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3473 (($ $) 160 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3801 (($ (-1060 (-2 (|:| |k| (-689)) (|:| |c| |#1|)))) 181 T ELT) (($ (-1060 |#1|)) 179 T ELT)) (-3477 (($ $) 159 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3707 (($) 22 T CONST)) (-3942 (($ $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3799 (($ $) 178 T ELT)) (-3797 (((-852 |#1|) $ (-689)) 176 T ELT) (((-852 |#1|) $ (-689) (-689)) 175 T ELT)) (-2878 (((-83) $) 92 T ELT)) (-3610 (($) 171 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3755 (((-689) $) 124 T ELT) (((-689) $ (-689)) 123 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-2997 (($ $ (-480)) 142 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3760 (($ $ (-825)) 125 T ELT)) (-3798 (($ (-1 |#1| (-480)) $) 177 T ELT)) (-3920 (((-83) $) 80 T ELT)) (-2879 (($ |#1| (-689)) 79 T ELT) (($ $ (-988) (-689)) 95 T ELT) (($ $ (-580 (-988)) (-580 (-689))) 94 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2880 (($ $) 83 T ELT)) (-3159 ((|#1| $) 84 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3795 (($ $) 173 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-1081)) 172 (OR (-12 (|has| |#1| (-29 (-480))) (|has| |#1| (-866)) (|has| |#1| (-1106)) (|has| |#1| (-38 (-345 (-480))))) (-12 (|has| |#1| (-15 -3067 ((-580 (-1081)) |#1|))) (|has| |#1| (-15 -3795 (|#1| |#1| (-1081)))) (|has| |#1| (-38 (-345 (-480)))))) ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3752 (($ $ (-689)) 119 T ELT)) (-3449 (((-3 $ "failed") $ $) 68 (|has| |#1| (-491)) ELT)) (-3926 (($ $) 169 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3751 (((-1060 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-689)))) ELT)) (-3783 ((|#1| $ (-689)) 129 T ELT) (($ $ $) 105 (|has| (-689) (-1017)) ELT)) (-3741 (($ $ (-1081)) 117 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) 115 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) 114 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 113 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) 107 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT)) (-3931 (((-689) $) 82 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3476 (($ $) 157 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3474 (($ $) 156 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3617 (($ $) 149 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2877 (($ $) 91 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ (-345 (-480))) 75 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $) 67 (|has| |#1| (-491)) ELT) (($ |#1|) 65 (|has| |#1| (-144)) ELT)) (-3800 (((-1060 |#1|) $) 180 T ELT)) (-3660 ((|#1| $ (-689)) 77 T ELT)) (-2688 (((-629 $) $) 66 (|has| |#1| (-116)) ELT)) (-3111 (((-689)) 38 T CONST)) (-3756 ((|#1| $) 126 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-3481 (($ $) 167 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3469 (($ $) 155 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2050 (((-83) $ $) 71 (|has| |#1| (-491)) ELT)) (-3479 (($ $) 166 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3467 (($ $) 154 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3483 (($ $) 165 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3753 ((|#1| $ (-689)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-689)))) (|has| |#1| (-15 -3929 (|#1| (-1081))))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3482 (($ $) 163 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3480 (($ $) 162 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-3468 (($ $) 150 (|has| |#1| (-38 (-345 (-480)))) ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-2655 (($ $ (-1081)) 116 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081))) 112 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-1081) (-689)) 111 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $ (-580 (-1081)) (-580 (-689))) 110 (-12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT) (($ $ (-689)) 106 (|has| |#1| (-15 * (|#1| (-689) |#1|))) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 76 (|has| |#1| (-309)) ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ |#1|) 174 (|has| |#1| (-309)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 141 (|has| |#1| (-38 (-345 (-480)))) ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-345 (-480)) $) 74 (|has| |#1| (-38 (-345 (-480)))) ELT) (($ $ (-345 (-480))) 73 (|has| |#1| (-38 (-345 (-480)))) ELT))) -(((-1163 |#1|) (-111) (-956)) (T -1163)) -((-3801 (*1 *1 *2) (-12 (-5 *2 (-1060 (-2 (|:| |k| (-689)) (|:| |c| *3)))) (-4 *3 (-956)) (-4 *1 (-1163 *3)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-956)) (-5 *2 (-1060 *3)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-4 *1 (-1163 *3)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *1 (-1163 *3)) (-4 *3 (-956)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1163 *4)) (-4 *4 (-956)) (-5 *2 (-852 *4)))) (-3797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-4 *1 (-1163 *4)) (-4 *4 (-956)) (-5 *2 (-852 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) (-3795 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1081)) (-4 *1 (-1163 *3)) (-4 *3 (-956)) (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) (-4 *3 (-38 (-345 (-480)))))) (-12 (-5 *2 (-1081)) (-4 *1 (-1163 *3)) (-4 *3 (-956)) (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480))))))))) -(-13 (-1149 |t#1| (-689)) (-10 -8 (-15 -3801 ($ (-1060 (-2 (|:| |k| (-689)) (|:| |c| |t#1|))))) (-15 -3800 ((-1060 |t#1|) $)) (-15 -3801 ($ (-1060 |t#1|))) (-15 -3799 ($ $)) (-15 -3798 ($ (-1 |t#1| (-480)) $)) (-15 -3797 ((-852 |t#1|) $ (-689))) (-15 -3797 ((-852 |t#1|) $ (-689) (-689))) (IF (|has| |t#1| (-309)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-345 (-480)))) (PROGN (-15 -3795 ($ $)) (IF (|has| |t#1| (-15 -3795 (|t#1| |t#1| (-1081)))) (IF (|has| |t#1| (-15 -3067 ((-580 (-1081)) |t#1|))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-866)) (IF (|has| |t#1| (-29 (-480))) (-15 -3795 ($ $ (-1081))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-910)) (-6 (-1106))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-689)) . T) ((-25) . T) ((-38 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-491)) ((-35) |has| |#1| (-38 (-345 (-480)))) ((-66) |has| |#1| (-38 (-345 (-480)))) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-552 (-480)) . T) ((-552 |#1|) |has| |#1| (-144)) ((-552 $) |has| |#1| (-491)) ((-549 (-767)) . T) ((-144) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-689) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-689) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-689) |#1|))) ((-237) |has| |#1| (-38 (-345 (-480)))) ((-239 (-689) |#1|) . T) ((-239 $ $) |has| (-689) (-1017)) ((-243) |has| |#1| (-491)) ((-428) |has| |#1| (-38 (-345 (-480)))) ((-491) |has| |#1| (-491)) ((-13) . T) ((-585 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-579 |#1|) |has| |#1| (-144)) ((-579 $) |has| |#1| (-491)) ((-651 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-651 |#1|) |has| |#1| (-144)) ((-651 $) |has| |#1| (-491)) ((-660) . T) ((-801 $ (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ((-804 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ((-806 (-1081)) -12 (|has| |#1| (-804 (-1081))) (|has| |#1| (-15 * (|#1| (-689) |#1|)))) ((-881 |#1| (-689) (-988)) . T) ((-910) |has| |#1| (-38 (-345 (-480)))) ((-958 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-958 |#1|) . T) ((-958 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-963 (-345 (-480))) |has| |#1| (-38 (-345 (-480)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-491)) (|has| |#1| (-144))) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1106) |has| |#1| (-38 (-345 (-480)))) ((-1109) |has| |#1| (-38 (-345 (-480)))) ((-1120) . T) ((-1149 |#1| (-689)) . T)) -((-3804 (((-1 (-1060 |#1|) (-580 (-1060 |#1|))) (-1 |#2| (-580 |#2|))) 24 T ELT)) (-3803 (((-1 (-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3802 (((-1 (-1060 |#1|) (-1060 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3807 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3806 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3808 ((|#2| (-1 |#2| (-580 |#2|)) (-580 |#1|)) 60 T ELT)) (-3809 (((-580 |#2|) (-580 |#1|) (-580 (-1 |#2| (-580 |#2|)))) 66 T ELT)) (-3805 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1164 |#1| |#2|) (-10 -7 (-15 -3802 ((-1 (-1060 |#1|) (-1060 |#1|)) (-1 |#2| |#2|))) (-15 -3803 ((-1 (-1060 |#1|) (-1060 |#1|) (-1060 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3804 ((-1 (-1060 |#1|) (-580 (-1060 |#1|))) (-1 |#2| (-580 |#2|)))) (-15 -3805 (|#2| |#2| |#2|)) (-15 -3806 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3807 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3808 (|#2| (-1 |#2| (-580 |#2|)) (-580 |#1|))) (-15 -3809 ((-580 |#2|) (-580 |#1|) (-580 (-1 |#2| (-580 |#2|)))))) (-38 (-345 (-480))) (-1163 |#1|)) (T -1164)) -((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 (-1 *6 (-580 *6)))) (-4 *5 (-38 (-345 (-480)))) (-4 *6 (-1163 *5)) (-5 *2 (-580 *6)) (-5 *1 (-1164 *5 *6)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-580 *2))) (-5 *4 (-580 *5)) (-4 *5 (-38 (-345 (-480)))) (-4 *2 (-1163 *5)) (-5 *1 (-1164 *5 *2)))) (-3807 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1164 *4 *2)) (-4 *4 (-38 (-345 (-480)))))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1164 *4 *2)) (-4 *4 (-38 (-345 (-480)))))) (-3805 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-1163 *3)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-580 *5))) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) (-5 *2 (-1 (-1060 *4) (-580 (-1060 *4)))) (-5 *1 (-1164 *4 *5)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) (-5 *2 (-1 (-1060 *4) (-1060 *4) (-1060 *4))) (-5 *1 (-1164 *4 *5)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) (-5 *2 (-1 (-1060 *4) (-1060 *4))) (-5 *1 (-1164 *4 *5))))) -((-3811 ((|#2| |#4| (-689)) 31 T ELT)) (-3810 ((|#4| |#2|) 26 T ELT)) (-3813 ((|#4| (-345 |#2|)) 49 (|has| |#1| (-491)) ELT)) (-3812 (((-1 |#4| (-580 |#4|)) |#3|) 43 T ELT))) -(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| |#2|)) (-15 -3811 (|#2| |#4| (-689))) (-15 -3812 ((-1 |#4| (-580 |#4|)) |#3|)) (IF (|has| |#1| (-491)) (-15 -3813 (|#4| (-345 |#2|))) |%noBranch|)) (-956) (-1146 |#1|) (-597 |#2|) (-1163 |#1|)) (T -1165)) -((-3813 (*1 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-491)) (-4 *4 (-956)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *5 *6 *2)) (-4 *6 (-597 *5)))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *5 (-1146 *4)) (-5 *2 (-1 *6 (-580 *6))) (-5 *1 (-1165 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1163 *4)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-689)) (-4 *5 (-956)) (-4 *2 (-1146 *5)) (-5 *1 (-1165 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1163 *5)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-956)) (-4 *3 (-1146 *4)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *3 *5 *2)) (-4 *5 (-597 *3))))) -NIL -(((-1166) (-111)) (T -1166)) -NIL -(-13 (-10 -7 (-6 -2275))) -((-2554 (((-83) $ $) NIL T ELT)) (-3814 (((-1081)) 12 T ELT)) (-3227 (((-1064) $) 18 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 11 T ELT) (((-1081) $) 8 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 15 T ELT))) -(((-1167 |#1|) (-13 (-1007) (-549 (-1081)) (-10 -8 (-15 -3929 ((-1081) $)) (-15 -3814 ((-1081))))) (-1081)) (T -1167)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1167 *3)) (-14 *3 *2))) (-3814 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1167 *3)) (-14 *3 *2)))) -((-3821 (($ (-689)) 19 T ELT)) (-3818 (((-627 |#2|) $ $) 41 T ELT)) (-3815 ((|#2| $) 51 T ELT)) (-3816 ((|#2| $) 50 T ELT)) (-3819 ((|#2| $ $) 36 T ELT)) (-3817 (($ $ $) 47 T ELT)) (-3820 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3822 (($ $ $) 15 T ELT)) (* (($ (-480) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1168 |#1| |#2|) (-10 -7 (-15 -3815 (|#2| |#1|)) (-15 -3816 (|#2| |#1|)) (-15 -3817 (|#1| |#1| |#1|)) (-15 -3818 ((-627 |#2|) |#1| |#1|)) (-15 -3819 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-480) |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3821 (|#1| (-689))) (-15 -3822 (|#1| |#1| |#1|))) (-1169 |#2|) (-1120)) (T -1168)) -NIL -((-2554 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3821 (($ (-689)) 121 (|has| |#1| (-23)) ELT)) (-2186 (((-1176) $ (-480) (-480)) 44 (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3979)) ELT) (($ $) 97 (-12 (|has| |#1| (-751)) (|has| $ (-6 -3979))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) 56 (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) 64 (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3978)) ELT)) (-3707 (($) 7 T CONST)) (-2285 (($ $) 99 (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) 109 T ELT)) (-1342 (($ $) 84 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-3389 (($ |#1| $) 83 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) 57 (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) 55 T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) 106 T ELT) (((-480) |#1| $) 105 (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) 104 (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) 30 (|has| $ (-6 -3978)) ELT)) (-3818 (((-627 |#1|) $ $) 114 (|has| |#1| (-956)) ELT)) (-3597 (($ (-689) |#1|) 74 T ELT)) (-2188 (((-480) $) 47 (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) 91 (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-2189 (((-480) $) 48 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) 92 (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3815 ((|#1| $) 111 (-12 (|has| |#1| (-956)) (|has| |#1| (-910))) ELT)) (-3816 ((|#1| $) 112 (-12 (|has| |#1| (-956)) (|has| |#1| (-910))) ELT)) (-3227 (((-1064) $) 22 (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) 66 T ELT) (($ $ $ (-480)) 65 T ELT)) (-2191 (((-580 (-480)) $) 50 T ELT)) (-2192 (((-83) (-480) $) 51 T ELT)) (-3228 (((-1025) $) 21 (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) 46 (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2187 (($ $ |#1|) 45 (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) 26 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) 25 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) 23 (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) 11 T ELT)) (-2190 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) 52 T ELT)) (-3386 (((-83) $) 8 T ELT)) (-3548 (($) 9 T ELT)) (-3783 ((|#1| $ (-480) |#1|) 54 T ELT) ((|#1| $ (-480)) 53 T ELT) (($ $ (-1137 (-480))) 75 T ELT)) (-3819 ((|#1| $ $) 115 (|has| |#1| (-956)) ELT)) (-2293 (($ $ (-480)) 68 T ELT) (($ $ (-1137 (-480))) 67 T ELT)) (-3817 (($ $ $) 113 (|has| |#1| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) 28 (-12 (|has| |#1| (-1007)) (|has| $ (-6 -3978))) ELT)) (-1720 (($ $ $ (-480)) 100 (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) 10 T ELT)) (-3955 (((-469) $) 85 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-580 $)) 70 T ELT)) (-3929 (((-767) $) 17 (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) 93 (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) 95 (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) 94 (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) 96 (|has| |#1| (-751)) ELT)) (-3820 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-480) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-660)) ELT) (($ $ |#1|) 116 (|has| |#1| (-660)) ELT)) (-3940 (((-689) $) 6 (|has| $ (-6 -3978)) ELT))) -(((-1169 |#1|) (-111) (-1120)) (T -1169)) -((-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-25)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1169 *3)) (-4 *3 (-23)) (-4 *3 (-1120)))) (-3820 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (-3820 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-4 *1 (-1169 *3)) (-4 *3 (-1120)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-660)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-660)))) (-3819 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-956)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1120)) (-4 *3 (-956)) (-5 *2 (-627 *3)))) (-3817 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-956)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-910)) (-4 *2 (-956)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-910)) (-4 *2 (-956))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3822 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3821 ($ (-689))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3820 ($ $)) (-15 -3820 ($ $ $)) (-15 * ($ (-480) $))) |%noBranch|) (IF (|has| |t#1| (-660)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-956)) (PROGN (-15 -3819 (|t#1| $ $)) (-15 -3818 ((-627 |t#1|) $ $)) (-15 -3817 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-910)) (IF (|has| |t#1| (-956)) (PROGN (-15 -3816 (|t#1| $)) (-15 -3815 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-72))) ((-549 (-767)) OR (|has| |#1| (-1007)) (|has| |#1| (-751)) (|has| |#1| (-549 (-767)))) ((-122 |#1|) . T) ((-550 (-469)) |has| |#1| (-550 (-469))) ((-239 (-480) |#1|) . T) ((-239 (-1137 (-480)) $) . T) ((-241 (-480) |#1|) . T) ((-257 |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-319 |#1|) . T) ((-424 |#1|) . T) ((-535 (-480) |#1|) . T) ((-449 |#1| |#1|) -12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ((-13) . T) ((-590 |#1|) . T) ((-19 |#1|) . T) ((-751) |has| |#1| (-751)) ((-754) |has| |#1| (-751)) ((-1007) OR (|has| |#1| (-1007)) (|has| |#1| (-751))) ((-1120) . T)) -((-2554 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3821 (($ (-689)) NIL (|has| |#1| (-23)) ELT)) (-3823 (($ (-580 |#1|)) 11 T ELT)) (-2186 (((-1176) $ (-480) (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-1721 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-751)) ELT)) (-1719 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-751))) ELT)) (-2895 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-751)) ELT)) (-3771 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| $ (-1137 (-480)) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3693 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3707 (($) NIL T CONST)) (-2285 (($ $) NIL (|has| $ (-6 -3979)) ELT)) (-2286 (($ $) NIL T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-3389 (($ |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3825 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-1565 ((|#1| $ (-480) |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-3098 ((|#1| $ (-480)) NIL T ELT)) (-3402 (((-480) (-1 (-83) |#1|) $) NIL T ELT) (((-480) |#1| $) NIL (|has| |#1| (-1007)) ELT) (((-480) |#1| $ (-480)) NIL (|has| |#1| (-1007)) ELT)) (-2875 (((-580 |#1|) $) 16 (|has| $ (-6 -3978)) ELT)) (-3818 (((-627 |#1|) $ $) NIL (|has| |#1| (-956)) ELT)) (-3597 (($ (-689) |#1|) NIL T ELT)) (-2188 (((-480) $) NIL (|has| (-480) (-751)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-3501 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-2594 (((-580 |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2189 (((-480) $) 12 (|has| (-480) (-751)) ELT)) (-2843 (($ $ $) NIL (|has| |#1| (-751)) ELT)) (-1938 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-910)) (|has| |#1| (-956))) ELT)) (-3227 (((-1064) $) NIL (|has| |#1| (-1007)) ELT)) (-2292 (($ |#1| $ (-480)) NIL T ELT) (($ $ $ (-480)) NIL T ELT)) (-2191 (((-580 (-480)) $) NIL T ELT)) (-2192 (((-83) (-480) $) NIL T ELT)) (-3228 (((-1025) $) NIL (|has| |#1| (-1007)) ELT)) (-3784 ((|#1| $) NIL (|has| (-480) (-751)) ELT)) (-1343 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2187 (($ $ |#1|) NIL (|has| $ (-6 -3979)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 (-246 |#1|))) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-246 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT) (($ $ (-580 |#1|) (-580 |#1|)) NIL (-12 (|has| |#1| (-257 |#1|)) (|has| |#1| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-2193 (((-580 |#1|) $) NIL T ELT)) (-3386 (((-83) $) NIL T ELT)) (-3548 (($) NIL T ELT)) (-3783 ((|#1| $ (-480) |#1|) NIL T ELT) ((|#1| $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3819 ((|#1| $ $) NIL (|has| |#1| (-956)) ELT)) (-2293 (($ $ (-480)) NIL T ELT) (($ $ (-1137 (-480))) NIL T ELT)) (-3817 (($ $ $) NIL (|has| |#1| (-956)) ELT)) (-1935 (((-689) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (((-689) |#1| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-1007))) ELT)) (-1720 (($ $ $ (-480)) NIL (|has| $ (-6 -3979)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) 20 (|has| |#1| (-550 (-469))) ELT)) (-3513 (($ (-580 |#1|)) 10 T ELT)) (-3785 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-580 $)) NIL T ELT)) (-3929 (((-767) $) NIL (|has| |#1| (-549 (-767))) ELT)) (-1255 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1937 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2553 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3042 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-2671 (((-83) $ $) NIL (|has| |#1| (-751)) ELT)) (-3820 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3822 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-480) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-660)) ELT) (($ $ |#1|) NIL (|has| |#1| (-660)) ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1170 |#1|) (-13 (-1169 |#1|) (-10 -8 (-15 -3823 ($ (-580 |#1|))))) (-1120)) (T -1170)) -((-3823 (*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1170 *3))))) -((-3824 (((-1170 |#2|) (-1 |#2| |#1| |#2|) (-1170 |#1|) |#2|) 13 T ELT)) (-3825 ((|#2| (-1 |#2| |#1| |#2|) (-1170 |#1|) |#2|) 15 T ELT)) (-3941 (((-3 (-1170 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1170 |#1|)) 30 T ELT) (((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|)) 18 T ELT))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -3824 ((-1170 |#2|) (-1 |#2| |#1| |#2|) (-1170 |#1|) |#2|)) (-15 -3825 (|#2| (-1 |#2| |#1| |#2|) (-1170 |#1|) |#2|)) (-15 -3941 ((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|))) (-15 -3941 ((-3 (-1170 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1170 |#1|)))) (-1120) (-1120)) (T -1171)) -((-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1170 *6)) (-5 *1 (-1171 *5 *6)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1170 *6)) (-5 *1 (-1171 *5 *6)))) (-3825 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1171 *5 *2)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1170 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1170 *5)) (-5 *1 (-1171 *6 *5))))) -((-3826 (((-403) (-580 (-580 (-849 (-177)))) (-580 (-219))) 22 T ELT) (((-403) (-580 (-580 (-849 (-177))))) 21 T ELT) (((-403) (-580 (-580 (-849 (-177)))) (-778) (-778) (-825) (-580 (-219))) 20 T ELT)) (-3827 (((-1173) (-580 (-580 (-849 (-177)))) (-580 (-219))) 30 T ELT) (((-1173) (-580 (-580 (-849 (-177)))) (-778) (-778) (-825) (-580 (-219))) 29 T ELT)) (-3929 (((-1173) (-403)) 46 T ELT))) -(((-1172) (-10 -7 (-15 -3826 ((-403) (-580 (-580 (-849 (-177)))) (-778) (-778) (-825) (-580 (-219)))) (-15 -3826 ((-403) (-580 (-580 (-849 (-177)))))) (-15 -3826 ((-403) (-580 (-580 (-849 (-177)))) (-580 (-219)))) (-15 -3827 ((-1173) (-580 (-580 (-849 (-177)))) (-778) (-778) (-825) (-580 (-219)))) (-15 -3827 ((-1173) (-580 (-580 (-849 (-177)))) (-580 (-219)))) (-15 -3929 ((-1173) (-403))))) (T -1172)) -((-3929 (*1 *2 *3) (-12 (-5 *3 (-403)) (-5 *2 (-1173)) (-5 *1 (-1172)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-1172)))) (-3827 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-778)) (-5 *5 (-825)) (-5 *6 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-1172)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-580 (-219))) (-5 *2 (-403)) (-5 *1 (-1172)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-403)) (-5 *1 (-1172)))) (-3826 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-778)) (-5 *5 (-825)) (-5 *6 (-580 (-219))) (-5 *2 (-403)) (-5 *1 (-1172))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3845 (((-1064) $ (-1064)) 107 T ELT) (((-1064) $ (-1064) (-1064)) 105 T ELT) (((-1064) $ (-1064) (-580 (-1064))) 104 T ELT)) (-3841 (($) 69 T ELT)) (-3828 (((-1176) $ (-403) (-825)) 54 T ELT)) (-3834 (((-1176) $ (-825) (-1064)) 89 T ELT) (((-1176) $ (-825) (-778)) 90 T ELT)) (-3856 (((-1176) $ (-825) (-325) (-325)) 57 T ELT)) (-3866 (((-1176) $ (-1064)) 84 T ELT)) (-3829 (((-1176) $ (-825) (-1064)) 94 T ELT)) (-3830 (((-1176) $ (-825) (-325) (-325)) 58 T ELT)) (-3867 (((-1176) $ (-825) (-825)) 55 T ELT)) (-3847 (((-1176) $) 85 T ELT)) (-3832 (((-1176) $ (-825) (-1064)) 93 T ELT)) (-3836 (((-1176) $ (-403) (-825)) 41 T ELT)) (-3833 (((-1176) $ (-825) (-1064)) 92 T ELT)) (-3869 (((-580 (-219)) $) 29 T ELT) (($ $ (-580 (-219))) 30 T ELT)) (-3868 (((-1176) $ (-689) (-689)) 52 T ELT)) (-3840 (($ $) 70 T ELT) (($ (-403) (-580 (-219))) 71 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3843 (((-480) $) 48 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3837 (((-1170 (-3 (-403) "undefined")) $) 47 T ELT)) (-3838 (((-1170 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3833 (-480)) (|:| -3831 (-480)) (|:| |spline| (-480)) (|:| -3862 (-480)) (|:| |axesColor| (-778)) (|:| -3834 (-480)) (|:| |unitsColor| (-778)) (|:| |showing| (-480)))) $) 46 T ELT)) (-3839 (((-1176) $ (-825) (-177) (-177) (-177) (-177) (-480) (-480) (-480) (-480) (-778) (-480) (-778) (-480)) 83 T ELT)) (-3842 (((-580 (-849 (-177))) $) NIL T ELT)) (-3835 (((-403) $ (-825)) 43 T ELT)) (-3865 (((-1176) $ (-689) (-689) (-825) (-825)) 50 T ELT)) (-3863 (((-1176) $ (-1064)) 95 T ELT)) (-3831 (((-1176) $ (-825) (-1064)) 91 T ELT)) (-3929 (((-767) $) 102 T ELT)) (-3844 (((-1176) $) 96 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3862 (((-1176) $ (-825) (-1064)) 87 T ELT) (((-1176) $ (-825) (-778)) 88 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1173) (-13 (-1007) (-10 -8 (-15 -3842 ((-580 (-849 (-177))) $)) (-15 -3841 ($)) (-15 -3840 ($ $)) (-15 -3869 ((-580 (-219)) $)) (-15 -3869 ($ $ (-580 (-219)))) (-15 -3840 ($ (-403) (-580 (-219)))) (-15 -3839 ((-1176) $ (-825) (-177) (-177) (-177) (-177) (-480) (-480) (-480) (-480) (-778) (-480) (-778) (-480))) (-15 -3838 ((-1170 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3833 (-480)) (|:| -3831 (-480)) (|:| |spline| (-480)) (|:| -3862 (-480)) (|:| |axesColor| (-778)) (|:| -3834 (-480)) (|:| |unitsColor| (-778)) (|:| |showing| (-480)))) $)) (-15 -3837 ((-1170 (-3 (-403) "undefined")) $)) (-15 -3866 ((-1176) $ (-1064))) (-15 -3836 ((-1176) $ (-403) (-825))) (-15 -3835 ((-403) $ (-825))) (-15 -3862 ((-1176) $ (-825) (-1064))) (-15 -3862 ((-1176) $ (-825) (-778))) (-15 -3834 ((-1176) $ (-825) (-1064))) (-15 -3834 ((-1176) $ (-825) (-778))) (-15 -3833 ((-1176) $ (-825) (-1064))) (-15 -3832 ((-1176) $ (-825) (-1064))) (-15 -3831 ((-1176) $ (-825) (-1064))) (-15 -3863 ((-1176) $ (-1064))) (-15 -3844 ((-1176) $)) (-15 -3865 ((-1176) $ (-689) (-689) (-825) (-825))) (-15 -3830 ((-1176) $ (-825) (-325) (-325))) (-15 -3856 ((-1176) $ (-825) (-325) (-325))) (-15 -3829 ((-1176) $ (-825) (-1064))) (-15 -3868 ((-1176) $ (-689) (-689))) (-15 -3828 ((-1176) $ (-403) (-825))) (-15 -3867 ((-1176) $ (-825) (-825))) (-15 -3845 ((-1064) $ (-1064))) (-15 -3845 ((-1064) $ (-1064) (-1064))) (-15 -3845 ((-1064) $ (-1064) (-580 (-1064)))) (-15 -3847 ((-1176) $)) (-15 -3843 ((-480) $)) (-15 -3929 ((-767) $))))) (T -1173)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1173)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-580 (-849 (-177)))) (-5 *1 (-1173)))) (-3841 (*1 *1) (-5 *1 (-1173))) (-3840 (*1 *1 *1) (-5 *1 (-1173))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1173)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1173)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *2 (-403)) (-5 *3 (-580 (-219))) (-5 *1 (-1173)))) (-3839 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-825)) (-5 *4 (-177)) (-5 *5 (-480)) (-5 *6 (-778)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1170 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3833 (-480)) (|:| -3831 (-480)) (|:| |spline| (-480)) (|:| -3862 (-480)) (|:| |axesColor| (-778)) (|:| -3834 (-480)) (|:| |unitsColor| (-778)) (|:| |showing| (-480))))) (-5 *1 (-1173)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1170 (-3 (-403) "undefined"))) (-5 *1 (-1173)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3836 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-403)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3835 (*1 *2 *1 *3) (-12 (-5 *3 (-825)) (-5 *2 (-403)) (-5 *1 (-1173)))) (-3862 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3862 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3834 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3834 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3833 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3831 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3865 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-689)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3830 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-825)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3856 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-825)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3829 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3828 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-403)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1173)))) (-3845 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1173)))) (-3845 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1064)) (-5 *1 (-1173)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1173))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3857 (((-1176) $ (-325)) 168 T ELT) (((-1176) $ (-325) (-325) (-325)) 169 T ELT)) (-3845 (((-1064) $ (-1064)) 177 T ELT) (((-1064) $ (-1064) (-1064)) 175 T ELT) (((-1064) $ (-1064) (-580 (-1064))) 174 T ELT)) (-3873 (($) 67 T ELT)) (-3864 (((-1176) $ (-325) (-325) (-325) (-325) (-325)) 140 T ELT) (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $) 138 T ELT) (((-1176) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 139 T ELT) (((-1176) $ (-480) (-480) (-325) (-325) (-325)) 143 T ELT) (((-1176) $ (-325) (-325)) 144 T ELT) (((-1176) $ (-325) (-325) (-325)) 151 T ELT)) (-3876 (((-325)) 121 T ELT) (((-325) (-325)) 122 T ELT)) (-3878 (((-325)) 116 T ELT) (((-325) (-325)) 118 T ELT)) (-3877 (((-325)) 119 T ELT) (((-325) (-325)) 120 T ELT)) (-3874 (((-325)) 125 T ELT) (((-325) (-325)) 126 T ELT)) (-3875 (((-325)) 123 T ELT) (((-325) (-325)) 124 T ELT)) (-3856 (((-1176) $ (-325) (-325)) 170 T ELT)) (-3866 (((-1176) $ (-1064)) 152 T ELT)) (-3871 (((-1038 (-177)) $) 68 T ELT) (($ $ (-1038 (-177))) 69 T ELT)) (-3852 (((-1176) $ (-1064)) 186 T ELT)) (-3851 (((-1176) $ (-1064)) 187 T ELT)) (-3858 (((-1176) $ (-325) (-325)) 150 T ELT) (((-1176) $ (-480) (-480)) 167 T ELT)) (-3867 (((-1176) $ (-825) (-825)) 159 T ELT)) (-3847 (((-1176) $) 136 T ELT)) (-3855 (((-1176) $ (-1064)) 185 T ELT)) (-3860 (((-1176) $ (-1064)) 133 T ELT)) (-3869 (((-580 (-219)) $) 70 T ELT) (($ $ (-580 (-219))) 71 T ELT)) (-3868 (((-1176) $ (-689) (-689)) 158 T ELT)) (-3870 (((-1176) $ (-689) (-849 (-177))) 192 T ELT)) (-3872 (($ $) 73 T ELT) (($ (-1038 (-177)) (-1064)) 74 T ELT) (($ (-1038 (-177)) (-580 (-219))) 75 T ELT)) (-3849 (((-1176) $ (-325) (-325) (-325)) 130 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3843 (((-480) $) 127 T ELT)) (-3848 (((-1176) $ (-325)) 172 T ELT)) (-3853 (((-1176) $ (-325)) 190 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3854 (((-1176) $ (-325)) 189 T ELT)) (-3859 (((-1176) $ (-1064)) 135 T ELT)) (-3865 (((-1176) $ (-689) (-689) (-825) (-825)) 157 T ELT)) (-3861 (((-1176) $ (-1064)) 132 T ELT)) (-3863 (((-1176) $ (-1064)) 134 T ELT)) (-3846 (((-1176) $ (-128) (-128)) 156 T ELT)) (-3929 (((-767) $) 165 T ELT)) (-3844 (((-1176) $) 137 T ELT)) (-3850 (((-1176) $ (-1064)) 188 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3862 (((-1176) $ (-1064)) 131 T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1174) (-13 (-1007) (-10 -8 (-15 -3878 ((-325))) (-15 -3878 ((-325) (-325))) (-15 -3877 ((-325))) (-15 -3877 ((-325) (-325))) (-15 -3876 ((-325))) (-15 -3876 ((-325) (-325))) (-15 -3875 ((-325))) (-15 -3875 ((-325) (-325))) (-15 -3874 ((-325))) (-15 -3874 ((-325) (-325))) (-15 -3873 ($)) (-15 -3872 ($ $)) (-15 -3872 ($ (-1038 (-177)) (-1064))) (-15 -3872 ($ (-1038 (-177)) (-580 (-219)))) (-15 -3871 ((-1038 (-177)) $)) (-15 -3871 ($ $ (-1038 (-177)))) (-15 -3870 ((-1176) $ (-689) (-849 (-177)))) (-15 -3869 ((-580 (-219)) $)) (-15 -3869 ($ $ (-580 (-219)))) (-15 -3868 ((-1176) $ (-689) (-689))) (-15 -3867 ((-1176) $ (-825) (-825))) (-15 -3866 ((-1176) $ (-1064))) (-15 -3865 ((-1176) $ (-689) (-689) (-825) (-825))) (-15 -3864 ((-1176) $ (-325) (-325) (-325) (-325) (-325))) (-15 -3864 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $)) (-15 -3864 ((-1176) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3864 ((-1176) $ (-480) (-480) (-325) (-325) (-325))) (-15 -3864 ((-1176) $ (-325) (-325))) (-15 -3864 ((-1176) $ (-325) (-325) (-325))) (-15 -3863 ((-1176) $ (-1064))) (-15 -3862 ((-1176) $ (-1064))) (-15 -3861 ((-1176) $ (-1064))) (-15 -3860 ((-1176) $ (-1064))) (-15 -3859 ((-1176) $ (-1064))) (-15 -3858 ((-1176) $ (-325) (-325))) (-15 -3858 ((-1176) $ (-480) (-480))) (-15 -3857 ((-1176) $ (-325))) (-15 -3857 ((-1176) $ (-325) (-325) (-325))) (-15 -3856 ((-1176) $ (-325) (-325))) (-15 -3855 ((-1176) $ (-1064))) (-15 -3854 ((-1176) $ (-325))) (-15 -3853 ((-1176) $ (-325))) (-15 -3852 ((-1176) $ (-1064))) (-15 -3851 ((-1176) $ (-1064))) (-15 -3850 ((-1176) $ (-1064))) (-15 -3849 ((-1176) $ (-325) (-325) (-325))) (-15 -3848 ((-1176) $ (-325))) (-15 -3847 ((-1176) $)) (-15 -3846 ((-1176) $ (-128) (-128))) (-15 -3845 ((-1064) $ (-1064))) (-15 -3845 ((-1064) $ (-1064) (-1064))) (-15 -3845 ((-1064) $ (-1064) (-580 (-1064)))) (-15 -3844 ((-1176) $)) (-15 -3843 ((-480) $))))) (T -1174)) -((-3878 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3877 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3876 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3875 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3874 (*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) (-3873 (*1 *1) (-5 *1 (-1174))) (-3872 (*1 *1 *1) (-5 *1 (-1174))) (-3872 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-1064)) (-5 *1 (-1174)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-580 (-219))) (-5 *1 (-1174)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1174)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1174)))) (-3870 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-689)) (-5 *4 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1174)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1174)))) (-3868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3865 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-689)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3864 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-1174)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3864 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-480)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3864 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3864 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3857 (*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3857 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3856 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3849 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3846 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1174)))) (-3845 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1174)))) (-3845 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1064)) (-5 *1 (-1174)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1174))))) -((-3887 (((-580 (-1064)) (-580 (-1064))) 103 T ELT) (((-580 (-1064))) 96 T ELT)) (-3888 (((-580 (-1064))) 94 T ELT)) (-3885 (((-580 (-825)) (-580 (-825))) 69 T ELT) (((-580 (-825))) 64 T ELT)) (-3884 (((-580 (-689)) (-580 (-689))) 61 T ELT) (((-580 (-689))) 55 T ELT)) (-3886 (((-1176)) 71 T ELT)) (-3890 (((-825) (-825)) 87 T ELT) (((-825)) 86 T ELT)) (-3889 (((-825) (-825)) 85 T ELT) (((-825)) 84 T ELT)) (-3882 (((-778) (-778)) 81 T ELT) (((-778)) 80 T ELT)) (-3892 (((-177)) 91 T ELT) (((-177) (-325)) 93 T ELT)) (-3891 (((-825)) 88 T ELT) (((-825) (-825)) 89 T ELT)) (-3883 (((-825) (-825)) 83 T ELT) (((-825)) 82 T ELT)) (-3879 (((-778) (-778)) 75 T ELT) (((-778)) 73 T ELT)) (-3880 (((-778) (-778)) 77 T ELT) (((-778)) 76 T ELT)) (-3881 (((-778) (-778)) 79 T ELT) (((-778)) 78 T ELT))) -(((-1175) (-10 -7 (-15 -3879 ((-778))) (-15 -3879 ((-778) (-778))) (-15 -3880 ((-778))) (-15 -3880 ((-778) (-778))) (-15 -3881 ((-778))) (-15 -3881 ((-778) (-778))) (-15 -3882 ((-778))) (-15 -3882 ((-778) (-778))) (-15 -3883 ((-825))) (-15 -3883 ((-825) (-825))) (-15 -3884 ((-580 (-689)))) (-15 -3884 ((-580 (-689)) (-580 (-689)))) (-15 -3885 ((-580 (-825)))) (-15 -3885 ((-580 (-825)) (-580 (-825)))) (-15 -3886 ((-1176))) (-15 -3887 ((-580 (-1064)))) (-15 -3887 ((-580 (-1064)) (-580 (-1064)))) (-15 -3888 ((-580 (-1064)))) (-15 -3889 ((-825))) (-15 -3890 ((-825))) (-15 -3889 ((-825) (-825))) (-15 -3890 ((-825) (-825))) (-15 -3891 ((-825) (-825))) (-15 -3891 ((-825))) (-15 -3892 ((-177) (-325))) (-15 -3892 ((-177))))) (T -1175)) -((-3892 (*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1175)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-325)) (-5 *2 (-177)) (-5 *1 (-1175)))) (-3891 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3890 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3889 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3888 (*1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175)))) (-3887 (*1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175)))) (-3886 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1175)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1175)))) (-3885 (*1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1175)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1175)))) (-3884 (*1 *2) (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1175)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3883 (*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3882 (*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3881 (*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3880 (*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) (-3879 (*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175))))) -((-3893 (($) 6 T ELT)) (-3929 (((-767) $) 9 T ELT))) -(((-1176) (-13 (-549 (-767)) (-10 -8 (-15 -3893 ($))))) (T -1176)) -((-3893 (*1 *1) (-5 *1 (-1176)))) -((-3932 (($ $ |#2|) 10 T ELT))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -3932 (|#1| |#1| |#2|))) (-1178 |#2|) (-309)) (T -1177)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3894 (((-105)) 38 T ELT)) (-3929 (((-767) $) 13 T ELT)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ |#1|) 39 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1178 |#1|) (-111) (-309)) (T -1178)) -((-3932 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-309)))) (-3894 (*1 *2) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-309)) (-5 *2 (-105))))) -(-13 (-651 |t#1|) (-10 -8 (-15 -3932 ($ $ |t#1|)) (-15 -3894 ((-105))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-587 |#1|) . T) ((-579 |#1|) . T) ((-651 |#1|) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-1007) . T) ((-1120) . T)) -((-3899 (((-580 (-1113 |#1|)) (-1081) (-1113 |#1|)) 83 T ELT)) (-3897 (((-1060 (-1060 (-852 |#1|))) (-1081) (-1060 (-852 |#1|))) 63 T ELT)) (-3900 (((-1 (-1060 (-1113 |#1|)) (-1060 (-1113 |#1|))) (-689) (-1113 |#1|) (-1060 (-1113 |#1|))) 74 T ELT)) (-3895 (((-1 (-1060 (-852 |#1|)) (-1060 (-852 |#1|))) (-689)) 65 T ELT)) (-3898 (((-1 (-1076 (-852 |#1|)) (-852 |#1|)) (-1081)) 32 T ELT)) (-3896 (((-1 (-1060 (-852 |#1|)) (-1060 (-852 |#1|))) (-689)) 64 T ELT))) -(((-1179 |#1|) (-10 -7 (-15 -3895 ((-1 (-1060 (-852 |#1|)) (-1060 (-852 |#1|))) (-689))) (-15 -3896 ((-1 (-1060 (-852 |#1|)) (-1060 (-852 |#1|))) (-689))) (-15 -3897 ((-1060 (-1060 (-852 |#1|))) (-1081) (-1060 (-852 |#1|)))) (-15 -3898 ((-1 (-1076 (-852 |#1|)) (-852 |#1|)) (-1081))) (-15 -3899 ((-580 (-1113 |#1|)) (-1081) (-1113 |#1|))) (-15 -3900 ((-1 (-1060 (-1113 |#1|)) (-1060 (-1113 |#1|))) (-689) (-1113 |#1|) (-1060 (-1113 |#1|))))) (-309)) (T -1179)) -((-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689)) (-4 *6 (-309)) (-5 *4 (-1113 *6)) (-5 *2 (-1 (-1060 *4) (-1060 *4))) (-5 *1 (-1179 *6)) (-5 *5 (-1060 *4)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-4 *5 (-309)) (-5 *2 (-580 (-1113 *5))) (-5 *1 (-1179 *5)) (-5 *4 (-1113 *5)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1 (-1076 (-852 *4)) (-852 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-309)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-4 *5 (-309)) (-5 *2 (-1060 (-1060 (-852 *5)))) (-5 *1 (-1179 *5)) (-5 *4 (-1060 (-852 *5))))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-1060 (-852 *4)) (-1060 (-852 *4)))) (-5 *1 (-1179 *4)) (-4 *4 (-309)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-1060 (-852 *4)) (-1060 (-852 *4)))) (-5 *1 (-1179 *4)) (-4 *4 (-309))))) -((-3902 (((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 80 T ELT)) (-3901 (((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 79 T ELT))) -(((-1180 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3901 ((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -3902 ((-2 (|:| -2000 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|))) (-296) (-1146 |#1|) (-1146 |#2|) (-348 |#2| |#3|)) (T -1180)) -((-3902 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 *3)) (-5 *2 (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-1180 *4 *3 *5 *6)) (-4 *6 (-348 *3 *5)))) (-3901 (*1 *2) (-12 (-4 *3 (-296)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-2 (|:| -2000 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-1180 *3 *4 *5 *6)) (-4 *6 (-348 *4 *5))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3903 (((-1040) $) 12 T ELT)) (-3904 (((-1040) $) 10 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 18 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1181) (-13 (-989) (-10 -8 (-15 -3904 ((-1040) $)) (-15 -3903 ((-1040) $))))) (T -1181)) -((-3904 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1181)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1181))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3905 (((-1040) $) 11 T ELT)) (-3929 (((-767) $) 17 T ELT) (($ (-1086)) NIL T ELT) (((-1086) $) NIL T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT))) -(((-1182) (-13 (-989) (-10 -8 (-15 -3905 ((-1040) $))))) (T -1182)) -((-3905 (*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1182))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 59 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 82 T ELT) (($ (-480)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3111 (((-689)) NIL T CONST)) (-3906 (((-1176) (-689)) 16 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 36 T CONST)) (-2652 (($) 85 T CONST)) (-3042 (((-83) $ $) 88 T ELT)) (-3932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-309)) ELT)) (-3820 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 64 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-1183 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-956) (-425 |#4|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -3932 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3906 ((-1176) (-689))))) (-956) (-751) (-712) (-856 |#1| |#3| |#2|) (-580 |#2|) (-580 (-689)) (-689)) (T -1183)) -((-3932 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-309)) (-4 *2 (-956)) (-4 *3 (-751)) (-4 *4 (-712)) (-14 *6 (-580 *3)) (-5 *1 (-1183 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-856 *2 *4 *3)) (-14 *7 (-580 (-689))) (-14 *8 (-689)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-4 *5 (-751)) (-4 *6 (-712)) (-14 *8 (-580 *5)) (-5 *2 (-1176)) (-5 *1 (-1183 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-856 *4 *6 *5)) (-14 *9 (-580 *3)) (-14 *10 *3)))) -((-2554 (((-83) $ $) NIL T ELT)) (-3664 (((-580 (-2 (|:| -3844 $) (|:| -1691 (-580 |#4|)))) (-580 |#4|)) NIL T ELT)) (-3665 (((-580 $) (-580 |#4|)) 95 T ELT)) (-3067 (((-580 |#3|) $) NIL T ELT)) (-2894 (((-83) $) NIL T ELT)) (-2885 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-2895 (((-2 (|:| |under| $) (|:| -3115 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3693 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3707 (($) NIL T CONST)) (-2890 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-2892 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-491)) ELT)) (-2893 (((-83) $) NIL (|has| |#1| (-491)) ELT)) (-3672 (((-580 |#4|) (-580 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 31 T ELT)) (-2886 (((-580 |#4|) (-580 |#4|) $) 28 (|has| |#1| (-491)) ELT)) (-2887 (((-580 |#4|) (-580 |#4|) $) NIL (|has| |#1| (-491)) ELT)) (-3142 (((-3 $ #1#) (-580 |#4|)) NIL T ELT)) (-3141 (($ (-580 |#4|)) NIL T ELT)) (-3782 (((-3 $ #1#) $) 77 T ELT)) (-3668 ((|#4| |#4| $) 82 T ELT)) (-1342 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3389 (($ |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2888 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3677 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 ((|#4| |#4| $) NIL T ELT)) (-3825 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3978)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3679 (((-2 (|:| -3844 (-580 |#4|)) (|:| -1691 (-580 |#4|))) $) NIL T ELT)) (-2875 (((-580 |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3678 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3165 ((|#3| $) 83 T ELT)) (-2594 (((-580 |#4|) $) 32 (|has| $ (-6 -3978)) ELT)) (-3230 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT)) (-3909 (((-3 $ #1#) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-580 |#4|)) 38 T ELT)) (-1938 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3941 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2900 (((-580 |#3|) $) NIL T ELT)) (-2899 (((-83) |#3| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3781 (((-3 |#4| #1#) $) NIL T ELT)) (-3680 (((-580 |#4|) $) 53 T ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) 81 T ELT)) (-3682 (((-83) $ $) 92 T ELT)) (-2889 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-491)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3784 (((-3 |#4| #1#) $) 76 T ELT)) (-1343 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3662 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3752 (($ $ |#4|) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-580 |#4|) (-580 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-246 |#4|)) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT) (($ $ (-580 (-246 |#4|))) NIL (-12 (|has| |#4| (-257 |#4|)) (|has| |#4| (-1007))) ELT)) (-1212 (((-83) $ $) NIL T ELT)) (-3386 (((-83) $) 74 T ELT)) (-3548 (($) 45 T ELT)) (-3931 (((-689) $) NIL T ELT)) (-1935 (((-689) |#4| $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#4| (-1007))) ELT) (((-689) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3383 (($ $) NIL T ELT)) (-3955 (((-469) $) NIL (|has| |#4| (-550 (-469))) ELT)) (-3513 (($ (-580 |#4|)) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-2898 (($ $ |#3|) NIL T ELT)) (-3667 (($ $) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (((-580 |#4|) $) 62 T ELT)) (-3661 (((-689) $) NIL (|has| |#3| (-315)) ELT)) (-3908 (((-3 $ #1#) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-580 |#4|)) 44 T ELT)) (-3907 (((-580 $) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-580 $) (-580 |#4|)) 73 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3681 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-580 |#4|))) #1#) (-580 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3673 (((-83) $ (-1 (-83) |#4| (-580 |#4|))) NIL T ELT)) (-1937 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3663 (((-580 |#3|) $) NIL T ELT)) (-3916 (((-83) |#3| $) NIL T ELT)) (-3042 (((-83) $ $) NIL T ELT)) (-3940 (((-689) $) NIL (|has| $ (-6 -3978)) ELT))) -(((-1184 |#1| |#2| |#3| |#4|) (-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3909 ((-3 $ #1="failed") (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3909 ((-3 $ #1#) (-580 |#4|))) (-15 -3908 ((-3 $ #1#) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ #1#) (-580 |#4|))) (-15 -3907 ((-580 $) (-580 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3907 ((-580 $) (-580 |#4|))))) (-491) (-712) (-751) (-971 |#1| |#2| |#3|)) (T -1184)) -((-3909 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1184 *5 *6 *7 *8)))) (-3909 (*1 *1 *2) (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1184 *3 *4 *5 *6)))) (-3908 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1184 *5 *6 *7 *8)))) (-3908 (*1 *1 *2) (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1184 *3 *4 *5 *6)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-580 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) (-4 *8 (-751)) (-5 *2 (-580 (-1184 *6 *7 *8 *9))) (-5 *1 (-1184 *6 *7 *8 *9)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 (-1184 *4 *5 *6 *7))) (-5 *1 (-1184 *4 *5 *6 *7))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3707 (($) 22 T CONST)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#1|) 51 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) -(((-1185 |#1|) (-111) (-956)) (T -1185)) -NIL -(-13 (-956) (-80 |t#1| |t#1|) (-552 |t#1|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 |#1|) |has| |#1| (-144)) ((-651 |#1|) |has| |#1| (-144)) ((-660) . T) ((-958 |#1|) . T) ((-963 |#1|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T)) -((-2554 (((-83) $ $) 69 T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3917 (((-580 |#1|) $) 54 T ELT)) (-3930 (($ $ (-689)) 47 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3918 (($ $ (-689)) 25 (|has| |#2| (-144)) ELT) (($ $ $) 26 (|has| |#2| (-144)) ELT)) (-3707 (($) NIL T CONST)) (-3922 (($ $ $) 72 T ELT) (($ $ (-734 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3142 (((-3 (-734 |#1|) #1#) $) NIL T ELT)) (-3141 (((-734 |#1|) $) NIL T ELT)) (-3942 (($ $) 40 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3934 (((-83) $) NIL T ELT)) (-3933 (($ $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ (-734 |#1|) |#2|) 39 T ELT)) (-3919 (($ $) 41 T ELT)) (-3924 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3938 (((-734 |#1|) $) NIL T ELT)) (-3939 (((-734 |#1|) $) 42 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3923 (($ $ $) 71 T ELT) (($ $ (-734 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1738 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2880 (((-734 |#1|) $) 36 T ELT)) (-3159 ((|#2| $) 38 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3931 (((-689) $) 44 T ELT)) (-3936 (((-83) $) 48 T ELT)) (-3935 ((|#2| $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-734 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-480)) NIL T ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-734 |#1|)) NIL T ELT)) (-3937 ((|#2| $ $) 78 T ELT) ((|#2| $ (-734 |#1|)) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 14 T CONST)) (-2652 (($) 20 T CONST)) (-2651 (((-580 (-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3042 (((-83) $ $) 45 T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 29 T ELT)) (** (($ $ (-689)) NIL T ELT) (($ $ (-825)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-734 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1186 |#1| |#2|) (-13 (-330 |#2| (-734 |#1|)) (-1193 |#1| |#2|)) (-751) (-956)) (T -1186)) -NIL -((-3925 ((|#3| |#3| (-689)) 28 T ELT)) (-3926 ((|#3| |#3| (-689)) 34 T ELT)) (-3910 ((|#3| |#3| |#3| (-689)) 35 T ELT))) -(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -3926 (|#3| |#3| (-689))) (-15 -3925 (|#3| |#3| (-689))) (-15 -3910 (|#3| |#3| |#3| (-689)))) (-13 (-956) (-651 (-345 (-480)))) (-751) (-1193 |#2| |#1|)) (T -1187)) -((-3910 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-3926 (*1 *2 *2 *3) (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))) -((-3915 (((-83) $) 15 T ELT)) (-3916 (((-83) $) 14 T ELT)) (-3911 (($ $) 19 T ELT) (($ $ (-689)) 21 T ELT))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -3911 (|#1| |#1| (-689))) (-15 -3911 (|#1| |#1|)) (-15 -3915 ((-83) |#1|)) (-15 -3916 ((-83) |#1|))) (-1189 |#2|) (-309)) (T -1188)) -NIL -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-2052 (((-2 (|:| -1761 $) (|:| -3965 $) (|:| |associate| $)) $) 53 T ELT)) (-2051 (($ $) 52 T ELT)) (-2049 (((-83) $) 50 T ELT)) (-3915 (((-83) $) 112 T ELT)) (-3912 (((-689)) 108 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3758 (($ $) 89 T ELT)) (-3954 (((-343 $) $) 88 T ELT)) (-1597 (((-83) $ $) 73 T ELT)) (-3707 (($) 22 T CONST)) (-3142 (((-3 |#1| "failed") $) 119 T ELT)) (-3141 ((|#1| $) 120 T ELT)) (-2550 (($ $ $) 69 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-2549 (($ $ $) 70 T ELT)) (-2727 (((-2 (|:| -3937 (-580 $)) (|:| -2397 $)) (-580 $)) 64 T ELT)) (-1753 (($ $ (-689)) 105 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT) (($ $) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3706 (((-83) $) 87 T ELT)) (-3755 (((-738 (-825)) $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-2398 (((-83) $) 42 T ELT)) (-1594 (((-3 (-580 $) #1="failed") (-580 $) $) 66 T ELT)) (-1880 (($ $ $) 58 T ELT) (($ (-580 $)) 57 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-2470 (($ $) 86 T ELT)) (-3914 (((-83) $) 111 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-2694 (((-1076 $) (-1076 $) (-1076 $)) 56 T ELT)) (-3129 (($ $ $) 60 T ELT) (($ (-580 $)) 59 T ELT)) (-3715 (((-343 $) $) 90 T ELT)) (-3913 (((-738 (-825))) 109 T ELT)) (-1595 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2397 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3449 (((-3 $ "failed") $ $) 54 T ELT)) (-2726 (((-629 (-580 $)) (-580 $) $) 63 T ELT)) (-1596 (((-689) $) 72 T ELT)) (-2865 (((-2 (|:| -1962 $) (|:| -2888 $)) $ $) 71 T ELT)) (-1754 (((-3 (-689) "failed") $ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3894 (((-105)) 117 T ELT)) (-3931 (((-738 (-825)) $) 110 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ $) 55 T ELT) (($ (-345 (-480))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2688 (((-629 $) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-315))) ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2050 (((-83) $ $) 51 T ELT)) (-3916 (((-83) $) 113 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3911 (($ $) 107 (|has| |#1| (-315)) ELT) (($ $ (-689)) 106 (|has| |#1| (-315)) ELT)) (-3042 (((-83) $ $) 8 T ELT)) (-3932 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT) (($ $ (-480)) 85 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-345 (-480))) 84 T ELT) (($ (-345 (-480)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) -(((-1189 |#1|) (-111) (-309)) (T -1189)) -((-3916 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-738 (-825))))) (-3913 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-738 (-825))))) (-3912 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-689)))) (-3911 (*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-309)) (-4 *2 (-315)))) (-3911 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-4 *3 (-315))))) -(-13 (-309) (-945 |t#1|) (-1178 |t#1|) (-10 -8 (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-340)) |%noBranch|) (-15 -3916 ((-83) $)) (-15 -3915 ((-83) $)) (-15 -3914 ((-83) $)) (-15 -3931 ((-738 (-825)) $)) (-15 -3913 ((-738 (-825)))) (-15 -3912 ((-689))) (IF (|has| |t#1| (-315)) (PROGN (-6 (-340)) (-15 -3911 ($ $)) (-15 -3911 ($ $ (-689)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-345 (-480))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-345 (-480)) (-345 (-480))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-315)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-552 (-345 (-480))) . T) ((-552 (-480)) . T) ((-552 |#1|) . T) ((-552 $) . T) ((-549 (-767)) . T) ((-144) . T) ((-199) . T) ((-243) . T) ((-255) . T) ((-309) . T) ((-340) OR (|has| |#1| (-315)) (|has| |#1| (-116))) ((-387) . T) ((-491) . T) ((-13) . T) ((-585 (-345 (-480))) . T) ((-585 (-480)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-587 (-345 (-480))) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-579 (-345 (-480))) . T) ((-579 |#1|) . T) ((-579 $) . T) ((-651 (-345 (-480))) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-660) . T) ((-827) . T) ((-945 |#1|) . T) ((-958 (-345 (-480))) . T) ((-958 |#1|) . T) ((-958 $) . T) ((-963 (-345 (-480))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1125) . T) ((-1178 |#1|) . T)) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3917 (((-580 |#1|) $) 53 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3918 (($ $ $) 56 (|has| |#2| (-144)) ELT) (($ $ (-689)) 55 (|has| |#2| (-144)) ELT)) (-3707 (($) 22 T CONST)) (-3922 (($ $ |#1|) 67 T ELT) (($ $ (-734 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3142 (((-3 (-734 |#1|) "failed") $) 77 T ELT)) (-3141 (((-734 |#1|) $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3934 (((-83) $) 58 T ELT)) (-3933 (($ $) 57 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3920 (((-83) $) 63 T ELT)) (-3921 (($ (-734 |#1|) |#2|) 64 T ELT)) (-3919 (($ $) 62 T ELT)) (-3924 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3938 (((-734 |#1|) $) 74 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3923 (($ $ |#1|) 70 T ELT) (($ $ (-734 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3936 (((-83) $) 60 T ELT)) (-3935 ((|#2| $) 59 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-734 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3937 ((|#2| $ (-734 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) -(((-1190 |#1| |#2|) (-111) (-751) (-956)) (T -1190)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-734 *3)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-2 (|:| |k| (-734 *3)) (|:| |c| *4))))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-734 *4)) (-4 *1 (-1190 *4 *2)) (-4 *4 (-751)) (-4 *2 (-956)))) (-3937 (*1 *2 *1 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-734 *3)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) (-3923 (*1 *1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-734 *3)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) (-3922 (*1 *1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3921 (*1 *1 *2 *3) (-12 (-5 *2 (-734 *4)) (-4 *4 (-751)) (-4 *1 (-1190 *4 *3)) (-4 *3 (-956)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83)))) (-3919 (*1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3929 (*1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83)))) (-3933 (*1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) (-3918 (*1 *1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)) (-4 *3 (-144)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-4 *4 (-144)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-580 *3))))) -(-13 (-956) (-1185 |t#2|) (-945 (-734 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3938 ((-734 |t#1|) $)) (-15 -3924 ((-2 (|:| |k| (-734 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3937 (|t#2| $ (-734 |t#1|))) (-15 -3937 (|t#2| $ $)) (-15 -3923 ($ $ |t#1|)) (-15 -3923 ($ $ (-734 |t#1|))) (-15 -3923 ($ $ $)) (-15 -3922 ($ $ |t#1|)) (-15 -3922 ($ $ (-734 |t#1|))) (-15 -3922 ($ $ $)) (-15 -3921 ($ (-734 |t#1|) |t#2|)) (-15 -3920 ((-83) $)) (-15 -3919 ($ $)) (-15 -3929 ($ |t#1|)) (-15 -3936 ((-83) $)) (-15 -3935 (|t#2| $)) (-15 -3934 ((-83) $)) (-15 -3933 ($ $)) (IF (|has| |t#2| (-144)) (PROGN (-15 -3918 ($ $ $)) (-15 -3918 ($ $ (-689)))) |%noBranch|) (-15 -3941 ($ (-1 |t#2| |t#2|) $)) (-15 -3917 ((-580 |t#1|) $)) (IF (|has| |t#2| (-6 -3971)) (-6 -3971) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 (-734 |#1|)) . T) ((-552 |#2|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-579 |#2|) |has| |#2| (-144)) ((-651 |#2|) |has| |#2| (-144)) ((-660) . T) ((-945 (-734 |#1|)) . T) ((-958 |#2|) . T) ((-963 |#2|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1185 |#2|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3917 (((-580 |#1|) $) 99 T ELT)) (-3930 (($ $ (-689)) 103 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3918 (($ $ $) NIL (|has| |#2| (-144)) ELT) (($ $ (-689)) NIL (|has| |#2| (-144)) ELT)) (-3707 (($) NIL T CONST)) (-3922 (($ $ |#1|) NIL T ELT) (($ $ (-734 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3142 (((-3 (-734 |#1|) #1#) $) NIL T ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3141 (((-734 |#1|) $) NIL T ELT) (((-798 |#1|) $) NIL T ELT)) (-3942 (($ $) 102 T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3934 (((-83) $) 90 T ELT)) (-3933 (($ $) 93 T ELT)) (-3927 (($ $ $ (-689)) 104 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ (-734 |#1|) |#2|) NIL T ELT) (($ (-798 |#1|) |#2|) 28 T ELT)) (-3919 (($ $) 120 T ELT)) (-3924 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3938 (((-734 |#1|) $) NIL T ELT)) (-3939 (((-734 |#1|) $) NIL T ELT)) (-3941 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3923 (($ $ |#1|) NIL T ELT) (($ $ (-734 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3925 (($ $ (-689)) 113 (|has| |#2| (-651 (-345 (-480)))) ELT)) (-1738 (((-2 (|:| |k| (-798 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2880 (((-798 |#1|) $) 84 T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3926 (($ $ (-689)) 110 (|has| |#2| (-651 (-345 (-480)))) ELT)) (-3931 (((-689) $) 100 T ELT)) (-3936 (((-83) $) 85 T ELT)) (-3935 ((|#2| $) 88 T ELT)) (-3929 (((-767) $) 70 T ELT) (($ (-480)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-734 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-798 |#1|)) NIL T ELT) (($ (-603 |#1| |#2|)) 47 T ELT) (((-1186 |#1| |#2|) $) 77 T ELT) (((-1195 |#1| |#2|) $) 82 T ELT)) (-3800 (((-580 |#2|) $) NIL T ELT)) (-3660 ((|#2| $ (-798 |#1|)) NIL T ELT)) (-3937 ((|#2| $ (-734 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 21 T CONST)) (-2652 (($) 27 T CONST)) (-2651 (((-580 (-2 (|:| |k| (-798 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3928 (((-3 (-603 |#1| |#2|) #1#) $) 119 T ELT)) (-3042 (((-83) $ $) 78 T ELT)) (-3820 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3822 (($ $ $) 20 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-798 |#1|)) NIL T ELT))) -(((-1191 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-330 |#2| (-798 |#1|)) (-10 -8 (-15 -3929 ($ (-603 |#1| |#2|))) (-15 -3929 ((-1186 |#1| |#2|) $)) (-15 -3929 ((-1195 |#1| |#2|) $)) (-15 -3928 ((-3 (-603 |#1| |#2|) "failed") $)) (-15 -3927 ($ $ $ (-689))) (IF (|has| |#2| (-651 (-345 (-480)))) (PROGN (-15 -3926 ($ $ (-689))) (-15 -3925 ($ $ (-689)))) |%noBranch|))) (-751) (-144)) (T -1191)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *1 (-1191 *3 *4)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3928 (*1 *2 *1) (|partial| -12 (-5 *2 (-603 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3927 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-651 (-345 (-480)))) (-4 *3 (-751)) (-4 *4 (-144)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-651 (-345 (-480)))) (-4 *3 (-751)) (-4 *4 (-144))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3917 (((-580 (-1081)) $) NIL T ELT)) (-3945 (($ (-1186 (-1081) |#1|)) NIL T ELT)) (-3930 (($ $ (-689)) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3918 (($ $ $) NIL (|has| |#1| (-144)) ELT) (($ $ (-689)) NIL (|has| |#1| (-144)) ELT)) (-3707 (($) NIL T CONST)) (-3922 (($ $ (-1081)) NIL T ELT) (($ $ (-734 (-1081))) NIL T ELT) (($ $ $) NIL T ELT)) (-3142 (((-3 (-734 (-1081)) #1#) $) NIL T ELT)) (-3141 (((-734 (-1081)) $) NIL T ELT)) (-3450 (((-3 $ #1#) $) NIL T ELT)) (-3934 (((-83) $) NIL T ELT)) (-3933 (($ $) NIL T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ (-734 (-1081)) |#1|) NIL T ELT)) (-3919 (($ $) NIL T ELT)) (-3924 (((-2 (|:| |k| (-734 (-1081))) (|:| |c| |#1|)) $) NIL T ELT)) (-3938 (((-734 (-1081)) $) NIL T ELT)) (-3939 (((-734 (-1081)) $) NIL T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3923 (($ $ (-1081)) NIL T ELT) (($ $ (-734 (-1081))) NIL T ELT) (($ $ $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3946 (((-1186 (-1081) |#1|) $) NIL T ELT)) (-3931 (((-689) $) NIL T ELT)) (-3936 (((-83) $) NIL T ELT)) (-3935 ((|#1| $) NIL T ELT)) (-3929 (((-767) $) NIL T ELT) (($ (-480)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-734 (-1081))) NIL T ELT) (($ (-1081)) NIL T ELT)) (-3937 ((|#1| $ (-734 (-1081))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3111 (((-689)) NIL T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) NIL T CONST)) (-3944 (((-580 (-2 (|:| |k| (-1081)) (|:| |c| $))) $) NIL T ELT)) (-2652 (($) NIL T CONST)) (-3042 (((-83) $ $) NIL T ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) NIL T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) NIL T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1081) $) NIL T ELT))) -(((-1192 |#1|) (-13 (-1193 (-1081) |#1|) (-10 -8 (-15 -3946 ((-1186 (-1081) |#1|) $)) (-15 -3945 ($ (-1186 (-1081) |#1|))) (-15 -3944 ((-580 (-2 (|:| |k| (-1081)) (|:| |c| $))) $)))) (-956)) (T -1192)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-1186 (-1081) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-956)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1186 (-1081) *3)) (-4 *3 (-956)) (-5 *1 (-1192 *3)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |k| (-1081)) (|:| |c| (-1192 *3))))) (-5 *1 (-1192 *3)) (-4 *3 (-956))))) -((-2554 (((-83) $ $) 7 T ELT)) (-3173 (((-83) $) 21 T ELT)) (-3917 (((-580 |#1|) $) 53 T ELT)) (-3930 (($ $ (-689)) 87 T ELT)) (-1301 (((-3 $ "failed") $ $) 25 T ELT)) (-3918 (($ $ $) 56 (|has| |#2| (-144)) ELT) (($ $ (-689)) 55 (|has| |#2| (-144)) ELT)) (-3707 (($) 22 T CONST)) (-3922 (($ $ |#1|) 67 T ELT) (($ $ (-734 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3142 (((-3 (-734 |#1|) "failed") $) 77 T ELT)) (-3141 (((-734 |#1|) $) 78 T ELT)) (-3450 (((-3 $ "failed") $) 40 T ELT)) (-3934 (((-83) $) 58 T ELT)) (-3933 (($ $) 57 T ELT)) (-2398 (((-83) $) 42 T ELT)) (-3920 (((-83) $) 63 T ELT)) (-3921 (($ (-734 |#1|) |#2|) 64 T ELT)) (-3919 (($ $) 62 T ELT)) (-3924 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3938 (((-734 |#1|) $) 74 T ELT)) (-3939 (((-734 |#1|) $) 89 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3923 (($ $ |#1|) 70 T ELT) (($ $ (-734 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3227 (((-1064) $) 11 T ELT)) (-3228 (((-1025) $) 12 T ELT)) (-3931 (((-689) $) 88 T ELT)) (-3936 (((-83) $) 60 T ELT)) (-3935 ((|#2| $) 59 T ELT)) (-3929 (((-767) $) 13 T ELT) (($ (-480)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-734 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3937 ((|#2| $ (-734 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3111 (((-689)) 38 T CONST)) (-1255 (((-83) $ $) 6 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 43 T CONST)) (-3042 (((-83) $ $) 8 T ELT)) (-3820 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3822 (($ $ $) 18 T ELT)) (** (($ $ (-825)) 33 T ELT) (($ $ (-689)) 41 T ELT)) (* (($ (-825) $) 17 T ELT) (($ (-689) $) 20 T ELT) (($ (-480) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) -(((-1193 |#1| |#2|) (-111) (-751) (-956)) (T -1193)) -((-3939 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-734 *3)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-689)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956))))) -(-13 (-1190 |t#1| |t#2|) (-10 -8 (-15 -3939 ((-734 |t#1|) $)) (-15 -3931 ((-689) $)) (-15 -3930 ($ $ (-689))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-552 (-480)) . T) ((-552 (-734 |#1|)) . T) ((-552 |#2|) . T) ((-549 (-767)) . T) ((-13) . T) ((-585 (-480)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-579 |#2|) |has| |#2| (-144)) ((-651 |#2|) |has| |#2| (-144)) ((-660) . T) ((-945 (-734 |#1|)) . T) ((-958 |#2|) . T) ((-963 |#2|) . T) ((-956) . T) ((-964) . T) ((-1017) . T) ((-1052) . T) ((-1007) . T) ((-1120) . T) ((-1185 |#2|) . T) ((-1190 |#1| |#2|) . T)) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) NIL T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3707 (($) NIL T CONST)) (-3142 (((-3 |#2| #1#) $) NIL T ELT)) (-3141 ((|#2| $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 43 T ELT)) (-3934 (((-83) $) 37 T ELT)) (-3933 (($ $) 38 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-2406 (((-689) $) NIL T ELT)) (-2807 (((-580 $) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ |#2| |#1|) NIL T ELT)) (-3938 ((|#2| $) 25 T ELT)) (-3939 ((|#2| $) 23 T ELT)) (-3941 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1738 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2880 ((|#2| $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3936 (((-83) $) 33 T ELT)) (-3935 ((|#1| $) 34 T ELT)) (-3929 (((-767) $) 66 T ELT) (($ (-480)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3800 (((-580 |#1|) $) NIL T ELT)) (-3660 ((|#1| $ |#2|) NIL T ELT)) (-3937 ((|#1| $ |#2|) 29 T ELT)) (-3111 (((-689)) 14 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 30 T CONST)) (-2652 (($) 11 T CONST)) (-2651 (((-580 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3042 (((-83) $ $) 31 T ELT)) (-3932 (($ $ |#1|) 68 (|has| |#1| (-309)) ELT)) (-3820 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3822 (($ $ $) 51 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 53 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3940 (((-689) $) 18 T ELT))) -(((-1194 |#1| |#2|) (-13 (-956) (-1185 |#1|) (-330 |#1| |#2|) (-552 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3940 ((-689) $)) (-15 -3939 (|#2| $)) (-15 -3938 (|#2| $)) (-15 -3942 ($ $)) (-15 -3937 (|#1| $ |#2|)) (-15 -3936 ((-83) $)) (-15 -3935 (|#1| $)) (-15 -3934 ((-83) $)) (-15 -3933 ($ $)) (-15 -3941 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-309)) (-15 -3932 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3971)) (-6 -3971) |%noBranch|) (IF (|has| |#1| (-6 -3975)) (-6 -3975) |%noBranch|) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|))) (-956) (-749)) (T -1194)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-1194 *3 *4)) (-4 *4 (-749)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749)))) (-3939 (*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-956)))) (-3938 (*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-956)))) (-3937 (*1 *2 *1 *3) (-12 (-4 *2 (-956)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-749)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749)))) (-3935 (*1 *2 *1) (-12 (-4 *2 (-956)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-749)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-309)) (-4 *2 (-956)) (-4 *3 (-749))))) -((-2554 (((-83) $ $) 27 T ELT)) (-3173 (((-83) $) NIL T ELT)) (-3917 (((-580 |#1|) $) 132 T ELT)) (-3945 (($ (-1186 |#1| |#2|)) 50 T ELT)) (-3930 (($ $ (-689)) 38 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3918 (($ $ $) 54 (|has| |#2| (-144)) ELT) (($ $ (-689)) 52 (|has| |#2| (-144)) ELT)) (-3707 (($) NIL T CONST)) (-3922 (($ $ |#1|) 114 T ELT) (($ $ (-734 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3142 (((-3 (-734 |#1|) #1#) $) NIL T ELT)) (-3141 (((-734 |#1|) $) NIL T ELT)) (-3450 (((-3 $ #1#) $) 122 T ELT)) (-3934 (((-83) $) 117 T ELT)) (-3933 (($ $) 118 T ELT)) (-2398 (((-83) $) NIL T ELT)) (-3920 (((-83) $) NIL T ELT)) (-3921 (($ (-734 |#1|) |#2|) 20 T ELT)) (-3919 (($ $) NIL T ELT)) (-3924 (((-2 (|:| |k| (-734 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3938 (((-734 |#1|) $) 123 T ELT)) (-3939 (((-734 |#1|) $) 126 T ELT)) (-3941 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3923 (($ $ |#1|) 112 T ELT) (($ $ (-734 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3946 (((-1186 |#1| |#2|) $) 94 T ELT)) (-3931 (((-689) $) 129 T ELT)) (-3936 (((-83) $) 81 T ELT)) (-3935 ((|#2| $) 32 T ELT)) (-3929 (((-767) $) 73 T ELT) (($ (-480)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-734 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3937 ((|#2| $ (-734 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3111 (((-689)) 120 T CONST)) (-1255 (((-83) $ $) NIL T ELT)) (-2646 (($) 15 T CONST)) (-3944 (((-580 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2652 (($) 33 T CONST)) (-3042 (((-83) $ $) 14 T ELT)) (-3820 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3822 (($ $ $) 61 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 55 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) 53 T ELT) (($ (-480) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1195 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-10 -8 (-15 -3946 ((-1186 |#1| |#2|) $)) (-15 -3945 ($ (-1186 |#1| |#2|))) (-15 -3944 ((-580 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-751) (-956)) (T -1195)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *1 (-1195 *3 *4)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-580 (-2 (|:| |k| *3) (|:| |c| (-1195 *3 *4))))) (-5 *1 (-1195 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3948 (($ (-580 (-825))) 11 T ELT)) (-3947 (((-879) $) 12 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3929 (((-767) $) 25 T ELT) (($ (-879)) 14 T ELT) (((-879) $) 13 T ELT)) (-1255 (((-83) $ $) NIL T ELT)) (-3042 (((-83) $ $) 17 T ELT))) -(((-1196) (-13 (-1007) (-425 (-879)) (-10 -8 (-15 -3948 ($ (-580 (-825)))) (-15 -3947 ((-879) $))))) (T -1196)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1196)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-879)) (-5 *1 (-1196))))) -((-3949 (((-580 (-1060 |#1|)) (-1 (-580 (-1060 |#1|)) (-580 (-1060 |#1|))) (-480)) 16 T ELT) (((-1060 |#1|) (-1 (-1060 |#1|) (-1060 |#1|))) 13 T ELT))) -(((-1197 |#1|) (-10 -7 (-15 -3949 ((-1060 |#1|) (-1 (-1060 |#1|) (-1060 |#1|)))) (-15 -3949 ((-580 (-1060 |#1|)) (-1 (-580 (-1060 |#1|)) (-580 (-1060 |#1|))) (-480)))) (-1120)) (T -1197)) -((-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-580 (-1060 *5)) (-580 (-1060 *5)))) (-5 *4 (-480)) (-5 *2 (-580 (-1060 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1120)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1 (-1060 *4) (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1120))))) -((-3951 (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|))) 174 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83)) 173 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83)) 172 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83) (-83)) 171 T ELT) (((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-953 |#1| |#2|)) 156 T ELT)) (-3950 (((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|))) 85 T ELT) (((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|)) (-83)) 84 T ELT) (((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|)) (-83) (-83)) 83 T ELT)) (-3954 (((-580 (-1051 |#1| (-465 (-768 |#3|)) (-768 |#3|) (-698 |#1| (-768 |#3|)))) (-953 |#1| |#2|)) 73 T ELT)) (-3952 (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|))) 140 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83)) 139 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83)) 138 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83) (-83)) 137 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-953 |#1| |#2|)) 132 T ELT)) (-3953 (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|))) 145 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83)) 144 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83)) 143 T ELT) (((-580 (-580 (-932 (-345 |#1|)))) (-953 |#1| |#2|)) 142 T ELT)) (-3955 (((-580 (-698 |#1| (-768 |#3|))) (-1051 |#1| (-465 (-768 |#3|)) (-768 |#3|) (-698 |#1| (-768 |#3|)))) 111 T ELT) (((-1076 (-932 (-345 |#1|))) (-1076 |#1|)) 102 T ELT) (((-852 (-932 (-345 |#1|))) (-698 |#1| (-768 |#3|))) 109 T ELT) (((-852 (-932 (-345 |#1|))) (-852 |#1|)) 107 T ELT) (((-698 |#1| (-768 |#3|)) (-698 |#1| (-768 |#2|))) 33 T ELT))) -(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -3950 ((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|)) (-83) (-83))) (-15 -3950 ((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|)) (-83))) (-15 -3950 ((-580 (-953 |#1| |#2|)) (-580 (-852 |#1|)))) (-15 -3951 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-953 |#1| |#2|))) (-15 -3951 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83) (-83))) (-15 -3951 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83) (-83))) (-15 -3951 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)) (-83))) (-15 -3951 ((-580 (-2 (|:| -1736 (-1076 |#1|)) (|:| -3209 (-580 (-852 |#1|))))) (-580 (-852 |#1|)))) (-15 -3952 ((-580 (-580 (-932 (-345 |#1|)))) (-953 |#1| |#2|))) (-15 -3952 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83) (-83))) (-15 -3952 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83))) (-15 -3952 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83))) (-15 -3952 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)))) (-15 -3953 ((-580 (-580 (-932 (-345 |#1|)))) (-953 |#1| |#2|))) (-15 -3953 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83) (-83))) (-15 -3953 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)) (-83))) (-15 -3953 ((-580 (-580 (-932 (-345 |#1|)))) (-580 (-852 |#1|)))) (-15 -3954 ((-580 (-1051 |#1| (-465 (-768 |#3|)) (-768 |#3|) (-698 |#1| (-768 |#3|)))) (-953 |#1| |#2|))) (-15 -3955 ((-698 |#1| (-768 |#3|)) (-698 |#1| (-768 |#2|)))) (-15 -3955 ((-852 (-932 (-345 |#1|))) (-852 |#1|))) (-15 -3955 ((-852 (-932 (-345 |#1|))) (-698 |#1| (-768 |#3|)))) (-15 -3955 ((-1076 (-932 (-345 |#1|))) (-1076 |#1|))) (-15 -3955 ((-580 (-698 |#1| (-768 |#3|))) (-1051 |#1| (-465 (-768 |#3|)) (-768 |#3|) (-698 |#1| (-768 |#3|)))))) (-13 (-750) (-255) (-118) (-928)) (-580 (-1081)) (-580 (-1081))) (T -1198)) -((-3955 (*1 *2 *3) (-12 (-5 *3 (-1051 *4 (-465 (-768 *6)) (-768 *6) (-698 *4 (-768 *6)))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-698 *4 (-768 *6)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1076 *4)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-1076 (-932 (-345 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-698 *4 (-768 *6))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *6 (-580 (-1081))) (-5 *2 (-852 (-932 (-345 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-852 *4)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-852 (-932 (-345 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-698 *4 (-768 *5))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *5 (-580 (-1081))) (-5 *2 (-698 *4 (-768 *6))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-1051 *4 (-465 (-768 *6)) (-768 *6) (-698 *4 (-768 *6))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3953 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) (-3951 (*1 *2 *3) (-12 (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-580 (-852 *4))) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3951 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-953 *4 *5))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) (-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081)))))) -((-3958 (((-3 (-1170 (-345 (-480))) #1="failed") (-1170 |#1|) |#1|) 21 T ELT)) (-3956 (((-83) (-1170 |#1|)) 12 T ELT)) (-3957 (((-3 (-1170 (-480)) #1#) (-1170 |#1|)) 16 T ELT))) -(((-1199 |#1|) (-10 -7 (-15 -3956 ((-83) (-1170 |#1|))) (-15 -3957 ((-3 (-1170 (-480)) #1="failed") (-1170 |#1|))) (-15 -3958 ((-3 (-1170 (-345 (-480))) #1#) (-1170 |#1|) |#1|))) (-13 (-956) (-577 (-480)))) (T -1199)) -((-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) (-5 *2 (-1170 (-345 (-480)))) (-5 *1 (-1199 *4)))) (-3957 (*1 *2 *3) (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) (-5 *2 (-1170 (-480))) (-5 *1 (-1199 *4)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) (-5 *2 (-83)) (-5 *1 (-1199 *4))))) -((-2554 (((-83) $ $) NIL T ELT)) (-3173 (((-83) $) 12 T ELT)) (-1301 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-689)) 9 T ELT)) (-3707 (($) NIL T CONST)) (-3450 (((-3 $ #1#) $) 57 T ELT)) (-2980 (($) 46 T ELT)) (-2398 (((-83) $) 38 T ELT)) (-3428 (((-629 $) $) 36 T ELT)) (-1998 (((-825) $) 14 T ELT)) (-3227 (((-1064) $) NIL T ELT)) (-3429 (($) 26 T CONST)) (-2388 (($ (-825)) 47 T ELT)) (-3228 (((-1025) $) NIL T ELT)) (-3955 (((-480) $) 16 T ELT)) (-3929 (((-767) $) 21 T ELT) (($ (-480)) 18 T ELT)) (-3111 (((-689)) 10 T CONST)) (-1255 (((-83) $ $) 59 T ELT)) (-2646 (($) 23 T CONST)) (-2652 (($) 25 T CONST)) (-3042 (((-83) $ $) 31 T ELT)) (-3820 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3822 (($ $ $) 29 T ELT)) (** (($ $ (-825)) NIL T ELT) (($ $ (-689)) 52 T ELT)) (* (($ (-825) $) NIL T ELT) (($ (-689) $) NIL T ELT) (($ (-480) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1200 |#1|) (-13 (-144) (-315) (-550 (-480)) (-1057)) (-825)) (T -1200)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2801370 2801375 2801380 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2801355 2801360 2801365 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2801340 2801345 2801350 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2801325 2801330 2801335 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1200 2800368 2801243 2801320 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1199 2799583 2799762 2799981 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1198 2790742 2792611 2794545 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1197 2790130 2790283 2790472 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1196 2789592 2789895 2790008 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1195 2787216 2789054 2789257 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1194 2784044 2785633 2786204 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1193 2781363 2783031 2783085 "XPOLYC" 2783370 XPOLYC (NIL T T) -9 NIL 2783483 NIL) (-1192 2778946 2780867 2781070 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1191 2775258 2777805 2778193 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1190 2770167 2771738 2771792 "XFALG" 2773937 XFALG (NIL T T) -9 NIL 2774721 NIL) (-1189 2765385 2768056 2768098 "XF" 2768716 XF (NIL T) -9 NIL 2769112 NIL) (-1188 2765103 2765213 2765380 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1187 2764330 2764452 2764656 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1186 2762136 2764230 2764325 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1185 2760779 2761512 2761554 "XALG" 2761559 XALG (NIL T) -9 NIL 2761668 NIL) (-1184 2754336 2759189 2759667 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1183 2752643 2753581 2753902 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1182 2752242 2752514 2752583 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1181 2751729 2752032 2752125 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1180 2750806 2751016 2751311 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1179 2749102 2749565 2750027 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1178 2748022 2748576 2748618 "VSPACE" 2748754 VSPACE (NIL T) -9 NIL 2748828 NIL) (-1177 2747893 2747926 2748017 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1176 2747736 2747790 2747858 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1175 2744719 2745514 2746251 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1174 2735817 2738418 2740591 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1173 2729394 2731285 2732864 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1172 2727878 2728273 2728679 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1171 2726705 2726986 2727302 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1170 2721819 2726532 2726624 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1169 2714921 2719529 2719572 "VECTCAT" 2720560 VECTCAT (NIL T) -9 NIL 2721144 NIL) (-1168 2714200 2714526 2714916 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1167 2713694 2713936 2714056 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1166 2713627 2713632 2713662 "UTYPE" 2713667 UTYPE (NIL) -9 NIL NIL NIL) (-1165 2712614 2712790 2713051 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1164 2710465 2710973 2711497 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1163 2700409 2706317 2706359 "UTSCAT" 2707457 UTSCAT (NIL T) -9 NIL 2708214 NIL) (-1162 2698474 2699417 2700404 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1161 2698148 2698197 2698328 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1160 2689923 2696344 2696823 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2683918 2686731 2686774 "URAGG" 2688844 URAGG (NIL T) -9 NIL 2689566 NIL) (-1158 2681933 2682895 2683913 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1157 2677704 2680909 2681371 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1156 2670197 2677628 2677699 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1155 2658910 2666335 2666396 "UPXSCCA" 2666964 UPXSCCA (NIL T T) -9 NIL 2667196 NIL) (-1154 2658631 2658733 2658905 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1153 2647245 2654395 2654437 "UPXSCAT" 2655077 UPXSCAT (NIL T) -9 NIL 2655685 NIL) (-1152 2646758 2646843 2647020 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1151 2638508 2646349 2646611 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1150 2637403 2637673 2638023 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1149 2630168 2633591 2633645 "UPSCAT" 2634714 UPSCAT (NIL T T) -9 NIL 2635478 NIL) (-1148 2629588 2629840 2630163 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1147 2629262 2629311 2629442 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1146 2613456 2622346 2622388 "UPOLYC" 2624466 UPOLYC (NIL T) -9 NIL 2625686 NIL) (-1145 2607511 2610359 2613451 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1144 2606947 2607072 2607235 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1143 2606581 2606668 2606807 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1142 2605394 2605661 2605965 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1141 2604727 2604857 2605042 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1140 2604319 2604394 2604541 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1139 2595147 2604085 2604213 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1138 2594509 2594646 2594851 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1137 2593113 2593959 2594234 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1136 2592342 2592539 2592764 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1135 2579216 2592266 2592337 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1134 2559130 2572303 2572364 "ULSCCAT" 2572995 ULSCCAT (NIL T T) -9 NIL 2573282 NIL) (-1133 2558465 2558751 2559125 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1132 2546899 2553971 2554013 "ULSCAT" 2554866 ULSCAT (NIL T) -9 NIL 2555596 NIL) (-1131 2546412 2546497 2546674 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1130 2528593 2545911 2546152 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1129 2527627 2528320 2528434 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2528545) (-1128 2526660 2527353 2527467 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2527578) (-1127 2525693 2526386 2526500 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2526611) (-1126 2524726 2525419 2525533 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2525644) (-1125 2522795 2523954 2523984 "UFD" 2524195 UFD (NIL) -9 NIL 2524308 NIL) (-1124 2522639 2522696 2522790 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1123 2521891 2522098 2522314 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1122 2520111 2520564 2521029 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1121 2519836 2520076 2520106 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1120 2519774 2519779 2519809 "TYPE" 2519814 TYPE (NIL) -9 NIL 2519821 NIL) (-1119 2518933 2519153 2519393 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1118 2518111 2518542 2518777 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1117 2516265 2516838 2517377 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1116 2515299 2515535 2515771 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1115 2503653 2508121 2508217 "TSETCAT" 2513432 TSETCAT (NIL T T T T) -9 NIL 2514944 NIL) (-1114 2499990 2501806 2503648 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1113 2494446 2499216 2499498 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1112 2489783 2490796 2491725 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1111 2489280 2489355 2489518 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1110 2487356 2487646 2488001 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1109 2486840 2486989 2487019 "TRIGCAT" 2487232 TRIGCAT (NIL) -9 NIL NIL NIL) (-1108 2486591 2486694 2486835 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1107 2483587 2485700 2485978 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1106 2482693 2483389 2483419 "TRANFUN" 2483454 TRANFUN (NIL) -9 NIL 2483520 NIL) (-1105 2482157 2482408 2482688 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1104 2481994 2482032 2482093 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1103 2481451 2481582 2481733 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1102 2480192 2480849 2481085 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1101 2480004 2480041 2480113 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1100 2478218 2478864 2479293 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1099 2476598 2476935 2477257 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1098 2467656 2474399 2474455 "TBAGG" 2474857 TBAGG (NIL T T) -9 NIL 2475070 NIL) (-1097 2464187 2465879 2467651 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1096 2463664 2463789 2463934 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1095 2463174 2463494 2463584 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1094 2462671 2462788 2462926 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1093 2455758 2462573 2462666 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1092 2451511 2452806 2454051 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1091 2450880 2451039 2451220 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1090 2448034 2448787 2449570 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1089 2447808 2447998 2448029 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1088 2446762 2447447 2447573 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2447759) (-1087 2446026 2446574 2446653 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2446713) (-1086 2442849 2444008 2444708 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1085 2440532 2441215 2441849 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1084 2436610 2437656 2438633 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1083 2433773 2436265 2436494 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1082 2433369 2433456 2433578 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1081 2429993 2431467 2432286 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1080 2423017 2429190 2429483 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1079 2414767 2422608 2422870 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1078 2414046 2414185 2414402 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1077 2413730 2413795 2413906 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1076 2404517 2413442 2413567 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1075 2403253 2403549 2403902 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1074 2402661 2402738 2402928 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1073 2384877 2402160 2402401 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1072 2384476 2384748 2384817 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1071 2383812 2384093 2384233 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1070 2378414 2379673 2380626 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1069 2377946 2378046 2378210 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1068 2373057 2374339 2375486 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1067 2367515 2368986 2370297 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1066 2360430 2362494 2364285 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1065 2353260 2360342 2360425 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1064 2347954 2352974 2353089 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1063 2347541 2347624 2347768 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1062 2346692 2346893 2347128 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1061 2346432 2346490 2346583 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1060 2339170 2344637 2345243 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1059 2338346 2338551 2338782 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1058 2337591 2337962 2338109 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1057 2337079 2337321 2337351 "STEP" 2337445 STEP (NIL) -9 NIL 2337516 NIL) (-1056 2330182 2336997 2337074 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1055 2324397 2328980 2329023 "STAGG" 2329450 STAGG (NIL T) -9 NIL 2329624 NIL) (-1054 2322776 2323524 2324392 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1053 2320933 2322603 2322695 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1052 2320244 2320752 2320782 "SRING" 2320787 SRING (NIL) -9 NIL 2320807 NIL) (-1051 2312866 2318782 2319221 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1050 2306640 2308079 2309583 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1049 2299065 2303976 2304006 "SRAGG" 2305305 SRAGG (NIL) -9 NIL 2305909 NIL) (-1048 2298362 2298682 2299060 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1047 2292481 2297684 2298107 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1046 2286694 2289863 2290585 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1045 2283123 2283942 2284579 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1044 2282098 2282403 2282433 "SPFCAT" 2282877 SPFCAT (NIL) -9 NIL NIL NIL) (-1043 2281035 2281287 2281551 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1042 2271799 2274071 2274101 "SPADXPT" 2278736 SPADXPT (NIL) -9 NIL 2280858 NIL) (-1041 2271601 2271647 2271716 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1040 2269259 2271565 2271596 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1039 2260933 2263022 2263064 "SPACEC" 2267379 SPACEC (NIL T) -9 NIL 2269184 NIL) (-1038 2258762 2260880 2260928 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1037 2257695 2257884 2258173 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1036 2256099 2256432 2256843 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1035 2255364 2255598 2255859 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1034 2251544 2252504 2253499 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1033 2247902 2248601 2249330 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1032 2241688 2247242 2247338 "SNTSCAT" 2247343 SNTSCAT (NIL T T T T) -9 NIL 2247413 NIL) (-1031 2235573 2240329 2240719 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1030 2229409 2235492 2235568 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1029 2227841 2228172 2228570 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1028 2219510 2224425 2224527 "SMATCAT" 2225870 SMATCAT (NIL NIL T T T) -9 NIL 2226418 NIL) (-1027 2217351 2218335 2219505 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1026 2214943 2216557 2216600 "SKAGG" 2216861 SKAGG (NIL T) -9 NIL 2216995 NIL) (-1025 2211053 2214763 2214874 "SINT" NIL SINT (NIL) -8 NIL NIL 2214915) (-1024 2210863 2210907 2210973 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1023 2209938 2210170 2210438 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1022 2208942 2209104 2209380 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1021 2208288 2208628 2208751 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1020 2207634 2207941 2208081 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1019 2205745 2206237 2206743 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1018 2199284 2205664 2205740 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1017 2198787 2199024 2199054 "SGROUP" 2199147 SGROUP (NIL) -9 NIL 2199209 NIL) (-1016 2198677 2198709 2198782 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1015 2196100 2196869 2197591 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1014 2189985 2195539 2195635 "SFRTCAT" 2195640 SFRTCAT (NIL T T T T) -9 NIL 2195678 NIL) (-1013 2184377 2185490 2186617 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1012 2178553 2179714 2180878 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1011 2177525 2178427 2178548 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1010 2173133 2174028 2174123 "SEXCAT" 2176736 SEXCAT (NIL T T T T T) -9 NIL 2177287 NIL) (-1009 2172106 2173060 2173128 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1008 2170497 2171082 2171384 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1007 2170020 2170205 2170235 "SETCAT" 2170352 SETCAT (NIL) -9 NIL 2170436 NIL) (-1006 2169852 2169916 2170015 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1005 2166075 2168306 2168349 "SETAGG" 2169217 SETAGG (NIL T) -9 NIL 2169555 NIL) (-1004 2165681 2165833 2166070 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1003 2162635 2165628 2165676 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1002 2162101 2162411 2162511 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1001 2161228 2161594 2161655 "SEGXCAT" 2161941 SEGXCAT (NIL T T) -9 NIL 2162061 NIL) (-1000 2160153 2160421 2160464 "SEGCAT" 2160986 SEGCAT (NIL T) -9 NIL 2161207 NIL) (-999 2159842 2159905 2160014 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-998 2158926 2159388 2159591 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-997 2158507 2158786 2158860 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-996 2157885 2158018 2158217 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-995 2156953 2157700 2157880 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-994 2156208 2156903 2156948 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-993 2147809 2156079 2156203 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-992 2146669 2146959 2147276 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-991 2145975 2146187 2146375 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-990 2145325 2145482 2145658 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-989 2144898 2145129 2145157 "SASTCAT" 2145162 SASTCAT (NIL) -9 NIL 2145175 NIL) (-988 2144365 2144790 2144864 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-987 2143968 2144009 2144180 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-986 2143599 2143640 2143797 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-985 2136744 2143516 2143594 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-984 2135394 2135723 2136119 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-983 2134155 2134516 2134816 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-982 2133779 2134000 2134081 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-981 2131239 2131873 2132326 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-980 2131078 2131111 2131179 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-979 2130569 2130872 2130963 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-978 2126197 2127065 2127976 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-977 2115016 2120570 2120664 "RSETCAT" 2124720 RSETCAT (NIL T T T T) -9 NIL 2125808 NIL) (-976 2113554 2114196 2115011 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-975 2107328 2108773 2110280 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-974 2105210 2105767 2105839 "RRCC" 2106912 RRCC (NIL T T) -9 NIL 2107253 NIL) (-973 2104735 2104934 2105205 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-972 2104205 2104515 2104613 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-971 2076821 2087470 2087534 "RPOLCAT" 2098008 RPOLCAT (NIL T T T) -9 NIL 2101153 NIL) (-970 2070920 2073743 2076816 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-969 2067151 2070668 2070806 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-968 2065479 2066218 2066474 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-967 2061184 2063934 2063962 "RNS" 2064224 RNS (NIL) -9 NIL 2064476 NIL) (-966 2060087 2060574 2061111 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-965 2059205 2059606 2059806 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-964 2058493 2058993 2059021 "RNG" 2059026 RNG (NIL) -9 NIL 2059047 NIL) (-963 2057786 2058260 2058300 "RMODULE" 2058305 RMODULE (NIL T) -9 NIL 2058331 NIL) (-962 2056725 2056831 2057161 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-961 2053603 2056315 2056608 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-960 2046283 2048744 2048856 "RMATCAT" 2052161 RMATCAT (NIL NIL NIL T T T) -9 NIL 2053138 NIL) (-959 2045800 2045979 2046278 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-958 2045368 2045579 2045620 "RLINSET" 2045681 RLINSET (NIL T) -9 NIL 2045725 NIL) (-957 2045013 2045094 2045220 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-956 2043921 2044590 2044618 "RING" 2044673 RING (NIL) -9 NIL 2044765 NIL) (-955 2043766 2043822 2043916 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-954 2042823 2043089 2043344 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-953 2033810 2042451 2042652 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-952 2033066 2033546 2033585 "RGBCSPC" 2033642 RGBCSPC (NIL T) -9 NIL 2033693 NIL) (-951 2032131 2032586 2032625 "RGBCMDL" 2032853 RGBCMDL (NIL T) -9 NIL 2032967 NIL) (-950 2031843 2031912 2032013 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-949 2031606 2031647 2031742 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-948 2030030 2030460 2030840 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-947 2027617 2028285 2028953 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-946 2027167 2027265 2027425 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-945 2026789 2026887 2026928 "RETRACT" 2027059 RETRACT (NIL T) -9 NIL 2027146 NIL) (-944 2026669 2026700 2026784 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-943 2026271 2026543 2026610 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-942 2024815 2025642 2025839 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-941 2024506 2024567 2024663 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-940 2024249 2024290 2024395 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-939 2023984 2024025 2024134 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-938 2019055 2020506 2021721 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-937 2016154 2016912 2017720 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-936 2014123 2014745 2015345 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-935 2006758 2012674 2013110 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-934 2006070 2006350 2006499 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-933 2005555 2005670 2005835 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-932 2001212 2004958 2005179 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-931 2000444 2000643 2000856 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-930 1997734 1998572 1999454 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-929 1994316 1995352 1996411 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-928 1994152 1994205 1994233 "REAL" 1994238 REAL (NIL) -9 NIL 1994273 NIL) (-927 1993642 1993946 1994037 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-926 1993122 1993200 1993405 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-925 1992355 1992547 1992758 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-924 1991243 1991540 1991907 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-923 1989510 1989980 1990513 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-922 1988432 1988709 1989096 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-921 1987259 1987568 1987987 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-920 1980671 1984119 1984147 "RCFIELD" 1985424 RCFIELD (NIL) -9 NIL 1986154 NIL) (-919 1979289 1979901 1980598 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-918 1975489 1977381 1977422 "RCAGG" 1978489 RCAGG (NIL T) -9 NIL 1978950 NIL) (-917 1975216 1975326 1975484 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-916 1974661 1974790 1974951 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-915 1974278 1974357 1974476 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-914 1973693 1973843 1973993 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-913 1973475 1973525 1973596 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-912 1965981 1972593 1972901 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-911 1955747 1965848 1965976 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-910 1955381 1955474 1955502 "RADCAT" 1955659 RADCAT (NIL) -9 NIL NIL NIL) (-909 1955219 1955279 1955376 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-908 1953319 1955050 1955139 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-907 1953000 1953049 1953176 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-906 1945351 1949371 1949411 "QUATCAT" 1950189 QUATCAT (NIL T) -9 NIL 1950953 NIL) (-905 1942601 1943881 1945257 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-904 1938505 1942551 1942596 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-903 1935892 1937559 1937600 "QUAGG" 1937975 QUAGG (NIL T) -9 NIL 1938149 NIL) (-902 1935494 1935766 1935833 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-901 1934532 1935130 1935293 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-900 1934213 1934262 1934389 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-899 1923900 1930007 1930047 "QFCAT" 1930705 QFCAT (NIL T) -9 NIL 1931698 NIL) (-898 1920784 1922223 1923806 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-897 1920330 1920464 1920594 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-896 1914526 1915687 1916849 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-895 1913945 1914125 1914357 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-894 1911767 1912295 1912718 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-893 1910666 1910908 1911225 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-892 1909027 1909225 1909578 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-891 1904783 1905999 1906040 "PTRANFN" 1907924 PTRANFN (NIL T) -9 NIL NIL NIL) (-890 1903430 1903775 1904096 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-889 1903123 1903186 1903293 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-888 1897196 1901919 1901959 "PTCAT" 1902251 PTCAT (NIL T) -9 NIL 1902404 NIL) (-887 1896889 1896930 1897054 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-886 1895768 1896084 1896418 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-885 1884647 1887208 1889517 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-884 1877554 1880450 1880544 "PSETCAT" 1883518 PSETCAT (NIL T T T T) -9 NIL 1884325 NIL) (-883 1876004 1876738 1877549 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-882 1875332 1875524 1875552 "PSCURVE" 1875817 PSCURVE (NIL) -9 NIL 1875981 NIL) (-881 1870996 1872754 1872818 "PSCAT" 1873653 PSCAT (NIL T T T) -9 NIL 1873892 NIL) (-880 1870310 1870592 1870991 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-879 1868739 1869622 1869885 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-878 1868230 1868533 1868624 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-877 1859250 1861672 1863860 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-876 1856993 1858570 1858610 "PRQAGG" 1858793 PRQAGG (NIL T) -9 NIL 1858894 NIL) (-875 1856166 1856612 1856640 "PROPLOG" 1856779 PROPLOG (NIL) -9 NIL 1856893 NIL) (-874 1855841 1855904 1856027 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-873 1855277 1855416 1855588 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-872 1853525 1854288 1854585 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-871 1853077 1853209 1853337 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-870 1847733 1852017 1852837 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-869 1847562 1847600 1847659 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-868 1847001 1847141 1847292 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-867 1845469 1845888 1846354 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-866 1845189 1845249 1845277 "PRIMCAT" 1845400 PRIMCAT (NIL) -9 NIL NIL NIL) (-865 1844360 1844556 1844784 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-864 1840238 1844310 1844355 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-863 1839937 1839999 1840110 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-862 1837137 1839586 1839819 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-861 1836594 1836749 1836777 "PPCURVE" 1836980 PPCURVE (NIL) -9 NIL 1837114 NIL) (-860 1836207 1836452 1836535 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-859 1833963 1834384 1834976 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-858 1833406 1833470 1833703 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-857 1830126 1830612 1831223 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-856 1815781 1821846 1821910 "POLYCAT" 1825395 POLYCAT (NIL T T T) -9 NIL 1827272 NIL) (-855 1811291 1813438 1815776 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-854 1810948 1811022 1811141 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-853 1810641 1810704 1810811 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-852 1804068 1810374 1810533 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-851 1802955 1803218 1803494 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-850 1801559 1801872 1802202 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-849 1796721 1801509 1801554 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-848 1795209 1795620 1795995 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-847 1793966 1794275 1794671 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-846 1793637 1793721 1793838 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-845 1793216 1793291 1793465 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-844 1792702 1792798 1792958 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-843 1792174 1792294 1792448 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-842 1791069 1791287 1791664 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-841 1790680 1790765 1790917 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-840 1790231 1790313 1790494 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-839 1789923 1790004 1790117 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-838 1789436 1789511 1789719 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-837 1788784 1788912 1789114 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-836 1788146 1788280 1788443 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-835 1787450 1787632 1787813 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-834 1787176 1787249 1787342 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-833 1783787 1784957 1785857 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-832 1782880 1783078 1783310 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-831 1778503 1779864 1780985 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-830 1758424 1763311 1768158 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-829 1758164 1758217 1758320 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-828 1757605 1757739 1757919 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-827 1755676 1756835 1756863 "PID" 1757060 PID (NIL) -9 NIL 1757187 NIL) (-826 1755464 1755507 1755582 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-825 1754651 1755311 1755398 "PI" NIL PI (NIL) -8 NIL NIL 1755438) (-824 1754103 1754254 1754430 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-823 1750431 1751389 1752294 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-822 1748795 1749084 1749450 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-821 1748237 1748352 1748513 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-820 1744842 1747106 1747459 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-819 1743448 1743728 1744053 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-818 1742213 1742467 1742815 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-817 1740923 1741150 1741502 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-816 1737995 1739493 1739521 "PFECAT" 1740114 PFECAT (NIL) -9 NIL 1740491 NIL) (-815 1737618 1737783 1737990 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-814 1736442 1736724 1737025 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-813 1734624 1735011 1735441 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-812 1730658 1734550 1734619 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-811 1726561 1727708 1728575 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-810 1724493 1725582 1725623 "PERMCAT" 1726022 PERMCAT (NIL T) -9 NIL 1726319 NIL) (-809 1724189 1724236 1724359 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-808 1720638 1722319 1722964 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-807 1718103 1720393 1720514 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-806 1716972 1717235 1717276 "PDSPC" 1717809 PDSPC (NIL T) -9 NIL 1718054 NIL) (-805 1716339 1716605 1716967 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-804 1715036 1715967 1716008 "PDRING" 1716013 PDRING (NIL T) -9 NIL 1716040 NIL) (-803 1713777 1714535 1714588 "PDMOD" 1714593 PDMOD (NIL T T) -9 NIL 1714696 NIL) (-802 1712870 1713082 1713331 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-801 1712475 1712542 1712596 "PDDOM" 1712761 PDDOM (NIL T T) -9 NIL 1712841 NIL) (-800 1712327 1712363 1712470 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-799 1712113 1712152 1712241 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-798 1710430 1711184 1711483 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-797 1710119 1710182 1710291 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-796 1708257 1708687 1709138 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-795 1701877 1703706 1704998 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-794 1701508 1701581 1701713 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-793 1699210 1699890 1700371 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-792 1697414 1697842 1698245 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-791 1696860 1697108 1697149 "PATMAB" 1697256 PATMAB (NIL T) -9 NIL 1697339 NIL) (-790 1695507 1695911 1696168 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-789 1695045 1695176 1695217 "PATAB" 1695222 PATAB (NIL T) -9 NIL 1695394 NIL) (-788 1693588 1694025 1694448 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-787 1693266 1693341 1693443 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-786 1692955 1693018 1693127 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-785 1692760 1692806 1692873 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-784 1692438 1692513 1692615 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-783 1692127 1692190 1692299 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-782 1691818 1691888 1691985 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-781 1691507 1691570 1691679 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-780 1690668 1691047 1691226 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-779 1690275 1690373 1690492 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-778 1689243 1689668 1689887 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-777 1687908 1688562 1688922 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-776 1681062 1687312 1687506 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-775 1673547 1680560 1680744 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-774 1670334 1672187 1672227 "PADICCT" 1672808 PADICCT (NIL NIL) -9 NIL 1673090 NIL) (-773 1668388 1670284 1670329 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-772 1667550 1667760 1668026 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-771 1666892 1667035 1667239 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-770 1665337 1666300 1666578 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-769 1664861 1665120 1665217 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-768 1663920 1664598 1664770 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-767 1654342 1657211 1659410 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-766 1653736 1654048 1654174 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-765 1653019 1653212 1653240 "OUTBCON" 1653556 OUTBCON (NIL) -9 NIL 1653720 NIL) (-764 1652727 1652857 1653014 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-763 1652108 1652253 1652414 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-762 1651479 1651906 1651995 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-761 1650894 1651309 1651337 "OSGROUP" 1651342 OSGROUP (NIL) -9 NIL 1651364 NIL) (-760 1649858 1650119 1650404 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-759 1647191 1649733 1649853 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-758 1644396 1646942 1647068 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-757 1642414 1642942 1643502 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-756 1635818 1638296 1638336 "OREPCAT" 1640657 OREPCAT (NIL T) -9 NIL 1641759 NIL) (-755 1633844 1634778 1635813 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-754 1633041 1633312 1633340 "ORDTYPE" 1633645 ORDTYPE (NIL) -9 NIL 1633803 NIL) (-753 1632575 1632786 1633036 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-752 1632037 1632413 1632570 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-751 1631531 1631894 1631922 "ORDSET" 1631927 ORDSET (NIL) -9 NIL 1631949 NIL) (-750 1630171 1631131 1631159 "ORDRING" 1631164 ORDRING (NIL) -9 NIL 1631192 NIL) (-749 1629419 1629976 1630004 "ORDMON" 1630009 ORDMON (NIL) -9 NIL 1630030 NIL) (-748 1628723 1628885 1629077 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-747 1627934 1628442 1628470 "ORDFIN" 1628535 ORDFIN (NIL) -9 NIL 1628609 NIL) (-746 1627328 1627467 1627653 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-745 1624102 1626296 1626702 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-744 1623509 1623864 1623969 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-743 1623317 1623362 1623428 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-742 1622618 1622894 1622935 "OPERCAT" 1623146 OPERCAT (NIL T) -9 NIL 1623242 NIL) (-741 1622430 1622497 1622613 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-740 1619860 1621232 1621728 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-739 1619281 1619408 1619582 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-738 1616281 1618420 1618786 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-737 1612912 1615711 1615751 "OMSAGG" 1615812 OMSAGG (NIL T) -9 NIL 1615876 NIL) (-736 1611388 1612583 1612751 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-735 1609659 1610838 1610866 "OINTDOM" 1610871 OINTDOM (NIL) -9 NIL 1610892 NIL) (-734 1607089 1608661 1608990 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-733 1606343 1607039 1607084 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-732 1603609 1606184 1606338 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-731 1595210 1603480 1603604 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-730 1588720 1595101 1595205 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-729 1587692 1587929 1588202 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-728 1585326 1585996 1586700 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-727 1581103 1582063 1583086 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-726 1580611 1580699 1580893 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-725 1578060 1578642 1579315 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-724 1575455 1575963 1576559 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-723 1572452 1572991 1573637 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-722 1571807 1571915 1572173 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-721 1570965 1571090 1571311 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-720 1567249 1568045 1568958 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-719 1566689 1566784 1567006 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-718 1566370 1566419 1566546 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-717 1563037 1566169 1566288 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-716 1562228 1562819 1562847 "OCAMON" 1562852 OCAMON (NIL) -9 NIL 1562873 NIL) (-715 1556504 1559254 1559294 "OC" 1560389 OC (NIL T) -9 NIL 1561245 NIL) (-714 1554504 1555430 1556410 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-713 1553920 1554338 1554366 "OASGP" 1554371 OASGP (NIL) -9 NIL 1554391 NIL) (-712 1553014 1553632 1553660 "OAMONS" 1553700 OAMONS (NIL) -9 NIL 1553743 NIL) (-711 1552190 1552740 1552768 "OAMON" 1552825 OAMON (NIL) -9 NIL 1552876 NIL) (-710 1552086 1552118 1552185 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-709 1550868 1551611 1551639 "OAGROUP" 1551785 OAGROUP (NIL) -9 NIL 1551877 NIL) (-708 1550659 1550746 1550863 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-707 1550399 1550455 1550543 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-706 1545461 1547024 1548551 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-705 1542156 1543190 1544225 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-704 1541266 1541499 1541717 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-703 1530127 1533155 1535603 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-702 1524014 1529568 1529662 "NTSCAT" 1529667 NTSCAT (NIL T T T T) -9 NIL 1529705 NIL) (-701 1523355 1523534 1523727 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-700 1523048 1523111 1523218 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-699 1510779 1520668 1521478 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-698 1499852 1510644 1510774 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-697 1498572 1498897 1499254 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-696 1497408 1497672 1498030 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-695 1496575 1496708 1496924 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-694 1494893 1495212 1495618 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-693 1494606 1494640 1494764 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-692 1494425 1494460 1494529 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-691 1494201 1494391 1494420 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-690 1493765 1493832 1494009 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-689 1492083 1493128 1493383 "NNI" NIL NNI (NIL) -8 NIL NIL 1493730) (-688 1490811 1491148 1491512 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-687 1489788 1490040 1490342 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-686 1488878 1489440 1489481 "NETCLT" 1489652 NETCLT (NIL T) -9 NIL 1489733 NIL) (-685 1487782 1488049 1488330 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-684 1487581 1487624 1487699 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-683 1486112 1486500 1486920 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-682 1484776 1485711 1485739 "NASRING" 1485849 NASRING (NIL) -9 NIL 1485929 NIL) (-681 1484621 1484677 1484771 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-680 1483581 1484228 1484256 "NARNG" 1484373 NARNG (NIL) -9 NIL 1484464 NIL) (-679 1483357 1483442 1483576 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-678 1482154 1482877 1482917 "NAALG" 1482996 NAALG (NIL T) -9 NIL 1483057 NIL) (-677 1482024 1482059 1482149 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-676 1477003 1478188 1479374 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-675 1476398 1476485 1476669 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-674 1468472 1472902 1472954 "MTSCAT" 1474014 MTSCAT (NIL T T) -9 NIL 1474528 NIL) (-673 1468238 1468298 1468390 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-672 1468064 1468103 1468163 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-671 1464926 1467615 1467656 "MSETAGG" 1467661 MSETAGG (NIL T) -9 NIL 1467695 NIL) (-670 1461063 1463972 1464290 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-669 1457401 1459160 1459900 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-668 1457038 1457111 1457240 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-667 1456691 1456732 1456876 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-666 1454556 1454893 1455324 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-665 1448018 1454455 1454551 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-664 1447543 1447584 1447792 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-663 1447102 1447151 1447334 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-662 1446376 1446469 1446688 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-661 1444993 1445354 1445744 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-660 1444135 1444514 1444542 "MONOID" 1444760 MONOID (NIL) -9 NIL 1444904 NIL) (-659 1443794 1443944 1444130 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-658 1432794 1439602 1439661 "MONOGEN" 1440335 MONOGEN (NIL T T) -9 NIL 1440791 NIL) (-657 1430806 1431692 1432675 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-656 1429520 1430064 1430092 "MONADWU" 1430483 MONADWU (NIL) -9 NIL 1430718 NIL) (-655 1429068 1429268 1429515 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-654 1428345 1428646 1428674 "MONAD" 1428881 MONAD (NIL) -9 NIL 1428993 NIL) (-653 1428112 1428208 1428340 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-652 1426502 1427272 1427551 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-651 1425667 1426163 1426203 "MODULE" 1426208 MODULE (NIL T) -9 NIL 1426246 NIL) (-650 1425346 1425472 1425662 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-649 1423121 1423943 1424257 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1420364 1421717 1422230 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-647 1418998 1419572 1419848 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-646 1408281 1417663 1418076 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-645 1405301 1407281 1407550 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-644 1404385 1404752 1404942 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-643 1403954 1404003 1404182 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-642 1401841 1402775 1402815 "MLO" 1403232 MLO (NIL T) -9 NIL 1403472 NIL) (-641 1399722 1400249 1400844 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-640 1399190 1399286 1399440 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-639 1398860 1398936 1399059 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-638 1398072 1398258 1398486 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-637 1397565 1397681 1397837 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-636 1396937 1397051 1397236 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-635 1395964 1396237 1396514 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-634 1395397 1395485 1395656 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-633 1392578 1393448 1394318 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-632 1391245 1391593 1391946 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-631 1387902 1390369 1390410 "MDAGG" 1390667 MDAGG (NIL T) -9 NIL 1390812 NIL) (-630 1387176 1387340 1387540 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-629 1386254 1386540 1386770 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-628 1384351 1384928 1385489 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-627 1380122 1383941 1384188 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-626 1376471 1377240 1377974 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-625 1375224 1375393 1375722 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-624 1364737 1368326 1368402 "MATCAT" 1373390 MATCAT (NIL T T T) -9 NIL 1374858 NIL) (-623 1362018 1363324 1364732 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-622 1360419 1360779 1361163 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-621 1359552 1359749 1359971 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-620 1358303 1358629 1358956 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-619 1357465 1357867 1358043 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-618 1357134 1357198 1357321 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-617 1356782 1356855 1356969 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-616 1356317 1356432 1356574 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-615 1354526 1355294 1355595 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-614 1354020 1354322 1354412 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-613 1347529 1352335 1352376 "LZSTAGG" 1353153 LZSTAGG (NIL T) -9 NIL 1353443 NIL) (-612 1344648 1346082 1347524 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-611 1342035 1343001 1343484 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-610 1341616 1341895 1341969 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-609 1333844 1341477 1341611 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-608 1333207 1333352 1333580 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-607 1330691 1331389 1332101 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-606 1328803 1329126 1329574 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-605 1321972 1327890 1327931 "LSAGG" 1327993 LSAGG (NIL T) -9 NIL 1328071 NIL) (-604 1319666 1320765 1321967 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-603 1317178 1319015 1319264 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-602 1316845 1316936 1317059 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-601 1316516 1316595 1316623 "LOGIC" 1316734 LOGIC (NIL) -9 NIL 1316816 NIL) (-600 1316411 1316440 1316511 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-599 1315730 1315888 1316081 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-598 1314515 1314764 1315115 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-597 1310401 1313136 1313176 "LODOCAT" 1313608 LODOCAT (NIL T) -9 NIL 1313819 NIL) (-596 1310194 1310270 1310396 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-595 1307258 1310071 1310189 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-594 1304420 1307208 1307253 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-593 1301571 1304350 1304415 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-592 1300624 1300799 1301101 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-591 1298788 1299886 1300139 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-590 1293883 1296947 1296988 "LNAGG" 1297850 LNAGG (NIL T) -9 NIL 1298285 NIL) (-589 1293270 1293537 1293878 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-588 1289842 1290783 1291420 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-587 1289135 1289609 1289649 "LMODULE" 1289654 LMODULE (NIL T) -9 NIL 1289680 NIL) (-586 1286314 1288872 1288994 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-585 1285882 1286093 1286134 "LLINSET" 1286195 LLINSET (NIL T) -9 NIL 1286239 NIL) (-584 1285558 1285818 1285877 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-583 1285157 1285237 1285376 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-582 1283608 1283956 1284355 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-581 1282779 1282975 1283203 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-580 1275826 1282035 1282289 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-579 1275403 1275636 1275677 "LINSET" 1275682 LINSET (NIL T) -9 NIL 1275715 NIL) (-578 1274336 1275026 1275193 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-577 1272633 1273357 1273397 "LINEXP" 1273883 LINEXP (NIL T) -9 NIL 1274156 NIL) (-576 1271342 1272242 1272423 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-575 1270169 1270441 1270743 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-574 1269382 1269971 1270081 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-573 1266932 1267654 1268404 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-572 1265562 1265859 1266250 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-571 1264386 1264957 1264997 "LIECAT" 1265137 LIECAT (NIL T) -9 NIL 1265288 NIL) (-570 1264260 1264293 1264381 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-569 1258548 1263950 1264178 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-568 1250897 1258224 1258380 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-567 1247349 1248298 1249233 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-566 1245974 1246881 1246909 "LFCAT" 1247116 LFCAT (NIL) -9 NIL 1247255 NIL) (-565 1244216 1244545 1244889 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-564 1241733 1242398 1243079 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-563 1238745 1239723 1240226 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-562 1238236 1238539 1238630 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-561 1236943 1237267 1237667 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-560 1236209 1236294 1236520 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-559 1231276 1234777 1235313 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-558 1230901 1230951 1231111 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-557 1229734 1230445 1230485 "LALG" 1230546 LALG (NIL T) -9 NIL 1230604 NIL) (-556 1229517 1229594 1229729 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-555 1227434 1228785 1229036 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-554 1227263 1227293 1227334 "KVTFROM" 1227396 KVTFROM (NIL T) -9 NIL NIL NIL) (-553 1226079 1226794 1226983 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-552 1225908 1225938 1225979 "KRCFROM" 1226041 KRCFROM (NIL T) -9 NIL NIL NIL) (-551 1225010 1225207 1225502 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-550 1224839 1224869 1224910 "KONVERT" 1224972 KONVERT (NIL T) -9 NIL NIL NIL) (-549 1224668 1224698 1224739 "KOERCE" 1224801 KOERCE (NIL T) -9 NIL NIL NIL) (-548 1224238 1224331 1224463 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-547 1222291 1223185 1223557 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-546 1215468 1220483 1220537 "KDAGG" 1220913 KDAGG (NIL T T) -9 NIL 1221120 NIL) (-545 1215116 1215258 1215463 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-544 1207946 1214897 1215054 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-543 1207599 1207879 1207941 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-542 1206569 1207068 1207317 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-541 1205695 1206144 1206349 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-540 1204561 1205052 1205351 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-539 1203843 1204242 1204403 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-538 1203556 1203790 1203838 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-537 1197843 1203246 1203474 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-536 1197261 1197594 1197714 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-535 1193423 1195438 1195492 "IXAGG" 1196419 IXAGG (NIL T T) -9 NIL 1196876 NIL) (-534 1192629 1193000 1193418 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-533 1187883 1192565 1192624 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-532 1186850 1187125 1187388 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-531 1185512 1185719 1186012 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-530 1184463 1184685 1184968 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-529 1184138 1184201 1184324 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-528 1183400 1183772 1183946 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-527 1181440 1182676 1182950 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-526 1171052 1176757 1177914 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-525 1170300 1170451 1170686 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-524 1169791 1170094 1170185 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-523 1169084 1169175 1169388 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-522 1168216 1168441 1168681 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-521 1166629 1167010 1167438 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-520 1166414 1166458 1166534 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-519 1165264 1165561 1165856 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-518 1164537 1164888 1165039 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-517 1163740 1163871 1164084 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-516 1161895 1162392 1162936 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-515 1159008 1160244 1160933 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-514 1158833 1158873 1158933 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-513 1154895 1158759 1158828 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-512 1152962 1154834 1154890 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-511 1152336 1152634 1152763 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-510 1151789 1152077 1152209 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-509 1150873 1151495 1151621 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-508 1150286 1150777 1150805 "IOBCON" 1150810 IOBCON (NIL) -9 NIL 1150831 NIL) (-507 1149857 1149921 1150103 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-506 1141901 1144272 1146597 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-505 1139012 1139795 1140659 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-504 1138689 1138786 1138903 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-503 1136195 1138625 1138684 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-502 1134307 1134836 1135403 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-501 1133809 1133923 1134063 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-500 1132193 1132599 1133061 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-499 1129972 1130566 1131177 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-498 1127345 1127955 1128675 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-497 1126749 1126907 1127115 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-496 1126268 1126354 1126542 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-495 1124473 1124994 1125451 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-494 1117555 1119208 1120937 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-493 1116921 1117083 1117256 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-492 1114794 1115258 1115802 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-491 1112982 1113870 1113898 "INTDOM" 1114197 INTDOM (NIL) -9 NIL 1114402 NIL) (-490 1112535 1112737 1112977 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-489 1108406 1110814 1110868 "INTCAT" 1111664 INTCAT (NIL T) -9 NIL 1111980 NIL) (-488 1107971 1108091 1108218 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-487 1106811 1106983 1107289 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-486 1106384 1106480 1106637 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-485 1099424 1106239 1106379 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-484 1098722 1099277 1099342 "INT8" NIL INT8 (NIL) -8 NIL NIL 1099376) (-483 1098019 1098574 1098639 "INT64" NIL INT64 (NIL) -8 NIL NIL 1098673) (-482 1097316 1097871 1097936 "INT32" NIL INT32 (NIL) -8 NIL NIL 1097970) (-481 1096613 1097168 1097233 "INT16" NIL INT16 (NIL) -8 NIL NIL 1097267) (-480 1093140 1096532 1096608 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-479 1087261 1090680 1090708 "INS" 1091638 INS (NIL) -9 NIL 1092297 NIL) (-478 1085323 1086241 1087188 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-477 1084382 1084605 1084880 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-476 1083596 1083737 1083934 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-475 1082586 1082727 1082964 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-474 1081738 1081902 1082162 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-473 1081018 1081133 1081321 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-472 1079757 1080026 1080350 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-471 1079037 1079178 1079361 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-470 1078700 1078772 1078870 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-469 1075778 1077264 1077787 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-468 1075377 1075484 1075598 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-467 1074536 1075178 1075279 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-466 1073386 1073654 1073975 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-465 1072458 1073316 1073381 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-464 1072083 1072163 1072280 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-463 1070998 1071542 1071746 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-462 1067093 1068148 1069091 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-461 1065950 1066272 1066300 "INBCON" 1066812 INBCON (NIL) -9 NIL 1067077 NIL) (-460 1065404 1065669 1065945 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-459 1064898 1065200 1065290 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-458 1064355 1064664 1064769 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-457 1060455 1064247 1064350 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-456 1059295 1059434 1059749 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-455 1057719 1057986 1058323 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-454 1055535 1057601 1057714 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-453 1050442 1055466 1055530 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-452 1049822 1050156 1050271 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-451 1044629 1049260 1049446 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-450 1043691 1044551 1044624 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-449 1043263 1043340 1043394 "IEVALAB" 1043601 IEVALAB (NIL T T) -9 NIL NIL NIL) (-448 1043018 1043098 1043258 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-447 1042091 1042938 1043013 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-446 1041233 1042011 1042086 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-445 1040636 1041167 1041228 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-444 1039116 1039640 1039691 "IDPC" 1040197 IDPC (NIL T T) -9 NIL 1040477 NIL) (-443 1038482 1039038 1039111 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-442 1037731 1038404 1038477 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-441 1037424 1037637 1037697 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-440 1034495 1035376 1036268 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-439 1028121 1029398 1030437 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-438 1027383 1027513 1027712 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-437 1026556 1027055 1027193 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-436 1024945 1025276 1025667 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-435 1020714 1024901 1024940 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-434 1017972 1018596 1019291 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-433 1016198 1016678 1017211 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-432 1013962 1016090 1016193 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-431 1009831 1013900 1013957 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-430 1003474 1008795 1009263 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-429 1003042 1003105 1003278 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-428 1002534 1002683 1002711 "HYPCAT" 1002918 HYPCAT (NIL) -9 NIL NIL NIL) (-427 1002190 1002343 1002529 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-426 1001803 1002048 1002131 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-425 1001636 1001685 1001726 "HOMOTOP" 1001731 HOMOTOP (NIL T) -9 NIL 1001764 NIL) (-424 998204 999578 999619 "HOAGG" 1000594 HOAGG (NIL T) -9 NIL 1001315 NIL) (-423 997210 997680 998199 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-422 990474 996935 997083 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-421 989409 989667 989930 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-420 988376 989274 989404 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-419 986570 988209 988297 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-418 985885 986237 986370 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-417 979438 985818 985880 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-416 972641 979174 979325 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-415 972094 972251 972414 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-414 965177 971985 972089 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-413 964668 964971 965062 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-412 962282 964455 964634 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-411 957675 962165 962277 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-410 950761 957572 957670 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-409 942762 950130 950385 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-408 941786 942295 942323 "GROUP" 942526 GROUP (NIL) -9 NIL 942660 NIL) (-407 941329 941530 941781 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-406 940001 940340 940727 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-405 938823 939180 939231 "GRMOD" 939760 GRMOD (NIL T T) -9 NIL 939926 NIL) (-404 938642 938690 938818 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-403 934773 935981 936978 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-402 933495 933819 934134 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-401 933048 933176 933317 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-400 932121 932620 932671 "GRALG" 932824 GRALG (NIL T T) -9 NIL 932914 NIL) (-399 931840 931941 932116 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-398 928557 931522 931698 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-397 927970 928033 928290 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-396 923856 924720 925245 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-395 923031 923233 923471 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-394 918034 918961 919980 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-393 917782 917839 917928 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-392 917264 917353 917518 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-391 916773 916814 917027 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-390 915574 915857 916161 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-389 908913 915264 915425 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-388 898728 903703 904807 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-387 896842 897883 897911 "GCDDOM" 898166 GCDDOM (NIL) -9 NIL 898323 NIL) (-386 896465 896622 896837 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-385 887258 889728 892116 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-384 885393 885718 886136 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-383 884334 884523 884790 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-382 883205 883412 883716 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-381 882668 882810 882958 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-380 881280 881628 881941 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-379 879825 880146 880468 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-378 877451 877807 878212 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-377 870703 872364 873942 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-376 870355 870576 870644 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-375 869979 870200 870281 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-374 868076 868759 869219 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-373 866669 866976 867368 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-372 865324 865683 866007 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-371 864627 864751 864938 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-370 863601 863867 864214 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-369 861259 861789 862271 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-368 860842 860902 861071 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-367 859206 860056 860359 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-366 858354 858488 858711 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-365 857525 857686 857913 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-364 853508 856459 856500 "FSAGG" 856870 FSAGG (NIL T) -9 NIL 857129 NIL) (-363 851862 852621 853413 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-362 849818 850114 850658 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-361 848865 849047 849347 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-360 848546 848595 848722 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-359 828801 838203 838244 "FS" 842114 FS (NIL T) -9 NIL 844392 NIL) (-358 821032 824525 828504 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-357 820566 820693 820845 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-356 815120 818247 818287 "FRNAALG" 819607 FRNAALG (NIL T) -9 NIL 820205 NIL) (-355 811861 813112 814370 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-354 811542 811591 811718 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-353 810029 810586 810880 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-352 809315 809408 809695 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-351 807149 807915 808231 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-350 806258 806701 806742 "FRETRCT" 806747 FRETRCT (NIL T) -9 NIL 806918 NIL) (-349 805631 805909 806253 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-348 802437 803895 803954 "FRAMALG" 804836 FRAMALG (NIL T T) -9 NIL 805128 NIL) (-347 801033 801584 802214 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-346 800726 800789 800896 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-345 794431 800531 800721 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-344 794124 794187 794294 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-343 786496 791003 792331 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-342 780336 783777 783805 "FPS" 784924 FPS (NIL) -9 NIL 785480 NIL) (-341 779893 780026 780190 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-340 776766 778746 778774 "FPC" 778999 FPC (NIL) -9 NIL 779141 NIL) (-339 776612 776664 776761 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-338 775389 776098 776139 "FPATMAB" 776144 FPATMAB (NIL T) -9 NIL 776296 NIL) (-337 773819 774415 774762 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-336 773394 773452 773625 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-335 771929 772792 772966 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-334 770544 771049 771077 "FNCAT" 771534 FNCAT (NIL) -9 NIL 771791 NIL) (-333 770001 770511 770539 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-332 768588 769950 769996 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-331 765176 766534 766575 "FMONCAT" 767792 FMONCAT (NIL T) -9 NIL 768396 NIL) (-330 762065 763112 763165 "FMCAT" 764346 FMCAT (NIL T T) -9 NIL 764838 NIL) (-329 760797 761888 761987 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-328 759925 760645 760792 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-327 758112 758564 759058 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-326 756047 756583 757161 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-325 749497 754384 754998 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-324 748009 749079 749119 "FLINEXP" 749124 FLINEXP (NIL T) -9 NIL 749217 NIL) (-323 747418 747677 748004 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-322 746633 746792 747013 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-321 743547 744595 744647 "FLALG" 745874 FLALG (NIL T T) -9 NIL 746341 NIL) (-320 742718 742879 743106 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-319 736127 740137 740178 "FLAGG" 741433 FLAGG (NIL T) -9 NIL 742078 NIL) (-318 735235 735639 736122 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-317 731858 733060 733119 "FINRALG" 734247 FINRALG (NIL T T) -9 NIL 734755 NIL) (-316 731249 731514 731853 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-315 730547 730843 730871 "FINITE" 731067 FINITE (NIL) -9 NIL 731174 NIL) (-314 730455 730481 730542 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-313 722447 725007 725047 "FINAALG" 728699 FINAALG (NIL T) -9 NIL 730137 NIL) (-312 718714 719959 721082 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-311 717266 717685 717739 "FILECAT" 718423 FILECAT (NIL T T) -9 NIL 718639 NIL) (-310 716617 717091 717194 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-309 713927 715743 715771 "FIELD" 715811 FIELD (NIL) -9 NIL 715891 NIL) (-308 712952 713413 713922 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-307 710956 711902 712248 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-306 710199 710380 710599 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-305 705533 710137 710194 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-304 705195 705262 705397 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-303 704735 704777 704986 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-302 701415 702292 703069 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-301 696763 701347 701410 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-300 691506 696252 696442 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-299 686051 690787 691045 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-298 680322 685502 685713 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-297 679345 679555 679870 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-296 674848 677490 677518 "FFIELDC" 678137 FFIELDC (NIL) -9 NIL 678512 NIL) (-295 673917 674357 674843 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-294 673532 673590 673714 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-293 671676 672199 672716 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-292 666834 671475 671576 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-291 661998 666623 666730 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-290 656728 661789 661897 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-289 656182 656231 656466 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-288 634819 645791 645877 "FFCAT" 651027 FFCAT (NIL T T T) -9 NIL 652463 NIL) (-287 631059 632285 633591 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-286 625966 630990 631054 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-285 624858 625327 625368 "FEVALAB" 625452 FEVALAB (NIL T) -9 NIL 625713 NIL) (-284 624263 624515 624853 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-283 621121 622001 622116 "FDIVCAT" 623683 FDIVCAT (NIL T T T T) -9 NIL 624119 NIL) (-282 620915 620947 621116 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-281 620222 620315 620592 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-280 618740 619706 619909 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-279 617833 618217 618419 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-278 616955 617444 617584 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-277 608604 613185 613225 "FAXF" 615026 FAXF (NIL T) -9 NIL 615716 NIL) (-276 606520 607324 608139 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-275 601384 606042 606216 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-274 595906 598265 598317 "FAMR" 599328 FAMR (NIL T T) -9 NIL 599787 NIL) (-273 595105 595470 595901 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-272 594158 595047 595100 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-271 591783 592631 592684 "FAMONC" 593625 FAMONC (NIL T T) -9 NIL 594010 NIL) (-270 590371 591641 591778 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-269 588451 588812 589214 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-268 587728 587925 588147 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-267 579652 587175 587374 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-266 577683 578249 578831 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-265 574585 575227 575947 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-264 569742 570449 571254 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-263 569431 569494 569603 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-262 554384 568480 568906 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-261 544975 553704 553992 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-260 544469 544771 544861 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-259 544245 544435 544464 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-258 543934 544002 544115 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-257 543451 543593 543634 "EVALAB" 543804 EVALAB (NIL T) -9 NIL 543908 NIL) (-256 543079 543225 543446 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-255 540184 541717 541745 "EUCDOM" 542299 EUCDOM (NIL) -9 NIL 542648 NIL) (-254 539111 539604 540179 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-253 538836 538892 538992 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-252 538524 538588 538697 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-251 532295 534195 534223 "ES" 536965 ES (NIL) -9 NIL 538349 NIL) (-250 528810 530342 532134 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-249 528158 528311 528487 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-248 521247 528062 528153 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-247 520936 520999 521108 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-246 514662 517688 519121 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-245 510965 512061 513154 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-244 509794 510144 510449 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-243 508741 509410 509438 "ENTIRER" 509443 ENTIRER (NIL) -9 NIL 509487 NIL) (-242 505438 507171 507520 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-241 504530 504741 504795 "ELTAGG" 505175 ELTAGG (NIL T T) -9 NIL 505386 NIL) (-240 504310 504384 504525 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-239 504056 504091 504145 "ELTAB" 504229 ELTAB (NIL T T) -9 NIL 504281 NIL) (-238 503307 503477 503676 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-237 503031 503105 503133 "ELEMFUN" 503238 ELEMFUN (NIL) -9 NIL NIL NIL) (-236 502931 502958 503026 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-235 497477 500972 501013 "ELAGG" 501950 ELAGG (NIL T) -9 NIL 502410 NIL) (-234 496275 496813 497472 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-233 495693 495860 496016 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-232 494606 494925 495204 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-231 487999 489997 490824 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-230 481978 483974 484784 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-229 479792 480198 480669 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-228 470792 472705 474246 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-227 469905 470406 470555 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-226 468603 469277 469317 "DVARCAT" 469600 DVARCAT (NIL T) -9 NIL 469740 NIL) (-225 468022 468286 468598 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-224 460153 467890 468017 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-223 458491 459282 459323 "DSEXT" 459686 DSEXT (NIL T) -9 NIL 459980 NIL) (-222 457296 457820 458486 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-221 457020 457085 457183 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-220 453176 454390 455519 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-219 448834 450185 451245 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-218 447509 447870 448256 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-217 447201 447258 447374 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-216 446186 446480 446766 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-215 445771 445846 445996 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-214 438280 440356 442435 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-213 433861 434856 435911 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-212 430456 432525 432566 "DQAGG" 433195 DQAGG (NIL T) -9 NIL 433468 NIL) (-211 417063 424639 424721 "DPOLCAT" 426558 DPOLCAT (NIL T T T T) -9 NIL 427101 NIL) (-210 413471 415119 417058 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-209 406558 413369 413466 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-208 399554 406387 406553 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-207 399147 399407 399496 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-206 398561 399009 399089 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-205 397847 398172 398323 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-204 391050 397583 397734 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-203 388830 390116 390156 "DMEXT" 390161 DMEXT (NIL T) -9 NIL 390336 NIL) (-202 388486 388548 388692 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-201 381811 387971 388161 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-200 378477 380634 380675 "DLAGG" 381225 DLAGG (NIL T) -9 NIL 381454 NIL) (-199 376890 377699 377727 "DIVRING" 377819 DIVRING (NIL) -9 NIL 377902 NIL) (-198 376341 376585 376885 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-197 374769 375186 375592 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-196 373806 374027 374292 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-195 367379 373738 373801 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-194 355798 362159 362212 "DIRPCAT" 362468 DIRPCAT (NIL NIL T) -9 NIL 363341 NIL) (-193 353804 354574 355461 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-192 353251 353417 353603 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-191 349797 352137 352178 "DIOPS" 352610 DIOPS (NIL T) -9 NIL 352836 NIL) (-190 349457 349601 349792 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-189 348495 349210 349238 "DIOID" 349243 DIOID (NIL) -9 NIL 349265 NIL) (-188 347385 348152 348180 "DIFRING" 348185 DIFRING (NIL) -9 NIL 348206 NIL) (-187 347021 347119 347147 "DIFFSPC" 347266 DIFFSPC (NIL) -9 NIL 347341 NIL) (-186 346762 346864 347016 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-185 345696 346290 346330 "DIFFMOD" 346335 DIFFMOD (NIL T) -9 NIL 346432 NIL) (-184 345380 345437 345478 "DIFFDOM" 345599 DIFFDOM (NIL T) -9 NIL 345667 NIL) (-183 345261 345291 345375 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-182 342996 344455 344495 "DIFEXT" 344500 DIFEXT (NIL T) -9 NIL 344652 NIL) (-181 340157 342497 342538 "DIAGG" 342543 DIAGG (NIL T) -9 NIL 342563 NIL) (-180 339713 339903 340152 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-179 334925 338903 339180 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-178 331383 332436 333446 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-177 325997 330537 330864 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-176 324563 324855 325230 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-175 321747 322935 323331 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-174 319467 321578 321667 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-173 318850 318995 319177 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-172 316180 316900 317696 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-171 314295 314751 315311 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-170 313678 314011 314125 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-169 306942 313403 313551 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-168 304862 305372 305876 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-167 304501 304550 304701 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-166 303760 304322 304413 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-165 301784 302226 302586 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-164 301076 301365 301511 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-163 300527 300673 300825 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-162 297889 298682 299409 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-161 297328 297474 297645 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-160 295400 295711 296078 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-159 294957 295212 295313 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-158 294158 294541 294569 "CTORCAT" 294750 CTORCAT (NIL) -9 NIL 294862 NIL) (-157 293861 293995 294153 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-156 293354 293611 293719 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-155 292770 293201 293274 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-154 292229 292346 292499 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-153 288623 289379 290134 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-152 288114 288417 288508 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-151 287333 287542 287770 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-150 286837 286942 287146 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-149 286590 286624 286730 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-148 283529 284291 285009 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-147 283048 283190 283329 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-146 279005 281511 282003 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-145 278879 278906 278934 "CONDUIT" 278971 CONDUIT (NIL) -9 NIL NIL NIL) (-144 277820 278489 278517 "COMRING" 278522 COMRING (NIL) -9 NIL 278572 NIL) (-143 276985 277352 277530 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-142 276681 276722 276850 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-141 276374 276437 276544 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-140 265280 276324 276369 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-139 264741 264880 265040 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-138 264494 264535 264633 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-137 245987 258175 258215 "COMPCAT" 259216 COMPCAT (NIL T) -9 NIL 260558 NIL) (-136 238525 242038 245631 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-135 238284 238318 238420 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-134 238114 238153 238211 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-133 237695 237974 238048 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-132 237272 237513 237600 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-131 236473 236719 236747 "COMBOPC" 237083 COMBOPC (NIL) -9 NIL 237256 NIL) (-130 235537 235789 236031 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-129 232475 233157 233778 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-128 231355 231806 232041 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-127 230846 231149 231240 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-126 230533 230586 230711 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-125 230003 230313 230411 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-124 226565 227621 228687 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-123 224924 225845 226083 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-122 221036 223044 223085 "CLAGG" 224011 CLAGG (NIL T) -9 NIL 224544 NIL) (-121 219929 220456 221031 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-120 219558 219649 219789 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-119 217495 218002 218550 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-118 216518 217187 217215 "CHARZ" 217220 CHARZ (NIL) -9 NIL 217234 NIL) (-117 216312 216358 216436 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-116 215213 215914 215942 "CHARNZ" 216003 CHARNZ (NIL) -9 NIL 216051 NIL) (-115 212691 213788 214311 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-114 212399 212478 212506 "CFCAT" 212617 CFCAT (NIL) -9 NIL NIL NIL) (-113 211742 211871 212053 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-112 207731 211155 211435 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-111 207109 207296 207473 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-110 206637 207056 207104 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-109 206110 206419 206516 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-108 205601 205904 205995 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-107 204850 205010 205231 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-106 200950 202207 202915 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-105 199348 200347 200598 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-104 198929 199208 199282 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-103 198363 198616 198644 "CACHSET" 198776 CACHSET (NIL) -9 NIL 198854 NIL) (-102 197746 198130 198158 "CABMON" 198208 CABMON (NIL) -9 NIL 198264 NIL) (-101 197276 197540 197650 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-100 192609 196935 197105 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-99 191585 192289 192422 "BYTE" NIL BYTE (NIL) -8 NIL NIL 192581) (-98 189060 191356 191460 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-97 186491 188803 188922 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-96 183731 185935 185974 "BTCAT" 186041 BTCAT (NIL T) -9 NIL 186117 NIL) (-95 183482 183580 183726 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-94 178592 182713 182739 "BTAGG" 182850 BTAGG (NIL) -9 NIL 182958 NIL) (-93 178223 178384 178587 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-92 175285 177693 177905 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-91 174555 174707 174885 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-90 171088 173261 173300 "BRAGG" 173941 BRAGG (NIL T) -9 NIL 174198 NIL) (-89 170043 170538 171083 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-88 162641 169548 169729 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-87 160697 162593 162636 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-86 160430 160466 160577 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-85 158669 159102 159550 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-84 154635 156051 156941 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-83 153511 154402 154524 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-82 153097 153254 153280 "BOOLE" 153388 BOOLE (NIL) -9 NIL 153469 NIL) (-81 152890 152971 153092 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-80 152059 152555 152605 "BMODULE" 152610 BMODULE (NIL T T) -9 NIL 152674 NIL) (-79 147676 151916 151985 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-78 147197 147341 147479 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140467 146927 147072 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138201 139696 139735 "BGAGG" 139991 BGAGG (NIL T) -9 NIL 140128 NIL) (-75 138070 138108 138196 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136921 137122 137407 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133559 136079 136406 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133144 133237 133263 "BASTYPE" 133434 BASTYPE (NIL) -9 NIL 133530 NIL) (-71 132914 133010 133139 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132429 132517 132667 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131328 132003 132188 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131054 131059 131085 "ATTREG" 131090 ATTREG (NIL) -9 NIL NIL NIL) (-67 130659 130931 130996 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130159 130308 130334 "ATRIG" 130535 ATRIG (NIL) -9 NIL NIL NIL) (-65 130014 130067 130154 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129584 129815 129841 "ASTCAT" 129846 ASTCAT (NIL) -9 NIL 129876 NIL) (-63 129383 129460 129579 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127542 129216 129304 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126349 126662 127027 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124149 126253 126344 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123340 123531 123752 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118927 123071 123185 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113093 115125 115200 "ARR2CAT" 117830 ARR2CAT (NIL T T T) -9 NIL 118588 NIL) (-56 111470 112240 113088 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110838 111209 111331 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109770 109938 110234 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109471 109525 109643 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108854 109000 109156 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108259 108549 108669 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105891 106988 107311 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105416 105676 105772 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99175 104478 104920 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94771 96372 96422 "AMR" 97160 AMR (NIL T T) -9 NIL 97757 NIL) (-46 94125 94405 94766 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77305 94059 94120 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73740 76981 77150 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70750 71410 72017 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70129 70242 70426 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66541 67166 67758 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56094 66234 66384 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55411 55565 55743 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54186 54919 54957 "ALGEBRA" 54962 ALGEBRA (NIL T) -9 NIL 55002 NIL) (-37 53972 54049 54181 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33969 51178 51230 "ALAGG" 51368 ALAGG (NIL T T) -9 NIL 51533 NIL) (-35 33469 33618 33644 "AHYP" 33845 AHYP (NIL) -9 NIL NIL NIL) (-34 32765 32946 32972 "AGG" 33253 AGG (NIL) -9 NIL 33440 NIL) (-33 32554 32641 32760 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30693 31153 31553 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30188 30491 30580 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29565 29856 30010 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17187 26402 26440 "ACFS" 27047 ACFS (NIL T) -9 NIL 27286 NIL) (-28 15810 16420 17182 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11426 13741 13767 "ACF" 14646 ACF (NIL) -9 NIL 15058 NIL) (-26 10522 10928 11421 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10024 10264 10290 "ABELSG" 10382 ABELSG (NIL) -9 NIL 10447 NIL) (-24 9922 9953 10019 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9188 9531 9557 "ABELMON" 9726 ABELMON (NIL) -9 NIL 9835 NIL) (-22 8931 9040 9183 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8626 8652 "ABELGRP" 8724 ABELGRP (NIL) -9 NIL 8799 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 9 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1128) (-994)) (T -1128)) +NIL +((-3711 (((-85)) 18 T ELT)) (-3708 (((-1183) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1183) (-583 |#1|)) 23 T ELT)) (-3713 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3710 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3712 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3709 (((-2 (|:| -3224 (-583 |#1|)) (|:| -3223 (-583 |#1|)))) 20 T ELT))) +(((-1129 |#1|) (-10 -7 (-15 -3708 ((-1183) (-583 |#1|))) (-15 -3708 ((-1183) (-583 |#1|) (-583 |#1|))) (-15 -3709 ((-2 (|:| -3224 (-583 |#1|)) (|:| -3223 (-583 |#1|))))) (-15 -3710 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3710 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3712 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3711 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3712 (|#1| (-583 |#1|))) (-15 -3713 ((-85) |#1| |#1|))) |%noBranch|)) (-1012)) (T -1129)) +((-3713 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-756)) (-4 *3 (-1012)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-756)) (-5 *1 (-1129 *2)))) (-3711 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2)) (-4 *2 (-1012)))) (-3710 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85)) (-5 *1 (-1129 *3)))) (-3710 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3709 (*1 *2) (-12 (-5 *2 (-2 (|:| -3224 (-583 *3)) (|:| -3223 (-583 *3)))) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3708 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4))))) +((-3714 (((-1183) (-583 (-1088)) (-583 (-1088))) 14 T ELT) (((-1183) (-583 (-1088))) 12 T ELT)) (-3716 (((-1183)) 16 T ELT)) (-3715 (((-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088))))) 20 T ELT))) +(((-1130) (-10 -7 (-15 -3714 ((-1183) (-583 (-1088)))) (-15 -3714 ((-1183) (-583 (-1088)) (-583 (-1088)))) (-15 -3715 ((-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088)))))) (-15 -3716 ((-1183))))) (T -1130)) +((-3716 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3715 (*1 *2) (-12 (-5 *2 (-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088))))) (-5 *1 (-1130)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130))))) +((-3769 (($ $) 17 T ELT)) (-3717 (((-85) $) 27 T ELT))) +(((-1131 |#1|) (-10 -7 (-15 -3769 (|#1| |#1|)) (-15 -3717 ((-85) |#1|))) (-1132)) (T -1131)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1132) (-113)) (T -1132)) +((-3717 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132)))) (-3769 (*1 *1 *1) (-4 *1 (-1132))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132))))) +(-13 (-389) (-10 -8 (-15 -3717 ((-85) $)) (-15 -3965 ((-345 $) $)) (-15 -3769 ($ $)) (-15 -3726 ((-345 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-1133) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1133)) +((-3720 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3718 (*1 *1) (-5 *1 (-1133)))) +((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-1134) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1134)) +((-3720 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3718 (*1 *1) (-5 *1 (-1134)))) +((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1135)) +((-3720 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3718 (*1 *1) (-5 *1 (-1135)))) +((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT))) +(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1136)) +((-3720 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3718 (*1 *1) (-5 *1 (-1136)))) +((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 10 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3765 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3725 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3722 (((-3 (-1167 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3723 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3151 (((-1167 |#1| |#2| |#3|) $) NIL T ELT) (((-1088) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-1167 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) NIL (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) NIL (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) NIL T ELT) (((-483) $ (-483)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 18 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 (-1167 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) (-1167 |#1| |#2| |#3|)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 27 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 28 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3125 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1167 |#1| |#2| |#3|)) (-583 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) NIL T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-472) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-472))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1167 |#1| |#2| |#3|)) NIL T ELT) (($ (-1174 |#2|)) 24 T ELT) (($ (-1088)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT) (($ (-347 (-483))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3671 ((|#1| $ (-483)) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 11 T ELT)) (-3126 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 20 T CONST)) (-2662 (($) 15 T CONST)) (-2665 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2681 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT) (($ (-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1137 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1167 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1137)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3952 (((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)) 23 T ELT))) +(((-1138 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 ((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)))) (-961) (-961) (-1088) (-1088) |#1| |#2|) (T -1138)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 122 T ELT) (($ $ (-483) (-483)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 199 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 197 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 196 (|has| |#1| (-494)) ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-483) $) 124 T ELT) (((-483) $ (-483)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 198 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-483)) 79 T ELT) (($ $ (-993) (-483)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-483))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 129 T ELT) (($ $ $) 105 (|has| (-483) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3942 (((-483) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1139 |#1|) (-113) (-961)) (T -1139)) +((-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1139 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-961)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) (-5 *2 (-347 (-857 *4))))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) (-5 *2 (-347 (-857 *4))))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))) +(-13 (-1156 |t#1| (-483)) (-10 -8 (-15 -3812 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |t#1|))))) (-15 -3809 ($ (-1 |t#1| (-483)) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -3721 ((-347 (-857 |t#1|)) $ (-483))) (-15 -3721 ((-347 (-857 |t#1|)) $ (-483) (-483)))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-483) |#1|) . T) ((-241 $ $) |has| (-483) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-886 |#1| (-483) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-483)) . T)) +((-3183 (((-85) $) 12 T ELT)) (-3152 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT)) (-3151 ((|#3| $) 14 T ELT) (((-1088) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT))) +(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -3152 ((-3 |#3| #1#) |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3183 ((-85) |#1|))) (-1141 |#2| |#3|) (-961) (-1170 |#2|)) (T -1140)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 ((|#2| $) 264 (-2558 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 122 T ELT) (($ $ (-483) (-483)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 128 T ELT)) (-3725 ((|#2| $) 300 T ELT)) (-3722 (((-3 |#2| "failed") $) 296 T ELT)) (-3723 ((|#2| $) 297 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 273 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 270 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) 282 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 199 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| #2="failed") $) 303 T ELT) (((-3 (-483) #2#) $) 293 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #2#) $) 291 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-1088) #2#) $) 275 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT)) (-3151 ((|#2| $) 304 T ELT) (((-483) $) 292 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) 290 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-1088) $) 274 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) 299 T ELT) (($ (-483) $) 298 T ELT)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-2275 (((-630 |#2|) (-630 $)) 252 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 251 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 250 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) 249 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 197 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 196 (|has| |#1| (-494)) ELT)) (-2990 (($) 266 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) 280 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 258 (-2558 (|has| |#2| (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 257 (-2558 (|has| |#2| (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) 124 T ELT) (((-483) $ (-483)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2992 (($ $) 262 (|has| |#1| (-311)) ELT)) (-2994 ((|#2| $) 260 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) 294 (-2558 (|has| |#2| (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) 281 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 198 T ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-483)) 79 T ELT) (($ $ (-993) (-483)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-483))) 94 T ELT)) (-2527 (($ $ $) 289 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2853 (($ $ $) 288 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT) (($ (-1 |#2| |#2|) $) 242 (|has| |#1| (-311)) ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 |#2|) (-1177 $)) 254 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 253 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 248 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) 247 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) |#2|) 301 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3440 (($) 295 (-2558 (|has| |#2| (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3123 (($ $) 265 (-2558 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3125 ((|#2| $) 268 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 271 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 272 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) 241 (-2558 (|has| |#2| (-452 (-1088) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) 240 (-2558 (|has| |#2| (-452 (-1088) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 |#2|))) 239 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-248 |#2|)) 238 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ |#2| |#2|) 237 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 236 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 129 T ELT) (($ $ $) 105 (|has| (-483) (-1024)) ELT) (($ $ |#2|) 235 (-2558 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) 244 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 243 (|has| |#1| (-311)) ELT) (($ $) 109 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) 107 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 117 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) 115 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) 114 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) 263 (|has| |#1| (-311)) ELT)) (-2993 ((|#2| $) 261 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-179) $) 279 (-2558 (|has| |#2| (-933)) (|has| |#1| (-311))) ELT) (((-327) $) 278 (-2558 (|has| |#2| (-933)) (|has| |#1| (-311))) ELT) (((-472) $) 277 (-2558 (|has| |#2| (-553 (-472))) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) 256 (-2558 (|has| |#2| (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) 255 (-2558 (|has| |#2| (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 269 (-2558 (-2558 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-311))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 302 T ELT) (($ (-1088)) 276 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) 66 (OR (-2558 (OR (|has| |#2| (-118)) (-2558 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-3126 ((|#2| $) 267 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) 283 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-311)) ELT) (($ $) 108 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) 106 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 116 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) 112 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) 111 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) 287 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2563 (((-85) $ $) 285 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 286 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2681 (((-85) $ $) 284 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 259 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#2|) 234 (|has| |#1| (-311)) ELT) (($ |#2| $) 233 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1141 |#1| |#2|) (-113) (-961) (-1170 |t#1|)) (T -1141)) +((-3942 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)) (-5 *2 (-483)))) (-3773 (*1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *4 (-961)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1170 *2)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))) (-3722 (*1 *2 *1) (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3))))) +(-13 (-1139 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3773 ($ (-483) |t#2|)) (-15 -3942 ((-483) $)) (-15 -3725 (|t#2| $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)) (-15 -3723 (|t#2| $)) (-15 -3722 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-311)) (-6 (-904 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-311)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-311)) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 (-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-553 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-553 (-472)) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-311)) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-483) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-483) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-311) |has| |#1| (-311)) ((-287 |#2|) |has| |#1| (-311)) ((-326 |#2|) |has| |#1| (-311)) ((-340 |#2|) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-452 (-1088) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ((-452 |#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-311)) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-311)) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-311)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-580 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((-580 |#2|) |has| |#1| (-311)) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-311)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-714) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) (-12 (|has| |#1| (-311)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) (-12 (|has| |#1| (-311)) (|has| |#2| (-740)))) ((-806 $ (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-809 (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-811 (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-796 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483)))) ((-794 |#2|) |has| |#1| (-311)) ((-821) -12 (|has| |#1| (-311)) (|has| |#2| (-821))) ((-886 |#1| (-483) (-993)) . T) ((-832) |has| |#1| (-311)) ((-904 |#2|) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-933) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-950 (-347 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ((-950 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ((-950 (-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ((-950 |#2|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-311)) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-311)) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) -12 (|has| |#1| (-311)) (|has| |#2| (-1064))) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1139 |#1|) . T) ((-1156 |#1| (-483)) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 83 T ELT)) (-3124 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 102 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 111 T ELT) (($ $ (-483) (-483)) 114 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 51 T ELT)) (-3725 ((|#2| $) 11 T ELT)) (-3722 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3723 ((|#2| $) 36 T ELT)) (-3486 (($ $) 208 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 59 T ELT)) (-3488 (($ $) 212 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 188 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT)) (-3151 ((|#2| $) 158 T ELT) (((-483) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-1088) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT)) (-3724 (($ $) 65 T ELT) (($ (-483) $) 28 T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT)) (-3461 (((-3 $ #1#) $) 90 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 126 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 128 (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-2888 (((-85) $) 76 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483)))) ELT)) (-3766 (((-483) $) 107 T ELT) (((-483) $ (-483)) 109 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 ((|#2| $) 167 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1064))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-3771 (($ $ (-830)) 150 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 146 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 20 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2853 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 |#2|) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) |#2|) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 161 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 230 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 235 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3440 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1064))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3125 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 140 T ELT)) (-3460 (((-3 $ #1#) $ $) 130 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 105 T ELT) (($ $ $) 92 (|has| (-483) (-1024)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 155 (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 ((|#2| $) 168 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 12 T ELT)) (-3489 (($ $) 214 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 210 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-179) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-933))) ELT) (((-327) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-933))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472)))) ELT) (((-800 (-327)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-2887 (($ $) 138 T ELT)) (-3940 (((-772) $) 268 T ELT) (($ (-483)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT) (($ (-347 (-483))) 171 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 87 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) ELT)) (-3121 (((-694)) 157 T CONST)) (-3767 ((|#1| $) 104 T ELT)) (-3126 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 220 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 196 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 216 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 224 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 226 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 222 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 198 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 218 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-2656 (($) 13 T CONST)) (-2662 (($) 18 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT)) (-2562 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2563 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3052 (((-85) $ $) 74 T ELT)) (-2680 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2681 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 165 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3833 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-483)) 162 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 174 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-311)) ELT) (($ |#2| $) 163 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1142 |#1| |#2|) (-1141 |#1| |#2|) (-961) (-1170 |#1|)) (T -1142)) +NIL +((-3728 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)) 13 T ELT)) (-3727 (((-345 |#1|) |#1|) 26 T ELT)) (-3726 (((-345 |#1|) |#1|) 24 T ELT))) +(((-1143 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1|)) (-15 -3728 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)))) (-1153 (-483))) (T -1143)) +((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) +((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3730 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3952 (((-1067 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3224 ((|#1| $) 15 T ELT)) (-3226 ((|#1| $) 12 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3222 (((-483) $) 19 T ELT)) (-3223 ((|#1| $) 18 T ELT)) (-3225 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3729 (((-85) $) 17 T ELT)) (-3957 (((-1067 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1067 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3966 (($ |#1|) 26 T ELT)) (-3940 (($ (-1000 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3731 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3227 (($ $ (-483)) 14 T ELT)) (-3052 (((-85) $ $) 30 (|has| |#1| (-1012)) ELT))) +(((-1144 |#1|) (-13 (-1005 |#1|) (-10 -8 (-15 -3731 ($ |#1|)) (-15 -3730 ($ |#1|)) (-15 -3940 ($ (-1000 |#1|))) (-15 -3729 ((-85) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1006 |#1| (-1067 |#1|))) |%noBranch|))) (-1127)) (T -1144)) +((-3731 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3730 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127))))) +((-3952 (((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 17 T ELT))) +(((-1145 |#1| |#2|) (-10 -7 (-15 -3952 ((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) (IF (|has| |#1| (-755)) (-15 -3952 ((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1145)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3761 (((-1177 |#2|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#2|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#2|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#2| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-993)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#2| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3080 (($ (-1083 |#2|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) 18 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3760 (((-1083 |#2|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#2| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3732 (($ $ (-694) |#2| $) NIL T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#2|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#2|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#2| (-311)) ELT)) (-3794 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#2| (-494)) ELT) ((|#2| (-347 $) |#2|) NIL (|has| |#2| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#2| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-993)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#2| (-494)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) NIL T ELT) (($ (-1174 |#1|)) 20 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1146 |#1| |#2|) (-13 (-1153 |#2|) (-555 (-1174 |#1|)) (-10 -8 (-15 -3732 ($ $ (-694) |#2| $)))) (-1088) (-961)) (T -1146)) +((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-961))))) +((-3952 (((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)) 15 T ELT))) +(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 ((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)))) (-1088) (-961) (-1088) (-961)) (T -1147)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8)) (-14 *7 (-1088))))) +((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3733 ((|#1| |#3|) 13 T ELT)) (-3734 ((|#3| |#3|) 19 T ELT))) +(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| |#3|)) (-15 -3734 (|#3| |#3|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-904 |#1|) (-1153 |#2|)) (T -1148)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-1153 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3)) (-4 *3 (-1153 *4))))) +((-3737 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3736 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3739 (((-3 (-2 (|:| -3133 |#2|) (|:| -3132 |#2|)) #1#) |#2|) 50 T ELT)) (-3740 (((-583 |#2|) |#2|) 52 T ELT)) (-3738 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -3736 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3737 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3738 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3739 ((-3 (-2 (|:| -3133 |#2|) (|:| -3132 |#2|)) #1#) |#2|)) (-15 -3740 ((-583 |#2|) |#2|))) (-13 (-494) (-120)) (-1153 |#1|)) (T -1149)) +((-3740 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3739 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3738 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))) (-3737 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))) (-3736 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) +((-3741 (((-3 (-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1150 |#1| |#2|) (-10 -7 (-15 -3741 ((-3 (-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) "failed") |#2| |#2|))) (-494) (-1153 |#1|)) (T -1150)) +((-3741 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4))))) +((-3742 ((|#2| |#2| |#2|) 22 T ELT)) (-3743 ((|#2| |#2| |#2|) 36 T ELT)) (-3744 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1153 |#1|)) (T -1151)) +((-3744 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) +((-3761 (((-1177 |#2|) $ (-694)) 129 T ELT)) (-3077 (((-583 (-993)) $) 16 T ELT)) (-3759 (($ (-1083 |#2|)) 80 T ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) 21 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 217 T ELT)) (-3769 (($ $) 207 T ELT)) (-3965 (((-345 $) $) 205 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 95 T ELT)) (-3755 (($ $ (-694)) 84 T ELT)) (-3754 (($ $ (-694)) 86 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3152 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#2| $) 130 T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) (((-993) $) NIL T ELT)) (-3747 (($ $ $) 182 T ELT)) (-3746 (((-2 (|:| -3948 |#2|) (|:| -1970 $) (|:| -2898 $)) $ $) 185 T ELT)) (-3766 (((-694) $ $) 202 T ELT)) (-3439 (((-632 $) $) 149 T ELT)) (-2889 (($ |#2| (-694)) NIL T ELT) (($ $ (-993) (-694)) 59 T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) 54 T ELT) (((-583 (-694)) $ (-583 (-993))) 55 T ELT)) (-3760 (((-1083 |#2|) $) 72 T ELT)) (-3078 (((-3 (-993) #1#) $) 52 T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 83 T ELT)) (-3806 (($ $) 232 T ELT)) (-3440 (($) 134 T CONST)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 214 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 101 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 99 T ELT)) (-3726 (((-345 $) $) 120 T ELT)) (-3762 (($ $ (-583 (-248 $))) 51 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#2|) 39 T ELT) (($ $ (-583 (-993)) (-583 |#2|)) 36 T ELT) (($ $ (-993) $) 32 T ELT) (($ $ (-583 (-993)) (-583 $)) 30 T ELT)) (-1604 (((-694) $) 220 T ELT)) (-3794 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) 176 T ELT) ((|#2| (-347 $) |#2|) 219 T ELT) (((-347 $) $ (-347 $)) 201 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 225 T ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) 17 T ELT) (((-583 (-694)) $ (-583 (-993))) 23 T ELT)) (-2813 ((|#2| $) NIL T ELT) (($ $ (-993)) 151 T ELT)) (-3748 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-347 $) #1#) (-347 $) $) 189 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) 64 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#1|)) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3794 ((-347 |#1|) |#1| (-347 |#1|))) (-15 -1604 ((-694) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3794 (|#2| (-347 |#1|) |#2|)) (-15 -3745 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3746 ((-2 (|:| -3948 |#2|) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -3748 ((-3 (-347 |#1|) #1="failed") (-347 |#1|) |#1|)) (-15 -3748 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3766 ((-694) |#1| |#1|)) (-15 -3794 ((-347 |#1|) (-347 |#1|) (-347 |#1|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1| (-694))) (-15 -3755 (|#1| |#1| (-694))) (-15 -3756 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| (-694))) (-15 -3759 (|#1| (-1083 |#2|))) (-15 -3760 ((-1083 |#2|) |#1|)) (-15 -3761 ((-1177 |#2|) |#1| (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#2| |#1| |#2|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2703 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1#) (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2813 (|#1| |#1| (-993))) (-15 -3077 ((-583 (-993)) |#1|)) (-15 -2815 ((-694) |#1| (-583 (-993)))) (-15 -2815 ((-694) |#1|)) (-15 -2889 (|#1| |#1| (-583 (-993)) (-583 (-694)))) (-15 -2889 (|#1| |#1| (-993) (-694))) (-15 -2816 ((-583 (-694)) |#1| (-583 (-993)))) (-15 -2816 ((-694) |#1| (-993))) (-15 -3078 ((-3 (-993) #1#) |#1|)) (-15 -3942 ((-583 (-694)) |#1| (-583 (-993)))) (-15 -3942 ((-694) |#1| (-993))) (-15 -3940 (|#1| (-993))) (-15 -3152 ((-3 (-993) #1#) |#1|)) (-15 -3151 ((-993) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-993)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-993) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-993)) (-583 |#2|))) (-15 -3762 (|#1| |#1| (-993) |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3942 ((-694) |#1|)) (-15 -2889 (|#1| |#2| (-694))) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -2816 ((-694) |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3752 (|#1| |#1| (-993))) (-15 -3752 (|#1| |#1| (-583 (-993)))) (-15 -3752 (|#1| |#1| (-993) (-694))) (-15 -3752 (|#1| |#1| (-583 (-993)) (-583 (-694)))) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-1153 |#2|) (-961)) (T -1152)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) 269 T ELT)) (-3077 (((-583 (-993)) $) 121 T ELT)) (-3759 (($ (-1083 |#1|)) 267 T ELT)) (-3079 (((-1083 $) $ (-993)) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 (-993))) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3749 (($ $ $) 254 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) 239 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) 262 T ELT)) (-3754 (($ $ (-694)) 261 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 249 (|has| |#1| (-389)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #2#) $) 151 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) (((-993) $) 152 T ELT)) (-3750 (($ $ $ (-993)) 119 (|has| |#1| (-146)) ELT) ((|#1| $ $) 257 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) 243 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 242 (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) 260 T ELT)) (-3747 (($ $ $) 251 (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) 250 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 237 (|has| |#1| (-311)) ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ (-993)) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) 255 (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3439 (((-632 $) $) 235 (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) 128 T ELT) (($ (-1083 $) (-993)) 127 T ELT)) (-3771 (($ $ (-694)) 266 T ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 246 (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| (-694)) 168 T ELT) (($ $ (-993) (-694)) 130 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) 131 T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 264 T ELT)) (-2816 (((-694) $) 185 T ELT) (((-694) $ (-993)) 133 T ELT) (((-583 (-694)) $ (-583 (-993))) 132 T ELT)) (-1622 (($ (-1 (-694) (-694)) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3760 (((-1083 |#1|) $) 268 T ELT)) (-3078 (((-3 (-993) #4="failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 263 T ELT)) (-2819 (((-3 (-583 $) #4#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #4#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #4#) $) 124 T ELT)) (-3806 (($ $) 247 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) 234 (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 245 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 244 (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 238 (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ (-993) |#1|) 156 T ELT) (($ $ (-583 (-993)) (-583 |#1|)) 155 T ELT) (($ $ (-993) $) 154 T ELT) (($ $ (-583 (-993)) (-583 $)) 153 T ELT)) (-1604 (((-694) $) 240 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) 279 T ELT) (($ $ $) 278 T ELT) (((-347 $) (-347 $) (-347 $)) 256 (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) 248 (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) 236 (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ "failed") $ (-694)) 265 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 241 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) 118 (|has| |#1| (-146)) ELT) ((|#1| $) 258 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) 50 T ELT) (($ $ (-993) (-694)) 49 T ELT) (($ $ (-583 (-993))) 48 T ELT) (($ $ (-993)) 46 T ELT) (($ $) 277 T ELT) (($ $ (-694)) 275 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1 |#1| |#1|) $) 259 T ELT) (($ $ (-1088)) 233 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 231 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 230 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 229 (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 165 T ELT) (((-694) $ (-993)) 141 T ELT) (((-583 (-694)) $ (-583 (-993))) 140 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ (-993)) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ "failed") $ $) 253 (|has| |#1| (-494)) ELT) (((-3 (-347 $) "failed") (-347 $) $) 252 (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ (-993)) 150 T ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ (-694)) 170 T ELT) (($ $ (-993) (-694)) 139 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) 53 T ELT) (($ $ (-993) (-694)) 52 T ELT) (($ $ (-583 (-993))) 51 T ELT) (($ $ (-993)) 47 T ELT) (($ $) 276 T ELT) (($ $ (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 271 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 270 T ELT) (($ $ (-1088)) 232 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 228 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 227 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 226 (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) +(((-1153 |#1|) (-113) (-961)) (T -1153)) +((-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-5 *2 (-1083 *3)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-961)) (-4 *1 (-1153 *3)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3758 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *3)))) (-3756 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *4)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)))) (-3752 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3748 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3748 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)))) (-3747 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3948 *3) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *3)))) (-3745 (*1 *2 *1 *1) (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3)))) (-3794 (*1 *2 *3 *2) (-12 (-5 *3 (-347 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483))))))) +(-13 (-861 |t#1| (-694) (-993)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3761 ((-1177 |t#1|) $ (-694))) (-15 -3760 ((-1083 |t#1|) $)) (-15 -3759 ($ (-1083 |t#1|))) (-15 -3771 ($ $ (-694))) (-15 -3758 ((-3 $ "failed") $ (-694))) (-15 -3757 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3756 ((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694))) (-15 -3755 ($ $ (-694))) (-15 -3754 ($ $ (-694))) (-15 -3753 ($ $ $)) (-15 -3752 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3751 (|t#1| $)) (-15 -3750 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-241 (-347 $) (-347 $))) (-15 -3794 ((-347 $) (-347 $) (-347 $))) (-15 -3766 ((-694) $ $)) (-15 -3749 ($ $ $)) (-15 -3748 ((-3 $ "failed") $ $)) (-15 -3748 ((-3 (-347 $) "failed") (-347 $) $)) (-15 -3747 ($ $ $)) (-15 -3746 ((-2 (|:| -3948 |t#1|) (|:| -1970 $) (|:| -2898 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (-15 -3745 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-257)) (-6 -3985) (-15 -3794 (|t#1| (-347 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (-15 -3806 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 (-993)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| (-993) (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| (-993) (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| (-993) (-553 (-800 (-483))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-347 $) (-347 $)) |has| |#1| (-494)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 $) . T) ((-276 |#1| (-694)) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-452 (-993) |#1|) . T) ((-452 (-993) $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-993)) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-993)) . T) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-993)) . T) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| (-993) (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| (-993) (-796 (-483)))) ((-861 |#1| (-694) (-993)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-311)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-993)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) |has| |#1| (-821))) +((-3952 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1153 |#1|) (-961) (-1153 |#3|)) (T -1154)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1153 *6)) (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5))))) +((-3077 (((-583 (-993)) $) 34 T ELT)) (-3953 (($ $) 31 T ELT)) (-2889 (($ |#2| |#3|) NIL T ELT) (($ $ (-993) |#3|) 28 T ELT) (($ $ (-583 (-993)) (-583 |#3|)) 27 T ELT)) (-2890 (($ $) 14 T ELT)) (-3169 ((|#2| $) 12 T ELT)) (-3942 ((|#3| $) 10 T ELT))) +(((-1155 |#1| |#2| |#3|) (-10 -7 (-15 -3077 ((-583 (-993)) |#1|)) (-15 -2889 (|#1| |#1| (-583 (-993)) (-583 |#3|))) (-15 -2889 (|#1| |#1| (-993) |#3|)) (-15 -3953 (|#1| |#1|)) (-15 -2889 (|#1| |#2| |#3|)) (-15 -3942 (|#3| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3169 (|#2| |#1|))) (-1156 |#2| |#3|) (-961) (-716)) (T -1155)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ |#2|) 122 T ELT) (($ $ |#2| |#2|) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 128 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-3766 ((|#2| $) 124 T ELT) ((|#2| $ |#2|) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT) (($ $ (-993) |#2|) 95 T ELT) (($ $ (-583 (-993)) (-583 |#2|)) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ |#2|) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3794 ((|#1| $ |#2|) 129 T ELT) (($ $ $) 105 (|has| |#2| (-1024)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3764 ((|#1| $ |#2|) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1156 |#1| |#2|) (-113) (-961) (-716)) (T -1156)) +((-3768 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1088)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3766 (*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3765 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3764 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3940 (*2 (-1088)))) (-4 *2 (-961)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3762 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3))))) +(-13 (-886 |t#1| |t#2| (-993)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3768 ((-1067 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3825 ((-1088) $)) (-15 -3767 (|t#1| $)) (-15 -3771 ($ $ (-830))) (-15 -3766 (|t#2| $)) (-15 -3766 (|t#2| $ |t#2|)) (-15 -3765 ($ $ |t#2|)) (-15 -3765 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3940 (|t#1| (-1088)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3764 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3763 ($ $ |t#2|)) (IF (|has| |t#2| (-1024)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3762 ((-1067 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1024)) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-993)) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-3769 ((|#2| |#2|) 12 T ELT)) (-3965 (((-345 |#2|) |#2|) 14 T ELT)) (-3770 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))) 30 T ELT))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -3965 ((-345 |#2|) |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3770 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))))) (-494) (-13 (-1153 |#1|) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (T -1157)) +((-3770 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-483)))) (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (-4 *3 (-494)) (-5 *1 (-1157 *3 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3139 ($ $ $)))))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3151 (((-1137 |#1| |#2| |#3|) $) NIL T ELT) (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3775 (((-347 (-483)) $) 68 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) (-1137 |#1| |#2| |#3|)) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 30 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 (((-1137 |#1| |#2| |#3|) $) 71 T ELT)) (-3772 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3773 (((-1137 |#1| |#2| |#3|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 39 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 107 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1137 |#1| |#2| |#3|)) 16 T ELT) (($ (-1167 |#1| |#2| |#3|)) 17 T ELT) (($ (-1174 |#2|)) 36 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 26 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1158 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1137 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-950 (-1167 |#1| |#2| |#3|)) (-555 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1158)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3952 (((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)) 24 T ELT))) +(((-1159 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 ((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)))) (-961) (-961) (-1088) (-1088) |#1| |#2|) (T -1159)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 122 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 197 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 124 T ELT) (((-347 (-483)) $ (-347 (-483))) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT) (($ $ (-347 (-483))) 196 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-347 (-483))) 79 T ELT) (($ $ (-993) (-347 (-483))) 95 T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1160 |#1|) (-113) (-961)) (T -1160)) +((-3812 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1160 *4)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-961)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))) +(-13 (-1156 |t#1| (-347 (-483))) (-10 -8 (-15 -3812 ($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |t#1|))))) (-15 -3771 ($ $ (-347 (-483)))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-483))) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-347 (-483)) |#1|) . T) ((-241 $ $) |has| (-347 (-483)) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-886 |#1| (-347 (-483)) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-347 (-483))) . T)) +((-3183 (((-85) $) 12 T ELT)) (-3152 (((-3 |#3| "failed") $) 17 T ELT)) (-3151 ((|#3| $) 14 T ELT))) +(((-1161 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-3 |#3| "failed") |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3183 ((-85) |#1|))) (-1162 |#2| |#3|) (-961) (-1139 |#2|)) (T -1161)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 122 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 197 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| "failed") $) 210 T ELT)) (-3151 ((|#2| $) 211 T ELT)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3775 (((-347 (-483)) $) 207 T ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) |#2|) 208 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 124 T ELT) (((-347 (-483)) $ (-347 (-483))) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT) (($ $ (-347 (-483))) 196 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-347 (-483))) 79 T ELT) (($ $ (-993) (-347 (-483))) 95 T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3774 ((|#2| $) 206 T ELT)) (-3772 (((-3 |#2| "failed") $) 204 T ELT)) (-3773 ((|#2| $) 205 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 209 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1162 |#1| |#2|) (-113) (-961) (-1139 |t#1|)) (T -1162)) +((-3942 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) (-5 *2 (-347 (-483))))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-4 *4 (-961)) (-4 *1 (-1162 *4 *3)) (-4 *3 (-1139 *4)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) (-5 *2 (-347 (-483))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))) (-3772 (*1 *2 *1) (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3))))) +(-13 (-1160 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3776 ($ (-347 (-483)) |t#2|)) (-15 -3775 ((-347 (-483)) $)) (-15 -3774 (|t#2| $)) (-15 -3942 ((-347 (-483)) $)) (-15 -3773 (|t#2| $)) (-15 -3772 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-483))) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-347 (-483)) |#1|) . T) ((-241 $ $) |has| (-347 (-483)) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-886 |#1| (-347 (-483)) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-950 |#2|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-347 (-483))) . T) ((-1160 |#1|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 104 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 116 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 118 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 54 T ELT)) (-3486 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 188 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 65 T ELT)) (-3488 (($ $) 196 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 85 T ELT)) (-3775 (((-347 (-483)) $) 13 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) |#2|) 11 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 74 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 113 T ELT) (((-347 (-483)) $ (-347 (-483))) 114 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 130 T ELT) (($ $ (-347 (-483))) 128 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 33 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3936 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 ((|#2| $) 12 T ELT)) (-3772 (((-3 |#2| #1#) $) 44 T ELT)) (-3773 ((|#2| $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 101 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 151 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 122 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 108 T ELT) (($ $ $) 94 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 138 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 16 T ELT)) (-3489 (($ $) 198 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 174 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 120 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-347 (-483))) 139 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 107 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 127 T CONST)) (-3767 ((|#1| $) 106 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 208 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 210 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 72 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 100 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3833 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-483)) 157 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1163 |#1| |#2|) (-1162 |#1| |#2|) (-961) (-1139 |#1|)) (T -1163)) +NIL +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3151 (((-483) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3953 (($ $) 41 T ELT)) (-3461 (((-3 $ #1#) $) 27 T ELT)) (-3497 (($ $) NIL (|has| (-1158 |#2| |#3| |#4|) (-389)) ELT)) (-1621 (($ $ (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 11 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) 25 T ELT)) (-2816 (((-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1622 (($ (-1 (-269 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) $) NIL T ELT)) (-3952 (($ (-1 (-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3778 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 (((-1158 |#2| |#3| |#4|) $) 20 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-494)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3777 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $) 74 T ELT)) (-3942 (((-269 |#2| |#3| |#4|) $) 17 T ELT)) (-2813 (((-1158 |#2| |#3| |#4|) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) ELT)) (-3811 (((-583 (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3671 (((-1158 |#2| |#3| |#4|) $ (-269 |#2| |#3| |#4|)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| (-1158 |#2| |#3| |#4|) (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) ELT))) +(((-1164 |#1| |#2| |#3| |#4|) (-13 (-276 (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) (-494) (-10 -8 (-15 -3778 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3777 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $)))) (-13 (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -1164)) +((-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-750 *4)) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))) (-3777 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))))) (|:| |%type| (-1071)))) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) +((-3396 ((|#2| $) 34 T ELT)) (-3789 ((|#2| $) 18 T ELT)) (-3791 (($ $) 44 T ELT)) (-3779 (($ $ (-483)) 79 T ELT)) (-3021 ((|#2| $ |#2|) 76 T ELT)) (-3780 ((|#2| $ |#2|) 72 T ELT)) (-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3022 (($ $ (-583 $)) 75 T ELT)) (-3790 ((|#2| $) 17 T ELT)) (-3793 (($ $) NIL T ELT) (($ $ (-694)) 52 T ELT)) (-3027 (((-583 $) $) 31 T ELT)) (-3023 (((-85) $ $) 63 T ELT)) (-3521 (((-85) $) 33 T ELT)) (-3792 ((|#2| $) 25 T ELT) (($ $ (-694)) 58 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3627 (((-85) $) 23 T ELT)) (-3786 (($ $) 47 T ELT)) (-3784 (($ $) 80 T ELT)) (-3787 (((-694) $) 51 T ELT)) (-3788 (($ $) 50 T ELT)) (-3796 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3516 (((-583 $) $) 32 T ELT)) (-3052 (((-85) $ $) 61 T ELT)) (-3951 (((-694) $) 43 T ELT))) +(((-1165 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3779 (|#1| |#1| (-483))) (-15 -3782 (|#2| |#1| #1="last" |#2|)) (-15 -3780 (|#2| |#1| |#2|)) (-15 -3782 (|#1| |#1| #2="rest" |#1|)) (-15 -3782 (|#2| |#1| #3="first" |#2|)) (-15 -3784 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3787 ((-694) |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3789 (|#2| |#1|)) (-15 -3790 (|#2| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| #1#)) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-694))) (-15 -3794 (|#1| |#1| #2#)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#2| |#1| #3#)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3021 (|#2| |#1| |#2|)) (-15 -3782 (|#2| |#1| #4="value" |#2|)) (-15 -3022 (|#1| |#1| (-583 |#1|))) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| #4#)) (-15 -3396 (|#2| |#1|)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -3951 ((-694) |#1|))) (-1166 |#2|) (-1127)) (T -1165)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1166 |#1|) (-113) (-1127)) (T -1166)) +((-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3784 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3783 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3781 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3780 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) (-4 *3 (-1127))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3796 ($ $ $)) (-15 -3796 ($ |t#1| $)) (-15 -3795 (|t#1| $)) (-15 -3794 (|t#1| $ "first")) (-15 -3795 ($ $ (-694))) (-15 -3793 ($ $)) (-15 -3794 ($ $ "rest")) (-15 -3793 ($ $ (-694))) (-15 -3792 (|t#1| $)) (-15 -3794 (|t#1| $ "last")) (-15 -3792 ($ $ (-694))) (-15 -3791 ($ $)) (-15 -3790 (|t#1| $)) (-15 -3789 (|t#1| $)) (-15 -3788 ($ $)) (-15 -3787 ((-694) $)) (-15 -3786 ($ $)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3785 ($ $ $)) (-15 -3785 ($ $ |t#1|)) (-15 -3784 ($ $)) (-15 -3783 (|t#1| $ |t#1|)) (-15 -3782 (|t#1| $ "first" |t#1|)) (-15 -3781 ($ $ $)) (-15 -3782 ($ $ "rest" $)) (-15 -3780 (|t#1| $ |t#1|)) (-15 -3782 (|t#1| $ "last" |t#1|)) (-15 -3779 ($ $ (-483)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 87 T ELT)) (-3805 (((-1146 |#2| |#1|) $ (-694)) 70 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 139 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1067 |#1|)) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3799 (($ $) 131 T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3810 (($ $) 137 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3802 (($ $) 115 T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3798 (($ (-483) (-483) $) 133 T ELT)) (-3771 (($ $ (-830)) 136 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 109 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 16 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3803 (($ $) 113 T ELT)) (-3804 (($ $) 111 T ELT)) (-3797 (($ (-483) (-483) $) 135 T ELT)) (-3806 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 153 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3800 (($ $ (-483) (-483)) 119 T ELT)) (-3763 (($ $ (-694)) 121 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3801 (($ $) 117 T ELT)) (-3762 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) 106 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) 101 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 123 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 26 T ELT) (($ (-347 (-483))) 145 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 78 T ELT) (($ (-1174 |#2|)) 22 T ELT)) (-3811 (((-1067 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) 92 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 88 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 13 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1167 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1146 |#2| |#1|))) (-15 -3805 ((-1146 |#2| |#1|) $ (-694))) (-15 -3940 ($ (-1174 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $)) (-15 -3802 ($ $)) (-15 -3801 ($ $)) (-15 -3800 ($ $ (-483) (-483))) (-15 -3799 ($ $)) (-15 -3798 ($ (-483) (-483) $)) (-15 -3797 ($ (-483) (-483) $)) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1167)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3800 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3798 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3797 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3952 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1170 |#1|) (-1170 |#2|)) (T -1168)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5))))) +((-3183 (((-85) $) 17 T ELT)) (-3486 (($ $) 105 T ELT)) (-3633 (($ $) 81 T ELT)) (-3484 (($ $) 101 T ELT)) (-3632 (($ $) 77 T ELT)) (-3488 (($ $) 109 T ELT)) (-3631 (($ $) 85 T ELT)) (-3936 (($ $) 75 T ELT)) (-3937 (($ $) 73 T ELT)) (-3489 (($ $) 111 T ELT)) (-3630 (($ $) 87 T ELT)) (-3487 (($ $) 107 T ELT)) (-3629 (($ $) 83 T ELT)) (-3485 (($ $) 103 T ELT)) (-3628 (($ $) 79 T ELT)) (-3940 (((-772) $) 61 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3492 (($ $) 117 T ELT)) (-3480 (($ $) 93 T ELT)) (-3490 (($ $) 113 T ELT)) (-3478 (($ $) 89 T ELT)) (-3494 (($ $) 121 T ELT)) (-3482 (($ $) 97 T ELT)) (-3495 (($ $) 123 T ELT)) (-3483 (($ $) 99 T ELT)) (-3493 (($ $) 119 T ELT)) (-3481 (($ $) 95 T ELT)) (-3491 (($ $) 115 T ELT)) (-3479 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-347 (-483))) 71 T ELT))) +(((-1169 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3183 ((-85) |#1|)) (-15 -3940 ((-772) |#1|))) (-1170 |#2|) (-961)) (T -1169)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 122 T ELT) (($ $ (-694) (-694)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 181 T ELT) (($ (-1067 |#1|)) 179 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3810 (($ $) 178 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 176 T ELT) (((-857 |#1|) $ (-694) (-694)) 175 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) 124 T ELT) (((-694) $ (-694)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 177 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-694)) 79 T ELT) (($ $ (-993) (-694)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3806 (($ $) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 172 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ (-694)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 129 T ELT) (($ $ $) 105 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3942 (((-694) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3811 (((-1067 |#1|) $) 180 T ELT)) (-3671 ((|#1| $ (-694)) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ |#1|) 174 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT))) +(((-1170 |#1|) (-113) (-961)) (T -1170)) +((-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1170 *3)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-5 *2 (-1067 *3)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-4 *1 (-1170 *3)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-961)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))) +(-13 (-1156 |t#1| (-694)) (-10 -8 (-15 -3812 ($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3811 ((-1067 |t#1|) $)) (-15 -3812 ($ (-1067 |t#1|))) (-15 -3810 ($ $)) (-15 -3809 ($ (-1 |t#1| (-483)) $)) (-15 -3808 ((-857 |t#1|) $ (-694))) (-15 -3808 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-311)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1024)) ((-245) |has| |#1| (-494)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-993)) . T) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1156 |#1| (-694)) . T)) +((-3815 (((-1 (-1067 |#1|) (-583 (-1067 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3814 (((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3813 (((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3818 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3817 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3819 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3820 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3816 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1171 |#1| |#2|) (-10 -7 (-15 -3813 ((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|))) (-15 -3814 ((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3815 ((-1 (-1067 |#1|) (-583 (-1067 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3816 (|#2| |#2| |#2|)) (-15 -3817 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3819 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3820 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-347 (-483))) (-1170 |#1|)) (T -1171)) +((-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-347 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1171 *5 *6)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-347 (-483)))) (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2)))) (-3818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-347 (-483)))))) (-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-347 (-483)))))) (-3816 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-583 (-1067 *4)))) (-5 *1 (-1171 *4 *5)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) +((-3822 ((|#2| |#4| (-694)) 31 T ELT)) (-3821 ((|#4| |#2|) 26 T ELT)) (-3824 ((|#4| (-347 |#2|)) 49 (|has| |#1| (-494)) ELT)) (-3823 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT))) +(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3821 (|#4| |#2|)) (-15 -3822 (|#2| |#4| (-694))) (-15 -3823 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-494)) (-15 -3824 (|#4| (-347 |#2|))) |%noBranch|)) (-961) (-1153 |#1|) (-600 |#2|) (-1170 |#1|)) (T -1172)) +((-3824 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-961)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1170 *4)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1170 *5)))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) +NIL +(((-1173) (-113)) (T -1173)) +NIL +(-13 (-10 -7 (-6 -2283))) +((-2564 (((-85) $ $) NIL T ELT)) (-3825 (((-1088)) 12 T ELT)) (-3237 (((-1071) $) 18 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (((-1088) $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT))) +(((-1174 |#1|) (-13 (-1012) (-552 (-1088)) (-10 -8 (-15 -3940 ((-1088) $)) (-15 -3825 ((-1088))))) (-1088)) (T -1174)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))) (-3825 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2)))) +((-3832 (($ (-694)) 19 T ELT)) (-3829 (((-630 |#2|) $ $) 41 T ELT)) (-3826 ((|#2| $) 51 T ELT)) (-3827 ((|#2| $) 50 T ELT)) (-3830 ((|#2| $ $) 36 T ELT)) (-3828 (($ $ $) 47 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) 15 T ELT)) (* (($ (-483) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -3826 (|#2| |#1|)) (-15 -3827 (|#2| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3829 ((-630 |#2|) |#1| |#1|)) (-15 -3830 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3832 (|#1| (-694))) (-15 -3833 (|#1| |#1| |#1|))) (-1176 |#2|) (-1127)) (T -1175)) +NIL +((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3826 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3827 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3830 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3828 (($ $ $) 113 (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT))) +(((-1176 |#1|) (-113) (-1127)) (T -1176)) +((-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))) (-3829 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3828 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3833 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3832 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 * ($ (-483) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3830 (|t#1| $ $)) (-15 -3829 ((-630 |t#1|) $ $)) (-15 -3828 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3827 (|t#1| $)) (-15 -3826 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T)) +((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3834 (($ (-583 |#1|)) 11 T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 16 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 12 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 20 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 10 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1177 |#1|) (-13 (-1176 |#1|) (-10 -8 (-15 -3834 ($ (-583 |#1|))))) (-1127)) (T -1177)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3))))) +((-3835 (((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 13 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 15 T ELT)) (-3952 (((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)) 30 T ELT) (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 18 T ELT))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -3835 ((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3952 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -3952 ((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)))) (-1127) (-1127)) (T -1178)) +((-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1178 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5))))) +((-3837 (((-405) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-405) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-405) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3838 (((-1180) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1180) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3940 (((-1180) (-405)) 46 T ELT))) +(((-1179) (-10 -7 (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))))) (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3838 ((-1180) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3838 ((-1180) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3940 ((-1180) (-405))))) (T -1179)) +((-3940 (*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3838 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-405)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3856 (((-1071) $ (-1071)) 107 T ELT) (((-1071) $ (-1071) (-1071)) 105 T ELT) (((-1071) $ (-1071) (-583 (-1071))) 104 T ELT)) (-3852 (($) 69 T ELT)) (-3839 (((-1183) $ (-405) (-830)) 54 T ELT)) (-3845 (((-1183) $ (-830) (-1071)) 89 T ELT) (((-1183) $ (-830) (-783)) 90 T ELT)) (-3867 (((-1183) $ (-830) (-327) (-327)) 57 T ELT)) (-3877 (((-1183) $ (-1071)) 84 T ELT)) (-3840 (((-1183) $ (-830) (-1071)) 94 T ELT)) (-3841 (((-1183) $ (-830) (-327) (-327)) 58 T ELT)) (-3878 (((-1183) $ (-830) (-830)) 55 T ELT)) (-3858 (((-1183) $) 85 T ELT)) (-3843 (((-1183) $ (-830) (-1071)) 93 T ELT)) (-3847 (((-1183) $ (-405) (-830)) 41 T ELT)) (-3844 (((-1183) $ (-830) (-1071)) 92 T ELT)) (-3880 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3879 (((-1183) $ (-694) (-694)) 52 T ELT)) (-3851 (($ $) 70 T ELT) (($ (-405) (-583 (-221))) 71 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 48 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3848 (((-1177 (-3 (-405) "undefined")) $) 47 T ELT)) (-3849 (((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483)))) $) 46 T ELT)) (-3850 (((-1183) $ (-830) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-783) (-483) (-783) (-483)) 83 T ELT)) (-3853 (((-583 (-854 (-179))) $) NIL T ELT)) (-3846 (((-405) $ (-830)) 43 T ELT)) (-3876 (((-1183) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3874 (((-1183) $ (-1071)) 95 T ELT)) (-3842 (((-1183) $ (-830) (-1071)) 91 T ELT)) (-3940 (((-772) $) 102 T ELT)) (-3855 (((-1183) $) 96 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3873 (((-1183) $ (-830) (-1071)) 87 T ELT) (((-1183) $ (-830) (-783)) 88 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1180) (-13 (-1012) (-10 -8 (-15 -3853 ((-583 (-854 (-179))) $)) (-15 -3852 ($)) (-15 -3851 ($ $)) (-15 -3880 ((-583 (-221)) $)) (-15 -3880 ($ $ (-583 (-221)))) (-15 -3851 ($ (-405) (-583 (-221)))) (-15 -3850 ((-1183) $ (-830) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-783) (-483) (-783) (-483))) (-15 -3849 ((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483)))) $)) (-15 -3848 ((-1177 (-3 (-405) "undefined")) $)) (-15 -3877 ((-1183) $ (-1071))) (-15 -3847 ((-1183) $ (-405) (-830))) (-15 -3846 ((-405) $ (-830))) (-15 -3873 ((-1183) $ (-830) (-1071))) (-15 -3873 ((-1183) $ (-830) (-783))) (-15 -3845 ((-1183) $ (-830) (-1071))) (-15 -3845 ((-1183) $ (-830) (-783))) (-15 -3844 ((-1183) $ (-830) (-1071))) (-15 -3843 ((-1183) $ (-830) (-1071))) (-15 -3842 ((-1183) $ (-830) (-1071))) (-15 -3874 ((-1183) $ (-1071))) (-15 -3855 ((-1183) $)) (-15 -3876 ((-1183) $ (-694) (-694) (-830) (-830))) (-15 -3841 ((-1183) $ (-830) (-327) (-327))) (-15 -3867 ((-1183) $ (-830) (-327) (-327))) (-15 -3840 ((-1183) $ (-830) (-1071))) (-15 -3879 ((-1183) $ (-694) (-694))) (-15 -3839 ((-1183) $ (-405) (-830))) (-15 -3878 ((-1183) $ (-830) (-830))) (-15 -3856 ((-1071) $ (-1071))) (-15 -3856 ((-1071) $ (-1071) (-1071))) (-15 -3856 ((-1071) $ (-1071) (-583 (-1071)))) (-15 -3858 ((-1183) $)) (-15 -3854 ((-483) $)) (-15 -3940 ((-772) $))))) (T -1180)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1180)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1180)))) (-3852 (*1 *1) (-5 *1 (-1180))) (-3851 (*1 *1 *1) (-5 *1 (-1180))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-583 (-221))) (-5 *1 (-1180)))) (-3850 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483))))) (-5 *1 (-1180)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-405) "undefined"))) (-5 *1 (-1180)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3873 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3873 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3842 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3841 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3867 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3840 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3839 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3868 (((-1183) $ (-327)) 168 T ELT) (((-1183) $ (-327) (-327) (-327)) 169 T ELT)) (-3856 (((-1071) $ (-1071)) 177 T ELT) (((-1071) $ (-1071) (-1071)) 175 T ELT) (((-1071) $ (-1071) (-583 (-1071))) 174 T ELT)) (-3884 (($) 67 T ELT)) (-3875 (((-1183) $ (-327) (-327) (-327) (-327) (-327)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1183) $ (-483) (-483) (-327) (-327) (-327)) 143 T ELT) (((-1183) $ (-327) (-327)) 144 T ELT) (((-1183) $ (-327) (-327) (-327)) 151 T ELT)) (-3887 (((-327)) 121 T ELT) (((-327) (-327)) 122 T ELT)) (-3889 (((-327)) 116 T ELT) (((-327) (-327)) 118 T ELT)) (-3888 (((-327)) 119 T ELT) (((-327) (-327)) 120 T ELT)) (-3885 (((-327)) 125 T ELT) (((-327) (-327)) 126 T ELT)) (-3886 (((-327)) 123 T ELT) (((-327) (-327)) 124 T ELT)) (-3867 (((-1183) $ (-327) (-327)) 170 T ELT)) (-3877 (((-1183) $ (-1071)) 152 T ELT)) (-3882 (((-1045 (-179)) $) 68 T ELT) (($ $ (-1045 (-179))) 69 T ELT)) (-3863 (((-1183) $ (-1071)) 186 T ELT)) (-3862 (((-1183) $ (-1071)) 187 T ELT)) (-3869 (((-1183) $ (-327) (-327)) 150 T ELT) (((-1183) $ (-483) (-483)) 167 T ELT)) (-3878 (((-1183) $ (-830) (-830)) 159 T ELT)) (-3858 (((-1183) $) 136 T ELT)) (-3866 (((-1183) $ (-1071)) 185 T ELT)) (-3871 (((-1183) $ (-1071)) 133 T ELT)) (-3880 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3879 (((-1183) $ (-694) (-694)) 158 T ELT)) (-3881 (((-1183) $ (-694) (-854 (-179))) 192 T ELT)) (-3883 (($ $) 73 T ELT) (($ (-1045 (-179)) (-1071)) 74 T ELT) (($ (-1045 (-179)) (-583 (-221))) 75 T ELT)) (-3860 (((-1183) $ (-327) (-327) (-327)) 130 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 127 T ELT)) (-3859 (((-1183) $ (-327)) 172 T ELT)) (-3864 (((-1183) $ (-327)) 190 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3865 (((-1183) $ (-327)) 189 T ELT)) (-3870 (((-1183) $ (-1071)) 135 T ELT)) (-3876 (((-1183) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3872 (((-1183) $ (-1071)) 132 T ELT)) (-3874 (((-1183) $ (-1071)) 134 T ELT)) (-3857 (((-1183) $ (-130) (-130)) 156 T ELT)) (-3940 (((-772) $) 165 T ELT)) (-3855 (((-1183) $) 137 T ELT)) (-3861 (((-1183) $ (-1071)) 188 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3873 (((-1183) $ (-1071)) 131 T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1181) (-13 (-1012) (-10 -8 (-15 -3889 ((-327))) (-15 -3889 ((-327) (-327))) (-15 -3888 ((-327))) (-15 -3888 ((-327) (-327))) (-15 -3887 ((-327))) (-15 -3887 ((-327) (-327))) (-15 -3886 ((-327))) (-15 -3886 ((-327) (-327))) (-15 -3885 ((-327))) (-15 -3885 ((-327) (-327))) (-15 -3884 ($)) (-15 -3883 ($ $)) (-15 -3883 ($ (-1045 (-179)) (-1071))) (-15 -3883 ($ (-1045 (-179)) (-583 (-221)))) (-15 -3882 ((-1045 (-179)) $)) (-15 -3882 ($ $ (-1045 (-179)))) (-15 -3881 ((-1183) $ (-694) (-854 (-179)))) (-15 -3880 ((-583 (-221)) $)) (-15 -3880 ($ $ (-583 (-221)))) (-15 -3879 ((-1183) $ (-694) (-694))) (-15 -3878 ((-1183) $ (-830) (-830))) (-15 -3877 ((-1183) $ (-1071))) (-15 -3876 ((-1183) $ (-694) (-694) (-830) (-830))) (-15 -3875 ((-1183) $ (-327) (-327) (-327) (-327) (-327))) (-15 -3875 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3875 ((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3875 ((-1183) $ (-483) (-483) (-327) (-327) (-327))) (-15 -3875 ((-1183) $ (-327) (-327))) (-15 -3875 ((-1183) $ (-327) (-327) (-327))) (-15 -3874 ((-1183) $ (-1071))) (-15 -3873 ((-1183) $ (-1071))) (-15 -3872 ((-1183) $ (-1071))) (-15 -3871 ((-1183) $ (-1071))) (-15 -3870 ((-1183) $ (-1071))) (-15 -3869 ((-1183) $ (-327) (-327))) (-15 -3869 ((-1183) $ (-483) (-483))) (-15 -3868 ((-1183) $ (-327))) (-15 -3868 ((-1183) $ (-327) (-327) (-327))) (-15 -3867 ((-1183) $ (-327) (-327))) (-15 -3866 ((-1183) $ (-1071))) (-15 -3865 ((-1183) $ (-327))) (-15 -3864 ((-1183) $ (-327))) (-15 -3863 ((-1183) $ (-1071))) (-15 -3862 ((-1183) $ (-1071))) (-15 -3861 ((-1183) $ (-1071))) (-15 -3860 ((-1183) $ (-327) (-327) (-327))) (-15 -3859 ((-1183) $ (-327))) (-15 -3858 ((-1183) $)) (-15 -3857 ((-1183) $ (-130) (-130))) (-15 -3856 ((-1071) $ (-1071))) (-15 -3856 ((-1071) $ (-1071) (-1071))) (-15 -3856 ((-1071) $ (-1071) (-583 (-1071)))) (-15 -3855 ((-1183) $)) (-15 -3854 ((-483) $))))) (T -1181)) +((-3889 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3888 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3887 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3886 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3885 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3884 (*1 *1) (-5 *1 (-1181))) (-3883 (*1 *1 *1) (-5 *1 (-1181))) (-3883 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181)))) (-3883 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-483)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3868 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181))))) +((-3898 (((-583 (-1071)) (-583 (-1071))) 103 T ELT) (((-583 (-1071))) 96 T ELT)) (-3899 (((-583 (-1071))) 94 T ELT)) (-3896 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3895 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3897 (((-1183)) 71 T ELT)) (-3901 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3900 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3893 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3903 (((-179)) 91 T ELT) (((-179) (-327)) 93 T ELT)) (-3902 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3894 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3890 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3891 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3892 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT))) +(((-1182) (-10 -7 (-15 -3890 ((-783))) (-15 -3890 ((-783) (-783))) (-15 -3891 ((-783))) (-15 -3891 ((-783) (-783))) (-15 -3892 ((-783))) (-15 -3892 ((-783) (-783))) (-15 -3893 ((-783))) (-15 -3893 ((-783) (-783))) (-15 -3894 ((-830))) (-15 -3894 ((-830) (-830))) (-15 -3895 ((-583 (-694)))) (-15 -3895 ((-583 (-694)) (-583 (-694)))) (-15 -3896 ((-583 (-830)))) (-15 -3896 ((-583 (-830)) (-583 (-830)))) (-15 -3897 ((-1183))) (-15 -3898 ((-583 (-1071)))) (-15 -3898 ((-583 (-1071)) (-583 (-1071)))) (-15 -3899 ((-583 (-1071)))) (-15 -3900 ((-830))) (-15 -3901 ((-830))) (-15 -3900 ((-830) (-830))) (-15 -3901 ((-830) (-830))) (-15 -3902 ((-830) (-830))) (-15 -3902 ((-830))) (-15 -3903 ((-179) (-327))) (-15 -3903 ((-179))))) (T -1182)) +((-3903 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1182)))) (-3902 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3901 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3900 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3899 (*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3898 (*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3897 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))) (-3896 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))) (-3895 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3894 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3893 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3892 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3891 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))) +((-3904 (($) 6 T ELT)) (-3940 (((-772) $) 9 T ELT))) +(((-1183) (-13 (-552 (-772)) (-10 -8 (-15 -3904 ($))))) (T -1183)) +((-3904 (*1 *1) (-5 *1 (-1183)))) +((-3943 (($ $ |#2|) 10 T ELT))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#1| |#2|))) (-1185 |#2|) (-311)) (T -1184)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3905 (((-107)) 38 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 39 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1185 |#1|) (-113) (-311)) (T -1185)) +((-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-311)))) (-3905 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-311)) (-5 *2 (-107))))) +(-13 (-654 |t#1|) (-10 -8 (-15 -3943 ($ $ |t#1|)) (-15 -3905 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T)) +((-3910 (((-583 (-1120 |#1|)) (-1088) (-1120 |#1|)) 83 T ELT)) (-3908 (((-1067 (-1067 (-857 |#1|))) (-1088) (-1067 (-857 |#1|))) 63 T ELT)) (-3911 (((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-694) (-1120 |#1|) (-1067 (-1120 |#1|))) 74 T ELT)) (-3906 (((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694)) 65 T ELT)) (-3909 (((-1 (-1083 (-857 |#1|)) (-857 |#1|)) (-1088)) 32 T ELT)) (-3907 (((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694)) 64 T ELT))) +(((-1186 |#1|) (-10 -7 (-15 -3906 ((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694))) (-15 -3907 ((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694))) (-15 -3908 ((-1067 (-1067 (-857 |#1|))) (-1088) (-1067 (-857 |#1|)))) (-15 -3909 ((-1 (-1083 (-857 |#1|)) (-857 |#1|)) (-1088))) (-15 -3910 ((-583 (-1120 |#1|)) (-1088) (-1120 |#1|))) (-15 -3911 ((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-694) (-1120 |#1|) (-1067 (-1120 |#1|))))) (-311)) (T -1186)) +((-3911 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-311)) (-5 *4 (-1120 *6)) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-583 (-1120 *5))) (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-857 *4)) (-857 *4))) (-5 *1 (-1186 *4)) (-4 *4 (-311)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-1067 (-1067 (-857 *5)))) (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-857 *5))))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-311)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-311))))) +((-3913 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT))) +(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-298) (-1153 |#1|) (-1153 |#2|) (-350 |#2| |#3|)) (T -1187)) +((-3913 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))) (-3912 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3914 (((-1047) $) 12 T ELT)) (-3915 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1188) (-13 (-994) (-10 -8 (-15 -3915 ((-1047) $)) (-15 -3914 ((-1047) $))))) (T -1188)) +((-3915 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3916 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT))) +(((-1189) (-13 (-994) (-10 -8 (-15 -3916 ((-1047) $))))) (T -1189)) +((-3916 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 59 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 82 T ELT) (($ (-483)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3917 (((-1183) (-694)) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 36 T CONST)) (-2662 (($) 85 T CONST)) (-3052 (((-85) $ $) 88 T ELT)) (-3943 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1190 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-427 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3917 ((-1183) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1190)) +((-3943 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 77 T ELT)) (-3679 ((|#4| |#4| $) 82 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-2885 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 83 T ELT)) (-2604 (((-583 |#4|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3920 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-1946 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-3 |#4| #1#) $) NIL T ELT)) (-3691 (((-583 |#4|) $) 53 T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) 81 T ELT)) (-3693 (((-85) $ $) 92 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 76 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3763 (($ $ |#4|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 74 T ELT)) (-3559 (($) 45 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) NIL T ELT)) (-2906 (($ $ |#3|) NIL T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-3919 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3918 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3927 (((-85) |#3| $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT))) +(((-1191 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3920 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3920 ((-3 $ #1#) (-583 |#4|))) (-15 -3919 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3919 ((-3 $ #1#) (-583 |#4|))) (-15 -3918 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3918 ((-583 $) (-583 |#4|))))) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -1191)) +((-3920 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3920 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3919 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3919 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1191 *4 *5 *6 *7))) (-5 *1 (-1191 *4 *5 *6 *7))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 51 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) +(((-1192 |#1|) (-113) (-961)) (T -1192)) +NIL +(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) +((-2564 (((-85) $ $) 69 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 54 T ELT)) (-3941 (($ $ (-694)) 47 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT)) (-3953 (($ $) 40 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3930 (($ $) 41 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3949 (((-739 |#1|) $) NIL T ELT)) (-3950 (((-739 |#1|) $) 42 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1746 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-739 |#1|) $) 36 T ELT)) (-3169 ((|#2| $) 38 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3942 (((-694) $) 44 T ELT)) (-3947 (((-85) $) 48 T ELT)) (-3946 ((|#2| $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-483)) NIL T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3948 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 14 T CONST)) (-2662 (($) 20 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3052 (((-85) $ $) 45 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1193 |#1| |#2|) (-13 (-332 |#2| (-739 |#1|)) (-1200 |#1| |#2|)) (-756) (-961)) (T -1193)) +NIL +((-3936 ((|#3| |#3| (-694)) 28 T ELT)) (-3937 ((|#3| |#3| (-694)) 34 T ELT)) (-3921 ((|#3| |#3| |#3| (-694)) 35 T ELT))) +(((-1194 |#1| |#2| |#3|) (-10 -7 (-15 -3937 (|#3| |#3| (-694))) (-15 -3936 (|#3| |#3| (-694))) (-15 -3921 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-347 (-483)))) (-756) (-1200 |#2| |#1|)) (T -1194)) +((-3921 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3936 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))) +((-3926 (((-85) $) 15 T ELT)) (-3927 (((-85) $) 14 T ELT)) (-3922 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT))) +(((-1195 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| |#1| (-694))) (-15 -3922 (|#1| |#1|)) (-15 -3926 ((-85) |#1|)) (-15 -3927 ((-85) |#1|))) (-1196 |#2|) (-311)) (T -1195)) +NIL +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3926 (((-85) $) 112 T ELT)) (-3923 (((-694)) 108 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 119 T ELT)) (-3151 ((|#1| $) 120 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-1761 (($ $ (-694)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3925 (((-85) $) 111 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-3924 (((-743 (-830))) 109 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) 117 T ELT)) (-3942 (((-743 (-830)) $) 110 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2698 (((-632 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3927 (((-85) $) 113 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3922 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-694)) 106 (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) +(((-1196 |#1|) (-113) (-311)) (T -1196)) +((-3927 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))) (-3924 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))) (-3923 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-694)))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-311)) (-4 *2 (-317)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-4 *3 (-317))))) +(-13 (-311) (-950 |t#1|) (-1185 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-342)) |%noBranch|) (-15 -3927 ((-85) $)) (-15 -3926 ((-85) $)) (-15 -3925 ((-85) $)) (-15 -3942 ((-743 (-830)) $)) (-15 -3924 ((-743 (-830)))) (-15 -3923 ((-694))) (IF (|has| |t#1| (-317)) (PROGN (-6 (-342)) (-15 -3922 ($ $)) (-15 -3922 ($ $ (-694)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T)) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 53 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3929 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-694)) 55 (|has| |#2| (-146)) ELT)) (-3718 (($) 22 T CONST)) (-3933 (($ $ |#1|) 67 T ELT) (($ $ (-739 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3152 (((-3 (-739 |#1|) "failed") $) 77 T ELT)) (-3151 (((-739 |#1|) $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3945 (((-85) $) 58 T ELT)) (-3944 (($ $) 57 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 63 T ELT)) (-3932 (($ (-739 |#1|) |#2|) 64 T ELT)) (-3930 (($ $) 62 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3949 (((-739 |#1|) $) 74 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3934 (($ $ |#1|) 70 T ELT) (($ $ (-739 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3947 (((-85) $) 60 T ELT)) (-3946 ((|#2| $) 59 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-739 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) +(((-1197 |#1| |#2|) (-113) (-756) (-961)) (T -1197)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3948 (*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3933 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-961)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) +(-13 (-961) (-1192 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3949 ((-739 |t#1|) $)) (-15 -3935 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3948 (|t#2| $ (-739 |t#1|))) (-15 -3948 (|t#2| $ $)) (-15 -3934 ($ $ |t#1|)) (-15 -3934 ($ $ (-739 |t#1|))) (-15 -3934 ($ $ $)) (-15 -3933 ($ $ |t#1|)) (-15 -3933 ($ $ (-739 |t#1|))) (-15 -3933 ($ $ $)) (-15 -3932 ($ (-739 |t#1|) |t#2|)) (-15 -3931 ((-85) $)) (-15 -3930 ($ $)) (-15 -3940 ($ |t#1|)) (-15 -3947 ((-85) $)) (-15 -3946 (|t#2| $)) (-15 -3945 ((-85) $)) (-15 -3944 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3929 ($ $ $)) (-15 -3929 ($ $ (-694)))) |%noBranch|) (-15 -3952 ($ (-1 |t#2| |t#2|) $)) (-15 -3928 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3982)) (-6 -3982) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 99 T ELT)) (-3941 (($ $ (-694)) 103 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3953 (($ $) 102 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) 90 T ELT)) (-3944 (($ $) 93 T ELT)) (-3938 (($ $ $ (-694)) 104 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3930 (($ $) 120 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3949 (((-739 |#1|) $) NIL T ELT)) (-3950 (((-739 |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3936 (($ $ (-694)) 113 (|has| |#2| (-654 (-347 (-483)))) ELT)) (-1746 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-803 |#1|) $) 84 T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3937 (($ $ (-694)) 110 (|has| |#2| (-654 (-347 (-483)))) ELT)) (-3942 (((-694) $) 100 T ELT)) (-3947 (((-85) $) 85 T ELT)) (-3946 ((|#2| $) 88 T ELT)) (-3940 (((-772) $) 70 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1193 |#1| |#2|) $) 77 T ELT) (((-1202 |#1| |#2|) $) 82 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3948 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 27 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3939 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3052 (((-85) $ $) 78 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT))) +(((-1198 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-332 |#2| (-803 |#1|)) (-10 -8 (-15 -3940 ($ (-606 |#1| |#2|))) (-15 -3940 ((-1193 |#1| |#2|) $)) (-15 -3940 ((-1202 |#1| |#2|) $)) (-15 -3939 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3938 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-347 (-483)))) (PROGN (-15 -3937 ($ $ (-694))) (-15 -3936 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1198)) +((-3940 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1198 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3938 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) (-4 *3 (-756)) (-4 *4 (-146))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 (-1088)) $) NIL T ELT)) (-3956 (($ (-1193 (-1088) |#1|)) NIL T ELT)) (-3941 (($ $ (-694)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ (-1088)) NIL T ELT) (($ $ (-739 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (((-3 (-739 (-1088)) #1#) $) NIL T ELT)) (-3151 (((-739 (-1088)) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 (-1088)) |#1|) NIL T ELT)) (-3930 (($ $) NIL T ELT)) (-3935 (((-2 (|:| |k| (-739 (-1088))) (|:| |c| |#1|)) $) NIL T ELT)) (-3949 (((-739 (-1088)) $) NIL T ELT)) (-3950 (((-739 (-1088)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ $ (-1088)) NIL T ELT) (($ $ (-739 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3957 (((-1193 (-1088) |#1|) $) NIL T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3947 (((-85) $) NIL T ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT)) (-3948 ((|#1| $ (-739 (-1088))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3955 (((-583 (-2 (|:| |k| (-1088)) (|:| |c| $))) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1088) $) NIL T ELT))) +(((-1199 |#1|) (-13 (-1200 (-1088) |#1|) (-10 -8 (-15 -3957 ((-1193 (-1088) |#1|) $)) (-15 -3956 ($ (-1193 (-1088) |#1|))) (-15 -3955 ((-583 (-2 (|:| |k| (-1088)) (|:| |c| $))) $)))) (-961)) (T -1199)) +((-3957 (*1 *2 *1) (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-961)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-961)) (-5 *1 (-1199 *3)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3))))) (-5 *1 (-1199 *3)) (-4 *3 (-961))))) +((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 53 T ELT)) (-3941 (($ $ (-694)) 87 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3929 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-694)) 55 (|has| |#2| (-146)) ELT)) (-3718 (($) 22 T CONST)) (-3933 (($ $ |#1|) 67 T ELT) (($ $ (-739 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3152 (((-3 (-739 |#1|) "failed") $) 77 T ELT)) (-3151 (((-739 |#1|) $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3945 (((-85) $) 58 T ELT)) (-3944 (($ $) 57 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 63 T ELT)) (-3932 (($ (-739 |#1|) |#2|) 64 T ELT)) (-3930 (($ $) 62 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3949 (((-739 |#1|) $) 74 T ELT)) (-3950 (((-739 |#1|) $) 89 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3934 (($ $ |#1|) 70 T ELT) (($ $ (-739 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 (((-694) $) 88 T ELT)) (-3947 (((-85) $) 60 T ELT)) (-3946 ((|#2| $) 59 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-739 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) +(((-1200 |#1| |#2|) (-113) (-756) (-961)) (T -1200)) +((-3950 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +(-13 (-1197 |t#1| |t#2|) (-10 -8 (-15 -3950 ((-739 |t#1|) $)) (-15 -3942 ((-694) $)) (-15 -3941 ($ $ (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T) ((-1197 |#1| |#2|) . T)) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 43 T ELT)) (-3945 (((-85) $) 37 T ELT)) (-3944 (($ $) 38 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ |#2| |#1|) NIL T ELT)) (-3949 ((|#2| $) 25 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2890 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3947 (((-85) $) 33 T ELT)) (-3946 ((|#1| $) 34 T ELT)) (-3940 (((-772) $) 66 T ELT) (($ (-483)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ |#2|) NIL T ELT)) (-3948 ((|#1| $ |#2|) 29 T ELT)) (-3121 (((-694)) 14 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 11 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3052 (((-85) $ $) 31 T ELT)) (-3943 (($ $ |#1|) 68 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3951 (((-694) $) 18 T ELT))) +(((-1201 |#1| |#2|) (-13 (-961) (-1192 |#1|) (-332 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3951 ((-694) $)) (-15 -3950 (|#2| $)) (-15 -3949 (|#2| $)) (-15 -3953 ($ $)) (-15 -3948 (|#1| $ |#2|)) (-15 -3947 ((-85) $)) (-15 -3946 (|#1| $)) (-15 -3945 ((-85) $)) (-15 -3944 ($ $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-311)) (-15 -3943 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3982)) (-6 -3982) |%noBranch|) (IF (|has| |#1| (-6 -3986)) (-6 -3986) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961) (-754)) (T -1201)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-754)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-754))))) +((-2564 (((-85) $ $) 27 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 132 T ELT)) (-3956 (($ (-1193 |#1| |#2|)) 50 T ELT)) (-3941 (($ $ (-694)) 38 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 122 T ELT)) (-3945 (((-85) $) 117 T ELT)) (-3944 (($ $) 118 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3930 (($ $) NIL T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3949 (((-739 |#1|) $) 123 T ELT)) (-3950 (((-739 |#1|) $) 126 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3934 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3957 (((-1193 |#1| |#2|) $) 94 T ELT)) (-3942 (((-694) $) 129 T ELT)) (-3947 (((-85) $) 81 T ELT)) (-3946 ((|#2| $) 32 T ELT)) (-3940 (((-772) $) 73 T ELT) (($ (-483)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3121 (((-694)) 120 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 15 T CONST)) (-3955 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2662 (($) 33 T CONST)) (-3052 (((-85) $ $) 14 T ELT)) (-3831 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3833 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-483) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1202 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -3957 ((-1193 |#1| |#2|) $)) (-15 -3956 ($ (-1193 |#1| |#2|))) (-15 -3955 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1202)) +((-3957 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1202 *3 *4)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3959 (($ (-583 (-830))) 11 T ELT)) (-3958 (((-884) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT))) +(((-1203) (-13 (-1012) (-427 (-884)) (-10 -8 (-15 -3959 ($ (-583 (-830)))) (-15 -3958 ((-884) $))))) (T -1203)) +((-3959 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1203)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1203))))) +((-3960 (((-583 (-1067 |#1|)) (-1 (-583 (-1067 |#1|)) (-583 (-1067 |#1|))) (-483)) 16 T ELT) (((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|))) 13 T ELT))) +(((-1204 |#1|) (-10 -7 (-15 -3960 ((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|)))) (-15 -3960 ((-583 (-1067 |#1|)) (-1 (-583 (-1067 |#1|)) (-583 (-1067 |#1|))) (-483)))) (-1127)) (T -1204)) +((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1067 *5)) (-583 (-1067 *5)))) (-5 *4 (-483)) (-5 *2 (-583 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1127))))) +((-3962 (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3961 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3965 (((-583 (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3963 (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3964 (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3966 (((-583 (-703 |#1| (-773 |#3|))) (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1083 (-937 (-347 |#1|))) (-1083 |#1|)) 102 T ELT) (((-857 (-937 (-347 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-347 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT))) +(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)))) (-15 -3965 ((-583 (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3966 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3966 ((-857 (-937 (-347 |#1|))) (-857 |#1|))) (-15 -3966 ((-857 (-937 (-347 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3966 ((-1083 (-937 (-347 |#1|))) (-1083 |#1|))) (-15 -3966 ((-583 (-703 |#1| (-773 |#3|))) (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-257) (-120) (-933)) (-583 (-1088)) (-583 (-1088))) (T -1205)) +((-3966 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-1083 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088))) (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3961 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))) +((-3969 (((-3 (-1177 (-347 (-483))) #1="failed") (-1177 |#1|) |#1|) 21 T ELT)) (-3967 (((-85) (-1177 |#1|)) 12 T ELT)) (-3968 (((-3 (-1177 (-483)) #1#) (-1177 |#1|)) 16 T ELT))) +(((-1206 |#1|) (-10 -7 (-15 -3967 ((-85) (-1177 |#1|))) (-15 -3968 ((-3 (-1177 (-483)) #1="failed") (-1177 |#1|))) (-15 -3969 ((-3 (-1177 (-347 (-483))) #1#) (-1177 |#1|) |#1|))) (-13 (-961) (-580 (-483)))) (T -1206)) +((-3969 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-1177 (-347 (-483)))) (-5 *1 (-1206 *4)))) (-3968 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-1206 *4))))) +((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 12 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) 9 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 57 T ELT)) (-2990 (($) 46 T ELT)) (-2406 (((-85) $) 38 T ELT)) (-3439 (((-632 $) $) 36 T ELT)) (-2006 (((-830) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3440 (($) 26 T CONST)) (-2396 (($ (-830)) 47 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-483) $) 16 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-483)) 18 T ELT)) (-3121 (((-694)) 10 T CONST)) (-1262 (((-85) $ $) 59 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 25 T CONST)) (-3052 (((-85) $ $) 31 T ELT)) (-3831 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3833 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1207 |#1|) (-13 (-146) (-317) (-553 (-483)) (-1064)) (-830)) (T -1207)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2804797 2804802 2804807 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2804782 2804787 2804792 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2804767 2804772 2804777 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2804752 2804757 2804762 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1207 2803795 2804670 2804747 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1206 2803010 2803189 2803408 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1205 2794169 2796038 2797972 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1204 2793557 2793710 2793899 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1203 2793019 2793322 2793435 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1202 2790643 2792481 2792684 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1201 2787471 2789060 2789631 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1200 2784790 2786458 2786512 "XPOLYC" 2786797 XPOLYC (NIL T T) -9 NIL 2786910 NIL) (-1199 2782373 2784294 2784497 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1198 2778685 2781232 2781620 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1197 2773594 2775165 2775219 "XFALG" 2777364 XFALG (NIL T T) -9 NIL 2778148 NIL) (-1196 2768812 2771483 2771525 "XF" 2772143 XF (NIL T) -9 NIL 2772539 NIL) (-1195 2768530 2768640 2768807 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1194 2767757 2767879 2768083 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1193 2765563 2767657 2767752 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1192 2764206 2764939 2764981 "XALG" 2764986 XALG (NIL T) -9 NIL 2765095 NIL) (-1191 2757763 2762616 2763094 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1190 2756070 2757008 2757329 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1189 2755669 2755941 2756010 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1188 2755156 2755459 2755552 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1187 2754233 2754443 2754738 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1186 2752529 2752992 2753454 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1185 2751449 2752003 2752045 "VSPACE" 2752181 VSPACE (NIL T) -9 NIL 2752255 NIL) (-1184 2751320 2751353 2751444 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1183 2751163 2751217 2751285 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1182 2748146 2748941 2749678 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1181 2739244 2741845 2744018 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1180 2732821 2734712 2736291 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1179 2731305 2731700 2732106 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1178 2730132 2730413 2730729 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1177 2725246 2729959 2730051 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1176 2718348 2722956 2722999 "VECTCAT" 2723987 VECTCAT (NIL T) -9 NIL 2724571 NIL) (-1175 2717627 2717953 2718343 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1174 2717121 2717363 2717483 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1173 2717054 2717059 2717089 "UTYPE" 2717094 UTYPE (NIL) -9 NIL NIL NIL) (-1172 2716041 2716217 2716478 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1171 2713892 2714400 2714924 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1170 2703836 2709744 2709786 "UTSCAT" 2710884 UTSCAT (NIL T) -9 NIL 2711641 NIL) (-1169 2701901 2702844 2703831 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1168 2701575 2701624 2701755 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1167 2693350 2699771 2700250 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2687345 2690158 2690201 "URAGG" 2692271 URAGG (NIL T) -9 NIL 2692993 NIL) (-1165 2685360 2686322 2687340 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1164 2681131 2684336 2684798 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1163 2673624 2681055 2681126 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1162 2662337 2669762 2669823 "UPXSCCA" 2670391 UPXSCCA (NIL T T) -9 NIL 2670623 NIL) (-1161 2662058 2662160 2662332 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1160 2650672 2657822 2657864 "UPXSCAT" 2658504 UPXSCAT (NIL T) -9 NIL 2659112 NIL) (-1159 2650185 2650270 2650447 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1158 2641935 2649776 2650038 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1157 2640830 2641100 2641450 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1156 2633595 2637018 2637072 "UPSCAT" 2638141 UPSCAT (NIL T T) -9 NIL 2638905 NIL) (-1155 2633015 2633267 2633590 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1154 2632689 2632738 2632869 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1153 2616883 2625773 2625815 "UPOLYC" 2627893 UPOLYC (NIL T) -9 NIL 2629113 NIL) (-1152 2610938 2613786 2616878 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1151 2610374 2610499 2610662 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1150 2610008 2610095 2610234 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1149 2608821 2609088 2609392 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1148 2608154 2608284 2608469 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1147 2607746 2607821 2607968 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1146 2598574 2607512 2607640 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1145 2597936 2598073 2598278 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1144 2596537 2597384 2597660 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1143 2595766 2595963 2596188 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1142 2582640 2595690 2595761 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1141 2562554 2575727 2575788 "ULSCCAT" 2576419 ULSCCAT (NIL T T) -9 NIL 2576706 NIL) (-1140 2561889 2562175 2562549 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1139 2550323 2557395 2557437 "ULSCAT" 2558290 ULSCAT (NIL T) -9 NIL 2559020 NIL) (-1138 2549836 2549921 2550098 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1137 2532017 2549335 2549576 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1136 2531051 2531744 2531858 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2531969) (-1135 2530084 2530777 2530891 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2531002) (-1134 2529117 2529810 2529924 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2530035) (-1133 2528150 2528843 2528957 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2529068) (-1132 2526219 2527378 2527408 "UFD" 2527619 UFD (NIL) -9 NIL 2527732 NIL) (-1131 2526063 2526120 2526214 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1130 2525315 2525522 2525738 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1129 2523535 2523988 2524453 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1128 2523260 2523500 2523530 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1127 2523198 2523203 2523233 "TYPE" 2523238 TYPE (NIL) -9 NIL 2523245 NIL) (-1126 2522357 2522577 2522817 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1125 2521535 2521966 2522201 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1124 2519689 2520262 2520801 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1123 2518723 2518959 2519195 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1122 2507077 2511545 2511641 "TSETCAT" 2516856 TSETCAT (NIL T T T T) -9 NIL 2518368 NIL) (-1121 2503414 2505230 2507072 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1120 2497870 2502640 2502922 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1119 2493207 2494220 2495149 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1118 2492704 2492779 2492942 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1117 2490780 2491070 2491425 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1116 2490264 2490413 2490443 "TRIGCAT" 2490656 TRIGCAT (NIL) -9 NIL NIL NIL) (-1115 2490015 2490118 2490259 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1114 2487011 2489124 2489402 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1113 2486117 2486813 2486843 "TRANFUN" 2486878 TRANFUN (NIL) -9 NIL 2486944 NIL) (-1112 2485581 2485832 2486112 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1111 2485418 2485456 2485517 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1110 2484875 2485006 2485157 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1109 2483616 2484273 2484509 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1108 2483428 2483465 2483537 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1107 2481642 2482288 2482717 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1106 2480022 2480359 2480681 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1105 2471080 2477823 2477879 "TBAGG" 2478281 TBAGG (NIL T T) -9 NIL 2478494 NIL) (-1104 2467611 2469303 2471075 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1103 2467088 2467213 2467358 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1102 2466598 2466918 2467008 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1101 2466095 2466212 2466350 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1100 2459182 2465997 2466090 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1099 2454935 2456230 2457475 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1098 2454304 2454463 2454644 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1097 2451458 2452211 2452994 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1096 2451232 2451422 2451453 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1095 2450186 2450871 2450997 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2451183) (-1094 2449450 2449998 2450077 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2450137) (-1093 2446273 2447432 2448132 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1092 2443956 2444639 2445273 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1091 2440034 2441080 2442057 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1090 2437197 2439689 2439918 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1089 2436793 2436880 2437002 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1088 2433417 2434891 2435710 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1087 2426441 2432614 2432907 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2418191 2426032 2426294 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1085 2417470 2417609 2417826 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1084 2417154 2417219 2417330 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1083 2407941 2416866 2416991 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1082 2406671 2406969 2407324 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1081 2406076 2406154 2406345 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1080 2388292 2405575 2405816 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1079 2387891 2388163 2388232 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1078 2387227 2387508 2387648 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1077 2381829 2383088 2384041 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1076 2381361 2381461 2381625 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1075 2376472 2377754 2378901 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1074 2370930 2372401 2373712 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1073 2363845 2365909 2367700 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1072 2356675 2363757 2363840 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1071 2351369 2356389 2356504 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1070 2350956 2351039 2351183 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1069 2350107 2350308 2350543 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1068 2349847 2349905 2349998 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1067 2342585 2348052 2348658 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1066 2341761 2341966 2342197 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1065 2341006 2341377 2341524 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1064 2340494 2340736 2340766 "STEP" 2340860 STEP (NIL) -9 NIL 2340931 NIL) (-1063 2333597 2340412 2340489 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1062 2327812 2332395 2332438 "STAGG" 2332865 STAGG (NIL T) -9 NIL 2333039 NIL) (-1061 2326191 2326939 2327807 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1060 2324348 2326018 2326110 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1059 2323659 2324167 2324197 "SRING" 2324202 SRING (NIL) -9 NIL 2324222 NIL) (-1058 2316281 2322197 2322636 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2310055 2311494 2312998 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1056 2302480 2307391 2307421 "SRAGG" 2308720 SRAGG (NIL) -9 NIL 2309324 NIL) (-1055 2301777 2302097 2302475 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1054 2295896 2301099 2301522 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1053 2290109 2293278 2294000 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1052 2286538 2287357 2287994 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1051 2285513 2285818 2285848 "SPFCAT" 2286292 SPFCAT (NIL) -9 NIL NIL NIL) (-1050 2284450 2284702 2284966 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1049 2275208 2277482 2277512 "SPADXPT" 2282149 SPADXPT (NIL) -9 NIL 2284273 NIL) (-1048 2275010 2275056 2275125 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1047 2272666 2274974 2275005 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1046 2264340 2266429 2266471 "SPACEC" 2270786 SPACEC (NIL T) -9 NIL 2272591 NIL) (-1045 2262169 2264287 2264335 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1044 2261102 2261291 2261580 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1043 2259506 2259839 2260250 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1042 2258771 2259005 2259266 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1041 2254951 2255911 2256906 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1040 2251309 2252008 2252737 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1039 2245095 2250649 2250745 "SNTSCAT" 2250750 SNTSCAT (NIL T T T T) -9 NIL 2250820 NIL) (-1038 2238980 2243736 2244126 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1037 2232816 2238899 2238975 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1036 2231248 2231579 2231977 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1035 2222917 2227832 2227934 "SMATCAT" 2229277 SMATCAT (NIL NIL T T T) -9 NIL 2229825 NIL) (-1034 2220758 2221742 2222912 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1033 2218350 2219964 2220007 "SKAGG" 2220268 SKAGG (NIL T) -9 NIL 2220402 NIL) (-1032 2214460 2218170 2218281 "SINT" NIL SINT (NIL) -8 NIL NIL 2218322) (-1031 2214270 2214314 2214380 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1030 2213345 2213577 2213845 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1029 2212349 2212511 2212787 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1028 2211695 2212035 2212158 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1027 2211041 2211348 2211488 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1026 2209152 2209644 2210150 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1025 2202691 2209071 2209147 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1024 2202194 2202431 2202461 "SGROUP" 2202554 SGROUP (NIL) -9 NIL 2202616 NIL) (-1023 2202084 2202116 2202189 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1022 2201722 2201762 2201803 "SGPOPC" 2201808 SGPOPC (NIL T) -9 NIL 2202009 NIL) (-1021 2201256 2201533 2201639 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1020 2198679 2199448 2200170 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1019 2192564 2198118 2198214 "SFRTCAT" 2198219 SFRTCAT (NIL T T T T) -9 NIL 2198257 NIL) (-1018 2186956 2188069 2189196 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1017 2181132 2182293 2183457 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1016 2180104 2181006 2181127 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1015 2175712 2176607 2176702 "SEXCAT" 2179315 SEXCAT (NIL T T T T T) -9 NIL 2179866 NIL) (-1014 2174685 2175639 2175707 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1013 2173076 2173661 2173963 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1012 2172599 2172784 2172814 "SETCAT" 2172931 SETCAT (NIL) -9 NIL 2173015 NIL) (-1011 2172431 2172495 2172594 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1010 2168654 2170885 2170928 "SETAGG" 2171796 SETAGG (NIL T) -9 NIL 2172134 NIL) (-1009 2168260 2168412 2168649 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1008 2165214 2168207 2168255 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1007 2164680 2164990 2165090 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1006 2163807 2164173 2164234 "SEGXCAT" 2164520 SEGXCAT (NIL T T) -9 NIL 2164640 NIL) (-1005 2162732 2163000 2163043 "SEGCAT" 2163565 SEGCAT (NIL T) -9 NIL 2163786 NIL) (-1004 2162412 2162477 2162590 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1003 2161478 2161948 2162156 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1002 2161056 2161335 2161411 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1001 2160421 2160557 2160761 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1000 2159487 2160234 2160416 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-999 2158742 2159437 2159482 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-998 2150343 2158613 2158737 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-997 2149203 2149493 2149810 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-996 2148509 2148721 2148909 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-995 2147859 2148016 2148192 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-994 2147432 2147663 2147691 "SASTCAT" 2147696 SASTCAT (NIL) -9 NIL 2147709 NIL) (-993 2146899 2147324 2147398 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-992 2146502 2146543 2146714 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-991 2146133 2146174 2146331 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-990 2139278 2146050 2146128 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-989 2137928 2138257 2138653 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-988 2136689 2137050 2137350 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-987 2136313 2136534 2136615 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-986 2133773 2134407 2134860 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-985 2133612 2133645 2133713 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-984 2133103 2133406 2133497 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-983 2128731 2129599 2130510 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-982 2117550 2123104 2123198 "RSETCAT" 2127254 RSETCAT (NIL T T T T) -9 NIL 2128342 NIL) (-981 2116088 2116730 2117545 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-980 2109862 2111307 2112814 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-979 2107744 2108301 2108373 "RRCC" 2109446 RRCC (NIL T T) -9 NIL 2109787 NIL) (-978 2107269 2107468 2107739 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-977 2106739 2107049 2107147 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-976 2079355 2090004 2090068 "RPOLCAT" 2100542 RPOLCAT (NIL T T T) -9 NIL 2103687 NIL) (-975 2073454 2076277 2079350 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-974 2069685 2073202 2073340 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-973 2068013 2068752 2069008 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-972 2063718 2066468 2066496 "RNS" 2066758 RNS (NIL) -9 NIL 2067010 NIL) (-971 2062621 2063108 2063645 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-970 2061739 2062140 2062340 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-969 2061027 2061527 2061555 "RNG" 2061560 RNG (NIL) -9 NIL 2061581 NIL) (-968 2060320 2060794 2060834 "RMODULE" 2060839 RMODULE (NIL T) -9 NIL 2060865 NIL) (-967 2059259 2059365 2059695 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2056137 2058849 2059142 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2048817 2051278 2051390 "RMATCAT" 2054695 RMATCAT (NIL NIL NIL T T T) -9 NIL 2055672 NIL) (-964 2048334 2048513 2048812 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2047902 2048113 2048154 "RLINSET" 2048215 RLINSET (NIL T) -9 NIL 2048259 NIL) (-962 2047547 2047628 2047754 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2046455 2047124 2047152 "RING" 2047207 RING (NIL) -9 NIL 2047299 NIL) (-960 2046300 2046356 2046450 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2045354 2045621 2045877 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2036341 2044982 2045183 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2035597 2036077 2036116 "RGBCSPC" 2036173 RGBCSPC (NIL T) -9 NIL 2036224 NIL) (-956 2034662 2035117 2035156 "RGBCMDL" 2035384 RGBCMDL (NIL T) -9 NIL 2035498 NIL) (-955 2034374 2034443 2034544 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2034137 2034178 2034273 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2032561 2032991 2033371 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2030148 2030816 2031484 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2029698 2029796 2029956 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2029320 2029418 2029459 "RETRACT" 2029590 RETRACT (NIL T) -9 NIL 2029677 NIL) (-949 2029200 2029231 2029315 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2028802 2029074 2029141 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2027346 2028173 2028370 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2027037 2027098 2027194 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2026780 2026821 2026926 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2026515 2026556 2026665 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2021586 2023037 2024252 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2018685 2019443 2020251 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2016654 2017276 2017876 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 2009289 2015205 2015641 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 2008601 2008881 2009030 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 2008086 2008201 2008366 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 2003743 2007489 2007710 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 2002975 2003174 2003387 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 2000265 2001103 2001985 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 1996847 1997883 1998942 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 1996683 1996736 1996764 "REAL" 1996769 REAL (NIL) -9 NIL 1996804 NIL) (-932 1996173 1996477 1996568 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 1995653 1995731 1995936 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 1994886 1995078 1995289 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 1993774 1994071 1994438 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 1992041 1992511 1993044 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 1990963 1991240 1991627 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 1989790 1990099 1990518 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1983202 1986650 1986678 "RCFIELD" 1987955 RCFIELD (NIL) -9 NIL 1988685 NIL) (-924 1981820 1982432 1983129 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1978020 1979912 1979953 "RCAGG" 1981020 RCAGG (NIL T) -9 NIL 1981481 NIL) (-922 1977747 1977857 1978015 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1977192 1977321 1977482 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1976809 1976888 1977007 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1976224 1976374 1976524 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1976006 1976056 1976127 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1968512 1975124 1975432 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1958278 1968379 1968507 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1957912 1958005 1958033 "RADCAT" 1958190 RADCAT (NIL) -9 NIL NIL NIL) (-914 1957750 1957810 1957907 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1955850 1957581 1957670 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1955531 1955580 1955707 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1947882 1951902 1951942 "QUATCAT" 1952720 QUATCAT (NIL T) -9 NIL 1953484 NIL) (-910 1945132 1946412 1947788 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1941036 1945082 1945127 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1938423 1940090 1940131 "QUAGG" 1940506 QUAGG (NIL T) -9 NIL 1940680 NIL) (-907 1938025 1938297 1938364 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1937063 1937661 1937824 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1936744 1936793 1936920 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1926431 1932538 1932578 "QFCAT" 1933236 QFCAT (NIL T) -9 NIL 1934229 NIL) (-903 1923315 1924754 1926337 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1922861 1922995 1923125 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1917057 1918218 1919380 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1916476 1916656 1916888 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1914298 1914826 1915249 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1913197 1913439 1913756 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1911558 1911756 1912109 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1907314 1908530 1908571 "PTRANFN" 1910455 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1905961 1906306 1906627 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1905654 1905717 1905824 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1899727 1904450 1904490 "PTCAT" 1904782 PTCAT (NIL T) -9 NIL 1904935 NIL) (-892 1899420 1899461 1899585 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1898299 1898615 1898949 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1887178 1889739 1892048 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1880085 1882981 1883075 "PSETCAT" 1886049 PSETCAT (NIL T T T T) -9 NIL 1886856 NIL) (-888 1878535 1879269 1880080 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1877854 1878049 1878077 "PSCURVE" 1878345 PSCURVE (NIL) -9 NIL 1878512 NIL) (-886 1873518 1875276 1875340 "PSCAT" 1876175 PSCAT (NIL T T T) -9 NIL 1876414 NIL) (-885 1872832 1873114 1873513 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1871261 1872144 1872407 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1870752 1871055 1871146 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1861772 1864194 1866382 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1859515 1861092 1861132 "PRQAGG" 1861315 PRQAGG (NIL T) -9 NIL 1861416 NIL) (-880 1858688 1859134 1859162 "PROPLOG" 1859301 PROPLOG (NIL) -9 NIL 1859415 NIL) (-879 1858363 1858426 1858549 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1857799 1857938 1858110 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1856047 1856810 1857107 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1855599 1855731 1855859 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1850255 1854539 1855359 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1850084 1850122 1850181 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1849523 1849663 1849814 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1847991 1848410 1848876 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1847708 1847769 1847797 "PRIMCAT" 1847921 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1846879 1847075 1847303 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1842757 1846829 1846874 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1842456 1842518 1842629 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1839656 1842105 1842338 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1839107 1839264 1839292 "PPCURVE" 1839497 PPCURVE (NIL) -9 NIL 1839633 NIL) (-865 1838720 1838965 1839048 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1836476 1836897 1837489 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1835919 1835983 1836216 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1832639 1833125 1833736 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1818294 1824359 1824423 "POLYCAT" 1827908 POLYCAT (NIL T T T) -9 NIL 1829785 NIL) (-860 1813804 1815951 1818289 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1813461 1813535 1813654 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1813154 1813217 1813324 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1806581 1812887 1813046 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1805468 1805731 1806007 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1804072 1804385 1804715 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1799234 1804022 1804067 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1797722 1798133 1798508 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1796479 1796788 1797184 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1796150 1796234 1796351 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1795729 1795804 1795978 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1795215 1795311 1795471 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1794687 1794807 1794961 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1793582 1793800 1794177 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1793193 1793278 1793430 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1792744 1792826 1793007 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1792436 1792517 1792630 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1791949 1792024 1792232 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1791297 1791425 1791627 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1790659 1790793 1790956 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1789963 1790145 1790326 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1789686 1789760 1789854 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1786254 1787443 1788359 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1785338 1785539 1785774 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1780903 1782287 1783429 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1760824 1765711 1770558 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1760564 1760617 1760720 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1760005 1760139 1760319 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1758076 1759235 1759263 "PID" 1759460 PID (NIL) -9 NIL 1759587 NIL) (-831 1757864 1757907 1757982 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1757051 1757711 1757798 "PI" NIL PI (NIL) -8 NIL NIL 1757838) (-829 1756503 1756654 1756830 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1752831 1753789 1754694 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1751195 1751484 1751850 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1750637 1750752 1750913 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1747242 1749506 1749859 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1745848 1746128 1746453 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1744613 1744867 1745215 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1743323 1743550 1743902 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1740395 1741893 1741921 "PFECAT" 1742514 PFECAT (NIL) -9 NIL 1742891 NIL) (-820 1740018 1740183 1740390 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1738842 1739124 1739425 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1737024 1737411 1737841 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1733058 1736950 1737019 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1728961 1730108 1730975 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1726893 1727982 1728023 "PERMCAT" 1728422 PERMCAT (NIL T) -9 NIL 1728719 NIL) (-814 1726589 1726636 1726759 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1723038 1724719 1725364 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1720503 1722793 1722914 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1719372 1719635 1719676 "PDSPC" 1720209 PDSPC (NIL T) -9 NIL 1720454 NIL) (-810 1718739 1719005 1719367 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1717436 1718367 1718408 "PDRING" 1718413 PDRING (NIL T) -9 NIL 1718440 NIL) (-808 1716177 1716935 1716988 "PDMOD" 1716993 PDMOD (NIL T T) -9 NIL 1717096 NIL) (-807 1715270 1715482 1715731 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1714875 1714942 1714996 "PDDOM" 1715161 PDDOM (NIL T T) -9 NIL 1715241 NIL) (-805 1714727 1714763 1714870 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1714513 1714552 1714641 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1712830 1713584 1713883 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1712519 1712582 1712691 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1710657 1711087 1711538 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1704277 1706106 1707398 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1703908 1703981 1704113 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1701610 1702290 1702771 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1699814 1700242 1700645 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1699260 1699508 1699549 "PATMAB" 1699656 PATMAB (NIL T) -9 NIL 1699739 NIL) (-795 1697907 1698311 1698568 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1697445 1697576 1697617 "PATAB" 1697622 PATAB (NIL T) -9 NIL 1697794 NIL) (-793 1695988 1696425 1696848 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1695666 1695741 1695843 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1695355 1695418 1695527 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1695160 1695206 1695273 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1694838 1694913 1695015 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1694527 1694590 1694699 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1694218 1694288 1694385 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1693907 1693970 1694079 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1693068 1693447 1693626 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1692675 1692773 1692892 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1691643 1692068 1692287 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1690308 1690962 1691322 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1683462 1689712 1689906 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1675947 1682960 1683144 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1672734 1674587 1674627 "PADICCT" 1675208 PADICCT (NIL NIL) -9 NIL 1675490 NIL) (-778 1670788 1672684 1672729 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1669950 1670160 1670426 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1669292 1669435 1669639 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1667737 1668700 1668978 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1667261 1667520 1667617 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1666320 1666998 1667170 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1656742 1659611 1661810 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1656134 1656448 1656574 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1655411 1655606 1655634 "OUTBCON" 1655952 OUTBCON (NIL) -9 NIL 1656118 NIL) (-769 1655119 1655249 1655406 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1654500 1654645 1654806 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1653871 1654298 1654387 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1653286 1653701 1653729 "OSGROUP" 1653734 OSGROUP (NIL) -9 NIL 1653756 NIL) (-765 1652250 1652511 1652796 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1649583 1652125 1652245 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1646788 1649334 1649460 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1644806 1645334 1645894 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1638210 1640688 1640728 "OREPCAT" 1643049 OREPCAT (NIL T) -9 NIL 1644151 NIL) (-760 1636236 1637170 1638205 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1635433 1635704 1635732 "ORDTYPE" 1636037 ORDTYPE (NIL) -9 NIL 1636195 NIL) (-758 1634967 1635178 1635428 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1634429 1634805 1634962 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1633923 1634286 1634314 "ORDSET" 1634319 ORDSET (NIL) -9 NIL 1634341 NIL) (-755 1632563 1633523 1633551 "ORDRING" 1633556 ORDRING (NIL) -9 NIL 1633584 NIL) (-754 1631811 1632368 1632396 "ORDMON" 1632401 ORDMON (NIL) -9 NIL 1632422 NIL) (-753 1631115 1631277 1631469 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1630326 1630834 1630862 "ORDFIN" 1630927 ORDFIN (NIL) -9 NIL 1631001 NIL) (-751 1629720 1629859 1630045 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1626494 1628688 1629094 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1625901 1626256 1626361 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1625709 1625754 1625820 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1625010 1625286 1625327 "OPERCAT" 1625538 OPERCAT (NIL T) -9 NIL 1625634 NIL) (-746 1624822 1624889 1625005 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1622252 1623624 1624120 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1621673 1621800 1621974 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1618673 1620812 1621178 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1615304 1618103 1618143 "OMSAGG" 1618204 OMSAGG (NIL T) -9 NIL 1618268 NIL) (-741 1613780 1614975 1615143 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1612051 1613230 1613258 "OINTDOM" 1613263 OINTDOM (NIL) -9 NIL 1613284 NIL) (-739 1609481 1611053 1611382 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1608735 1609431 1609476 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1606001 1608576 1608730 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1597602 1605872 1605996 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1591112 1597493 1597597 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1590084 1590321 1590594 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1587718 1588388 1589092 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1583495 1584455 1585478 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1583003 1583091 1583285 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1580452 1581034 1581707 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1577847 1578355 1578951 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1574844 1575383 1576029 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1574199 1574307 1574565 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1573357 1573482 1573703 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1569641 1570437 1571350 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1569081 1569176 1569398 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1568762 1568811 1568938 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1565429 1568561 1568680 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1564620 1565211 1565239 "OCAMON" 1565244 OCAMON (NIL) -9 NIL 1565265 NIL) (-720 1558896 1561646 1561686 "OC" 1562781 OC (NIL T) -9 NIL 1563637 NIL) (-719 1556896 1557822 1558802 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1556312 1556730 1556758 "OASGP" 1556763 OASGP (NIL) -9 NIL 1556783 NIL) (-717 1555406 1556024 1556052 "OAMONS" 1556092 OAMONS (NIL) -9 NIL 1556135 NIL) (-716 1554582 1555132 1555160 "OAMON" 1555217 OAMON (NIL) -9 NIL 1555268 NIL) (-715 1554478 1554510 1554577 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1553260 1554003 1554031 "OAGROUP" 1554177 OAGROUP (NIL) -9 NIL 1554269 NIL) (-713 1553051 1553138 1553255 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1552791 1552847 1552935 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1547853 1549416 1550943 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1544548 1545582 1546617 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1543658 1543891 1544109 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1532519 1535547 1537995 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1526406 1531960 1532054 "NTSCAT" 1532059 NTSCAT (NIL T T T T) -9 NIL 1532097 NIL) (-706 1525747 1525926 1526119 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1525440 1525503 1525610 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1513171 1523060 1523870 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1502244 1513036 1513166 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1500964 1501289 1501646 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1499800 1500064 1500422 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1498967 1499100 1499316 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1497285 1497604 1498010 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1496998 1497032 1497156 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1496817 1496852 1496921 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1496593 1496783 1496812 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1496157 1496224 1496401 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1494475 1495520 1495775 "NNI" NIL NNI (NIL) -8 NIL NIL 1496122) (-693 1493203 1493540 1493904 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1492180 1492432 1492734 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1491267 1491832 1491873 "NETCLT" 1492044 NETCLT (NIL T) -9 NIL 1492125 NIL) (-690 1490171 1490438 1490719 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1489970 1490013 1490088 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1488501 1488889 1489309 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1487165 1488100 1488128 "NASRING" 1488238 NASRING (NIL) -9 NIL 1488318 NIL) (-686 1487010 1487066 1487160 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1485970 1486617 1486645 "NARNG" 1486762 NARNG (NIL) -9 NIL 1486853 NIL) (-684 1485746 1485831 1485965 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1484543 1485266 1485306 "NAALG" 1485385 NAALG (NIL T) -9 NIL 1485446 NIL) (-682 1484413 1484448 1484538 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1479392 1480577 1481763 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1478787 1478874 1479058 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1470861 1475291 1475343 "MTSCAT" 1476403 MTSCAT (NIL T T) -9 NIL 1476917 NIL) (-678 1470627 1470687 1470779 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1470453 1470492 1470552 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1467315 1470004 1470045 "MSETAGG" 1470050 MSETAGG (NIL T) -9 NIL 1470084 NIL) (-675 1463452 1466361 1466679 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1459790 1461549 1462289 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1459427 1459500 1459629 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1459080 1459121 1459265 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1456945 1457282 1457713 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1450407 1456844 1456940 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1449932 1449973 1450181 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1449491 1449540 1449723 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1448765 1448858 1449077 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1447382 1447743 1448133 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1446903 1446970 1447009 "MONOPC" 1447069 MONOPC (NIL T) -9 NIL 1447288 NIL) (-664 1446403 1446710 1446818 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1445545 1445924 1445952 "MONOID" 1446170 MONOID (NIL) -9 NIL 1446314 NIL) (-662 1445204 1445354 1445540 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1434204 1441012 1441071 "MONOGEN" 1441745 MONOGEN (NIL T T) -9 NIL 1442201 NIL) (-660 1432216 1433102 1434085 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1430930 1431474 1431502 "MONADWU" 1431893 MONADWU (NIL) -9 NIL 1432128 NIL) (-658 1430478 1430678 1430925 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1429755 1430056 1430084 "MONAD" 1430291 MONAD (NIL) -9 NIL 1430403 NIL) (-656 1429522 1429618 1429750 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1427912 1428682 1428961 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1427077 1427573 1427613 "MODULE" 1427618 MODULE (NIL T) -9 NIL 1427656 NIL) (-653 1426756 1426882 1427072 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1424531 1425353 1425667 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1421774 1423127 1423640 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1420408 1420982 1421258 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1409691 1419073 1419486 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1406711 1408691 1408960 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1405795 1406162 1406352 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1405364 1405413 1405592 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1403251 1404185 1404225 "MLO" 1404642 MLO (NIL T) -9 NIL 1404882 NIL) (-644 1401132 1401659 1402254 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1400600 1400696 1400850 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1400270 1400346 1400469 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1399482 1399668 1399896 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1398975 1399091 1399247 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1398347 1398461 1398646 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1397374 1397647 1397924 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1396807 1396895 1397066 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1393965 1394844 1395723 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1392632 1392980 1393333 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1389289 1391756 1391797 "MDAGG" 1392054 MDAGG (NIL T) -9 NIL 1392199 NIL) (-633 1388563 1388727 1388927 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1387641 1387927 1388157 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1385738 1386315 1386876 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1381509 1385328 1385575 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1377858 1378627 1379361 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1376611 1376780 1377109 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1366124 1369713 1369789 "MATCAT" 1374777 MATCAT (NIL T T T) -9 NIL 1376245 NIL) (-626 1363405 1364711 1366119 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1361806 1362166 1362550 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1360939 1361136 1361358 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1359690 1360016 1360343 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1358852 1359254 1359430 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1358521 1358585 1358708 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1358169 1358242 1358356 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1357704 1357819 1357961 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1355913 1356681 1356982 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1355407 1355709 1355799 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1348916 1353722 1353763 "LZSTAGG" 1354540 LZSTAGG (NIL T) -9 NIL 1354830 NIL) (-615 1346035 1347469 1348911 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1343422 1344388 1344871 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1343003 1343282 1343356 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1335231 1342864 1342998 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1334594 1334739 1334967 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1332078 1332776 1333488 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1330190 1330513 1330961 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1323359 1329277 1329318 "LSAGG" 1329380 LSAGG (NIL T) -9 NIL 1329458 NIL) (-607 1321053 1322152 1323354 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1318565 1320402 1320651 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1318232 1318323 1318446 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1317903 1317982 1318010 "LOGIC" 1318121 LOGIC (NIL) -9 NIL 1318203 NIL) (-603 1317798 1317827 1317898 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1317117 1317275 1317468 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1315902 1316151 1316502 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1311788 1314523 1314563 "LODOCAT" 1314995 LODOCAT (NIL T) -9 NIL 1315206 NIL) (-599 1311581 1311657 1311783 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1308645 1311458 1311576 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1305807 1308595 1308640 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1302958 1305737 1305802 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1302011 1302186 1302488 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1300175 1301273 1301526 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1295270 1298334 1298375 "LNAGG" 1299237 LNAGG (NIL T) -9 NIL 1299672 NIL) (-592 1294657 1294924 1295265 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1291229 1292170 1292807 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1290522 1290996 1291036 "LMODULE" 1291041 LMODULE (NIL T) -9 NIL 1291067 NIL) (-589 1287701 1290259 1290381 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1287269 1287480 1287521 "LLINSET" 1287582 LLINSET (NIL T) -9 NIL 1287626 NIL) (-587 1286945 1287205 1287264 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1286544 1286624 1286763 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1284995 1285343 1285742 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1284166 1284362 1284590 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1277213 1283422 1283676 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1276790 1277023 1277064 "LINSET" 1277069 LINSET (NIL T) -9 NIL 1277102 NIL) (-581 1275723 1276413 1276580 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1274020 1274744 1274784 "LINEXP" 1275270 LINEXP (NIL T) -9 NIL 1275543 NIL) (-579 1272729 1273629 1273810 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1271556 1271828 1272130 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1270769 1271358 1271468 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1268319 1269041 1269791 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1266949 1267246 1267637 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1265773 1266344 1266384 "LIECAT" 1266524 LIECAT (NIL T) -9 NIL 1266675 NIL) (-573 1265647 1265680 1265768 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1259935 1265337 1265565 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1252284 1259611 1259767 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1248736 1249685 1250620 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1247360 1248268 1248296 "LFCAT" 1248503 LFCAT (NIL) -9 NIL 1248642 NIL) (-568 1245599 1245929 1246274 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1243116 1243781 1244462 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1240128 1241106 1241609 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1239619 1239922 1240013 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1238326 1238650 1239050 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1237592 1237677 1237903 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1232659 1236160 1236696 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1232284 1232334 1232494 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1231117 1231828 1231868 "LALG" 1231929 LALG (NIL T) -9 NIL 1231987 NIL) (-559 1230900 1230977 1231112 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1228817 1230168 1230419 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1228646 1228676 1228717 "KVTFROM" 1228779 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1227462 1228177 1228366 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1227291 1227321 1227362 "KRCFROM" 1227424 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1226393 1226590 1226885 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1226222 1226252 1226293 "KONVERT" 1226355 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1226051 1226081 1226122 "KOERCE" 1226184 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1225621 1225714 1225846 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1223674 1224568 1224940 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1216851 1221866 1221920 "KDAGG" 1222296 KDAGG (NIL T T) -9 NIL 1222503 NIL) (-548 1216499 1216641 1216846 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1209329 1216280 1216437 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1208979 1209261 1209324 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1207949 1208448 1208697 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1207075 1207524 1207729 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1205939 1206431 1206731 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1205221 1205620 1205781 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1204931 1205167 1205216 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1199218 1204621 1204849 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1198636 1198969 1199089 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1194798 1196813 1196867 "IXAGG" 1197794 IXAGG (NIL T T) -9 NIL 1198251 NIL) (-537 1194004 1194375 1194793 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1189258 1193940 1193999 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-535 1188225 1188500 1188763 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-534 1186887 1187094 1187387 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-533 1185838 1186060 1186343 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-532 1185513 1185576 1185699 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-531 1184775 1185147 1185321 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-530 1182815 1184051 1184325 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-529 1172427 1178132 1179289 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-528 1171672 1171824 1172060 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-527 1171163 1171466 1171557 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-526 1170456 1170547 1170760 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-525 1169588 1169813 1170053 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-524 1168001 1168382 1168810 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-523 1167786 1167830 1167906 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-522 1166636 1166933 1167228 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-521 1165909 1166260 1166411 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-520 1165112 1165243 1165456 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-519 1163267 1163764 1164308 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-518 1160380 1161616 1162305 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-517 1160205 1160245 1160305 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-516 1156267 1160131 1160200 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-515 1154334 1156206 1156262 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-514 1153705 1154004 1154134 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-513 1153158 1153446 1153578 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-512 1152239 1152864 1152990 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-511 1151649 1152143 1152171 "IOBCON" 1152176 IOBCON (NIL) -9 NIL 1152197 NIL) (-510 1151220 1151284 1151466 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-509 1143264 1145635 1147960 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-508 1140375 1141158 1142022 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-507 1140052 1140149 1140266 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-506 1137558 1139988 1140047 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-505 1135670 1136199 1136766 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-504 1135172 1135286 1135426 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-503 1133556 1133962 1134424 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-502 1131335 1131929 1132540 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-501 1128708 1129318 1130038 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-500 1128112 1128270 1128478 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-499 1127631 1127717 1127905 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-498 1125836 1126357 1126814 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-497 1118918 1120571 1122300 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-496 1118284 1118446 1118619 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-495 1116157 1116621 1117165 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-494 1114345 1115233 1115261 "INTDOM" 1115560 INTDOM (NIL) -9 NIL 1115765 NIL) (-493 1113898 1114100 1114340 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-492 1109769 1112177 1112231 "INTCAT" 1113027 INTCAT (NIL T) -9 NIL 1113343 NIL) (-491 1109334 1109454 1109581 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-490 1108174 1108346 1108652 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-489 1107747 1107843 1108000 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-488 1100787 1107602 1107742 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-487 1100085 1100640 1100705 "INT8" NIL INT8 (NIL) -8 NIL NIL 1100739) (-486 1099382 1099937 1100002 "INT64" NIL INT64 (NIL) -8 NIL NIL 1100036) (-485 1098679 1099234 1099299 "INT32" NIL INT32 (NIL) -8 NIL NIL 1099333) (-484 1097976 1098531 1098596 "INT16" NIL INT16 (NIL) -8 NIL NIL 1098630) (-483 1094503 1097895 1097971 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-482 1088624 1092043 1092071 "INS" 1093001 INS (NIL) -9 NIL 1093660 NIL) (-481 1086686 1087604 1088551 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-480 1085745 1085968 1086243 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-479 1084959 1085100 1085297 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-478 1083949 1084090 1084327 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-477 1083101 1083265 1083525 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-476 1082381 1082496 1082684 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-475 1081120 1081389 1081713 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-474 1080400 1080541 1080724 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-473 1080063 1080135 1080233 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-472 1077141 1078627 1079150 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-471 1076740 1076847 1076961 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-470 1075896 1076541 1076642 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-469 1074746 1075014 1075335 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-468 1073818 1074676 1074741 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-467 1073443 1073523 1073640 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-466 1072357 1072902 1073106 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-465 1068452 1069507 1070450 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-464 1067306 1067629 1067657 "INBCON" 1068170 INBCON (NIL) -9 NIL 1068436 NIL) (-463 1066760 1067025 1067301 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-462 1066254 1066556 1066646 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-461 1065711 1066020 1066125 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-460 1061811 1065603 1065706 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-459 1060651 1060790 1061105 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-458 1059075 1059342 1059679 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-457 1056891 1058957 1059070 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-456 1051798 1056822 1056886 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-455 1051178 1051512 1051627 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-454 1045985 1050616 1050802 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-453 1045047 1045907 1045980 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-452 1044619 1044696 1044750 "IEVALAB" 1044957 IEVALAB (NIL T T) -9 NIL NIL NIL) (-451 1044374 1044454 1044614 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-450 1043447 1044294 1044369 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-449 1042589 1043367 1043442 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-448 1041992 1042523 1042584 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-447 1040472 1040996 1041047 "IDPC" 1041553 IDPC (NIL T T) -9 NIL 1041833 NIL) (-446 1039838 1040394 1040467 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-445 1039087 1039760 1039833 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-444 1038780 1038993 1039053 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-443 1038484 1038524 1038563 "IDEMOPC" 1038568 IDEMOPC (NIL T) -9 NIL 1038705 NIL) (-442 1035555 1036436 1037328 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-441 1029181 1030458 1031497 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-440 1028443 1028573 1028772 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-439 1027616 1028115 1028253 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-438 1026005 1026336 1026727 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-437 1021774 1025961 1026000 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-436 1019032 1019656 1020351 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-435 1017258 1017738 1018271 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-434 1015022 1017150 1017253 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-433 1010891 1014960 1015017 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-432 1004534 1009855 1010323 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-431 1004102 1004165 1004338 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-430 1003594 1003743 1003771 "HYPCAT" 1003978 HYPCAT (NIL) -9 NIL NIL NIL) (-429 1003250 1003403 1003589 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-428 1002863 1003108 1003191 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-427 1002696 1002745 1002786 "HOMOTOP" 1002791 HOMOTOP (NIL T) -9 NIL 1002824 NIL) (-426 999264 1000638 1000679 "HOAGG" 1001654 HOAGG (NIL T) -9 NIL 1002375 NIL) (-425 998270 998740 999259 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-424 991534 997995 998143 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-423 990469 990727 990990 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-422 989436 990334 990464 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-421 987630 989269 989357 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-420 986945 987297 987430 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-419 980498 986878 986940 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-418 973701 980234 980385 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-417 973154 973311 973474 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-416 966237 973045 973149 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-415 965728 966031 966122 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-414 963342 965515 965694 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-413 958735 963225 963337 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-412 951821 958632 958730 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-411 943822 951190 951445 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-410 942846 943355 943383 "GROUP" 943586 GROUP (NIL) -9 NIL 943720 NIL) (-409 942389 942590 942841 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-408 941061 941400 941787 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-407 939883 940240 940291 "GRMOD" 940820 GRMOD (NIL T T) -9 NIL 940986 NIL) (-406 939702 939750 939878 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-405 935825 937036 938036 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-404 934547 934871 935186 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-403 934100 934228 934369 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-402 933173 933672 933723 "GRALG" 933876 GRALG (NIL T T) -9 NIL 933966 NIL) (-401 932892 932993 933168 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-400 929609 932574 932750 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-399 929022 929085 929342 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-398 924908 925772 926297 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-397 924083 924285 924523 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-396 919086 920013 921032 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-395 918834 918891 918980 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-394 918316 918405 918570 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-393 917825 917866 918079 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-392 916626 916909 917213 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-391 909965 916316 916477 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-390 899780 904755 905859 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-389 897894 898935 898963 "GCDDOM" 899218 GCDDOM (NIL) -9 NIL 899375 NIL) (-388 897517 897674 897889 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-387 888310 890780 893168 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-386 886445 886770 887188 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-385 885386 885575 885842 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-384 884257 884464 884768 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-383 883720 883862 884010 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-382 882332 882680 882993 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-381 880877 881198 881520 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-380 878503 878859 879264 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-379 871755 873416 874994 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-378 871407 871628 871696 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-377 871031 871252 871333 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-376 869128 869811 870271 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-375 867721 868028 868420 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-374 866376 866735 867059 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-373 865679 865803 865990 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-372 864653 864919 865266 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-371 862311 862841 863323 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-370 861894 861954 862123 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-369 860258 861108 861411 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-368 859406 859540 859763 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-367 858577 858738 858965 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-366 854560 857511 857552 "FSAGG" 857922 FSAGG (NIL T) -9 NIL 858181 NIL) (-365 852914 853673 854465 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-364 850870 851166 851710 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-363 849917 850099 850399 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-362 849598 849647 849774 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-361 829853 839255 839296 "FS" 843166 FS (NIL T) -9 NIL 845444 NIL) (-360 822084 825577 829556 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-359 821618 821745 821897 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-358 816172 819299 819339 "FRNAALG" 820659 FRNAALG (NIL T) -9 NIL 821257 NIL) (-357 812913 814164 815422 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-356 812594 812643 812770 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-355 811081 811638 811932 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-354 810367 810460 810747 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-353 808201 808967 809283 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-352 807310 807753 807794 "FRETRCT" 807799 FRETRCT (NIL T) -9 NIL 807970 NIL) (-351 806683 806961 807305 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-350 803489 804947 805006 "FRAMALG" 805888 FRAMALG (NIL T T) -9 NIL 806180 NIL) (-349 802085 802636 803266 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-348 801778 801841 801948 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-347 795483 801583 801773 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-346 795176 795239 795346 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-345 787548 792055 793383 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-344 781388 784829 784857 "FPS" 785976 FPS (NIL) -9 NIL 786532 NIL) (-343 780945 781078 781242 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-342 777818 779798 779826 "FPC" 780051 FPC (NIL) -9 NIL 780193 NIL) (-341 777664 777716 777813 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-340 776441 777150 777191 "FPATMAB" 777196 FPATMAB (NIL T) -9 NIL 777348 NIL) (-339 774871 775467 775814 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-338 774446 774504 774677 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-337 772981 773844 774018 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-336 771596 772101 772129 "FNCAT" 772586 FNCAT (NIL) -9 NIL 772843 NIL) (-335 771053 771563 771591 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-334 769640 771002 771048 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-333 766228 767586 767627 "FMONCAT" 768844 FMONCAT (NIL T) -9 NIL 769448 NIL) (-332 763117 764164 764217 "FMCAT" 765398 FMCAT (NIL T T) -9 NIL 765890 NIL) (-331 761849 762940 763039 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-330 760977 761697 761844 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-329 759164 759616 760110 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-328 757099 757635 758213 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-327 750549 755436 756050 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-326 749061 750131 750171 "FLINEXP" 750176 FLINEXP (NIL T) -9 NIL 750269 NIL) (-325 748470 748729 749056 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-324 747685 747844 748065 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-323 744599 745647 745699 "FLALG" 746926 FLALG (NIL T T) -9 NIL 747393 NIL) (-322 743770 743931 744158 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-321 737179 741189 741230 "FLAGG" 742485 FLAGG (NIL T) -9 NIL 743130 NIL) (-320 736287 736691 737174 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-319 732910 734112 734171 "FINRALG" 735299 FINRALG (NIL T T) -9 NIL 735807 NIL) (-318 732301 732566 732905 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-317 731599 731895 731923 "FINITE" 732119 FINITE (NIL) -9 NIL 732226 NIL) (-316 731507 731533 731594 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-315 723499 726059 726099 "FINAALG" 729751 FINAALG (NIL T) -9 NIL 731189 NIL) (-314 719766 721011 722134 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-313 718318 718737 718791 "FILECAT" 719475 FILECAT (NIL T T) -9 NIL 719691 NIL) (-312 717669 718143 718246 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-311 714979 716795 716823 "FIELD" 716863 FIELD (NIL) -9 NIL 716943 NIL) (-310 714004 714465 714974 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-309 712008 712954 713300 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-308 711251 711432 711651 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-307 706585 711189 711246 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-306 706247 706314 706449 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-305 705787 705829 706038 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-304 702467 703344 704121 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-303 697815 702399 702462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-302 692558 697304 697494 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-301 687103 691839 692097 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-300 681374 686554 686765 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-299 680397 680607 680922 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-298 675900 678542 678570 "FFIELDC" 679189 FFIELDC (NIL) -9 NIL 679564 NIL) (-297 674969 675409 675895 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-296 674584 674642 674766 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-295 672728 673251 673768 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-294 667886 672527 672628 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-293 663050 667675 667782 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-292 657780 662841 662949 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-291 657234 657283 657518 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-290 635871 646843 646929 "FFCAT" 652079 FFCAT (NIL T T T) -9 NIL 653515 NIL) (-289 632111 633337 634643 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-288 627018 632042 632106 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-287 625910 626379 626420 "FEVALAB" 626504 FEVALAB (NIL T) -9 NIL 626765 NIL) (-286 625315 625567 625905 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-285 622173 623053 623168 "FDIVCAT" 624735 FDIVCAT (NIL T T T T) -9 NIL 625171 NIL) (-284 621967 621999 622168 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-283 621274 621367 621644 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-282 619792 620758 620961 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-281 618885 619269 619471 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-280 618007 618496 618636 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-279 609656 614237 614277 "FAXF" 616078 FAXF (NIL T) -9 NIL 616768 NIL) (-278 607572 608376 609191 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-277 602436 607094 607268 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-276 596958 599317 599369 "FAMR" 600380 FAMR (NIL T T) -9 NIL 600839 NIL) (-275 596157 596522 596953 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-274 595210 596099 596152 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-273 592835 593683 593736 "FAMONC" 594677 FAMONC (NIL T T) -9 NIL 595062 NIL) (-272 591423 592693 592830 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-271 589503 589864 590266 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-270 588780 588977 589199 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-269 580704 588227 588426 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-268 578723 579293 579879 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-267 575625 576267 576987 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-266 570782 571489 572294 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-265 570471 570534 570643 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-264 555421 569520 569946 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-263 546012 554741 555029 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-262 545506 545808 545898 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-261 545282 545472 545501 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-260 544971 545039 545152 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-259 544488 544630 544671 "EVALAB" 544841 EVALAB (NIL T) -9 NIL 544945 NIL) (-258 544116 544262 544483 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-257 541221 542754 542782 "EUCDOM" 543336 EUCDOM (NIL) -9 NIL 543685 NIL) (-256 540148 540641 541216 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-255 539873 539929 540029 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-254 539561 539625 539734 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-253 533332 535232 535260 "ES" 538002 ES (NIL) -9 NIL 539386 NIL) (-252 529847 531379 533171 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-251 529195 529348 529524 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-250 522284 529099 529190 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-249 521973 522036 522145 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-248 515699 518725 520158 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-247 512002 513098 514191 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-246 510831 511181 511486 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-245 509778 510447 510475 "ENTIRER" 510480 ENTIRER (NIL) -9 NIL 510524 NIL) (-244 506475 508208 508557 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505567 505778 505832 "ELTAGG" 506212 ELTAGG (NIL T T) -9 NIL 506423 NIL) (-242 505347 505421 505562 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505093 505128 505182 "ELTAB" 505266 ELTAB (NIL T T) -9 NIL 505318 NIL) (-240 504344 504514 504713 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504068 504142 504170 "ELEMFUN" 504275 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 503968 503995 504063 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498514 502009 502050 "ELAGG" 502987 ELAGG (NIL T) -9 NIL 503447 NIL) (-236 497312 497850 498509 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 496730 496897 497053 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495643 495962 496241 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489036 491034 491861 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483015 485011 485821 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 480829 481235 481706 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 471829 473742 475283 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 470942 471443 471592 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469640 470314 470354 "DVARCAT" 470637 DVARCAT (NIL T) -9 NIL 470777 NIL) (-227 469059 469323 469635 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461190 468927 469054 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459528 460319 460360 "DSEXT" 460723 DSEXT (NIL T) -9 NIL 461017 NIL) (-224 458333 458857 459523 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458057 458122 458220 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454208 455424 456555 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 449854 451209 452273 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448529 448890 449276 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448215 448274 448392 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447190 447488 447778 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 446775 446850 447000 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439188 441300 443415 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434705 435724 436803 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431300 433369 433410 "DQAGG" 434039 DQAGG (NIL T) -9 NIL 434312 NIL) (-213 417907 425483 425565 "DPOLCAT" 427402 DPOLCAT (NIL T T T T) -9 NIL 427945 NIL) (-212 414315 415963 417902 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407402 414213 414310 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400398 407231 407397 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 399991 400251 400340 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399405 399853 399933 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398691 399016 399167 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391894 398427 398578 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389674 390960 391000 "DMEXT" 391005 DMEXT (NIL T) -9 NIL 391180 NIL) (-204 389330 389392 389536 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 382655 388815 389005 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379321 381478 381519 "DLAGG" 382069 DLAGG (NIL T) -9 NIL 382298 NIL) (-201 377734 378543 378571 "DIVRING" 378663 DIVRING (NIL) -9 NIL 378746 NIL) (-200 377185 377429 377729 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375613 376030 376436 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 374650 374871 375136 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368223 374582 374645 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356642 363003 363056 "DIRPCAT" 363312 DIRPCAT (NIL NIL T) -9 NIL 364185 NIL) (-195 354648 355418 356305 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354095 354261 354447 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 350641 352981 353022 "DIOPS" 353454 DIOPS (NIL T) -9 NIL 353680 NIL) (-192 350301 350445 350636 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349339 350054 350082 "DIOID" 350087 DIOID (NIL) -9 NIL 350109 NIL) (-190 348229 348996 349024 "DIFRING" 349029 DIFRING (NIL) -9 NIL 349050 NIL) (-189 347865 347963 347991 "DIFFSPC" 348110 DIFFSPC (NIL) -9 NIL 348185 NIL) (-188 347606 347708 347860 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346540 347134 347174 "DIFFMOD" 347179 DIFFMOD (NIL T) -9 NIL 347276 NIL) (-186 346224 346281 346322 "DIFFDOM" 346443 DIFFDOM (NIL T) -9 NIL 346511 NIL) (-185 346105 346135 346219 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 343840 345299 345339 "DIFEXT" 345344 DIFEXT (NIL T) -9 NIL 345496 NIL) (-183 341001 343341 343382 "DIAGG" 343387 DIAGG (NIL T) -9 NIL 343407 NIL) (-182 340557 340747 340996 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 335769 339747 340024 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332227 333280 334290 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 326841 331381 331708 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 325407 325699 326074 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 322591 323779 324175 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320311 322422 322511 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 319694 319839 320021 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317012 317736 318536 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315121 315579 316141 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 314504 314837 314951 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 307768 314229 314377 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 305688 306198 306702 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305327 305376 305527 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 304586 305148 305239 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 302610 303052 303412 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 301902 302191 302337 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301353 301499 301651 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 298715 299508 300235 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298154 298300 298471 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296226 296537 296904 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 295783 296038 296139 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 294984 295367 295395 "CTORCAT" 295576 CTORCAT (NIL) -9 NIL 295688 NIL) (-159 294687 294821 294979 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294180 294437 294545 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 293596 294027 294100 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293055 293172 293325 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289449 290205 290960 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 288940 289243 289334 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288159 288368 288596 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 287663 287768 287972 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287416 287450 287556 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284355 285117 285835 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 283874 284016 284155 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 279831 282337 282829 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 279705 279732 279760 "CONDUIT" 279797 CONDUIT (NIL) -9 NIL NIL NIL) (-146 278646 279315 279343 "COMRING" 279348 COMRING (NIL) -9 NIL 279398 NIL) (-145 277811 278178 278356 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277507 277548 277676 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277200 277263 277370 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266106 277150 277195 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265567 265706 265866 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265320 265361 265459 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 246813 259001 259041 "COMPCAT" 260042 COMPCAT (NIL T) -9 NIL 261384 NIL) (-138 239351 242864 246457 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239110 239144 239246 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 238940 238979 239037 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238521 238800 238874 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238098 238339 238426 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237293 237541 237569 "COMBOPC" 237907 COMBOPC (NIL) -9 NIL 238082 NIL) (-132 236357 236609 236851 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233289 233973 234596 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232169 232620 232855 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231660 231963 232054 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231347 231400 231525 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 230817 231127 231225 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227337 228407 229487 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225696 226617 226855 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221808 223816 223857 "CLAGG" 224783 CLAGG (NIL T) -9 NIL 225316 NIL) (-123 220701 221228 221803 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220330 220421 220561 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218267 218774 219322 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217290 217959 217987 "CHARZ" 217992 CHARZ (NIL) -9 NIL 218006 NIL) (-119 217084 217130 217208 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215985 216686 216714 "CHARNZ" 216775 CHARNZ (NIL) -9 NIL 216823 NIL) (-117 213463 214560 215083 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213171 213250 213278 "CFCAT" 213389 CFCAT (NIL) -9 NIL NIL NIL) (-115 212514 212643 212825 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208503 211927 212207 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207881 208068 208245 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207409 207828 207876 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206882 207191 207288 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206373 206676 206767 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205622 205782 206003 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201722 202979 203687 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200120 201119 201370 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199701 199980 200054 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199135 199388 199416 "CACHSET" 199548 CACHSET (NIL) -9 NIL 199626 NIL) (-104 198518 198902 198930 "CABMON" 198980 CABMON (NIL) -9 NIL 199036 NIL) (-103 198048 198312 198422 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193271 197705 197877 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192241 192945 193080 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193243) (-100 189712 192008 192114 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187143 189455 189574 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184383 186587 186626 "BTCAT" 186693 BTCAT (NIL T) -9 NIL 186769 NIL) (-97 184134 184232 184378 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179244 183365 183391 "BTAGG" 183502 BTAGG (NIL) -9 NIL 183610 NIL) (-95 178875 179036 179239 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 175937 178345 178557 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175207 175359 175537 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171740 173913 173952 "BRAGG" 174593 BRAGG (NIL T) -9 NIL 174850 NIL) (-91 170695 171190 171735 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163293 170200 170381 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161349 163245 163288 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161082 161118 161229 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159321 159754 160202 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155287 156703 157593 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154163 155054 155176 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153749 153906 153932 "BOOLE" 154040 BOOLE (NIL) -9 NIL 154121 NIL) (-83 153542 153623 153744 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152711 153207 153257 "BMODULE" 153262 BMODULE (NIL T T) -9 NIL 153326 NIL) (-81 148328 152568 152637 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148141 148181 148220 "BINOPC" 148225 BINOPC (NIL T) -9 NIL 148270 NIL) (-79 147683 147956 148058 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147204 147348 147486 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140474 146934 147079 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138208 139703 139742 "BGAGG" 139998 BGAGG (NIL T) -9 NIL 140135 NIL) (-75 138077 138115 138203 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136928 137129 137414 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133566 136086 136413 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133151 133244 133270 "BASTYPE" 133441 BASTYPE (NIL) -9 NIL 133537 NIL) (-71 132921 133017 133146 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132436 132524 132674 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131335 132010 132195 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131061 131066 131092 "ATTREG" 131097 ATTREG (NIL) -9 NIL NIL NIL) (-67 130666 130938 131003 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130166 130315 130341 "ATRIG" 130542 ATRIG (NIL) -9 NIL NIL NIL) (-65 130021 130074 130161 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129591 129822 129848 "ASTCAT" 129853 ASTCAT (NIL) -9 NIL 129883 NIL) (-63 129390 129467 129586 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127549 129223 129311 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126356 126669 127034 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124156 126260 126351 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123347 123538 123759 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118934 123078 123192 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113100 115132 115207 "ARR2CAT" 117837 ARR2CAT (NIL T T T) -9 NIL 118595 NIL) (-56 111477 112247 113095 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110845 111216 111338 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109777 109945 110241 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109478 109532 109650 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108861 109007 109163 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108266 108556 108676 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105898 106995 107318 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105423 105683 105779 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99182 104485 104927 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94778 96379 96429 "AMR" 97167 AMR (NIL T T) -9 NIL 97764 NIL) (-46 94132 94412 94773 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77312 94066 94127 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73747 76988 77157 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70757 71417 72024 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70136 70249 70433 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66548 67173 67765 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56101 66241 66391 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55418 55572 55750 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54193 54926 54964 "ALGEBRA" 54969 ALGEBRA (NIL T) -9 NIL 55009 NIL) (-37 53979 54056 54188 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33976 51185 51237 "ALAGG" 51375 ALAGG (NIL T T) -9 NIL 51540 NIL) (-35 33476 33625 33651 "AHYP" 33852 AHYP (NIL) -9 NIL NIL NIL) (-34 32772 32953 32979 "AGG" 33260 AGG (NIL) -9 NIL 33447 NIL) (-33 32561 32648 32767 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30700 31160 31560 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30195 30498 30587 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29565 29860 30016 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17187 26402 26440 "ACFS" 27047 ACFS (NIL T) -9 NIL 27286 NIL) (-28 15810 16420 17182 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11426 13741 13767 "ACF" 14646 ACF (NIL) -9 NIL 15058 NIL) (-26 10522 10928 11421 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10024 10264 10290 "ABELSG" 10382 ABELSG (NIL) -9 NIL 10447 NIL) (-24 9922 9953 10019 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9188 9531 9557 "ABELMON" 9726 ABELMON (NIL) -9 NIL 9835 NIL) (-22 8931 9040 9183 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8626 8652 "ABELGRP" 8724 ABELGRP (NIL) -9 NIL 8799 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 4b39a9aa..e1142baa 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,14148 +1,14159 @@ -(630148 . 3538630438) +(630603 . 3539125284) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) - (-5 *2 (-1170 (-345 (-480)))) (-5 *1 (-1199 *4))))) + (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) + (-5 *2 (-1177 (-347 (-483)))) (-5 *1 (-1206 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) - (-5 *2 (-1170 (-480))) (-5 *1 (-1199 *4))))) + (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) + (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 (-480)))) (-5 *2 (-83)) - (-5 *1 (-1199 *4))))) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-85)) + (-5 *1 (-1206 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-550 *2) (-144))) (-5 *2 (-795 *4)) (-5 *1 (-142 *4 *5 *3)) - (-4 *4 (-1007)) (-4 *3 (-137 *5)))) + (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1012)) (-4 *3 (-139 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-348 *3 *4)) - (-4 *4 (-1146 *3)))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) + (-4 *4 (-1153 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) - (-5 *2 (-1170 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-356 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 *3)))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) + (-5 *2 (-1177 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 *1)) (-4 *1 (-359 *3)) (-4 *3 (-491)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-398 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-469)))) - ((*1 *2 *1) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-658 *3 *2)) (-4 *2 (-1146 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-400 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *1 *2) - (-12 (-5 *2 (-852 *3)) (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) - (-4 *5 (-550 (-1081))) (-4 *4 (-712)) (-4 *5 (-751)))) + (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) + (-4 *5 (-553 (-1088))) (-4 *4 (-717)) (-4 *5 (-756)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (-12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) - (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1064)) - (-5 *1 (-975 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) - (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-1014 *4 *5 *6 *7)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1064)) - (-5 *1 (-1050 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1086)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-767)) (-5 *3 (-480)) (-5 *1 (-1100)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-480)) (-5 *1 (-1100)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *4 (-768 *5))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *5 (-580 (-1081))) (-5 *2 (-698 *4 (-768 *6))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *6 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-852 *4)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-852 (-932 (-345 *4)))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *4 (-768 *6))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *6 (-580 (-1081))) (-5 *2 (-852 (-932 (-345 *4)))) - (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-1076 (-932 (-345 *4)))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1051 *4 (-465 (-768 *6)) (-768 *6) (-698 *4 (-768 *6)))) - (-4 *4 (-13 (-750) (-255) (-118) (-928))) (-14 *6 (-580 (-1081))) - (-5 *2 (-580 (-698 *4 (-768 *6)))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *5 (-580 (-1081)))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) - (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-856 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-4 *7 (-856 *6 *4 *5)) - (-5 *2 (-343 (-1076 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-387)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-343 *1)) (-4 *1 (-856 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-387)) (-5 *2 (-343 *3)) - (-5 *1 (-887 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-387)) (-4 *7 (-856 *6 *4 *5)) - (-5 *2 (-343 (-1076 (-345 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) - (-5 *3 (-1076 (-345 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1125)))) - ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-343 *3)) (-5 *1 (-1150 *4 *3)) - (-4 *3 (-13 (-1146 *4) (-491) (-10 -8 (-15 -3129 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *5 (-580 (-1081))) - (-5 *2 (-580 (-1051 *4 (-465 (-768 *6)) (-768 *6) (-698 *4 (-768 *6))))) - (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) - (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) + (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) + (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) + (-5 *1 (-980 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) + (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) + (-5 *1 (-1057 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) + ((*1 *2 *3) + (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *5 (-583 (-1088))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *6 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *6 (-583 (-1088))) (-5 *2 (-857 (-937 (-347 *4)))) + (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-1083 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) + (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088))) + (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *5 (-583 (-1088)))))) +(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) + (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-345 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-345 *1)) (-4 *1 (-861 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-389)) (-5 *2 (-345 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) + (-5 *3 (-1083 (-347 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-1157 *4 *3)) + (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3139 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *5 (-583 (-1088))) + (-5 *2 (-583 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) + (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) + (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) - (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) - (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081)))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) + (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) + (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-852 (-480)))) (-5 *4 (-580 (-1081))) - (-5 *2 (-580 (-580 (-325)))) (-5 *1 (-931)) (-5 *5 (-325)))) + (-12 (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-583 (-1088))) + (-5 *2 (-583 (-583 (-327)))) (-5 *1 (-936)) (-5 *5 (-327)))) ((*1 *2 *3) - (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *5 (-580 (-1081))) (-5 *2 (-580 (-580 (-932 (-345 *4))))) - (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) + (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) - (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) + (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) - (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *5))))) (-5 *1 (-1198 *5 *6 *7)) - (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-580 (-932 (-345 *4))))) (-5 *1 (-1198 *4 *5 *6)) - (-14 *5 (-580 (-1081))) (-14 *6 (-580 (-1081)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-953 *4 *5)) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-14 *5 (-580 (-1081))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) - (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-580 (-1081))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) + (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) + (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) + (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-14 *5 (-583 (-1088))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) + (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) - (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) - (-14 *7 (-580 (-1081))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) + (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) + (-14 *7 (-583 (-1088))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) - (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) - (-14 *7 (-580 (-1081))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) - (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))) - (-14 *7 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) - (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-580 (-852 *4))) (-14 *5 (-580 (-1081))) - (-14 *6 (-580 (-1081)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) + (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) + (-14 *7 (-583 (-1088))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) + (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) + (-14 *7 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) + (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))) + (-14 *6 (-583 (-1088)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-953 *5 *6))) - (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) + (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-750) (-255) (-118) (-928))) (-5 *2 (-580 (-953 *5 *6))) - (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-580 (-1081))) (-14 *7 (-580 (-1081))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) + (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-750) (-255) (-118) (-928))) - (-5 *2 (-580 (-953 *4 *5))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-580 (-1081))) - (-14 *6 (-580 (-1081)))))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) + (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) + (-14 *6 (-583 (-1088)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1060 *4) (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1197 *4)) - (-4 *4 (-1120)))) + (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4)) + (-4 *4 (-1127)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-580 (-1060 *5)) (-580 (-1060 *5)))) (-5 *4 (-480)) - (-5 *2 (-580 (-1060 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-879)) (-5 *1 (-1196))))) + (-12 (-5 *3 (-1 (-583 (-1067 *5)) (-583 (-1067 *5)))) (-5 *4 (-483)) + (-5 *2 (-583 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1203))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-4 *6 (-491)) (-5 *2 (-580 (-262 *6))) - (-5 *1 (-173 *5 *6)) (-5 *3 (-262 *6)) (-4 *5 (-956)))) - ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491)))) + (-12 (-5 *4 (-830)) (-4 *6 (-494)) (-5 *2 (-583 (-264 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-961)))) + ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) ((*1 *2 *3) - (-12 (-5 *3 (-515 *5)) (-4 *5 (-13 (-29 *4) (-1106))) - (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-580 *5)) - (-5 *1 (-517 *4 *5)))) + (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113))) + (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 *5)) + (-5 *1 (-520 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-515 (-345 (-852 *4)))) - (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-580 (-262 *4))) - (-5 *1 (-521 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *3 *2)) (-4 *3 (-750)) (-4 *2 (-1055 *3)))) + (-12 (-5 *3 (-518 (-347 (-857 *4)))) + (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 (-264 *4))) + (-5 *1 (-524 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1062 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *1)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-750)) - (-4 *2 (-1055 *4)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) + (-4 *2 (-1062 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) ((*1 *2 *1) - (-12 (-5 *2 (-1186 (-1081) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-956))))) + (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-1186 (-1081) *3)) (-4 *3 (-956)) (-5 *1 (-1192 *3)))) + (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-961)) (-5 *1 (-1199 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) - (-5 *1 (-1195 *3 *4))))) + (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-5 *1 (-1202 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |k| (-1081)) (|:| |c| (-1192 *3))))) - (-5 *1 (-1192 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3))))) + (-5 *1 (-1199 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |k| *3) (|:| |c| (-1195 *3 *4))))) - (-5 *1 (-1195 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-689)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-825)))) + (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) + (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-128)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106))) (-5 *1 (-179 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1017)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1017)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-102)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-329 *3 *2)) (-4 *3 (-956)) (-4 *2 (-751)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1007)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *6 (-194 (-3940 *3) (-689))) + (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 - (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) - (-2 (|:| -2388 *5) (|:| -2389 *6)))) - (-5 *1 (-396 *3 *4 *5 *6 *7 *2)) (-4 *5 (-751)) - (-4 *2 (-856 *4 *6 (-768 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) + (-2 (|:| -2396 *5) (|:| -2397 *6)))) + (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) + (-4 *2 (-861 *4 *6 (-773 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-469))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-1017)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-4 *7 (-1007)) (-5 *2 (-1 *7 *5)) (-5 *1 (-622 *5 *6 *7)))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-472))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1024)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-624 *3 *2 *4)) (-4 *3 (-956)) (-4 *2 (-319 *3)) - (-4 *4 (-319 *3)))) + (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-321 *3)) + (-4 *4 (-321 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-624 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *2 (-319 *3)))) + (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *2 (-321 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-654))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-491)) - (-5 *1 (-877 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-1017)))) - ((*1 *1 *1 *1) (-4 *1 (-1017))) + (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) + (-5 *1 (-882 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1024)))) + ((*1 *1 *1 *1) (-4 *1 (-1024))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *2 *5)) (-4 *4 (-956)) (-4 *2 (-194 *3 *4)) - (-4 *5 (-194 *3 *4)))) + (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) + (-4 *5 (-196 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1028 *3 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) - (-4 *2 (-194 *3 *4)))) + (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-4 *2 (-196 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-751)) (-5 *1 (-1031 *3 *4 *2)) - (-4 *2 (-856 *3 (-465 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-849 (-177))) (-5 *3 (-177)) (-5 *1 (-1117)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-660)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-660)))) + (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) + (-4 *2 (-861 *3 (-468 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1124)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-480)) (-4 *1 (-1169 *3)) (-4 *3 (-1120)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-956)) (-14 *3 (-580 (-1081))))) + (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) ((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) - (-14 *3 (-580 (-1081))))) - ((*1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1007)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1088))))) + ((*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012)))) ((*1 *1 *1) - (-12 (-14 *2 (-580 (-1081))) (-4 *3 (-144)) (-4 *5 (-194 (-3940 *2) (-689))) + (-12 (-14 *2 (-583 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3951 *2) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *4) (|:| -2389 *5)) - (-2 (|:| -2388 *4) (|:| -2389 *5)))) - (-5 *1 (-396 *2 *3 *4 *5 *6 *7)) (-4 *4 (-751)) - (-4 *7 (-856 *3 *5 (-768 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-72)) (-4 *3 (-754)))) - ((*1 *1 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-956)))) + (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) + (-2 (|:| -2396 *4) (|:| -2397 *5)))) + (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) + (-4 *7 (-861 *3 *5 (-773 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) + ((*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) ((*1 *1 *1) - (-12 (-5 *1 (-669 *2 *3)) (-4 *3 (-751)) (-4 *2 (-956)) (-4 *3 (-660)))) - ((*1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) + (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))) + ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749))))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-583 (-1088))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-480)) - (-14 *6 (-689)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) - (-5 *1 (-107 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) + (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) - (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) + (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-262 *3) (-262 *3))) (-4 *3 (-13 (-956) (-751))) - (-5 *1 (-175 *3 *4)) (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-961) (-756))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-195 *5 *6)) (-14 *5 (-689)) (-4 *6 (-1120)) - (-4 *7 (-1120)) (-5 *2 (-195 *5 *7)) (-5 *1 (-196 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-246 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127)) + (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-248 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-246 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-246 *6)) (-5 *1 (-247 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-547 *1)) (-4 *1 (-251)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-253)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1064)) (-5 *5 (-547 *6)) (-4 *6 (-251)) - (-4 *2 (-1120)) (-5 *1 (-252 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-550 *6)) (-4 *6 (-253)) + (-4 *2 (-1127)) (-5 *1 (-254 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-547 *5)) (-4 *5 (-251)) (-4 *2 (-251)) - (-5 *1 (-253 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-253)) (-4 *2 (-253)) + (-5 *1 (-255 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-280 *5 *6 *7 *8)) (-4 *5 (-309)) - (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) - (-4 *9 (-309)) (-4 *10 (-1146 *9)) (-4 *11 (-1146 (-345 *10))) - (-5 *2 (-280 *9 *10 *11 *12)) (-5 *1 (-281 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-288 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1007)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) + (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) + (-4 *9 (-311)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-347 *10))) + (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-290 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1125)) (-4 *8 (-1125)) (-4 *6 (-1146 *5)) - (-4 *7 (-1146 (-345 *6))) (-4 *9 (-1146 *8)) (-4 *2 (-288 *8 *9 *10)) - (-5 *1 (-289 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-288 *5 *6 *7)) - (-4 *10 (-1146 (-345 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5)) + (-4 *7 (-1153 (-347 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-290 *8 *9 *10)) + (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) + (-4 *10 (-1153 (-347 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-319 *6)) - (-5 *1 (-320 *5 *4 *6 *2)) (-4 *4 (-319 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-321 *6)) + (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-491)) (-5 *1 (-343 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-345 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-491)) (-4 *6 (-491)) - (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-491)) (-4 *6 (-491)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-351 *5 *6 *7 *8)) (-4 *5 (-255)) - (-4 *6 (-899 *5)) (-4 *7 (-1146 *6)) (-4 *8 (-13 (-348 *6 *7) (-945 *6))) - (-4 *9 (-255)) (-4 *10 (-899 *9)) (-4 *11 (-1146 *10)) - (-5 *2 (-351 *9 *10 *11 *12)) (-5 *1 (-352 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-348 *10 *11) (-945 *10))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-494)) (-4 *6 (-494)) + (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) + (-4 *6 (-904 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-350 *6 *7) (-950 *6))) + (-4 *9 (-257)) (-4 *10 (-904 *9)) (-4 *11 (-1153 *10)) + (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-350 *10 *11) (-950 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-356 *6)) - (-5 *1 (-354 *4 *5 *2 *6)) (-4 *4 (-356 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) + (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-359 *6)) - (-5 *1 (-360 *5 *4 *6 *2)) (-4 *4 (-359 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-361 *6)) + (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-364 *6)) - (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-424 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-366 *6)) + (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1127)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-444 *3 *4)) (-4 *3 (-72)) (-4 *4 (-754)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-515 *5)) (-4 *5 (-309)) (-4 *6 (-309)) - (-5 *2 (-515 *6)) (-5 *1 (-516 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-311)) (-4 *6 (-311)) + (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2124 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-309)) - (-4 *6 (-309)) (-5 *2 (-2 (|:| -2124 *6) (|:| |coeff| *6))) - (-5 *1 (-516 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2132 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) + (-4 *6 (-311)) (-5 *2 (-2 (|:| -2132 *6) (|:| |coeff| *6))) + (-5 *1 (-519 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-309)) - (-4 *2 (-309)) (-5 *1 (-516 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) + (-4 *2 (-311)) (-5 *1 (-519 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-309)) (-4 *6 (-309)) + (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-516 *5 *6)))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-519 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-532 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-532 *6)) (-5 *1 (-529 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-532 *6)) (-5 *5 (-532 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-532 *8)) - (-5 *1 (-530 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7)) + (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8)) + (-5 *1 (-533 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1060 *6)) (-5 *5 (-532 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) - (-5 *1 (-530 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7)) + (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) + (-5 *1 (-533 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-532 *6)) (-5 *5 (-1060 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) - (-5 *1 (-530 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7)) + (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) + (-5 *1 (-533 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-580 *8)) - (-5 *1 (-583 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-583 *8)) + (-5 *1 (-586 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-956)) (-4 *8 (-956)) (-4 *6 (-319 *5)) - (-4 *7 (-319 *5)) (-4 *2 (-624 *8 *9 *10)) - (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) - (-4 *9 (-319 *8)) (-4 *10 (-319 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5)) + (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-956)) (-4 *8 (-956)) - (-4 *6 (-319 *5)) (-4 *7 (-319 *5)) (-4 *2 (-624 *8 *9 *10)) - (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) - (-4 *9 (-319 *8)) (-4 *10 (-319 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) + (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-491)) (-4 *7 (-491)) (-4 *6 (-1146 *5)) - (-4 *2 (-1146 (-345 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1146 (-345 *6))) (-4 *8 (-1146 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5)) + (-4 *2 (-1153 (-347 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1153 (-347 *6))) (-4 *8 (-1153 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-956)) (-4 *9 (-956)) (-4 *5 (-751)) - (-4 *6 (-712)) (-4 *2 (-856 *9 *7 *5)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-712)) (-4 *4 (-856 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) + (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-751)) (-4 *6 (-751)) (-4 *7 (-712)) - (-4 *9 (-956)) (-4 *2 (-856 *9 *8 *6)) (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-712)) (-4 *4 (-856 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) + (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5 *7)) (-4 *5 (-956)) (-4 *6 (-956)) - (-4 *7 (-660)) (-5 *2 (-669 *6 *7)) (-5 *1 (-668 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) + (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-669 *3 *4)) (-4 *4 (-660)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-956)) (-4 *6 (-956)) - (-5 *2 (-699 *6)) (-5 *1 (-700 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-715 *6)) - (-5 *1 (-718 *4 *5 *2 *6)) (-4 *4 (-715 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) + (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-738 *6)) (-5 *1 (-739 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-738 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5)) (-4 *5 (-1007)) - (-4 *6 (-1007)) (-5 *1 (-739 *5 *6)))) + (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) + (-4 *6 (-1012)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1007)) - (-4 *6 (-1007)) (-5 *1 (-746 *5 *6)))) + (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) + (-4 *6 (-1012)) (-5 *1 (-751 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-784 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-784 *6)) (-5 *1 (-783 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-793 *5 *6)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-4 *7 (-1007)) (-5 *2 (-793 *5 *7)) (-5 *1 (-794 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-4 *7 (-1012)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-795 *6)) (-5 *1 (-797 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-956)) (-4 *6 (-956)) - (-5 *2 (-852 *6)) (-5 *1 (-853 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-751)) (-4 *8 (-956)) - (-4 *6 (-712)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) + (-4 *6 (-717)) (-4 *2 - (-13 (-1007) - (-10 -8 (-15 -3822 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-689)))))) - (-5 *1 (-858 *6 *7 *8 *5 *2)) (-4 *5 (-856 *8 *6 *7)))) + (-13 (-1012) + (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) + (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-872 *6)) (-5 *1 (-874 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-956)) (-4 *6 (-956)) - (-5 *2 (-849 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-852 *4))) (-4 *4 (-956)) (-4 *2 (-856 (-852 *4) *5 *6)) - (-4 *5 (-712)) + (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) + (-4 *5 (-717)) (-4 *6 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081)))))) - (-5 *1 (-892 *4 *5 *6 *2)))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) + (-5 *1 (-897 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-491)) (-4 *6 (-491)) (-4 *2 (-899 *6)) - (-5 *1 (-900 *5 *6 *4 *2)) (-4 *4 (-899 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-904 *6)) + (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-906 *6)) - (-5 *1 (-907 *4 *5 *2 *6)) (-4 *4 (-906 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) + (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) - (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) + (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) - (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) + (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-956)) (-4 *10 (-956)) (-14 *5 (-689)) - (-14 *6 (-689)) (-4 *8 (-194 *6 *7)) (-4 *9 (-194 *5 *7)) - (-4 *2 (-960 *5 *6 *10 *11 *12)) - (-5 *1 (-962 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-960 *5 *6 *7 *8 *9)) (-4 *11 (-194 *6 *10)) - (-4 *12 (-194 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) + (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *2 (-965 *5 *6 *10 *11 *12)) + (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) + (-4 *12 (-196 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-995 *6)) (-5 *1 (-996 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-750)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-580 *6)) (-5 *1 (-996 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) + (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-1001 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-998 *6)) (-5 *1 (-999 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-750)) - (-4 *2 (-1055 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) + (-4 *2 (-1062 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1060 *6)) (-5 *1 (-1062 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1060 *6)) (-5 *5 (-1060 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1060 *8)) - (-5 *1 (-1063 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7)) + (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) + (-5 *1 (-1070 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-956)) (-4 *6 (-956)) - (-5 *2 (-1076 *6)) (-5 *1 (-1077 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1098 *3 *4)) (-4 *3 (-1007)) - (-4 *4 (-1007)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012)) + (-4 *4 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-956)) - (-4 *6 (-956)) (-14 *7 (-1081)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1081)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-961)) + (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1088)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1137 *6)) (-5 *1 (-1138 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5)) (-4 *5 (-750)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1060 *6)) (-5 *1 (-1138 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) + (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1081)) (-4 *6 (-956)) - (-4 *8 (-956)) (-5 *2 (-1139 *7 *8)) (-5 *1 (-1140 *5 *6 *7 *8)) - (-14 *7 (-1081)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-961)) + (-4 *8 (-961)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8)) + (-14 *7 (-1088)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-1146 *6)) - (-5 *1 (-1147 *5 *4 *6 *2)) (-4 *4 (-1146 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1153 *6)) + (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-956)) - (-4 *6 (-956)) (-14 *7 (-1081)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1081)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-961)) + (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1088)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-956)) (-4 *6 (-956)) (-4 *2 (-1163 *6)) - (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1170 *6)) + (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1170 *6)) (-5 *1 (-1171 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1170 *5)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1170 *6)) (-5 *1 (-1171 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) + (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-1194 *3 *4)) (-4 *4 (-749))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-34)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-207)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-879)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-754))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-34)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-480)))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) (((*1 *2 *1) - (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-734 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-956))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-734 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-956))))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1195 *4 *2)) (-4 *1 (-321 *4 *2)) (-4 *4 (-751)) - (-4 *2 (-144)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) + (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-756)) + (-4 *2 (-146)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-734 *4)) (-4 *1 (-1190 *4 *2)) (-4 *4 (-751)) (-4 *2 (-956)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-956)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (-12 (-5 *3 (-739 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1007)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)) - (-4 *4 (-1007)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) - ((*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-751)) (-4 *2 (-956)))) - ((*1 *2 *1) (-12 (-4 *2 (-956)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-749))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) + (-4 *4 (-1012)))) + ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754))))) (((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-956)) (-4 *4 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) - ((*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-956)) (-4 *3 (-749))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *2 (-309)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-177)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-246 *2)) (-4 *2 (-309)) (-4 *2 (-1120))) - (-12 (-5 *1 (-246 *2)) (-4 *2 (-408)) (-4 *2 (-1120))))) - ((*1 *1 *1 *1) (-4 *1 (-309))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-325)))) + (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) + (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127))))) + ((*1 *1 *1 *1) (-4 *1 (-311))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1030 *3 (-547 *1))) (-4 *3 (-491)) (-4 *3 (-1007)) - (-4 *1 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-408))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-469))) + (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-494)) (-4 *3 (-1012)) + (-4 *1 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-410))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-472))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-555 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-660) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-144)) (-5 *1 (-555 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-660) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-144)) (-4 *2 (-309)))) + (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-663) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-311)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-591 *2 *4 *3)) (-4 *2 (-651 *4)) - (-4 *3 (|SubsetCategory| (-660) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) + (-4 *3 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-144)) (-5 *1 (-591 *3 *4 *2)) (-4 *3 (-651 *4)) - (-4 *2 (|SubsetCategory| (-660) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) + (-4 *2 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)) (-4 *2 (-309)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)) (-4 *2 (-311)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-770 *2 *3 *4 *5)) (-4 *2 (-309)) (-4 *2 (-956)) - (-14 *3 (-580 (-1081))) (-14 *4 (-580 (-689))) (-14 *5 (-689)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)))) + (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-961)) + (-14 *3 (-583 (-1088))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-960 *3 *4 *2 *5 *6)) (-4 *2 (-956)) (-4 *5 (-194 *4 *2)) - (-4 *6 (-194 *3 *2)) (-4 *2 (-309)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-309)))) + (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) + (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-311)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-309)) (-4 *2 (-956)) (-4 *3 (-751)) (-4 *4 (-712)) - (-14 *6 (-580 *3)) (-5 *1 (-1183 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-856 *2 *4 *3)) (-14 *7 (-580 (-689))) (-14 *8 (-689)))) + (|partial| -12 (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) + (-14 *6 (-583 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-309)) (-4 *2 (-956)) (-4 *3 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) + (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *1) - (-12 (-5 *2 (-480)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) - (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-227)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *8)) (-5 *4 (-580 *6)) (-4 *6 (-751)) - (-4 *8 (-856 *7 *5 *6)) (-4 *5 (-712)) (-4 *7 (-956)) (-5 *2 (-580 (-689))) - (-5 *1 (-269 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-825)))) - ((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-405 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-491)) (-5 *2 (-480)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) + (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) + (-5 *1 (-271 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) + ((*1 *2 *1) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 (-689))))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-694))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-5 *2 (-689)))) + (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-881 *3 *2 *4)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *2 (-711)))) + (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-689)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1163 *3)) (-5 *2 (-480)))) + (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1132 *3)) - (-5 *2 (-345 (-480))))) - ((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-738 (-825))))) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) + (-5 *2 (-347 (-483))))) + ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))) ((*1 *2 *1) - (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-689))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)))) + (-12 (-5 *2 (-694)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-309)) (-14 *6 (-1170 (-627 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-14 *6 (-1177 (-630 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-627 *4))) (-4 *4 (-144)) - (-5 *2 (-1170 (-627 (-345 (-852 *4))))) (-5 *1 (-161 *4)))) + (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) + (-5 *2 (-1177 (-630 (-347 (-857 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-998 (-262 *4))) (-4 *4 (-13 (-751) (-491) (-550 (-325)))) - (-5 *2 (-998 (-325))) (-5 *1 (-217 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-227)))) + (-12 (-5 *3 (-1003 (-264 *4))) (-4 *4 (-13 (-756) (-494) (-553 (-327)))) + (-5 *2 (-1003 (-327))) (-5 *1 (-219 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))) ((*1 *2 *1) - (-12 (-4 *2 (-1146 *3)) (-5 *1 (-242 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) + (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) - (-14 *5 (-1081)) (-14 *6 *4) - (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) - (-5 *1 (-261 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) + (-14 *5 (-1088)) (-14 *6 *4) + (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) + (-5 *1 (-263 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-296)) (-4 *2 (-277 *4)) (-5 *1 (-294 *3 *4 *2)) - (-4 *3 (-277 *4)))) + (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) + (-4 *3 (-279 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-296)) (-4 *2 (-277 *4)) (-5 *1 (-294 *2 *4 *3)) - (-4 *3 (-277 *4)))) + (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) + (-4 *3 (-279 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) - (-5 *2 (-1195 *3 *4)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *2 (-1202 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) - (-5 *2 (-1186 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *2 (-1193 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-345 (-852 (-345 *3)))) (-4 *3 (-491)) (-4 *3 (-1007)) - (-4 *1 (-359 *3)))) + (-12 (-5 *2 (-347 (-857 (-347 *3)))) (-4 *3 (-494)) (-4 *3 (-1012)) + (-4 *1 (-361 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-852 (-345 *3))) (-4 *3 (-491)) (-4 *3 (-1007)) - (-4 *1 (-359 *3)))) + (-12 (-5 *2 (-857 (-347 *3))) (-4 *3 (-494)) (-4 *3 (-1012)) + (-4 *1 (-361 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-345 *3)) (-4 *3 (-491)) (-4 *3 (-1007)) (-4 *1 (-359 *3)))) + (-12 (-5 *2 (-347 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1030 *3 (-547 *1))) (-4 *3 (-956)) (-4 *3 (-1007)) - (-4 *1 (-359 *3)))) + (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1012)) + (-4 *1 (-361 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 *4)) (-4 *4 (-13 (-751) (-21))) (-5 *1 (-367 *3 *4)) - (-4 *3 (-13 (-144) (-38 (-345 (-480))))))) + (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-369 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-347 (-483))))))) ((*1 *1 *2) - (-12 (-5 *1 (-367 *2 *3)) (-4 *2 (-13 (-144) (-38 (-345 (-480))))) - (-4 *3 (-13 (-751) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-372)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))) - ((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-372)))) - ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-374)))) + (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-483))))) + (-4 *3 (-13 (-756) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-374)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-345 (-852 *3)))) (-4 *3 (-144)) - (-14 *6 (-1170 (-627 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-14 *4 (-825)) - (-14 *5 (-580 (-1081))))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-403)))) + (-12 (-5 *2 (-1177 (-347 (-857 *3)))) (-4 *3 (-146)) + (-14 *6 (-1177 (-630 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-830)) + (-14 *5 (-583 (-1088))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-405)))) ((*1 *1 *2) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) - (-5 *1 (-409 *3 *4 *5)))) + (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) + (-5 *1 (-411 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-409 *3 *4 *5)) - (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-458)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-537 *3 *2)) (-4 *2 (-678 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-549 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-956)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-569 *3 *2)) (-4 *2 (-678 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) - ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-619)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-622)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012)))) ((*1 *1 *2) - (-12 (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *2)) (-4 *4 (-319 *3)) - (-4 *2 (-319 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644)))) + (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-321 *3)) + (-4 *2 (-321 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| -3937 *3) (|:| -3921 *4)))) (-4 *3 (-956)) - (-4 *4 (-660)) (-5 *1 (-669 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-682)))) - ((*1 *2 *3) (-12 (-5 *2 (-691)) (-5 *1 (-692 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-762)))) - ((*1 *2 *3) (-12 (-5 *3 (-852 (-48))) (-5 *2 (-262 (-480))) (-5 *1 (-779)))) - ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 (-48)))) (-5 *2 (-262 (-480))) (-5 *1 (-779)))) - ((*1 *1 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-734 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-808 *3))) (-4 *3 (-1007)) (-5 *1 (-811 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) - ((*1 *1 *2) (-12 (-5 *2 (-345 (-343 *3))) (-4 *3 (-255)) (-5 *1 (-820 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255)))) - ((*1 *2 *3) - (-12 (-5 *3 (-412)) (-5 *2 (-262 *4)) (-5 *1 (-826 *4)) (-4 *4 (-491)))) - ((*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-941 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3) (-12 (-5 *3 (-259)) (-5 *1 (-941 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-4 *3 (-961)) + (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-687)))) + ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1127)))) + ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-767)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-264 (-483))) (-5 *1 (-784)))) + ((*1 *2 *3) + (-12 (-5 *3 (-347 (-857 (-48)))) (-5 *2 (-264 (-483))) (-5 *1 (-784)))) + ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-825 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) + ((*1 *2 *3) + (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-831 *4)) (-4 *4 (-494)))) + ((*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-946 *3)) (-4 *3 (-1127)))) + ((*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-946 *2)) (-4 *2 (-1127)))) ((*1 *1 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *2 (-856 *3 *4 *5)) (-14 *6 (-580 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-947 *3)) (-4 *3 (-491)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-494)))) ((*1 *1 *2) - (-12 (-4 *3 (-956)) (-4 *4 (-751)) (-5 *1 (-1031 *3 *4 *2)) - (-4 *2 (-856 *3 (-465 *4) *4)))) + (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) + (-4 *2 (-861 *3 (-468 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-956)) (-4 *2 (-751)) (-5 *1 (-1031 *3 *2 *4)) - (-4 *4 (-856 *3 (-465 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-767)))) - ((*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1049)))) - ((*1 *2 *3) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956)))) + (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4)) + (-4 *4 (-861 *3 (-468 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056)))) + ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1073 *3 *4 *5)) - (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) - (-5 *1 (-1080 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093 (-1081) (-374))) (-5 *1 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1094 *3)) (-4 *3 (-1007)))) - ((*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1101 *3)) (-4 *3 (-1007)))) - ((*1 *1 *2) (-12 (-5 *2 (-852 *3)) (-4 *3 (-956)) (-5 *1 (-1113 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1113 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) + (-5 *1 (-1087 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-376))) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) + ((*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1120 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1130 *3 *4 *5)) - (-4 *3 (-956)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1120)) (-5 *1 (-1137 *3)))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-956)) (-14 *4 (-1081)) (-14 *5 *3) - (-5 *1 (-1160 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1167 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-403)) (-5 *2 (-1173)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1173)))) - ((*1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-144)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-144)))) + (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) + (-5 *1 (-1167 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1180)) (-5 *1 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1180)))) + ((*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-146)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) - (-5 *1 (-1191 *3 *4))))) + (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *1 (-1198 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) - (-5 *1 (-603 *3 *4)))) + (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *1 (-606 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-603 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-144))))) + (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-998 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) - (-5 *1 (-129 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-400 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) + (-5 *1 (-131 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-480))) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-583 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-237))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *2) - (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-5 *1 (-563 *3 *4 *5)) - (-14 *5 (-825)))) + (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-5 *1 (-566 *3 *4 *5)) + (-14 *5 (-830)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) - (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) + (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-651 (-345 (-480)))) - (-4 *3 (-751)) (-4 *4 (-144))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) + (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-237))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-239))) ((*1 *2 *3) - (-12 (-5 *3 (-343 *4)) (-4 *4 (-491)) - (-5 *2 (-580 (-2 (|:| -3937 (-689)) (|:| |logand| *4)))) (-5 *1 (-268 *4)))) + (-12 (-5 *3 (-345 *4)) (-4 *4 (-494)) + (-5 *2 (-583 (-2 (|:| -3948 (-694)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-603 *3 *4)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) + (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) - (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) + (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-651 (-345 (-480)))) - (-4 *3 (-751)) (-4 *4 (-144))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) + (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) - (-5 *2 (-2 (|:| |k| (-734 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-144)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) + (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-146)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-734 *3)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956))))) + (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) - (-4 *4 (-144)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-331 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)))) + (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-146)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-734 *3)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1007)))) + (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956)))) + (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-734 *4)) (-4 *4 (-751)) (-4 *1 (-1190 *4 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-83)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-956)))) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-4 *3 (-491)) (-5 *2 (-83)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) + (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) + (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-83))))) -(((*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-563 *2 *3 *4)) (-4 *2 (-751)) - (-4 *3 (-13 (-144) (-651 (-345 (-480))))) (-14 *4 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956))))) + (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) + (-4 *3 (-13 (-146) (-654 (-347 (-483))))) (-14 *4 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) - (-4 *4 (-144)))) + (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-751)) (-4 *3 (-956)) (-4 *3 (-144))))) + (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-751)) (-4 *4 (-144)) (-5 *2 (-580 *3)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 *3)) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-734 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) + (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-751)) (-4 *4 (-956)) (-5 *2 (-580 *3))))) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1115 *4 *5 *3 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *3 (-751)) - (-4 *6 (-971 *4 *5 *3)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756)) + (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-309)) (-5 *2 (-825)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) + (-12 (-4 *4 (-311)) (-5 *2 (-830)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) ((*1 *2) - (-12 (-4 *4 (-309)) (-5 *2 (-738 (-825))) (-5 *1 (-276 *3 *4)) - (-4 *3 (-277 *4)))) - ((*1 *2) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-825)))) - ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-738 (-825)))))) + (-12 (-4 *4 (-311)) (-5 *2 (-743 (-830))) (-5 *1 (-278 *3 *4)) + (-4 *3 (-279 *4)))) + ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) + ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830)))))) (((*1 *2) - (-12 (-4 *4 (-309)) (-5 *2 (-689)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) - ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-5 *2 (-689))))) + (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) + ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-694))))) (((*1 *2 *2) - (-12 (-4 *3 (-296)) (-4 *4 (-277 *3)) (-4 *5 (-1146 *4)) - (-5 *1 (-695 *3 *4 *5 *2 *6)) (-4 *2 (-1146 *5)) (-14 *6 (-825)))) + (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1153 *4)) + (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-1189 *3)) (-4 *3 (-309)) (-4 *3 (-315)))) - ((*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-309)) (-4 *2 (-315))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) + ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-311)) (-4 *2 (-317))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-13 (-956) (-651 (-345 (-480))))) (-4 *5 (-751)) - (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) + (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1184 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) - (-4 *7 (-751)) (-5 *1 (-1184 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1184 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) - (-4 *7 (-751)) (-5 *1 (-1184 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 (-1184 *4 *5 *6 *7))) - (-5 *1 (-1184 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-1191 *4 *5 *6 *7))) + (-5 *1 (-1191 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) (-4 *8 (-751)) - (-5 *2 (-580 (-1184 *6 *7 *8 *9))) (-5 *1 (-1184 *6 *7 *8 *9))))) + (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) + (-5 *2 (-583 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-770 *4 *5 *6 *7)) (-4 *4 (-956)) - (-14 *5 (-580 (-1081))) (-14 *6 (-580 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) + (-14 *5 (-583 (-1088))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-4 *5 (-751)) (-4 *6 (-712)) - (-14 *8 (-580 *5)) (-5 *2 (-1176)) (-5 *1 (-1183 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-856 *4 *6 *5)) (-14 *9 (-580 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452)))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) + (-14 *8 (-583 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1007) (-34))) (-5 *1 (-1045 *3 *2)) - (-4 *3 (-13 (-1007) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1181))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1181))))) + (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2)) + (-4 *3 (-13 (-1012) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) + (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-5 *1 (-297 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-1146 *3)) + (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3)) (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-5 *1 (-687 *4 *5)) (-4 *5 (-348 *3 *4)))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-692 *4 *5)) (-4 *5 (-350 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-296)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 *3)) + (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-5 *1 (-893 *4 *3 *5 *6)) (-4 *6 (-658 *3 *5)))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-296)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 *3)) + (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-5 *1 (-1180 *4 *3 *5 *6)) (-4 *6 (-348 *3 *5))))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)))) + (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) + (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-5 *1 (-297 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1146 (-480))) + (-12 (-4 *3 (-1153 (-483))) (-5 *2 - (-2 (|:| -2000 (-627 (-480))) (|:| |basisDen| (-480)) - (|:| |basisInv| (-627 (-480))))) - (-5 *1 (-687 *3 *4)) (-4 *4 (-348 (-480) *3)))) + (-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) + (|:| |basisInv| (-630 (-483))))) + (-5 *1 (-692 *3 *4)) (-4 *4 (-350 (-483) *3)))) ((*1 *2) - (-12 (-4 *3 (-296)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 *4)) + (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 - (-2 (|:| -2000 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) - (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-658 *4 *5)))) + (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) + (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-296)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 *4)) + (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 - (-2 (|:| -2000 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) - (-5 *1 (-1180 *3 *4 *5 *6)) (-4 *6 (-348 *4 *5))))) + (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) + (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689)) (-4 *6 (-309)) (-5 *4 (-1113 *6)) - (-5 *2 (-1 (-1060 *4) (-1060 *4))) (-5 *1 (-1179 *6)) (-5 *5 (-1060 *4))))) + (-12 (-5 *3 (-694)) (-4 *6 (-311)) (-5 *4 (-1120 *6)) + (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-4 *5 (-309)) (-5 *2 (-580 (-1113 *5))) - (-5 *1 (-1179 *5)) (-5 *4 (-1113 *5))))) + (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-583 (-1120 *5))) + (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-1 (-1076 (-852 *4)) (-852 *4))) - (-5 *1 (-1179 *4)) (-4 *4 (-309))))) + (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-857 *4)) (-857 *4))) + (-5 *1 (-1186 *4)) (-4 *4 (-311))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-4 *5 (-309)) (-5 *2 (-1060 (-1060 (-852 *5)))) - (-5 *1 (-1179 *5)) (-5 *4 (-1060 (-852 *5)))))) + (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-1067 (-1067 (-857 *5)))) + (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-857 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1 (-1060 (-852 *4)) (-1060 (-852 *4)))) - (-5 *1 (-1179 *4)) (-4 *4 (-309))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) + (-5 *1 (-1186 *4)) (-4 *4 (-311))))) (((*1 *2 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1 (-1060 (-852 *4)) (-1060 (-852 *4)))) - (-5 *1 (-1179 *4)) (-4 *4 (-309))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) + (-5 *1 (-1186 *4)) (-4 *4 (-311))))) (((*1 *2) - (-12 (-14 *4 (-689)) (-4 *5 (-1120)) (-5 *2 (-105)) (-5 *1 (-193 *3 *4 *5)) - (-4 *3 (-194 *4 *5)))) + (-12 (-14 *4 (-694)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) + (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-309)) (-5 *2 (-105)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) + (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) ((*1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-144)))) + (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-480)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) - (-5 *2 (-480)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-956)) (-5 *2 (-825)))) - ((*1 *2) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-309)) (-5 *2 (-105))))) -(((*1 *1) (-5 *1 (-1176)))) -(((*1 *2 *3) (-12 (-5 *3 (-325)) (-5 *2 (-177)) (-5 *1 (-1175)))) - ((*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1175))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) - ((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175)))) - ((*1 *2 *2) (-12 (-5 *2 (-778)) (-5 *1 (-1175))))) -(((*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174))))) -(((*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174))))) -(((*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174))))) -(((*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174))))) -(((*1 *2 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-1174))))) -(((*1 *1) (-5 *1 (-1174)))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) + (-5 *2 (-483)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) + ((*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-311)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1183)))) +(((*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))) +(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))) +(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))) +(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))) +(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))) +(((*1 *1) (-5 *1 (-1181)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-580 (-219))) (-5 *1 (-1174)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-1064)) (-5 *1 (-1174)))) - ((*1 *1 *1) (-5 *1 (-1174)))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-1070 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1174))))) + (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181)))) + ((*1 *1 *1) (-5 *1 (-1181)))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-1077 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-689)) (-5 *3 (-849 *4)) (-4 *1 (-1039 *4)) (-4 *4 (-956)))) + (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1173)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-219))) (-5 *1 (-1174))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) + (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173)))) + (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1174))))) + (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) - (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) - (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *1 (-219)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *1 (-221)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) - (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) - (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *3 (-580 (-219))) (-5 *1 (-220)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) + (-12 (-5 *3 (-483)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) - (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) - (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *2 (-1176)) (-5 *1 (-1174)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *2 (-1183)) (-5 *1 (-1181)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3830 (-177)) - (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) - (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *1 (-1174)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *1 (-1181)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) + (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-1173)))) + (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-325)) (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1176)) (-5 *1 (-1174))))) + (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1064)) (-5 *1 (-1173)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1173)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1173)))) + (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1064)) (-5 *1 (-1174)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1174)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1174))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-849 (-177)))) (-5 *1 (-1173))))) -(((*1 *1) (-5 *1 (-1173)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-403)) (-5 *3 (-580 (-219))) (-5 *1 (-1173)))) - ((*1 *1 *1) (-5 *1 (-1173)))) + (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1180))))) +(((*1 *1) (-5 *1 (-1180)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-583 (-221))) (-5 *1 (-1180)))) + ((*1 *1 *1) (-5 *1 (-1180)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-825)) (-5 *4 (-177)) (-5 *5 (-480)) (-5 *6 (-778)) - (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-783)) + (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1) (-12 (-5 *2 - (-1170 - (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) - (|:| |deltaY| (-177)) (|:| -3833 (-480)) (|:| -3831 (-480)) - (|:| |spline| (-480)) (|:| -3862 (-480)) (|:| |axesColor| (-778)) - (|:| -3834 (-480)) (|:| |unitsColor| (-778)) (|:| |showing| (-480))))) - (-5 *1 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170 (-3 (-403) "undefined"))) (-5 *1 (-1173))))) + (-1177 + (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) + (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) + (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) + (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483))))) + (-5 *1 (-1180))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-405) "undefined"))) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-403)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-825)) (-5 *2 (-403)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-405)) (-5 *1 (-1180))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-580 (-325))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-403)))) + (-12 (-5 *2 (-583 (-327))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-1173)))) + (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) - ((*1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) + ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-325)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-403)) (-5 *4 (-825)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-778)) (-5 *5 (-825)) - (-5 *6 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-1172)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *6 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-580 (-219))) - (-5 *2 (-1173)) (-5 *1 (-1172))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) + (-5 *2 (-1180)) (-5 *1 (-1179))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-778)) (-5 *5 (-825)) - (-5 *6 (-580 (-219))) (-5 *2 (-403)) (-5 *1 (-1172)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *6 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-403)) (-5 *1 (-1172)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-405)) (-5 *1 (-1179)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-580 (-219))) (-5 *2 (-403)) - (-5 *1 (-1172))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-405)) + (-5 *1 (-1179))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1007)) (|has| *1 (-6 -3978)) - (-4 *1 (-122 *2)) (-4 *2 (-1120)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3989)) + (-4 *1 (-124 *2)) (-4 *2 (-1127)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) + (-4 *2 (-1127)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) + (-4 *2 (-1127)))) ((*1 *2 *3) - (-12 (-4 *4 (-956)) (-5 *2 (-2 (|:| -1992 (-1076 *4)) (|:| |deg| (-825)))) - (-5 *1 (-173 *4 *5)) (-5 *3 (-1076 *4)) (-4 *5 (-491)))) + (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2000 (-1083 *4)) (|:| |deg| (-830)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-195 *5 *6)) (-14 *5 (-689)) - (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-196 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) + (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-242 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1146 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-491)) (-4 *2 (-1007)))) + ((*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-494)) (-4 *2 (-1012)))) ((*1 *1 *1) - (-12 (-4 *1 (-283 *2 *3 *4 *5)) (-4 *2 (-309)) (-4 *3 (-1146 *2)) - (-4 *4 (-1146 (-345 *3))) (-4 *5 (-288 *2 *3 *4)))) + (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1153 *2)) + (-4 *4 (-1153 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-320 *5 *4 *2 *6)) (-4 *4 (-319 *5)) (-4 *6 (-319 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1007)) (-4 *2 (-1007)) - (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2)))) - ((*1 *1 *1) (-5 *1 (-430))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) + (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) + ((*1 *1 *1) (-5 *1 (-432))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-580 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-581 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-5 *1 (-584 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-956)) (-4 *2 (-956)) (-4 *6 (-319 *5)) - (-4 *7 (-319 *5)) (-4 *8 (-319 *2)) (-4 *9 (-319 *2)) - (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-624 *5 *6 *7)) - (-4 *10 (-624 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-321 *5)) + (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) + (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) + (-4 *10 (-627 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-956)) (-5 *1 (-646 *3 *2)) (-4 *2 (-1146 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-309)) - (-4 *3 (-144)) (-4 *1 (-658 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-658 *3 *2)) (-4 *2 (-1146 *3)))) + (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-311)) + (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-864 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-865 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-5 *1 (-870 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *2 (-856 *3 *4 *5)) (-14 *6 (-580 *2)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-956)) (-4 *2 (-956)) (-14 *5 (-689)) - (-14 *6 (-689)) (-4 *8 (-194 *6 *7)) (-4 *9 (-194 *5 *7)) - (-4 *10 (-194 *6 *2)) (-4 *11 (-194 *5 *2)) - (-5 *1 (-962 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-960 *5 *6 *7 *8 *9)) (-4 *12 (-960 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) + (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) + (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1060 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-1062 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-5 *1 (-1069 *5 *2)))) ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) - (-4 *1 (-1115 *5 *6 *7 *2)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *2 (-971 *5 *6 *7)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) + (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *2 (-976 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-1171 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-5 *1 (-1178 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-195 *6 *7)) (-14 *6 (-689)) - (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-195 *6 *5)) - (-5 *1 (-196 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) + (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5)) + (-5 *1 (-198 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-319 *5)) - (-5 *1 (-320 *6 *4 *5 *2)) (-4 *4 (-319 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-321 *5)) + (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1007)) (-4 *5 (-1007)) (-4 *2 (-364 *5)) - (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-364 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-366 *5)) + (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-580 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) - (-5 *2 (-580 *5)) (-5 *1 (-581 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) + (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-864 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) - (-5 *2 (-864 *5)) (-5 *1 (-865 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) + (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1060 *6)) (-4 *6 (-1120)) (-4 *3 (-1120)) - (-5 *2 (-1060 *3)) (-5 *1 (-1062 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) + (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1170 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) - (-5 *2 (-1170 *5)) (-5 *1 (-1171 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1170 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-128))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) + (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-165 *2)) + (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) - (-15 -1953 ((-1176) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-271 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-102)))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) + (-15 -1961 ((-1183) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-309) (-118))) (-5 *1 (-337 *3 *2)) (-4 *2 (-1146 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1153 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-469))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-472))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-25))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-689)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-1169 *3)) (-4 *3 (-23)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-105))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-165 *2)) + (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) - (-15 -1953 ((-1176) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) + (-15 -1961 ((-1183) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) - ((*1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-194 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-956)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-177)) (-5 *1 (-1117)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-956))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) + ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1124)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1120)) (-4 *3 (-956)) (-5 *2 (-627 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-956)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-956))))) -(((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) - (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) - ((*1 *1 *1) (-4 *1 (-479))) - ((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-734 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1118 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-910)) (-4 *2 (-956))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1120)) (-4 *2 (-910)) (-4 *2 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-751)))) + (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-961)) (-5 *2 (-630 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961))))) +(((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) + (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1125 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-768 *3)) (-14 *3 (-580 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-897)))) + (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-902)))) ((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-1081)) (-5 *1 (-965 *3 *4)) - (-4 *3 (-1000 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-998 *3)) (-4 *3 (-1120)))) + (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4)) + (-4 *3 (-1005 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-1081)))) - ((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1167 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1088)))) + ((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-345 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-491)) (-4 *4 (-956)) - (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *5 *6 *2)) (-4 *6 (-597 *5))))) + (-12 (-5 *3 (-347 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-961)) + (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-600 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-1146 *4)) (-5 *2 (-1 *6 (-580 *6))) - (-5 *1 (-1165 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1163 *4))))) + (-12 (-4 *4 (-961)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-583 *6))) + (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1170 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-956)) (-4 *2 (-1146 *5)) - (-5 *1 (-1165 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1163 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1153 *5)) + (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1170 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *3 (-1146 *4)) (-4 *2 (-1163 *4)) - (-5 *1 (-1165 *4 *3 *5 *2)) (-4 *5 (-597 *3))))) + (-12 (-4 *4 (-961)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4)) + (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 (-1 *6 (-580 *6)))) - (-4 *5 (-38 (-345 (-480)))) (-4 *6 (-1163 *5)) (-5 *2 (-580 *6)) - (-5 *1 (-1164 *5 *6))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) + (-4 *5 (-38 (-347 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-583 *6)) + (-5 *1 (-1171 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-580 *2))) (-5 *4 (-580 *5)) (-4 *5 (-38 (-345 (-480)))) - (-4 *2 (-1163 *5)) (-5 *1 (-1164 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-347 (-483)))) + (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1164 *4 *2)) - (-4 *4 (-38 (-345 (-480))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) + (-4 *4 (-38 (-347 (-483))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1164 *4 *2)) - (-4 *4 (-38 (-345 (-480))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) + (-4 *4 (-38 (-347 (-483))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-1163 *3))))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-580 *5))) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) - (-5 *2 (-1 (-1060 *4) (-580 (-1060 *4)))) (-5 *1 (-1164 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) + (-5 *2 (-1 (-1067 *4) (-583 (-1067 *4)))) (-5 *1 (-1171 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) - (-5 *2 (-1 (-1060 *4) (-1060 *4) (-1060 *4))) (-5 *1 (-1164 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) + (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-38 (-345 (-480)))) - (-5 *2 (-1 (-1060 *4) (-1060 *4))) (-5 *1 (-1164 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) + (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-345 (-480))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *5 *3)))) + (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-246 *3)) (-5 *5 (-345 (-480))) - (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-480))) (-5 *4 (-246 *6)) - (-4 *6 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *5 *6)))) + (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) + (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) + (-4 *6 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *6 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-480))) - (-4 *7 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) + (-4 *7 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-480))) - (-4 *3 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *7 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) + (-4 *3 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-345 (-480)))) (-5 *4 (-246 *8)) - (-5 *5 (-1137 (-345 (-480)))) (-5 *6 (-345 (-480))) - (-4 *8 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) + (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) + (-4 *8 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-345 (-480)))) - (-5 *7 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *8))) - (-4 *8 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *8 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) + (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) + (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-4 *3 (-956)) - (-5 *1 (-526 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-527 *3)))) + (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) + (-5 *1 (-529 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-530 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-4 *3 (-956)) - (-4 *1 (-1132 *3)))) + (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) + (-4 *1 (-1139 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-689)) (-5 *3 (-1060 (-2 (|:| |k| (-345 (-480))) (|:| |c| *4)))) - (-4 *4 (-956)) (-4 *1 (-1153 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-4 *1 (-1163 *3)))) + (-12 (-5 *2 (-694)) (-5 *3 (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))) + (-4 *4 (-961)) (-4 *1 (-1160 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-4 *1 (-1170 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1060 (-2 (|:| |k| (-689)) (|:| |c| *3)))) (-4 *3 (-956)) - (-4 *1 (-1163 *3))))) + (-12 (-5 *2 (-1067 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) + (-4 *1 (-1170 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-580 *3)))) + (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-580 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 *3)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660)))) - ((*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-580 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-956)) (-5 *2 (-1060 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *3 (-956)) (-5 *1 (-526 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *1 (-1132 *3)) (-4 *3 (-956)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-480))) (-4 *1 (-1163 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-5 *2 (-1067 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-529 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-961)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-961))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)) - (-5 *2 (-852 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) + (-5 *2 (-857 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *5)) (-4 *4 (-956)) (-4 *5 (-751)) - (-5 *2 (-852 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) + (-5 *2 (-857 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1163 *4)) (-4 *4 (-956)) (-5 *2 (-852 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1163 *4)) (-4 *4 (-956)) (-5 *2 (-852 *4))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-345 (-480))) (-4 *4 (-945 (-480))) (-4 *4 (-491)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-359 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-105))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-177))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-199)) (-5 *2 (-480)))) + (-12 (-5 *3 (-347 (-483))) (-4 *4 (-950 (-483))) (-4 *4 (-494)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-107))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-179))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-345 (-480))) (-4 *4 (-309)) (-4 *4 (-38 *3)) (-4 *5 (-1163 *4)) - (-5 *1 (-230 *4 *5 *2)) (-4 *2 (-1134 *4 *5)))) + (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4)) + (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-345 (-480))) (-4 *4 (-309)) (-4 *4 (-38 *3)) (-4 *5 (-1132 *4)) - (-5 *1 (-231 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5)) (-4 *6 (-891 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-237))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-307 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *1) (-5 *1 (-325))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-331 *2)) (-4 *2 (-1007)))) + (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4)) + (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-896 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-239))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *1) (-5 *1 (-327))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-4 *3 (-1017)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-480)))) + (-12 (-5 *2 (-694)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-1024)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-483)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) + (-12 (-5 *2 (-694)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-480)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-469)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-469)))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-472)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *4 (-1007)) (-5 *1 (-620 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1012)) (-5 *1 (-623 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-4 *3 (-309)))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-4 *3 (-311)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-628 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (-4 *3 (-956)) (-5 *1 (-648 *3 *4)) (-4 *4 (-587 *3)))) + (-12 (-5 *2 (-483)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-648 *4 *5)) - (-4 *5 (-587 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-689)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-740 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) + (-4 *5 (-590 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-480)) (-5 *1 (-740 *4)) (-4 *4 (-956)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-910)) (-5 *2 (-345 (-480))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-825)))) + (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-347 (-483))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-1028 *3 *4 *5 *6)) (-4 *4 (-956)) - (-4 *5 (-194 *3 *4)) (-4 *6 (-194 *3 *4)) (-4 *4 (-309)))) + (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-961)) + (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-998 (-745 *3))) (-4 *3 (-13 (-1106) (-866) (-29 *5))) - (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-1003 (-750 *3))) (-4 *3 (-13 (-1113) (-871) (-29 *5))) + (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-171 *5 *3)))) + (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-998 (-745 *3))) (-5 *5 (-1064)) - (-4 *3 (-13 (-1106) (-866) (-29 *6))) - (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-1003 (-750 *3))) (-5 *5 (-1071)) + (-4 *3 (-13 (-1113) (-871) (-29 *6))) + (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-171 *6 *3)))) + (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-998 (-745 (-262 *5)))) - (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1003 (-750 (-264 *5)))) + (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 (-262 *5))) (|:| |f2| (-580 (-745 (-262 *5)))) + (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-172 *5)))) + (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-345 (-852 *6))) (-5 *4 (-998 (-745 (-262 *6)))) (-5 *5 (-1064)) - (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1003 (-750 (-264 *6)))) + (-5 *5 (-1071)) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 (-262 *6))) (|:| |f2| (-580 (-745 (-262 *6)))) + (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-172 *6)))) + (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-998 (-745 (-345 (-852 *5))))) (-5 *3 (-345 (-852 *5))) - (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-1003 (-750 (-347 (-857 *5))))) (-5 *3 (-347 (-857 *5))) + (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 (-262 *5))) (|:| |f2| (-580 (-745 (-262 *5)))) + (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-172 *5)))) + (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-998 (-745 (-345 (-852 *6))))) (-5 *5 (-1064)) - (-5 *3 (-345 (-852 *6))) - (-4 *6 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-1003 (-750 (-347 (-857 *6))))) (-5 *5 (-1071)) + (-5 *3 (-347 (-857 *6))) + (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |f1| (-745 (-262 *6))) (|:| |f2| (-580 (-745 (-262 *6)))) + (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-172 *6)))) + (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-3 *3 (-580 *3))) (-5 *1 (-368 *5 *3)) - (-4 *3 (-13 (-1106) (-866) (-29 *5))))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-370 *5 *3)) + (-4 *3 (-13 (-1113) (-871) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-409 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) - (-5 *2 (-515 (-345 *5))) (-5 *1 (-500 *4 *5)) (-5 *3 (-345 *5)))) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) + (-5 *2 (-518 (-347 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-118)) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-3 (-262 *5) (-580 (-262 *5)))) (-5 *1 (-521 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-3 (-264 *5) (-583 (-264 *5)))) (-5 *1 (-524 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956)))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-674 *3 *2)) (-4 *3 (-956)) (-4 *2 (-751)) - (-4 *3 (-38 (-345 (-480)))))) + (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) + (-4 *3 (-38 (-347 (-483)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1081)) (-5 *1 (-852 *3)) (-4 *3 (-38 (-345 (-480)))) - (-4 *3 (-956)))) + (-12 (-5 *2 (-1088)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-347 (-483)))) + (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-4 *2 (-751)) - (-5 *1 (-1031 *3 *2 *4)) (-4 *4 (-856 *3 (-465 *2) *2)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-4 *2 (-756)) + (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) - (-5 *1 (-1066 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) + (-5 *1 (-1073 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1073 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1079 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-5 *1 (-1113 *3)) (-4 *3 (-38 (-345 (-480)))) - (-4 *3 (-956)))) + (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-347 (-483)))) + (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1130 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1081)) (-4 *1 (-1132 *3)) (-4 *3 (-956)) - (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) - (-4 *3 (-38 (-345 (-480)))))) - (-12 (-5 *2 (-1081)) (-4 *1 (-1132 *3)) (-4 *3 (-956)) - (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) - (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480)))))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) + (-4 *3 (-38 (-347 (-483)))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) + (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1132 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) + (-12 (-4 *1 (-1139 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) + (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1151 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1081)) (-4 *1 (-1153 *3)) (-4 *3 (-956)) - (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) - (-4 *3 (-38 (-345 (-480)))))) - (-12 (-5 *2 (-1081)) (-4 *1 (-1153 *3)) (-4 *3 (-956)) - (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) - (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480)))))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) + (-4 *3 (-38 (-347 (-483)))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) + (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1153 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480)))))) + (-12 (-4 *1 (-1160 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1081)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956)) (-14 *5 *3))) + (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1081)) (-4 *1 (-1163 *3)) (-4 *3 (-956)) - (-12 (-4 *3 (-29 (-480))) (-4 *3 (-866)) (-4 *3 (-1106)) - (-4 *3 (-38 (-345 (-480)))))) - (-12 (-5 *2 (-1081)) (-4 *1 (-1163 *3)) (-4 *3 (-956)) - (-12 (|has| *3 (-15 -3067 ((-580 *2) *3))) - (|has| *3 (-15 -3795 (*3 *3 *2))) (-4 *3 (-38 (-345 (-480)))))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) + (-4 *3 (-38 (-347 (-483)))))) + (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) + (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1163 *2)) (-4 *2 (-956)) (-4 *2 (-38 (-345 (-480))))))) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1080 *4 *5 *6)) - (-4 *4 (-956)) (-14 *5 (-1081)) (-14 *6 *4))) + (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) + (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) - (-4 *4 (-956)) (-14 *5 (-1081)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) + (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) + (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) + (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) + (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) + (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2)))) + (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) + (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) + (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-956)) (-14 *3 (-1081)) (-14 *4 *2)))) + (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) + (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) + (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-956)) (-5 *1 (-1066 *4)))) + (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-480)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-1081)) + (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1120)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1061 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-4 *1 (-535 *3 *2)) (-4 *3 (-1007)) (-4 *3 (-751)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-777 *2 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-611 *3)) (-5 *1 (-798 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4)) + (-4 *4 (-1127)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) + (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-756)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) - (-4 *5 (-319 *2)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) + (-4 *5 (-321 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-319 *2)) - (-4 *5 (-319 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) + (-4 *5 (-321 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 (-480))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) - (-14 *4 (-480)) (-14 *5 (-689)))) + (-12 (-5 *3 (-583 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-483)) (-14 *5 (-694)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-689)))) + (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-689)))) + (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-689)))) + (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-480)) (-14 *4 (-689)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-201 (-1064))) (-5 *1 (-165 *4)) + (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ *3)) (-15 -3600 ((-1176) $)) - (-15 -1953 ((-1176) $))))))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ *3)) (-15 -3611 ((-1183) $)) + (-15 -1961 ((-1183) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-165 *3)) + (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 ((-1176) $)) - (-15 -1953 ((-1176) $))))))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) + (-15 -1961 ((-1183) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-689)) (-5 *1 (-201 *4)) (-4 *4 (-751)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-201 *3)) (-4 *3 (-751)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-201 *3)) (-4 *3 (-751)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-239 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 *1)) (-4 *1 (-251)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) + (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-288 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-1146 *2)) - (-4 *4 (-1146 (-345 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1064)) (-5 *1 (-437)))) + (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) + (-4 *4 (-1153 (-347 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-439)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-580 (-480))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) + (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-580 (-795 *4))) (-5 *1 (-795 *4)) - (-4 *4 (-1007)))) + (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) + (-4 *4 (-1012)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-808 *4)) (-5 *1 (-811 *4)) (-4 *4 (-1007)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-918 *2)) (-4 *2 (-1120)))) + (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1127)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *2 (-956)) - (-4 *6 (-194 *5 *2)) (-4 *7 (-194 *4 *2)))) + (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) + (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *6 (-194 *5 *2)) - (-4 *7 (-194 *4 *2)) (-4 *2 (-956)))) + (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-825)) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *2)) - (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) + (-12 (-5 *3 (-830)) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) + (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-825)) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-983 *4 *5 *2)) - (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1049))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081)))) + (-12 (-5 *3 (-830)) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-988 *4 *5 *2)) + (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1056))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-345 *1)) (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) + (-12 (-5 *3 (-347 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-345 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-4 *3 (-491)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751)))) + (-12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *2 (-491)) (-4 *3 (-712)) - (-4 *4 (-751)) (-4 *5 (-971 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1002)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1159 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) + (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) + (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) ((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-777 *3 *2)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1120)) (-5 *2 (-689))))) -(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))) +(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) - (-4 *5 (-319 *2)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) + (-4 *5 (-321 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -3979)) (-4 *1 (-90 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -3979)) (-4 *1 (-90 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3979)) (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) - (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1081)) (-5 *1 (-568)))) + (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) + (-4 *2 (-1127)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-571)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1137 (-480))) (|has| *1 (-6 -3979)) (-4 *1 (-590 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3990)) (-4 *1 (-593 *2)) + (-4 *2 (-1127)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-580 (-480))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -3979)) (-4 *1 (-918 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) + (-4 *2 (-1127)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) + (-4 *2 (-1127)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) + (-4 *3 (-1127)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) - (-4 *2 (-1120))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1060 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-1159 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) + (-4 *2 (-1127))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (|has| *1 (-6 -3979)) (-4 *1 (-1159 *3)) - (-4 *3 (-1120))))) + (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) + (-4 *3 (-1127))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) - (-5 *2 (-745 *4)) (-5 *1 (-261 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) + (-5 *2 (-750 *4)) (-5 *1 (-263 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) - (-5 *2 (-745 *4)) (-5 *1 (-1157 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1106) (-359 *3))) (-14 *5 (-1081)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) + (-5 *2 (-750 *4)) (-5 *1 (-1164 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-945 (-480)) (-577 (-480)) (-387))) + (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1151 *4 *5 *6)) (|:| |%expon| (-267 *4 *5 *6)) - (|:| |%expTerms| (-580 (-2 (|:| |k| (-345 (-480))) (|:| |c| *4)))))) - (|:| |%type| (-1064)))) - (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-359 *3))) - (-14 *5 (-1081)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) + (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))))) + (|:| |%type| (-1071)))) + (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) + (-14 *5 (-1088)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-345 (-480))) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *5 *3)))) + (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-246 *3)) (-5 *5 (-345 (-480))) - (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *6 *3)))) + (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) + (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-345 (-480)))) (-5 *4 (-246 *8)) - (-5 *5 (-1137 (-345 (-480)))) (-5 *6 (-345 (-480))) - (-4 *8 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) + (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) + (-4 *8 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-345 (-480)))) - (-5 *7 (-345 (-480))) (-4 *3 (-13 (-27) (-1106) (-359 *8))) - (-4 *8 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *8 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) + (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) + (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-345 (-480))) (-4 *4 (-956)) (-4 *1 (-1155 *4 *3)) - (-4 *3 (-1132 *4))))) + (-12 (-5 *2 (-347 (-483))) (-4 *4 (-961)) (-4 *1 (-1162 *4 *3)) + (-4 *3 (-1139 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1132 *3)) - (-5 *2 (-345 (-480)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3))))) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) + (-5 *2 (-347 (-483)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-4 *5 (-13 (-387) (-945 *4) (-577 *4))) (-5 *2 (-51)) - (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (-12 (-5 *4 (-483)) (-4 *5 (-13 (-389) (-950 *4) (-580 *4))) (-5 *2 (-51)) + (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *5 *3)))) + (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-945 *5) (-577 *5))) (-5 *5 (-480)) (-5 *2 (-51)) - (-5 *1 (-264 *6 *3)))) + (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-950 *5) (-580 *5))) (-5 *5 (-483)) (-5 *2 (-51)) + (-5 *1 (-266 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-480))) - (-4 *7 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) + (-4 *7 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-480))) - (-4 *3 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *7 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) + (-4 *3 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-4 *4 (-956)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1163 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3))))) + (-12 (-5 *2 (-483)) (-4 *4 (-961)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1132 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956)))) + (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-825)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-4 *1 (-1153 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-830)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-961))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-480)))) - (-4 *4 (-13 (-1146 *3) (-491) (-10 -8 (-15 -3129 ($ $ $))))) (-4 *3 (-491)) - (-5 *1 (-1150 *3 *4))))) + (|:| |xpnt| (-483)))) + (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (-4 *3 (-494)) + (-5 *1 (-1157 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-856 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387)))) + (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *1)))) - (-4 *1 (-977 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1125))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) + (-4 *1 (-982 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1132))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-1150 *3 *2)) - (-4 *2 (-13 (-1146 *3) (-491) (-10 -8 (-15 -3129 ($ $ $)))))))) + (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2)) + (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)) - (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) + (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-444 *3 *4)) (-4 *3 (-72)) (-4 *4 (-754)) - (-5 *2 (-580 (-777 *4 *3))))) + (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) + (-5 *2 (-583 (-782 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| -3937 *3) (|:| -3921 *4)))) (-5 *1 (-669 *3 *4)) - (-4 *3 (-956)) (-4 *4 (-660)))) + (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-5 *1 (-674 *3 *4)) + (-4 *3 (-961)) (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) - (-5 *2 (-1060 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-480)) (-5 *1 (-197)))) + (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-580 (-1064))) (-5 *3 (-480)) (-5 *4 (-1064)) (-5 *1 (-197)))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956))))) + (-12 (-5 *2 (-583 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) - (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-689)))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) - (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-226 *3)) (-4 *3 (-751)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-825)))) - ((*1 *2 *3) - (-12 (-5 *3 (-280 *4 *5 *6 *7)) (-4 *4 (-13 (-315) (-309))) - (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-4 *7 (-288 *4 *5 *6)) - (-5 *2 (-689)) (-5 *1 (-336 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-738 (-825))))) - ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) - ((*1 *2 *1) - (-12 (-4 *3 (-491)) (-5 *2 (-480)) (-5 *1 (-559 *3 *4)) (-4 *4 (-1146 *3)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-830)))) + ((*1 *2 *3) + (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) + (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) + (-5 *2 (-694)) (-5 *1 (-338 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-743 (-830))))) + ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) + ((*1 *2 *1) + (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-674 *4 *3)) (-4 *4 (-956)) (-4 *3 (-751)))) + (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-674 *4 *3)) (-4 *4 (-956)) (-4 *3 (-751)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) - (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) - (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-689)) - (-5 *1 (-817 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) - (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-1146 (-345 *4))) - (-4 *6 (-288 (-345 (-480)) *4 *5)) (-5 *2 (-689)) (-5 *1 (-818 *4 *5 *6)))) + (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) + (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) + (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-694)) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) + (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) + (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-280 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-309)) - (-4 *7 (-1146 *6)) (-4 *4 (-1146 (-345 *7))) (-4 *8 (-288 *6 *7 *4)) - (-4 *9 (-13 (-315) (-309))) (-5 *2 (-689)) (-5 *1 (-926 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) + (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) + (-4 *9 (-13 (-317) (-311))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-4 *3 (-491)) (-5 *2 (-689)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711))))) -(((*1 *1 *1) (-4 *1 (-967))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711))))) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)) (-5 *2 (-694)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) +(((*1 *1 *1) (-4 *1 (-972))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-480)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-775 *4)) (-14 *4 *3) (-5 *3 (-480)))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-483)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-345 (-480))) (-5 *1 (-776 *4 *5)) (-5 *3 (-480)) - (-4 *5 (-774 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-920)) (-5 *2 (-345 (-480))))) + (-12 (-14 *4 *3) (-5 *2 (-347 (-483))) (-5 *1 (-781 *4 *5)) (-5 *3 (-483)) + (-4 *5 (-779 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-347 (-483))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-750) (-309))) (-4 *3 (-1146 *2)))) + (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-711)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3929 (*2 (-1081)))) (-4 *2 (-956))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-146 *3)) (-4 *3 (-255)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) + (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3940 (*2 (-1088)))) (-4 *2 (-961))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-674 *3 *4)) (-4 *3 (-956)) (-4 *4 (-751)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-888 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) - (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) + (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-345 *5)) (-4 *4 (-1125)) (-4 *5 (-1146 *4)) - (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1146 *3)))) + (-12 (-5 *3 (-347 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-345 (-480)))) (-5 *2 (-345 (-480))) (-5 *1 (-162)))) + (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-246 *3))) (-4 *3 (-257 *3)) (-4 *3 (-1007)) - (-4 *3 (-1120)) (-5 *1 (-246 *3)))) + (-12 (-5 *2 (-583 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1012)) + (-4 *3 (-1127)) (-5 *1 (-248 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-257 *2)) (-4 *2 (-1007)) (-4 *2 (-1120)) (-5 *1 (-246 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-251)))) + (-12 (-4 *2 (-259 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-248 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-580 *1))) (-4 *1 (-251)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-251)))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 (-1 *1 *1))) (-4 *1 (-251)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1 *1 *1)) (-4 *1 (-251)))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-5 *3 (-1 *1 (-580 *1))) (-4 *1 (-251)))) + (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-251)))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-1 *1 *1))) (-4 *1 (-251)))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-246 *3))) (-4 *1 (-257 *3)) (-4 *3 (-1007)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-246 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1012)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-480))) (-5 *4 (-1083 (-345 (-480)))) (-5 *1 (-258 *2)) - (-4 *2 (-38 (-345 (-480)))))) + (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-347 (-483)))) (-5 *1 (-260 *2)) + (-4 *2 (-38 (-347 (-483)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-751)) - (-4 *5 (-144)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-751)) (-4 *3 (-144)))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-756)) + (-4 *5 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *4 (-1 *1 *1)) (-4 *1 (-359 *5)) - (-4 *5 (-1007)) (-4 *5 (-956)))) + (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) + (-4 *5 (-1012)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *4 (-1 *1 (-580 *1))) - (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) + (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) + (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-689))) - (-5 *4 (-580 (-1 *1 (-580 *1)))) (-4 *1 (-359 *5)) (-4 *5 (-1007)) - (-4 *5 (-956)))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) + (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) + (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-580 (-689))) (-5 *4 (-580 (-1 *1 *1))) - (-4 *1 (-359 *5)) (-4 *5 (-1007)) (-4 *5 (-956)))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) + (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-580 (-84))) (-5 *3 (-580 *1)) (-5 *4 (-1081)) (-4 *1 (-359 *5)) - (-4 *5 (-1007)) (-4 *5 (-550 (-469))))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1088)) (-4 *1 (-361 *5)) + (-4 *5 (-1012)) (-4 *5 (-553 (-472))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1081)) (-4 *1 (-359 *4)) (-4 *4 (-1007)) - (-4 *4 (-550 (-469))))) - ((*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-550 (-469))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) + (-4 *4 (-553 (-472))))) + ((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-553 (-472))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-1081))) (-4 *1 (-359 *3)) (-4 *3 (-1007)) - (-4 *3 (-550 (-469))))) + (-12 (-5 *2 (-583 (-1088))) (-4 *1 (-361 *3)) (-4 *3 (-1012)) + (-4 *3 (-553 (-472))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)) - (-4 *3 (-550 (-469))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) + (-4 *3 (-553 (-472))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-452 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 *5)) (-4 *1 (-449 *4 *5)) (-4 *4 (-1007)) - (-4 *5 (-1120)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *3 (-309)) (-5 *1 (-652 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-452 *4 *5)) (-4 *4 (-1012)) + (-4 *5 (-1127)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-311)) (-5 *1 (-655 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-345 (-852 *4))) (-5 *3 (-1081)) (-4 *4 (-491)) - (-5 *1 (-947 *4)))) + (-12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-494)) + (-5 *1 (-952 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-580 (-1081))) (-5 *4 (-580 (-345 (-852 *5)))) - (-5 *2 (-345 (-852 *5))) (-4 *5 (-491)) (-5 *1 (-947 *5)))) + (-12 (-5 *3 (-583 (-1088))) (-5 *4 (-583 (-347 (-857 *5)))) + (-5 *2 (-347 (-857 *5))) (-4 *5 (-494)) (-5 *1 (-952 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-246 (-345 (-852 *4)))) (-5 *2 (-345 (-852 *4))) (-4 *4 (-491)) - (-5 *1 (-947 *4)))) + (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494)) + (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-246 (-345 (-852 *4))))) (-5 *2 (-345 (-852 *4))) - (-4 *4 (-491)) (-5 *1 (-947 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3)))) + (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-5 *2 (-347 (-857 *4))) + (-4 *4 (-494)) (-5 *1 (-952 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1060 *3))))) + (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1146 *4)) (-4 *4 (-956)) (-5 *2 (-1170 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-956)) (-5 *2 (-1076 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-956)) (-4 *1 (-1146 *3))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-5 *2 (-1083 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-961)) (-4 *1 (-1153 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956))))) + (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-856 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-861 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-1146 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-1153 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-1146 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1146 *3)) (-4 *3 (-956))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-689)))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-1153 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *1 (-223 *4)) (-4 *4 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) + (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-309)) (-4 *2 (-804 *3)) (-5 *1 (-515 *2)) (-5 *3 (-1081)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-515 *2)) (-4 *2 (-309)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-801 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) + (-12 (-4 *2 (-311)) (-4 *2 (-809 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 (-689))) (-4 *1 (-806 *4)) - (-4 *4 (-1007)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-806 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-806 *3)) (-4 *3 (-1007)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-956))))) -(((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *2 *4)) (-4 *4 (-1146 *2)) - (-4 *2 (-144)))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) + (-4 *4 (-1012)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1153 *2)) + (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1146 *2)) (-4 *2 (-144)) (-5 *1 (-347 *3 *2 *4)) - (-4 *3 (-348 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) + (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) + (-4 *3 (-350 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1146 *2)) (-5 *2 (-480)) (-5 *1 (-687 *3 *4)) - (-4 *4 (-348 *2 *3)))) + (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-692 *3 *4)) + (-4 *4 (-350 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *3 (-144)))) - ((*1 *2 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-144))))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-146)))) + ((*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *3 (-144)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2)))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-146)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-144))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-345 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-956)) - (-4 *3 (-491)))) + (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) + (-4 *3 (-494)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-956)) (-4 *2 (-491))))) + (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -3937 *4) (|:| -1962 *3) (|:| -2888 *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3948 *4) (|:| -1970 *3) (|:| -2898 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-971 *3 *4 *5)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) - (-5 *2 (-2 (|:| -3937 *3) (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-1146 *3))))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| -3948 *3) (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-1153 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-309)) (-4 *4 (-491)) (-4 *5 (-1146 *4)) - (-5 *2 (-2 (|:| -1751 (-559 *4 *5)) (|:| -1750 (-345 *5)))) - (-5 *1 (-559 *4 *5)) (-5 *3 (-345 *5)))) + (-12 (-4 *4 (-311)) (-4 *4 (-494)) (-4 *5 (-1153 *4)) + (-5 *2 (-2 (|:| -1759 (-562 *4 *5)) (|:| -1758 (-347 *5)))) + (-5 *1 (-562 *4 *5)) (-5 *3 (-347 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-956)))) + (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-387)) (-4 *3 (-956)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1146 *3))))) + (-12 (-4 *3 (-389)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1146 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1146 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1146 *3))))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) - (-5 *1 (-1143 *4 *3)) (-4 *3 (-1146 *4))))) + (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) + (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-118))) (-5 *2 (-580 *3)) (-5 *1 (-1142 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1149 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-491) (-118))) - (-5 *2 (-2 (|:| -3123 *3) (|:| -3122 *3))) (-5 *1 (-1142 *4 *3)) - (-4 *3 (-1146 *4))))) + (|partial| -12 (-4 *4 (-13 (-494) (-120))) + (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-1149 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1142 *3 *2)) - (-4 *2 (-1146 *3))))) + (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2)) + (-4 *2 (-1153 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-689)) (-4 *4 (-13 (-491) (-118))) - (-5 *1 (-1142 *4 *2)) (-4 *2 (-1146 *4))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) + (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-689)) (-4 *4 (-13 (-491) (-118))) - (-5 *1 (-1142 *4 *2)) (-4 *2 (-1146 *4))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) + (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) - (-4 *3 (-319 *5)))) + (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) + (-4 *3 (-321 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-438 *4 *5 *6 *3)) - (-4 *6 (-319 *4)) (-4 *3 (-319 *5)))) + (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) + (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-899 *4)) (-4 *4 (-491)) - (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4))) (-5 *1 (-630 *4 *5)))) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) + (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) - (-5 *2 (-2 (|:| -3251 *7) (|:| |rh| (-580 (-345 *6))))) - (-5 *1 (-723 *5 *6 *7 *3)) (-5 *4 (-580 (-345 *6))) (-4 *7 (-597 *6)) - (-4 *3 (-597 (-345 *6))))) + (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) + (-5 *2 (-2 (|:| -3261 *7) (|:| |rh| (-583 (-347 *6))))) + (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-347 *6))) (-4 *7 (-600 *6)) + (-4 *3 (-600 (-347 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3)) - (-4 *3 (-1146 *5))))) + (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3)) + (-4 *3 (-1153 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-4 *4 (-899 *3)) (-5 *1 (-113 *3 *4 *2)) - (-4 *2 (-319 *4)))) + (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) + (-4 *2 (-321 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-899 *4)) (-4 *2 (-319 *4)) - (-5 *1 (-438 *4 *5 *2 *3)) (-4 *3 (-319 *5)))) + (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-4 *2 (-321 *4)) + (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-899 *4)) (-4 *4 (-491)) (-5 *2 (-627 *4)) - (-5 *1 (-630 *4 *5)))) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-630 *4)) + (-5 *1 (-633 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-4 *4 (-899 *3)) (-5 *1 (-1141 *3 *4 *2)) - (-4 *2 (-1146 *4))))) + (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-1148 *3 *4 *2)) + (-4 *2 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-113 *2 *4 *3)) - (-4 *3 (-319 *4)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3)) + (-4 *3 (-321 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-438 *2 *4 *5 *3)) - (-4 *5 (-319 *2)) (-4 *3 (-319 *4)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-440 *2 *4 *5 *3)) + (-4 *5 (-321 *2)) (-4 *3 (-321 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-899 *2)) (-4 *2 (-491)) - (-5 *1 (-630 *2 *4)))) + (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-494)) + (-5 *1 (-633 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-899 *2)) (-4 *2 (-491)) (-5 *1 (-1141 *2 *4 *3)) - (-4 *3 (-1146 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-689)) (-5 *1 (-699 *3)) (-4 *3 (-956)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3)) + (-4 *3 (-1153 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-862 *3 *2)) (-4 *2 (-102)) (-4 *3 (-491)) (-4 *3 (-956)) - (-4 *2 (-711)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-689)) (-5 *1 (-1076 *3)) (-4 *3 (-956)))) + (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-961)) + (-4 *2 (-716)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1083 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-879)) (-4 *2 (-102)) (-5 *1 (-1083 *3)) (-4 *3 (-491)) - (-4 *3 (-956)))) + (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494)) + (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1081)) (-4 *3 (-956))))) -(((*1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-1137 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *2 (-1000 *3)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-995 *3)) (-5 *1 (-998 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-1137 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1137 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-961))))) +(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) + (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-480)) - (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) - (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) + (-2 (|:| |contp| (-483)) + (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) + (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) + (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-480)) - (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) - (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480)))))) + (-2 (|:| |contp| (-483)) + (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) + (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-343 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1146 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) + (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1153 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-689))) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3) - (-12 (-5 *2 (-343 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1146 (-345 (-480)))))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480)))))) + (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483)))))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-48))) (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1146 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48))))) + (-12 (-5 *4 (-583 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1153 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-48))) (-4 *5 (-751)) (-4 *6 (-712)) (-5 *2 (-343 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-856 (-48) *6 *5)))) + (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-48))) (-4 *5 (-751)) (-4 *6 (-712)) - (-4 *7 (-856 (-48) *6 *5)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1076 *7)))) + (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) + (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1083 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-138 *4 *3)) - (-4 *3 (-1146 (-140 *4))))) + (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) + (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1146 (-140 *4))))) + (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1146 (-140 *4))))) + (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-343 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1146 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) + (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1153 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-689))) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-580 (-689))) (-5 *5 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-689)) (-5 *2 (-343 *3)) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480))))) + (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483))))) ((*1 *2 *3) - (-12 (-5 *2 (-343 (-140 (-480)))) (-5 *1 (-381)) (-5 *3 (-140 (-480))))) + (-12 (-5 *2 (-345 (-142 (-483)))) (-5 *1 (-383)) (-5 *3 (-142 (-483))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081)))))) - (-4 *5 (-712)) (-4 *7 (-491)) (-5 *2 (-343 *3)) - (-5 *1 (-391 *4 *5 *6 *7 *3)) (-4 *6 (-491)) (-4 *3 (-856 *7 *5 *4)))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) + (-4 *5 (-717)) (-4 *7 (-494)) (-5 *2 (-345 *3)) + (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-861 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-255)) (-5 *2 (-343 (-1076 *4))) (-5 *1 (-393 *4)) - (-5 *3 (-1076 *4)))) + (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1083 *4))) (-5 *1 (-395 *4)) + (-5 *3 (-1083 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) - (-4 *7 (-13 (-309) (-118) (-658 *5 *6))) (-5 *2 (-343 *3)) - (-5 *1 (-429 *5 *6 *7 *3)) (-4 *3 (-1146 *7)))) + (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) + (-4 *7 (-13 (-311) (-120) (-661 *5 *6))) (-5 *2 (-345 *3)) + (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1153 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-343 (-1076 *7)) (-1076 *7))) (-4 *7 (-13 (-255) (-118))) - (-4 *5 (-751)) (-4 *6 (-712)) (-5 *2 (-343 *3)) (-5 *1 (-474 *5 *6 *7 *3)) - (-4 *3 (-856 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) + (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-477 *5 *6 *7 *3)) + (-4 *3 (-861 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-343 (-1076 *7)) (-1076 *7))) (-4 *7 (-13 (-255) (-118))) - (-4 *5 (-751)) (-4 *6 (-712)) (-4 *8 (-856 *7 *6 *5)) - (-5 *2 (-343 (-1076 *8))) (-5 *1 (-474 *5 *6 *7 *8)) (-5 *3 (-1076 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479)))) + (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) + (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) + (-5 *2 (-345 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *6 (-1146 *5)) (-5 *2 (-580 (-594 (-345 *6)))) (-5 *1 (-598 *5 *6)) - (-5 *3 (-594 (-345 *6))))) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *6 (-1153 *5)) (-5 *2 (-583 (-597 (-347 *6)))) (-5 *1 (-601 *5 *6)) + (-5 *3 (-597 (-347 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *5 (-1146 *4)) (-5 *2 (-580 (-594 (-345 *5)))) (-5 *1 (-598 *4 *5)) - (-5 *3 (-594 (-345 *5))))) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-597 (-347 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-734 *4)) (-4 *4 (-751)) (-5 *2 (-580 (-611 *4))) - (-5 *1 (-611 *4)))) + (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) + (-5 *1 (-614 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-5 *2 (-580 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1146 *4)))) + (-12 (-5 *4 (-483)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-296)) (-5 *2 (-343 *3)) - (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4)))) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-5 *2 (-345 *3)) + (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-296)) (-4 *7 (-856 *6 *5 *4)) - (-5 *2 (-343 (-1076 *7))) (-5 *1 (-634 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-4 *7 (-861 *6 *5 *4)) + (-5 *2 (-345 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-712)) + (-12 (-4 *4 (-717)) (-4 *5 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ "failed") (-1081)))))) - (-4 *6 (-255)) (-5 *2 (-343 *3)) (-5 *1 (-664 *4 *5 *6 *3)) - (-4 *3 (-856 (-852 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) - (-4 *6 (-491)) (-5 *2 (-343 *3)) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-856 (-345 (-852 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-13 (-255) (-118))) - (-5 *2 (-343 *3)) (-5 *1 (-667 *4 *5 *6 *3)) - (-4 *3 (-856 (-345 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-13 (-255) (-118))) - (-5 *2 (-343 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-856 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-751)) (-4 *5 (-712)) (-4 *6 (-13 (-255) (-118))) - (-4 *7 (-856 *6 *5 *4)) (-5 *2 (-343 (-1076 *7))) (-5 *1 (-675 *4 *5 *6 *7)) - (-5 *3 (-1076 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-343 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1146 (-345 (-480)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-343 *3)) (-5 *1 (-949 *3)) - (-4 *3 (-1146 (-345 (-852 (-480))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1146 (-345 (-480)))) - (-4 *5 (-13 (-309) (-118) (-658 (-345 (-480)) *4))) (-5 *2 (-343 *3)) - (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1146 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1146 (-345 (-852 (-480))))) - (-4 *5 (-13 (-309) (-118) (-658 (-345 (-852 (-480))) *4))) (-5 *2 (-343 *3)) - (-5 *1 (-987 *4 *5 *3)) (-4 *3 (-1146 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-387)) (-4 *7 (-856 *6 *4 *5)) - (-5 *2 (-343 (-1076 (-345 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) - (-5 *3 (-1076 (-345 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1125)))) - ((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-88 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-480)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-775 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-775 *2)) (-14 *2 (-480)))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) + (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-669 *4 *5 *6 *3)) + (-4 *3 (-861 (-857 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) + (-4 *6 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-671 *4 *5 *6 *3)) + (-4 *3 (-861 (-347 (-857 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-257) (-120))) + (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-861 (-347 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) + (-5 *2 (-345 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) + (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7)) + (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-345 *3)) (-5 *1 (-954 *3)) + (-4 *3 (-1153 (-347 (-857 (-483))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1153 (-347 (-483)))) + (-4 *5 (-13 (-311) (-120) (-661 (-347 (-483)) *4))) (-5 *2 (-345 *3)) + (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1153 (-347 (-857 (-483))))) + (-4 *5 (-13 (-311) (-120) (-661 (-347 (-857 (-483))) *4))) (-5 *2 (-345 *3)) + (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) + (-5 *3 (-1083 (-347 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132)))) + ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-780 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-483)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-480)) (-14 *3 *2) (-5 *1 (-776 *3 *4)) (-4 *4 (-774 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-480)) (-5 *1 (-776 *2 *3)) (-4 *3 (-774 *2)))) + (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-480)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1163 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-956)) (-4 *3 (-1163 *2))))) + (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1170 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-51)) (-5 *1 (-264 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *5 *3)))) + (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-246 *3)) (-5 *5 (-689)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-264 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-480))) (-5 *4 (-246 *6)) - (-4 *6 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *5 *6)))) + (-12 (-5 *4 (-248 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-266 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) + (-4 *6 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *6 *3)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-480))) (-5 *4 (-246 *7)) (-5 *5 (-1137 (-689))) - (-4 *7 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-694))) + (-4 *7 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1081)) (-5 *5 (-246 *3)) (-5 *6 (-1137 (-689))) - (-4 *3 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *2 (-51)) - (-5 *1 (-394 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3))))) + (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-694))) + (-4 *3 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) + (-5 *1 (-396 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1163 *3))))) + (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-1132 *4)) (-4 *4 (-956)) (-4 *4 (-491)) - (-5 *2 (-345 (-852 *4))))) + (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) + (-5 *2 (-347 (-857 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-1132 *4)) (-4 *4 (-956)) (-4 *4 (-491)) - (-5 *2 (-345 (-852 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-99))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-1126))) ((*1 *1 *1 *1) (-5 *1 (-1127))) - ((*1 *1 *1 *1) (-5 *1 (-1128))) ((*1 *1 *1 *1) (-5 *1 (-1129)))) -(((*1 *1 *1 *1) (-5 *1 (-99))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-1126))) ((*1 *1 *1 *1) (-5 *1 (-1127))) - ((*1 *1 *1 *1) (-5 *1 (-1128))) ((*1 *1 *1 *1) (-5 *1 (-1129)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-99))) + (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) + (-5 *2 (-347 (-857 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-101))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134))) + ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))) +(((*1 *1 *1 *1) (-5 *1 (-101))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134))) + ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) - ((*1 *1) (-5 *1 (-481))) ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-5 *1 (-483))) - ((*1 *1) (-5 *1 (-484))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-5 *1 (-1081))) - ((*1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-825)))) - ((*1 *1) (-12 (-5 *1 (-1088 *2)) (-14 *2 (-825)))) ((*1 *1) (-5 *1 (-1126))) - ((*1 *1) (-5 *1 (-1127))) ((*1 *1) (-5 *1 (-1128))) ((*1 *1) (-5 *1 (-1129)))) -(((*1 *2 *3) (-12 (-5 *3 (-140 (-480))) (-5 *2 (-83)) (-5 *1 (-381)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-484))) ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) + ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1088))) + ((*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-830)))) + ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1133))) + ((*1 *1) (-5 *1 (-1134))) ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-383)))) ((*1 *2 *3) (-12 (-5 *3 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) - (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-868 *3)) (-4 *3 (-479)))) - ((*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-83))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1123))))) + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) + (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-482)))) + ((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3213 (-580 (-1081))) (|:| -3214 (-580 (-1081))))) - (-5 *1 (-1123))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1123)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1123))))) + (-12 (-5 *2 (-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088))))) + (-5 *1 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-751)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-756)) (-4 *3 (-1012))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1122 *2)) - (-4 *2 (-1007)))) + (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2)) + (-4 *2 (-1012)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-751)) (-5 *1 (-1122 *2))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-1007))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-756)) (-5 *1 (-1129 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1122 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1007)) (-5 *2 (-83)) - (-5 *1 (-1122 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85)) + (-5 *1 (-1129 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3214 (-580 *3)) (|:| -3213 (-580 *3)))) - (-5 *1 (-1122 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-2 (|:| -3224 (-583 *3)) (|:| -3223 (-583 *3)))) + (-5 *1 (-1129 *3)) (-4 *3 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-5 *2 (-1176)) (-5 *1 (-1122 *4)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-5 *2 (-1176)) (-5 *1 (-1122 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-4 *5 (-296)) (-5 *2 (-343 (-1076 (-1076 *5)))) - (-5 *1 (-1119 *5)) (-5 *3 (-1076 (-1076 *5)))))) + (-12 (-5 *4 (-483)) (-4 *5 (-298)) (-5 *2 (-345 (-1083 (-1083 *5)))) + (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-343 (-1076 (-1076 *4)))) (-5 *1 (-1119 *4)) - (-5 *3 (-1076 (-1076 *4)))))) + (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) + (-5 *3 (-1083 (-1083 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-343 (-1076 (-1076 *4)))) (-5 *1 (-1119 *4)) - (-5 *3 (-1076 (-1076 *4)))))) + (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) + (-5 *3 (-1083 (-1083 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) + (-4 *3 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1115 *4 *5 *3 *2)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *3 (-751)) (-4 *2 (-971 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-1118 *2)) (-4 *2 (-1120))))) + (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *3 (-756)) (-4 *2 (-976 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1125 *2)) (-4 *2 (-1127))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-580 (-580 (-177)))) (-5 *4 (-177)) (-5 *2 (-580 (-849 *4))) - (-5 *1 (-1117)) (-5 *3 (-849 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-580 (-580 (-177)))) (-5 *1 (-1117))))) + (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) + (-5 *1 (-1124)) (-5 *3 (-854 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1124))))) (((*1 *1 *2) - (-12 (-5 *2 (-825)) (-4 *1 (-194 *3 *4)) (-4 *4 (-956)) (-4 *4 (-1120)))) + (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1127)))) ((*1 *1 *2) - (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *5 (-194 (-3940 *3) (-689))) + (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *5)) - (-2 (|:| -2388 *2) (|:| -2389 *5)))) - (-5 *1 (-396 *3 *4 *2 *5 *6 *7)) (-4 *2 (-751)) - (-4 *7 (-856 *4 *5 (-768 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117))))) + (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) + (-2 (|:| -2396 *2) (|:| -2397 *5)))) + (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) + (-4 *7 (-861 *4 *5 (-773 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-849 (-177))) (-5 *4 (-778)) (-5 *2 (-1176)) (-5 *1 (-403)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-956)) (-4 *1 (-888 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-849 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-849 (-177))) (-5 *1 (-1117)) (-5 *3 (-177))))) + (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-177)) (-5 *5 (-480)) (-5 *2 (-1116 *3)) (-5 *1 (-707 *3)) - (-4 *3 (-882)))) + (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-712 *3)) + (-4 *3 (-887)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *4 (-83)) (-5 *1 (-1116 *2)) - (-4 *2 (-882))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-882))))) -(((*1 *2 *1) - (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-1116 *3)) (-4 *3 (-882))))) -(((*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-882))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2)) + (-4 *2 (-887))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-887))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) - (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) (-4 *8 (-751)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-580 *9)))) (-5 *3 (-580 *9)) - (-4 *1 (-1115 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-971 *5 *6 *7)) - (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-580 *8)))) (-5 *3 (-580 *8)) - (-4 *1 (-1115 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-2 (|:| -3844 (-580 *6)) (|:| -1691 (-580 *6))))))) + (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) + (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *9)))) (-5 *3 (-583 *9)) + (-4 *1 (-1122 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7)) + (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *8)))) (-5 *3 (-583 *8)) + (-4 *1 (-1122 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-2 (|:| -3855 (-583 *6)) (|:| -1699 (-583 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1115 *5 *6 *7 *3)) (-4 *5 (-491)) - (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) (-5 *2 (-83))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *1)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1115 *4 *5 *6 *3)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-83) *7 (-580 *7))) (-4 *1 (-1115 *4 *5 *6 *7)) - (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) + (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-580 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) - (-4 *1 (-1115 *5 *6 *7 *8)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-971 *5 *6 *7))))) + (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-976 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *2 (-491)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *5 (-971 *2 *3 *4))))) + (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-976 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 *10)) - (-5 *1 (-560 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) - (-4 *10 (-1014 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) + (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) + (-4 *10 (-1019 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) - (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-564 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) + (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) - (-14 *6 (-580 (-1081))) - (-5 *2 (-580 (-1051 *5 (-465 (-768 *6)) (-768 *6) (-698 *5 (-768 *6))))) - (-5 *1 (-564 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) + (-14 *6 (-583 (-1088))) + (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) + (-5 *1 (-567 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) - (-5 *1 (-935 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) - (-5 *1 (-935 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) - (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-953 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) + (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) - (-5 *1 (-1051 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) + (-5 *1 (-1058 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) - (-5 *1 (-1051 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) + (-5 *1 (-1058 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-1115 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1122 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-580 (-2 (|:| -3844 *1) (|:| -1691 (-580 *7))))) (-5 *3 (-580 *7)) - (-4 *1 (-1115 *4 *5 *6 *7))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| -3855 *1) (|:| -1699 (-583 *7))))) (-5 *3 (-583 *7)) + (-4 *1 (-1122 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *2 (-971 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *5 (-315)) (-5 *2 (-689))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-694))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-956)) (-5 *1 (-50 *2 *3)) (-14 *3 (-580 (-1081))))) + (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 (-825))) (-4 *2 (-309)) (-5 *1 (-123 *4 *2 *5)) - (-14 *4 (-825)) (-14 *5 (-901 *4 *2)))) + (-12 (-5 *3 (-583 (-830))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-262 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-102)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-956)))) + (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-491)) (-5 *1 (-559 *2 *4)) (-4 *4 (-1146 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-642 *2)) (-4 *2 (-956)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-956)) (-5 *1 (-669 *2 *3)) (-4 *3 (-660)))) + (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *5)) (-5 *3 (-580 (-689))) (-4 *1 (-674 *4 *5)) - (-4 *4 (-956)) (-4 *5 (-751)))) + (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *2)) (-4 *4 (-956)) (-4 *2 (-751)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-756 *2)) (-4 *2 (-956)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 (-689))) (-4 *1 (-856 *4 *5 *6)) - (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-856 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *2 (-751)))) + (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *2 (-756)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *2 (-856 *4 (-465 *5) *5)) (-5 *1 (-1031 *4 *5 *2)) - (-4 *4 (-956)) (-4 *5 (-751)))) + (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-852 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-956))))) + (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-961))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1031 *4 *3 *5))) (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956)) - (-4 *3 (-751)) (-5 *1 (-1031 *4 *3 *5)) (-4 *5 (-856 *4 (-465 *3) *3)))) + (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)) + (-4 *3 (-756)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-861 *4 (-468 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1113 *4))) (-5 *3 (-1081)) (-5 *1 (-1113 *4)) - (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956))))) + (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4)) + (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961))))) (((*1 *2 *2) - (-12 (-4 *3 (-550 (-795 *3))) (-4 *3 (-791 *3)) (-4 *3 (-387)) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-550 (-795 *3))) (-4 *2 (-791 *3)) - (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-389)) + (-5 *1 (-1119 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) + (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) -(((*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-1007)) (-5 *1 (-873 *3)))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) +(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-118)) (-4 *2 (-255)) (-4 *2 (-387)) (-4 *3 (-751)) - (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) (-4 *5 (-856 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-262 (-480))) (-5 *1 (-1024)))) + (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-756)) + (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-483))) (-5 *1 (-1031)))) ((*1 *2 *2) - (-12 (-4 *3 (-387)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-359 *3) (-1106)))))) + (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-491)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-491)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-140 (-262 *4))) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-142 (-264 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-140 *3)) - (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4)))))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-142 *3)) + (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-83)) - (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) + (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85)) + (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-262 *4)) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-262 *4)) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 (-140 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3)))))) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3)))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3)))))) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3)))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *4 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 (-140 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3))))) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 (-140 *3)))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *1 (-160 *4 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 (-140 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1110 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3))))) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1107 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-1107 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) (-4 *1 (-1116)))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-580 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1007))))) + (-12 (-5 *3 (-583 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1107 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) (((*1 *2) - (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491)))) - ((*1 *1) (-5 *1 (-412))) ((*1 *1) (-4 *1 (-1106)))) -(((*1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-1104))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1064)) (-5 *2 (-480)) (-5 *1 (-1103 *4)) (-4 *4 (-956))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-480)) (-5 *1 (-1103 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) + (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) + ((*1 *1) (-5 *1 (-414))) ((*1 *1) (-4 *1 (-1113)))) +(((*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-961))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) - (-5 *2 (-480)))) + (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) + (-5 *2 (-483)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) - (-5 *1 (-1022 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *4))))) + (|partial| -12 (-4 *4 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) + (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-745 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) - (-5 *1 (-1022 *6 *3)))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) + (-5 *1 (-1029 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-1064)) - (-4 *6 (-13 (-491) (-945 *2) (-577 *2) (-387))) (-5 *2 (-480)) - (-5 *1 (-1022 *6 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *6))))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071)) + (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) + (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-387)) (-5 *2 (-480)) - (-5 *1 (-1023 *4)))) + (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-483)) + (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-745 (-345 (-852 *6)))) - (-5 *3 (-345 (-852 *6))) (-4 *6 (-387)) (-5 *2 (-480)) (-5 *1 (-1023 *6)))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 (-347 (-857 *6)))) + (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-345 (-852 *6))) (-5 *4 (-1081)) (-5 *5 (-1064)) - (-4 *6 (-387)) (-5 *2 (-480)) (-5 *1 (-1023 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-480)) (-5 *1 (-1103 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1102)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1102))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-1102))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-310 *2)) (-4 *2 (-1007)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1102))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-767) (-580 (-767)))) (-5 *1 (-84)))) - ((*1 *2 *1) (-12 (-5 *2 (-629 (-1 (-767) (-580 (-767))))) (-5 *1 (-84)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1176)) (-5 *1 (-165 *3)) + (|partial| -12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1088)) (-5 *5 (-1071)) + (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1012)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) - (-15 -1953 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437)))) - ((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-644)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1100)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1100))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) + (-15 -1961 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) + ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-647)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-689)) (-4 *3 (-1120)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)))) - ((*1 *1) (-5 *1 (-143))) - ((*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-825)) (-4 *3 (-1007)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1064)) (-4 *1 (-334)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-694)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)))) + ((*1 *1) (-5 *1 (-145))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1012)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) ((*1 *1) - (-12 (-4 *3 (-1007)) (-5 *1 (-790 *2 *3 *4)) (-4 *2 (-1007)) - (-4 *4 (-605 *3)))) - ((*1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) - ((*1 *1 *2) (-12 (-5 *1 (-1047 *3 *2)) (-14 *3 (-689)) (-4 *2 (-956)))) - ((*1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956)))) - ((*1 *1 *1) (-5 *1 (-1081))) ((*1 *1) (-5 *1 (-1081))) - ((*1 *1) (-5 *1 (-1100)))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-1100))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-751)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-751)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-235 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-689)) (-4 *1 (-631 *2)) (-4 *2 (-1007)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1007)) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1007))))) + (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) + (-4 *4 (-608 *3)))) + ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) + ((*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) + ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) + ((*1 *1 *1) (-5 *1 (-1088))) ((*1 *1) (-5 *1 (-1088))) + ((*1 *1) (-5 *1 (-1107)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1012)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1099 *4 *5)) (-4 *4 (-1007)) - (-4 *5 (-1007))))) + (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) + (-4 *5 (-1012))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1099 *4 *5)) (-4 *4 (-1007)) - (-4 *5 (-1007))))) + (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) + (-4 *5 (-1012))))) (((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| -3843 *3) (|:| |entry| *4)))) (-4 *3 (-1007)) - (-4 *4 (-1007)) (-4 *1 (-1098 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-1096 *2)) (-4 *2 (-309))))) + (-12 (-5 *2 (-583 (-2 (|:| -3854 *3) (|:| |entry| *4)))) (-4 *3 (-1012)) + (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-311))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-5 *2 (-1076 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-309))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-1096 *2)) (-4 *2 (-309))))) + (-12 (-5 *4 (-830)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-311))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-311))))) (((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-32 *3 *4)) (-4 *4 (-359 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-55)) (-5 *1 (-84)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-689)) (-5 *1 (-84)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-84)))) + (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-129 *3 *4)) (-4 *4 (-359 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-84)) (-5 *1 (-134)))) + (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-228 *3 *4)) - (-4 *4 (-13 (-359 *3) (-910))))) - ((*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-250 *3)) (-4 *3 (-251)))) - ((*1 *2 *2) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) + (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4)) + (-4 *4 (-13 (-361 *3) (-915))))) + ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) + ((*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *4 (-1007)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-369 *3 *4)) (-4 *4 (-359 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-491)) (-5 *1 (-565 *3 *4)) - (-4 *4 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-927)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1095 *2)) (-4 *2 (-1007))))) + (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-568 *3 *4)) + (-4 *4 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012))))) (((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-580 (-580 *3))))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-580 (-580 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-580 *3))) (-5 *1 (-1094 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-1094 *3))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-751)) + (-12 (-4 *4 (-756)) (-5 *2 - (-2 (|:| |f1| (-580 *4)) (|:| |f2| (-580 (-580 (-580 *4)))) - (|:| |f3| (-580 (-580 *4))) (|:| |f4| (-580 (-580 (-580 *4)))))) - (-5 *1 (-1092 *4)) (-5 *3 (-580 (-580 (-580 *4))))))) + (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) + (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) + (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 (-583 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-751)) (-5 *3 (-580 *6)) (-5 *5 (-580 *3)) + (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-580 *5)) (|:| |f3| *5) (|:| |f4| (-580 *5)))) - (-5 *1 (-1092 *6)) (-5 *4 (-580 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) + (-5 *1 (-1099 *6)) (-5 *4 (-583 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-4 *7 (-899 *4)) (-4 *2 (-624 *7 *8 *9)) - (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6)) - (-4 *8 (-319 *7)) (-4 *9 (-319 *7)))) + (|partial| -12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) + (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)) (-4 *2 (-309)))) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)) (-4 *2 (-311)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-309)) (-4 *3 (-144)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-309)) (-4 *2 (-956)))) + (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-311)) (-4 *2 (-961)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1028 *2 *3 *4 *5)) (-4 *3 (-956)) - (-4 *4 (-194 *2 *3)) (-4 *5 (-194 *2 *3)) (-4 *3 (-309)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-1092 *3))))) + (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1099 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-751)) (-5 *2 (-580 (-580 *4))) (-5 *1 (-1092 *4)) - (-5 *3 (-580 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-751)) (-5 *1 (-1092 *3))))) + (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)) + (-5 *3 (-583 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1099 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-751)) (-5 *2 (-1094 (-580 *4))) (-5 *1 (-1092 *4)) - (-5 *3 (-580 *4))))) + (-12 (-4 *4 (-756)) (-5 *2 (-1101 (-583 *4))) (-5 *1 (-1099 *4)) + (-5 *3 (-583 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-751)) (-5 *2 (-580 (-580 (-580 *4)))) (-5 *1 (-1092 *4)) - (-5 *3 (-580 (-580 *4)))))) + (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1099 *4)) + (-5 *3 (-583 (-583 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1094 (-580 *4))) (-4 *4 (-751)) (-5 *2 (-580 (-580 *4))) - (-5 *1 (-1092 *4))))) + (-12 (-5 *3 (-1101 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) + (-5 *1 (-1099 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-580 (-580 *4)))) (-5 *2 (-580 (-580 *4))) - (-5 *1 (-1092 *4)) (-4 *4 (-751))))) + (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) + (-5 *1 (-1099 *4)) (-4 *4 (-756))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-580 (-580 *4)))) (-5 *2 (-580 (-580 *4))) (-4 *4 (-751)) - (-5 *1 (-1092 *4))))) + (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) + (-5 *1 (-1099 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-580 (-580 (-580 *4)))) (-5 *3 (-580 *4)) (-4 *4 (-751)) - (-5 *1 (-1092 *4))))) + (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) + (-5 *1 (-1099 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-580 (-580 (-580 *5)))) (-5 *3 (-1 (-83) *5 *5)) - (-5 *4 (-580 *5)) (-4 *5 (-751)) (-5 *1 (-1092 *5))))) + (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1099 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-751)) (-5 *4 (-580 *6)) - (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-580 *4)))) - (-5 *1 (-1092 *6)) (-5 *5 (-580 *4))))) -(((*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-852 *5)))) (-5 *1 (-1090 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 (-480))))) - (-5 *2 (-580 (-580 (-246 (-852 *4))))) (-5 *1 (-327 *4)) - (-4 *4 (-13 (-750) (-309))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-246 (-345 (-852 (-480)))))) - (-5 *2 (-580 (-580 (-246 (-852 *4))))) (-5 *1 (-327 *4)) - (-4 *4 (-13 (-750) (-309))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 (-480)))) (-5 *2 (-580 (-246 (-852 *4)))) - (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-246 (-345 (-852 (-480))))) (-5 *2 (-580 (-246 (-852 *4)))) - (-5 *1 (-327 *4)) (-4 *4 (-13 (-750) (-309))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) + (-5 *1 (-1099 *6)) (-5 *5 (-583 *4))))) +(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) +(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098))))) +(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1097 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-347 (-857 (-483))))) + (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-755) (-311))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-248 (-347 (-857 (-483)))))) + (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-755) (-311))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 (-248 (-857 *4)))) + (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-248 (-347 (-857 (-483))))) (-5 *2 (-583 (-248 (-857 *4)))) + (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1081)) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-4 *4 (-13 (-29 *6) (-1106) (-866))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2000 (-580 *4)))) - (-5 *1 (-592 *6 *4 *3)) (-4 *3 (-597 *4)))) + (|partial| -12 (-5 *5 (-1088)) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-4 *4 (-13 (-29 *6) (-1113) (-871))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) + (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *1 (-592 *6 *2 *3)) (-4 *3 (-597 *2)))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) + (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-4 *7 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-5 *2 (-580 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2000 (-580 *7))))) - (-5 *1 (-606 *5 *6 *7 *3)) (-5 *4 (-580 *7)) (-4 *3 (-624 *5 *6 *7)))) + (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2008 (-583 *7))))) + (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-309)) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 - (-2 (|:| |particular| (-3 (-1170 *5) #2="failed")) - (|:| -2000 (-580 (-1170 *5))))) - (-5 *1 (-607 *5)) (-5 *4 (-1170 *5)))) + (-2 (|:| |particular| (-3 (-1177 *5) #2="failed")) + (|:| -2008 (-583 (-1177 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1177 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-580 *5))) (-4 *5 (-309)) + (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 - (-2 (|:| |particular| (-3 (-1170 *5) #2#)) (|:| -2000 (-580 (-1170 *5))))) - (-5 *1 (-607 *5)) (-5 *4 (-1170 *5)))) + (-2 (|:| |particular| (-3 (-1177 *5) #2#)) (|:| -2008 (-583 (-1177 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1177 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-309)) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 - (-580 - (-2 (|:| |particular| (-3 (-1170 *5) #2#)) - (|:| -2000 (-580 (-1170 *5)))))) - (-5 *1 (-607 *5)) (-5 *4 (-580 (-1170 *5))))) + (-583 + (-2 (|:| |particular| (-3 (-1177 *5) #2#)) + (|:| -2008 (-583 (-1177 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-580 *5))) (-4 *5 (-309)) + (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 - (-580 - (-2 (|:| |particular| (-3 (-1170 *5) #2#)) - (|:| -2000 (-580 (-1170 *5)))))) - (-5 *1 (-607 *5)) (-5 *4 (-580 (-1170 *5))))) + (-583 + (-2 (|:| |particular| (-3 (-1177 *5) #2#)) + (|:| -2008 (-583 (-1177 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-688 *5)))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-688 *4)))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1081)) - (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) (-5 *1 (-690 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1106) (-866))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088)) + (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-695 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1113) (-871))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1081)) - (-4 *7 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) - (-5 *1 (-720 *6 *7)) (-5 *4 (-1170 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1081)) - (-4 *6 (-13 (-29 *5) (-1106) (-866))) - (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-1170 *6))) (-5 *1 (-720 *5 *6)))) + (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1088)) + (-4 *7 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) + (-5 *1 (-725 *6 *7)) (-5 *4 (-1177 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1088)) + (-4 *6 (-13 (-29 *5) (-1113) (-871))) + (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-1177 *6))) (-5 *1 (-725 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-580 (-246 *7))) (-5 *4 (-580 (-84))) (-5 *5 (-1081)) - (-4 *7 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) - (-5 *1 (-720 *6 *7)))) + (|partial| -12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) + (-4 *7 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-580 *7)) (-5 *4 (-580 (-84))) (-5 *5 (-1081)) - (-4 *7 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1170 *7)) (|:| -2000 (-580 (-1170 *7))))) - (-5 *1 (-720 *6 *7)))) + (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) + (-4 *7 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-246 *7)) (-5 *4 (-84)) (-5 *5 (-1081)) - (-4 *7 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2000 (-580 *7))) *7 #3="failed")) - (-5 *1 (-720 *6 *7)))) + (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1088)) + (-4 *7 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2008 (-583 *7))) *7 #3="failed")) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-84)) (-5 *5 (-1081)) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2000 (-580 *3))) *3 #3#)) - (-5 *1 (-720 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-866))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1088)) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2008 (-583 *3))) *3 #3#)) + (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-871))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-246 *2)) (-5 *4 (-84)) (-5 *5 (-580 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-866))) (-5 *1 (-720 *6 *2)) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))))) + (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-5 *1 (-725 *6 *2)) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-246 *2)) (-5 *5 (-580 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-866))) - (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *1 (-720 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1113) (-871))) + (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *1 (-725 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2000 (-580 *6))) "failed") *7 *6)) - (-4 *6 (-309)) (-4 *7 (-597 *6)) - (-5 *2 (-2 (|:| |particular| (-1170 *6)) (|:| -2000 (-627 *6)))) - (-5 *1 (-728 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1170 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 (-345 (-480)))) (-5 *2 (-580 (-325))) (-5 *1 (-931)) - (-5 *4 (-325)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 (-480))) (-5 *2 (-580 (-325))) (-5 *1 (-931)) - (-5 *4 (-325)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1036 *4)) (-5 *3 (-262 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1036 *4)) - (-5 *3 (-246 (-262 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1036 *5)) - (-5 *3 (-246 (-262 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1036 *5)) (-5 *3 (-262 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1081))) - (-4 *5 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-580 (-580 (-246 (-262 *5))))) (-5 *1 (-1036 *5)) - (-5 *3 (-580 (-246 (-262 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-1090 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1081))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-1090 *5)) - (-5 *3 (-580 (-246 (-345 (-852 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-345 (-852 *4)))) (-4 *4 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-1090 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) - (-5 *1 (-1090 *4)) (-5 *3 (-580 (-246 (-345 (-852 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *5))))) - (-5 *1 (-1090 *5)) (-5 *3 (-345 (-852 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *5))))) - (-5 *1 (-1090 *5)) (-5 *3 (-246 (-345 (-852 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *4))))) (-5 *1 (-1090 *4)) - (-5 *3 (-345 (-852 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 (-246 (-345 (-852 *4))))) (-5 *1 (-1090 *4)) - (-5 *3 (-246 (-345 (-852 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767))))) - ((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-480)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1064)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-441)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-524)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-413)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1002)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-997)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-979)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-878)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-943)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-260)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-610)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1058)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-459)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-972)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-452)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-619)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1021)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-104)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1181)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-614)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-458)))) - ((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-1086))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1086)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-1086))) (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1086))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-441)) (-5 *1 (-232)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-480) (-177) (-441) (-1064) (-1086))) (-5 *1 (-1086))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-580 (-232))) (-5 *1 (-232)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1086))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2841)) (-5 *2 (-83)) (-5 *1 (-553)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2228)) (-5 *2 (-83)) (-5 *1 (-553)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2840)) (-5 *2 (-83)) (-5 *1 (-553)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2008 (-583 *6))) "failed") *7 *6)) + (-4 *6 (-311)) (-4 *7 (-600 *6)) + (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2008 (-630 *6)))) + (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) + (-5 *4 (-327)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) + (-5 *4 (-327)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-264 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) + (-5 *3 (-248 (-264 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) + (-5 *3 (-248 (-264 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1088))) + (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1043 *5)) + (-5 *3 (-583 (-248 (-264 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5)) + (-5 *3 (-583 (-248 (-347 (-857 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) + (-5 *1 (-1097 *4)) (-5 *3 (-583 (-248 (-347 (-857 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) + (-5 *1 (-1097 *5)) (-5 *3 (-347 (-857 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) + (-5 *1 (-1097 *5)) (-5 *3 (-248 (-347 (-857 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) + (-5 *3 (-347 (-857 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) + (-5 *3 (-248 (-347 (-857 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) + ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-785)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-785)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-444)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-415)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-565)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-883)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-948)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-262)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-613)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-455)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-622)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-1093))) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-483) (-179) (-444) (-1071) (-1093))) (-5 *1 (-1093))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2851)) (-5 *2 (-85)) (-5 *1 (-556)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-85)) (-5 *1 (-556)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2850)) (-5 *2 (-85)) (-5 *1 (-556)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2353)) (-5 *2 (-83)) (-5 *1 (-629 *4)) - (-4 *4 (-549 (-767))))) + (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-85)) (-5 *1 (-632 *4)) + (-4 *4 (-552 (-772))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-549 (-767))) (-5 *2 (-83)) - (-5 *1 (-629 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)) (-5 *1 (-780)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)) (-5 *1 (-780)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-413))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-997))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-878))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-943))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-260))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-452))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-83)) (-5 *1 (-1086)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-441))) (-5 *2 (-83)) (-5 *1 (-1086)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1086)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-83)) (-5 *1 (-1086))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-244))) ((*1 *1) (-5 *1 (-767))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) + (-5 *1 (-632 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-785)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-785)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-455))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-246))) ((*1 *1) (-5 *1 (-772))) ((*1 *1) - (-12 (-4 *2 (-387)) (-4 *3 (-751)) (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-991))) + (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-996))) ((*1 *1) - (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34))))) - ((*1 *1) (-5 *1 (-1084))) ((*1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34))))) + ((*1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1092)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-374)) (-5 *3 (-580 (-1081))) (-5 *4 (-1081)) (-5 *1 (-1084)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1084)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-374)) (-5 *3 (-1081)) (-5 *1 (-1085)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-374)) (-5 *3 (-580 (-1081))) (-5 *1 (-1085))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-374)) (-5 *1 (-1085))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1085))))) + (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1092)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *1 (-1092))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-376)) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-372)) + (-12 (-5 *3 (-374)) (-5 *2 - (-580 - (-3 (|:| -3525 (-1081)) - (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480))))))))) - (-5 *1 (-1085))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1085))))) + (-583 + (-3 (|:| -3536 (-1088)) + (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) + (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092))))) (((*1 *2 *1) (-12 (-5 *2 - (-580 - (-580 - (-3 (|:| -3525 (-1081)) - (|:| -3210 (-580 (-3 (|:| S (-1081)) (|:| P (-852 (-480)))))))))) - (-5 *1 (-1085))))) -(((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1085))))) -(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1085))))) + (-583 + (-583 + (-3 (|:| -3536 (-1088)) + (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))))) + (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| (-374))))) - (-5 *1 (-1085))))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1084))))) -(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084))))) -(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1084))))) -(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1084))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-1081))) (-5 *2 (-1176)) (-5 *1 (-1084)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1081))) (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) + (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))) + (-5 *1 (-1092))))) +(((*1 *1) (-5 *1 (-1091)))) +(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) + ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091))))) +(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) +(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091))))) +(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-580 (-1081))) (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084))))) + (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-372)) (|:| -3893 #1="void"))) (-5 *2 (-1176)) - (-5 *1 (-1084)))) + (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *2 (-1183)) + (-5 *1 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-5 *4 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) - (-5 *2 (-1176)) (-5 *1 (-1084)))) + (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) + (-5 *2 (-1183)) (-5 *1 (-1091)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1081)) (-5 *4 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) - (-5 *2 (-1176)) (-5 *1 (-1084))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1084)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-1176)) (-5 *1 (-1084))))) + (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) + (-5 *2 (-1183)) (-5 *1 (-1091))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) + ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1081)) (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 "void"))) - (-5 *1 (-1084))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1084)) (-5 *3 (-1081))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1081)) (-5 *2 (-1085)) (-5 *1 (-1084))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-956)) (-5 *2 (-1170 *4)) (-5 *1 (-1082 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-5 *2 (-1170 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-956))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-1007)))) - ((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-375 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-871)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-982 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1021)))) ((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) + (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 "void"))) + (-5 *1 (-1091))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-830)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) + ((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-377 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) + ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1028)))) ((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) - (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) - (|:| |args| (-580 (-767))))) - (-5 *1 (-1081))))) + (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) + (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) + (|:| |args| (-583 (-772))))) + (-5 *1 (-1088))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2570 (-580 (-767))) (|:| -2469 (-580 (-767))) - (|:| |presup| (-580 (-767))) (|:| -2568 (-580 (-767))) - (|:| |args| (-580 (-767))))) - (-5 *1 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-580 (-767)))) (-5 *1 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-1081))))) -(((*1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *1) - (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007)))) - ((*1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-1064)))) - ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1064)))) - ((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-1064)))) - ((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-1081))))) -(((*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-1081))))) + (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) + (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) + (|:| |args| (-583 (-772))))) + (-5 *1 (-1088)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1088))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088))))) +(((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1) + (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1071)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071)))) + ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088))))) +(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1088))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-767) (-767) (-767))) (-5 *4 (-480)) (-5 *2 (-767)) - (-5 *1 (-588 *5 *6 *7)) (-4 *5 (-1007)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-483)) (-5 *2 (-772)) + (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-758 *3 *4 *5)) (-4 *3 (-956)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-767)))) - ((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-767)))) - ((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1076 *3)) (-4 *3 (-956))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1083 *3)) (-4 *3 (-961))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-995 *3)) (-4 *3 (-856 *7 *6 *4)) (-4 *6 (-712)) (-4 *4 (-751)) - (-4 *7 (-491)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-480)))) - (-5 *1 (-525 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-491)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-480)))) (-5 *1 (-525 *5 *4 *6 *3)) - (-4 *3 (-856 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1) (-5 *1 (-767))) + (-12 (-5 *5 (-1000 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) + (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) + (-5 *1 (-528 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-494)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3)) + (-4 *3 (-861 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-1074 *4 *2)) (-4 *2 (-13 (-359 *4) (-131) (-27) (-1106))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-359 *4) (-131) (-27) (-1106))) - (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-1074 *4 *2)))) + (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113))) + (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)))) - (-5 *2 (-345 (-852 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-852 *5)))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) + (-5 *2 (-347 (-857 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-857 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)))) - (-5 *2 (-3 (-345 (-852 *5)) (-262 *5))) (-5 *1 (-1075 *5)) - (-5 *3 (-345 (-852 *5))))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) + (-5 *2 (-3 (-347 (-857 *5)) (-264 *5))) (-5 *1 (-1082 *5)) + (-5 *3 (-347 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-998 (-852 *5))) (-5 *3 (-852 *5)) - (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-345 *3)) (-5 *1 (-1075 *5)))) + (-12 (-5 *4 (-1003 (-857 *5))) (-5 *3 (-857 *5)) + (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 *3)) (-5 *1 (-1082 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-998 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) - (-4 *5 (-13 (-491) (-945 (-480)))) (-5 *2 (-3 *3 (-262 *5))) - (-5 *1 (-1075 *5))))) + (-12 (-5 *4 (-1003 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) + (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 *3 (-264 *5))) + (-5 *1 (-1082 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-1 (-83) *5)) - (-5 *1 (-796 *4 *5)) (-4 *5 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-122 *3)))) + (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-801 *4 *5)) (-4 *5 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| -2389 (-689)) (|:| -3756 *4) (|:| |num| *4)))) - (-4 *4 (-1146 *3)) (-4 *3 (-13 (-309) (-118))) (-5 *1 (-337 *3 *4)))) + (-12 (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) + (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1="void"))) - (-5 *3 (-580 (-852 (-480)))) (-5 *4 (-83)) (-5 *1 (-374)))) + (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) + (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-85)) (-5 *1 (-376)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 #1#))) (-5 *3 (-580 (-1081))) - (-5 *4 (-83)) (-5 *1 (-374)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-532 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-144)))) + (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-1088))) + (-5 *4 (-85)) (-5 *1 (-376)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-5 *1 (-603 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-751)) (-4 *3 (-1007)) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1012)) (-14 *4 - (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *3)) - (-2 (|:| -2388 *2) (|:| -2389 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1020)) (-5 *1 (-744)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-777 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) + (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) + (-2 (|:| -2396 *2) (|:| -2397 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| *4)))) (-4 *4 (-1007)) - (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012)) + (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *5)) (-4 *5 (-13 (-1007) (-34))) - (-5 *2 (-580 (-1045 *3 *5))) (-5 *1 (-1045 *3 *5)) - (-4 *3 (-13 (-1007) (-34))))) + (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1012) (-34))) + (-5 *2 (-583 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) + (-4 *3 (-13 (-1012) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| |val| *4) (|:| -1589 *5)))) - (-4 *4 (-13 (-1007) (-34))) (-4 *5 (-13 (-1007) (-34))) - (-5 *2 (-580 (-1045 *4 *5))) (-5 *1 (-1045 *4 *5)))) + (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1597 *5)))) + (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) + (-5 *2 (-583 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1589 *4))) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1045 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1597 *4))) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34))))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-13 (-1007) (-34))) (-5 *1 (-1046 *2 *3)) - (-4 *2 (-13 (-1007) (-34))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)) + (-4 *2 (-13 (-1012) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1045 *2 *3))) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34))) (-5 *1 (-1046 *2 *3)))) + (-12 (-5 *4 (-583 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1046 *2 *3))) (-5 *1 (-1046 *2 *3)) - (-4 *2 (-13 (-1007) (-34))) (-4 *3 (-13 (-1007) (-34))))) + (-12 (-5 *4 (-583 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) + (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1071 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-413)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-524)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-562)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) - (-5 *1 (-981 *3 *4 *2)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-1071 *2 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-413)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-524)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-562)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) - (-5 *1 (-981 *3 *4 *2)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-1071 *3 *2)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-83)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956))))) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-580 *1)) (-4 *1 (-918 *3)))) + (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-956))))) + (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956))))) -(((*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) + (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-1070 *3 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-956)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956))))) + (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *2 (-689)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)))) + (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-689)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)) (-4 *5 (-956)))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-849 *5)) (-4 *5 (-956)) - (-5 *1 (-1070 *4 *5)) (-14 *4 (-825))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) + (-5 *1 (-1077 *4 *5)) (-14 *4 (-830))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-849 *4)) (-4 *4 (-956)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825))))) + (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-849 *5)) (-5 *3 (-689)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825))))) + (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-689)) (-5 *3 (-849 *5)) (-4 *5 (-956)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)))) + (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-689)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)) (-4 *5 (-956)))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-849 *5)) (-4 *5 (-956)) - (-5 *1 (-1070 *4 *5)) (-14 *4 (-825))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) + (-5 *1 (-1077 *4 *5)) (-14 *4 (-830))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-83)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)) (-4 *5 (-956))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-689))) (-5 *3 (-143)) (-5 *1 (-1070 *4 *5)) - (-14 *4 (-825)) (-4 *5 (-956))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-689))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-956))))) + (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-849 *4)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) + (-12 (-5 *2 (-854 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-143)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-260)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-262)))) ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) (-4 *4 (-956))))) -(((*1 *1 *1) (-12 (-5 *1 (-1070 *2 *3)) (-14 *2 (-825)) (-4 *3 (-956))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-849 *4))) (-5 *1 (-1070 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-956))))) + (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *1 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *2 (-387)))) + (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-389)))) ((*1 *1 *1) - (-12 (-4 *1 (-288 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-1146 *2)) - (-4 *4 (-1146 (-345 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-387)))) + (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) + (-4 *4 (-1153 (-347 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *3 (-387)))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-389)))) ((*1 *1 *1) - (-12 (-4 *1 (-856 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387)))) + (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-255)) (-4 *3 (-491)) (-5 *1 (-1069 *3 *2)) (-4 *2 (-1146 *3))))) + (-12 (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-864 *3)) (-5 *1 (-1069 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-869 *3)) (-5 *1 (-1076 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1) (-4 *1 (-428))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-430))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) -(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-177))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-325))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-327))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1163 *3)) (-5 *1 (-230 *3 *4 *2)) - (-4 *2 (-1134 *3 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1141 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *4 (-1132 *3)) - (-5 *1 (-231 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-891 *4)))) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1067 *3)))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-38 (-345 (-480)))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-345 (-480)))) - (-5 *2 (-2 (|:| -3473 (-1060 *4)) (|:| -3474 (-1060 *4)))) - (-5 *1 (-1067 *4)) (-5 *3 (-1060 *4))))) + (-12 (-4 *4 (-38 (-347 (-483)))) + (-5 *2 (-2 (|:| -3484 (-1067 *4)) (|:| -3485 (-1067 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-345 (-480)))) - (-5 *2 (-2 (|:| -3621 (-1060 *4)) (|:| -3617 (-1060 *4)))) - (-5 *1 (-1067 *4)) (-5 *3 (-1060 *4))))) + (-12 (-4 *4 (-38 (-347 (-483)))) + (-5 *2 (-2 (|:| -3632 (-1067 *4)) (|:| -3628 (-1067 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-309)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-480))) (-5 *5 (-1 (-1060 *4))) (-4 *4 (-309)) - (-4 *4 (-956)) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4))))) + (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-311)) + (-4 *4 (-961)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-309)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1060 *4)) (-4 *4 (-38 *3)) (-4 *4 (-956)) (-5 *3 (-345 (-480))) - (-5 *1 (-1066 *4))))) + (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-347 (-483))) + (-5 *1 (-1073 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4)) - (-4 *4 (-38 (-345 (-480)))) (-4 *4 (-956))))) + (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) + (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1060 *3))) (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) - (-4 *3 (-38 (-345 (-480)))) (-4 *3 (-956))))) + (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) + (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060 (-1060 *4))) (-5 *2 (-1060 *4)) (-5 *1 (-1066 *4)) - (-4 *4 (-956))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-799 *2 *3)) (-4 *2 (-1146 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) + (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) + (-4 *4 (-961))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1153 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1060 *4)) (-5 *3 (-1 *4 (-480))) (-4 *4 (-956)) - (-5 *1 (-1066 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) + (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-961)) + (-5 *1 (-1073 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *1 (-721 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-866))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *3) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-956))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-1066 *4)) (-4 *4 (-956)) - (-5 *3 (-480))))) + (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) + (-5 *3 (-483))))) (((*1 *2 *3) - (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-1066 *4)) (-4 *4 (-956)) - (-5 *3 (-480))))) + (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) + (-5 *3 (-483))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-825)) (-4 *3 (-309)) - (-14 *4 (-901 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-311)) + (-14 *4 (-906 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1146 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) - ((*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) - ((*1 *1 *1) (|partial| -4 *1 (-656))) ((*1 *1 *1) (|partial| -4 *1 (-660))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) + ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) + ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-694 *5 *6 *7 *3 *4)) - (-4 *4 (-977 *5 *6 *7 *3)))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) + (-4 *4 (-982 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-750) (-309))) - (-4 *2 (-1146 *3)))) + (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) + (-4 *2 (-1153 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) + (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)) - (-4 *2 (-491)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-491))) + (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) + (-4 *2 (-494)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-494))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)) (-4 *2 (-491)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-689))) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)) (-4 *2 (-494)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-694))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-491)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-491)) - (-5 *1 (-877 *3 *4)))) + (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) + (-5 *1 (-882 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-960 *3 *4 *2 *5 *6)) (-4 *2 (-956)) - (-4 *5 (-194 *4 *2)) (-4 *6 (-194 *3 *2)) (-4 *2 (-491)))) + (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) + (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1060 *3)) (-4 *3 (-956)) (-5 *1 (-1066 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3))))) + (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-1007)) (-4 *4 (-1120)) (-5 *2 (-83)) - (-5 *1 (-1060 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)) + (-5 *1 (-1067 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2581 (-689)) (|:| |period| (-689)))) - (-5 *1 (-1060 *4)) (-4 *4 (-1120)) (-5 *3 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1060 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1060 *2)) (-4 *2 (-1120))))) -(((*1 *1) (-5 *1 (-510))) - ((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-763)))) - ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-763)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1064)) (-5 *4 (-767)) (-5 *2 (-1176)) (-5 *1 (-763)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694)))) + (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127))))) +(((*1 *1) (-5 *1 (-513))) + ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-768)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-1060 *4)) (-4 *4 (-1007)) - (-4 *4 (-1120))))) + (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012)) + (-4 *4 (-1127))))) (((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1060 *3)) (-4 *3 (-1007)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-772)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1060 *3)) (-4 *3 (-1007)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1170 (-580 (-480)))) (-5 *1 (-415)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-532 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1120)) (-5 *1 (-1060 *3))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1177 (-583 (-483)))) (-5 *1 (-417)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-13 (-491) (-118))) (-5 *1 (-471 *4 *2)) - (-4 *2 (-1163 *4)))) + (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2)) + (-4 *2 (-1170 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-13 (-309) (-315) (-550 *3))) (-4 *5 (-1146 *4)) - (-4 *6 (-658 *4 *5)) (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-1163 *6)))) + (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-4 *5 (-1153 *4)) + (-4 *6 (-661 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-13 (-309) (-315) (-550 *3))) - (-5 *1 (-476 *4 *2)) (-4 *2 (-1163 *4)))) + (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) + (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1060 *4)) (-5 *3 (-480)) (-4 *4 (-13 (-491) (-118))) - (-5 *1 (-1059 *4))))) + (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) + (-5 *1 (-1066 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) - (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) - (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) + (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) - (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) - (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) + (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-118))) (-5 *1 (-471 *3 *2)) (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-4 *4 (-1146 *3)) - (-4 *5 (-658 *3 *4)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-315) (-550 (-480)))) (-5 *1 (-476 *3 *2)) - (-4 *2 (-1163 *3)))) + (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) + (-4 *2 (-1170 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1060 *3)) (-4 *3 (-13 (-491) (-118))) (-5 *1 (-1059 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-1058))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1058))))) -(((*1 *2 *1) (-12 (-5 *2 (-629 (-1040))) (-5 *1 (-1058))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-1058))))) + (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-1047))) (-5 *1 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)))) - ((*1 *1) (-4 *1 (-1057)))) -(((*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1120)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1120)) (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + ((*1 *1) (-4 *1 (-1064)))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-1055 *4)) (-4 *4 (-1120)) (-5 *2 (-83))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-1053 *3))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-580 (-935 *5 *6 *7 *3))) (-5 *1 (-935 *5 *6 *7 *3)) - (-4 *3 (-971 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) + (-4 *3 (-976 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-580 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *2 (-971 *3 *4 *5)))) + (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-976 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-580 (-1051 *5 *6 *7 *3))) (-5 *1 (-1051 *5 *6 *7 *3)) - (-4 *3 (-971 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-583 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) + (-4 *3 (-976 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-935 *5 *6 *7 *8))) - (-5 *1 (-935 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-83)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-580 (-1051 *5 *6 *7 *8))) - (-5 *1 (-1051 *5 *6 *7 *8))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) + (-5 *1 (-1058 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-971 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-580 *8)) (|:| |towers| (-580 (-935 *5 *6 *7 *8))))) - (-5 *1 (-935 *5 *6 *7 *8)) (-5 *3 (-580 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-976 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) + (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-971 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-580 *8)) (|:| |towers| (-580 (-1051 *5 *6 *7 *8))))) - (-5 *1 (-1051 *5 *6 *7 *8)) (-5 *3 (-580 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *4 (-689)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-1176)) - (-5 *1 (-975 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *4 (-689)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-1176)) - (-5 *1 (-1050 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-976 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1058 *5 *6 *7 *8))))) + (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) + (-5 *1 (-980 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) + (-5 *1 (-1057 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-580 *11)) - (|:| |todo| (-580 (-2 (|:| |val| *3) (|:| -1589 *11)))))) - (-5 *6 (-689)) (-5 *2 (-580 (-2 (|:| |val| (-580 *10)) (|:| -1589 *11)))) - (-5 *3 (-580 *10)) (-5 *4 (-580 *11)) (-4 *10 (-971 *7 *8 *9)) - (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) - (-5 *1 (-975 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-583 *11)) + (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) + (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) + (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) + (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) + (-5 *1 (-980 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-580 *11)) - (|:| |todo| (-580 (-2 (|:| |val| *3) (|:| -1589 *11)))))) - (-5 *6 (-689)) (-5 *2 (-580 (-2 (|:| |val| (-580 *10)) (|:| -1589 *11)))) - (-5 *3 (-580 *10)) (-5 *4 (-580 *11)) (-4 *10 (-971 *7 *8 *9)) - (-4 *11 (-1014 *7 *8 *9 *10)) (-4 *7 (-387)) (-4 *8 (-712)) (-4 *9 (-751)) - (-5 *1 (-1050 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-583 *11)) + (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) + (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) + (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) + (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) + (-5 *1 (-1057 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) + (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 - (-2 (|:| -2324 (-351 *4 (-345 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2332 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3075 (-345 *6)) (|:| |special| (-345 *6)))) - (-5 *1 (-661 *5 *6)) (-5 *3 (-345 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3085 (-347 *6)) (|:| |special| (-347 *6)))) + (-5 *1 (-666 *5 *6)) (-5 *3 (-347 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-802 *3 *4)) - (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) + (-4 *3 (-1153 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-689)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| -3123 *3) (|:| -3122 *3))) (-5 *1 (-802 *3 *5)) - (-4 *3 (-1146 *5)))) + (|partial| -12 (-5 *4 (-694)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-807 *3 *5)) + (-4 *3 (-1153 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1050 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-580 *9)) (-5 *3 (-580 *8)) (-5 *4 (-83)) - (-4 *8 (-971 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-5 *1 (-1050 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-689)) (-5 *6 (-83)) (-4 *7 (-387)) (-4 *8 (-712)) - (-4 *9 (-751)) (-4 *3 (-971 *7 *8 *9)) + (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) + (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-689)) (-5 *6 (-83)) (-4 *7 (-387)) (-4 *8 (-712)) - (-4 *9 (-751)) (-4 *3 (-971 *7 *8 *9)) + (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) + (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *7 *8 *9 *3 *4)) (-4 *4 (-1014 *7 *8 *9 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3))))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-689)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3))))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-580 *4)) - (|:| |todo| (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))))) - (-5 *1 (-1050 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) - (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-689)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) - (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-689)) (-5 *1 (-1050 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) - (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-689)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *9)) (-4 *8 (-971 *5 *6 *7)) - (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-689)) (-5 *1 (-1050 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-83))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-83))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-480)) (-5 *2 (-83))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *6)) (-4 *5 (-1007)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-582 *5 *6)))) + (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) + (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) + (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) + (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) + (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-4 *5 (-1007)) (-4 *2 (-1120)) - (-5 *1 (-582 *5 *2)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) + (-5 *1 (-585 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 *5)) (-4 *6 (-1007)) (-4 *5 (-1120)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-582 *6 *5)))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1012)) (-4 *5 (-1127)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-4 *5 (-1007)) (-4 *2 (-1120)) - (-5 *1 (-582 *5 *2)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) + (-5 *1 (-585 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-580 *5)) (-5 *4 (-580 *6)) (-4 *5 (-1007)) - (-4 *6 (-1120)) (-5 *1 (-582 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) + (-4 *6 (-1127)) (-5 *1 (-585 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-580 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1007)) - (-4 *2 (-1120)) (-5 *1 (-582 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-115)) (-5 *2 (-689))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (-115)) (-5 *2 (-83))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1137 (-480)))))) -(((*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-689)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) + (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-694))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-483)) (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-480)))) + (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-319 *4)) (-4 *4 (-1120)) (-5 *2 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-1025)) (-5 *1 (-463)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-480)) (-5 *3 (-112)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-480))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) - (-5 *1 (-92 *3)) (-4 *3 (-751)))) - ((*1 *2 *2) - (-12 (-5 *2 (-515 *4)) (-4 *4 (-13 (-29 *3) (-1106))) - (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-517 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-515 (-345 (-852 *3)))) - (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-521 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| -3075 *3) (|:| |special| *3))) (-5 *1 (-661 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-4 *5 (-956)) - (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170 (-1170 *5))) (-4 *5 (-309)) (-4 *5 (-956)) - (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-580 *1)) (-4 *1 (-1049)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-580 *1)) (-4 *1 (-1049))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-115))))) + (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) + (-5 *1 (-94 *3)) (-4 *3 (-756)))) + ((*1 *2 *2) + (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113))) + (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-520 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-518 (-347 (-857 *3)))) + (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-524 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| -3085 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-311)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1056))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) - (-4 *5 (-144)))) + (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-956)) (-4 *1 (-624 *3 *2 *4)) (-4 *2 (-319 *3)) - (-4 *4 (-319 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1047 *2 *3)) (-14 *2 (-689)) (-4 *3 (-956))))) + (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-321 *3)) + (-4 *4 (-321 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 *4)) (-4 *4 (-956)) (-5 *1 (-1047 *3 *4)) (-14 *3 (-689))))) + (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-694))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34)))))) + (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1046 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34)))))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34)))))) + (-12 (-5 *2 (-583 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) (-5 *1 (-1046 *3 *4)) - (-4 *3 (-13 (-1007) (-34))) (-4 *4 (-13 (-1007) (-34)))))) + (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1053 *3 *4)) + (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1045 *4 *5)) (-4 *4 (-13 (-1007) (-34))) - (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-83)) (-5 *1 (-1046 *4 *5))))) + (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))) + (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1045 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) - (-4 *5 (-13 (-1007) (-34))) (-4 *6 (-13 (-1007) (-34))) (-5 *2 (-83)) - (-5 *1 (-1046 *5 *6))))) + (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) + (-5 *1 (-1053 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)) - (-4 *2 (-1007)))) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) + (-4 *2 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-122 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) + (-4 *3 (-1127)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-480)) (-4 *4 (-1007)) (-5 *1 (-670 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-670 *2)) (-4 *2 (-1007)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4))))) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-191 *3)) - (-4 *3 (-1007)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-191 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-1007)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) + (-4 *3 (-1012)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-193 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-546 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007)))) + (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-480)) (-4 *4 (-1007)) (-5 *1 (-670 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-670 *2)) (-4 *2 (-1007)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4))))) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1045 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) - (-4 *4 (-13 (-1007) (-34))) (-4 *5 (-13 (-1007) (-34))) - (-5 *1 (-1046 *4 *5)))) + (-12 (-5 *2 (-583 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) + (-5 *1 (-1053 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-580 (-1045 *3 *4))) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34))) (-5 *1 (-1046 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) - ((*1 *2 *1) - (-12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-83)) - (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-762)))) - ((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-871)))) - ((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-897)))) - ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1007) (-34))) (-5 *1 (-1045 *2 *3)) - (-4 *3 (-13 (-1007) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-83)) - (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34)))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-84))) - ((*1 *1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-4 *1 (-479))) - ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956)))) + (-12 (-5 *2 (-583 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-902)))) + ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3)) + (-4 *3 (-13 (-1012) (-34)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) ((*1 *1 *1) - (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34)))))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34)))))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1045 *3 *2)) (-4 *3 (-13 (-1007) (-34))) - (-4 *2 (-13 (-1007) (-34)))))) + (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))) + (-4 *2 (-13 (-1012) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1007) (-34))) - (-4 *4 (-13 (-1007) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) + (-4 *4 (-13 (-1012) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1007) (-34))) - (-4 *3 (-13 (-1007) (-34)))))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) + (-4 *3 (-13 (-1012) (-34)))))) (((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) - (-4 *5 (-13 (-1007) (-34))) (-4 *6 (-13 (-1007) (-34))) (-5 *2 (-83)) - (-5 *1 (-1045 *5 *6))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) + (-5 *1 (-1052 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1007) (-34))) (-5 *2 (-83)) - (-5 *1 (-1045 *4 *5)) (-4 *4 (-13 (-1007) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1) (-4 *1 (-1044))) ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-689)) (-5 *1 (-178)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-689)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *1 *1 *1) (-5 *1 (-177))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948)))) - ((*1 *1 *1 *1) (-4 *1 (-1044)))) -(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *1 *1) (-4 *1 (-709))) - ((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)) (-4 *2 (-967)))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1064)) (-5 *4 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) - ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-1043)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-767))) (-5 *2 (-1176)) (-5 *1 (-1043))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-1086))) (-5 *1 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070 3 *3)) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) - ((*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) + (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1 *1) (-5 *1 (-179))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *1) (-4 *1 (-714))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-1048))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) + ((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961))))) (((*1 *2) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-689)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-689))))) -(((*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-580 *1)) (-4 *1 (-1039 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-956)) (-5 *2 (-580 *1)) (-4 *1 (-1039 *3))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 (-849 *4))) (-4 *1 (-1039 *4)) (-4 *4 (-956)) - (-5 *2 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) + (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-961)) + (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-849 *3))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-580 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-849 *3))) (-4 *1 (-1039 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83))))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-849 *3)))))) + (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-580 (-580 (-849 *4)))) (-5 *3 (-83)) (-4 *4 (-956)) - (-4 *1 (-1039 *4)))) + (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) + (-4 *1 (-1046 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-580 (-849 *3)))) (-4 *3 (-956)) (-4 *1 (-1039 *3)))) + (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-580 (-580 (-580 *4)))) (-5 *3 (-83)) (-4 *1 (-1039 *4)) - (-4 *4 (-956)))) + (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) + (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-580 (-580 (-849 *4)))) (-5 *3 (-83)) (-4 *1 (-1039 *4)) - (-4 *4 (-956)))) + (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) + (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-580 (-580 (-580 *5)))) (-5 *3 (-580 (-143))) (-5 *4 (-143)) - (-4 *1 (-1039 *5)) (-4 *5 (-956)))) + (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) + (-4 *1 (-1046 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-580 (-580 (-849 *5)))) (-5 *3 (-580 (-143))) (-5 *4 (-143)) - (-4 *1 (-1039 *5)) (-4 *5 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-849 *3)))))) + (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) + (-4 *1 (-1046 *5)) (-4 *5 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-580 (-689)))))))) + (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) - (-5 *2 (-580 (-580 (-580 (-849 *3)))))))) + (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) + (-5 *2 (-583 (-583 (-583 (-854 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-580 (-143))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) (-5 *2 (-580 (-143)))))) + (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3)) (-4 *3 (-956)) + (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 - (-2 (|:| -3833 (-689)) (|:| |curves| (-689)) (|:| |polygons| (-689)) - (|:| |constructs| (-689))))))) + (-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) + (|:| |constructs| (-694))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3715 (-1076 *6)) (|:| -2389 (-480))))) - (-4 *6 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) + (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1037 *4 *2)) - (-4 *2 (-13 (-535 (-480) *4) (-10 -7 (-6 -3978) (-6 -3979)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) + (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990)))))) ((*1 *2 *2) - (-12 (-4 *3 (-751)) (-4 *3 (-1120)) (-5 *1 (-1037 *3 *2)) - (-4 *2 (-13 (-535 (-480) *3) (-10 -7 (-6 -3978) (-6 -3979))))))) + (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) + (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1037 *4 *2)) - (-4 *2 (-13 (-535 (-480) *4) (-10 -7 (-6 -3978) (-6 -3979)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) + (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990)))))) ((*1 *2 *2) - (-12 (-4 *3 (-751)) (-4 *3 (-1120)) (-5 *1 (-1037 *3 *2)) - (-4 *2 (-13 (-535 (-480) *3) (-10 -7 (-6 -3978) (-6 -3979))))))) + (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) + (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-956)) (-4 *2 (-1146 *4)) - (-5 *1 (-379 *4 *2)))) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-961)) (-4 *2 (-1153 *4)) + (-5 *1 (-381 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-345 (-1076 (-262 *5)))) (-5 *3 (-1170 (-262 *5))) - (-5 *4 (-480)) (-4 *5 (-491)) (-5 *1 (-1035 *5))))) + (-12 (-5 *2 (-347 (-1083 (-264 *5)))) (-5 *3 (-1177 (-264 *5))) + (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-345 (-1076 (-262 *3)))) (-4 *3 (-491)) (-5 *1 (-1035 *3))))) + (-12 (-5 *2 (-347 (-1083 (-264 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-246 (-345 (-852 *5)))) (-5 *4 (-1081)) - (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-1071 (-580 (-262 *5)) (-580 (-246 (-262 *5))))) - (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) + (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) + (-5 *1 (-1041 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-1071 (-580 (-262 *5)) (-580 (-246 (-262 *5))))) - (-5 *1 (-1034 *5))))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) + (-5 *1 (-1041 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-580 (-262 *5))) (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-583 (-264 *5))) (-5 *1 (-1041 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) - (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-262 *5)))) - (-5 *1 (-1034 *5))))) + (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) + (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-264 *5)))) + (-5 *1 (-1041 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-580 (-246 (-262 *5)))) (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-13 (-255) (-118))) - (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1034 *4)))) + (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-13 (-257) (-120))) + (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-246 (-345 (-852 *5)))) (-5 *4 (-1081)) - (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-246 (-262 *5)))) - (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) + (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) + (-5 *1 (-1041 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-246 (-345 (-852 *4)))) (-4 *4 (-13 (-255) (-118))) - (-5 *2 (-580 (-246 (-262 *4)))) (-5 *1 (-1034 *4)))) + (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) + (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 *5)))) (-5 *4 (-580 (-1081))) - (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *5))))) - (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) + (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) + (-5 *1 (-1041 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-345 (-852 *4)))) (-4 *4 (-13 (-255) (-118))) - (-5 *2 (-580 (-580 (-246 (-262 *4))))) (-5 *1 (-1034 *4)))) + (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) + (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-246 (-345 (-852 *5))))) (-5 *4 (-580 (-1081))) - (-4 *5 (-13 (-255) (-118))) (-5 *2 (-580 (-580 (-246 (-262 *5))))) - (-5 *1 (-1034 *5)))) + (-12 (-5 *3 (-583 (-248 (-347 (-857 *5))))) (-5 *4 (-583 (-1088))) + (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) + (-5 *1 (-1041 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-246 (-345 (-852 *4))))) (-4 *4 (-13 (-255) (-118))) - (-5 *2 (-580 (-580 (-246 (-262 *4))))) (-5 *1 (-1034 *4))))) + (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-4 *4 (-13 (-257) (-120))) + (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *4)) (-5 *1 (-1033 *3 *4)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *2 (-580 *3)) (-5 *1 (-1033 *4 *3)) (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) + (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 - (-2 (|:| |solns| (-580 *5)) - (|:| |maps| (-580 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1033 *3 *5)) (-4 *3 (-1146 *5))))) + (-2 (|:| |solns| (-583 *5)) + (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-309)) (-4 *5 (-13 (-319 *4) (-10 -7 (-6 -3979)))) - (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979)))) (-5 *1 (-606 *4 *5 *2 *3)) - (-4 *3 (-624 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3990)))) + (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-5 *1 (-609 *4 *5 *2 *3)) + (-4 *3 (-627 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1170 *4)) (-5 *3 (-627 *4)) (-4 *4 (-309)) - (-5 *1 (-607 *4)))) + (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-630 *4)) (-4 *4 (-311)) + (-5 *1 (-610 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-580 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-309)) - (-5 *1 (-729 *2 *3)) (-4 *3 (-597 *2)))) + (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) + (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-309) (-10 -8 (-15 ** ($ $ (-345 (-480))))))) - (-5 *1 (-1033 *3 *2)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) + (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-1060 *7))) (-4 *6 (-751)) - (-4 *7 (-856 *5 (-465 *6) *6)) (-4 *5 (-956)) (-5 *2 (-1 (-1060 *7) *7)) - (-5 *1 (-1031 *5 *6 *7))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1067 *7))) (-4 *6 (-756)) + (-4 *7 (-861 *5 (-468 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1067 *7) *7)) + (-5 *1 (-1038 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-255)) (-4 *6 (-319 *5)) (-4 *4 (-319 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-1029 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4))))) + (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-255)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) + (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1029 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6))))) + (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-255)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-1029 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) + (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-255)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1029 *4 *5 *6 *3)) - (-4 *3 (-624 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480)))) + (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) ((*1 *2 *2) - (-12 (-4 *3 (-255)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-1029 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) + (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-689)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-956)) (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) - (-4 *5 (-194 *3 *2))))) + (-12 (-4 *2 (-961)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) + (-4 *5 (-196 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 *1)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-956)) (-5 *1 (-627 *3)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *4)) (-4 *4 (-956)) (-4 *1 (-1028 *3 *4 *5 *6)) - (-4 *5 (-194 *3 *4)) (-4 *6 (-194 *3 *4))))) + (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1035 *3 *4 *5 *6)) + (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *2 *5)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) - (-4 *2 (-194 *3 *4))))) + (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-4 *2 (-196 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-825)) (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-309)))) - ((*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) + (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-825)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) - (-4 *2 (-956))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *4 (-1146 *2)) - (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-5 *1 (-434 *2 *4 *5)) (-4 *5 (-348 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) - (-4 *2 (-956))))) -(((*1 *2 *3) - (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-309)) - (-5 *1 (-455 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) - (|has| *2 (-6 (-3980 "*"))) (-4 *2 (-956)))) - ((*1 *2 *3) - (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-144)) - (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) - (|has| *2 (-6 (-3980 "*"))) (-4 *2 (-956))))) -(((*1 *2 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-319 *2)) (-4 *4 (-319 *2)) - (|has| *2 (-6 (-3980 "*"))) (-4 *2 (-956)))) - ((*1 *2 *3) - (-12 (-4 *4 (-319 *2)) (-4 *5 (-319 *2)) (-4 *2 (-144)) - (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *2 *4 *5)) (-4 *4 (-194 *3 *2)) (-4 *5 (-194 *3 *2)) - (|has| *2 (-6 (-3980 "*"))) (-4 *2 (-956))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1120)) (-5 *2 (-689))))) -(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94))) - ((*1 *1 *1 *1) (-5 *1 (-1025)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1020)) (-5 *1 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-376)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-744)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-580 (-1086))) (-5 *3 (-1086)) (-5 *1 (-1020)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1021))))) -(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-619)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-979)))) - ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1020))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-619)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-1020))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-387)) (-4 *4 (-735)) (-14 *5 (-1081)) - (-5 *2 (-480)) (-5 *1 (-1019 *4 *5))))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-961))))) +(((*1 *2 *3) + (-12 (-5 *3 (-630 *2)) (-4 *4 (-1153 *2)) + (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-961))))) +(((*1 *2 *3) + (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) + (-5 *1 (-458 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) + (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961)))) + ((*1 *2 *3) + (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) + (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) + (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961)))) + ((*1 *2 *3) + (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) + (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) + ((*1 *1 *1 *1) (-5 *1 (-1032)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027)))) + ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-622)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-622)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1027))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) + (-5 *2 (-483)) (-5 *1 (-1026 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-387)) (-4 *4 (-735)) (-14 *5 (-1081)) - (-5 *2 (-480)) (-5 *1 (-1019 *4 *5))))) + (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) + (-5 *2 (-483)) (-5 *1 (-1026 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) - (-5 *1 (-1019 *4 *5))))) + (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) + (-5 *1 (-1026 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-480)) - (-5 *1 (-1019 *4 *5))))) + (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) + (-5 *1 (-1026 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 *4)) - (-5 *1 (-1019 *4 *5))))) + (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 *4)) + (-5 *1 (-1026 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 (-1139 *5 *4))) - (-5 *1 (-1019 *4 *5)) (-5 *3 (-1139 *5 *4))))) + (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) + (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-735)) (-14 *5 (-1081)) (-5 *2 (-580 (-1139 *5 *4))) - (-5 *1 (-1019 *4 *5)) (-5 *3 (-1139 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-1015)) (-5 *3 (-480))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-1015))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1170 (-480))) (-5 *3 (-480)) (-5 *1 (-1015)))) + (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) + (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1170 (-480))) (-5 *3 (-580 (-480))) (-5 *4 (-480)) - (-5 *1 (-1015))))) + (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-583 (-483))) (-5 *4 (-483)) + (-5 *1 (-1020))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-580 (-480))) (-5 *3 (-580 (-825))) (-5 *4 (-83)) - (-5 *1 (-1015))))) + (-12 (-5 *2 (-583 (-483))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) + (-5 *1 (-1020))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-627 (-480))) (-5 *3 (-580 (-480))) (-5 *1 (-1015))))) + (-12 (-5 *2 (-630 (-483))) (-5 *3 (-583 (-483))) (-5 *1 (-1020))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-825))) (-5 *4 (-580 (-480))) (-5 *2 (-627 (-480))) - (-5 *1 (-1015))))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-483))) (-5 *2 (-630 (-483))) + (-5 *1 (-1020))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-825))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-1015))))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-1020))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-580 (-480))) (-5 *3 (-627 (-480))) (-5 *1 (-1015))))) + (-12 (-5 *2 (-583 (-483))) (-5 *3 (-630 (-483))) (-5 *1 (-1020))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-580 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-1015))))) + (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) - (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) + (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-83)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) - (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) + (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) - (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) + (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-1013 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *5 (-83)) - (-4 *8 (-971 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-387)) - (-4 *7 (-712)) (-4 *4 (-751)) - (-5 *2 (-580 (-2 (|:| |val| *8) (|:| -1589 *9)))) - (-5 *1 (-1013 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) + (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) + (-4 *7 (-717)) (-4 *4 (-756)) + (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) + (-5 *1 (-1018 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))) - (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) + (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-978 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-978 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *9 (-971 *6 *7 *8)) - (-5 *2 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *4) (|:| |ineq| (-580 *9)))) - (-5 *1 (-896 *6 *7 *8 *9 *4)) (-5 *3 (-580 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *9 (-976 *6 *7 *8)) + (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) + (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *9 (-971 *6 *7 *8)) - (-5 *2 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *4) (|:| |ineq| (-580 *9)))) - (-5 *1 (-1012 *6 *7 *8 *9 *4)) (-5 *3 (-580 *9)) - (-4 *4 (-977 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *9 (-976 *6 *7 *8)) + (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) + (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) + (-4 *4 (-982 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-580 *10)) (-5 *5 (-83)) (-4 *10 (-977 *6 *7 *8 *9)) - (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) + (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) + (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 - (-580 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *10) (|:| |ineq| (-580 *9))))) - (-5 *1 (-896 *6 *7 *8 *9 *10)) (-5 *3 (-580 *9)))) + (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) + (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-580 *10)) (-5 *5 (-83)) (-4 *10 (-977 *6 *7 *8 *9)) - (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-971 *6 *7 *8)) + (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) + (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 - (-580 (-2 (|:| -3251 (-580 *9)) (|:| -1589 *10) (|:| |ineq| (-580 *9))))) - (-5 *1 (-1012 *6 *7 *8 *9 *10)) (-5 *3 (-580 *9))))) + (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) + (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 (-2 (|:| |val| (-580 *6)) (|:| -1589 *7)))) - (-4 *6 (-971 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-896 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) + (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-580 (-2 (|:| |val| (-580 *6)) (|:| -1589 *7)))) - (-4 *6 (-971 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-1012 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) + (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1017 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) - (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) + (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-580 *7)) (|:| -1589 *8))) - (-4 *7 (-971 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) + (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *1 (-896 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *1 (-1012 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *1 (-1017 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) - (-5 *1 (-896 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-901 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-387)) - (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) - (-5 *1 (-1012 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1017 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) - (-4 *3 (-977 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) + (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) - (-4 *3 (-977 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) + (-4 *3 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *1 (-896 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-580 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *1 (-1012 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *1 (-1017 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-896 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-896 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *2 (-1176)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-896 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-980)))) + (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) + (-4 *8 (-982 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) - ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-501 *3)) (-4 *3 (-945 (-480))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-950 (-483))))) ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *7 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| -3843 (-1081)) (|:| |entry| *4)))) - (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)))) + (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) + (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) ((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-4 *7 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-1010 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-4 *7 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *2 *4 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007))))) -(((*1 *2 *3) (-12 (-5 *2 (-480)) (-5 *1 (-501 *3)) (-4 *3 (-945 *2)))) + (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) +(((*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *2 *5 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-825)) (-4 *1 (-342)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-480)) (-4 *1 (-342)))) + (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-830)) (-4 *1 (-344)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-344)))) ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) (((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *4 *5 *6 *2)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-1007)) (-4 *2 (-1007))))) + (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) (((*1 *1 *1) - (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *2 (-1007)) (-4 *3 (-1007)) - (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007))))) + (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) + (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))) (((*1 *1 *1) - (-12 (-4 *1 (-1010 *2 *3 *4 *5 *6)) (-4 *2 (-1007)) (-4 *3 (-1007)) - (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007))))) + (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) + (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-825)) (-5 *1 (-1008 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-825)) (-5 *1 (-1008 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-610)))) + (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-613)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) - (-14 *4 (-825))))) + (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-825))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) - (-14 *4 (-825))))) + (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *2) - (-12 (-5 *2 (-1170 (-1008 *3 *4))) (-5 *1 (-1008 *3 *4)) (-14 *3 (-825)) - (-14 *4 (-825))))) + (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) - (-5 *2 (-83)))) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) + (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-83)) (-5 *1 (-811 *4)))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-825)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-689)) (-5 *1 (-1008 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-1025))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-1064))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-1005 *3)))) - ((*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-1005 *3)))) - ((*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) + ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) + ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-439 *3 *4 *5 *6))) (-4 *3 (-309)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) + (-12 (-5 *2 (-583 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4)))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) - (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) + (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 (-547 *4))) (-4 *4 (-359 *3)) (-4 *3 (-1007)) - (-5 *1 (-505 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-125)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-614)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-927)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-972)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-1002))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-1000 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1120)) (-5 *2 (-480))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-1064)) (-5 *1 (-897)))) + (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1012)) + (-5 *1 (-508 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-617)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1007))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-902)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-4 *4 (-1120)) (-5 *1 (-965 *3 *4)) - (-4 *3 (-1000 *4)))) + (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4)) + (-4 *3 (-1005 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-5 *3 (-995 *4)) (-4 *4 (-1120)) (-5 *1 (-998 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-997))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *1 (-219)))) + (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1002))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-277 *4)) (-4 *4 (-309)) (-5 *2 (-627 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1170 *3)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1177 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-1170 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1146 *4)) (-5 *2 (-1170 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) - (-5 *2 (-1170 *3)))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) + (-5 *2 (-1177 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-356 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 *3)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-309)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-1177 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-311)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *1) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-578 *3 *4)) (-4 *3 (-309)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-1177 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-311)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-309)) - (-5 *2 (-1170 *5)) (-5 *1 (-992 *5))))) + (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-311)) + (-5 *2 (-1177 *5)) (-5 *1 (-997 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) - (-5 *2 (-1170 (-627 *4))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) + (-5 *2 (-1177 (-630 *4))))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1170 (-627 *4))) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) - ((*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-1170 (-627 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-1081))) (-4 *5 (-309)) - (-5 *2 (-1170 (-627 (-345 (-852 *5))))) (-5 *1 (-992 *5)) - (-5 *4 (-627 (-345 (-852 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-1081))) (-4 *5 (-309)) (-5 *2 (-1170 (-627 (-852 *5)))) - (-5 *1 (-992 *5)) (-5 *4 (-627 (-852 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-627 *4))) (-4 *4 (-309)) (-5 *2 (-1170 (-627 *4))) - (-5 *1 (-992 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-147))) (-5 *1 (-991))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-78))) (-5 *1 (-147)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-78))) (-5 *1 (-991))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-991))))) -(((*1 *1) (-5 *1 (-991)))) -(((*1 *1) (-5 *1 (-991)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-990 *2)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-630 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) + (-5 *2 (-1177 (-630 (-347 (-857 *5))))) (-5 *1 (-997 *5)) + (-5 *4 (-630 (-347 (-857 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-857 *5)))) + (-5 *1 (-997 *5)) (-5 *4 (-630 (-857 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-5 *2 (-1177 (-630 *4))) + (-5 *1 (-997 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-996))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-996))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996))))) +(((*1 *1) (-5 *1 (-996)))) +(((*1 *1) (-5 *1 (-996)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-480) *2 *2)) (-4 *2 (-103)) (-5 *1 (-990 *2))))) -(((*1 *2) (-12 (-5 *2 (-580 *3)) (-5 *1 (-990 *3)) (-4 *3 (-103))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-990 *3)) (-4 *3 (-103))))) -(((*1 *1) (-5 *1 (-988)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-580 *3)) (-5 *1 (-523 *5 *6 *7 *8 *3)) - (-4 *3 (-1014 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) - (-5 *1 (-984 *5 *6)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-118))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *4)) (|:| -3209 (-580 (-852 *4)))))) - (-5 *1 (-984 *4 *5)) (-5 *3 (-580 (-852 *4))) (-14 *5 (-580 (-1081))))) + (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2))))) +(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-993)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3)) + (-4 *3 (-1019 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) + (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-257) (-120))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) + (-5 *1 (-989 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-580 (-2 (|:| -1736 (-1076 *5)) (|:| -3209 (-580 (-852 *5)))))) - (-5 *1 (-984 *5 *6)) (-5 *3 (-580 (-852 *5))) (-14 *6 (-580 (-1081)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) + (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-981 *3 *4 *5))) (-4 *3 (-1007)) - (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) - (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3)))) (-5 *1 (-983 *3 *4 *5))))) + (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1012)) + (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-988 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) - (-5 *2 (-580 (-981 *3 *4 *5))) (-5 *1 (-983 *3 *4 *5)) - (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3))))))) + (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5)) + (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *2)) - (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))))) + (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) + (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) - (-5 *1 (-981 *3 *4 *2)) (-4 *2 (-13 (-359 *4) (-791 *3) (-550 (-795 *3))))))) + (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-795 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1007)) (-4 *5 (-1120)) - (-5 *1 (-796 *4 *5)))) + (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127)) + (-5 *1 (-801 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-795 *4)) (-5 *3 (-580 (-1 (-83) *5))) (-4 *4 (-1007)) - (-4 *5 (-1120)) (-5 *1 (-796 *4 *5)))) + (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1012)) + (-4 *5 (-1127)) (-5 *1 (-801 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-795 *5)) (-5 *3 (-580 (-1081))) (-5 *4 (-1 (-83) (-580 *6))) - (-4 *5 (-1007)) (-4 *6 (-1120)) (-5 *1 (-796 *5 *6)))) + (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1088))) (-5 *4 (-1 (-85) (-583 *6))) + (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1120)) - (-5 *2 (-262 (-480))) (-5 *1 (-843 *5)))) + (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127)) + (-5 *2 (-264 (-483))) (-5 *1 (-848 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-5 *4 (-580 (-1 (-83) *5))) (-4 *5 (-1120)) - (-5 *2 (-262 (-480))) (-5 *1 (-843 *5)))) + (-12 (-5 *3 (-1088)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) + (-5 *2 (-264 (-483))) (-5 *1 (-848 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1120)) (-4 *4 (-1007)) - (-5 *1 (-844 *4 *2 *5)) (-4 *2 (-359 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012)) + (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-1 (-83) *5))) (-4 *5 (-1120)) (-4 *4 (-1007)) - (-5 *1 (-844 *4 *2 *5)) (-4 *2 (-359 *4)))) + (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012)) + (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-1 (-83) (-580 *6))) - (-4 *6 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-981 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 *2))) - (-5 *2 (-795 *3)) (-5 *1 (-981 *3 *4 *5)) - (-4 *5 (-13 (-359 *4) (-791 *3) (-550 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1007)) (-4 *4 (-13 (-956) (-791 *3) (-550 (-795 *3)))) - (-5 *2 (-580 (-1081))) (-5 *1 (-981 *3 *4 *5)) - (-4 *5 (-13 (-359 *4) (-791 *3) (-550 (-795 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-260)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-902)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-943)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-979))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-83)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) - (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1 (-85) (-583 *6))) + (-4 *6 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) + (-5 *2 (-800 *3)) (-5 *1 (-986 *3 *4 *5)) + (-4 *5 (-13 (-361 *4) (-796 *3) (-553 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *2 (-583 (-1088))) (-5 *1 (-986 *3 *4 *5)) + (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-262)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-907)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-948)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *3 (-971 *6 *7 *8)) (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-2 (|:| |val| (-580 *8)) (|:| -1589 *9)))) (-5 *5 (-83)) - (-4 *8 (-971 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-387)) - (-4 *7 (-712)) (-4 *4 (-751)) - (-5 *2 (-580 (-2 (|:| |val| *8) (|:| -1589 *9)))) - (-5 *1 (-978 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) + (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) + (-4 *7 (-717)) (-4 *4 (-756)) + (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) + (-5 *1 (-983 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-580 *3)) (|:| -1589 *4)))) - (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-3 (-83) (-580 *1))) (-4 *1 (-977 *4 *5 *6 *3))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-5 *2 (-83)))) + (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *1)))) - (-4 *1 (-977 *4 *5 *6 *3))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *1)))) + (-4 *1 (-982 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-3 *3 (-580 *1))) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-491)) (-4 *2 (-956)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-494)) (-4 *2 (-961)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *1)))) - (-4 *1 (-977 *4 *5 *6 *3))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) + (-4 *1 (-982 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-5 *3 (-580 *7)) (-4 *1 (-977 *4 *5 *6 *7)) - (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) + (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-971 *4 *5 *6)) - (-5 *2 (-580 *1)) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83)))) + (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-711)) (-5 *2 (-83)))) + (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) + (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-945 (-480))) (-4 *3 (-491)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-359 *3)))) + (-12 (-4 *3 (-950 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-361 *3)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1076 *4)) (-5 *1 (-136 *3 *4)) - (-4 *3 (-137 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-956)) (-4 *1 (-251)))) - ((*1 *2) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1076 *3)))) - ((*1 *2) (-12 (-4 *1 (-658 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-750) (-309))) (-4 *2 (-1146 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-852 (-480))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) - ((*1 *2 *3) - (-12 (-5 *3 (-852 (-345 (-480)))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-920)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1076 (-480))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1076 (-345 (-480)))) (-5 *2 (-580 *1)) (-4 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-920)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-750) (-309))) (-4 *3 (-1146 *4)) (-5 *2 (-580 *1)) - (-4 *1 (-974 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1076 *1)) (-5 *3 (-1081)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-852 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-29 *3)) (-4 *3 (-491)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-491)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *2)) (-5 *4 (-1081)) (-4 *2 (-359 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-491)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4)) + (-4 *3 (-139 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-253)))) + ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) + ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) + (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-583 *1)) + (-4 *1 (-979 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-494)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1076 *1)) (-5 *3 (-825)) (-4 *1 (-920)))) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1076 *1)) (-5 *3 (-825)) (-5 *4 (-767)) - (-4 *1 (-920)))) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-5 *4 (-772)) + (-4 *1 (-925)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-825)) (-4 *4 (-13 (-750) (-309))) - (-4 *1 (-974 *4 *2)) (-4 *2 (-1146 *4))))) + (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-311))) + (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-932 *3)) - (-4 *3 (-13 (-750) (-309) (-928))))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-937 *3)) + (-4 *3 (-13 (-755) (-311) (-933))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2)))) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-750) (-309))) (-4 *3 (-1146 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-125)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1040))) (-5 *1 (-972))))) + (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-977))))) (((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-971 *3 *4 *2)) (-4 *2 (-751)))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751))))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-689))))) -(((*1 *2 *1) (-12 (-5 *2 (-418)) (-5 *1 (-170)))) - ((*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-418)) (-5 *1 (-614)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) + ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-617)))) ((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-976 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) - ((*1 *2 *1) (-12 (-4 *2 (-956)) (-5 *1 (-50 *2 *3)) (-14 *3 (-580 (-1081))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) ((*1 *2 *1) - (-12 (-5 *2 (-262 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081))))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-1007)) (-4 *2 (-956)))) + (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088))))) + ((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) ((*1 *2 *1) - (-12 (-14 *3 (-580 (-1081))) (-4 *5 (-194 (-3940 *3) (-689))) + (-12 (-14 *3 (-583 (-1088))) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *4) (|:| -2389 *5)) - (-2 (|:| -2388 *4) (|:| -2389 *5)))) - (-4 *2 (-144)) (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *4 (-751)) - (-4 *7 (-856 *2 *5 (-768 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *3 (-754)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-956)))) - ((*1 *2 *1) - (-12 (-4 *2 (-956)) (-5 *1 (-669 *2 *3)) (-4 *3 (-751)) (-4 *3 (-660)))) - ((*1 *2 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) - ((*1 *2 *1) - (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *3 (-711)) (-4 *4 (-751)) (-4 *2 (-956)))) + (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) + (-2 (|:| -2396 *4) (|:| -2397 *5)))) + (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) + (-4 *7 (-861 *2 *5 (-773 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751))))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-5 *2 (-83)) (-5 *1 (-379 *4 *3)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *2 (-83))))) + (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)))) + (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -2888 *1))) - (-4 *1 (-971 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) + (-4 *1 (-976 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -2888 *1))) - (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) + (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3937 *3) (|:| |gap| (-689)) (|:| -1962 (-699 *3)) - (|:| -2888 (-699 *3)))) - (-5 *1 (-699 *3)) (-4 *3 (-956)))) + (-2 (|:| -3948 *3) (|:| |gap| (-694)) (|:| -1970 (-704 *3)) + (|:| -2898 (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-971 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-976 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -3937 *1) (|:| |gap| (-689)) (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-971 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-976 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-699 *3)) (|:| |polden| *3) (|:| -3464 (-689)))) - (-5 *1 (-699 *3)) (-4 *3 (-956)))) + (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3475 (-694)))) + (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3464 (-689)))) - (-4 *1 (-971 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1120)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-296)) (-4 *5 (-277 *4)) (-4 *6 (-1146 *5)) - (-5 *2 (-1076 (-1076 *4))) (-5 *1 (-695 *4 *5 *6 *3 *7)) (-4 *3 (-1146 *6)) - (-14 *7 (-825)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3475 (-694)))) + (-4 *1 (-976 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) + (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) + (-14 *7 (-830)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *1 (-884 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-945 *2)) (-4 *2 (-1120)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1127)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-2546 (-4 *3 (-38 (-480)))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-479))) (-2546 (-4 *3 (-38 (-345 (-480))))) - (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-899 (-480)))) (-4 *3 (-38 (-345 (-480)))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) + (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1120)))) + (|partial| -12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *1 (-884 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1127)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-2546 (-4 *3 (-38 (-480)))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-479))) (-2546 (-4 *3 (-38 (-345 (-480))))) - (-4 *3 (-38 (-480))) (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 *3)) - (-12 (-2546 (-4 *3 (-899 (-480)))) (-4 *3 (-38 (-345 (-480)))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *1 (-971 *3 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) + (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-2546 (-4 *3 (-38 (-345 (-480))))) (-4 *3 (-38 (-480))) - (-4 *5 (-550 (-1081)))) - (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751))) - (-12 (-5 *2 (-852 (-480))) (-4 *1 (-971 *3 *4 *5)) - (-12 (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081)))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) + (-4 *5 (-553 (-1088)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) + (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (-12 (-5 *2 (-852 (-345 (-480)))) (-4 *1 (-971 *3 *4 *5)) - (-4 *3 (-38 (-345 (-480)))) (-4 *5 (-550 (-1081))) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751))))) + (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) + (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491)))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3129 (-699 *3)) (|:| |coef1| (-699 *3)) (|:| |coef2| (-699 *3)))) - (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) + (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -3129 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3129 (-699 *3)) (|:| |coef1| (-699 *3)))) - (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) + (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -3129 *1) (|:| |coef1| *1))) (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3129 (-699 *3)) (|:| |coef2| (-699 *3)))) - (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956)))) + (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-2 (|:| -3129 *1) (|:| |coef2| *1))) (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-580 *1)) (-4 *1 (-971 *3 *4 *5))))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *3 (-491))))) + (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *3 (-494))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *3 (-491))))) + (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *3 (-494))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-491))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-387)))) - ((*1 *1 *1 *1) (-4 *1 (-387))) - ((*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-421 *2)) (-4 *2 (-1146 (-480))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-689))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-494))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) + ((*1 *1 *1 *1) (-4 *1 (-389))) + ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-694))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *2)) - (-4 *2 (-856 *5 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) + (-4 *2 (-861 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *6 *4 *5)) (-5 *1 (-822 *4 *5 *6 *2)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-1076 *7))) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) - (-5 *2 (-1076 *7)) (-5 *1 (-822 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-825))) + (-12 (-5 *3 (-583 (-1083 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) + (-5 *2 (-1083 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-830))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-387)) (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3)))) + (-12 (-4 *3 (-389)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389))))) (((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *2 (-387))))) -(((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-969)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-969))))) -(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-751)))) - ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-389))))) +(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-689)) (-5 *1 (-193 *3 *4 *5)) - (-4 *3 (-194 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) + (-4 *3 (-196 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)) (-5 *2 (-689)))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-309)) (-5 *2 (-689)) (-5 *1 (-276 *3 *4)) (-4 *3 (-277 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) - ((*1 *2) (-12 (-4 *1 (-315)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-1007)) (-5 *2 (-689)))) + (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) + ((*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-1007)) (-5 *2 (-689)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) + (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-689)) (-5 *1 (-657 *3 *4 *5)) - (-4 *3 (-658 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) + (-4 *3 (-661 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-343 *4) *4)) (-4 *4 (-491)) (-5 *2 (-343 *4)) - (-5 *1 (-357 *4)))) - ((*1 *1 *1) (-5 *1 (-831))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) - ((*1 *1 *1) (-5 *1 (-833))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) + (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-494)) (-5 *2 (-345 *4)) + (-5 *1 (-359 *4)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) - (-5 *4 (-345 (-480))) (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))))) + (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) + (-5 *4 (-347 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) - (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))))) + (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) + (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) - (-5 *4 (-345 (-480))) (-5 *1 (-930 *3)) (-4 *3 (-1146 *4)))) + (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) + (-5 *4 (-347 (-483))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) - (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480)))))) + (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) + (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-750) (-309))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-750) (-309))) (-5 *2 (-83)) (-5 *1 (-968 *4 *3)) - (-4 *3 (-1146 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-547 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-547 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-755) (-311))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1153 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1076 (-48))) (-5 *3 (-580 (-547 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1076 (-48))) (-5 *3 (-547 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) + (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1146 (-140 *2))))) + (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1153 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-825)) (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-309)))) - ((*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-1146 *2)) (-4 *2 (-144)))) + (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1146 *2)) (-4 *2 (-899 *3)) (-5 *1 (-351 *3 *2 *4 *5)) - (-4 *3 (-255)) (-4 *5 (-13 (-348 *2 *4) (-945 *2))))) + (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-353 *3 *2 *4 *5)) + (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-950 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1146 *2)) (-4 *2 (-899 *3)) (-5 *1 (-353 *3 *2 *4 *5 *6)) - (-4 *3 (-255)) (-4 *5 (-348 *2 *4)) (-14 *6 (-1170 *5)))) + (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) + (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1177 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-4 *5 (-956)) - (-4 *2 (-13 (-342) (-945 *5) (-309) (-1106) (-237))) (-5 *1 (-378 *5 *3 *2)) - (-4 *3 (-1146 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-547 (-430)))) (-5 *1 (-430)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-547 (-430))) (-5 *1 (-430)))) + (-12 (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) + (-4 *3 (-1153 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-432)))) (-5 *1 (-432)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-432))) (-5 *1 (-432)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1076 (-430))) (-5 *3 (-580 (-547 (-430)))) (-5 *1 (-430)))) + (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-583 (-550 (-432)))) (-5 *1 (-432)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1076 (-430))) (-5 *3 (-547 (-430))) (-5 *1 (-430)))) + (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-550 (-432))) (-5 *1 (-432)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-825)) (-4 *4 (-296)) (-5 *1 (-462 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-658 *4 *2)) (-4 *2 (-1146 *4)) - (-5 *1 (-693 *4 *2 *5 *3)) (-4 *3 (-1146 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144)))) - ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-479)))) - ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-479)))) - ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255)))) - ((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255)))) - ((*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-255)))) - ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-422)))) - ((*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491)) (-4 *2 (-255)))) - ((*1 *2 *1) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480)))) - ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *1 *1) (-4 *1 (-967)))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-389)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1153 *4)) + (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1153 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-972)))) +(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) + ((*1 *1 *1) (-4 *1 (-972)))) +(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) + ((*1 *1 *1) (-4 *1 (-972)))) +(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) + ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) + ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483))))) +(((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) + ((*1 *1 *1) (-4 *1 (-972)))) +(((*1 *1 *1) (-4 *1 (-972)))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-689)) (-5 *1 (-193 *3 *4 *5)) - (-4 *3 (-194 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) + (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1007)) (-5 *2 (-689)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-478 *3)) (-4 *3 (-479)))) - ((*1 *2) (-12 (-4 *1 (-682)) (-5 *2 (-689)))) + (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-481 *3)) (-4 *3 (-482)))) + ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-714 *3 *4)) (-4 *3 (-715 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))) ((*1 *2) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-898 *3 *4)) (-4 *3 (-899 *4)))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-689)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) - ((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) - ((*1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-689)))) - ((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-966 *3)) (-4 *3 (-967))))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))) + ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-971 *3)) (-4 *3 (-972))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 *5)) (-4 *5 (-956)) (-5 *1 (-961 *3 *4 *5)) (-14 *3 (-689)) - (-14 *4 (-689))))) + (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) + (-14 *4 (-694))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-689)) (-5 *3 (-1 *4 (-480) (-480))) (-4 *4 (-956)) - (-4 *1 (-624 *4 *5 *6)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)))) + (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-961)) + (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-956)) (-4 *1 (-624 *3 *4 *5)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-767)))) (-5 *1 (-767)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) ((*1 *2 *1) - (-12 (-5 *2 (-1047 *3 *4)) (-5 *1 (-901 *3 *4)) (-14 *3 (-825)) - (-4 *4 (-309)))) + (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-311)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 (-580 *5))) (-4 *5 (-956)) (-4 *1 (-960 *3 *4 *5 *6 *7)) - (-4 *6 (-194 *4 *5)) (-4 *7 (-194 *3 *5))))) + (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) + (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-480)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-480))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-480)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-480))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-480)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-480))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-480)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-483)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-480))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-689)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-689))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-689)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-5 *2 (-689))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-319 *2)) - (-4 *5 (-319 *2)) (-4 *2 (-1120)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) + (-4 *5 (-321 *2)) (-4 *2 (-1127)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-689)) (-4 *2 (-1007)) (-5 *1 (-164 *4 *2)) (-14 *4 (-825)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1120)))) + (-12 (-5 *3 (-694)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *2 *6 *7)) (-4 *6 (-194 *5 *2)) - (-4 *7 (-194 *4 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) - (-4 *2 (-319 *4)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) + (-4 *2 (-321 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *6 *2 *7)) (-4 *6 (-956)) - (-4 *7 (-194 *4 *6)) (-4 *2 (-194 *5 *6))))) + (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) + (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) - (-4 *2 (-319 *4)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) + (-4 *2 (-321 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-960 *4 *5 *6 *7 *2)) (-4 *6 (-956)) - (-4 *7 (-194 *5 *6)) (-4 *2 (-194 *4 *6))))) + (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) + (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-4 *7 (-899 *4)) - (-4 *2 (-624 *7 *8 *9)) (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-624 *4 *5 *6)) (-4 *8 (-319 *7)) (-4 *9 (-319 *7)))) + (-12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) + (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)) (-4 *2 (-255)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)) (-4 *2 (-257)))) ((*1 *2 *2) - (-12 (-4 *3 (-255)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3)))) + (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-960 *2 *3 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-194 *3 *4)) - (-4 *6 (-194 *2 *4)) (-4 *4 (-255))))) + (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-4 *6 (-196 *2 *4)) (-4 *4 (-257))))) (((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) (-14 *4 *2) - (-4 *5 (-144)))) + (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2) + (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-825)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-825)))) + (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) ((*1 *2) - (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-825)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-830)))) ((*1 *2 *3) - (-12 (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) - (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-689)) - (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) + (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-694)) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-5 *2 (-689)) - (-5 *1 (-607 *5)))) + (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-694)) + (-5 *1 (-610 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-689)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-689)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-689))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694))))) (((*1 *2 *3) - (-12 (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) (-5 *2 (-689)) - (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-689)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-689)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-689))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -3979)) (-4 *4 (-309)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-580 *6)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3990)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-583 *6)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -3979)) (-4 *4 (-491)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-4 *7 (-899 *4)) (-4 *8 (-319 *7)) (-4 *9 (-319 *7)) (-5 *2 (-580 *6)) - (-5 *1 (-456 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-624 *4 *5 *6)) - (-4 *10 (-624 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3990)) (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-4 *7 (-904 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-583 *6)) + (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) + (-4 *10 (-627 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-4 *3 (-491)) (-5 *2 (-580 *5)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-580 *6)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) + (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5 *6 *7)) (-4 *5 (-956)) (-4 *6 (-194 *4 *5)) - (-4 *7 (-194 *3 *5)) (-4 *5 (-491)) (-5 *2 (-580 *7))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-583 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-580 *5)) (-14 *4 (-1081)) (-4 *5 (-309)) - (-5 *1 (-828 *4 *5)))) + (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1088)) (-4 *5 (-311)) + (-5 *1 (-833 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *5)) (-4 *5 (-309)) (-5 *2 (-1076 *5)) (-5 *1 (-828 *4 *5)) - (-14 *4 (-1081)))) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-311)) (-5 *2 (-1083 *5)) (-5 *1 (-833 *4 *5)) + (-14 *4 (-1088)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-689)) (-4 *6 (-309)) (-5 *2 (-345 (-852 *6))) - (-5 *1 (-957 *5 *6)) (-14 *5 (-1081))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954))))) -(((*1 *1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-480))) (-5 *1 (-954)) - (-5 *3 (-480))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1003 *4)) (-4 *4 (-1007)) (-5 *2 (-1 *4)) (-5 *1 (-925 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325)))) - ((*1 *2 *3) (-12 (-5 *3 (-995 (-480))) (-5 *2 (-1 (-480))) (-5 *1 (-954))))) -(((*1 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-255)) (-5 *2 (-345 (-343 (-852 *4)))) - (-5 *1 (-950 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1 (-325))) (-5 *1 (-948))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-311)) (-5 *2 (-347 (-857 *6))) + (-5 *1 (-962 *5 *6)) (-14 *5 (-1088))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-959))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959))))) +(((*1 *1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)) + (-5 *3 (-483))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) + ((*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-959))))) +(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-857 *4)))) + (-5 *1 (-955 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953))))) (((*1 *1 *2) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-309)) (-14 *4 (-1081)) (-14 *5 *3) - (-5 *1 (-267 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-325))) (-5 *1 (-948)) (-5 *3 (-325))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-325)) (-5 *1 (-948))))) -(((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948))))) -(((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948))))) -(((*1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-948))))) + (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3) + (-5 *1 (-269 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-327)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1076 (-345 (-1076 *2)))) (-5 *4 (-547 *2)) - (-4 *2 (-13 (-359 *5) (-27) (-1106))) - (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *1 (-494 *5 *2 *6)) (-4 *6 (-1007)))) + (-12 (-5 *3 (-1083 (-347 (-1083 *2)))) (-5 *4 (-550 *2)) + (-4 *2 (-13 (-361 *5) (-27) (-1113))) + (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1076 *1)) (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *3 (-751)))) + (-12 (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *3 (-756)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1076 *4)) (-4 *4 (-956)) (-4 *1 (-856 *4 *5 *3)) (-4 *5 (-712)) - (-4 *3 (-751)))) + (-12 (-5 *2 (-1083 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) + (-4 *3 (-756)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-1076 *2))) (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) + (-12 (-5 *3 (-347 (-1083 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))) - (-5 *1 (-857 *5 *4 *6 *7 *2)) (-4 *7 (-856 *6 *5 *4)))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) + (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-1076 (-345 (-852 *5))))) (-5 *4 (-1081)) - (-5 *2 (-345 (-852 *5))) (-5 *1 (-947 *5)) (-4 *5 (-491))))) + (-12 (-5 *3 (-347 (-1083 (-347 (-857 *5))))) (-5 *4 (-1088)) + (-5 *2 (-347 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-494))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-547 *1)) (-4 *1 (-359 *4)) (-4 *4 (-1007)) (-4 *4 (-491)) - (-5 *2 (-345 (-1076 *1))))) + (-12 (-5 *3 (-550 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-494)) + (-5 *2 (-347 (-1083 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-1076 (-345 (-1076 *3)))) (-5 *1 (-494 *6 *3 *7)) (-5 *5 (-1076 *3)) - (-4 *7 (-1007)))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-1083 (-347 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3)) + (-4 *7 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1167 *5)) (-14 *5 (-1081)) (-4 *6 (-956)) - (-5 *2 (-1139 *5 (-852 *6))) (-5 *1 (-854 *5 *6)) (-5 *3 (-852 *6)))) + (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-961)) + (-5 *2 (-1146 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-1076 *3)))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-1083 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-5 *2 (-1076 *1)) - (-4 *1 (-856 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1083 *1)) + (-4 *1 (-861 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *5 *4)) - (-5 *2 (-345 (-1076 *3))) (-5 *1 (-857 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) + (-5 *2 (-347 (-1083 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1076 *3)) + (-12 (-5 *2 (-1083 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))) - (-4 *7 (-856 *6 *5 *4)) (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-956)) - (-5 *1 (-857 *5 *4 *6 *7 *3)))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) + (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) + (-5 *1 (-862 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-491)) (-5 *2 (-345 (-1076 (-345 (-852 *5))))) - (-5 *1 (-947 *5)) (-5 *3 (-345 (-852 *5)))))) + (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-347 (-1083 (-347 (-857 *5))))) + (-5 *1 (-952 *5)) (-5 *3 (-347 (-857 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *2 (-751)))) + (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *2 (-756)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-712)) (-4 *5 (-956)) (-4 *6 (-856 *5 *4 *2)) - (-4 *2 (-751)) (-5 *1 (-857 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) + (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *6)) (-15 -2984 (*6 $)) (-15 -2983 (*6 $))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *6)) (-15 -2994 (*6 $)) (-15 -2993 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-1081)) - (-5 *1 (-947 *4))))) + (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-1088)) + (-5 *1 (-952 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *7)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-956)) (-5 *2 (-580 *5)) (-5 *1 (-269 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-5 *2 (-580 (-1081))))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-1088))))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-580 *5)))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) (-4 *7 (-856 *6 *4 *5)) - (-5 *2 (-580 *5)) (-5 *1 (-857 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-881 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-711)) (-4 *5 (-751)) - (-5 *2 (-580 *5)))) + (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) + (-5 *2 (-583 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5)))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-5 *2 (-580 (-1081))) - (-5 *1 (-947 *4))))) + (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-1088))) + (-5 *1 (-952 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) - (-4 *6 (-13 (-491) (-945 *5))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *6)))))) (-5 *1 (-946 *5 *6))))) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) + (-4 *6 (-13 (-494) (-950 *5))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-547 *6)) (-4 *6 (-13 (-359 *5) (-27) (-1106))) - (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-1076 (-345 (-1076 *6)))) (-5 *1 (-494 *5 *6 *7)) (-5 *3 (-1076 *6)) - (-4 *7 (-1007)))) - ((*1 *2 *1) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-646 *3 *2)) (-4 *3 (-956)))) - ((*1 *2 *1) (-12 (-4 *1 (-658 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) + (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1113))) + (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-1083 (-347 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6)) + (-4 *7 (-1012)))) + ((*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) + ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1076 *11)) (-5 *6 (-580 *10)) (-5 *7 (-580 (-689))) - (-5 *8 (-580 *11)) (-4 *10 (-751)) (-4 *11 (-255)) (-4 *9 (-712)) - (-4 *5 (-856 *11 *9 *10)) (-5 *2 (-580 (-1076 *5))) - (-5 *1 (-676 *9 *10 *11 *5)) (-5 *3 (-1076 *5)))) + (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) + (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-257)) (-4 *9 (-717)) + (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1083 *5))) + (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-856 *3 *4 *5)) (-5 *1 (-942 *3 *4 *5 *2 *6)) (-4 *3 (-309)) - (-4 *4 (-712)) (-4 *5 (-751)) (-14 *6 (-580 *2))))) + (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-311)) + (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-825)) (-5 *1 (-940 *2)) - (-4 *2 (-13 (-1007) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) + (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-825)) (-5 *1 (-939 *2)) - (-4 *2 (-13 (-1007) (-10 -8 (-15 -3822 ($ $ $)))))))) + (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) + (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-1170 *5))) (-5 *4 (-480)) (-5 *2 (-1170 *5)) - (-5 *1 (-938 *5)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956))))) + (-12 (-5 *3 (-583 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5)) + (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-83)) (-5 *5 (-480)) (-4 *6 (-309)) (-4 *6 (-315)) - (-4 *6 (-956)) (-5 *2 (-580 (-580 (-627 *6)))) (-5 *1 (-938 *6)) - (-5 *3 (-580 (-627 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-311)) (-4 *6 (-317)) + (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) + (-5 *3 (-583 (-630 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-309)) (-4 *4 (-315)) (-4 *4 (-956)) - (-5 *2 (-580 (-580 (-627 *4)))) (-5 *1 (-938 *4)) (-5 *3 (-580 (-627 *4))))) + (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-961)) + (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956)) - (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-4 *5 (-309)) (-4 *5 (-315)) (-4 *5 (-956)) - (-5 *2 (-580 (-580 (-627 *5)))) (-5 *1 (-938 *5)) (-5 *3 (-580 (-627 *5)))))) + (-12 (-5 *4 (-830)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-480)) (-4 *5 (-309)) (-4 *5 (-956)) - (-5 *2 (-83)) (-5 *1 (-938 *5)))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-4 *5 (-311)) (-4 *5 (-961)) + (-5 *2 (-85)) (-5 *1 (-943 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-627 *4))) (-4 *4 (-309)) (-4 *4 (-956)) (-5 *2 (-83)) - (-5 *1 (-938 *4))))) + (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-85)) + (-5 *1 (-943 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-580 (-627 *6))) (-5 *4 (-83)) (-5 *5 (-480)) (-5 *2 (-627 *6)) - (-5 *1 (-938 *6)) (-4 *6 (-309)) (-4 *6 (-956)))) + (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-630 *6)) + (-5 *1 (-943 *6)) (-4 *6 (-311)) (-4 *6 (-961)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-580 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-938 *4)) - (-4 *4 (-309)) (-4 *4 (-956)))) + (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) + (-4 *4 (-311)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-480)) (-5 *2 (-627 *5)) - (-5 *1 (-938 *5)) (-4 *5 (-309)) (-4 *5 (-956))))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-5 *2 (-630 *5)) + (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-627 *5))) (-5 *4 (-1170 *5)) (-4 *5 (-255)) - (-4 *5 (-956)) (-5 *2 (-627 *5)) (-5 *1 (-938 *5))))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-257)) + (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-627 *5))) (-4 *5 (-255)) (-4 *5 (-956)) - (-5 *2 (-1170 (-1170 *5))) (-5 *1 (-938 *5)) (-5 *4 (-1170 *5))))) + (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-257)) (-4 *5 (-961)) + (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1177 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-580 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-956)) - (-5 *1 (-938 *4))))) + (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) + (-5 *1 (-943 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 (-1170 *4))) (-4 *4 (-956)) (-5 *2 (-627 *4)) - (-5 *1 (-938 *4))))) + (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) + (-5 *1 (-943 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-808 (-480))) (-5 *4 (-480)) (-5 *2 (-627 *4)) (-5 *1 (-937 *5)) - (-4 *5 (-956)))) + (-12 (-5 *3 (-813 (-483))) (-5 *4 (-483)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) + (-4 *5 (-961)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-480))) (-5 *2 (-627 (-480))) (-5 *1 (-937 *4)) - (-4 *4 (-956)))) + (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-942 *4)) + (-4 *4 (-961)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-808 (-480)))) (-5 *4 (-480)) (-5 *2 (-580 (-627 *4))) - (-5 *1 (-937 *5)) (-4 *5 (-956)))) + (-12 (-5 *3 (-583 (-813 (-483)))) (-5 *4 (-483)) (-5 *2 (-583 (-630 *4))) + (-5 *1 (-942 *5)) (-4 *5 (-961)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-580 (-480)))) (-5 *2 (-580 (-627 (-480)))) - (-5 *1 (-937 *4)) (-4 *4 (-956))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-937 *3)))) + (-12 (-5 *3 (-583 (-583 (-483)))) (-5 *2 (-583 (-630 (-483)))) + (-5 *1 (-942 *4)) (-4 *4 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-580 (-627 *3))) (-4 *3 (-956)) (-5 *1 (-937 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-937 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-627 *3))) (-4 *3 (-956)) (-5 *1 (-937 *3))))) + (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-825)) (-4 *4 (-956)) (-5 *1 (-937 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-627 *4))) (-5 *3 (-825)) (-4 *4 (-956)) - (-5 *1 (-937 *4))))) + (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) + (-5 *1 (-942 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-627 (-852 *4))) (-5 *1 (-937 *4)) - (-4 *4 (-956))))) + (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) + (-4 *4 (-961))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-825)) (|has| *4 (-6 (-3980 "*"))) - (-4 *4 (-956)) (-5 *1 (-937 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) + (-4 *4 (-961)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-627 *4))) (-5 *3 (-825)) (|has| *4 (-6 (-3980 "*"))) - (-4 *4 (-956)) (-5 *1 (-937 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-627 (-262 (-480))))) - (-5 *1 (-936))))) -(((*1 *2 *2) (-12 (-5 *2 (-580 (-627 (-262 (-480))))) (-5 *1 (-936))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 (-262 (-480)))) (-5 *1 (-936))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-627 (-345 (-852 (-480))))) - (-5 *2 (-627 (-262 (-480)))) (-5 *1 (-936))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-262 (-480)))) - (-5 *1 (-936))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-345 (-852 (-480))))) (-5 *2 (-580 (-627 (-262 (-480))))) - (-5 *1 (-936)) (-5 *3 (-262 (-480)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-852 (-480))))) - (-5 *2 - (-580 - (-2 (|:| |radval| (-262 (-480))) (|:| |radmult| (-480)) - (|:| |radvect| (-580 (-627 (-262 (-480)))))))) - (-5 *1 (-936))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-934 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-933 *3 *2)) (-4 *2 (-597 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-5 *2 (-2 (|:| -3251 *3) (|:| -2499 (-580 *5)))) - (-5 *1 (-933 *5 *3)) (-5 *4 (-580 *5)) (-4 *3 (-597 *5))))) + (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) + (-4 *4 (-961)) (-5 *1 (-942 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) + (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-630 (-347 (-857 (-483))))) + (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-264 (-483)))) + (-5 *1 (-941))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) + (-5 *1 (-941)) (-5 *3 (-264 (-483)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-630 (-347 (-857 (-483))))) + (-5 *2 + (-583 + (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) + (|:| |radvect| (-583 (-630 (-264 (-483)))))))) + (-5 *1 (-941))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1127))))) +(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3261 *3) (|:| -2509 (-583 *5)))) + (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-968 (-932 *4) (-1076 (-932 *4)))) (-5 *3 (-767)) - (-5 *1 (-932 *4)) (-4 *4 (-13 (-750) (-309) (-928)))))) + (-12 (-5 *2 (-973 (-937 *4) (-1083 (-937 *4)))) (-5 *3 (-772)) + (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-311) (-933)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-968 (-932 *3) (-1076 (-932 *3)))) (-5 *1 (-932 *3)) - (-4 *3 (-13 (-750) (-309) (-928)))))) + (|partial| -12 (-5 *2 (-973 (-937 *3) (-1083 (-937 *3)))) (-5 *1 (-937 *3)) + (-4 *3 (-13 (-755) (-311) (-933)))))) (((*1 *2 *3) - (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))))) + (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) - (-5 *4 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))))) + (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) + (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) (-5 *4 (-345 (-480))))) + (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-347 (-483))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *5) (|:| -3122 *5)))) - (-5 *1 (-929 *3)) (-4 *3 (-1146 (-480))) - (-5 *4 (-2 (|:| -3123 *5) (|:| -3122 *5))))) + (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) + (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) + (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480)))))) + (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *1 (-930 *3)) (-4 *3 (-1146 (-345 (-480)))) - (-5 *4 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))))) + (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))) + (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *4) (|:| -3122 *4)))) - (-5 *1 (-930 *3)) (-4 *3 (-1146 *4)))) + (-12 (-5 *4 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *4) (|:| -3132 *4)))) + (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-345 (-480))) (-5 *2 (-580 (-2 (|:| -3123 *5) (|:| -3122 *5)))) - (-5 *1 (-930 *3)) (-4 *3 (-1146 *5)) - (-5 *4 (-2 (|:| -3123 *5) (|:| -3122 *5)))))) + (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) + (-5 *1 (-935 *3)) (-4 *3 (-1153 *5)) + (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480)))))) - (-5 *2 (-580 (-345 (-480)))) (-5 *1 (-929 *4)) (-4 *4 (-1146 (-480)))))) + (-12 (-5 *3 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) + (-5 *2 (-583 (-347 (-483)))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3123 (-345 (-480))) (|:| -3122 (-345 (-480))))) - (-5 *2 (-345 (-480))) (-5 *1 (-929 *4)) (-4 *4 (-1146 (-480)))))) + (-12 (-5 *3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) + (-5 *2 (-347 (-483))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1170 *6)) (-5 *4 (-1170 (-480))) (-5 *5 (-480)) (-4 *6 (-1007)) - (-5 *2 (-1 *6)) (-5 *1 (-925 *6))))) + (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012)) + (-5 *2 (-1 *6)) (-5 *1 (-930 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3385 *4) (|:| -1511 (-480))))) (-4 *4 (-1007)) - (-5 *2 (-1 *4)) (-5 *1 (-925 *4))))) + (-12 (-5 *3 (-583 (-2 (|:| -3396 *4) (|:| -1519 (-483))))) (-4 *4 (-1012)) + (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) - (-5 *2 (-580 (-345 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-345 *5))))) + (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) + (-5 *2 (-583 (-347 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-345 *6)) (|:| |h| *6) (|:| |c1| (-345 *6)) - (|:| |c2| (-345 *6)) (|:| -3079 *6))) - (-5 *1 (-924 *5 *6)) (-5 *3 (-345 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) + (|:| |c2| (-347 *6)) (|:| -3089 *6))) + (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1146 *6)) - (-4 *6 (-13 (-309) (-118) (-945 *4))) (-5 *4 (-480)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) + (-4 *6 (-13 (-311) (-120) (-950 *4))) (-5 *4 (-483)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) - (|:| -3251 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) + (|:| -3261 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-923 *6 *3))))) + (-5 *1 (-928 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) - (-5 *2 (-2 (|:| |ans| (-345 *5)) (|:| |nosol| (-83)))) (-5 *1 (-923 *4 *5)) - (-5 *3 (-345 *5))))) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) + (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) + (-5 *3 (-347 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-345 *6)) (|:| |c| (-345 *6)) (|:| -3079 *6))) - (-5 *1 (-923 *5 *6)) (-5 *3 (-345 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3089 *6))) + (-5 *1 (-928 *5 *6)) (-5 *3 (-347 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1081)) + (|partial| -12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-580 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1106) (-27) (-359 *8))) - (-4 *8 (-13 (-387) (-118) (-945 *3) (-577 *3))) (-5 *3 (-480)) - (-5 *2 (-580 *4)) (-5 *1 (-922 *8 *4))))) + *4 (-583 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1113) (-27) (-361 *8))) + (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) + (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1081)) + (-12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-580 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1106) (-27) (-359 *8))) - (-4 *8 (-13 (-387) (-118) (-945 *3) (-577 *3))) (-5 *3 (-480)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3122 *4) (|:| |sol?| (-83)))) - (-5 *1 (-921 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480)))) - ((*1 *1 *1) (-4 *1 (-910))) ((*1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-920)))) - ((*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-4 *1 (-920)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-825)))) - ((*1 *1 *1) (-4 *1 (-920)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-920)) (-5 *2 (-767))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1076 *1)) (-4 *1 (-920))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1076 *1)) (-4 *1 (-920))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-767))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-580 *1)) (-4 *1 (-918 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-580 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-5 *2 (-480))))) + *4 (-583 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1113) (-27) (-361 *8))) + (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85)))) + (-5 *1 (-926 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) + ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-925)))) + ((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-925)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) + ((*1 *1 *1) (-4 *1 (-925)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-483))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-918 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-580 *1)) (|has| *1 (-6 -3979)) (-4 *1 (-918 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-918 *2)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3990)) (-4 *1 (-923 *3)) + (-4 *3 (-1127))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) - (-5 *2 (-345 (-480))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) + (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-343 *3)) (-4 *3 (-479)) - (-4 *3 (-491)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-479)) (-5 *2 (-345 (-480))))) + (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) + (-4 *3 (-494)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) - (-5 *2 (-345 (-480))))) + (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) + (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-738 *3)) (-4 *3 (-479)) - (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) + (-4 *3 (-1012)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-745 *3)) (-4 *3 (-479)) - (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) + (-4 *3 (-1012)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) - (-5 *2 (-345 (-480))))) + (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) + (-5 *2 (-347 (-483))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-345 (-480))) (-5 *1 (-916 *3)) (-4 *3 (-945 *2))))) + (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-343 *3)) (-4 *3 (-479)) (-4 *3 (-491)))) - ((*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) + (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) + ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) + (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-83)))) + (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-83)) (-5 *1 (-916 *3)) (-4 *3 (-945 (-345 (-480))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-347 (-483))))))) (((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-343 *3)) (-4 *3 (-479)) (-4 *3 (-491)))) - ((*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-345 (-480))))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) + ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (-12 (-4 *1 (-715 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) + (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) ((*1 *2 *1) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-738 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-745 *3)) (-4 *3 (-479)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-906 *3)) (-4 *3 (-144)) (-4 *3 (-479)) (-5 *2 (-345 (-480))))) - ((*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-916 *3)) (-4 *3 (-945 *2))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914))))) -(((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-914))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914)))) - ((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-914))))) + (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) + ((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919))))) +(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-919))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) + ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-480))) (-5 *4 (-480)) (-5 *2 (-51)) (-5 *1 (-913))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-912 *3)) (-14 *3 (-480))))) + (-12 (-5 *3 (-347 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-918))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 *5)) (-4 *5 (-491)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *5) (|:| |radicand| (-580 *5)))) - (-5 *1 (-268 *5)) (-5 *4 (-689)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-910)) (-5 *2 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-908 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) - ((*1 *1 *1 *1) (-4 *1 (-408))) - ((*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-788)))) - ((*1 *1 *1) (-5 *1 (-879))) - ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-144))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-345 *5)) (-4 *5 (-494)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *5) (|:| |radicand| (-583 *5)))) + (-5 *1 (-270 *5)) (-5 *4 (-694)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-483))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-913 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + ((*1 *1 *1 *1) (-4 *1 (-410))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))) + ((*1 *1 *1) (-5 *1 (-884))) + ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127))))) (((*1 *1 *2) - (-12 (-5 *2 (-1047 *3 *4)) (-14 *3 (-825)) (-4 *4 (-309)) - (-5 *1 (-901 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311)) + (-5 *1 (-906 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) - (-5 *1 (-351 *3 *4 *5 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))))) + (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) + (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *3 (-1007)) (-5 *2 (-1030 *3 (-547 *1))) - (-4 *1 (-359 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-430)))) (-5 *1 (-430)))) + (-12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) + (-4 *1 (-361 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) ((*1 *2 *1) - (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-555 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-660) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-663) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-144)) (-4 *2 (-651 *3)) (-5 *1 (-591 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-660) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491))))) -(((*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-663) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494))))) +(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-899 *2)) (-4 *4 (-1146 *3)) (-4 *2 (-255)) - (-5 *1 (-351 *2 *3 *4 *5)) (-4 *5 (-13 (-348 *3 *4) (-945 *3))))) + (-12 (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-257)) + (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-1007)) (-5 *2 (-1030 *3 (-547 *1))) - (-4 *1 (-359 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1030 (-480) (-547 (-430)))) (-5 *1 (-430)))) + (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) + (-4 *1 (-361 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) ((*1 *2 *1) - (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-660) *4)) - (-5 *1 (-555 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) + (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-660) *4)) - (-5 *1 (-591 *3 *4 *2)) (-4 *3 (-651 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491))))) -(((*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-956)))) - ((*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491))))) -(((*1 *1 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007)) (-4 *2 (-491)))) - ((*1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-491))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) + (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494))))) +(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-961)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494))))) +(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-494)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296)))) - ((*1 *1) (-4 *1 (-315))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) + ((*1 *1) (-4 *1 (-317))) ((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) - ((*1 *1 *1) (-4 *1 (-479))) ((*1 *1) (-4 *1 (-479))) - ((*1 *1 *1) (-5 *1 (-689))) - ((*1 *2 *1) (-12 (-5 *2 (-808 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) + ((*1 *1 *1) (-4 *1 (-482))) ((*1 *1) (-4 *1 (-482))) + ((*1 *1 *1) (-5 *1 (-694))) + ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-808 *4)) (-5 *1 (-811 *4)) (-4 *4 (-1007)))) - ((*1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-479)) (-4 *2 (-491))))) + (-12 (-5 *3 (-483)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) + ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-482)) (-4 *2 (-494))))) (((*1 *2 *2) (-12 (-5 *2 - (-894 (-345 (-480)) (-768 *3) (-195 *4 (-689)) (-204 *3 (-345 (-480))))) - (-14 *3 (-580 (-1081))) (-14 *4 (-689)) (-5 *1 (-895 *3 *4))))) + (-899 (-347 (-483)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-347 (-483))))) + (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-856 *4 *6 *5)) (-4 *4 (-387)) (-4 *5 (-751)) - (-4 *6 (-712)) (-5 *1 (-894 *4 *5 *6 *3))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-756)) + (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) - (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-387)) (-4 *4 (-751)) (-4 *5 (-712)) (-5 *2 (-580 *6)) - (-5 *1 (-894 *3 *4 *5 *6)) (-4 *6 (-856 *3 *5 *4))))) + (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-856 *3 *5 *4)) (-5 *1 (-894 *3 *4 *5 *2)) (-4 *3 (-387)) - (-4 *4 (-751)) (-4 *5 (-712))))) + (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-389)) + (-4 *4 (-756)) (-4 *5 (-717))))) (((*1 *1 *1) - (-12 (-4 *2 (-387)) (-4 *3 (-751)) (-4 *4 (-712)) (-5 *1 (-894 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *4 *3))))) + (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1146 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-893 *4 *2 *3 *5)) - (-4 *4 (-296)) (-4 *5 (-658 *2 *3))))) + (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-898 *4 *2 *3 *5)) + (-4 *4 (-298)) (-4 *5 (-661 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) - (-4 *5 (-491)) (-5 *1 (-666 *4 *3 *5 *2)) - (-4 *2 (-856 (-345 (-852 *5)) *4 *3)))) + (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) + (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) + (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) - (-15 -3814 ((-3 $ #1="failed") (-1081)))))) - (-5 *1 (-892 *4 *5 *3 *2)) (-4 *2 (-856 (-852 *4) *5 *3)))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) + (-15 -3825 ((-3 $ #1="failed") (-1088)))))) + (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *6)) + (-12 (-5 *3 (-583 *6)) (-4 *6 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) - (-4 *4 (-956)) (-4 *5 (-712)) (-5 *1 (-892 *4 *5 *6 *2)) - (-4 *2 (-856 (-852 *4) *5 *6))))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) + (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) + (-4 *2 (-861 (-857 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-712)) (-4 *3 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) - (-4 *5 (-491)) (-5 *1 (-666 *4 *3 *5 *2)) - (-4 *2 (-856 (-345 (-852 *5)) *4 *3)))) + (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) + (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) + (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) - (-15 -3814 ((-3 $ #1="failed") (-1081)))))) - (-5 *1 (-892 *4 *5 *3 *2)) (-4 *2 (-856 (-852 *4) *5 *3)))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) + (-15 -3825 ((-3 $ #1="failed") (-1088)))))) + (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *6)) + (-12 (-5 *3 (-583 *6)) (-4 *6 - (-13 (-751) - (-10 -8 (-15 -3955 ((-1081) $)) (-15 -3814 ((-3 $ #1#) (-1081)))))) - (-4 *4 (-956)) (-4 *5 (-712)) (-5 *1 (-892 *4 *5 *6 *2)) - (-4 *2 (-856 (-852 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-891 *2)) (-4 *2 (-1106))))) + (-13 (-756) + (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) + (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) + (-4 *2 (-861 (-857 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-689)) (-4 *1 (-891 *2)) (-4 *2 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-778)))) - ((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-128)))) - ((*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-778)))) - ((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-128)))) - ((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3) (-12 (-5 *3 (-849 *2)) (-5 *1 (-890 *2)) (-4 *2 (-956))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) - (-5 *2 (-580 (-2 (|:| C (-627 *5)) (|:| |g| (-1170 *5))))) (-5 *1 (-886 *5)) - (-5 *3 (-627 *5)) (-5 *4 (-1170 *5))))) + (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1113))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-783)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-311)) + (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-891 *5)) + (-5 *3 (-630 *5)) (-5 *4 (-1177 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-627 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) - (-5 *1 (-886 *5))))) + (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) + (-5 *1 (-891 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-309)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *2)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-309)) - (-5 *2 (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6)))) - (-5 *1 (-886 *6)) (-5 *3 (-627 *6))))) + (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) + (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) + (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) - (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) + (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) - (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) + (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-255)) - (-4 *3 (-491)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) + (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-387)) (-4 *3 (-491)) - (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-83)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-387)) - (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) + (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-387)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-5 *2 (-580 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6))))) + (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-580 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *1 (-885 *5 *6 *7 *8))))) + (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *1 (-890 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-580 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-971 *6 *7 *8)) (-4 *6 (-491)) (-4 *7 (-712)) - (-4 *8 (-751)) (-5 *1 (-885 *6 *7 *8 *9))))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) + (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-411 *4 *5 *6 *7)) (|:| -3307 (-580 *7)))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) + (|partial| -12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3318 (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-83)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-971 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-580 *7)) (|:| |badPols| (-580 *7)))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-1 (-83) *8))) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) - (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) - (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8))))) + (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-1 (-83) *8))) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) - (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) - (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8))))) + (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-971 *5 *6 *7)) (-4 *5 (-491)) - (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *2 (-2 (|:| |goodPols| (-580 *8)) (|:| |badPols| (-580 *8)))) - (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-580 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-580 *8))) (-5 *3 (-580 *8)) (-4 *8 (-971 *5 *6 *7)) - (-4 *5 (-491)) (-4 *6 (-712)) (-4 *7 (-751)) (-5 *2 (-83)) - (-5 *1 (-885 *5 *6 *7 *8))))) + (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-976 *5 *6 *7)) + (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-83)) (-5 *1 (-885 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *3)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6)))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *1 (-885 *4 *5 *6 *3)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-580 *7) (-580 *7))) (-5 *2 (-580 *7)) - (-4 *7 (-971 *4 *5 *6)) (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) - (-5 *1 (-885 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) + (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-580 *3)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-971 *4 *5 *6))))) + (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-885 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-580 *5))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-884 *4 *5 *3 *6)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-4 *6 (-971 *4 *5 *3)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *5 (-971 *3 *4 *2))))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-976 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *5 (-971 *3 *4 *2))))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-976 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-884 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *5 (-971 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-976 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1120)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-808 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) (-4 *6 (-971 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3115 *1) (|:| |upper| *1))) - (-4 *1 (-884 *4 *5 *3 *6))))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3125 *1) (|:| |upper| *1))) + (-4 *1 (-889 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-884 *4 *5 *6 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) + (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-884 *4 *5 *6 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *3 (-971 *4 *5 *6)) (-4 *4 (-491)) + (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-580 *6)) (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491))))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-580 *6)) (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491))))) -(((*1 *2 *1) - (-12 (-4 *1 (-884 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-971 *3 *4 *5)) (-4 *3 (-491)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-580 (-580 (-849 (-177))))))) - ((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-580 (-580 (-849 (-177)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-995 (-177))))) - ((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-995 (-177))))) - ((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-995 (-177)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-956)) (-4 *2 (-1007)))) - ((*1 *2 *1) - (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *6 (-194 (-3940 *3) (-689))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))))) +(((*1 *2 *1) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) + ((*1 *2 *1) + (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 - (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) - (-2 (|:| -2388 *5) (|:| -2389 *6)))) - (-5 *2 (-647 *5 *6 *7)) (-5 *1 (-396 *3 *4 *5 *6 *7 *8)) (-4 *5 (-751)) - (-4 *8 (-856 *4 *6 (-768 *3))))) + (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) + (-2 (|:| -2396 *5) (|:| -2397 *6)))) + (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) + (-4 *8 (-861 *4 *6 (-773 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-660)) (-4 *2 (-751)) (-5 *1 (-669 *3 *2)) (-4 *3 (-956)))) + (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) - (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *4 (-751))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711)))) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-580 (-825))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-825)) - (-4 *2 (-309)) (-14 *5 (-901 *4 *2)))) + (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) + (-4 *2 (-311)) (-14 *5 (-906 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-647 *5 *6 *7)) (-4 *5 (-751)) (-4 *6 (-194 (-3940 *4) (-689))) + (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3951 *4) (-694))) (-14 *7 - (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *6)) - (-2 (|:| -2388 *5) (|:| -2389 *6)))) - (-14 *4 (-580 (-1081))) (-4 *2 (-144)) (-5 *1 (-396 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-856 *2 *6 (-768 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-72)) (-4 *3 (-754)))) + (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) + (-2 (|:| -2396 *5) (|:| -2397 *6)))) + (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-861 *2 *6 (-773 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-491)) (-5 *1 (-559 *2 *4)) (-4 *4 (-1146 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-642 *2)) (-4 *2 (-956)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-956)) (-4 *3 (-660)))) + (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *5)) (-5 *3 (-580 (-689))) (-4 *1 (-674 *4 *5)) - (-4 *4 (-956)) (-4 *5 (-751)))) + (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-674 *4 *2)) (-4 *4 (-956)) (-4 *2 (-751)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-756 *2)) (-4 *2 (-956)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 (-689))) (-4 *1 (-856 *4 *5 *6)) - (-4 *4 (-956)) (-4 *5 (-712)) (-4 *6 (-751)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *1 (-856 *4 *5 *2)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *2 (-751)))) + (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *2 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *6)) (-5 *3 (-580 *5)) (-4 *1 (-881 *4 *5 *6)) - (-4 *4 (-956)) (-4 *5 (-711)) (-4 *6 (-751)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-881 *4 *3 *2)) (-4 *4 (-956)) (-4 *3 (-711)) (-4 *2 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-527 *3)) (-4 *3 (-956)))) - ((*1 *2 *1) - (-12 (-4 *1 (-881 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-711)) (-4 *5 (-751)) - (-5 *2 (-83))))) -(((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255)))) - ((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162)))) - ((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-4 *1 (-774 *2))) + (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) + ((*1 *2 *1) + (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) + (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) + ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1) (-4 *1 (-779 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-881 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-711)) (-4 *4 (-751))))) -(((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-879))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *2 (-580 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) - (-5 *2 (-580 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-825))) (-5 *1 (-879))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1060 (-879))) (-5 *1 (-879))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-777 (-825) (-825)))) (-5 *1 (-879))))) -(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-879))))) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) + (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1067 (-884))) (-5 *1 (-884))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884))))) +(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-491)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3))))) + (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-689)) (-4 *3 (-491)) (-5 *1 (-877 *3 *2)) (-4 *2 (-1146 *3))))) + (-12 (-5 *4 (-694)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *2 (-491)) (-5 *1 (-877 *2 *4)) (-4 *4 (-1146 *2))))) + (-12 (-5 *3 (-694)) (-4 *2 (-494)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1153 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) (-4 *1 (-255)))) + (-12 (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-257)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1007)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-331 *3)))) + (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-333 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1962 (-689)) (|:| -2888 (-689)))) (-5 *1 (-689)))) + (-12 (-5 *2 (-2 (|:| -1970 (-694)) (|:| -2898 (-694)))) (-5 *1 (-694)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-877 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-389)) (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-389)) (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-491)) (-4 *2 (-387)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-494)) (-4 *2 (-389)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 (-689))) (-5 *1 (-877 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-877 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3751 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3751 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3129 *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3129 *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3129 *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-491)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) - (-4 *3 (-1146 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-494)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) + (-4 *3 (-1153 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-491)) + (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5))))) + (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-491)) (-5 *1 (-877 *4 *2)) (-4 *2 (-1146 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-491)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-877 *5 *3)) - (-4 *3 (-1146 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-494)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) + (-4 *3 (-1153 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-491)) + (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-877 *5 *3)) (-4 *3 (-1146 *5))))) + (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-491)) (-5 *1 (-877 *4 *2)) (-4 *2 (-1146 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3739 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3750 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-491)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) - (-5 *1 (-877 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-494)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *1) - (-12 (-4 *1 (-342)) (-2546 (|has| *1 (-6 -3969))) - (-2546 (|has| *1 (-6 -3961))))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-751)))) - ((*1 *1) (-4 *1 (-747))) ((*1 *1 *1 *1) (-4 *1 (-754))) - ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) + (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) + (-2556 (|has| *1 (-6 -3972))))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756)))) + ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759))) + ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-751))))) -(((*1 *1) (-4 *1 (-875)))) -(((*1 *1) (-4 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-574 *3)) (-14 *3 (-580 (-1081))) (-5 *1 (-166 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-580 (-1081))) (-5 *1 (-574 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-1007)) (-5 *1 (-873 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1007)) (-5 *2 (-793 *3 *4)) (-5 *1 (-790 *3 *4 *5)) - (-4 *3 (-1007)) (-4 *5 (-605 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-872 *4)) (-4 *4 (-1007)) (-5 *2 (-1003 *4)) (-5 *1 (-873 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-629 (-872 *3))) (-5 *1 (-872 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) - (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) - (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) - (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-629 (-777 (-872 *3) (-872 *3)))) (-5 *1 (-872 *3)) - (-4 *3 (-1007))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-691))) (-5 *1 (-84)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1064)) (-5 *2 (-691)) (-5 *1 (-84)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-1009)) (-5 *1 (-871))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-4 *2 (-1007)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-767)))) - ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1176)) (-5 *1 (-869))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-580 *3)) (-5 *1 (-868 *3)) (-4 *3 (-479))))) -(((*1 *2 *2) (-12 (-5 *1 (-868 *2)) (-4 *2 (-479))))) -(((*1 *2 *2) (-12 (-5 *1 (-868 *2)) (-4 *2 (-479))))) -(((*1 *1) (-4 *1 (-296))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 *5)) (-4 *5 (-359 *4)) (-4 *4 (-13 (-491) (-118))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-580 (-1076 *5))) - (|:| |prim| (-1076 *5)))) - (-5 *1 (-370 *4 *5)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(((*1 *1) (-4 *1 (-880)))) +(((*1 *1) (-4 *1 (-880)))) +(((*1 *1 *1 *1) (-4 *1 (-880)))) +(((*1 *1 *1 *1) (-4 *1 (-880)))) +(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-577 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) + (-4 *3 (-1012)) (-4 *5 (-608 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-877 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-878 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1012))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-696)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-876))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-772)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-874))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-482))))) +(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482))))) +(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482))))) +(((*1 *1) (-4 *1 (-298))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-494) (-120))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-372 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-491) (-118))) + (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1076 *3)) (|:| |pol2| (-1076 *3)) - (|:| |prim| (-1076 *3)))) - (-5 *1 (-370 *4 *3)) (-4 *3 (-27)) (-4 *3 (-359 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) + (|:| |prim| (-1083 *3)))) + (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-852 *5)) (-5 *4 (-1081)) (-4 *5 (-13 (-309) (-118))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-311) (-120))) (-5 *2 - (-2 (|:| |coef1| (-480)) (|:| |coef2| (-480)) (|:| |prim| (-1076 *5)))) - (-5 *1 (-867 *5)))) + (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5)))) + (-5 *1 (-872 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) - (-4 *5 (-13 (-309) (-118))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) + (-4 *5 (-13 (-311) (-120))) (-5 *2 - (-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 *5))) - (|:| |prim| (-1076 *5)))) - (-5 *1 (-867 *5)))) + (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-872 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) (-5 *5 (-1081)) - (-4 *6 (-13 (-309) (-118))) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-5 *5 (-1088)) + (-4 *6 (-13 (-311) (-120))) (-5 *2 - (-2 (|:| -3937 (-580 (-480))) (|:| |poly| (-580 (-1076 *6))) - (|:| |prim| (-1076 *6)))) - (-5 *1 (-867 *6))))) + (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *6))) + (|:| |prim| (-1083 *6)))) + (-5 *1 (-872 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1081)) (-5 *1 (-515 *2)) (-4 *2 (-945 *3)) (-4 *2 (-309)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-515 *2)) (-4 *2 (-309)))) + (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-950 *3)) (-4 *2 (-311)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-565 *4 *2)) - (-4 *2 (-13 (-359 *4) (-910) (-1106))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-568 *4 *2)) + (-4 *2 (-13 (-361 *4) (-915) (-1113))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-359 *4) (-910) (-1106))) (-4 *4 (-491)) - (-5 *1 (-565 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-866)) (-5 *2 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-866))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-825)) (-4 *5 (-491)) (-5 *2 (-627 *5)) - (-5 *1 (-863 *5 *3)) (-4 *3 (-597 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-860))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) (-4 *3 (-856 *7 *5 *6)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| (-580 *3)))) - (-5 *1 (-859 *5 *6 *7 *3 *8)) (-5 *4 (-689)) + (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) + (-5 *1 (-568 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1088)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-871))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-830)) (-4 *5 (-494)) (-5 *2 (-630 *5)) + (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-865))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *3 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| (-583 *3)))) + (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *3)) (-15 -2984 (*3 $)) (-15 -2983 (*3 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *3)) (-15 -2994 (*3 $)) (-15 -2993 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) - (-4 *8 (-856 *7 *5 *6)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| *3))) - (-5 *1 (-859 *5 *6 *7 *8 *3)) (-5 *4 (-689)) + (-12 (-4 *7 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) + (-4 *8 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *3))) + (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *8)) (-15 -2984 (*8 $)) (-15 -2983 (*8 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-480))) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-491)) - (-4 *8 (-856 *7 *5 *6)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *9) (|:| |radicand| *9))) - (-5 *1 (-859 *5 *6 *7 *8 *9)) (-5 *4 (-689)) + (-12 (-5 *3 (-347 (-483))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) + (-4 *8 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *9) (|:| |radicand| *9))) + (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *8)) (-15 -2984 (*8 $)) (-15 -2983 (*8 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-712)) (-4 *6 (-751)) (-4 *3 (-491)) (-4 *7 (-856 *3 *5 *6)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *8) (|:| |radicand| *8))) - (-5 *1 (-859 *5 *6 *3 *7 *8)) (-5 *4 (-689)) + (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-494)) (-4 *7 (-861 *3 *5 *6)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *8) (|:| |radicand| *8))) + (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-956)) (-4 *3 (-1007)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2389 (-480)))) (-4 *1 (-359 *3)))) + (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1012)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-795 *3)) (|:| -2389 (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) - (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2389 (-480)))) - (-5 *1 (-857 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2397 (-483)))) + (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1081)) (-4 *4 (-956)) (-4 *4 (-1007)) - (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *4)))) + (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-961)) (-4 *4 (-1012)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-84)) (-4 *4 (-956)) (-4 *4 (-1007)) - (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1012)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-1007)) - (-5 *2 (-2 (|:| |var| (-547 *1)) (|:| -2389 (-480)))) (-4 *1 (-359 *3)))) + (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-795 *3)) (|:| -2389 (-689)))) - (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-694)))) + (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *2 (-2 (|:| |var| *5) (|:| -2389 (-689)))))) + (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-694)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) - (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2389 (-480)))) - (-5 *1 (-857 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-483)))) + (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-1007)) (-5 *2 (-580 *1)) - (-4 *1 (-359 *3)))) + (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) + (-4 *1 (-361 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-856 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) - (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-580 *3)) (-5 *1 (-857 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1007)) (-5 *2 (-580 *1)) - (-4 *1 (-359 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) + (-4 *1 (-361 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-856 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-956)) - (-4 *7 (-856 *6 *4 *5)) (-5 *2 (-580 *3)) (-5 *1 (-857 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-580 *1)) (-4 *1 (-330 *3 *4)))) + (-12 (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-332 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-669 *3 *4))) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) - (-4 *4 (-660)))) + (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) + (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-856 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-956)) (-4 *2 (-711)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-756 *3)) (-4 *3 (-956)) (-5 *2 (-689)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-580 (-689))))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-694))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-856 *4 *5 *3)) (-4 *4 (-956)) (-4 *5 (-712)) (-4 *3 (-751)) - (-5 *2 (-689))))) + (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-694))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *1 (-856 *4 *5 *6)) (-4 *4 (-956)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-689)))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-856 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-689))))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-694))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *1)) - (-4 *1 (-856 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)) (-4 *2 (-387)))) + (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-389)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-1146 (-480))) (-5 *2 (-580 (-480))) - (-5 *1 (-421 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-387)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-583 (-483))) + (-5 *1 (-423 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-856 *3 *4 *2)) (-4 *3 (-956)) (-4 *4 (-712)) (-4 *2 (-751)) - (-4 *3 (-387))))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-389))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-480)) (-4 *5 (-750)) (-4 *5 (-309)) - (-5 *2 (-689)) (-5 *1 (-851 *5 *6)) (-4 *6 (-1146 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-483)) (-4 *5 (-755)) (-4 *5 (-311)) + (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1153 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-750)) (-4 *4 (-309)) (-5 *2 (-689)) - (-5 *1 (-851 *4 *5)) (-4 *5 (-1146 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-311)) (-5 *2 (-694)) + (-5 *1 (-856 *4 *5)) (-4 *5 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-309)) (-4 *2 (-750)) (-5 *1 (-851 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *2 (-311)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-851 *4 *3)) - (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) + (-4 *3 (-1153 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-309)) (-5 *2 (-580 *3)) (-5 *1 (-851 *4 *3)) - (-4 *3 (-1146 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852 *5)) (-4 *5 (-956)) (-5 *2 (-204 *4 *5)) - (-5 *1 (-850 *4 *5)) (-14 *4 (-580 (-1081)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) - (-5 *2 (-852 *5)) (-5 *1 (-850 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-416 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) - (-5 *2 (-852 *5)) (-5 *1 (-850 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852 *5)) (-4 *5 (-956)) (-5 *2 (-416 *4 *5)) - (-5 *1 (-850 *4 *5)) (-14 *4 (-580 (-1081)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-416 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) - (-5 *2 (-204 *4 *5)) (-5 *1 (-850 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-956)) - (-5 *2 (-416 *4 *5)) (-5 *1 (-850 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3) (-12 (-5 *3 (-1076 (-480))) (-5 *2 (-480)) (-5 *1 (-848))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-163)) (-5 *3 (-480)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *1 (-848)) (-5 *3 (-480))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-495)) (-5 *3 (-480)))) - ((*1 *2 *3) (-12 (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-848)) (-5 *3 (-480))))) + (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) + (-4 *3 (-1153 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) + (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) + (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-418 *4 *5)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) + (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) + (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-853))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) + ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 (-795 *6))) - (-5 *5 (-1 (-793 *6 *8) *8 (-795 *6) (-793 *6 *8))) (-4 *6 (-1007)) - (-4 *8 (-13 (-956) (-550 (-795 *6)) (-945 *7))) (-5 *2 (-793 *6 *8)) - (-4 *7 (-956)) (-5 *1 (-847 *6 *7 *8))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) + (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1012)) + (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) + (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *3)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *3 (-137 *6)) - (-4 (-852 *6) (-791 *5)) (-4 *6 (-13 (-791 *5) (-144))) - (-5 *1 (-150 *5 *6 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6)) + (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) + (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-793 *4 *1)) (-5 *3 (-795 *4)) (-4 *1 (-791 *4)) - (-4 *4 (-1007)))) + (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) + (-4 *4 (-1012)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *6)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) - (-4 *6 (-13 (-1007) (-945 *3))) (-4 *3 (-791 *5)) (-5 *1 (-837 *5 *3 *6)))) + (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) + (-4 *6 (-13 (-1012) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) - (-4 *3 (-13 (-359 *6) (-550 *4) (-791 *5) (-945 (-547 $)))) - (-5 *4 (-795 *5)) (-4 *6 (-13 (-491) (-791 *5))) (-5 *1 (-838 *5 *6 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) + (-4 *3 (-13 (-361 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) + (-5 *4 (-800 *5)) (-4 *6 (-13 (-494) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 (-480) *3)) (-5 *4 (-795 (-480))) (-4 *3 (-479)) - (-5 *1 (-839 *3)))) + (-12 (-5 *2 (-798 (-483) *3)) (-5 *4 (-800 (-483))) (-4 *3 (-482)) + (-5 *1 (-844 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *6)) (-5 *3 (-547 *6)) (-4 *5 (-1007)) - (-4 *6 (-13 (-1007) (-945 (-547 $)) (-550 *4) (-791 *5))) (-5 *4 (-795 *5)) - (-5 *1 (-840 *5 *6)))) + (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1012)) + (-4 *6 (-13 (-1012) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) + (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-790 *5 *6 *3)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) - (-4 *6 (-791 *5)) (-4 *3 (-605 *6)) (-5 *1 (-841 *5 *6 *3)))) + (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) + (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-793 *6 *3) *8 (-795 *6) (-793 *6 *3))) (-4 *8 (-751)) - (-5 *2 (-793 *6 *3)) (-5 *4 (-795 *6)) (-4 *6 (-1007)) - (-4 *3 (-13 (-856 *9 *7 *8) (-550 *4))) (-4 *7 (-712)) - (-4 *9 (-13 (-956) (-791 *6))) (-5 *1 (-842 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) + (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1012)) + (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) + (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) - (-4 *3 (-13 (-856 *8 *6 *7) (-550 *4))) (-5 *4 (-795 *5)) (-4 *7 (-791 *5)) - (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-13 (-956) (-791 *5))) - (-5 *1 (-842 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) + (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) + (-5 *1 (-847 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 *3)) (-4 *5 (-1007)) (-4 *3 (-899 *6)) - (-4 *6 (-13 (-491) (-791 *5) (-550 *4))) (-5 *4 (-795 *5)) - (-5 *1 (-845 *5 *6 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-904 *6)) + (-4 *6 (-13 (-494) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) + (-5 *1 (-850 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *5 (-1081))) (-5 *3 (-1081)) (-5 *4 (-795 *5)) - (-4 *5 (-1007)) (-5 *1 (-846 *5)))) + (-12 (-5 *2 (-798 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-800 *5)) + (-4 *5 (-1012)) (-5 *1 (-851 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-580 (-795 *7))) (-5 *5 (-1 *9 (-580 *9))) - (-5 *6 (-1 (-793 *7 *9) *9 (-795 *7) (-793 *7 *9))) (-4 *7 (-1007)) - (-4 *9 (-13 (-956) (-550 (-795 *7)) (-945 *8))) (-5 *2 (-793 *7 *9)) - (-5 *3 (-580 *9)) (-4 *8 (-956)) (-5 *1 (-847 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1007) (-945 *5))) (-4 *5 (-791 *4)) - (-4 *4 (-1007)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-837 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) - ((*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) - ((*1 *2 *2) (-12 (-4 *3 (-1007)) (-5 *1 (-836 *3 *2)) (-4 *2 (-359 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-84)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081)) (-5 *4 (-441)) (-5 *2 (-262 (-480))) (-5 *1 (-835)))) + (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) + (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1012)) + (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) + (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-950 *5))) (-4 *5 (-796 *4)) + (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1088)) (-5 *4 (-444)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-441)) (-4 *4 (-1007)) (-5 *1 (-836 *4 *2)) (-4 *2 (-359 *4))))) + (-12 (-5 *3 (-444)) (-4 *4 (-1012)) (-5 *1 (-841 *4 *2)) (-4 *2 (-361 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-580 (-995 (-177)))) - (-5 *1 (-834))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1000 (-179)))) + (-5 *1 (-839))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-849 (-177)) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) + (-5 *1 (-838))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-580 (-1 (-177) (-177)))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1 (-177) (-177)))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) - (-4 *3 (-550 (-469))))) + (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-472))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) - (-4 *3 (-550 (-469))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833)))) + (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-472))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-833))))) -(((*1 *2 *1) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-995 (-177))) (-5 *1 (-833))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-177)))) (-5 *1 (-833))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-833))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-833))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-995 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1081)) (-5 *5 (-995 (-177))) (-5 *2 (-831)) (-5 *1 (-832 *3)) - (-4 *3 (-550 (-469))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-5 *2 (-831)) (-5 *1 (-832 *3)) (-4 *3 (-550 (-469)))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-402)))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-83)) - (-5 *1 (-830 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-83)) - (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-255) (-118))) (-4 *4 (-13 (-751) (-550 (-1081)))) - (-4 *5 (-712)) (-5 *1 (-830 *3 *4 *5 *2)) (-4 *2 (-856 *3 *5 *4))))) + (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-472))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) + (-5 *1 (-835 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) + (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) - (-5 *4 (-627 *12)) (-5 *5 (-580 (-345 (-852 *9)))) (-5 *6 (-580 (-580 *12))) - (-5 *7 (-689)) (-5 *8 (-480)) (-4 *9 (-13 (-255) (-118))) - (-4 *12 (-856 *9 *11 *10)) (-4 *10 (-13 (-751) (-550 (-1081)))) - (-4 *11 (-712)) - (-5 *2 - (-2 (|:| |eqzro| (-580 *12)) (|:| |neqzro| (-580 *12)) - (|:| |wcond| (-580 (-852 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) + (-5 *4 (-630 *12)) (-5 *5 (-583 (-347 (-857 *9)))) (-5 *6 (-583 (-583 *12))) + (-5 *7 (-694)) (-5 *8 (-483)) (-4 *9 (-13 (-257) (-120))) + (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1088)))) + (-4 *11 (-717)) + (-5 *2 + (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) + (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *9)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *9))))))))) - (-5 *1 (-830 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *9)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *9))))))))) + (-5 *1 (-835 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) - (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) (-5 *1 (-830 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-689)) (-4 *8 (-856 *5 *7 *6)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) - (-4 *7 (-712)) - (-5 *2 - (-580 - (-2 (|:| |det| *8) (|:| |rows| (-580 (-480))) - (|:| |cols| (-580 (-480)))))) - (-5 *1 (-830 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-580 *8))) (-5 *3 (-580 *8)) (-4 *8 (-856 *5 *7 *6)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) - (-4 *7 (-712)) (-5 *2 (-83)) (-5 *1 (-830 *5 *6 *7 *8))))) + (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) + (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) + (-4 *7 (-717)) + (-5 *2 + (-583 + (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) + (|:| |cols| (-583 (-483)))))) + (-5 *1 (-835 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) + (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) (-5 *2 (-580 (-580 (-480)))) (-5 *1 (-830 *4 *5 *6 *7)) - (-5 *3 (-480)) (-4 *7 (-856 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) (-5 *2 (-583 (-583 (-483)))) (-5 *1 (-835 *4 *5 *6 *7)) + (-5 *3 (-483)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 (-580 *6))) (-4 *6 (-856 *3 *5 *4)) - (-4 *3 (-13 (-255) (-118))) (-4 *4 (-13 (-751) (-550 (-1081)))) - (-4 *5 (-712)) (-5 *1 (-830 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) + (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) + (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-580 - (-2 (|:| -3094 (-689)) + (-583 + (-2 (|:| -3104 (-694)) (|:| |eqns| - (-580 - (-2 (|:| |det| *7) (|:| |rows| (-580 (-480))) - (|:| |cols| (-580 (-480)))))) - (|:| |fgb| (-580 *7))))) - (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-689)) - (-5 *1 (-830 *4 *5 *6 *7))))) + (-583 + (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) + (|:| |cols| (-583 (-483)))))) + (|:| |fgb| (-583 *7))))) + (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) + (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-580 - (-2 (|:| -3094 (-689)) + (-583 + (-2 (|:| -3104 (-694)) (|:| |eqns| - (-580 - (-2 (|:| |det| *7) (|:| |rows| (-580 (-480))) - (|:| |cols| (-580 (-480)))))) - (|:| |fgb| (-580 *7))))) - (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) (-5 *2 (-689)) - (-5 *1 (-830 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) (-5 *2 (-580 *3)) (-5 *1 (-830 *4 *5 *6 *3)) - (-4 *3 (-856 *4 *6 *5))))) + (-583 + (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) + (|:| |cols| (-583 (-483)))))) + (|:| |fgb| (-583 *7))))) + (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) + (-5 *1 (-835 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) + (-4 *3 (-861 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-627 (-345 (-852 *4)))) (|:| |vec| (-580 (-345 (-852 *4)))) - (|:| -3094 (-689)) (|:| |rows| (-580 (-480))) (|:| |cols| (-580 (-480))))) - (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) - (-5 *2 - (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *4))))))) - (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5))))) + (-2 (|:| |mat| (-630 (-347 (-857 *4)))) (|:| |vec| (-583 (-347 (-857 *4)))) + (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) + (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) + (-5 *2 + (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *4))))))) - (-5 *3 (-580 *7)) (-4 *4 (-13 (-255) (-118))) (-4 *7 (-856 *4 *6 *5)) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) - (-5 *1 (-830 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) + (-5 *3 (-583 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-861 *4 *6 *5)) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) + (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) - (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) + (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) + (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 - (-580 - (-2 (|:| -3094 (-689)) + (-583 + (-2 (|:| -3104 (-694)) (|:| |eqns| - (-580 - (-2 (|:| |det| *8) (|:| |rows| (-580 (-480))) - (|:| |cols| (-580 (-480)))))) - (|:| |fgb| (-580 *8))))) - (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-689))))) + (-583 + (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) + (|:| |cols| (-583 (-483)))))) + (|:| |fgb| (-583 *8))))) + (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) (-4 *7 (-856 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-580 *7)) (|:| |n0| (-580 *7)))) - (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-580 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852 *4)) (-4 *4 (-13 (-255) (-118))) (-4 *2 (-856 *4 *6 *5)) - (-5 *1 (-830 *4 *5 *6 *2)) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) - (-5 *2 (-580 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7)) - (-4 *7 (-856 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-13 (-751) (-550 (-1081)))) - (-4 *6 (-712)) (-5 *2 (-345 (-852 *4))) (-5 *1 (-830 *4 *5 *6 *3)) - (-4 *3 (-856 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) - (-5 *2 (-627 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) - (-5 *2 (-580 (-345 (-852 *4)))) (-5 *1 (-830 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) + (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-861 *4 *6 *5)) + (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) + (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) + (-4 *7 (-861 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) + (-4 *6 (-717)) (-5 *2 (-347 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) + (-4 *3 (-861 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) + (-5 *2 (-630 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) + (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-627 *11)) (-5 *4 (-580 (-345 (-852 *8)))) (-5 *5 (-689)) - (-5 *6 (-1064)) (-4 *8 (-13 (-255) (-118))) (-4 *11 (-856 *8 *10 *9)) - (-4 *9 (-13 (-751) (-550 (-1081)))) (-4 *10 (-712)) + (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-347 (-857 *8)))) (-5 *5 (-694)) + (-5 *6 (-1071)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-861 *8 *10 *9)) + (-4 *9 (-13 (-756) (-553 (-1088)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| - (-580 - (-2 (|:| |eqzro| (-580 *11)) (|:| |neqzro| (-580 *11)) - (|:| |wcond| (-580 (-852 *8))) + (-583 + (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) + (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *8)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *8)))))))))) - (|:| |rgsz| (-480)))) - (-5 *1 (-830 *8 *9 *10 *11)) (-5 *7 (-480))))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *8)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *8)))))))))) + (|:| |rgsz| (-483)))) + (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-483))))) (((*1 *2 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) + (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *7)) (|:| |neqzro| (-580 *7)) - (|:| |wcond| (-580 (-852 *4))) + (-583 + (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) + (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *4)))))))))) - (-5 *1 (-830 *4 *5 *6 *7)) (-4 *7 (-856 *4 *6 *5))))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-580 - (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) - (|:| |wcond| (-580 (-852 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) - (-5 *4 (-1064)) (-4 *5 (-13 (-255) (-118))) (-4 *8 (-856 *5 *7 *6)) - (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) (-5 *2 (-480)) - (-5 *1 (-830 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-4 *8 (-856 *5 *7 *6)) (-4 *5 (-13 (-255) (-118))) - (-4 *6 (-13 (-751) (-550 (-1081)))) (-4 *7 (-712)) - (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) - (|:| |wcond| (-580 (-852 *5))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) + (-5 *4 (-1071)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-861 *5 *7 *6)) + (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483)) + (-5 *1 (-835 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) + (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) + (-5 *2 + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) - (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-580 *8)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-580 (-1081))) (-4 *8 (-856 *5 *7 *6)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) - (-4 *7 (-712)) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1088))) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) + (-4 *7 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) - (|:| |wcond| (-580 (-852 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) - (-5 *1 (-830 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-856 *4 *6 *5)) (-4 *4 (-13 (-255) (-118))) - (-4 *5 (-13 (-751) (-550 (-1081)))) (-4 *6 (-712)) + (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) + (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *7)) (|:| |neqzro| (-580 *7)) - (|:| |wcond| (-580 (-852 *4))) + (-583 + (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) + (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *4)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *4)))))))))) - (-5 *1 (-830 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) + (-5 *1 (-835 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *5 (-825)) (-4 *9 (-856 *6 *8 *7)) - (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) - (-4 *8 (-712)) + (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) + (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) + (-4 *8 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *9)) (|:| |neqzro| (-580 *9)) - (|:| |wcond| (-580 (-852 *6))) + (-583 + (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) + (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *6)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *6)))))))))) - (-5 *1 (-830 *6 *7 *8 *9)) (-5 *4 (-580 *9)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) + (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 (-1081))) (-5 *5 (-825)) - (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) - (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) + (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *9)) (|:| |neqzro| (-580 *9)) - (|:| |wcond| (-580 (-852 *6))) + (-583 + (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) + (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *6)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *6)))))))))) - (-5 *1 (-830 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) + (-5 *1 (-835 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-825)) (-4 *8 (-856 *5 *7 *6)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) - (-4 *7 (-712)) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) + (-4 *7 (-717)) (-5 *2 - (-580 - (-2 (|:| |eqzro| (-580 *8)) (|:| |neqzro| (-580 *8)) - (|:| |wcond| (-580 (-852 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1170 (-345 (-852 *5)))) - (|:| -2000 (-580 (-1170 (-345 (-852 *5)))))))))) - (-5 *1 (-830 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) + (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 *9)) (-5 *5 (-1064)) - (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) - (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-480)) - (-5 *1 (-830 *6 *7 *8 *9)))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1071)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) + (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) + (-5 *1 (-835 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *4 (-580 (-1081))) (-5 *5 (-1064)) - (-4 *9 (-856 *6 *8 *7)) (-4 *6 (-13 (-255) (-118))) - (-4 *7 (-13 (-751) (-550 (-1081)))) (-4 *8 (-712)) (-5 *2 (-480)) - (-5 *1 (-830 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-1064)) (-4 *8 (-856 *5 *7 *6)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-13 (-751) (-550 (-1081)))) - (-4 *7 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *5 *6 *7 *8)))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-1071)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) + (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) + (-5 *1 (-835 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-1071)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) + (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-627 *10)) (-5 *4 (-580 *10)) (-5 *5 (-825)) (-5 *6 (-1064)) - (-4 *10 (-856 *7 *9 *8)) (-4 *7 (-13 (-255) (-118))) - (-4 *8 (-13 (-751) (-550 (-1081)))) (-4 *9 (-712)) (-5 *2 (-480)) - (-5 *1 (-830 *7 *8 *9 *10)))) + (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1071)) + (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) + (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) + (-5 *1 (-835 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-627 *10)) (-5 *4 (-580 (-1081))) (-5 *5 (-825)) (-5 *6 (-1064)) - (-4 *10 (-856 *7 *9 *8)) (-4 *7 (-13 (-255) (-118))) - (-4 *8 (-13 (-751) (-550 (-1081)))) (-4 *9 (-712)) (-5 *2 (-480)) - (-5 *1 (-830 *7 *8 *9 *10)))) + (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-5 *6 (-1071)) + (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) + (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) + (-5 *1 (-835 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *4 (-825)) (-5 *5 (-1064)) (-4 *9 (-856 *6 *8 *7)) - (-4 *6 (-13 (-255) (-118))) (-4 *7 (-13 (-751) (-550 (-1081)))) - (-4 *8 (-712)) (-5 *2 (-480)) (-5 *1 (-830 *6 *7 *8 *9))))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) + (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) + (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-309)) (-4 *2 (-1146 *4)) - (-5 *1 (-829 *4 *2))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-4 *2 (-1153 *4)) + (-5 *1 (-834 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-827)) (-5 *2 (-2 (|:| -3937 (-580 *1)) (|:| -2397 *1))) - (-5 *3 (-580 *1))))) + (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3948 (-583 *1)) (|:| -2405 *1))) + (-5 *3 (-583 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-827)) (-5 *2 (-629 (-580 *1))) (-5 *3 (-580 *1))))) + (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-852 *4))) (-5 *3 (-580 (-1081))) (-4 *4 (-387)) - (-5 *1 (-824 *4))))) + (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) + (-5 *1 (-829 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-852 *4))) (-5 *3 (-580 (-1081))) (-4 *4 (-387)) - (-5 *1 (-824 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-879)) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2) (-12 (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-811 (-480))) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-480))) (-5 *2 (-811 (-480))) (-5 *1 (-823))))) + (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) + (-5 *1 (-829 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *2)) - (-4 *2 (-856 *5 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) + (-4 *2 (-861 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *5 (-255)) (-5 *1 (-822 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *6 *4 *5)) (-5 *1 (-822 *4 *5 *6 *2)) - (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-343 *2)) (-4 *2 (-255)) (-5 *1 (-820 *2)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-825 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118))) - (-5 *2 (-51)) (-5 *1 (-821 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) + (-5 *2 (-51)) (-5 *1 (-826 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-343 (-852 *6))) (-5 *5 (-1081)) (-5 *3 (-852 *6)) - (-4 *6 (-13 (-255) (-118))) (-5 *2 (-51)) (-5 *1 (-821 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-820 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-820 *3)) (-4 *3 (-255))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-820 *3)) (-4 *3 (-255))))) -(((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-255))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1146 (-345 (-480)))) (-5 *1 (-819 *3 *2)) - (-4 *2 (-1146 (-345 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *3)) - (-4 *3 (-1146 (-345 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480))))) - (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *5)) - (-4 *5 (-1146 (-345 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1146 (-345 (-480)))) - (-5 *2 (-2 (|:| |den| (-480)) (|:| |gcdnum| (-480)))) (-5 *1 (-819 *3 *4)) - (-4 *4 (-1146 (-345 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1146 (-345 *2))) (-5 *2 (-480)) (-5 *1 (-819 *4 *3)) - (-4 *3 (-1146 (-345 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-1146 (-345 *3))) (-5 *2 (-825)) - (-5 *1 (-819 *4 *5)) (-4 *5 (-1146 (-345 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) - (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) - (-4 *4 (-13 (-491) (-945 (-480)))) - (-5 *2 (-2 (|:| -3755 (-689)) (|:| -2371 *8))) - (-5 *1 (-817 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) - (-4 *4 (-1146 (-345 (-480)))) (-4 *5 (-1146 (-345 *4))) - (-4 *6 (-288 (-345 (-480)) *4 *5)) - (-5 *2 (-2 (|:| -3755 (-689)) (|:| -2371 *6))) (-5 *1 (-818 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-280 *5 *6 *7 *8)) (-4 *5 (-359 *4)) (-4 *6 (-1146 *5)) - (-4 *7 (-1146 (-345 *6))) (-4 *8 (-288 *5 *6 *7)) - (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-83)) - (-5 *1 (-817 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-280 (-345 (-480)) *4 *5 *6)) (-4 *4 (-1146 (-345 (-480)))) - (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 (-345 (-480)) *4 *5)) (-5 *2 (-83)) - (-5 *1 (-818 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-387)))) + (-12 (-5 *4 (-345 (-857 *6))) (-5 *5 (-1088)) (-5 *3 (-857 *6)) + (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257))))) +(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *1 (-824 *3 *2)) + (-4 *2 (-1153 (-347 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) + (-4 *3 (-1153 (-347 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) + (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *5)) + (-4 *5 (-1153 (-347 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1153 (-347 (-483)))) + (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-824 *3 *4)) + (-4 *4 (-1153 (-347 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) + (-4 *3 (-1153 (-347 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-347 *3))) (-5 *2 (-830)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) + (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) + (-4 *4 (-13 (-494) (-950 (-483)))) + (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *8))) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) + (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) + (-4 *6 (-290 (-347 (-483)) *4 *5)) + (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *6))) (-5 *1 (-823 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) + (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) + (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) + (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-823 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-389)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1076 *6)) (-4 *6 (-856 *5 *3 *4)) (-4 *3 (-712)) (-4 *4 (-751)) - (-4 *5 (-816)) (-5 *1 (-392 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-816))))) -(((*1 *2 *3) - (-12 (-5 *2 (-343 (-1076 *1))) (-5 *1 (-262 *4)) (-5 *3 (-1076 *1)) - (-4 *4 (-387)) (-4 *4 (-491)) (-4 *4 (-1007)))) - ((*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-343 (-1076 *1))) (-5 *1 (-262 *4)) (-5 *3 (-1076 *1)) - (-4 *4 (-387)) (-4 *4 (-491)) (-4 *4 (-1007)))) - ((*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *2 (-343 (-1076 *1))) (-5 *3 (-1076 *1))))) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-821)) (-5 *1 (-394 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-821))))) +(((*1 *2 *3) + (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012)))) + ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012)))) + ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 *5))) (-5 *3 (-1076 *5)) (-4 *5 (-137 *4)) - (-4 *4 (-479)) (-5 *1 (-120 *4 *5)))) + (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-482)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-1146 *4)) - (-4 *4 (-296)) (-5 *1 (-304 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) + (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 (-480)))) (-5 *3 (-1076 (-480))) - (-5 *1 (-504)))) + (|partial| -12 (-5 *2 (-583 (-1083 (-483)))) (-5 *3 (-1083 (-483))) + (-5 *1 (-507)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 *1))) (-5 *3 (-1076 *1)) (-4 *1 (-816))))) + (|partial| -12 (-5 *2 (-583 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-821))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-296)) (-5 *2 (-1170 *1)))) + (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-298)) (-5 *2 (-1177 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-816)) - (-5 *2 (-1170 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-116)))) - ((*1 *1 *1) (-4 *1 (-296))) - ((*1 *2 *1) (-12 (-5 *2 (-629 *1)) (-4 *1 (-116)) (-4 *1 (-816))))) + (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) + (-5 *2 (-1177 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))) + ((*1 *1 *1) (-4 *1 (-298))) + ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-751)) (-4 *5 (-816)) (-4 *6 (-712)) - (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-343 (-1076 *8))) (-5 *1 (-813 *5 *6 *7 *8)) - (-5 *4 (-1076 *8)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-818 *5 *6 *7 *8)) + (-5 *4 (-1083 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) - (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5))))) (((*1 *2) - (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-816)) (-5 *1 (-392 *3 *4 *2 *5)) - (-4 *5 (-856 *2 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-394 *3 *4 *2 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-712)) (-4 *4 (-751)) (-4 *2 (-816)) (-5 *1 (-813 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-816)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) - (-5 *2 (-343 (-1076 *7))) (-5 *1 (-813 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) + (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) + (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) - (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-856 *4 *5 *6)) - (-5 *2 (-343 (-1076 *7))) (-5 *1 (-813 *4 *5 *6 *7)) (-5 *3 (-1076 *7)))) + (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) + (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-816)) (-4 *5 (-1146 *4)) (-5 *2 (-343 (-1076 *5))) - (-5 *1 (-814 *4 *5)) (-5 *3 (-1076 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 *7))) (-5 *3 (-1076 *7)) - (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-816)) (-4 *5 (-712)) (-4 *6 (-751)) - (-5 *1 (-813 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *1 (-818 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 *5))) (-5 *3 (-1076 *5)) - (-4 *5 (-1146 *4)) (-4 *4 (-816)) (-5 *1 (-814 *4 *5))))) + (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) + (-4 *5 (-1153 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-580 (-1076 *7))) (-5 *3 (-1076 *7)) - (-4 *7 (-856 *5 *6 *4)) (-4 *5 (-816)) (-4 *6 (-712)) (-4 *4 (-751)) - (-5 *1 (-813 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-580 *6)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) ((*1 *1) (-4 *1 (-479))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-808 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-580 (-580 (-689)))) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-808 *3))) (-4 *3 (-1007)) (-5 *1 (-811 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-1003 *3)))) + (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) + (-5 *1 (-818 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-482))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1007)) (-5 *2 (-1003 (-580 *4))) (-5 *1 (-811 *4)) - (-5 *3 (-580 *4)))) + (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-816 *4)) + (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1007)) (-5 *2 (-1003 (-1003 *4))) (-5 *1 (-811 *4)) - (-5 *3 (-1003 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) + (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-816 *4)) + (-5 *3 (-1008 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) (((*1 *2 *1) - (-12 (-5 *2 (-1003 (-1003 *3))) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-580 (-689))) - (-5 *1 (-811 *4))))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) + (-5 *1 (-816 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-808 *4)) (-4 *4 (-1007)) (-5 *2 (-580 (-689))) - (-5 *1 (-811 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-1003 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-1007)) (-5 *2 (-83)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) + (-5 *1 (-816 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-1176)) (-5 *1 (-811 *4)) (-4 *4 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-811 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-810 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-4 *1 (-810 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1047 *4 *2)) (-14 *4 (-825)) - (-4 *2 (-13 (-956) (-10 -7 (-6 (-3980 "*"))))) (-5 *1 (-809 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-580 *3)) (|:| |image| (-580 *3)))) - (-5 *1 (-808 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-580 *3))) (-4 *3 (-1007)) (-5 *1 (-808 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-879)) (-5 *1 (-808 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-808 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-4 *1 (-945 (-480))) (-4 *1 (-251)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-808 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-4 *1 (-945 (-480))) (-4 *1 (-251)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-808 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1003 *3)) (-5 *1 (-808 *3)) (-4 *3 (-315)) (-4 *3 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-808 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-689)))) + (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-815 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-4 *1 (-815 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-830)) + (-4 *2 (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (-5 *1 (-814 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) + (-5 *1 (-813 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1008 *3)) (-5 *1 (-813 *3)) (-4 *3 (-317)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-689)) (-4 *1 (-223 *4)) (-4 *4 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1120)))) - ((*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-801 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) + ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 *4)) (-5 *3 (-580 (-689))) (-4 *1 (-806 *4)) - (-4 *4 (-1007)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-806 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *1 (-806 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) + (-4 *4 (-1012)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-309)) (-5 *1 (-802 *2 *4)) (-4 *2 (-1146 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1153 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-309)) (-5 *1 (-802 *2 *3)) (-4 *2 (-1146 *3))))) -(((*1 *1) (-12 (-4 *1 (-400 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-656))) ((*1 *1) (-4 *1 (-660))) - ((*1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007)))) - ((*1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-751))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) - (-5 *2 (-580 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |k| (-798 *3)) (|:| |c| *4)))) - (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-611 *3))) (-5 *1 (-798 *3)) (-4 *3 (-751))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) - (-14 *4 (-580 (-1081))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081))))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-798 *3)) (-4 *3 (-751))))) -(((*1 *2 *3) - (-12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-580 *5)) (-5 *1 (-796 *4 *5)) - (-4 *5 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-4 *3 (-311)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1153 *3))))) +(((*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663))) + ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) + ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))) +(((*1 *2 *1) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) + (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) + (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1088))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +(((*1 *2 *3) + (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) + (-4 *5 (-1127))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-796 *4 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1127))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-5 *2 (-83)) - (-5 *1 (-793 *4 *5)) (-4 *5 (-1007)))) + (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) + (-5 *1 (-798 *4 *5)) (-4 *5 (-1012)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-796 *5 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) + (-4 *3 (-1127)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-795 *5)) (-4 *5 (-1007)) (-4 *6 (-1120)) - (-5 *2 (-83)) (-5 *1 (-796 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1127)) + (-5 *2 (-85)) (-5 *1 (-801 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007))))) + ((*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2499 (-84)) (|:| |arg| (-580 (-795 *3))))) - (-5 *1 (-795 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *2 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 (-800 *3))))) + (-5 *1 (-800 *3)) (-4 *3 (-1012)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-580 (-795 *4))) (-5 *1 (-795 *4)) - (-4 *4 (-1007))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-795 *3)) (|:| |den| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) + (-4 *4 (-1012))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1081)) (-5 *3 (-83)) (-5 *1 (-795 *4)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1012))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-51)) (-5 *1 (-795 *4)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1012))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-580 (-1081))) (|:| |pred| (-51)))) - (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) -(((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-51))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51)))) + (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) +(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-580 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-1007))))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))) (((*1 *2 *1) - (-12 (-4 *4 (-1007)) (-5 *2 (-83)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-1007)) - (-4 *5 (-605 *4)))) + (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) + (-4 *5 (-608 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-793 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) (((*1 *1) - (-12 (-4 *3 (-1007)) (-5 *1 (-790 *2 *3 *4)) (-4 *2 (-1007)) - (-4 *4 (-605 *3)))) - ((*1 *1) (-12 (-5 *1 (-793 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) + (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) + (-4 *4 (-608 *3)))) + ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-795 *4)) (-4 *4 (-1007)) (-4 *2 (-1007)) - (-5 *1 (-793 *4 *2))))) + (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) + (-5 *1 (-798 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-795 *4)) (-4 *4 (-1007)) (-5 *1 (-793 *4 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1007)) (-4 *6 (-791 *5)) (-5 *2 (-790 *5 *6 (-580 *6))) - (-5 *1 (-792 *5 *6 *4)) (-5 *3 (-580 *6)) (-4 *4 (-550 (-795 *5))))) + (-12 (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) + (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1007)) (-5 *2 (-580 (-246 *3))) (-5 *1 (-792 *5 *3 *4)) - (-4 *3 (-945 (-1081))) (-4 *3 (-791 *5)) (-4 *4 (-550 (-795 *5))))) + (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 *3))) (-5 *1 (-797 *5 *3 *4)) + (-4 *3 (-950 (-1088))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1007)) (-5 *2 (-580 (-246 (-852 *3)))) (-5 *1 (-792 *5 *3 *4)) - (-4 *3 (-956)) (-2546 (-4 *3 (-945 (-1081)))) (-4 *3 (-791 *5)) - (-4 *4 (-550 (-795 *5))))) + (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) + (-4 *3 (-961)) (-2556 (-4 *3 (-950 (-1088)))) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1007)) (-5 *2 (-793 *5 *3)) (-5 *1 (-792 *5 *3 *4)) - (-2546 (-4 *3 (-945 (-1081)))) (-2546 (-4 *3 (-956))) (-4 *3 (-791 *5)) - (-4 *4 (-550 (-795 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-1081)) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-84)) (-5 *2 (-83)))) + (-12 (-4 *5 (-1012)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) + (-2556 (-4 *3 (-950 (-1088)))) (-2556 (-4 *3 (-961))) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-83)) (-5 *1 (-547 *4)) (-4 *4 (-1007)))) + (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-547 *4)) (-4 *4 (-1007)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-742 *3)) (-4 *3 (-1007)) (-5 *2 (-83)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-792 *5 *3 *4)) (-4 *3 (-791 *5)) - (-4 *4 (-550 (-795 *5))))) + (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *6)) (-4 *6 (-791 *5)) (-4 *5 (-1007)) (-5 *2 (-83)) - (-5 *1 (-792 *5 *6 *4)) (-4 *4 (-550 (-795 *5)))))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) + (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-793 *4 *5)) (-5 *3 (-793 *4 *6)) (-4 *4 (-1007)) - (-4 *5 (-1007)) (-4 *6 (-605 *5)) (-5 *1 (-790 *4 *5 *6))))) + (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1012)) + (-4 *5 (-1012)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1007)) (-5 *2 (-793 *3 *5)) (-5 *1 (-790 *3 *4 *5)) - (-4 *3 (-1007)) (-4 *5 (-605 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-480))))) + (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) + (-4 *3 (-1012)) (-4 *5 (-608 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-483))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480))))) + (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) ((*1 *2 *3) - (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480)))))) + (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *3 (-580 (-480))) (-5 *1 (-788))))) + (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *3 (-583 (-483))) (-5 *1 (-793))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1060 (-580 (-480)))) (-5 *1 (-788)) (-5 *3 (-580 (-480)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 (-580 (-825)))) (-5 *1 (-788))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-782 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-784 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *1 (-787 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-1086))) (-5 *1 (-785))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778))))) -(((*1 *2 *3) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-197)) (-5 *3 (-1064)))) - ((*1 *2 *2) (-12 (-5 *2 (-580 (-1064))) (-5 *1 (-197)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-778))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-777 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-88 *3)) (-14 *3 (-480)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-255)) (-5 *1 (-146 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-255)) (-5 *1 (-146 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-146 (-480))) (-5 *1 (-684 *3)) (-4 *3 (-342)))) - ((*1 *2 *1) - (-12 (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-775 *3)) (-14 *3 (-480)))) - ((*1 *2 *1) - (-12 (-14 *3 (-480)) (-5 *2 (-146 (-345 (-480)))) (-5 *1 (-776 *3 *4)) - (-4 *4 (-774 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-341 *3)) (-4 *3 (-342)))) - ((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-341 *3)) (-4 *3 (-342)))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) - ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825)))) - ((*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-1060 (-480)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-242 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1146 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1067 (-583 (-830)))) (-5 *1 (-793))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1127)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1127))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1127))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-790))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-689 *3)) (-4 *3 (-344)))) + ((*1 *2 *1) + (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-780 *3)) (-14 *3 (-483)))) + ((*1 *2 *1) + (-12 (-14 *3 (-483)) (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-781 *3 *4)) + (-4 *4 (-779 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) + ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) + ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1067 (-483)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-645 *3 *2 *4 *5 *6)) (-4 *3 (-144)) + (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1146 *3)) (-5 *1 (-646 *3 *2)) (-4 *3 (-956)))) + ((*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-144)) + (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-5 *2 (-480))))) -(((*1 *1 *1) (-4 *1 (-774 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1076 (-480))) (-5 *3 (-480)) (-4 *1 (-774 *4))))) + ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483))))) +(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483))))) +(((*1 *1 *1) (-4 *1 (-779 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-779 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-689)) (-4 *5 (-309)) (-5 *2 (-345 *6)) - (-5 *1 (-771 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1146 *5)))) + (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-347 *6)) + (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-689)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-309)) - (-14 *6 (-1081)) (-14 *7 *5) (-5 *2 (-345 (-1139 *6 *5))) - (-5 *1 (-772 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) + (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) + (-5 *1 (-777 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-689)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-309)) - (-14 *6 (-1081)) (-14 *7 *5) (-5 *2 (-345 (-1139 *6 *5))) - (-5 *1 (-772 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) + (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) + (-5 *1 (-777 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-689)) (-4 *5 (-309)) (-5 *2 (-146 *6)) - (-5 *1 (-771 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1146 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) - (-5 *2 (-580 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-376))) (-5 *1 (-769))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-212 *3)) (-4 *3 (-1120)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-689)))) - ((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) - (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) - ((*1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-767))))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-251)))) - ((*1 *1 *1) (-4 *1 (-251))) ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-767)))) - ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-767))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) - ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-251)))) - ((*1 *1 *1) (-4 *1 (-251))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767)))) - ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-767))) (-5 *1 (-767))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-754)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) + (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-148 *6)) + (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) + (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-378))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-772))))) +(((*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-694)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) + (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) + ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) + ((*1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) + ((*1 *1 *1) (-4 *1 (-253))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-734 *3)) (|:| |rm| (-734 *3)))) - (-5 *1 (-734 *3)) (-4 *3 (-751)))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-4 *1 (-255))) ((*1 *1 *1 *1) (-5 *1 (-689))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-4 *1 (-255))) ((*1 *1 *1 *1) (-5 *1 (-689))) - ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1) (-5 *1 (-767)))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-766)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-463)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-509)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-766))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-99))) (-5 *3 (-99))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-484))) (-5 *3 (-484))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *2 (-629 (-1129))) (-5 *3 (-1129))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-100)) (-5 *2 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-51))) (-5 *2 (-1176)) (-5 *1 (-763))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) + (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-694))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-694))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) + ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-487))) (-5 *3 (-487))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1136))) (-5 *3 (-1136))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1183)) (-5 *1 (-768))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-38 (-345 (-480)))) - (-4 *2 (-144))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-689)) (-5 *1 (-760 *2)) (-4 *2 (-144))))) + (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-347 (-483)))) + (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-756 *3)))) + (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-309)) (-4 *5 (-956)) - (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) - (-4 *3 (-756 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-309)) (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) - (-5 *1 (-685 *3 *4)) (-4 *3 (-642 *4)))) + (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) + (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-309)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-756 *3)))) + (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-309)) (-4 *5 (-956)) - (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) - (-4 *3 (-756 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-756 *3)))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-491)) (-4 *5 (-956)) - (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) - (-4 *3 (-756 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-491)) (-4 *3 (-956)) (-5 *2 (-2 (|:| -1962 *1) (|:| -2888 *1))) - (-4 *1 (-756 *3)))) + (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-491)) (-4 *5 (-956)) - (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-757 *5 *3)) - (-4 *3 (-756 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-587 *5)) (-4 *5 (-956)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-756 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-627 *3)) (-4 *1 (-356 *3)) (-4 *3 (-144)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-956)) (-5 *1 (-757 *2 *3)) - (-4 *3 (-756 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) + (-4 *3 (-761 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-956)) (-5 *1 (-757 *5 *2)) - (-4 *2 (-756 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) + (-4 *2 (-761 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) + (|partial| -12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-309)) (-4 *3 (-956)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) - (-4 *1 (-756 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (-12 (-4 *3 (-311)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) + (-4 *1 (-761 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-309)) (-4 *3 (-956)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) - (-4 *1 (-756 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-309)) (-5 *1 (-685 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-756 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) + (-12 (-4 *3 (-311)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) + (-4 *1 (-761 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) (((*1 *1) - (-12 (-4 *1 (-342)) (-2546 (|has| *1 (-6 -3969))) - (-2546 (|has| *1 (-6 -3961))))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-737 *2)) (-4 *2 (-751)))) ((*1 *1) (-4 *1 (-747))) - ((*1 *1 *1 *1) (-4 *1 (-754)))) + (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) + (-2556 (|has| *1 (-6 -3972))))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752))) + ((*1 *1 *1 *1) (-4 *1 (-759)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) - (-14 *4 (-689))))) + (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) - (-14 *4 (-689))))) + (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 *5)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-748 *4 *5)) - (-14 *4 (-689))))) -(((*1 *2) (-12 (-5 *2 (-745 (-480))) (-5 *1 (-468)))) - ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1007))))) -(((*1 *2) (-12 (-5 *2 (-745 (-480))) (-5 *1 (-468)))) - ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-738 *3)) (-4 *3 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-745 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-1025)) (-5 *1 (-745 *3)) (-4 *3 (-1007))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-165 (-437))) (-5 *1 (-743))))) -(((*1 *2 *1) (-12 (-4 *1 (-742 *3)) (-4 *3 (-1007)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)))) - ((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-626 *4 *5 *6 *3)) - (-4 *3 (-624 *4 *5 *6)))) + (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) +(((*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) + ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012))))) +(((*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) + ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-750 *3)) (-4 *3 (-1012))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-439))) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) + ((*1 *2 *3) + (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956))))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) + ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) (((*1 *2 *2) - (-12 (-4 *2 (-144)) (-4 *2 (-956)) (-5 *1 (-648 *2 *3)) (-4 *3 (-587 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-144)) (-4 *2 (-956))))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-580 *2)) (-5 *1 (-85 *2)) - (-4 *2 (-1007)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1012)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-580 *4))) (-4 *4 (-1007)) - (-5 *1 (-85 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1012)) + (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-580 *4))) (-5 *1 (-85 *4)) - (-4 *4 (-1007)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1012)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-956)) - (-5 *1 (-648 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-740 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) + (-5 *1 (-651 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-956)) - (-5 *1 (-648 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-740 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) + (-5 *1 (-651 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-84)) (-4 *4 (-956)) (-5 *1 (-648 *4 *2)) (-4 *2 (-587 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-740 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-307 (-84))) (-4 *2 (-956)) (-5 *1 (-648 *2 *4)) - (-4 *4 (-587 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-307 (-84))) (-5 *1 (-740 *2)) (-4 *2 (-956))))) -(((*1 *2) (-12 (-5 *2 (-738 (-480))) (-5 *1 (-468)))) - ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1007))))) -(((*1 *1 *2) (-12 (-4 *3 (-956)) (-5 *1 (-736 *2 *3)) (-4 *2 (-642 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-736 *2 *3)) (-4 *3 (-956))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-611 *3)) (-4 *3 (-751)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-615 *3)) (-4 *3 (-751)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-734 *3)) (-4 *3 (-751))))) + (-12 (-5 *3 (-309 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) + (-4 *4 (-590 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) +(((*1 *2) (-12 (-5 *2 (-743 (-483))) (-5 *1 (-471)))) + ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1012))))) +(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-580 *4)) (-4 *4 (-309)) (-5 *2 (-1170 *4)) - (-5 *1 (-729 *4 *3)) (-4 *3 (-597 *4))))) + (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-1177 *4)) + (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-309)) (-5 *2 (-627 *4)) (-5 *1 (-729 *4 *5)) - (-4 *5 (-597 *4)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) + (-4 *5 (-600 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-689)) (-4 *5 (-309)) (-5 *2 (-627 *5)) - (-5 *1 (-729 *5 *6)) (-4 *6 (-597 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-630 *5)) + (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-852 *5))) (-5 *4 (-580 (-1081))) (-4 *5 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *5)))))) (-5 *1 (-688 *5)))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-491)) - (-5 *2 (-580 (-580 (-246 (-345 (-852 *4)))))) (-5 *1 (-688 *4)))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) + (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *7)) + (-12 (-5 *3 (-630 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2000 (-580 *6))) *7 *6)) - (-4 *6 (-309)) (-4 *7 (-597 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2008 (-583 *6))) *7 *6)) + (-4 *6 (-311)) (-4 *7 (-600 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1170 *6) "failed")) - (|:| -2000 (-580 (-1170 *6))))) - (-5 *1 (-728 *6 *7)) (-5 *4 (-1170 *6))))) + (-2 (|:| |particular| (-3 (-1177 *6) "failed")) + (|:| -2008 (-583 (-1177 *6))))) + (-5 *1 (-733 *6 *7)) (-5 *4 (-1177 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) + (-12 (-4 *5 (-311)) (-5 *2 - (-2 (|:| A (-627 *5)) + (-2 (|:| A (-630 *5)) (|:| |eqs| - (-580 - (-2 (|:| C (-627 *5)) (|:| |g| (-1170 *5)) (|:| -3251 *6) + (-583 + (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5)) (|:| -3261 *6) (|:| |rh| *5)))))) - (-5 *1 (-728 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) - (-4 *6 (-597 *5)))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) + (-4 *6 (-600 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *6 (-597 *5)) - (-5 *2 (-2 (|:| |mat| (-627 *6)) (|:| |vec| (-1170 *5)))) - (-5 *1 (-728 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1170 *5))))) + (-12 (-4 *5 (-311)) (-4 *6 (-600 *5)) + (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *6 (-1146 *5)) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) + (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-594 (-345 *7))) (-5 *4 (-1 (-580 *6) *7)) - (-5 *5 (-1 (-343 *7) *7)) - (-4 *6 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *7 (-1146 *6)) (-5 *2 (-580 (-345 *7))) (-5 *1 (-727 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *6 (-1146 *5)) (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) + (-12 (-5 *3 (-597 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-5 *5 (-1 (-345 *7) *7)) + (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-595 *7 (-345 *7))) (-5 *4 (-1 (-580 *6) *7)) - (-5 *5 (-1 (-343 *7) *7)) - (-4 *6 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *7 (-1146 *6)) (-5 *2 (-580 (-345 *7))) (-5 *1 (-727 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-594 (-345 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-580 (-345 *5))) (-5 *1 (-727 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-595 *5 (-345 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-580 (-345 *5))) (-5 *1 (-727 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-580 (-345 *6))) (-5 *1 (-727 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) - (-5 *2 (-580 (-2 (|:| |poly| *6) (|:| -3251 *3)))) - (-5 *1 (-724 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-345 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *6 (-1146 *5)) - (-5 *2 (-580 (-2 (|:| |poly| *6) (|:| -3251 (-595 *6 (-345 *6)))))) - (-5 *1 (-727 *5 *6)) (-5 *3 (-595 *6 (-345 *6)))))) + (-12 (-5 *3 (-598 *7 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-5 *5 (-1 (-345 *7) *7)) + (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-597 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 *5 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) + (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 *3)))) + (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *6 (-1153 *5)) + (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 (-598 *6 (-347 *6)))))) + (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-580 *7) *7 (-1076 *7))) (-5 *5 (-1 (-343 *7) *7)) - (-4 *7 (-1146 *6)) (-4 *6 (-13 (-309) (-118) (-945 (-345 (-480))))) - (-5 *2 (-580 (-2 (|:| |frac| (-345 *7)) (|:| -3251 *3)))) - (-5 *1 (-724 *6 *7 *3 *8)) (-4 *3 (-597 *7)) (-4 *8 (-597 (-345 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-580 (-2 (|:| |frac| (-345 *6)) (|:| -3251 (-595 *6 (-345 *6)))))) - (-5 *1 (-727 *5 *6)) (-5 *3 (-595 *6 (-345 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *7 (-1146 *5)) (-4 *4 (-658 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-627 *6)) (|:| |vec| (-1170 *5)))) - (-5 *1 (-726 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-594 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-725 *4 *2)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-595 *2 (-345 *2))) (-4 *2 (-1146 *4)) (-5 *1 (-725 *4 *2)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-594 (-345 *6))) (-5 *4 (-345 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-725 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-594 (-345 *6))) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-2 (|:| -2000 (-580 (-345 *6))) (|:| |mat| (-627 *5)))) - (-5 *1 (-725 *5 *6)) (-5 *4 (-580 (-345 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 *6 (-345 *6))) (-5 *4 (-345 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2000 (-580 *4)))) - (-5 *1 (-725 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 *6 (-345 *6))) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-2 (|:| -2000 (-580 (-345 *6))) (|:| |mat| (-627 *5)))) - (-5 *1 (-725 *5 *6)) (-5 *4 (-580 (-345 *6)))))) + (-12 (-5 *4 (-1 (-583 *7) *7 (-1083 *7))) (-5 *5 (-1 (-345 *7) *7)) + (-4 *7 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 (-347 (-483))))) + (-5 *2 (-583 (-2 (|:| |frac| (-347 *7)) (|:| -3261 *3)))) + (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-347 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-583 (-2 (|:| |frac| (-347 *6)) (|:| -3261 (-598 *6 (-347 *6)))))) + (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-311)) (-4 *7 (-1153 *5)) (-4 *4 (-661 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) + (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-597 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 *2 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-730 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-347 *6))) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) + (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) + (-5 *1 (-730 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-347 *6))) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) + (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-1146 *4)) - (-5 *1 (-724 *4 *3 *2 *5)) (-4 *2 (-597 *3)) (-4 *5 (-597 (-345 *3))))) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-1153 *4)) + (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-347 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-345 *5)) (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) - (-4 *5 (-1146 *4)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *2 (-597 *5)) - (-4 *6 (-597 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-580 *5) *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *6 (-1146 *5)) - (-5 *2 (-580 (-2 (|:| -3935 *5) (|:| -3251 *3)))) (-5 *1 (-724 *5 *6 *3 *7)) - (-4 *3 (-597 *6)) (-4 *7 (-597 (-345 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) - (-5 *2 (-580 (-2 (|:| |deg| (-689)) (|:| -3251 *5)))) - (-5 *1 (-724 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-345 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1146 *4)) (-5 *1 (-724 *4 *2 *3 *5)) - (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) - (-4 *5 (-597 (-345 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1146 *4)) (-5 *1 (-723 *4 *2 *3 *5)) - (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) - (-4 *5 (-597 (-345 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1146 *4)) (-5 *1 (-723 *4 *2 *5 *3)) - (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-597 *2)) - (-4 *3 (-597 (-345 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) - (-5 *2 (-580 (-2 (|:| -3756 *5) (|:| -3211 *5)))) (-5 *1 (-723 *4 *5 *3 *6)) - (-4 *3 (-597 *5)) (-4 *6 (-597 (-345 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *4 (-1146 *5)) - (-5 *2 (-580 (-2 (|:| -3756 *4) (|:| -3211 *4)))) (-5 *1 (-723 *5 *4 *3 *6)) - (-4 *3 (-597 *4)) (-4 *6 (-597 (-345 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *5 (-1146 *4)) - (-5 *2 (-580 (-2 (|:| -3756 *5) (|:| -3211 *5)))) (-5 *1 (-723 *4 *5 *6 *3)) - (-4 *6 (-597 *5)) (-4 *3 (-597 (-345 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *4 (-1146 *5)) - (-5 *2 (-580 (-2 (|:| -3756 *4) (|:| -3211 *4)))) (-5 *1 (-723 *5 *4 *6 *3)) - (-4 *6 (-597 *4)) (-4 *3 (-597 (-345 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-345 *2)) (-4 *2 (-1146 *5)) - (-5 *1 (-723 *5 *2 *3 *6)) (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) - (-4 *3 (-597 *2)) (-4 *6 (-597 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-345 *2))) (-4 *2 (-1146 *5)) (-5 *1 (-723 *5 *2 *3 *6)) - (-4 *5 (-13 (-309) (-118) (-945 (-345 (-480))))) (-4 *3 (-597 *2)) - (-4 *6 (-597 (-345 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-594 *4)) (-4 *4 (-288 *5 *6 *7)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *6 (-1146 *5)) (-4 *7 (-1146 (-345 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-722 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-721 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1106) (-866)))))) + (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) + (-4 *5 (-1153 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) + (-4 *6 (-600 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) + (-5 *2 (-583 (-2 (|:| -3946 *5) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) + (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) + (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3261 *5)))) + (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2 *3 *5)) + (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) + (-4 *5 (-600 (-347 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5)) + (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) + (-4 *5 (-600 (-347 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *5 *3)) + (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-600 *2)) + (-4 *3 (-600 (-347 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) + (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) + (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) + (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) + (-4 *3 (-600 *4)) (-4 *6 (-600 (-347 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) + (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *6 (-600 *5)) (-4 *3 (-600 (-347 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) + (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) + (-4 *6 (-600 *4)) (-4 *3 (-600 (-347 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1153 *5)) + (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) + (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6)) + (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) + (-4 *6 (-600 (-347 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *4)) (-4 *4 (-290 *5 *6 *7)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-727 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1113) (-871)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-5 *1 (-721 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-866)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1081)) (-4 *6 (-13 (-255) (-945 (-480)) (-577 (-480)) (-118))) - (-4 *4 (-13 (-29 *6) (-1106) (-866))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2000 (-580 *4)))) - (-5 *1 (-719 *6 *4 *3)) (-4 *3 (-597 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-144)) (-5 *1 (-717 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144))))) -(((*1 *1 *1) (-4 *1 (-199))) + (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) + (-4 *4 (-13 (-29 *6) (-1113) (-871))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) + (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *1 *1) (-4 *1 (-201))) ((*1 *1 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-246 *2)) (-4 *2 (-309)) (-4 *2 (-1120))) - (-12 (-5 *1 (-246 *2)) (-4 *2 (-408)) (-4 *2 (-1120))))) - ((*1 *1 *1) (-4 *1 (-408))) - ((*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-296)) (-5 *1 (-462 *3)))) + (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) + (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127))))) + ((*1 *1 *1) (-4 *1 (-410))) + ((*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-144)) (-4 *2 (-309))))) -(((*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) - ((*1 *1 *1 *1) (-4 *1 (-712)))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) +(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) + ((*1 *1 *1 *1) (-4 *1 (-717)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-325) (-325))) (-5 *4 (-325)) + (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 - (-2 (|:| -3385 *4) (|:| -1585 *4) (|:| |totalpts| (-480)) - (|:| |success| (-83)))) - (-5 *1 (-706)) (-5 *5 (-480))))) + (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) + (|:| |success| (-85)))) + (-5 *1 (-711)) (-5 *5 (-483))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) - (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705))))) + (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) + (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-480)) - (-5 *6 (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325)))) - (-5 *7 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) - (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) + (-12 (-5 *4 (-483)) + (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) + (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) + (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-480)) - (-5 *6 (-2 (|:| |tryValue| (-325)) (|:| |did| (-325)) (|:| -1464 (-325)))) - (-5 *7 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) (-5 *3 (-1170 (-325))) - (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705))))) + (-12 (-5 *4 (-483)) + (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) + (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) + (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) - (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705))))) + (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) + (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) - (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705)))) + (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) + (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-480)) (-5 *6 (-1 (-1176) (-1170 *5) (-1170 *5) (-325))) - (-5 *3 (-1170 (-325))) (-5 *5 (-325)) (-5 *2 (-1176)) (-5 *1 (-705))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1064)) (-5 *2 (-325)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-325)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-825)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1064)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-825)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1064)) (-5 *1 (-704))))) + (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) + (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-852 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-852 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-144)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-852 (-140 *4)))) (-4 *4 (-491)) - (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) + (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-345 (-852 (-140 *5)))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) - (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) + (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-262 (-140 *4))) (-4 *4 (-491)) (-4 *4 (-751)) - (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) + (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-262 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-751)) (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) - (-5 *1 (-703 *5))))) + (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) + (-5 *1 (-708 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 *2)) - (-5 *2 (-325)) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) + (-5 *2 (-327)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) - (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 *2)) - (-5 *2 (-325)) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) + (-5 *2 (-327)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5)))) + (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) - (-4 *4 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *4)))) + (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) + (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) - (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5))))) + (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) + (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-140 (-325))) (-5 *1 (-703 *3)) (-4 *3 (-550 (-325))))) + (-12 (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-5 *2 (-140 (-325))) (-5 *1 (-703 *3)) - (-4 *3 (-550 (-325))))) + (-12 (-5 *4 (-830)) (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) + (-4 *3 (-553 (-327))))) ((*1 *2 *3) - (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-140 *5)) (-5 *4 (-825)) (-4 *5 (-144)) (-4 *5 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-852 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-144)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 (-140 *4)))) (-4 *4 (-491)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 (-140 *5)))) (-5 *4 (-825)) (-4 *5 (-491)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 (-325))) - (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) + (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-262 (-140 *4))) (-4 *4 (-491)) (-4 *4 (-751)) - (-4 *4 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) + (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-262 (-140 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) - (-4 *5 (-550 (-325))) (-5 *2 (-140 (-325))) (-5 *1 (-703 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-325)) (-5 *1 (-703 *3)) (-4 *3 (-550 *2)))) + (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) + (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-5 *2 (-325)) (-5 *1 (-703 *3)) (-4 *3 (-550 *2)))) + (-12 (-5 *4 (-830)) (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-852 *4)) (-4 *4 (-956)) (-4 *4 (-550 *2)) (-5 *2 (-325)) - (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327)) + (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 *5)) (-5 *4 (-825)) (-4 *5 (-956)) (-4 *5 (-550 *2)) - (-5 *2 (-325)) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) + (-5 *2 (-327)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-852 *4))) (-4 *4 (-491)) (-4 *4 (-550 *2)) (-5 *2 (-325)) - (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327)) + (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-550 *2)) - (-5 *2 (-325)) (-5 *1 (-703 *5)))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2)) + (-5 *2 (-327)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-262 *4)) (-4 *4 (-491)) (-4 *4 (-751)) (-4 *4 (-550 *2)) - (-5 *2 (-325)) (-5 *1 (-703 *4)))) + (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2)) + (-5 *2 (-327)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-262 *5)) (-5 *4 (-825)) (-4 *5 (-491)) (-4 *5 (-751)) - (-4 *5 (-550 *2)) (-5 *2 (-325)) (-5 *1 (-703 *5))))) + (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) + (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-38 (-345 (-480)))) - (-4 *2 (-144))))) + (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) + (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-689)) (-5 *1 (-701 *2)) (-4 *2 (-38 (-345 (-480)))) - (-4 *2 (-144))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) + (-4 *2 (-146))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-580 (-699 *3))) (-5 *1 (-699 *3)) (-4 *3 (-491)) - (-4 *3 (-956))))) + (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-494)) + (-4 *3 (-961))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3739 *3) (|:| |coef1| (-699 *3)) (|:| |coef2| (-699 *3)))) - (-5 *1 (-699 *3)) (-4 *3 (-491)) (-4 *3 (-956))))) + (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3739 *3) (|:| |coef1| (-699 *3)))) (-5 *1 (-699 *3)) - (-4 *3 (-491)) (-4 *3 (-956))))) + (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) + (-4 *3 (-494)) (-4 *3 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3739 *3) (|:| |coef2| (-699 *3)))) (-5 *1 (-699 *3)) - (-4 *3 (-491)) (-4 *3 (-956))))) + (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) + (-4 *3 (-494)) (-4 *3 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-345 (-480)))) + (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 - (-580 - (-2 (|:| |outval| *4) (|:| |outmult| (-480)) - (|:| |outvect| (-580 (-627 *4)))))) - (-5 *1 (-697 *4)) (-4 *4 (-13 (-309) (-750)))))) + (-583 + (-2 (|:| |outval| *4) (|:| |outmult| (-483)) + (|:| |outvect| (-583 (-630 *4)))))) + (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *2 (-580 *4)) (-5 *1 (-697 *4)) - (-4 *4 (-13 (-309) (-750)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-627 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2)))) + (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) + (-4 *4 (-13 (-311) (-755)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-144)) (-4 *2 (-1146 *4)) (-5 *1 (-149 *4 *2 *3)) - (-4 *3 (-658 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-661 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-345 (-852 *5)))) (-5 *4 (-1081)) (-5 *2 (-852 *5)) - (-5 *1 (-245 *5)) (-4 *5 (-387)))) + (-12 (-5 *3 (-630 (-347 (-857 *5)))) (-5 *4 (-1088)) (-5 *2 (-857 *5)) + (-5 *1 (-247 *5)) (-4 *5 (-389)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-852 *4)))) (-5 *2 (-852 *4)) (-5 *1 (-245 *4)) - (-4 *4 (-387)))) - ((*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1146 *3)))) + (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-247 *4)) + (-4 *4 (-389)))) + ((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *2 (-852 (-140 (-345 (-480))))) - (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750))))) + (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-857 (-142 (-347 (-483))))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *4 (-1081)) - (-5 *2 (-852 (-140 (-345 (-480))))) (-5 *1 (-683 *5)) - (-4 *5 (-13 (-309) (-750))))) + (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *4 (-1088)) + (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *5)) + (-4 *5 (-13 (-311) (-755))))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *2 (-852 (-345 (-480)))) - (-5 *1 (-697 *4)) (-4 *4 (-13 (-309) (-750))))) + (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-857 (-347 (-483)))) + (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-345 (-480)))) (-5 *4 (-1081)) - (-5 *2 (-852 (-345 (-480)))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-309) (-750)))))) + (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *4 (-1088)) + (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-311) (-755)))))) (((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-580 (-689))) - (-5 *1 (-696 *3 *4 *5 *6 *7)) (-4 *3 (-1146 *6)) (-4 *7 (-856 *6 *4 *5))))) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-583 (-694))) + (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1146 *9)) (-4 *7 (-712)) (-4 *8 (-751)) (-4 *9 (-255)) - (-4 *10 (-856 *9 *7 *8)) + (-12 (-4 *6 (-1153 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-257)) + (-4 *10 (-861 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-580 (-1076 *10))) - (|:| |dterm| (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-580 *6)) (|:| |nlead| (-580 *10)))) - (-5 *1 (-696 *6 *7 *8 *9 *10)) (-5 *3 (-1076 *10)) (-5 *4 (-580 *6)) - (-5 *5 (-580 *10))))) + (-2 (|:| |deter| (-583 (-1083 *10))) + (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) + (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-583 *6)) + (-5 *5 (-583 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-4 *5 (-277 *4)) (-4 *6 (-1146 *5)) (-5 *2 (-580 *3)) - (-5 *1 (-695 *4 *5 *6 *3 *7)) (-4 *3 (-1146 *6)) (-14 *7 (-825))))) + (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-583 *3)) + (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| (-83)) (|:| -1589 *4)))) - (-5 *1 (-694 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) + (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1064)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) - (-4 *4 (-971 *6 *7 *8)) (-5 *2 (-1176)) (-5 *1 (-694 *6 *7 *8 *4 *5)) - (-4 *5 (-977 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1071)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-699 *6 *7 *8 *4 *5)) + (-4 *5 (-982 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))))) - ((*1 *1 *1) (-5 *1 (-325))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) + ((*1 *1 *1) (-5 *1 (-327))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *3 (-971 *5 *6 *7)) - (-5 *2 (-580 (-2 (|:| |val| *3) (|:| -1589 *4)))) - (-5 *1 (-694 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) + (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) + (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *2 (-971 *4 *5 *6)) - (-5 *1 (-694 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-325)))) - ((*1 *1 *1 *1) (-4 *1 (-479))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) - ((*1 *1 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-689))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-426)) (-5 *4 (-860)) (-5 *2 (-629 (-467))) (-5 *1 (-467)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-860)) (-4 *3 (-1007)) (-5 *2 (-629 *1)) (-4 *1 (-686 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-140 (-345 (-480))))) - (-5 *2 - (-580 - (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-480)) - (|:| |outvect| (-580 (-627 (-140 *4))))))) - (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-140 (-345 (-480))))) (-5 *2 (-580 (-140 *4))) - (-5 *1 (-683 *4)) (-4 *4 (-13 (-309) (-750)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *1) (-4 *1 (-408))) ((*1 *1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-678 *3)) (-4 *3 (-144))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-976 *4 *5 *6)) + (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) + ((*1 *1 *1 *1) (-4 *1 (-482))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) + ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-428)) (-5 *4 (-865)) (-5 *2 (-632 (-470))) (-5 *1 (-470)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-865)) (-4 *3 (-1012)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 (-142 (-347 (-483))))) + (-5 *2 + (-583 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483)) + (|:| |outvect| (-583 (-630 (-142 *4))))))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *1) (-4 *1 (-410))) ((*1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1076 *6)) (-5 *3 (-480)) (-4 *6 (-255)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5))))) + (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-257)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-4 *7 (-751)) - (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) (-4 *8 (-255)) (-5 *2 (-580 (-689))) - (-5 *1 (-676 *6 *7 *8 *9)) (-5 *5 (-689))))) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) + (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-257)) (-5 *2 (-583 (-694))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-343 *2)) (-4 *2 (-856 *7 *5 *6)) - (-5 *1 (-676 *5 *6 *7 *2)) (-4 *5 (-712)) (-4 *6 (-751)) (-4 *7 (-255))))) + (-12 (-5 *3 (-483)) (-5 *4 (-345 *2)) (-4 *2 (-861 *7 *5 *6)) + (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-257))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-5 *5 (-580 (-580 *8))) - (-4 *7 (-751)) (-4 *8 (-255)) (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) + (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 - (-2 (|:| |upol| (-1076 *8)) (|:| |Lval| (-580 *8)) - (|:| |Lfact| (-580 (-2 (|:| -3715 (-1076 *8)) (|:| -2389 (-480))))) + (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-583 *8)) + (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 *8)) (|:| -2397 (-483))))) (|:| |ctpol| *8))) - (-5 *1 (-676 *6 *7 *8 *9))))) + (-5 *1 (-681 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-580 *7)) (-5 *5 (-580 (-580 *8))) (-4 *7 (-751)) (-4 *8 (-255)) - (-4 *6 (-712)) (-4 *9 (-856 *8 *6 *7)) + (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257)) + (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-580 (-2 (|:| -3715 (-1076 *9)) (|:| -2389 (-480))))))) - (-5 *1 (-676 *6 *7 *8 *9)) (-5 *3 (-1076 *9))))) + (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 *9)) (|:| -2397 (-483))))))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-480)) (-4 *6 (-712)) (-4 *7 (-751)) (-4 *8 (-255)) - (-4 *9 (-856 *8 *6 *7)) - (-5 *2 (-2 (|:| -1992 (-1076 *9)) (|:| |polval| (-1076 *8)))) - (-5 *1 (-676 *6 *7 *8 *9)) (-5 *3 (-1076 *9)) (-5 *4 (-1076 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-712)) (-4 *4 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) - (-5 *1 (-676 *5 *4 *6 *3)) (-4 *3 (-856 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3715 (-1076 *6)) (|:| -2389 (-480))))) - (-4 *6 (-255)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-480)) - (-5 *1 (-676 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-255)) (-5 *2 (-343 *3)) - (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-856 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-673 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-672))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-670 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1007)))) - ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1007))))) -(((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-689)))) - ((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) (-5 *2 (-689)))) - ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-669 *3 *4)) (-4 *3 (-956)) (-4 *4 (-660))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-491)) (-4 *2 (-856 *3 *5 *4)) (-5 *1 (-666 *5 *4 *6 *2)) - (-5 *3 (-345 (-852 *6))) (-4 *5 (-712)) - (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 (-852 *6))) (-4 *6 (-491)) - (-4 *2 (-856 (-345 (-852 *6)) *5 *4)) (-5 *1 (-666 *5 *4 *6 *2)) - (-4 *5 (-712)) (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *2)) (-4 *2 (-856 (-345 (-852 *6)) *5 *4)) - (-5 *1 (-666 *5 *4 *6 *2)) (-4 *5 (-712)) - (-4 *4 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) (-4 *6 (-491))))) -(((*1 *2 *3) - (-12 (-4 *4 (-712)) (-4 *5 (-13 (-751) (-10 -8 (-15 -3955 ((-1081) $))))) - (-4 *6 (-491)) (-5 *2 (-2 (|:| -2469 (-852 *6)) (|:| -2046 (-852 *6)))) - (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-856 (-345 (-852 *6)) *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-480)) - (-14 *6 (-689)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) - (-5 *1 (-107 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *9)) (-4 *9 (-956)) (-4 *5 (-751)) (-4 *6 (-712)) - (-4 *8 (-956)) (-4 *2 (-856 *9 *7 *5)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-712)) (-4 *4 (-856 *8 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-345 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1146 *5)) - (-5 *1 (-661 *5 *2)) (-4 *5 (-309))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| -3075 (-343 *3)) (|:| |special| (-343 *3)))) - (-5 *1 (-661 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-656)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-83))))) + (-12 (-5 *5 (-483)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-257)) + (-4 *9 (-861 *8 *6 *7)) + (-5 *2 (-2 (|:| -2000 (-1083 *9)) (|:| |polval| (-1083 *8)))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) + (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) + (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) + (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) + (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-677))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-675 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))) + ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) + (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) + ((*1 *2 *1) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-694)))) + ((*1 *2 *1) + (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-494)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) + (-5 *3 (-347 (-857 *6))) (-4 *5 (-717)) + (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 (-857 *6))) (-4 *6 (-494)) + (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) + (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) + (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) + (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494))))) +(((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) + (-4 *6 (-494)) (-5 *2 (-2 (|:| -2479 (-857 *6)) (|:| -2054 (-857 *6)))) + (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) + (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-5 *1 (-109 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) + (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) + (-5 *1 (-666 *5 *2)) (-4 *5 (-311))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| -3085 (-345 *3)) (|:| |special| (-345 *3)))) + (-5 *1 (-666 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1088))))) ((*1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081))))) - ((*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309)))) + (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088))))) + ((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-283 *3 *4 *5 *2)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *2 (-288 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-144)))) - ((*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-658 *2 *3)) (-4 *3 (-1146 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1170 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) - (-4 *1 (-658 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1146 *5)) (-5 *2 (-627 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-825)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-689))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) - ((*1 *1 *1) (|partial| -4 *1 (-656)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-144)) (-4 *2 (-491)))) - ((*1 *1 *1) (|partial| -4 *1 (-656)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-652 *2)) (-4 *2 (-309))))) + (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-146)))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1153 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) + (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) + ((*1 *1 *1) (|partial| -4 *1 (-659)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) + ((*1 *1 *1) (|partial| -4 *1 (-659)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-144)) (-5 *1 (-242 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1146 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-645 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-267 *3 *4 *5)) (-4 *3 (-309)) - (-14 *4 (-1081)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-480)) (-5 *1 (-343 *3)) (-4 *3 (-491)))) + (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) + (-14 *4 (-1088)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) ((*1 *2 *1) - (-12 (-4 *2 (-1007)) (-5 *1 (-647 *3 *2 *4)) (-4 *3 (-751)) + (-12 (-4 *2 (-1012)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 - (-1 (-83) (-2 (|:| -2388 *3) (|:| -2389 *2)) - (-2 (|:| -2388 *3) (|:| -2389 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-825)) (-4 *1 (-315)))) + (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *2)) + (-2 (|:| -2396 *3) (|:| -2397 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-317)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) ((*1 *2 *1) - (-12 (-4 *2 (-751)) (-5 *1 (-647 *2 *3 *4)) (-4 *3 (-1007)) + (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1012)) (-14 *4 - (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *3)) - (-2 (|:| -2388 *2) (|:| -2389 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-646 *3 *2)) (-4 *2 (-1146 *3))))) + (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) + (-2 (|:| -2396 *2) (|:| -2397 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-5 *2 (-1170 *3)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1153 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-956)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-1146 *3))))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1153 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-956)) (-5 *2 (-1170 *3)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1153 *3))))) (((*1 *2) - (-12 (-4 *3 (-956)) (-5 *2 (-864 (-646 *3 *4))) (-5 *1 (-646 *3 *4)) - (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1153 *3))))) (((*1 *2) - (-12 (-4 *3 (-956)) (-5 *2 (-864 (-646 *3 *4))) (-5 *1 (-646 *3 *4)) - (-4 *4 (-1146 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1153 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-296)) (-4 *2 (-956)) (-5 *1 (-646 *2 *3)) (-4 *3 (-1146 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1064)) (-5 *1 (-644))))) + (-12 (-4 *2 (-298)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1153 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-580 (-1076 *13))) (-5 *3 (-1076 *13)) - (-5 *4 (-580 *12)) (-5 *5 (-580 *10)) (-5 *6 (-580 *13)) - (-5 *7 (-580 (-580 (-2 (|:| -3064 (-689)) (|:| |pcoef| *13))))) - (-5 *8 (-580 (-689))) (-5 *9 (-1170 (-580 (-1076 *10)))) (-4 *12 (-751)) - (-4 *10 (-255)) (-4 *13 (-856 *10 *11 *12)) (-4 *11 (-712)) - (-5 *1 (-641 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-583 (-1083 *13))) (-5 *3 (-1083 *13)) + (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) + (-5 *7 (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *13))))) + (-5 *8 (-583 (-694))) (-5 *9 (-1177 (-583 (-1083 *10)))) (-4 *12 (-756)) + (-4 *10 (-257)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) + (-5 *1 (-644 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-580 *11)) (-5 *5 (-580 (-1076 *9))) (-5 *6 (-580 *9)) - (-5 *7 (-580 *12)) (-5 *8 (-580 (-689))) (-4 *11 (-751)) (-4 *9 (-255)) - (-4 *12 (-856 *9 *10 *11)) (-4 *10 (-712)) (-5 *2 (-580 (-1076 *12))) - (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1076 *12))))) + (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1083 *9))) (-5 *6 (-583 *9)) + (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-257)) + (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1083 *12))) + (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1083 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-580 (-1076 *11))) (-5 *3 (-1076 *11)) - (-5 *4 (-580 *10)) (-5 *5 (-580 *8)) (-5 *6 (-580 (-689))) - (-5 *7 (-1170 (-580 (-1076 *8)))) (-4 *10 (-751)) (-4 *8 (-255)) - (-4 *11 (-856 *8 *9 *10)) (-4 *9 (-712)) (-5 *1 (-641 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-583 (-1083 *11))) (-5 *3 (-1083 *11)) + (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) + (-5 *7 (-1177 (-583 (-1083 *8)))) (-4 *10 (-756)) (-4 *8 (-257)) + (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1081)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-636 *3 *5 *6 *7)) - (-4 *3 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)))) + (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) + (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) - (-4 *3 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120))))) + (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) + (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) - (-4 *4 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120))))) + (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) + (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) - (-4 *3 (-1120)) (-4 *4 (-1120))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-580 (-1081))) (-5 *3 (-1081)) (-5 *1 (-469)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) + (-4 *3 (-1127)) (-4 *4 (-1127))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) + (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1081)) (-5 *1 (-638 *3)) (-4 *3 (-550 (-469))))) + (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-580 (-1081))) (-5 *2 (-1081)) (-5 *1 (-638 *3)) - (-4 *3 (-550 (-469)))))) + (-12 (-5 *4 (-583 (-1088))) (-5 *2 (-1088)) (-5 *1 (-641 *3)) + (-4 *3 (-553 (-472)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-637 *3)) - (-4 *3 (-550 (-469))))) + (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) + (-4 *3 (-553 (-472))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1081)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-637 *3)) - (-4 *3 (-550 (-469)))))) + (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) + (-4 *3 (-553 (-472)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-636 *4 *5 *6 *7)) - (-4 *4 (-550 (-469))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120))))) + (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) + (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-255)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-626 *3 *4 *5 *6)) - (-4 *6 (-624 *3 *4 *5)))) + (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-629 *3 *4 *5 *6)) + (-4 *6 (-627 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1962 *3) (|:| -2888 *3))) (-5 *1 (-635 *3)) - (-4 *3 (-255))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-255)) (-5 *1 (-635 *3))))) + (-12 (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-638 *3)) + (-4 *3 (-257))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) - (-5 *4 (-1 (-177) (-177) (-177) (-177))) - (-5 *2 (-1 (-849 (-177)) (-177) (-177))) (-5 *1 (-633))))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-1 (-179) (-179) (-179) (-179))) + (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) - (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633))))) + (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) + (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) - (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) - (-5 *5 (-995 (-177))) (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) - (-5 *1 (-633))))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) + (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) + (-5 *1 (-636))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) - (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) - (-5 *5 (-995 (-177))) (-5 *6 (-580 (-219))) (-5 *2 (-1038 (-177))) - (-5 *1 (-633)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) + (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) + (-5 *1 (-636)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-177))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-633)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1038 (-177))) (-5 *3 (-1 (-849 (-177)) (-177) (-177))) - (-5 *4 (-995 (-177))) (-5 *5 (-580 (-219))) (-5 *1 (-633))))) + (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) + (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3))))) + (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| |deg| (-689)) (|:| -2561 *5)))) (-4 *5 (-1146 *4)) - (-4 *4 (-296)) (-5 *2 (-580 *5)) (-5 *1 (-168 *4 *5)))) + (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *5)))) (-4 *5 (-1153 *4)) + (-4 *4 (-298)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-2 (|:| -3715 *5) (|:| -3931 (-480))))) (-5 *4 (-480)) - (-4 *5 (-1146 *4)) (-5 *2 (-580 *5)) (-5 *1 (-632 *5))))) + (-12 (-5 *3 (-583 (-2 (|:| -3726 *5) (|:| -3942 (-483))))) (-5 *4 (-483)) + (-4 *5 (-1153 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-5 *2 (-580 (-2 (|:| -3715 *3) (|:| -3931 *4)))) - (-5 *1 (-632 *3)) (-4 *3 (-1146 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-632 *2)) (-4 *2 (-1146 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1120)) (-4 *2 (-1007)))) - ((*1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1007))))) + (-12 (-5 *4 (-483)) (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -3942 *4)))) + (-5 *1 (-635 *3)) (-4 *3 (-1153 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) + ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1012))))) (((*1 *2 *1) - (-12 (-4 *1 (-631 *3)) (-4 *3 (-1007)) - (-5 *2 (-580 (-2 (|:| |entry| *3) (|:| -1935 (-689)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767)))))) -(((*1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-549 (-767)))))) + (-12 (-4 *1 (-634 *3)) (-4 *3 (-1012)) + (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1943 (-694)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) +(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-689)) (-4 *4 (-956)) (-5 *1 (-628 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-956)) (-5 *1 (-628 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-491)) (-4 *3 (-144)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-480)) (-4 *3 (-144)) (-4 *5 (-319 *3)) (-4 *6 (-319 *3)) - (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6))))) + (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) + (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-480)) (-4 *3 (-144)) (-4 *5 (-319 *3)) (-4 *6 (-319 *3)) - (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6))))) + (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) + (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-144)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4)) - (-5 *1 (-626 *4 *5 *6 *2)) (-4 *2 (-624 *4 *5 *6))))) + (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-956)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3))))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3))))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3))))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-480)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-956)) (-4 *4 (-319 *3)) - (-4 *5 (-319 *3))))) + (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) + (-4 *5 (-321 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1007))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1007)) (-4 *6 (-1007)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1007))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1012))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1007)) (-4 *4 (-1007)) (-4 *6 (-1007)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-621 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-624 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1007)) (-4 *5 (-1007)) (-5 *2 (-1 *5)) - (-5 *1 (-621 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) + (-5 *1 (-624 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1007)) - (-4 *3 (-1007))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1012)) + (-4 *3 (-1012))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-689) *2)) (-5 *4 (-689)) (-4 *2 (-1007)) - (-5 *1 (-616 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-689) *3)) (-4 *3 (-1007)) (-5 *1 (-620 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1007))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1007)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-580 *5) (-580 *5))) (-5 *4 (-480)) (-5 *2 (-580 *5)) - (-5 *1 (-620 *5)) (-4 *5 (-1007))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-580 (-1121))) (-5 *3 (-1121)) (-5 *1 (-619))))) + (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1012)) + (-5 *1 (-619 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1012)) (-5 *1 (-623 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1012))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1012)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-483)) (-5 *2 (-583 *5)) + (-5 *1 (-623 *5)) (-4 *5 (-1012))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1128))) (-5 *3 (-1128)) (-5 *1 (-622))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1007)) (-4 *6 (-1007)) - (-4 *2 (-1007)) (-5 *1 (-618 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-617 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-617 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-4 *2 (-1012)) (-5 *1 (-621 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-689)) (-4 *2 (-1007)) (-5 *1 (-616 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-83))))) -(((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1120)) (-5 *2 (-689))))) -(((*1 *2 *3) - (-12 (-5 *3 (-734 *4)) (-4 *4 (-751)) (-5 *2 (-83)) (-5 *1 (-611 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-734 *3)) (-4 *3 (-751)) (-5 *1 (-611 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))) +(((*1 *2 *3) + (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-734 *3)) (-4 *3 (-751)) (-5 *1 (-611 *3))))) + (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-825)) (-4 *5 (-751)) - (-5 *2 (-58 (-580 (-611 *5)))) (-5 *1 (-611 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) + (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *5)) (-5 *4 (-825)) (-4 *5 (-751)) (-5 *2 (-580 (-611 *5))) - (-5 *1 (-611 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) + (-5 *1 (-614 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 *7)) (-4 *7 (-751)) - (-4 *8 (-856 *5 *6 *7)) (-4 *5 (-491)) (-4 *6 (-712)) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-5 *2 - (-2 (|:| |particular| (-3 (-1170 (-345 *8)) "failed")) - (|:| -2000 (-580 (-1170 (-345 *8)))))) - (-5 *1 (-608 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1177 (-347 *8)) "failed")) + (|:| -2008 (-583 (-1177 (-347 *8)))))) + (-5 *1 (-611 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *6 (-13 (-319 *5) (-10 -7 (-6 -3979)))) - (-4 *4 (-13 (-319 *5) (-10 -7 (-6 -3979)))) (-5 *2 (-83)) - (-5 *1 (-606 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) + (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) + (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-85)) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-309)) (-5 *2 (-83)) - (-5 *1 (-607 *5))))) + (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-85)) + (-5 *1 (-610 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-1076 *4))) (-5 *3 (-1076 *4)) (-4 *4 (-816)) - (-5 *1 (-602 *4))))) -(((*1 *1 *1) (-4 *1 (-601)))) -(((*1 *1 *1 *1) (-4 *1 (-601)))) -(((*1 *1 *1 *1) (-4 *1 (-601)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) + (|partial| -12 (-5 *2 (-583 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-821)) + (-5 *1 (-605 *4))))) +(((*1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-309)) (-5 *1 (-599 *4 *2)) - (-4 *2 (-597 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-600 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-597 *3)) (-4 *3 (-956)) (-4 *3 (-309)))) + (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-311)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-1 *5 *5)) (-4 *5 (-309)) (-5 *1 (-599 *5 *2)) - (-4 *2 (-597 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309)))) + (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-602 *5 *2)) + (-4 *2 (-600 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-309)) (-5 *1 (-599 *4 *2)) - (-4 *2 (-597 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-600 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-309) (-118) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *5 (-1146 *4)) (-5 *2 (-580 (-594 (-345 *5)))) (-5 *1 (-598 *4 *5)) - (-5 *3 (-594 (-345 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-956)) (-4 *2 (-309))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-480))) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-590 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-590 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-590 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))) - (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-597 (-347 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-593 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) + (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 *4)))) (-4 *3 (-1007)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-4 *3 (-1012)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-331 *4)) (-4 *4 (-1007)) (-5 *2 (-689)))) + (-12 (-5 *3 (-483)) (-4 *1 (-333 *4)) (-4 *4 (-1012)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-23)) (-5 *1 (-588 *4 *2 *5)) (-4 *4 (-1007)) + (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1012)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-271 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1007)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-307 *2)) (-4 *2 (-1007)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-4 *1 (-331 *2)) (-4 *2 (-1007)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491)))) + (-12 (-5 *3 (-483)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-1007)) (-5 *1 (-588 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-319 *2)) (-4 *2 (-1120)))) - ((*1 *2 *2) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)))) + ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-319 *2)) (-4 *2 (-1120)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)))) ((*1 *1 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1007)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1007)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-480) (-480))) (-5 *1 (-307 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-689) (-689))) (-4 *1 (-331 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-333 *3)) (-4 *3 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5)) - (-4 *3 (-1007))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) + (-4 *3 (-1012))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-307 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1007)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-309 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1012)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-588 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-586 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1007))))) -(((*1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-580 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1007)) (-4 *2 (-1120))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1012))))) +(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1127))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-309)) (-5 *1 (-578 *3 *4)) - (-14 *4 (-580 (-1081)))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-581 *3 *4)) + (-14 *4 (-583 (-1088)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) - (-5 *2 (-2 (|:| |mat| (-627 *4)) (|:| |vec| (-1170 *4)))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) + (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1177 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) (-5 *2 (-627 *4))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *1)) (-5 *4 (-1170 *1)) (-4 *1 (-577 *5)) (-4 *5 (-956)) - (-5 *2 (-2 (|:| |mat| (-627 *5)) (|:| |vec| (-1170 *5)))))) + (-12 (-5 *3 (-630 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-577 *4)) (-4 *4 (-956)) (-5 *2 (-627 *4))))) + (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-309)) (-5 *1 (-576 *3 *4)) - (-14 *4 (-580 (-1081)))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-579 *3 *4)) + (-14 *4 (-583 (-1088)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 *5))) - (-4 *5 (-309)) (-4 *5 (-491)) (-5 *2 (-1170 *5)) (-5 *1 (-575 *5 *4)))) + (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) + (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1170 *4)) (-4 *4 (-13 (-956) (-577 *5))) - (-2546 (-4 *5 (-309))) (-4 *5 (-491)) (-5 *2 (-1170 (-345 *5))) - (-5 *1 (-575 *5 *4))))) + (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) + (-2556 (-4 *5 (-311))) (-4 *5 (-494)) (-5 *2 (-1177 (-347 *5))) + (-5 *1 (-578 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1170 *5)) (-4 *5 (-13 (-956) (-577 *4))) - (-4 *4 (-491)) (-5 *2 (-1170 *4)) (-5 *1 (-575 *4 *5))))) + (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) + (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-578 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *5)) (-4 *5 (-13 (-956) (-577 *4))) (-4 *4 (-491)) - (-5 *2 (-83)) (-5 *1 (-575 *4 *5))))) + (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494)) + (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-246 (-745 *3))) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-248 (-750 *3))) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (-745 *3) - (-2 (|:| |leftHandLimit| (-3 (-745 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-745 *3) #1#))) + (-3 (-750 *3) + (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) - (-5 *1 (-572 *5 *3)))) + (-5 *1 (-575 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-246 *3)) (-5 *5 (-1064)) - (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-745 *3)) - (-5 *1 (-572 *6 *3)))) + (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1071)) + (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-750 *3)) + (-5 *1 (-575 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 (-745 (-852 *5)))) (-4 *5 (-387)) + (-12 (-5 *4 (-248 (-750 (-857 *5)))) (-4 *5 (-389)) (-5 *2 - (-3 (-745 (-345 (-852 *5))) - (-2 (|:| |leftHandLimit| (-3 (-745 (-345 (-852 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-745 (-345 (-852 *5))) #2#))) + (-3 (-750 (-347 (-857 *5))) + (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-750 (-347 (-857 *5))) #2#))) #3="failed")) - (-5 *1 (-573 *5)) (-5 *3 (-345 (-852 *5))))) + (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-387)) + (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) (-5 *2 - (-3 (-745 *3) - (-2 (|:| |leftHandLimit| (-3 (-745 *3) #2#)) - (|:| |rightHandLimit| (-3 (-745 *3) #2#))) + (-3 (-750 *3) + (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#)) + (|:| |rightHandLimit| (-3 (-750 *3) #2#))) #3#)) - (-5 *1 (-573 *5)))) + (-5 *1 (-576 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-246 (-345 (-852 *6)))) (-5 *5 (-1064)) - (-5 *3 (-345 (-852 *6))) (-4 *6 (-387)) (-5 *2 (-745 *3)) - (-5 *1 (-573 *6))))) + (|partial| -12 (-5 *4 (-248 (-347 (-857 *6)))) (-5 *5 (-1071)) + (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-750 *3)) + (-5 *1 (-576 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-246 (-738 *3))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-738 *3)) - (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (|partial| -12 (-5 *4 (-248 (-743 *3))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-743 *3)) + (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 (-738 (-852 *5)))) (-4 *5 (-387)) - (-5 *2 (-738 (-345 (-852 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-345 (-852 *5))))) + (-12 (-5 *4 (-248 (-743 (-857 *5)))) (-4 *5 (-389)) + (-5 *2 (-743 (-347 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-246 (-345 (-852 *5)))) (-5 *3 (-345 (-852 *5))) (-4 *5 (-387)) - (-5 *2 (-738 *3)) (-5 *1 (-573 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-568))))) -(((*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-1007)))) - ((*1 *1 *1) (-5 *1 (-568)))) + (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) + (-5 *2 (-743 *3)) (-5 *1 (-576 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-571))))) +(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1012)))) + ((*1 *1 *1) (-5 *1 (-571)))) (((*1 *2 *3) - (-12 (-5 *3 (-204 *4 *5)) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) - (-5 *2 (-416 *4 *5)) (-5 *1 (-567 *4 *5))))) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) + (-5 *2 (-418 *4 *5)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-204 *4 *5))) (-5 *2 (-204 *4 *5)) (-14 *4 (-580 (-1081))) - (-4 *5 (-387)) (-5 *1 (-567 *4 *5))))) + (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1088))) + (-4 *5 (-389)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-580 (-416 *4 *5))) (-5 *3 (-768 *4)) (-14 *4 (-580 (-1081))) - (-4 *5 (-387)) (-5 *1 (-567 *4 *5))))) + (-12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1088))) + (-4 *5 (-389)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-204 *5 *6))) (-4 *6 (-387)) - (-5 *2 (-204 *5 *6)) (-14 *5 (-580 (-1081))) (-5 *1 (-567 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *1 (-219)))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-389)) + (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1088))) (-5 *1 (-570 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-849 (-177)) (-849 (-177)))) (-5 *3 (-580 (-219))) - (-5 *1 (-220)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) + (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-416 *5 *6))) (-5 *3 (-416 *5 *6)) (-14 *5 (-580 (-1081))) - (-4 *6 (-387)) (-5 *2 (-1170 *6)) (-5 *1 (-567 *5 *6))))) + (-12 (-5 *4 (-583 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-583 (-1088))) + (-4 *6 (-389)) (-5 *2 (-1177 *6)) (-5 *1 (-570 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 (-416 *3 *4))) (-14 *3 (-580 (-1081))) (-4 *4 (-387)) - (-5 *1 (-567 *3 *4))))) + (-12 (-5 *2 (-583 (-418 *3 *4))) (-14 *3 (-583 (-1088))) (-4 *4 (-389)) + (-5 *1 (-570 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-580 (-416 *5 *6))) (-5 *4 (-768 *5)) (-14 *5 (-580 (-1081))) - (-5 *2 (-416 *5 *6)) (-5 *1 (-567 *5 *6)) (-4 *6 (-387)))) + (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) + (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-416 *5 *6))) (-5 *4 (-768 *5)) (-14 *5 (-580 (-1081))) - (-5 *2 (-416 *5 *6)) (-5 *1 (-567 *5 *6)) (-4 *6 (-387))))) + (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) + (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-416 *4 *5))) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) - (-5 *2 (-580 (-204 *4 *5))) (-5 *1 (-567 *4 *5))))) + (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) + (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-580 (-1081))) (-4 *5 (-387)) - (-5 *2 (-2 (|:| |glbase| (-580 (-204 *4 *5))) (|:| |glval| (-580 (-480))))) - (-5 *1 (-567 *4 *5)) (-5 *3 (-580 (-204 *4 *5)))))) + (-12 (-14 *4 (-583 (-1088))) (-4 *5 (-389)) + (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-483))))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-416 *4 *5))) (-14 *4 (-580 (-1081))) (-4 *5 (-387)) - (-5 *2 (-2 (|:| |gblist| (-580 (-204 *4 *5))) (|:| |gvlist| (-580 (-480))))) - (-5 *1 (-567 *4 *5))))) + (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) + (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-483))))) + (-5 *1 (-570 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-565 *3 *2)) - (-4 *2 (-13 (-359 *3) (-910) (-1106))))) - ((*1 *1 *1) (-4 *1 (-566)))) + (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-361 *3) (-915) (-1113))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-359 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-361 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) - (-4 *5 (-359 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-4 *5 (-361 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-228 *4 *5)) - (-4 *5 (-13 (-359 *4) (-910))))) + (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) + (-4 *5 (-13 (-361 *4) (-915))))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-250 *4)) (-4 *4 (-251)))) - ((*1 *2 *3) (-12 (-4 *1 (-251)) (-5 *3 (-84)) (-5 *2 (-83)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253)))) + ((*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *5 (-1007)) (-5 *2 (-83)) (-5 *1 (-358 *4 *5)) - (-4 *4 (-359 *5)))) + (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) + (-4 *4 (-361 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-369 *4 *5)) - (-4 *5 (-359 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) + (-4 *5 (-361 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-565 *4 *5)) - (-4 *5 (-13 (-359 *4) (-910) (-1106)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) + (-4 *5 (-13 (-361 *4) (-915) (-1113)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) - (-14 *6 (-580 (-1081))) - (-5 *2 (-580 (-1051 *5 (-465 (-768 *6)) (-768 *6) (-698 *5 (-768 *6))))) - (-5 *1 (-564 *5 *6))))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) + (-14 *6 (-583 (-1088))) + (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) + (-5 *1 (-567 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-698 *5 (-768 *6)))) (-5 *4 (-83)) (-4 *5 (-387)) - (-14 *6 (-580 (-1081))) (-5 *2 (-580 (-953 *5 *6))) (-5 *1 (-564 *5 *6))))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) + (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 (-852 *3))) (-4 *3 (-387)) (-5 *1 (-306 *3 *4)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-382 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-384 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-382 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4)))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-580 (-698 *3 (-768 *4)))) (-4 *3 (-387)) - (-14 *4 (-580 (-1081))) (-5 *1 (-564 *3 *4))))) + (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) + (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-580 (-852 *3))) (-4 *3 (-387)) (-5 *1 (-306 *3 *4)) - (-14 *4 (-580 (-1081))))) + (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-580 (-698 *3 (-768 *4)))) (-4 *3 (-387)) - (-14 *4 (-580 (-1081))) (-5 *1 (-564 *3 *4))))) + (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) + (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-852 *4))) (-4 *4 (-387)) (-5 *2 (-83)) - (-5 *1 (-306 *4 *5)) (-14 *5 (-580 (-1081))))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-85)) + (-5 *1 (-308 *4 *5)) (-14 *5 (-583 (-1088))))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-698 *4 (-768 *5)))) (-4 *4 (-387)) - (-14 *5 (-580 (-1081))) (-5 *2 (-83)) (-5 *1 (-564 *4 *5))))) + (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-389)) + (-14 *5 (-583 (-1088))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *4)) (-4 *4 (-751)) (-5 *2 (-580 (-603 *4 *5))) - (-5 *1 (-563 *4 *5 *6)) (-4 *5 (-13 (-144) (-651 (-345 (-480))))) - (-14 *6 (-825))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) + (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-347 (-483))))) + (-14 *6 (-830))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |k| (-611 *3)) (|:| |c| *4)))) - (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825))))) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) + (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-580 (-246 *4))) (-5 *1 (-563 *3 *4 *5)) (-4 *3 (-751)) - (-4 *4 (-13 (-144) (-651 (-345 (-480))))) (-14 *5 (-825))))) + (-12 (-5 *2 (-583 (-248 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1768 (-580 (-2 (|:| |irr| *10) (|:| -2383 (-480))))))) - (-5 *6 (-580 *3)) (-5 *7 (-580 *8)) (-4 *8 (-751)) (-4 *3 (-255)) - (-4 *10 (-856 *3 *9 *8)) (-4 *9 (-712)) + (|:| -1776 (-583 (-2 (|:| |irr| *10) (|:| -2391 (-483))))))) + (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-257)) + (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 - (-2 (|:| |polfac| (-580 *10)) (|:| |correct| *3) - (|:| |corrfact| (-580 (-1076 *3))))) - (-5 *1 (-561 *8 *9 *3 *10)) (-5 *4 (-580 (-1076 *3)))))) + (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) + (|:| |corrfact| (-583 (-1083 *3))))) + (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1083 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-689)) (-5 *5 (-580 *3)) (-4 *3 (-255)) (-4 *6 (-751)) - (-4 *7 (-712)) (-5 *2 (-83)) (-5 *1 (-561 *6 *7 *3 *8)) - (-4 *8 (-856 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *6 (-971 *3 *4 *5)) - (-5 *1 (-560 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) - (-4 *2 (-1014 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-491)) (-5 *1 (-559 *2 *3)) (-4 *3 (-1146 *2))))) + (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-257)) (-4 *6 (-756)) + (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) + (-4 *8 (-861 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) + (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) + (-4 *2 (-1019 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-558 *4 *2)) (-4 *2 (-13 (-1106) (-866) (-29 *4)))))) -(((*1 *1) (-5 *1 (-553)))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-29 *4)))))) +(((*1 *1) (-5 *1 (-556)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-118) (-27) (-945 (-480)) (-945 (-345 (-480))))) - (-4 *5 (-1146 *4)) (-5 *2 (-1076 (-345 *5))) (-5 *1 (-551 *4 *5)) - (-5 *3 (-345 *5)))) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) + (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-347 *5))) (-5 *1 (-554 *4 *5)) + (-5 *3 (-347 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-343 *6) *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-118) (-27) (-945 (-480)) (-945 (-345 (-480))))) - (-5 *2 (-1076 (-345 *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-345 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-547 *4)) (-4 *4 (-1007)) (-4 *2 (-1007)) - (-5 *1 (-548 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-547 *4)) (-5 *1 (-548 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1106)))) - ((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1007))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-580 *1)) (-4 *1 (-251)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-84)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-547 *3)) (-4 *3 (-1007)))) + (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) + (-5 *2 (-1083 (-347 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-347 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) + (-5 *1 (-551 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113)))) + ((*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-84)) (-5 *3 (-580 *5)) (-5 *4 (-689)) (-4 *5 (-1007)) - (-5 *1 (-547 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-547 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1012)) + (-5 *1 (-550 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-546 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-83))))) + (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-546 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-580 *3))))) + (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-546 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) + (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) (((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-542)))) (((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-541)))) -(((*1 *1) (-5 *1 (-541)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-539)))) -(((*1 *1) (-5 *1 (-539)))) -(((*1 *2 *1) (-12 (-5 *2 (-864 (-156 (-110)))) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-536))))) -(((*1 *2 *1) - (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-580 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539))))) +(((*1 *2 *1) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-83))))) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1120)) (-5 *2 (-580 *3))))) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-535 *4 *3)) (-4 *4 (-1007)) - (-4 *3 (-1120)) (-4 *3 (-1007)) (-5 *2 (-83))))) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1012)) + (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-535 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1007)) (-4 *2 (-751))))) + (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-535 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1007)) (-4 *2 (-751))))) + (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-319 *2)) - (-4 *4 (-319 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-321 *2)) + (-4 *4 (-321 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -3979)) (-4 *1 (-535 *3 *2)) (-4 *3 (-1007)) - (-4 *2 (-1120))))) + (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) + (-4 *2 (-1127))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -3979)) (-4 *1 (-535 *3 *4)) (-4 *3 (-1007)) - (-4 *4 (-1120)) (-5 *2 (-1176))))) + (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) + (-4 *4 (-1127)) (-5 *2 (-1183))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-580 (-547 *2))) (-5 *4 (-580 (-1081))) - (-4 *2 (-13 (-359 (-140 *5)) (-910) (-1106))) (-4 *5 (-491)) - (-5 *1 (-531 *5 *6 *2)) (-4 *6 (-13 (-359 *5) (-910) (-1106)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-140 *5)) (-5 *1 (-531 *4 *5 *3)) - (-4 *5 (-13 (-359 *4) (-910) (-1106))) - (-4 *3 (-13 (-359 (-140 *4)) (-910) (-1106)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *2 (-13 (-359 (-140 *4)) (-910) (-1106))) - (-5 *1 (-531 *4 *3 *2)) (-4 *3 (-13 (-359 *4) (-910) (-1106)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-491)) (-4 *2 (-13 (-359 *4) (-910) (-1106))) - (-5 *1 (-531 *4 *2 *3)) (-4 *3 (-13 (-359 (-140 *4)) (-910) (-1106)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-359 *4) (-910) (-1106))) (-4 *4 (-491)) - (-4 *2 (-13 (-359 (-140 *4)) (-910) (-1106))) (-5 *1 (-531 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-528)))) -(((*1 *1) (-5 *1 (-528)))) -(((*1 *1) (-5 *1 (-528)))) -(((*1 *1) (-5 *1 (-528)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-528))) (-5 *1 (-528))))) + (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1088))) + (-4 *2 (-13 (-361 (-142 *5)) (-915) (-1113))) (-4 *5 (-494)) + (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-915) (-1113)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3)) + (-4 *5 (-13 (-361 *4) (-915) (-1113))) + (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) + (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-915) (-1113)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) + (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) + (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-531)))) +(((*1 *1) (-5 *1 (-531)))) +(((*1 *1) (-5 *1 (-531)))) +(((*1 *1) (-5 *1 (-531)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-531))) (-5 *1 (-531))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-934 (-745 (-480)))) - (-5 *3 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *4)))) (-4 *4 (-956)) - (-5 *1 (-526 *4))))) + (-12 (-5 *2 (-939 (-750 (-483)))) + (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-961)) + (-5 *1 (-529 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-934 (-745 (-480)))) (-5 *1 (-526 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *3)))) (-5 *1 (-526 *3)) - (-4 *3 (-956))))) + (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3)) + (-4 *3 (-961))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-956))))) -(((*1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-956))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-526 *2)) (-4 *2 (-956))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1060 (-2 (|:| |k| (-480)) (|:| |c| *6)))) - (-5 *4 (-934 (-745 (-480)))) (-5 *5 (-1081)) (-5 *7 (-345 (-480))) - (-4 *6 (-956)) (-5 *2 (-767)) (-5 *1 (-526 *6))))) + (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6)))) + (-5 *4 (-939 (-750 (-483)))) (-5 *5 (-1088)) (-5 *7 (-347 (-483))) + (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-529 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-526 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-956))))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-526 *2)) (-4 *2 (-38 (-345 (-480)))) (-4 *2 (-956))))) + (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-1014 *5 *6 *7 *8)) - (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-971 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-523 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1019 *5 *6 *7 *8)) + (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-825))) (-5 *4 (-808 (-480))) (-5 *2 (-627 (-480))) - (-5 *1 (-522)))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-483))) (-5 *2 (-630 (-483))) + (-5 *1 (-525)))) ((*1 *2 *3) - (-12 (-5 *3 (-580 (-825))) (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-522)))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-825))) (-5 *4 (-580 (-808 (-480)))) - (-5 *2 (-580 (-627 (-480)))) (-5 *1 (-522))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-825))) (-5 *2 (-689)) (-5 *1 (-522))))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-483)))) + (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-525))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 *5))) (-5 *4 (-1081)) (-4 *5 (-118)) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-262 *5)) - (-5 *1 (-521 *5))))) + (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *5)) + (-5 *1 (-524 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-515 *2)) (-4 *2 (-13 (-29 *4) (-1106))) (-5 *1 (-517 *4 *2)) - (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))))) + (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2)) + (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))))) ((*1 *2 *3) - (-12 (-5 *3 (-515 (-345 (-852 *4)))) - (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *2 (-262 *4)) - (-5 *1 (-521 *4))))) + (-12 (-5 *3 (-518 (-347 (-857 *4)))) + (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *4)) + (-5 *1 (-524 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-520 *4)) (-4 *4 (-296))))) -(((*1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-479))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-479))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-519 *3)) (-4 *3 (-479))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-689)) (-5 *1 (-519 *2)) (-4 *2 (-479))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-298))))) +(((*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-689)) (-5 *1 (-519 *2)) (-4 *2 (-479)))) + (|partial| -12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2680 *3) (|:| -2389 (-689)))) (-5 *1 (-519 *3)) - (-4 *3 (-479))))) + (-12 (-5 *2 (-2 (|:| -2690 *3) (|:| -2397 (-694)))) (-5 *1 (-522 *3)) + (-4 *3 (-482))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-5 *2 (-83)) (-5 *1 (-519 *3)) (-4 *3 (-479))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-528)) (-5 *1 (-518))))) + (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-580 - (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 *2)) - (|:| |logand| (-1076 *2))))) - (-5 *4 (-580 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-309)) - (-5 *1 (-515 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-515 *2)) (-4 *2 (-309))))) + (-583 + (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *2)) + (|:| |logand| (-1083 *2))))) + (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) + (-5 *1 (-518 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311))))) (((*1 *2 *1) (-12 (-5 *2 - (-580 - (-2 (|:| |scalar| (-345 (-480))) (|:| |coeff| (-1076 *3)) - (|:| |logand| (-1076 *3))))) - (-5 *1 (-515 *3)) (-4 *3 (-309))))) -(((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-515 *3)) (-4 *3 (-309))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-515 *3)) (-4 *3 (-309))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-514))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-511))))) -(((*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-511))))) -(((*1 *2 *3) (-12 (-5 *3 (-426)) (-5 *2 (-629 (-511))) (-5 *1 (-511))))) -(((*1 *2 *1) (-12 (-5 *2 (-629 (-1 (-469) (-580 (-469))))) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-469) (-580 (-469)))) (-5 *1 (-84)))) - ((*1 *1) (-5 *1 (-510)))) -(((*1 *1) (-5 *1 (-510)))) -(((*1 *1) (-5 *1 (-510)))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-509)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-509))))) + (-583 + (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *3)) + (|:| |logand| (-1083 *3))))) + (-5 *1 (-518 *3)) (-4 *3 (-311))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-518 *3)) (-4 *3 (-311))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-311))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514))))) +(((*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-632 (-514))) (-5 *1 (-514))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-472) (-583 (-472))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-583 (-472)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-513)))) +(((*1 *1) (-5 *1 (-513)))) +(((*1 *1) (-5 *1 (-513)))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512)))) + ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-512))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1081)) - (-4 *4 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-507 *4 *2)) - (-4 *2 (-13 (-1106) (-866) (-1044) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1088)) + (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-510 *4 *2)) + (-4 *2 (-13 (-1113) (-871) (-1051) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-506 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 - (-2 (|:| |ir| (-515 (-345 *6))) (|:| |specpart| (-345 *6)) + (-2 (|:| |ir| (-518 (-347 *6))) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) - (-5 *1 (-506 *5 *6)) (-5 *3 (-345 *6))))) + (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-559 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3122 *4) (|:| |sol?| (-83))) (-480) *4)) - (-4 *4 (-309)) (-4 *5 (-1146 *4)) (-5 *1 (-506 *4 *5))))) + (|partial| -12 (-5 *2 (-562 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85))) (-483) *4)) + (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2124 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-309)) (-5 *1 (-506 *4 *2)) (-4 *2 (-1146 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-311)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-580 (-345 *7))) (-4 *7 (-1146 *6)) - (-5 *3 (-345 *7)) (-4 *6 (-309)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-347 *7))) (-4 *7 (-1153 *6)) + (-5 *3 (-347 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-506 *6 *7))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-509 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 (-2 (|:| -2124 (-345 *6)) (|:| |coeff| (-345 *6)))) - (-5 *1 (-506 *5 *6)) (-5 *3 (-345 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 (-2 (|:| -2132 (-347 *6)) (|:| |coeff| (-347 *6)))) + (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3122 *7) (|:| |sol?| (-83))) (-480) *7)) - (-5 *6 (-580 (-345 *8))) (-4 *7 (-309)) (-4 *8 (-1146 *7)) (-5 *3 (-345 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3132 *7) (|:| |sol?| (-85))) (-483) *7)) + (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-506 *7 *8))))) + (-5 *1 (-509 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2124 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-580 (-345 *8))) (-4 *7 (-309)) (-4 *8 (-1146 *7)) (-5 *3 (-345 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2132 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-506 *7 *8))))) + (-5 *1 (-509 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3122 *6) (|:| |sol?| (-83))) (-480) *6)) - (-4 *6 (-309)) (-4 *7 (-1146 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) + (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-345 *7)) (|:| |a0| *6)) - (-2 (|:| -2124 (-345 *7)) (|:| |coeff| (-345 *7))) "failed")) - (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) + (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) + (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) + (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2124 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-309)) (-4 *7 (-1146 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-345 *7)) (|:| |a0| *6)) - (-2 (|:| -2124 (-345 *7)) (|:| |coeff| (-345 *7))) "failed")) - (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) + (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) + (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) + (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-580 *6) "failed") (-480) *6 *6)) - (-4 *6 (-309)) (-4 *7 (-1146 *6)) - (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) - (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-483) *6 *6)) + (-4 *6 (-311)) (-4 *7 (-1153 *6)) + (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) + (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3122 *6) (|:| |sol?| (-83))) (-480) *6)) - (-4 *6 (-309)) (-4 *7 (-1146 *6)) - (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) - (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) + (-4 *6 (-311)) (-4 *7 (-1153 *6)) + (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) + (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2124 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-309)) (-4 *7 (-1146 *6)) - (-5 *2 (-2 (|:| |answer| (-515 (-345 *7))) (|:| |a0| *6))) - (-5 *1 (-506 *6 *7)) (-5 *3 (-345 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-311)) (-4 *7 (-1153 *6)) + (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) + (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-515 *3) *3 (-1081))) + (-12 (-5 *5 (-1 (-518 *3) *3 (-1088))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1081))) - (-4 *3 (-237)) (-4 *3 (-566)) (-4 *3 (-945 *4)) (-4 *3 (-359 *7)) - (-5 *4 (-1081)) (-4 *7 (-550 (-795 (-480)))) (-4 *7 (-387)) - (-4 *7 (-791 (-480))) (-4 *7 (-1007)) (-5 *2 (-515 *3)) - (-5 *1 (-505 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088))) + (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-361 *7)) + (-5 *4 (-1088)) (-4 *7 (-553 (-800 (-483)))) (-4 *7 (-389)) + (-4 *7 (-796 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3)) + (-5 *1 (-508 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-387)) (-4 *4 (-1007)) (-5 *1 (-505 *4 *2)) - (-4 *2 (-237)) (-4 *2 (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-389)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) + (-4 *2 (-239)) (-4 *2 (-361 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-4 *4 (-1007)) (-5 *1 (-505 *4 *2)) - (-4 *2 (-359 *4))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) + (-4 *2 (-361 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-1081)) (-4 *6 (-359 *5)) (-4 *5 (-1007)) - (-5 *2 (-580 (-547 *6))) (-5 *1 (-505 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-1088)) (-4 *6 (-361 *5)) (-4 *5 (-1012)) + (-5 *2 (-583 (-550 *6))) (-5 *1 (-508 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-580 (-547 *6))) (-5 *4 (-1081)) (-5 *2 (-547 *6)) - (-4 *6 (-359 *5)) (-4 *5 (-1007)) (-5 *1 (-505 *5 *6))))) + (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1088)) (-5 *2 (-550 *6)) + (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-547 *5))) (-4 *4 (-1007)) (-5 *2 (-547 *5)) - (-5 *1 (-505 *4 *5)) (-4 *5 (-359 *4))))) + (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1012)) (-5 *2 (-550 *5)) + (-5 *1 (-508 *4 *5)) (-4 *5 (-361 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-547 *5))) (-5 *3 (-1081)) (-4 *5 (-359 *4)) - (-4 *4 (-1007)) (-5 *1 (-505 *4 *5))))) + (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1088)) (-4 *5 (-361 *4)) + (-4 *4 (-1012)) (-5 *1 (-508 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-118))) - (-5 *2 (-2 (|:| -2124 (-345 (-852 *5))) (|:| |coeff| (-345 (-852 *5))))) - (-5 *1 (-502 *5)) (-5 *3 (-345 (-852 *5)))))) + (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) + (-5 *2 (-2 (|:| -2132 (-347 (-857 *5))) (|:| |coeff| (-347 (-857 *5))))) + (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 (-345 (-852 *6)))) - (-5 *3 (-345 (-852 *6))) (-4 *6 (-13 (-491) (-945 (-480)) (-118))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 (-347 (-857 *6)))) + (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-502 *6))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-505 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-345 (-852 *4))) (-5 *3 (-1081)) - (-4 *4 (-13 (-491) (-945 (-480)) (-118))) (-5 *1 (-502 *4))))) + (|partial| -12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) + (-4 *4 (-13 (-494) (-950 (-483)) (-120))) (-5 *1 (-505 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-515 *3)) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5))))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-118))) - (-5 *2 (-515 (-345 (-852 *5)))) (-5 *1 (-502 *5)) (-5 *3 (-345 (-852 *5)))))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) + (-5 *2 (-518 (-347 (-857 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-480)) (-5 *1 (-501 *3)) (-4 *3 (-945 *2))))) + (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-580 (-345 *6))) (-5 *3 (-345 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-309) (-118) (-945 (-480)))) + (|partial| -12 (-5 *4 (-583 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-500 *5 *6))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-503 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-309) (-118) (-945 (-480)))) (-4 *5 (-1146 *4)) - (-5 *2 (-2 (|:| -2124 (-345 *5)) (|:| |coeff| (-345 *5)))) - (-5 *1 (-500 *4 *5)) (-5 *3 (-345 *5))))) + (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) + (-5 *2 (-2 (|:| -2132 (-347 *5)) (|:| |coeff| (-347 *5)))) + (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) - (-4 *3 (-13 (-309) (-118) (-945 (-480)))) (-5 *1 (-500 *3 *4))))) + (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) + (-4 *3 (-13 (-311) (-120) (-950 (-483)))) (-5 *1 (-503 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-550 (-795 (-480)))) - (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-499 *5 *3)) - (-4 *3 (-566)) (-4 *3 (-13 (-27) (-1106) (-359 *5))))) + (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) + (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) + (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1081)) (-5 *4 (-745 *2)) (-4 *2 (-1044)) - (-4 *2 (-13 (-27) (-1106) (-359 *5))) (-4 *5 (-550 (-795 (-480)))) - (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) - (-5 *1 (-499 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1081)) (-4 *5 (-550 (-795 (-480)))) - (-4 *5 (-791 (-480))) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-499 *5 *3)) - (-4 *3 (-566)) (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-945 (-480)) (-387) (-577 (-480)))) - (-5 *2 (-2 (|:| -2326 *3) (|:| |nconst| *3))) (-5 *1 (-499 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) + (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-750 *2)) (-4 *2 (-1051)) + (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-553 (-800 (-483)))) + (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) + (-5 *1 (-502 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) + (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) + (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) + (-5 *2 (-2 (|:| -2334 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-547 *4)) (-5 *6 (-1081)) (-4 *4 (-13 (-359 *7) (-27) (-1106))) - (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007))))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-361 *7) (-27) (-1113))) + (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-547 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1081))) - (-4 *2 (-13 (-359 *5) (-27) (-1106))) - (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1007))))) + (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1088))) + (-4 *2 (-13 (-361 *5) (-27) (-1113))) + (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) - (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) + (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1007))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *5) (-27) (-1106))) - (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3 *6)) - (-4 *6 (-1007))))) + (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) + (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6)) + (-4 *6 (-1012))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-547 *3)) (-4 *3 (-13 (-359 *5) (-27) (-1106))) - (-4 *5 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) - (-5 *1 (-498 *5 *3 *6)) (-4 *6 (-1007))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) - (-4 *7 (-1146 (-345 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2123 *3))) - (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-288 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-309)) - (-5 *2 - (-2 (|:| |answer| (-345 *6)) (|:| -2123 (-345 *6)) - (|:| |specpart| (-345 *6)) (|:| |polypart| *6))) - (-5 *1 (-497 *5 *6)) (-5 *3 (-345 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-689)) (-5 *1 (-495))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-495)) (-5 *3 (-480))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) -(((*1 *2 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-495)) (-5 *3 (-480))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-151 *2)) (-4 *2 (-255)))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) + (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) + (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) + (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2131 *3))) + (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) + (-5 *2 + (-2 (|:| |answer| (-347 *6)) (|:| -2131 (-347 *6)) + (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) + (-5 *1 (-500 *5 *6)) (-5 *3 (-347 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-694)) (-5 *1 (-498))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-580 (-580 *4))) (-5 *2 (-580 *4)) (-4 *4 (-255)) - (-5 *1 (-151 *4)))) + (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-257)) + (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 *8)) + (-12 (-5 *3 (-583 *8)) (-5 *4 - (-580 - (-2 (|:| -2000 (-627 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-627 *7))))) - (-5 *5 (-689)) (-4 *8 (-1146 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-296)) - (-5 *2 - (-2 (|:| -2000 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7)))) - (-5 *1 (-433 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-495))))) + (-583 + (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-630 *7))))) + (-5 *5 (-694)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-298)) + (-5 *2 + (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) + (-5 *1 (-435 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-547 *4)) (-5 *6 (-1076 *4)) - (-4 *4 (-13 (-359 *7) (-27) (-1106))) - (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2000 (-580 *4)))) - (-5 *1 (-494 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007)))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-1083 *4)) + (-4 *4 (-13 (-361 *7) (-27) (-1113))) + (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) + (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-547 *4)) (-5 *6 (-345 (-1076 *4))) - (-4 *4 (-13 (-359 *7) (-27) (-1106))) - (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2000 (-580 *4)))) - (-5 *1 (-494 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1007))))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-347 (-1083 *4))) + (-4 *4 (-13 (-361 *7) (-27) (-1113))) + (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) + (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-547 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1081))) (-5 *5 (-1076 *2)) - (-4 *2 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *1 (-494 *6 *2 *7)) (-4 *7 (-1007)))) + (|partial| -12 (-5 *3 (-550 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1088))) (-5 *5 (-1083 *2)) + (-4 *2 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-547 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1081))) - (-5 *5 (-345 (-1076 *2))) (-4 *2 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *1 (-494 *6 *2 *7)) (-4 *7 (-1007))))) + (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088))) + (-5 *5 (-347 (-1083 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) (-5 *6 (-1076 *3)) - (-4 *3 (-13 (-359 *7) (-27) (-1106))) - (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1083 *3)) + (-4 *3 (-13 (-361 *7) (-27) (-1113))) + (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-494 *7 *3 *8)) (-4 *8 (-1007)))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-580 *3)) (-5 *6 (-345 (-1076 *3))) - (-4 *3 (-13 (-359 *7) (-27) (-1106))) - (-4 *7 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-347 (-1083 *3))) + (-4 *3 (-13 (-361 *7) (-27) (-1113))) + (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-494 *7 *3 *8)) (-4 *8 (-1007))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-1076 *3)) - (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-494 *6 *3 *7)) - (-4 *7 (-1007)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) + (-4 *7 (-1012)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-547 *3)) (-5 *5 (-345 (-1076 *3))) - (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) - (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-494 *6 *3 *7)) - (-4 *7 (-1007))))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) + (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) + (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) + (-4 *7 (-1012))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-547 *3)) (-5 *5 (-1076 *3)) - (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) - (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007)))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) + (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-547 *3)) (-5 *5 (-345 (-1076 *3))) - (-4 *3 (-13 (-359 *6) (-27) (-1106))) - (-4 *6 (-13 (-387) (-945 (-480)) (-118) (-577 (-480)))) (-5 *2 (-515 *3)) - (-5 *1 (-494 *6 *3 *7)) (-4 *7 (-1007))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-493 *2)) (-4 *2 (-479))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 *3)) (-5 *1 (-493 *3)) (-4 *3 (-479))))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) + (-4 *3 (-13 (-361 *6) (-27) (-1113))) + (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) + (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482))))) +(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1081)) (-5 *6 (-580 (-547 *3))) (-5 *5 (-547 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *7))) - (-4 *7 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-492 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-515 *3)) (-5 *1 (-492 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) + (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *7))) + (-4 *7 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1081)) - (-4 *4 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) (-5 *1 (-492 *4 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *4)))))) + (|partial| -12 (-5 *3 (-1088)) + (-4 *4 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-495 *4 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1081)) (-5 *5 (-580 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *6))) - (-4 *6 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) + (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *6))) + (-4 *6 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-580 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-492 *6 *3))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-495 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1081)) - (-4 *5 (-13 (-387) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-2 (|:| -2124 *3) (|:| |coeff| *3))) (-5 *1 (-492 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1761 *1) (|:| -3965 *1) (|:| |associate| *1))) - (-4 *1 (-491))))) -(((*1 *1 *1) (-4 *1 (-491)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-491)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-491)) (-5 *2 (-83))))) + (|partial| -12 (-5 *4 (-1088)) + (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3)) + (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1769 *1) (|:| -3976 *1) (|:| |associate| *1))) + (-4 *1 (-494))))) +(((*1 *1 *1) (-4 *1 (-494)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-345 (-480))) (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))))) - ((*1 *1 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106)))))) -(((*1 *2 *1) (-12 (-4 *1 (-489 *2)) (-4 *2 (-13 (-342) (-1106)))))) + (-12 (-5 *2 (-347 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))))) + ((*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))) +(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-489 *3)) (-4 *3 (-13 (-342) (-1106))) (-5 *2 (-83))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-83)) (-5 *1 (-488))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-488))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-488))))) + (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1146 *5)) - (-4 *5 (-13 (-27) (-359 *4))) (-4 *4 (-13 (-491) (-945 (-480)))) - (-4 *7 (-1146 (-345 *6))) (-5 *1 (-487 *4 *5 *6 *7 *2)) - (-4 *2 (-288 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-13 (-27) (-359 *5))) - (-4 *5 (-13 (-491) (-945 (-480)))) (-4 *8 (-1146 (-345 *7))) - (-5 *2 (-515 *3)) (-5 *1 (-487 *5 *6 *7 *8 *3)) (-4 *3 (-288 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1146 *6)) (-4 *6 (-13 (-27) (-359 *5))) - (-4 *5 (-13 (-491) (-945 (-480)))) (-4 *8 (-1146 (-345 *7))) - (-5 *2 (-515 *3)) (-5 *1 (-487 *5 *6 *7 *8 *3)) (-4 *3 (-288 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) + (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483)))) + (-4 *7 (-1153 (-347 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2)) + (-4 *2 (-290 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) + (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) + (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) + (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) + (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-547 *3)) (-5 *5 (-1 (-1076 *3) (-1076 *3))) - (-4 *3 (-13 (-27) (-359 *6))) (-4 *6 (-491)) (-5 *2 (-515 *3)) - (-5 *1 (-486 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-479)) (-5 *2 (-83))))) -(((*1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-479)))) -(((*1 *1 *1 *1) (-4 *1 (-479)))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) + (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3)) + (-5 *1 (-489 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) +(((*1 *1 *1 *1) (-4 *1 (-482)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-480) #1="failed") *5)) (-4 *5 (-956)) - (-5 *2 (-480)) (-5 *1 (-477 *5 *3)) (-4 *3 (-1146 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-483) #1="failed") *5)) (-4 *5 (-961)) + (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-480) #1#) *4)) (-4 *4 (-956)) (-5 *2 (-480)) - (-5 *1 (-477 *4 *3)) (-4 *3 (-1146 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483)) + (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-480) #1#) *4)) (-4 *4 (-956)) (-5 *2 (-480)) - (-5 *1 (-477 *4 *3)) (-4 *3 (-1146 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-5 *1 (-390 *3 *2)) (-4 *2 (-1146 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-255)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1146 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483)) + (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1153 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1153 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-255)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-689))) - (-5 *1 (-473 *3 *2 *4 *5)) (-4 *2 (-1146 *3))))) + (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) + (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-473 *4 *2 *5 *6)) - (-4 *4 (-255)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-689)))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) + (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-473 *4 *2 *5 *6)) - (-4 *4 (-255)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-689)))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) + (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-580 *6)) (-5 *4 (-580 (-1081))) (-4 *6 (-309)) - (-5 *2 (-580 (-246 (-852 *6)))) (-5 *1 (-472 *5 *6 *7)) (-4 *5 (-387)) - (-4 *7 (-13 (-309) (-750)))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1088))) (-4 *6 (-311)) + (-5 *2 (-583 (-248 (-857 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-389)) + (-4 *7 (-13 (-311) (-755)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-580 (-852 *6))) (-5 *4 (-580 (-1081))) (-4 *6 (-387)) - (-5 *2 (-580 (-580 *7))) (-5 *1 (-472 *6 *7 *5)) (-4 *7 (-309)) - (-4 *5 (-13 (-309) (-750)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *5)) (-4 *5 (-387)) (-5 *2 (-580 *6)) - (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-852 *5)) (-4 *5 (-387)) (-5 *2 (-580 *6)) - (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-469)))) - ((*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *1 (-470 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-5 *2 (-469)) (-5 *1 (-470 *4)) (-4 *4 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-469))) (-5 *1 (-469))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-1081))) (-5 *1 (-469))))) -(((*1 *1 *1) (-5 *1 (-469)))) -(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-469))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-469))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 (-469))) (-5 *2 (-1081)) (-5 *1 (-469))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-580 (-469))) (-5 *1 (-469))))) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-389)) + (-5 *2 (-583 (-583 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-311)) + (-4 *5 (-13 (-311) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) + (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) + (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472)))) + ((*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127))))) +(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-472))) (-5 *1 (-472))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-472))))) +(((*1 *1 *1) (-5 *1 (-472)))) +(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-472))) (-5 *2 (-1088)) (-5 *1 (-472))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 (-472))) (-5 *1 (-472))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-343 (-1076 *6)) (-1076 *6))) - (-4 *6 (-309)) + (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-345 (-1083 *6)) (-1083 *6))) + (-4 *6 (-311)) (-5 *2 - (-580 - (-2 (|:| |outval| *7) (|:| |outmult| (-480)) - (|:| |outvect| (-580 (-627 *7)))))) - (-5 *1 (-466 *6 *7 *4)) (-4 *7 (-309)) (-4 *4 (-13 (-309) (-750)))))) + (-583 + (-2 (|:| |outval| *7) (|:| |outmult| (-483)) + (|:| |outvect| (-583 (-630 *7)))))) + (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-755)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *5)) (-4 *5 (-309)) (-5 *2 (-580 *6)) - (-5 *1 (-466 *5 *6 *4)) (-4 *6 (-309)) (-4 *4 (-13 (-309) (-750)))))) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-311)) (-5 *2 (-583 *6)) + (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755)))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-309)) (-5 *2 (-1076 *4)) - (-5 *1 (-466 *4 *5 *6)) (-4 *5 (-309)) (-4 *6 (-13 (-309) (-750)))))) + (-12 (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *2 (-1083 *4)) + (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-755)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-464 *3)) (-4 *3 (-13 (-660) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-464 *3)) (-4 *3 (-13 (-660) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-463)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-463))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-463))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-463))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466)))) + ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-466))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-825)) (-4 *4 (-315)) (-4 *4 (-309)) (-5 *2 (-1076 *1)) - (-4 *1 (-277 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-5 *2 (-1076 *3)))) + (-12 (-5 *3 (-830)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1083 *1)) + (-4 *1 (-279 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-144)) (-4 *3 (-309)) (-4 *2 (-1146 *3)))) + (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1153 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4))))) -(((*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309)))) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4))))) +(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) ((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1170 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298))))) (((*1 *2 *2) - (-12 (-5 *2 (-1170 *4)) (-4 *4 (-356 *3)) (-4 *3 (-255)) (-4 *3 (-491)) + (-12 (-5 *2 (-1177 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-825)) (-4 *4 (-309)) (-5 *2 (-1170 *1)) (-4 *1 (-277 *4)))) - ((*1 *2) (-12 (-4 *3 (-309)) (-5 *2 (-1170 *1)) (-4 *1 (-277 *3)))) + (-12 (-5 *3 (-830)) (-4 *4 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *4)))) + ((*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *3)))) ((*1 *2) - (-12 (-4 *3 (-144)) (-4 *4 (-1146 *3)) (-5 *2 (-1170 *1)) - (-4 *1 (-348 *3 *4)))) + (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) + (-4 *1 (-350 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) - (-5 *1 (-351 *3 *4 *5 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))))) + (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) + (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-255)) (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-5 *2 (-1170 *6)) - (-5 *1 (-353 *3 *4 *5 *6 *7)) (-4 *6 (-348 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1170 *1)) (-4 *1 (-356 *3)))) + (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) + (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-358 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1170 (-1170 *4))) (-5 *1 (-462 *4)) - (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4)) + (-4 *4 (-298))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-83)))) + (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-302 *4)))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-462 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-825)))) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-465 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-830)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-825)) (-5 *1 (-462 *4))))) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-830)) (-5 *1 (-465 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-480)) (-4 *4 (-296)) (-5 *1 (-462 *4))))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1025)) (-4 *4 (-296)) (-5 *1 (-462 *4))))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-298)) (-5 *1 (-465 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-462 *4))))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-465 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1170 *5)) (-5 *3 (-689)) (-5 *4 (-1025)) (-4 *5 (-296)) - (-5 *1 (-462 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4)) (-4 *4 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170 *4)) (-4 *4 (-296)) (-5 *2 (-1076 *4)) (-5 *1 (-462 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) - (-4 *4 (-296)) (-5 *2 (-1176)) (-5 *1 (-462 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-99)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1129)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-481)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1126)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-482)))))) -(((*1 *2 *1) (-12 (-4 *1 (-461)) (-5 *2 (-629 (-1127)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-461)) (-5 *3 (-100)) (-5 *2 (-689))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-459))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1121))) (-5 *1 (-458))))) -(((*1 *2 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-319 *3)) (-4 *5 (-319 *3)) - (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040)) (-5 *1 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-275 *3)))) + (-12 (-5 *2 (-1177 *5)) (-5 *3 (-694)) (-5 *4 (-1032)) (-4 *5 (-298)) + (-5 *1 (-465 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-694)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) + (-4 *4 (-298)) (-5 *2 (-1183)) (-5 *1 (-465 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-487)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1136)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-484)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1133)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1134)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461))))) +(((*1 *2 *2) + (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) + (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455))))) +(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-277 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-451 *3 *4)) (-14 *4 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-275 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-454 *3 *4)) (-14 *4 (-483))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) ((*1 *2 *1) - (-12 (-5 *2 (-689)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-480))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-275 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-694)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-275 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-483)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) ((*1 *2 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-451 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-480))))) -(((*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-72)) (-4 *2 (-754))))) -(((*1 *1) (-5 *1 (-441)))) + (-12 (-5 *2 (-85)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) +(((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759))))) +(((*1 *1) (-5 *1 (-444)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) - (-4 *5 (-144)))) + (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-689)) - (-4 *5 (-144)))) + (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) - (-5 *3 (-580 (-768 *4))) (-14 *4 (-580 (-1081))) (-14 *5 (-689)) - (-5 *1 (-440 *4 *5))))) + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) + (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) + (-5 *1 (-442 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-580 (-1081))) (-14 *5 (-689)) + (-12 (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 - (-580 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480)))))) - (-5 *1 (-440 *4 *5)) + (-583 + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))) + (-5 *1 (-442 *4 *5)) (-5 *3 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480)))))))) + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-439 (-345 (-480)) (-195 *4 (-689)) (-768 *3) (-204 *3 (-345 (-480))))) - (-14 *3 (-580 (-1081))) (-14 *4 (-689)) (-5 *1 (-440 *3 *4))))) + (-441 (-347 (-483)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-347 (-483))))) + (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-442 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) - (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5))))) + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) + (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-439 (-345 (-480)) (-195 *5 (-689)) (-768 *4) (-204 *4 (-345 (-480))))) - (-14 *4 (-580 (-1081))) (-14 *5 (-689)) (-5 *2 (-83)) (-5 *1 (-440 *4 *5))))) + (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) + (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6))))) + (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5))))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6))))) + (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) - (-5 *2 (-83)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) + (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *2)) - (-4 *2 (-856 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4))))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 - (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4)) - (|:| |genIdeal| (-439 *4 *5 *6 *7)))) - (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6))))) + (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) + (|:| |genIdeal| (-441 *4 *5 *6 *7)))) + (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3)) - (|:| |genIdeal| (-439 *3 *4 *5 *6)))) - (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6)) - (-4 *6 (-856 *3 *4 *5))))) + (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) + (|:| |genIdeal| (-441 *3 *4 *5 *6)))) + (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) + (-4 *6 (-861 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-309)) (-4 *3 (-712)) (-4 *4 (-751)) (-5 *1 (-439 *2 *3 *4 *5)) - (-4 *5 (-856 *2 *3 *4))))) + (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) - (-5 *2 (-351 *4 (-345 *4) *5 *6)))) + (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) + (-5 *2 (-353 *4 (-347 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *6)) (-4 *6 (-13 (-348 *4 *5) (-945 *4))) - (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-4 *3 (-255)) - (-5 *1 (-351 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))) + (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257)) + (-5 *1 (-353 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-439 *3 *4 *5 *6)) (-4 *6 (-856 *3 *4 *5))))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-580 *6)) (-4 *6 (-751)) (-4 *4 (-309)) (-4 *5 (-712)) - (-5 *1 (-439 *4 *5 *6 *2)) (-4 *2 (-856 *4 *5 *6)))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) + (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-439 *3 *4 *5 *2)) - (-4 *2 (-856 *3 *4 *5))))) + (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *5 *6)) (-4 *6 (-550 (-1081))) - (-4 *4 (-309)) (-4 *5 (-712)) (-4 *6 (-751)) - (-5 *2 (-1071 (-580 (-852 *4)) (-580 (-246 (-852 *4))))) - (-5 *1 (-439 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1088))) + (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-1078 (-583 (-857 *4)) (-583 (-248 (-857 *4))))) + (-5 *1 (-441 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1176)) (-5 *1 (-165 *4)) + (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) - (-15 -1953 (*2 $))))))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) + (-15 -1961 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1176)) (-5 *1 (-165 *3)) + (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-751) - (-10 -8 (-15 -3783 ((-1064) $ (-1081))) (-15 -3600 (*2 $)) - (-15 -1953 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437))))) + (-13 (-756) + (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) + (-15 -1961 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *6 (-1146 *5)) - (-5 *2 (-1076 (-1076 *7))) (-5 *1 (-436 *5 *6 *4 *7)) (-4 *4 (-1146 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1153 *5)) + (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1153 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-627 (-1076 *8))) - (-4 *5 (-956)) (-4 *8 (-956)) (-4 *6 (-1146 *5)) (-5 *2 (-627 *6)) - (-5 *1 (-436 *5 *6 *7 *8)) (-4 *7 (-1146 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1083 *8))) + (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *6)) + (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1153 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1076 *7)) - (-4 *5 (-956)) (-4 *7 (-956)) (-4 *2 (-1146 *5)) (-5 *1 (-436 *5 *2 *6 *7)) - (-4 *6 (-1146 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) + (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) + (-4 *6 (-1153 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1076 *7)) (-4 *5 (-956)) (-4 *7 (-956)) - (-4 *2 (-1146 *5)) (-5 *1 (-436 *5 *2 *6 *7)) (-4 *6 (-1146 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961)) + (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-956)) (-4 *7 (-956)) (-4 *4 (-1146 *5)) - (-5 *2 (-1076 *7)) (-5 *1 (-436 *5 *4 *6 *7)) (-4 *6 (-1146 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1153 *5)) + (-5 *2 (-1083 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1153 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2000 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) - (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *4 (-1146 *3)) - (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4))))) + (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) + (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4))))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4)))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4))))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-689)) (-4 *3 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) - (-4 *4 (-1146 *3)) (-5 *1 (-434 *3 *4 *5)) (-4 *5 (-348 *3 *4))))) + (-12 (-5 *2 (-694)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) + (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-627 *2)) (-5 *4 (-480)) - (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *5 (-1146 *2)) - (-5 *1 (-434 *2 *5 *6)) (-4 *6 (-348 *2 *5))))) + (-12 (-5 *3 (-630 *2)) (-5 *4 (-483)) + (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) + (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-627 *2)) (-5 *4 (-689)) - (-4 *2 (-13 (-255) (-10 -8 (-15 -3954 ((-343 $) $))))) (-4 *5 (-1146 *2)) - (-5 *1 (-434 *2 *5 *6)) (-4 *6 (-348 *2 *5))))) + (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) + (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) + (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-296)) (-4 *6 (-1146 *5)) + (-12 (-5 *4 (-694)) (-4 *5 (-298)) (-4 *6 (-1153 *5)) (-5 *2 - (-580 - (-2 (|:| -2000 (-627 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-627 *6))))) - (-5 *1 (-433 *5 *6 *7)) + (-583 + (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-630 *6))))) + (-5 *1 (-435 *5 *6 *7)) (-5 *3 - (-2 (|:| -2000 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6)))) - (-4 *7 (-1146 *6))))) + (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) + (-4 *7 (-1153 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-580 + (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-480))))) - (-5 *1 (-343 *3)) (-4 *3 (-491)))) + (|:| |xpnt| (-483))))) + (-5 *1 (-345 *3)) (-4 *3 (-494)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-689)) (-4 *3 (-296)) (-4 *5 (-1146 *3)) - (-5 *2 (-580 (-1076 *3))) (-5 *1 (-433 *3 *5 *6)) (-4 *6 (-1146 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-430))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-426))))) + (-12 (-5 *4 (-694)) (-4 *3 (-298)) (-4 *5 (-1153 *3)) + (-5 *2 (-583 (-1083 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1153 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-428))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-319 *3)) (-4 *5 (-319 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3979)) (-4 *1 (-424 *3)) - (-4 *3 (-1120))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-426 *3)) + (-4 *3 (-1127))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) - (-4 *4 (-1120)) (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) + (-4 *4 (-1127)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) - (-4 *4 (-1120)) (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) + (-4 *4 (-1127)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-424 *3)) (-4 *3 (-1120)) (-4 *3 (-1007)) - (-5 *2 (-689)))) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) + (-5 *2 (-694)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3978)) (-4 *1 (-424 *4)) - (-4 *4 (-1120)) (-5 *2 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-422))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 (-480))) (-5 *2 (-480)) (-5 *1 (-421 *4)) - (-4 *4 (-1146 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1146 (-480))) (-5 *1 (-421 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1146 (-480))) (-5 *1 (-421 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-5 *1 (-421 *2)) (-4 *2 (-1146 (-480)))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-419 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-780))) (-5 *1 (-418))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-441))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-780))) (-5 *1 (-418))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) + (-4 *4 (-1127)) (-5 *2 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-483))) (-5 *2 (-483)) (-5 *1 (-423 *4)) + (-4 *4 (-1153 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-421 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-785))) (-5 *1 (-420))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-444))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-420))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-480))) (-5 *1 (-204 *3 *4)) (-14 *3 (-580 (-1081))) - (-4 *4 (-956)))) + (-12 (-5 *2 (-583 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1088))) + (-4 *4 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-480))) (-14 *3 (-580 (-1081))) (-5 *1 (-389 *3 *4 *5)) - (-4 *4 (-956)) (-4 *5 (-194 (-3940 *3) (-689))))) + (-12 (-5 *2 (-583 (-483))) (-14 *3 (-583 (-1088))) (-5 *1 (-391 *3 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-196 (-3951 *3) (-694))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-480))) (-5 *1 (-416 *3 *4)) (-14 *3 (-580 (-1081))) - (-4 *4 (-956))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-480)) (-5 *2 (-83)) (-5 *1 (-415))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-415))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-768 *5))) (-14 *5 (-580 (-1081))) (-4 *6 (-387)) - (-5 *2 (-2 (|:| |dpolys| (-580 (-204 *5 *6))) (|:| |coords| (-580 (-480))))) - (-5 *1 (-406 *5 *6 *7)) (-5 *3 (-580 (-204 *5 *6))) (-4 *7 (-387))))) + (-12 (-5 *2 (-583 (-483))) (-5 *1 (-418 *3 *4)) (-14 *3 (-583 (-1088))) + (-4 *4 (-961))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-417))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-417))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) + (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-483))))) + (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-580 (-416 *4 *5))) (-5 *3 (-580 (-768 *4))) - (-14 *4 (-580 (-1081))) (-4 *5 (-387)) (-5 *1 (-406 *4 *5 *6)) - (-4 *6 (-387))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-768 *5))) (-14 *5 (-580 (-1081))) (-4 *6 (-387)) - (-5 *2 (-580 (-580 (-204 *5 *6)))) (-5 *1 (-406 *5 *6 *7)) - (-5 *3 (-580 (-204 *5 *6))) (-4 *7 (-387))))) -(((*1 *1) (-5 *1 (-403)))) + (|partial| -12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-583 (-773 *4))) + (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) + (-4 *6 (-389))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) + (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) + (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389))))) +(((*1 *1) (-5 *1 (-405)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) - (-5 *4 (-580 (-825))) (-5 *5 (-580 (-219))) (-5 *1 (-403)))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-405)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) - (-5 *4 (-580 (-825))) (-5 *1 (-403)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403)))) - ((*1 *1 *1) (-5 *1 (-403)))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *1 (-403))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219)))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *4 (-583 (-830))) (-5 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) + ((*1 *1 *1) (-5 *1 (-405)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-403))))) + (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-849 (-177))) (-5 *4 (-778)) (-5 *5 (-825)) (-5 *2 (-1176)) - (-5 *1 (-403)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-403)))) + (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183)) + (-5 *1 (-405)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *4 (-778)) (-5 *5 (-825)) - (-5 *2 (-1176)) (-5 *1 (-403))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-849 (-177))) (-5 *2 (-1176)) (-5 *1 (-403))))) + (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *2 (-1183)) (-5 *1 (-405))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-580 (-580 (-849 (-177))))) (-5 *3 (-580 (-778))) - (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 (-580 (-849 (-177))))) (-5 *2 (-580 (-177))) - (-5 *1 (-403))))) -(((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220)))) - ((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-402))))) -(((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1170 (-1170 (-480)))) (-5 *1 (-401))))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *1 (-405))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) + (-5 *1 (-405))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) +(((*1 *2 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-403))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 (-1170 (-480)))) (-5 *3 (-825)) (-5 *1 (-401))))) + (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-830)) (-5 *1 (-403))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-751)) (-4 *5 (-712)) (-4 *6 (-491)) - (-4 *7 (-856 *6 *5 *3)) (-5 *1 (-397 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-494)) + (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-945 (-345 (-480))) (-309) - (-10 -8 (-15 -3929 ($ *7)) (-15 -2984 (*7 $)) (-15 -2983 (*7 $)))))))) + (-13 (-950 (-347 (-483))) (-311) + (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) + (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *2)) - (-2 (|:| -2388 *5) (|:| -2389 *2)))) - (-4 *2 (-194 (-3940 *3) (-689))) (-5 *1 (-396 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-751)) (-4 *7 (-856 *4 *2 (-768 *3)))))) + (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *2)) + (-2 (|:| -2396 *5) (|:| -2397 *2)))) + (-4 *2 (-196 (-3951 *3) (-694))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-580 (-1081))) (-4 *4 (-144)) (-4 *5 (-194 (-3940 *3) (-689))) + (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *2) (|:| -2389 *5)) - (-2 (|:| -2388 *2) (|:| -2389 *5)))) - (-4 *2 (-751)) (-5 *1 (-396 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-856 *4 *5 (-768 *3)))))) + (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) + (-2 (|:| -2396 *2) (|:| -2397 *5)))) + (-4 *2 (-756)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-861 *4 *5 (-773 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-580 (-1081))) (-4 *2 (-144)) (-4 *4 (-194 (-3940 *5) (-689))) + (-12 (-14 *5 (-583 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3951 *5) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *3) (|:| -2389 *4)) - (-2 (|:| -2388 *3) (|:| -2389 *4)))) - (-5 *1 (-396 *5 *2 *3 *4 *6 *7)) (-4 *3 (-751)) - (-4 *7 (-856 *2 *4 (-768 *5)))))) + (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *4)) + (-2 (|:| -2396 *3) (|:| -2397 *4)))) + (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) + (-4 *7 (-861 *2 *4 (-773 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-580 (-1081))) (-4 *2 (-144)) (-4 *3 (-194 (-3940 *4) (-689))) + (-12 (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3951 *4) (-694))) (-14 *6 - (-1 (-83) (-2 (|:| -2388 *5) (|:| -2389 *3)) - (-2 (|:| -2388 *5) (|:| -2389 *3)))) - (-5 *1 (-396 *4 *2 *5 *3 *6 *7)) (-4 *5 (-751)) - (-4 *7 (-856 *2 *3 (-768 *4)))))) + (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *3)) + (-2 (|:| -2396 *5) (|:| -2397 *3)))) + (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) + (-4 *7 (-861 *2 *3 (-773 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-580 *3)) (-5 *5 (-825)) (-4 *3 (-1146 *4)) (-4 *4 (-255)) - (-5 *1 (-395 *4 *3))))) + (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1153 *4)) (-4 *4 (-257)) + (-5 *1 (-397 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-825)) (-4 *5 (-255)) (-4 *3 (-1146 *5)) - (-5 *2 (-2 (|:| |plist| (-580 *3)) (|:| |modulo| *5))) (-5 *1 (-395 *5 *3)) - (-5 *4 (-580 *3))))) + (-12 (-5 *6 (-830)) (-4 *5 (-257)) (-4 *3 (-1153 *5)) + (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) + (-5 *4 (-583 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *5)) (-4 *5 (-1146 *3)) (-4 *3 (-255)) (-5 *2 (-83)) - (-5 *1 (-390 *3 *5))))) + (-12 (-5 *4 (-583 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-257)) (-5 *2 (-85)) + (-5 *1 (-392 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1170 (-580 *3))) (-4 *4 (-255)) (-5 *2 (-580 *3)) - (-5 *1 (-390 *4 *3)) (-4 *3 (-1146 *4))))) + (|partial| -12 (-5 *5 (-1177 (-583 *3))) (-4 *4 (-257)) (-5 *2 (-583 *3)) + (-5 *1 (-392 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-689)) (-4 *4 (-255)) (-4 *6 (-1146 *4)) - (-5 *2 (-1170 (-580 *6))) (-5 *1 (-390 *4 *6)) (-5 *5 (-580 *6))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-257)) (-4 *6 (-1153 *4)) + (-5 *2 (-1177 (-583 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-583 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-255)) (-5 *2 (-689)) - (-5 *1 (-390 *5 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-257)) (-5 *2 (-694)) + (-5 *1 (-392 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2000 (-580 *1)))) (-4 *1 (-313 *3)))) + (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-388 *3 *4 *5 *6)) - (|:| -2000 (-580 (-388 *3 *4 *5 *6))))) - (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) - (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3)))))) + (-2 (|:| |particular| (-390 *3 *4 *5 *6)) + (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) + (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) + (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-491)) (-4 *3 (-144)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2000 (-580 *1)))) (-4 *1 (-313 *3)))) + (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-388 *3 *4 *5 *6)) - (|:| -2000 (-580 (-388 *3 *4 *5 *6))))) - (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-825)) - (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3)))))) + (-2 (|:| |particular| (-390 *3 *4 *5 *6)) + (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) + (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) + (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1170 (-1081))) (-5 *3 (-1170 (-388 *4 *5 *6 *7))) - (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-825)) - (-14 *6 (-580 (-1081))) (-14 *7 (-1170 (-627 *4))))) + (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) + (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) + (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-5 *3 (-1170 (-388 *4 *5 *6 *7))) - (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-825)) (-14 *6 (-580 *2)) - (-14 *7 (-1170 (-627 *4))))) + (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) + (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) + (-14 *7 (-1177 (-630 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-388 *3 *4 *5 *6))) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3))))) + (-12 (-5 *2 (-1177 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-1081))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) - (-14 *4 (-825)) (-14 *5 (-580 (-1081))) (-14 *6 (-1170 (-627 *3))))) + (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1081)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-144)) - (-14 *4 (-825)) (-14 *5 (-580 *2)) (-14 *6 (-1170 (-627 *3))))) + (-12 (-5 *2 (-1088)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1177 (-630 *3))))) ((*1 *1) - (-12 (-5 *1 (-388 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-825)) - (-14 *4 (-580 (-1081))) (-14 *5 (-1170 (-627 *2)))))) + (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) + (-14 *4 (-583 (-1088))) (-14 *5 (-1177 (-630 *2)))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1076 (-852 *4))) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) ((*1 *2) - (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-4 *3 (-309)) - (-5 *2 (-1076 (-852 *3))))) + (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) + (-5 *2 (-1083 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1076 (-852 *4))) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) ((*1 *2) - (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-4 *3 (-309)) - (-5 *2 (-1076 (-852 *3))))) + (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) + (-5 *2 (-1083 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1076 (-345 (-852 *3)))) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *3 (-491)) (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2) - (-12 (-5 *2 (-345 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3)))))) + (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) - (-5 *2 (-580 (-852 *4))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) + (-5 *2 (-583 (-857 *4))))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-580 (-852 *4))) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) - ((*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-580 (-852 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-580 (-852 *3))) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *3 (-491)) - (-4 *3 (-144)) (-14 *4 (-825)) (-14 *5 (-580 (-1081))) - (-14 *6 (-1170 (-627 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-388 *4 *5 *6 *7))) (-5 *2 (-580 (-852 *4))) - (-5 *1 (-388 *4 *5 *6 *7)) (-4 *4 (-491)) (-4 *4 (-144)) (-14 *5 (-825)) - (-14 *6 (-580 (-1081))) (-14 *7 (-1170 (-627 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *1)) (-4 *1 (-387)))) - ((*1 *1 *1 *1) (-4 *1 (-387)))) -(((*1 *2 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-689)) - (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6))))) + (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) + (-14 *6 (-1177 (-630 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) + (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-830)) + (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) + ((*1 *1 *1 *1) (-4 *1 (-389)))) +(((*1 *2 *3) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) + (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-689)) (|:| -1992 *4))) (-5 *5 (-689)) - (-4 *4 (-856 *6 *7 *8)) (-4 *6 (-387)) (-4 *7 (-712)) (-4 *8 (-751)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2000 *4))) (-5 *5 (-694)) + (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-385 *6 *7 *8 *4))))) + (-5 *1 (-387 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-712)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) - (-5 *2 (-83)) (-5 *1 (-385 *4 *5 *6 *7))))) + (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) + (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) - (-5 *2 (-1176)) (-5 *1 (-385 *4 *5 *6 *7)) (-4 *7 (-856 *4 *5 *6))))) + (-12 (-5 *3 (-483)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *7)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *2 (-1176)) (-5 *1 (-385 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-480)) + (-12 (-5 *2 (-483)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-689)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-712)) (-4 *4 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *7 (-751)) - (-5 *1 (-385 *5 *6 *7 *4))))) + (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) + (-5 *1 (-387 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-480)) + (-12 (-5 *2 (-483)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-689)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-712)) (-4 *4 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *7 (-751)) - (-5 *1 (-385 *5 *6 *7 *4))))) + (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) + (-5 *1 (-387 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-1176)) - (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) + (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-387)) (-4 *5 (-712)) (-4 *6 (-751)) (-5 *2 (-480)) - (-5 *1 (-385 *4 *5 *6 *3)) (-4 *3 (-856 *4 *5 *6))))) + (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-483)) + (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-580 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-689)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-712)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *5 (-751)) - (-5 *1 (-385 *3 *4 *5 *6))))) + (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) + (-5 *1 (-387 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-712)) (-4 *2 (-856 *4 *5 *6)) (-5 *1 (-385 *4 *5 *6 *2)) - (-4 *4 (-387)) (-4 *6 (-751))))) + (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) + (-4 *4 (-389)) (-4 *6 (-756))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-580 (-2 (|:| |totdeg| (-689)) (|:| -1992 *3)))) (-5 *4 (-689)) - (-4 *3 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) (-4 *7 (-751)) - (-5 *1 (-385 *5 *6 *7 *3))))) + (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 *3)))) (-5 *4 (-694)) + (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *1 (-387 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-387)) (-4 *4 (-712)) (-4 *5 (-751)) (-5 *1 (-385 *3 *4 *5 *2)) - (-4 *2 (-856 *3 *4 *5))))) + (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-856 *5 *6 *7)) (-4 *5 (-387)) (-4 *6 (-712)) - (-4 *7 (-751)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-385 *5 *6 *7 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-387 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-580 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-689)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-712)) (-4 *6 (-856 *4 *3 *5)) (-4 *4 (-387)) (-4 *5 (-751)) - (-5 *1 (-385 *4 *3 *5 *6))))) + (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-756)) + (-5 *1 (-387 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-580 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-689)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-712)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-387)) (-4 *5 (-751)) - (-5 *1 (-385 *3 *4 *5 *6))))) + (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) + (-5 *1 (-387 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-580 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *3) + (-583 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-712)) (-4 *3 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) - (-5 *1 (-385 *4 *5 *6 *3))))) + (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) + (-5 *1 (-387 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-387)) (-4 *3 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-385 *4 *3 *5 *6)) (-4 *6 (-856 *4 *3 *5))))) + (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-387)) (-4 *3 (-712)) (-4 *5 (-751)) (-5 *2 (-83)) - (-5 *1 (-385 *4 *3 *5 *6)) (-4 *6 (-856 *4 *3 *5))))) + (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-689)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-712)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *6 (-751)) - (-5 *2 (-83)) (-5 *1 (-385 *4 *5 *6 *7))))) + (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) + (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-480)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-387)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-387)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *1 (-385 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) - (-5 *3 (-580 *7)))) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) - (-5 *3 (-580 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) + (-5 *3 (-583 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) - (-5 *3 (-580 *7)))) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) - (-5 *3 (-580 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) + (-5 *3 (-583 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-255) (-118))) (-4 *5 (-712)) (-4 *6 (-751)) - (-4 *7 (-856 *4 *5 *6)) (-5 *2 (-580 (-580 *7))) (-5 *1 (-384 *4 *5 *6 *7)) - (-5 *3 (-580 *7)))) + (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-255) (-118))) (-4 *6 (-712)) (-4 *7 (-751)) - (-4 *8 (-856 *5 *6 *7)) (-5 *2 (-580 (-580 *8))) (-5 *1 (-384 *5 *6 *7 *8)) - (-5 *3 (-580 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) + (-5 *3 (-583 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-580 *6)) (-4 *6 (-856 *3 *4 *5)) (-4 *3 (-255)) (-4 *4 (-712)) - (-4 *5 (-751)) (-5 *1 (-383 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-385 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-255)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-580 *7)) (-5 *3 (-1064)) (-4 *7 (-856 *4 *5 *6)) (-4 *4 (-255)) - (-4 *5 (-712)) (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-856 *4 *5 *6)) (-4 *4 (-255)) (-4 *5 (-712)) - (-4 *6 (-751)) (-5 *1 (-383 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-381)) (-5 *3 (-480))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-383)) (-5 *3 (-483))))) (((*1 *2 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956)))) - ((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956))))) + (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956))))) + (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *1 (-380 *3)) (-4 *3 (-342)) (-4 *3 (-956))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-380 *3)) (-4 *3 (-956))))) -(((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956))))) -(((*1 *2 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956)))) - ((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-380 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-382 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-480)) (-5 *1 (-380 *2)) (-4 *2 (-956))))) + (-12 (-5 *3 (-694)) (-5 *4 (-483)) (-5 *1 (-382 *2)) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-343 *6)) (-4 *6 (-1146 *5)) (-4 *5 (-956)) - (-5 *2 (-580 *6)) (-5 *1 (-379 *5 *6))))) + (-12 (-5 *3 (-830)) (-5 *4 (-345 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-961)) + (-5 *2 (-583 *6)) (-5 *1 (-381 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-825)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) + (|partial| -12 (-5 *3 (-830)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-825)) (-5 *4 (-689)) (-5 *1 (-377 *2)) - (-4 *2 (-1146 (-480))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-379 *2)) + (-4 *2 (-1153 (-483))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *1 (-377 *2)) - (-4 *2 (-1146 (-480))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-379 *2)) + (-4 *2 (-1153 (-483))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *5 (-689)) - (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) + (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-825)) (-5 *4 (-580 (-689))) (-5 *5 (-689)) - (-5 *6 (-83)) (-5 *1 (-377 *2)) (-4 *2 (-1146 (-480))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) + (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-343 *2)) (-4 *2 (-1146 *5)) (-5 *1 (-379 *5 *2)) - (-4 *5 (-956))))) + (-12 (-5 *3 (-830)) (-5 *4 (-345 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-381 *5 *2)) + (-4 *5 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3715 *4) (|:| -3931 (-480))))) - (-4 *4 (-1146 (-480))) (-5 *2 (-670 (-689))) (-5 *1 (-377 *4)))) + (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) + (-4 *4 (-1153 (-483))) (-5 *2 (-675 (-694))) (-5 *1 (-379 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-343 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-956)) - (-5 *2 (-670 (-689))) (-5 *1 (-379 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-956)) (-5 *1 (-379 *3 *2)) (-4 *2 (-1146 *3))))) + (-12 (-5 *3 (-345 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-961)) + (-5 *2 (-675 (-694))) (-5 *1 (-381 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) - (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) + (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) - (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) + (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-689)) (-4 *5 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *5 *3 *6)) - (-4 *3 (-1146 *5)) (-4 *6 (-13 (-342) (-945 *5) (-309) (-1106) (-237))))) + (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *5 *3 *6)) + (-4 *3 (-1153 *5)) (-4 *6 (-13 (-344) (-950 *5) (-311) (-1113) (-239))))) ((*1 *2 *3) - (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) - (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) + (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) - (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) + (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-13 (-342) (-945 *4) (-309) (-1106) (-237))) - (-5 *1 (-378 *4 *3 *2)) (-4 *3 (-1146 *4)))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) + (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825)) (-4 *5 (-956)) - (-4 *2 (-13 (-342) (-945 *5) (-309) (-1106) (-237))) (-5 *1 (-378 *5 *3 *2)) - (-4 *3 (-1146 *5))))) + (-12 (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) + (-4 *3 (-1153 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-956)) (-5 *2 (-480)) (-5 *1 (-378 *4 *3 *5)) (-4 *3 (-1146 *4)) - (-4 *5 (-13 (-342) (-945 *4) (-309) (-1106) (-237)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) + (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-83)) (-5 *5 (-1003 (-689))) (-5 *6 (-689)) - (-5 *2 - (-2 (|:| |contp| (-480)) - (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) - (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2564 (-480)) (|:| -1768 (-580 *3)))) (-5 *1 (-377 *3)) - (-4 *3 (-1146 (-480)))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-343 *3)) (-4 *3 (-491)))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-2 (|:| -3715 *4) (|:| -3931 (-480))))) - (-4 *4 (-1146 (-480))) (-5 *2 (-689)) (-5 *1 (-377 *4))))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480))))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-377 *3)) (-4 *3 (-1146 (-480)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-694))) (-5 *6 (-694)) + (-5 *2 + (-2 (|:| |contp| (-483)) + (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) + (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2574 (-483)) (|:| -1776 (-583 *3)))) (-5 *1 (-379 *3)) + (-4 *3 (-1153 (-483)))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) + (-4 *4 (-1153 (-483))) (-5 *2 (-694)) (-5 *1 (-379 *4))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-580 + (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-480))))) - (-4 *2 (-491)) (-5 *1 (-343 *2)))) + (|:| |xpnt| (-483))))) + (-4 *2 (-494)) (-5 *1 (-345 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-480)) - (|:| -1768 (-580 (-2 (|:| |irr| *4) (|:| -2383 (-480))))))) - (-4 *4 (-1146 (-480))) (-5 *2 (-343 *4)) (-5 *1 (-377 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-372)) (|:| -3893 "void"))) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-852 (-480)))) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-374))))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *1) (-5 *1 (-374)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-945 (-48))) (-4 *4 (-13 (-491) (-945 (-480)))) - (-4 *5 (-359 *4)) (-5 *2 (-343 (-1076 (-48)))) (-5 *1 (-373 *4 *5 *3)) - (-4 *3 (-1146 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) - (-5 *2 - (-3 (|:| |overq| (-1076 (-345 (-480)))) (|:| |overan| (-1076 (-48))) - (|:| -2625 (-83)))) - (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) - (-5 *2 (-343 (-1076 (-345 (-480))))) (-5 *1 (-373 *4 *5 *3)) - (-4 *3 (-1146 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-4 *5 (-359 *4)) (-5 *2 (-343 *3)) - (-5 *1 (-373 *4 *5 *3)) (-4 *3 (-1146 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) + (-2 (|:| |contp| (-483)) + (|:| -1776 (-583 (-2 (|:| |irr| *4) (|:| -2391 (-483))))))) + (-4 *4 (-1153 (-483))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 "void"))) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-483)))) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *1) (-5 *1 (-376)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-494) (-950 (-483)))) + (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-48)))) (-5 *1 (-375 *4 *5 *3)) + (-4 *3 (-1153 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) + (-5 *2 + (-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) + (|:| -2635 (-85)))) + (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) + (-5 *2 (-345 (-1083 (-347 (-483))))) (-5 *1 (-375 *4 *5 *3)) + (-4 *3 (-1153 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) + (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) (((*1 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)))) (-5 *2 (-1176)) (-5 *1 (-371 *3 *4)) - (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *2 (-1183)) (-5 *1 (-373 *3 *4)) + (-4 *4 (-361 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-491) (-945 (-480)))) (-5 *2 (-345 (-480))) - (-5 *1 (-371 *4 *3)) (-4 *3 (-359 *4)))) + (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-483))) + (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-547 *3)) (-4 *3 (-359 *5)) (-4 *5 (-13 (-491) (-945 (-480)))) - (-5 *2 (-1076 (-345 (-480)))) (-5 *1 (-371 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-369 *3 *2)) (-4 *2 (-359 *3))))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-494) (-950 (-483)))) + (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-373 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-144) (-38 (-345 (-480))))) - (-4 *2 (-13 (-751) (-21)))))) + (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) + (-4 *2 (-13 (-756) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-144) (-38 (-345 (-480))))) - (-4 *2 (-13 (-751) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-515 *3)) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1007)) (-5 *2 (-689))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1007)) (-4 *2 (-315))))) -(((*1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-315)) (-4 *2 (-1007))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-361 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-359 *3))) - (-14 *4 (-1081)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-4 *2 (-13 (-27) (-1106) (-359 *3) (-10 -8 (-15 -3929 ($ *4))))) - (-4 *4 (-750)) + (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) + (-4 *2 (-13 (-756) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1012)) (-5 *2 (-694))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-317))))) +(((*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1012))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-361 *3))) + (-14 *4 (-1088)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-4 *2 (-13 (-27) (-1113) (-361 *3) (-10 -8 (-15 -3940 ($ *4))))) + (-4 *4 (-755)) (-4 *5 - (-13 (-1149 *2 *4) (-309) (-1106) - (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) - (-5 *1 (-362 *3 *2 *4 *5 *6 *7)) (-4 *6 (-891 *5)) (-14 *7 (-1081))))) + (-13 (-1156 *2 *4) (-311) (-1113) + (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) + (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1088))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-83)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-4 *3 (-13 (-27) (-1106) (-359 *6) (-10 -8 (-15 -3929 ($ *7))))) - (-4 *7 (-750)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) + (-4 *7 (-755)) (-4 *8 - (-13 (-1149 *3 *7) (-309) (-1106) - (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) + (-13 (-1156 *3 *7) (-311) (-1113) + (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) - (-5 *1 (-362 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1064)) (-4 *9 (-891 *8)) - (-14 *10 (-1081))))) + (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) + (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) + (-14 *10 (-1088))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-83)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-4 *3 (-13 (-27) (-1106) (-359 *6) (-10 -8 (-15 -3929 ($ *7))))) - (-4 *7 (-750)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) + (-4 *7 (-755)) (-4 *8 - (-13 (-1149 *3 *7) (-309) (-1106) - (-10 -8 (-15 -3741 ($ $)) (-15 -3795 ($ $))))) + (-13 (-1156 *3 *7) (-311) (-1113) + (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) - (-5 *1 (-362 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1064)) (-4 *9 (-891 *8)) - (-14 *10 (-1081))))) + (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) + (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) + (-14 *10 (-1088))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-3 (|:| |%expansion| (-261 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1064)) (|:| |prob| (-1064)))))) - (-5 *1 (-361 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-359 *5))) - (-14 *6 (-1081)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) + (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) + (-14 *6 (-1088)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-1007)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *3 (-711)) (-4 *2 (-956)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-1007))))) + (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1081)) (-5 *3 (-580 *1)) (-4 *1 (-359 *4)) (-4 *4 (-1007)))) + (-12 (-5 *2 (-1088)) (-5 *3 (-583 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-4 *1 (-359 *3)) (-4 *3 (-1007))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1007)) - (-5 *2 (-2 (|:| -3937 (-480)) (|:| |var| (-547 *1)))) (-4 *1 (-359 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-491)) (-5 *1 (-357 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-309)) (-4 *1 (-277 *3)))) + (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) + (-5 *2 (-2 (|:| -3948 (-483)) (|:| |var| (-550 *1)))) (-4 *1 (-361 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-494)) (-5 *1 (-359 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1146 *4)) (-4 *4 (-1125)) - (-4 *1 (-288 *4 *3 *5)) (-4 *5 (-1146 (-345 *3))))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) + (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1170 *1)) (-4 *4 (-144)) (-4 *1 (-313 *4)))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1170 *1)) (-4 *4 (-144)) - (-4 *1 (-317 *4 *5)) (-4 *5 (-1146 *4)))) + (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) + (-4 *1 (-319 *4 *5)) (-4 *5 (-1153 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-348 *3 *4)) - (-4 *4 (-1146 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-144)) (-4 *1 (-356 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *2)) (-4 *2 (-144)))) - ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-355 *3 *2)) (-4 *3 (-356 *2)))) - ((*1 *2) (-12 (-4 *1 (-356 *2)) (-4 *2 (-144))))) -(((*1 *2 *3) (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *2)) (-4 *2 (-144)))) - ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-355 *3 *2)) (-4 *3 (-356 *2)))) - ((*1 *2) (-12 (-4 *1 (-356 *2)) (-4 *2 (-144))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) + (-4 *4 (-1153 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) + ((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) + ((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-627 *4)) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) - ((*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-627 *4)) (-5 *1 (-355 *3 *4)) - (-4 *3 (-356 *4)))) - ((*1 *2) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-313 *4)) (-4 *4 (-144)) (-5 *2 (-627 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-356 *3)) (-4 *3 (-144)) (-5 *2 (-627 *3))))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-351 *3 *4 *5 *6)) (-4 *6 (-945 *4)) (-4 *3 (-255)) - (-4 *4 (-899 *3)) (-4 *5 (-1146 *4)) (-4 *6 (-348 *4 *5)) - (-14 *7 (-1170 *6)) (-5 *1 (-353 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-257)) + (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-350 *4 *5)) + (-14 *7 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *6)) (-4 *6 (-348 *4 *5)) (-4 *4 (-899 *3)) - (-4 *5 (-1146 *4)) (-4 *3 (-255)) (-5 *1 (-353 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1177 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-904 *3)) + (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-255)) (-4 *3 (-899 *2)) (-4 *4 (-1146 *3)) - (-5 *1 (-351 *2 *3 *4 *5)) (-4 *5 (-13 (-348 *3 *4) (-945 *3)))))) + (-12 (-4 *2 (-257)) (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) + (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-689)) (-5 *4 (-1170 *2)) (-4 *5 (-255)) (-4 *6 (-899 *5)) - (-4 *2 (-13 (-348 *6 *7) (-945 *6))) (-5 *1 (-351 *5 *6 *7 *2)) - (-4 *7 (-1146 *6))))) + (-12 (-5 *3 (-694)) (-5 *4 (-1177 *2)) (-4 *5 (-257)) (-4 *6 (-904 *5)) + (-4 *2 (-13 (-350 *6 *7) (-950 *6))) (-5 *1 (-353 *5 *6 *7 *2)) + (-4 *7 (-1153 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)) - (-5 *1 (-347 *3 *4 *5)) (-4 *3 (-348 *4 *5)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)) + (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) - (-5 *2 (-627 *3))))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) + (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1170 *1)) (-4 *1 (-317 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1146 *4)) (-5 *2 (-627 *4)))) + (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1146 *3)) - (-5 *2 (-627 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491))))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) + (-5 *2 (-630 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 (-480))))) (-5 *1 (-307 *3)) - (-4 *3 (-1007)))) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-483))))) (-5 *1 (-309 *3)) + (-4 *3 (-1012)))) ((*1 *2 *1) - (-12 (-4 *1 (-331 *3)) (-4 *3 (-1007)) - (-5 *2 (-580 (-2 (|:| |gen| *3) (|:| -3926 (-689))))))) + (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) + (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-694))))))) ((*1 *2 *1) - (-12 (-5 *2 (-580 (-2 (|:| -3715 *3) (|:| -2389 (-480))))) (-5 *1 (-343 *3)) - (-4 *3 (-491))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-343 *3)) (-4 *3 (-491))))) + (-12 (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -2397 (-483))))) (-5 *1 (-345 *3)) + (-4 *3 (-494))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-343 *4)) (-4 *4 (-491))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-480)) (-5 *1 (-343 *2)) (-4 *2 (-491))))) + (-12 (-5 *3 (-483)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-345 *4)) (-4 *4 (-494))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-343 *2)) (-4 *2 (-491))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-325))) (-5 *1 (-219)))) - ((*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491))))) -(((*1 *1 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-491))))) -(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-480))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *3 (-83)) (-5 *1 (-79)))) - ((*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) - ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (|has| *1 (-6 -3969)) (-4 *1 (-342)))) - ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-825))))) -(((*1 *2 *3) - (-12 (-5 *3 (-480)) (|has| *1 (-6 -3969)) (-4 *1 (-342)) (-5 *2 (-825))))) -(((*1 *2 *3) - (-12 (-5 *3 (-480)) (|has| *1 (-6 -3969)) (-4 *1 (-342)) (-5 *2 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-689)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340)) (-5 *2 (-689))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-689)))) - ((*1 *1 *1) (-4 *1 (-340)))) + (-12 (-5 *3 (-483)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-345 *2)) (-4 *2 (-494))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-221)))) + ((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494))))) +(((*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494))))) +(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830))))) +(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-694)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-694))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-694)))) + ((*1 *1 *1) (-4 *1 (-342)))) (((*1 *1 *2) - (-12 (-5 *2 (-345 *4)) (-4 *4 (-1146 *3)) (-4 *3 (-13 (-309) (-118))) - (-5 *1 (-337 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1146 *3)) (-5 *1 (-337 *3 *2)) (-4 *3 (-13 (-309) (-118)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-309) (-118))) - (-5 *2 (-580 (-2 (|:| -2389 (-689)) (|:| -3756 *4) (|:| |num| *4)))) - (-5 *1 (-337 *3 *4)) (-4 *4 (-1146 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 (-689)) (-14 *4 (-689)) - (-4 *5 (-144))))) -(((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-335 *3 *4 *5)) (-14 *3 (-689)) (-14 *4 (-689)) - (-4 *5 (-144))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1064)) (-4 *1 (-334))))) -(((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-334)) (-5 *2 (-83))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-1007))))) + (-12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) + (-5 *1 (-339 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1153 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-311) (-120))) + (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) + (-5 *1 (-339 *3 *4)) (-4 *4 (-1153 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) + (-4 *5 (-146))))) +(((*1 *2 *1) + (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) + (-4 *5 (-146))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336))))) +(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1007)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-331 *3))))) + (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-333 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-956)) (-4 *4 (-1007)) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-345 (-852 (-480))))) (-5 *4 (-580 (-1081))) - (-5 *2 (-580 (-580 *5))) (-5 *1 (-327 *5)) (-4 *5 (-13 (-750) (-309))))) + (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *4 (-583 (-1088))) + (-5 *2 (-583 (-583 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-755) (-311))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 (-480)))) (-5 *2 (-580 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-13 (-750) (-309)))))) + (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-755) (-311)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 (-140 (-480))))) (-5 *2 (-580 (-140 *4))) - (-5 *1 (-326 *4)) (-4 *4 (-13 (-309) (-750))))) + (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-580 (-345 (-852 (-140 (-480)))))) (-5 *4 (-580 (-1081))) - (-5 *2 (-580 (-580 (-140 *5)))) (-5 *1 (-326 *5)) - (-4 *5 (-13 (-309) (-750)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-345 (-852 (-140 (-480)))))) - (-5 *2 (-580 (-580 (-246 (-852 (-140 *4)))))) (-5 *1 (-326 *4)) - (-4 *4 (-13 (-309) (-750))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-246 (-345 (-852 (-140 (-480))))))) - (-5 *2 (-580 (-580 (-246 (-852 (-140 *4)))))) (-5 *1 (-326 *4)) - (-4 *4 (-13 (-309) (-750))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-345 (-852 (-140 (-480))))) - (-5 *2 (-580 (-246 (-852 (-140 *4))))) (-5 *1 (-326 *4)) - (-4 *4 (-13 (-309) (-750))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-246 (-345 (-852 (-140 (-480)))))) - (-5 *2 (-580 (-246 (-852 (-140 *4))))) (-5 *1 (-326 *4)) - (-4 *4 (-13 (-309) (-750)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-480)) (-5 *1 (-325))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-177)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-177)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-325)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-689)) (-5 *2 (-345 (-480))) (-5 *1 (-325))))) -(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-325))) - ((*1 *1) (-5 *1 (-325)))) -(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-325))) - ((*1 *1) (-5 *1 (-325)))) -(((*1 *1) (-5 *1 (-177))) ((*1 *1) (-5 *1 (-325)))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-325))))) -(((*1 *2 *3) (-12 (-5 *3 (-689)) (-5 *2 (-1176)) (-5 *1 (-325))))) + (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *4 (-583 (-1088))) + (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-328 *5)) + (-4 *5 (-13 (-311) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) + (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) + (-4 *4 (-13 (-311) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-248 (-347 (-857 (-142 (-483))))))) + (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) + (-4 *4 (-13 (-311) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-347 (-857 (-142 (-483))))) + (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) + (-4 *4 (-13 (-311) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-248 (-347 (-857 (-142 (-483)))))) + (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) + (-4 *4 (-13 (-311) (-755)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-327))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327))))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327))) + ((*1 *1) (-5 *1 (-327)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327))) + ((*1 *1) (-5 *1 (-327)))) +(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-327)))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) + ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) + ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) + ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) - (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) + (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) - (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) + (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-322 *4 *2)) - (-4 *2 (-13 (-319 *4) (-10 -7 (-6 -3979))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) + (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990))))))) (((*1 *1 *2) - (-12 (-5 *2 (-611 *3)) (-4 *3 (-751)) (-4 *1 (-321 *3 *4)) (-4 *4 (-144))))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3)) (-4 *3 (-1120)) (-4 *3 (-751)) (-5 *2 (-83)))) + (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-756)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-319 *4)) (-4 *4 (-1120)) - (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) + (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-480)) (|has| *1 (-6 -3979)) (-4 *1 (-319 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3979)) (-4 *1 (-319 *2)) (-4 *2 (-1120)) (-4 *2 (-751)))) + (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3979)) (-4 *1 (-319 *3)) - (-4 *3 (-1120))))) -(((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1170 *1)) (-4 *1 (-313 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-1076 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-1076 *3))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) + (-4 *3 (-1127))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-315 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) -(((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) + ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-580 (-1170 *4))) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1177 *4))) (-5 *1 (-314 *3 *4)) + (-4 *3 (-315 *4)))) ((*1 *2) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) - (-5 *2 (-580 (-1170 *3)))))) + (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) + (-5 *2 (-583 (-1177 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) (-5 *2 (-1076 *3))))) + (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-144)) (-4 *3 (-491)) (-5 *2 (-1076 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144))))) -(((*1 *1) (|partial| -12 (-4 *1 (-313 *2)) (-4 *2 (-491)) (-4 *2 (-144))))) + (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1064)) (-4 *1 (-311 *2 *4)) (-4 *2 (-1007)) (-4 *4 (-1007)))) - ((*1 *1 *2) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) + (-12 (-5 *3 (-1071)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) + ((*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1064)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007))))) -(((*1 *1 *1) (-4 *1 (-145))) - ((*1 *1 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-1071)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) +(((*1 *1 *1) (-4 *1 (-147))) + ((*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) (((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) (-5 *2 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1007)) (-4 *2 (-1007))))) + (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-4 *2 - (-13 (-340) - (-10 -7 (-15 -3929 (*2 *4)) (-15 -1998 ((-825) *2)) - (-15 -2000 ((-1170 *2) (-825))) (-15 -3911 (*2 *2))))) - (-5 *1 (-303 *2 *4))))) + (-13 (-342) + (-10 -7 (-15 -3940 (*2 *4)) (-15 -2006 ((-830) *2)) + (-15 -2008 ((-1177 *2) (-830))) (-15 -3922 (*2 *2))))) + (-5 *1 (-305 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-864 (-1076 *4))) (-5 *1 (-302 *4)) - (-5 *3 (-1076 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (-12 (-4 *4 (-298)) (-5 *2 (-869 (-1083 *4))) (-5 *1 (-304 *4)) + (-5 *3 (-1083 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-296)) (-5 *1 (-302 *3))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) (-5 *2 (-1076 *4)) (-5 *1 (-302 *4)) (-4 *4 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-825)) (-5 *1 (-302 *3)) (-4 *3 (-296))))) -(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-83)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) +(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-302 *4))))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))) (((*1 *2) - (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 (-812 *3)) (|:| -2388 (-1025)))))) - (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) + (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 (-817 *3)) (|:| -2396 (-1032)))))) + (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025)))))) - (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) (-14 *4 (-3 (-1076 *3) *2)))) + (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) + (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025)))))) - (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825))))) + (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) + (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830))))) (((*1 *2) - (-12 (-5 *2 (-627 (-812 *3))) (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) - (-14 *4 (-825)))) + (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-627 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) + (-12 (-5 *2 (-630 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 - (-3 (-1076 *3) (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025))))))))) + (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))))) ((*1 *2) - (-12 (-5 *2 (-627 *3)) (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825))))) + (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) - (-4 *4 (-296)) (-5 *2 (-689)) (-5 *1 (-293 *4)))) + (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) + (-4 *4 (-298)) (-5 *2 (-694)) (-5 *1 (-295 *4)))) ((*1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-298 *3 *4)) (-14 *3 (-825)) (-14 *4 (-825)))) + (-12 (-5 *2 (-694)) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-299 *3 *4)) (-4 *3 (-296)) + (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 - (-3 (-1076 *3) (-1170 (-580 (-2 (|:| -3385 *3) (|:| -2388 (-1025))))))))) + (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))))) ((*1 *2) - (-12 (-5 *2 (-689)) (-5 *1 (-300 *3 *4)) (-4 *3 (-296)) (-14 *4 (-825))))) + (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830))))) (((*1 *2) - (-12 (-4 *1 (-296)) - (-5 *2 (-580 (-2 (|:| -3715 (-480)) (|:| -2389 (-480)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-480)) (-5 *2 (-1093 (-825) (-689)))))) -(((*1 *1) (-4 *1 (-296)))) + (-12 (-4 *1 (-298)) + (-5 *2 (-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-483)) (-5 *2 (-1100 (-830) (-694)))))) +(((*1 *1) (-4 *1 (-298)))) (((*1 *2) - (-12 (-4 *1 (-296)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-825)) + (-12 (-5 *3 (-830)) (-5 *2 - (-3 (-1076 *4) (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025))))))) - (-5 *1 (-293 *4)) (-4 *4 (-296))))) + (-3 (-1083 *4) (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))) + (-5 *1 (-295 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-825)) - (-5 *2 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) - (-5 *1 (-293 *4)) (-4 *4 (-296))))) + (|partial| -12 (-5 *3 (-830)) + (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) + (-5 *1 (-295 *4)) (-4 *4 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) - (-4 *4 (-296)) (-5 *2 (-627 *4)) (-5 *1 (-293 *4))))) + (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) + (-4 *4 (-298)) (-5 *2 (-630 *4)) (-5 *1 (-295 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) - (-5 *2 (-1170 (-580 (-2 (|:| -3385 *4) (|:| -2388 (-1025)))))) - (-5 *1 (-293 *4))))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) + (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) + (-5 *1 (-295 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *4)) (-4 *4 (-296)) (-5 *2 (-864 (-1025))) - (-5 *1 (-293 *4))))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-869 (-1032))) + (-5 *1 (-295 *4))))) (((*1 *2) - (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-290 *3 *4)) (-14 *3 (-825)) - (-14 *4 (-825)))) + (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-292 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-291 *3 *4)) (-4 *3 (-296)) - (-14 *4 (-1076 *3)))) + (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) + (-14 *4 (-1083 *3)))) ((*1 *2) - (-12 (-5 *2 (-864 (-1025))) (-5 *1 (-292 *3 *4)) (-4 *3 (-296)) - (-14 *4 (-825))))) + (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) + (-14 *4 (-830))))) (((*1 *2) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-689)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-689))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694))))) (((*1 *2) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-83)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *3 (-288 *4 *5 *6)))) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1125)) (-4 *5 (-1146 *3)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-83)) (-5 *1 (-287 *4 *3 *5 *6)) (-4 *4 (-288 *3 *5 *6)))) + (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) - (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) + (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) - (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) + (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) - (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) + (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1125)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5))))) + (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-288 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-1146 *4)) - (-4 *5 (-1146 (-345 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) + (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83)))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4)))))) + (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) + (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4)))))) + (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) + (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1170 *1)) (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4)))))) + (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) + (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4)))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4)))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4)))))) (((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-5 *2 (-627 (-345 *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-2 (|:| |num| (-1170 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-2 (|:| |num| (-1170 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1146 *4)) (-4 *4 (-1125)) - (-4 *1 (-288 *4 *3 *5)) (-4 *5 (-1146 (-345 *3)))))) + (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) + (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-288 *4 *5 *6)) (-4 *4 (-1125)) - (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) + (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 (-345 *2))) (-4 *2 (-1146 *4)) - (-5 *1 (-287 *3 *4 *2 *5)) (-4 *3 (-288 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-288 *3 *2 *4)) (-4 *3 (-1125)) - (-4 *4 (-1146 (-345 *2))) (-4 *2 (-1146 *3))))) + (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) + (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 (-345 *2))) (-4 *2 (-1146 *4)) - (-5 *1 (-287 *3 *4 *2 *5)) (-4 *3 (-288 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-288 *3 *2 *4)) (-4 *3 (-1125)) - (-4 *4 (-1146 (-345 *2))) (-4 *2 (-1146 *3))))) + (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) + (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-1125)) - (-4 *6 (-1146 (-345 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132)) + (-4 *6 (-1153 (-347 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-288 *4 *5 *6))))) + (-4 *1 (-290 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *5 (-1125)) (-4 *6 (-1146 *5)) - (-4 *7 (-1146 (-345 *6))) (-5 *2 (-580 (-852 *5))) - (-5 *1 (-287 *4 *5 *6 *7)) (-4 *4 (-288 *5 *6 *7)))) + (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) + (-4 *7 (-1153 (-347 *6))) (-5 *2 (-583 (-857 *5))) + (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *1 (-288 *4 *5 *6)) (-4 *4 (-1125)) - (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) (-4 *4 (-309)) - (-5 *2 (-580 (-852 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) + (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *4 (-311)) + (-5 *2 (-583 (-857 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) (-4 *6 (-1146 (-345 *5))) - (-5 *2 (-580 (-580 *4))) (-5 *1 (-287 *3 *4 *5 *6)) - (-4 *3 (-288 *4 *5 *6)))) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) + (-5 *2 (-583 (-583 *4))) (-5 *1 (-289 *3 *4 *5 *6)) + (-4 *3 (-290 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-288 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *3 (-315)) (-5 *2 (-580 (-580 *3)))))) + (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-583 (-583 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-309)) (-4 *3 (-1146 *4)) (-4 *5 (-1146 (-345 *3))) - (-4 *1 (-283 *4 *3 *5 *2)) (-4 *2 (-288 *4 *3 *5)))) + (-12 (-4 *4 (-311)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) + (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-480)) (-4 *2 (-309)) (-4 *4 (-1146 *2)) - (-4 *5 (-1146 (-345 *4))) (-4 *1 (-283 *2 *4 *5 *6)) - (-4 *6 (-288 *2 *4 *5)))) + (-12 (-5 *3 (-483)) (-4 *2 (-311)) (-4 *4 (-1153 *2)) + (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) + (-4 *6 (-290 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-309)) (-4 *3 (-1146 *2)) (-4 *4 (-1146 (-345 *3))) - (-4 *1 (-283 *2 *3 *4 *5)) (-4 *5 (-288 *2 *3 *4)))) + (-12 (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))) + (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) - (-4 *1 (-283 *3 *4 *5 *2)) (-4 *2 (-288 *3 *4 *5)))) + (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) + (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 *4 (-345 *4) *5 *6)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-4 *3 (-309)) - (-4 *1 (-283 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-283 *3 *4 *5 *6)) (-4 *3 (-309)) (-4 *4 (-1146 *3)) - (-4 *5 (-1146 (-345 *4))) (-4 *6 (-288 *3 *4 *5)) (-5 *2 (-83))))) -(((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-1170 *6)) (-5 *1 (-280 *3 *4 *5 *6)) (-4 *6 (-288 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-309)) (-4 *4 (-1146 *3)) (-4 *5 (-1146 (-345 *4))) - (-5 *2 (-1170 *6)) (-5 *1 (-280 *3 *4 *5 *6)) (-4 *6 (-288 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-279))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-777 (-1086) (-689)))) (-5 *1 (-279))))) -(((*1 *2 *1) (-12 (-5 *2 (-864 (-689))) (-5 *1 (-279))))) -(((*1 *2 *1) (-12 (-5 *2 (-441)) (-5 *1 (-279))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-278 *3)) (-4 *3 (-751))))) -(((*1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-315)) (-4 *2 (-309))))) + (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) + (-4 *1 (-285 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) + (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85))))) +(((*1 *2 *1) + (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) + (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1093) (-694)))) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-756))))) +(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1076 *3)) (-4 *3 (-315)) (-4 *1 (-277 *3)) (-4 *3 (-309))))) + (-12 (-5 *2 (-1083 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-1076 *3))))) + (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) - (-5 *2 (-1076 *3)))) + (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) + (-5 *2 (-1083 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-277 *3)) (-4 *3 (-309)) (-4 *3 (-315)) (-5 *2 (-1076 *3))))) + (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-956)) (-4 *3 (-711))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-689)) (-4 *1 (-274 *3 *4)) (-4 *3 (-956)) (-4 *4 (-711)) - (-4 *3 (-144))))) + (-12 (-5 *2 (-694)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-480)) (-4 *1 (-271 *4 *2)) (-4 *4 (-1007)) (-4 *2 (-102))))) + (-12 (-5 *3 (-483)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-271 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-102))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-271 *2 *3)) (-4 *2 (-1007)) (-4 *3 (-102)) (-4 *3 (-711))))) + (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-716))))) (((*1 *2 *3) - (-12 (-5 *3 (-480)) (-4 *4 (-712)) (-4 *5 (-751)) (-4 *2 (-956)) - (-5 *1 (-269 *4 *5 *2 *6)) (-4 *6 (-856 *2 *4 *5))))) + (-12 (-5 *3 (-483)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) + (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1076 *7)) (-5 *3 (-480)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) - (-4 *5 (-751)) (-4 *6 (-956)) (-5 *1 (-269 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-271 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *6)) (-4 *6 (-956)) (-4 *4 (-712)) (-4 *5 (-751)) - (-5 *2 (-1076 *7)) (-5 *1 (-269 *4 *5 *6 *7)) (-4 *7 (-856 *6 *4 *5))))) + (-12 (-5 *3 (-1083 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-1083 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *7)) (-4 *7 (-856 *6 *4 *5)) (-4 *4 (-712)) (-4 *5 (-751)) - (-4 *6 (-956)) (-5 *2 (-1076 *6)) (-5 *1 (-269 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-271 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1076 *9)) (-5 *4 (-580 *7)) (-5 *5 (-580 *8)) (-4 *7 (-751)) - (-4 *8 (-956)) (-4 *9 (-856 *8 *6 *7)) (-4 *6 (-712)) (-5 *2 (-1076 *8)) - (-5 *1 (-269 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) + (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1083 *8)) + (-5 *1 (-271 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-345 (-480))) (-5 *1 (-267 *3 *4 *5)) (-4 *3 (-309)) - (-14 *4 (-1081)) (-14 *5 *3)))) + (-12 (-5 *2 (-347 (-483))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) + (-14 *4 (-1088)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) - (-5 *6 (-480)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) + (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) + (-5 *6 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) - (-5 *6 (-480)) (-5 *7 (-1064)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) + (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) + (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) - (-5 *6 (-177)) (-5 *7 (-480)) (-5 *2 (-1116 (-833))) (-5 *1 (-266)))) + (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) + (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-262 (-480))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-995 (-177))) - (-5 *6 (-177)) (-5 *7 (-480)) (-5 *8 (-1064)) (-5 *2 (-1116 (-833))) - (-5 *1 (-266))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-266)) (-5 *3 (-177))))) + (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) + (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-838))) + (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-246 *6)) (-5 *4 (-84)) (-4 *6 (-359 *5)) - (-4 *5 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *5 *6)))) + (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) + (-4 *5 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-246 *7)) (-5 *4 (-84)) (-5 *5 (-580 *7)) (-4 *7 (-359 *6)) - (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *7)))) + (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-361 *6)) + (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-580 (-246 *7))) (-5 *4 (-580 (-84))) (-5 *5 (-246 *7)) - (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) - (-5 *1 (-265 *6 *7)))) + (-12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) + (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) + (-5 *1 (-267 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-580 (-246 *8))) (-5 *4 (-580 (-84))) (-5 *5 (-246 *8)) - (-5 *6 (-580 *8)) (-4 *8 (-359 *7)) (-4 *7 (-13 (-491) (-550 (-469)))) - (-5 *2 (-51)) (-5 *1 (-265 *7 *8)))) + (-12 (-5 *3 (-583 (-248 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *8)) + (-5 *6 (-583 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472)))) + (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-580 *7)) (-5 *4 (-580 (-84))) (-5 *5 (-246 *7)) - (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) - (-5 *1 (-265 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) + (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) + (-5 *1 (-267 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-580 *8)) (-5 *4 (-580 (-84))) (-5 *6 (-580 (-246 *8))) - (-4 *8 (-359 *7)) (-5 *5 (-246 *8)) (-4 *7 (-13 (-491) (-550 (-469)))) - (-5 *2 (-51)) (-5 *1 (-265 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-248 *8))) + (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-494) (-553 (-472)))) + (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-246 *5)) (-5 *4 (-84)) (-4 *5 (-359 *6)) - (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *5)))) + (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) + (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-4 *3 (-359 *6)) - (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) + (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-4 *3 (-359 *6)) - (-4 *6 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) + (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-84)) (-5 *5 (-246 *3)) (-5 *6 (-580 *3)) (-4 *3 (-359 *7)) - (-4 *7 (-13 (-491) (-550 (-469)))) (-5 *2 (-51)) (-5 *1 (-265 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-583 *3)) (-4 *3 (-361 *7)) + (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-262 *3)) (-4 *3 (-491)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-480)) (-5 *1 (-262 *3)) (-4 *3 (-491)) (-4 *3 (-1007))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-255)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-255)) (-5 *2 (-689))))) + (-12 (-5 *2 (-483)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-694))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-255)))) + (-4 *1 (-257)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2397 *1))) - (-4 *1 (-255))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-580 *1)) (-4 *1 (-255))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-251)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) + (-4 *1 (-257))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-257))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1127)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-580 (-547 *1))) (-5 *3 (-580 *1)) (-4 *1 (-251)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-580 (-246 *1))) (-4 *1 (-251)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-246 *1)) (-4 *1 (-251))))) -(((*1 *1 *1 *1) (-4 *1 (-251))) ((*1 *1 *1) (-4 *1 (-251)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-547 *1)) (-4 *1 (-251))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-547 *1))) (-4 *1 (-251))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-547 *1))) (-4 *1 (-251))))) -(((*1 *2 *1) (-12 (-4 *1 (-251)) (-5 *2 (-580 (-84)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-251)) (-5 *3 (-1081)) (-5 *2 (-83)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-251)) (-5 *2 (-83))))) -(((*1 *2 *3) - (-12 (-5 *3 (-547 *5)) (-4 *5 (-359 *4)) (-4 *4 (-945 (-480))) (-4 *4 (-491)) - (-5 *2 (-1076 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-547 *1)) (-4 *1 (-956)) (-4 *1 (-251)) (-5 *2 (-1076 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-259)) (-5 *1 (-249)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 (-1064))) (-5 *3 (-1064)) (-5 *2 (-259)) (-5 *1 (-249))))) -(((*1 *2 *2) - (-12 (-4 *3 (-956)) (-4 *4 (-1146 *3)) (-5 *1 (-135 *3 *4 *2)) - (-4 *2 (-1146 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-246 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-246 *2)) (-4 *2 (-660)) (-4 *2 (-1120))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-246 *2)) (-4 *2 (-660)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-580 (-246 *3))) (-5 *1 (-246 *3)) (-4 *3 (-491)) - (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-387)) - (-5 *2 - (-580 - (-2 (|:| |eigval| (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4)))) - (|:| |eigmult| (-689)) (|:| |eigvec| (-580 (-627 (-345 (-852 *4)))))))) - (-5 *1 (-245 *4)) (-5 *3 (-627 (-345 (-852 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-387)) - (-5 *2 - (-580 - (-2 (|:| |eigval| (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4)))) - (|:| |geneigvec| (-580 (-627 (-345 (-852 *4)))))))) - (-5 *1 (-245 *4)) (-5 *3 (-627 (-345 (-852 *4))))))) + (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-253)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *1))) (-4 *1 (-253)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253))))) +(((*1 *1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-4 *1 (-253)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-253))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253))))) +(((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-583 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550 *5)) (-4 *5 (-361 *4)) (-4 *4 (-950 (-483))) (-4 *4 (-494)) + (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-253)) (-5 *2 (-1083 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-261)) (-5 *1 (-251)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1071))) (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251))))) +(((*1 *2 *2) + (-12 (-4 *3 (-961)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1153 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-494)) + (-4 *3 (-1127))))) +(((*1 *2 *3) + (-12 (-4 *4 (-389)) + (-5 *2 + (-583 + (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) + (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 *4)))))))) + (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-389)) + (-5 *2 + (-583 + (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) + (|:| |geneigvec| (-583 (-630 (-347 (-857 *4)))))))) + (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-345 (-852 *6)) (-1071 (-1081) (-852 *6)))) (-5 *5 (-689)) - (-4 *6 (-387)) (-5 *2 (-580 (-627 (-345 (-852 *6))))) (-5 *1 (-245 *6)) - (-5 *4 (-627 (-345 (-852 *6)))))) + (-12 (-5 *3 (-3 (-347 (-857 *6)) (-1078 (-1088) (-857 *6)))) (-5 *5 (-694)) + (-4 *6 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *6))))) (-5 *1 (-247 *6)) + (-5 *4 (-630 (-347 (-857 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-345 (-852 *5)) (-1071 (-1081) (-852 *5)))) - (|:| |eigmult| (-689)) (|:| |eigvec| (-580 *4)))) - (-4 *5 (-387)) (-5 *2 (-580 (-627 (-345 (-852 *5))))) (-5 *1 (-245 *5)) - (-5 *4 (-627 (-345 (-852 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-345 (-852 *5)) (-1071 (-1081) (-852 *5)))) (-4 *5 (-387)) - (-5 *2 (-580 (-627 (-345 (-852 *5))))) (-5 *1 (-245 *5)) - (-5 *4 (-627 (-345 (-852 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-345 (-852 *4)))) (-4 *4 (-387)) - (-5 *2 (-580 (-3 (-345 (-852 *4)) (-1071 (-1081) (-852 *4))))) - (-5 *1 (-245 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-991))) (-5 *1 (-244))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-1009))) (-5 *1 (-244))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-1009)) (-5 *1 (-244))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-441)) (-5 *2 (-580 (-871))) (-5 *1 (-244))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-871))) (-5 *1 (-244))))) -(((*1 *1) (-5 *1 (-244)))) -(((*1 *1) (-5 *1 (-244)))) -(((*1 *1) (-5 *1 (-244)))) + (-2 (|:| |eigval| (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) + (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) + (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) + (-5 *4 (-630 (-347 (-857 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (-4 *5 (-389)) + (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) + (-5 *4 (-630 (-347 (-857 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-4 *4 (-389)) + (-5 *2 (-583 (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4))))) + (-5 *1 (-247 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-996))) (-5 *1 (-246))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-1014))) (-5 *1 (-246))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-246))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-583 (-876))) (-5 *1 (-246))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-246))))) +(((*1 *1) (-5 *1 (-246)))) +(((*1 *1) (-5 *1 (-246)))) +(((*1 *1) (-5 *1 (-246)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-480)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-319 *2)) - (-4 *5 (-319 *2)))) + (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) + (-4 *5 (-321 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3979)) (-4 *1 (-241 *3 *2)) (-4 *3 (-1007)) - (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-309)) (-5 *2 (-580 (-1060 *4))) (-5 *1 (-238 *4 *5)) - (-5 *3 (-1060 *4)) (-4 *5 (-1163 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-238 *3 *2)) (-4 *2 (-1163 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-480))) (-4 *1 (-235 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-480)) (-4 *1 (-235 *3)) (-4 *3 (-1120))))) + (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) + (-4 *2 (-1127))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-311)) (-5 *2 (-583 (-1067 *4))) (-5 *1 (-240 *4 *5)) + (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3978)) (-4 *1 (-191 *3)) - (-4 *3 (-1007)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-235 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) + (-4 *3 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-518)) (-5 *3 (-528)) (-5 *4 (-244)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-244)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-232))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1009)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-441)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-232))))) + (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-246)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-345 (-480))) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4)))))) + (-12 (-5 *3 (-347 (-483))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4))) - (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *4 *2))))) + (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))) + (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-580 (-547 *2))) (-5 *4 (-1081)) - (-4 *2 (-13 (-27) (-1106) (-359 *5))) - (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *5 *2))))) + (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1088)) + (-4 *2 (-13 (-27) (-1113) (-361 *5))) + (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-491) (-945 (-480)) (-577 (-480)))) (-5 *1 (-229 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-359 *3))))) + (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1113) (-361 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-491) (-945 (-480)) (-577 (-480)))) - (-5 *1 (-229 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-359 *4)))))) + (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1081)) (-4 *5 (-13 (-491) (-945 (-480)) (-577 (-480)))) + (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-580 (-547 *3))) (|:| |vals| (-580 *3)))) - (-5 *1 (-229 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-359 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) + (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-83)) (-5 *1 (-228 *4 *3)) - (-4 *3 (-13 (-359 *4) (-910)))))) + (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) + (-4 *3 (-13 (-361 *4) (-915)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-580 (-2 (|:| |func| *2) (|:| |pole| (-83))))) - (-4 *2 (-13 (-359 *4) (-910))) (-4 *4 (-491)) (-5 *1 (-228 *4 *2))))) + (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-361 *4) (-915))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-359 *3) (-910)))))) + (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491))))) + (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494))))) (((*1 *2) - (-12 (-4 *2 (-13 (-359 *3) (-910))) (-5 *1 (-228 *3 *2)) (-4 *3 (-491))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-480))) (-5 *1 (-227))))) -(((*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-227))))) -(((*1 *2 *1) - (-12 (-4 *3 (-188)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-226 *4)) - (-4 *6 (-712)) (-5 *2 (-1 *1 (-689))) (-4 *1 (-211 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-956)) (-4 *3 (-751)) (-4 *5 (-226 *3)) (-4 *6 (-712)) - (-5 *2 (-1 *1 (-689))) (-4 *1 (-211 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-689)) (-4 *1 (-226 *2)) (-4 *2 (-751))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-84)))) - ((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-84)))) + (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) + (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) + (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) - (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-689)))) - ((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) - (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-226 *3)) (-4 *3 (-751)) (-5 *2 (-689))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *2 (-51)) - (-5 *1 (-219)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *1 (-221 *2)) - (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-325)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *1) (-5 *1 (-115))) - ((*1 *1 *2) (-12 (-5 *2 (-1038 (-177))) (-5 *1 (-219)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-825)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-778)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-778)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-580 (-219))) (-5 *1 (-220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-831)) - (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-51)) + (-5 *1 (-221)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2)) + (-4 *2 (-1127))))) +(((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1) (-5 *1 (-117))) + ((*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-836)) + (-5 *2 + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-345 (-480))) + (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124)))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124)) (-5 *3 (-580 (-849 (-177)))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124)) (-5 *3 (-580 (-580 (-849 (-177))))))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-778)) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-345 (-480))))) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 (-995 (-325)))) (-5 *1 (-219))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-219))) (-5 *4 (-1081)) (-5 *2 (-83)) (-5 *1 (-219))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-347 (-483))))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1173)) - (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1173)) (-5 *1 (-213 *3)) - (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) - (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1173)) (-5 *1 (-213 *6)))) + (-12 (-5 *3 (-787 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 *5)) (-5 *4 (-998 (-325))) - (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1173)) (-5 *1 (-213 *5)))) + (-12 (-5 *3 (-787 *5)) (-5 *4 (-1003 (-327))) + (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-784 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) - (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *6)))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-784 *5)) (-5 *4 (-998 (-325))) - (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *5)))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) + (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1174)) - (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1174)) (-5 *1 (-213 *3)) - (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-787 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) - (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *6)))) + (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-787 *5)) (-5 *4 (-998 (-325))) - (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1174)) (-5 *1 (-213 *5)))) + (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) + (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *5 (-580 (-219))) - (-5 *2 (-1173)) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) + (-5 *2 (-1180)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1173)) - (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) + (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1173)) (-5 *1 (-214)))) + (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1173)) - (-5 *1 (-214)))) + (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) + (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) - (-5 *1 (-214)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) + (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) - (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) + (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) (-5 *2 (-1174)) - (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) + (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *2 (-1174)) (-5 *1 (-214)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-246 *7)) (-5 *4 (-1081)) (-5 *5 (-580 (-219))) - (-4 *7 (-359 *6)) (-4 *6 (-13 (-491) (-751) (-945 (-480)))) (-5 *2 (-1173)) - (-5 *1 (-215 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-580 (-177))) (-5 *2 (-1173)) (-5 *1 (-218)))) + (-12 (-5 *3 (-248 *7)) (-5 *4 (-1088)) (-5 *5 (-583 (-221))) + (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-756) (-950 (-483)))) (-5 *2 (-1180)) + (-5 *1 (-217 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1180)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-580 (-177))) (-5 *4 (-580 (-219))) (-5 *2 (-1173)) - (-5 *1 (-218)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *2 (-1173)) (-5 *1 (-218)))) + (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) + (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-580 (-849 (-177)))) (-5 *4 (-580 (-219))) (-5 *2 (-1173)) - (-5 *1 (-218)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-580 (-177))) (-5 *2 (-1174)) (-5 *1 (-218)))) + (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) + (-5 *1 (-220)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-580 (-177))) (-5 *4 (-580 (-219))) (-5 *2 (-1174)) - (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-216))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-216))))) -(((*1 *2 *2) (-12 (-5 *2 (-480)) (-5 *1 (-216))))) + (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) + (-5 *1 (-220))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-995 (-177))) - (-5 *2 (-1174)) (-5 *1 (-216))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) + (-5 *2 (-1181)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-995 (-177))) - (-5 *5 (-83)) (-5 *2 (-1174)) (-5 *1 (-216))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) + (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-849 (-177)) (-177) (-177))) - (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-214))))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) + (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-784 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) - (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) - (-5 *1 (-213 *6)))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-784 *5)) (-5 *4 (-998 (-325))) - (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) - (-5 *1 (-213 *5)))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) + (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) - (-5 *1 (-213 *3)) (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-998 (-325))) (-5 *2 (-1038 (-177))) (-5 *1 (-213 *3)) - (-4 *3 (-13 (-550 (-469)) (-1007))))) + (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-472)) (-1012))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-787 *6)) (-5 *4 (-998 (-325))) (-5 *5 (-580 (-219))) - (-4 *6 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) - (-5 *1 (-213 *6)))) + (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-787 *5)) (-5 *4 (-998 (-325))) - (-4 *5 (-13 (-550 (-469)) (-1007))) (-5 *2 (-1038 (-177))) - (-5 *1 (-213 *5)))) + (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) + (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-784 (-1 (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-849 (-177)) (-177))) (-5 *4 (-995 (-325))) - (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-849 (-177)) (-177) (-177))) (-5 *4 (-995 (-325))) - (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *5 (-580 (-219))) (-5 *2 (-1038 (-177))) (-5 *1 (-214)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-787 (-1 (-177) (-177) (-177)))) (-5 *4 (-995 (-325))) - (-5 *2 (-1038 (-177))) (-5 *1 (-214))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-174 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-212 *3)))) - ((*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) - (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-580 *4))))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) + (-5 *2 (-1045 (-179))) (-5 *1 (-216))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3)))) + ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-211 *4 *3 *5 *6)) (-4 *4 (-956)) (-4 *3 (-751)) - (-4 *5 (-226 *3)) (-4 *6 (-712)) (-5 *2 (-580 (-689))))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) ((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) - (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-580 (-689)))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))) (((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *5 *6)) (-4 *3 (-956)) (-4 *4 (-751)) - (-4 *5 (-226 *4)) (-4 *6 (-712)) (-5 *2 (-83))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-211 *3 *4 *2 *5)) (-4 *3 (-956)) (-4 *4 (-751)) (-4 *5 (-712)) - (-4 *2 (-226 *4))))) + (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) + (-4 *2 (-228 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-211 *2 *3 *4 *5)) (-4 *2 (-956)) (-4 *3 (-751)) - (-4 *4 (-226 *3)) (-4 *5 (-712))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) + (-4 *4 (-228 *3)) (-4 *5 (-717))))) (((*1 *1 *1) - (-12 (-4 *1 (-211 *2 *3 *4 *5)) (-4 *2 (-956)) (-4 *3 (-751)) - (-4 *4 (-226 *3)) (-4 *5 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-279)) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-5 *2 (-156 (-206))) (-5 *1 (-205))))) -(((*1 *1 *2) (-12 (-5 *2 (-156 (-206))) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-205))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) + (-4 *4 (-228 *3)) (-4 *5 (-717))))) +(((*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) +(((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-689)) - (-4 *3 (-13 (-660) (-315) (-10 -7 (-15 ** (*3 *3 (-480)))))) - (-5 *1 (-202 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-201 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-200 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-200 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-480)) (-5 *1 (-197)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-480)) (-5 *1 (-197))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1176)) (-5 *1 (-197)))) - ((*1 *2 *3) (-12 (-5 *3 (-580 (-1064))) (-5 *2 (-1176)) (-5 *1 (-197))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1064)) (-5 *3 (-480)) (-5 *1 (-197))))) -(((*1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-197))))) -(((*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-1120)) (-4 *1 (-194 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 (-852 (-480)))) - (-5 *2 - (-2 (|:| |varOrder| (-580 (-1081))) - (|:| |inhom| (-3 (-580 (-1170 (-689))) "failed")) - (|:| |hom| (-580 (-1170 (-689)))))) - (-5 *1 (-192))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-4 *1 (-191 *3)))) - ((*1 *1) (-12 (-4 *1 (-191 *2)) (-4 *2 (-1007))))) -(((*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-309) (-1106)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) -(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) + (|partial| -12 (-5 *2 (-694)) + (-4 *3 (-13 (-663) (-317) (-10 -7 (-15 ** (*3 *3 (-483)))))) + (-5 *1 (-204 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-483)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199))))) +(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-248 (-857 (-483)))) + (-5 *2 + (-2 (|:| |varOrder| (-583 (-1088))) + (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) + (|:| |hom| (-583 (-1177 (-694)))))) + (-5 *1 (-194))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3)))) + ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *3 (-852 *6)) (-5 *4 (-1081)) - (-5 *5 (-745 *7)) (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-176 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1088)) + (-5 *5 (-750 *7)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1076 *6)) (-5 *4 (-745 *6)) - (-4 *6 (-13 (-1106) (-29 *5))) - (-4 *5 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-176 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-750 *6)) + (-4 *6 (-13 (-1113) (-29 *5))) + (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-745 *4)) (-5 *3 (-547 *4)) (-5 *5 (-83)) - (-4 *4 (-13 (-1106) (-29 *6))) - (-4 *6 (-13 (-387) (-945 (-480)) (-577 (-480)))) (-5 *1 (-176 *6 *4))))) + (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1113) (-29 *6))) + (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1064)) (-4 *4 (-13 (-387) (-945 (-480)) (-577 (-480)))) - (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-956)) (-14 *3 (-580 (-1081))))) + (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) ((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) - (-14 *3 (-580 (-1081)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1088)))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-956)) - (-14 *4 (-580 (-1081))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1088))))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-956) (-751))) - (-14 *4 (-580 (-1081)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1088)))))) (((*1 *1 *2) - (-12 (-5 *2 (-262 *3)) (-4 *3 (-13 (-956) (-751))) (-5 *1 (-175 *3 *4)) - (-14 *4 (-580 (-1081)))))) + (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-583 (-1088)))))) (((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-956) (-751))) - (-14 *3 (-580 (-1081)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1088)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1081)) (-5 *6 (-83)) - (-4 *7 (-13 (-255) (-118) (-945 (-480)) (-577 (-480)))) - (-4 *3 (-13 (-1106) (-866) (-29 *7))) + (-12 (-5 *4 (-1088)) (-5 *6 (-85)) + (-4 *7 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) + (-4 *3 (-13 (-1113) (-871) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-745 *3)) (|:| |f2| (-580 (-745 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-171 *7 *3)) (-5 *5 (-745 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-345 (-480))) (-5 *1 (-169))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-689)) (-4 *4 (-296)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1146 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-296)) (-5 *2 (-580 (-2 (|:| |deg| (-689)) (|:| -2561 *3)))) - (-5 *1 (-168 *4 *3)) (-4 *3 (-1146 *4))))) + (-12 (-4 *4 (-298)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-296)) + (-12 (-5 *4 (-85)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1768 (-580 (-2 (|:| |irr| *3) (|:| -2383 (-480))))))) - (-5 *1 (-168 *5 *3)) (-4 *3 (-1146 *5))))) + (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-309)) (-4 *6 (-1146 (-345 *2))) - (-4 *2 (-1146 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-288 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1153 (-347 *2))) + (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-689)) (-5 *1 (-164 *4 *2)) (-14 *4 (-825)) (-4 *2 (-1007))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 (-1076 (-480)))) (-5 *1 (-163)) (-5 *3 (-480))))) -(((*1 *2 *3) (-12 (-5 *2 (-580 (-1076 (-480)))) (-5 *1 (-163)) (-5 *3 (-480))))) + (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1012))))) +(((*1 *2 *3) (-12 (-5 *2 (-345 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-580 (-480))) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) + (-12 (-5 *3 (-583 (-483))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 (-825))) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1083 (-345 (-480)))) (-5 *2 (-345 (-480))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1083 (-345 (-480)))) (-5 *1 (-162))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170 (-627 *4))) (-4 *4 (-144)) - (-5 *2 (-1170 (-627 (-852 *4)))) (-5 *1 (-161 *4))))) -(((*1 *1) (-5 *1 (-159)))) -(((*1 *1) (-5 *1 (-159)))) -(((*1 *1) (-5 *1 (-159)))) -(((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159))))) -(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-580 (-83)))))) -(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-580 (-769)))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-1086))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) -(((*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-629 (-155))) (-5 *1 (-155))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-154 *3 *2)) (-4 *2 (-613 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-689)) (-5 *1 (-154 *4 *3)) (-4 *3 (-613 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-154 *3 *2)) (-4 *2 (-613 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-750))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1768 (-343 *3)))) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1146 (-140 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1146 (-140 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-309) (-750))) - (-4 *3 (-1146 *2))))) + (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) + (-5 *2 (-1177 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1127)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-755))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1776 (-345 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1153 (-142 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1153 (-142 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-755))) + (-4 *3 (-1153 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1146 (-140 *2))))) + (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1153 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-309) (-750))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1146 (-140 *2)))))) + (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1153 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-750))) (-5 *1 (-153 *3 *2)) - (-4 *2 (-1146 (-140 *3)))))) + (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1153 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-343 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1146 (-140 *4)))))) + (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1153 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-309) (-750))) (-5 *1 (-153 *3 *2)) - (-4 *2 (-1146 (-140 *3)))))) + (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1153 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-309) (-750))) - (-5 *2 (-580 (-2 (|:| -1768 (-580 *3)) (|:| -1585 *5)))) - (-5 *1 (-153 *5 *3)) (-4 *3 (-1146 (-140 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-755))) + (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-309) (-750))) - (-5 *2 (-580 (-2 (|:| -1768 (-580 *3)) (|:| -1585 *4)))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4)))))) + (-12 (-4 *4 (-13 (-311) (-755))) + (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-580 (-140 *4))) (-5 *1 (-126 *3 *4)) - (-4 *3 (-1146 (-140 (-480)))) (-4 *4 (-13 (-309) (-750))))) + (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-311) (-755))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-580 (-140 *4))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4))))) + (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-309) (-750))) (-5 *2 (-580 (-140 *4))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1146 (-140 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-580 *3)) (-4 *3 (-255)) (-5 *1 (-151 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-255)) (-5 *1 (-151 *3))))) + (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-849 *3) (-849 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-309) (-1106) (-910)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-13 (-309) (-1106) (-910))) - (-5 *1 (-148 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-78))) (-5 *1 (-147))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-255)) (-5 *1 (-146 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 (-345 *3))) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 (-345 *3))) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-146 *3)) (-4 *3 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1040)) (-5 *3 (-244)) (-5 *1 (-139))))) -(((*1 *2 *3) (-12 (-5 *3 (-1040)) (-5 *2 (-629 (-233))) (-5 *1 (-139))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-580 (-629 (-233)))) (-5 *1 (-139))))) -(((*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-967)) (-4 *3 (-1106)) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-311) (-1113) (-915)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) + (-5 *1 (-150 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-246)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-632 (-235))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) +(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-132))) - ((*1 *1 *2) (-12 (-5 *2 (-480)) (-5 *1 (-132))))) -(((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) +(((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-131)))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) + ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *1 (-129 *4 *2)) (-4 *2 (-359 *4)))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-998 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) - (-5 *1 (-129 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1081))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479))))) -(((*1 *1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-479)) (-5 *1 (-130 *2))))) -(((*1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-359 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-491))))) -(((*1 *2 *2) (-12 (-4 *3 (-491)) (-5 *1 (-129 *3 *2)) (-4 *2 (-359 *3))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2) (-12 (-5 *2 (-825)) (-5 *1 (-128))))) + (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) + (-5 *1 (-131 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) +(((*1 *1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2))))) +(((*1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-494))))) +(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-177)) + (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 *4)))) (|:| |xValues| (-995 *4)) - (|:| |yValues| (-995 *4)))) - (-5 *1 (-124)) (-5 *3 (-580 (-580 (-849 *4))))))) + (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1000 *4)) + (|:| |yValues| (-1000 *4)))) + (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) + (-12 (-5 *3 (-836)) (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124)))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-345 (-480))) + (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 - (-2 (|:| |brans| (-580 (-580 (-849 (-177))))) (|:| |xValues| (-995 (-177))) - (|:| |yValues| (-995 (-177))))) - (-5 *1 (-124))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-825)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-309)) - (-14 *5 (-901 *3 *4))))) + (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) + (-14 *5 (-906 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1120))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3978)) (-4 *1 (-122 *2)) (-4 *2 (-1120)) - (-4 *2 (-1007))))) + (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) + (-4 *2 (-1012))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-345 *5)) - (|:| |c2| (-345 *5)) (|:| |deg| (-689)))) - (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1146 (-345 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) + (|:| |c2| (-347 *5)) (|:| |deg| (-694)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1146 *2)) (-4 *2 (-1125)) (-5 *1 (-119 *2 *4 *3)) - (-4 *3 (-1146 (-345 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-345 *6)) (-4 *5 (-1125)) (-4 *6 (-1146 *5)) - (-5 *2 (-2 (|:| -2389 (-689)) (|:| -3937 *3) (|:| |radicand| *6))) - (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-689)) (-4 *7 (-1146 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) - (-5 *2 (-2 (|:| |radicand| (-345 *5)) (|:| |deg| (-689)))) - (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1146 (-345 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1125)) (-4 *5 (-1146 *4)) - (-5 *2 (-2 (|:| -3937 (-345 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) - (-4 *3 (-1146 (-345 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-115))))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *1) (-5 *1 (-115)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 (-115))) (-5 *1 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-112))))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-744))) (-5 *1 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-156 (-110)))) (-5 *1 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-156 (-110)))) (-5 *1 (-111))))) + (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1153 (-347 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-347 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) + (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1153 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) + (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-694)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) + (-5 *2 (-2 (|:| -3948 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1153 (-347 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114))))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-580 (-480))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) - (-14 *4 (-689)) (-4 *5 (-144))))) + (-12 (-5 *2 (-583 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) + (-14 *4 (-694)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-480)) (-14 *3 (-689)) (-4 *4 (-144))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-580 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) - (-14 *4 (-689)) (-4 *5 (-144))))) + (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) + (-14 *4 (-694)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-580 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-480)) - (-14 *4 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-689)) (-5 *2 (-1176))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-102)))) -(((*1 *1) (-5 *1 (-101)))) -(((*1 *1) (-5 *1 (-101)))) -(((*1 *1) (-5 *1 (-101)))) -(((*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-100))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-100))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-100))))) -(((*1 *1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-99))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1007)))) - ((*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1007))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-97 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1007))))) -(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) -(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-751)) (-5 *1 (-92 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-751))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2) (-12 (-5 *2 (-689)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) - ((*1 *2 *2) (-12 (-5 *2 (-689)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1146 (-480)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-90 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-90 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-309) (-945 (-345 *2)))) (-5 *2 (-480)) (-5 *1 (-86 *4 *3)) - (-4 *3 (-1146 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1007))))) -(((*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1007))))) + (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) + (-14 *4 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1183))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012))))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) + ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-950 (-347 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1153 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-580 (-1 *4 (-580 *4)))) (-4 *4 (-1007)) - (-5 *1 (-85 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1012)) + (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1007)) (-5 *1 (-85 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-580 (-1 *4 (-580 *4)))) - (-5 *1 (-85 *4)) (-4 *4 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-580 (-871))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1064) (-691))) (-5 *1 (-84))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-441)) (-5 *2 (-83)) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-441)) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-84))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-691)) (-5 *1 (-84)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1064)) (-5 *3 (-691)) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1064) (-691))) (-5 *1 (-84))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-580 (-871))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3980 "*"))) (-4 *5 (-319 *2)) (-4 *6 (-319 *2)) - (-4 *2 (-956)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1146 *2)) - (-4 *4 (-624 *2 *5 *6))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1012))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-696)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-696)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3991 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) + (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) + (-4 *4 (-627 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3980 "*"))) (-4 *5 (-319 *2)) (-4 *6 (-319 *2)) - (-4 *2 (-956)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1146 *2)) - (-4 *4 (-624 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3991 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) + (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) + (-4 *4 (-627 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1146 *4)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-956)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1146 *4)) (-4 *5 (-319 *4)) (-4 *6 (-319 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-73 *3)) (-4 *3 (-1007))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1012))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1007)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1007))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-580 *2) *2 *2 *2)) (-4 *2 (-1007)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1007)) (-5 *1 (-73 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-387) (-118))) (-5 *2 (-343 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1146 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-580 *3)) (-4 *3 (-1146 *5)) (-4 *5 (-13 (-387) (-118))) - (-5 *2 (-343 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-480))) (-4 *3 (-956)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-956)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1007)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-309)) (-4 *5 (-491)) - (-5 *2 - (-2 (|:| |minor| (-580 (-825))) (|:| -3251 *3) - (|:| |minors| (-580 (-580 (-825)))) (|:| |ops| (-580 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-825)) (-4 *3 (-597 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-1170 (-627 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-627 *4)) (-4 *5 (-597 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-491)) - (-5 *2 (-2 (|:| |mat| (-627 *5)) (|:| |vec| (-1170 (-580 (-825)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-825)) (-4 *3 (-597 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-58 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-580 *3)) (-4 *3 (-1120)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1153 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-389) (-120))) + (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-311)) (-4 *5 (-494)) + (-5 *2 + (-2 (|:| |minor| (-583 (-830))) (|:| -3261 *3) + (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-630 *4)) (-4 *5 (-600 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-494)) + (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 (-583 (-830)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1127)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1120)) (-4 *3 (-319 *4)) - (-4 *5 (-319 *4))))) + (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-321 *4)) + (-4 *5 (-321 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1120)) (-4 *5 (-319 *4)) - (-4 *3 (-319 *4))))) + (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) + (-4 *3 (-321 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-1081))) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4))))))) + (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-580 (-981 *4 *5 *2))) (-4 *4 (-1007)) - (-4 *5 (-13 (-956) (-791 *4) (-550 (-795 *4)))) - (-4 *2 (-13 (-359 *5) (-791 *4) (-550 (-795 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1012)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) + (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-580 (-981 *5 *6 *2))) (-5 *4 (-825)) (-4 *5 (-1007)) - (-4 *6 (-13 (-956) (-791 *5) (-550 (-795 *5)))) - (-4 *2 (-13 (-359 *6) (-791 *5) (-550 (-795 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1009)) (-5 *3 (-691)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-691)) (-5 *1 (-51))))) + (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1012)) + (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) + (-4 *2 (-13 (-361 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-696)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 (-627 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-580 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2) - (-12 (-4 *3 (-491)) (-5 *2 (-580 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-356 *3))))) + (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-689)) (-5 *1 (-43 *4 *3)) (-4 *3 (-356 *4))))) + (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-84)) (-5 *4 (-689)) (-4 *5 (-13 (-387) (-945 (-480)))) - (-4 *5 (-491)) (-5 *1 (-41 *5 *2)) (-4 *2 (-359 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)))) + (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *5 (-547 $)) $)) - (-15 -2983 ((-1030 *5 (-547 $)) $)) - (-15 -3929 ($ (-1030 *5 (-547 $)))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *5 (-550 $)) $)) + (-15 -2993 ((-1037 *5 (-550 $)) $)) + (-15 -3940 ($ (-1037 *5 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-359 *3)) + (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-361 *3)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $)))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-359 *3)) + (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-361 *3)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $)))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-387) (-945 (-480)))) (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-359 *3)) + (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-361 *3)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $)))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-491)) (-5 *2 (-1076 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) - (-15 -2983 ((-1030 *4 (-547 $)) $)) - (-15 -3929 ($ (-1030 *4 (-547 $)))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) + (-15 -2993 ((-1037 *4 (-550 $)) $)) + (-15 -3940 ($ (-1037 *4 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $))))))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 *2)) + (-12 (-5 *3 (-583 *2)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) - (-15 -2983 ((-1030 *4 (-547 $)) $)) - (-15 -3929 ($ (-1030 *4 (-547 $))))))) - (-4 *4 (-491)) (-5 *1 (-41 *4 *2)))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) + (-15 -2993 ((-1037 *4 (-550 $)) $)) + (-15 -3940 ($ (-1037 *4 (-550 $))))))) + (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-580 (-547 *2))) + (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *4 (-547 $)) $)) - (-15 -2983 ((-1030 *4 (-547 $)) $)) - (-15 -3929 ($ (-1030 *4 (-547 $))))))) - (-4 *4 (-491)) (-5 *1 (-41 *4 *2))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) + (-15 -2993 ((-1037 *4 (-550 $)) $)) + (-15 -3940 ($ (-1037 *4 (-550 $))))))) + (-4 *4 (-494)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-491)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-309) (-251) - (-10 -8 (-15 -2984 ((-1030 *3 (-547 $)) $)) - (-15 -2983 ((-1030 *3 (-547 $)) $)) - (-15 -3929 ($ (-1030 *3 (-547 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689)) (-4 *4 (-309)) (-4 *5 (-1146 *4)) (-5 *2 (-1176)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1146 (-345 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1146 (-48)))))) + (-13 (-311) (-253) + (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) + (-15 -2993 ((-1037 *3 (-550 $)) $)) + (-15 -3940 ($ (-1037 *3 (-550 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *2 (-1183)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-347 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1007)) (-4 *4 (-1007)) - (-5 *2 (-2 (|:| -3843 *3) (|:| |entry| *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) + (-5 *2 (-2 (|:| -3854 *3) (|:| |entry| *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-480)) (-4 *2 (-359 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-945 *4)) - (-4 *3 (-491))))) + (-12 (-5 *4 (-483)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) + (-4 *3 (-494))))) (((*1 *2 *3) - (-12 (-5 *3 (-580 *5)) (-4 *5 (-359 *4)) (-4 *4 (-491)) (-5 *2 (-767)) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-494)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1076 *2)) (-4 *2 (-359 *4)) (-4 *4 (-491)) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-852 (-480))) (-5 *3 (-1081)) (-5 *4 (-995 (-345 (-480)))) + (-12 (-5 *2 (-857 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-347 (-483)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *1)) (-5 *4 (-1081)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1076 *1)) (-5 *3 (-1081)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1076 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-852 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-29 *3)) (-4 *3 (-491)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-491))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1076 *1)) (-5 *4 (-1081)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1076 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-852 *1)) (-4 *1 (-27)) (-5 *2 (-580 *1)))) + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1081)) (-4 *4 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-491)) (-5 *2 (-580 *1)) (-4 *1 (-29 *3))))) -((-1205 . 629752) (-1206 . 629450) (-1207 . 629054) (-1208 . 628934) - (-1209 . 628832) (-1210 . 628719) (-1211 . 628603) (-1212 . 628550) - (-1213 . 628413) (-1214 . 628338) (-1215 . 628182) (-1216 . 627954) - (-1217 . 626990) (-1218 . 626743) (-1219 . 626459) (-1220 . 626175) - (-1221 . 625891) (-1222 . 625572) (-1223 . 625480) (-1224 . 625388) - (-1225 . 625296) (-1226 . 625204) (-1227 . 625112) (-1228 . 625020) - (-1229 . 624925) (-1230 . 624830) (-1231 . 624738) (-1232 . 624646) - (-1233 . 624554) (-1234 . 624462) (-1235 . 624370) (-1236 . 624268) - (-1237 . 624166) (-1238 . 624064) (-1239 . 623972) (-1240 . 623921) - (-1241 . 623869) (-1242 . 623799) (-1243 . 623379) (-1244 . 623185) - (-1245 . 623158) (-1246 . 623035) (-1247 . 622912) (-1248 . 622768) - (-1249 . 622598) (-1250 . 622474) (-1251 . 622235) (-1252 . 622162) - (-1253 . 621937) (-1254 . 621691) (-1255 . 621638) (-1256 . 621460) - (-1257 . 621291) (-1258 . 621215) (-1259 . 621142) (-1260 . 620989) - (-1261 . 620836) (-1262 . 620652) (-1263 . 620471) (-1264 . 620416) - (-1265 . 620361) (-1266 . 620288) (-1267 . 620212) (-1268 . 620144) - (-1269 . 620001) (-1270 . 619894) (-1271 . 619826) (-1272 . 619756) - (-1273 . 619686) (-1274 . 619636) (-1275 . 619586) (-1276 . 619536) - (-1277 . 619415) (-1278 . 619099) (-1279 . 619030) (-1280 . 618951) - (-1281 . 618832) (-1282 . 618752) (-1283 . 618672) (-1284 . 618519) - (-1285 . 618370) (-1286 . 618294) (-1287 . 618237) (-1288 . 618165) - (-1289 . 618102) (-1290 . 618039) (-1291 . 617978) (-1292 . 617906) - (-1293 . 617792) (-1294 . 617741) (-1295 . 617686) (-1296 . 617634) - (-1297 . 617582) (-1298 . 617554) (-1299 . 617526) (-1300 . 617498) - (-1301 . 617454) (-1302 . 617383) (-1303 . 617332) (-1304 . 617284) - (-1305 . 617233) (-1306 . 617181) (-1307 . 617065) (-1308 . 616949) - (-1309 . 616857) (-1310 . 616765) (-1311 . 616642) (-1312 . 616576) - (-1313 . 616510) (-1314 . 616451) (-1315 . 616423) (-1316 . 616395) - (-1317 . 616367) (-1318 . 616339) (-1319 . 616229) (-1320 . 616178) - (-1321 . 616127) (-1322 . 616076) (-1323 . 616025) (-1324 . 615974) - (-1325 . 615923) (-1326 . 615895) (-1327 . 615867) (-1328 . 615839) - (-1329 . 615811) (-1330 . 615783) (-1331 . 615755) (-1332 . 615727) - (-1333 . 615699) (-1334 . 615671) (-1335 . 615568) (-1336 . 615516) - (-1337 . 615350) (-1338 . 615166) (-1339 . 614955) (-1340 . 614840) - (-1341 . 614607) (-1342 . 614508) (-1343 . 614415) (-1344 . 614300) - (-1345 . 613906) (-1346 . 613690) (-1347 . 613641) (-1348 . 613613) - (-1349 . 613537) (-1350 . 613438) (-1351 . 613339) (-1352 . 613240) - (-1353 . 613141) (-1354 . 613042) (-1355 . 612943) (-1356 . 612785) - (-1357 . 612709) (-1358 . 612542) (-1359 . 612484) (-1360 . 612426) - (-1361 . 612119) (-1362 . 611865) (-1363 . 611781) (-1364 . 611649) - (-1365 . 611591) (-1366 . 611539) (-1367 . 611457) (-1368 . 611382) - (-1369 . 611311) (-1370 . 611257) (-1371 . 611206) (-1372 . 611132) - (-1373 . 611058) (-1374 . 610977) (-1375 . 610896) (-1376 . 610841) - (-1377 . 610767) (-1378 . 610693) (-1379 . 610619) (-1380 . 610542) - (-1381 . 610488) (-1382 . 610430) (-1383 . 610331) (-1384 . 610232) - (-1385 . 610133) (-1386 . 610034) (-1387 . 609935) (-1388 . 609836) - (-1389 . 609737) (-1390 . 609623) (-1391 . 609509) (-1392 . 609395) - (-1393 . 609281) (-1394 . 609167) (-1395 . 609053) (-1396 . 608936) - (-1397 . 608860) (-1398 . 608784) (-1399 . 608397) (-1400 . 608052) - (-1401 . 607950) (-1402 . 607689) (-1403 . 607587) (-1404 . 607382) - (-1405 . 607269) (-1406 . 607167) (-1407 . 607010) (-1408 . 606921) - (-1409 . 606827) (-1410 . 606747) (-1411 . 606673) (-1412 . 606595) - (-1413 . 606536) (-1414 . 606478) (-1415 . 606376) (-7 . 606348) (-8 . 606320) - (-9 . 606292) (-1419 . 606173) (-1420 . 606091) (-1421 . 606009) - (-1422 . 605927) (-1423 . 605845) (-1424 . 605763) (-1425 . 605669) - (-1426 . 605599) (-1427 . 605529) (-1428 . 605438) (-1429 . 605344) - (-1430 . 605262) (-1431 . 605180) (-1432 . 605082) (-1433 . 604922) - (-1434 . 604724) (-1435 . 604588) (-1436 . 604488) (-1437 . 604388) - (-1438 . 604295) (-1439 . 604236) (-1440 . 603903) (-1441 . 603803) - (-1442 . 603685) (-1443 . 603473) (-1444 . 603294) (-1445 . 603136) - (-1446 . 602933) (-1447 . 602515) (-1448 . 602464) (-1449 . 602355) - (-1450 . 602240) (-1451 . 602171) (-1452 . 602102) (-1453 . 602033) - (-1454 . 601967) (-1455 . 601842) (-1456 . 601625) (-1457 . 601547) - (-1458 . 601497) (-1459 . 601426) (-1460 . 601283) (-1461 . 601142) - (-1462 . 601061) (-1463 . 600980) (-1464 . 600924) (-1465 . 600868) - (-1466 . 600795) (-1467 . 600655) (-1468 . 600602) (-1469 . 600543) - (-1470 . 600484) (-1471 . 600329) (-1472 . 600277) (-1473 . 600160) - (-1474 . 600043) (-1475 . 599926) (-1476 . 599795) (-1477 . 599516) - (-1478 . 599381) (-1479 . 599325) (-1480 . 599269) (-1481 . 599210) - (-1482 . 599151) (-1483 . 599095) (-1484 . 599039) (-1485 . 598842) - (-1486 . 596516) (-1487 . 596389) (-1488 . 596245) (-1489 . 596118) - (-1490 . 596066) (-1491 . 596014) (-1492 . 595962) (-1493 . 591948) - (-1494 . 591854) (-1495 . 591717) (-1496 . 591508) (-1497 . 591406) - (-1498 . 591304) (-1499 . 590398) (-1500 . 590322) (-1501 . 590193) - (-1502 . 590068) (-1503 . 589991) (-1504 . 589914) (-1505 . 589787) - (-1506 . 589660) (-1507 . 589494) (-1508 . 589367) (-1509 . 589240) - (-1510 . 589023) (-1511 . 588589) (-1512 . 588225) (-1513 . 588173) - (-1514 . 588114) (-1515 . 588026) (-1516 . 587938) (-1517 . 587847) - (-1518 . 587756) (-1519 . 587665) (-1520 . 587574) (-1521 . 587483) - (-1522 . 587392) (-1523 . 587301) (-1524 . 587210) (-1525 . 587119) - (-1526 . 587028) (-1527 . 586937) (-1528 . 586846) (-1529 . 586755) - (-1530 . 586664) (-1531 . 586573) (-1532 . 586482) (-1533 . 586391) - (-1534 . 586300) (-1535 . 586209) (-1536 . 586118) (-1537 . 586027) - (-1538 . 585936) (-1539 . 585845) (-1540 . 585754) (-1541 . 585663) - (-1542 . 585572) (-1543 . 585410) (-1544 . 585302) (-1545 . 585059) - (-1546 . 584772) (-1547 . 584577) (-1548 . 584421) (-1549 . 584261) - (-1550 . 584210) (-1551 . 584148) (-1552 . 584097) (-1553 . 584034) - (-1554 . 583981) (-1555 . 583929) (-1556 . 583877) (-1557 . 583825) - (-1558 . 583735) (-1559 . 583548) (-1560 . 583394) (-1561 . 583314) - (-1562 . 583234) (-1563 . 583154) (-1564 . 583024) (-1565 . 582792) - (-1566 . 582764) (-1567 . 582736) (-1568 . 582708) (-1569 . 582628) - (-1570 . 582551) (-1571 . 582474) (-1572 . 582393) (-1573 . 582334) - (-1574 . 582176) (-1575 . 581983) (-1576 . 581498) (-1577 . 581256) - (-1578 . 580994) (-1579 . 580893) (-1580 . 580812) (-1581 . 580731) - (-1582 . 580661) (-1583 . 580591) (-1584 . 580433) (-1585 . 580129) - (-1586 . 579901) (-1587 . 579779) (-1588 . 579721) (-1589 . 579659) - (-1590 . 579597) (-1591 . 579532) (-1592 . 579470) (-1593 . 579191) - (-1594 . 579123) (-1595 . 578913) (-1596 . 578861) (-1597 . 578807) - (-1598 . 578716) (-1599 . 578629) (-1600 . 576882) (-1601 . 576803) - (-1602 . 576062) (-1603 . 575945) (-1604 . 575739) (-1605 . 575578) - (-1606 . 575417) (-1607 . 575257) (-1608 . 575119) (-1609 . 575025) - (-1610 . 574927) (-1611 . 574833) (-1612 . 574719) (-1613 . 574637) - (-1614 . 574540) (-1615 . 574344) (-1616 . 574253) (-1617 . 574159) - (-1618 . 574092) (-1619 . 574023) (-1620 . 573971) (-1621 . 573912) - (-1622 . 573838) (-1623 . 573786) (-1624 . 573629) (-1625 . 573472) - (-1626 . 573320) (-1627 . 572562) (-1628 . 572251) (-1629 . 571899) - (-1630 . 571682) (-1631 . 571419) (-1632 . 571044) (-1633 . 570860) - (-1634 . 570726) (-1635 . 570560) (-1636 . 570394) (-1637 . 570260) - (-1638 . 570126) (-1639 . 569992) (-1640 . 569858) (-1641 . 569727) - (-1642 . 569596) (-1643 . 569465) (-1644 . 569085) (-1645 . 568959) - (-1646 . 568831) (-1647 . 568581) (-1648 . 568458) (-1649 . 568208) - (-1650 . 568085) (-1651 . 567835) (-1652 . 567712) (-1653 . 567429) - (-1654 . 567158) (-1655 . 566885) (-1656 . 566587) (-1657 . 566485) - (-1658 . 566340) (-1659 . 566199) (-1660 . 566048) (-1661 . 565887) - (-1662 . 565799) (-1663 . 565771) (-1664 . 565689) (-1665 . 565592) - (-1666 . 565124) (-1667 . 564773) (-1668 . 564340) (-1669 . 564201) - (-1670 . 564131) (-1671 . 564061) (-1672 . 563991) (-1673 . 563900) - (-1674 . 563809) (-1675 . 563718) (-1676 . 563627) (-1677 . 563536) - (-1678 . 563450) (-1679 . 563364) (-1680 . 563278) (-1681 . 563192) - (-1682 . 563106) (-1683 . 563032) (-1684 . 562927) (-1685 . 562701) - (-1686 . 562623) (-1687 . 562548) (-1688 . 562455) (-1689 . 562351) - (-1690 . 562255) (-1691 . 562086) (-1692 . 562009) (-1693 . 561932) - (-1694 . 561841) (-1695 . 561750) (-1696 . 561550) (-1697 . 561397) - (-1698 . 561244) (-1699 . 561091) (-1700 . 560938) (-1701 . 560785) - (-1702 . 560632) (-1703 . 560566) (-1704 . 560413) (-1705 . 560260) - (-1706 . 560107) (-1707 . 559954) (-1708 . 559801) (-1709 . 559648) - (-1710 . 559495) (-1711 . 559342) (-1712 . 559268) (-1713 . 559194) - (-1714 . 559139) (-1715 . 559084) (-1716 . 559029) (-1717 . 558974) - (-1718 . 558903) (-1719 . 558699) (-1720 . 558598) (-1721 . 558410) - (-1722 . 558317) (-1723 . 558181) (-1724 . 558045) (-1725 . 557909) - (-1726 . 557841) (-1727 . 557725) (-1728 . 557609) (-1729 . 557493) - (-1730 . 557440) (-1731 . 557355) (-1732 . 557270) (-1733 . 556962) - (-1734 . 556907) (-1735 . 556255) (-1736 . 555940) (-1737 . 555656) - (-1738 . 555538) (-1739 . 555419) (-1740 . 555360) (-1741 . 555301) - (-1742 . 555250) (-1743 . 555199) (-1744 . 555148) (-1745 . 555095) - (-1746 . 555042) (-1747 . 554983) (-1748 . 554870) (-1749 . 554757) - (-1750 . 554590) (-1751 . 554498) (-1752 . 554385) (-1753 . 554301) - (-1754 . 554186) (-1755 . 554095) (-1756 . 554004) (-1757 . 553883) - (-1758 . 553696) (-1759 . 553644) (-1760 . 553589) (-1761 . 553402) - (-1762 . 553279) (-1763 . 553206) (-1764 . 553133) (-1765 . 553013) - (-1766 . 552940) (-1767 . 552867) (-1768 . 552527) (-1769 . 552454) - (-1770 . 552234) (-1771 . 551901) (-1772 . 551718) (-1773 . 551575) - (-1774 . 551215) (-1775 . 551047) (-1776 . 550879) (-1777 . 550623) - (-1778 . 550367) (-1779 . 550172) (-1780 . 549977) (-1781 . 549383) - (-1782 . 549307) (-1783 . 549168) (-1784 . 548761) (-1785 . 548634) - (-1786 . 548477) (-1787 . 548160) (-1788 . 547680) (-1789 . 547200) - (-1790 . 546698) (-1791 . 546630) (-1792 . 546559) (-1793 . 546488) - (-1794 . 546316) (-1795 . 546197) (-1796 . 546078) (-1797 . 546002) - (-1798 . 545926) (-1799 . 545653) (-1800 . 545539) (-1801 . 545488) - (-1802 . 545437) (-1803 . 545386) (-1804 . 545335) (-1805 . 545284) - (-1806 . 545143) (-1807 . 544970) (-1808 . 544739) (-1809 . 544553) - (-1810 . 544525) (-1811 . 544497) (-1812 . 544469) (-1813 . 544441) - (-1814 . 544413) (-1815 . 544385) (-1816 . 544357) (-1817 . 544306) - (-1818 . 544240) (-1819 . 544150) (-1820 . 543779) (-1821 . 543628) - (-1822 . 543477) (-1823 . 543272) (-1824 . 543150) (-1825 . 543076) - (-1826 . 542999) (-1827 . 542925) (-1828 . 542848) (-1829 . 542771) - (-1830 . 542697) (-1831 . 542620) (-1832 . 542387) (-1833 . 542234) - (-1834 . 541939) (-1835 . 541786) (-1836 . 541464) (-1837 . 541326) - (-1838 . 541188) (-1839 . 541108) (-1840 . 541028) (-1841 . 540764) - (-1842 . 540033) (-1843 . 539897) (-1844 . 539807) (-1845 . 539672) - (-1846 . 539605) (-1847 . 539537) (-1848 . 539450) (-1849 . 539363) - (-1850 . 539196) (-1851 . 539122) (-1852 . 538978) (-1853 . 538518) - (-1854 . 538139) (-1855 . 537377) (-1856 . 537233) (-1857 . 537089) - (-1858 . 536927) (-1859 . 536690) (-1860 . 536550) (-1861 . 536404) - (-1862 . 536165) (-1863 . 535929) (-1864 . 535690) (-1865 . 535498) - (-1866 . 535375) (-1867 . 535171) (-1868 . 534948) (-1869 . 534709) - (-1870 . 534568) (-1871 . 534430) (-1872 . 534291) (-1873 . 534038) - (-1874 . 533782) (-1875 . 533625) (-1876 . 533471) (-1877 . 533231) - (-1878 . 532946) (-1879 . 532808) (-1880 . 532721) (-1881 . 532055) - (-1882 . 531879) (-1883 . 531697) (-1884 . 531521) (-1885 . 531339) - (-1886 . 531160) (-1887 . 530981) (-1888 . 530794) (-1889 . 530412) - (-1890 . 530233) (-1891 . 530054) (-1892 . 529867) (-1893 . 529485) - (-1894 . 528492) (-1895 . 528108) (-1896 . 527724) (-1897 . 527606) - (-1898 . 527449) (-1899 . 527307) (-1900 . 527190) (-1901 . 527008) - (-1902 . 526884) (-1903 . 526595) (-1904 . 526306) (-1905 . 526023) - (-1906 . 525740) (-1907 . 525462) (-1908 . 525374) (-1909 . 525289) - (-1910 . 525192) (-1911 . 525095) (-1912 . 524875) (-1913 . 524775) - (-1914 . 524672) (-1915 . 524594) (-1916 . 524269) (-1917 . 523981) - (-1918 . 523908) (-1919 . 523523) (-1920 . 523495) (-1921 . 523296) - (-1922 . 523122) (-1923 . 522881) (-1924 . 522826) (-1925 . 522751) - (-1926 . 522383) (-1927 . 522268) (-1928 . 522191) (-1929 . 522118) - (-1930 . 522037) (-1931 . 521956) (-1932 . 521875) (-1933 . 521774) - (-1934 . 521715) (-1935 . 521477) (-1936 . 521355) (-1937 . 521233) - (-1938 . 521006) (-1939 . 520953) (-1940 . 520899) (-1941 . 520567) - (-1942 . 520243) (-1943 . 520055) (-1944 . 519864) (-1945 . 519700) - (-1946 . 519365) (-1947 . 519198) (-1948 . 518957) (-1949 . 518633) - (-1950 . 518443) (-1951 . 518228) (-1952 . 518057) (-1953 . 517635) - (-1954 . 517408) (-1955 . 517137) (-1956 . 517000) (-1957 . 516859) - (-1958 . 516382) (-1959 . 516259) (-1960 . 516023) (-1961 . 515769) - (-1962 . 515519) (-1963 . 515226) (-1964 . 515086) (-1965 . 514946) - (-1966 . 514806) (-1967 . 514617) (-1968 . 514428) (-1969 . 514253) - (-1970 . 513979) (-1971 . 513544) (-1972 . 513516) (-1973 . 513444) - (-1974 . 513285) (-1975 . 513122) (-1976 . 512961) (-1977 . 512794) - (-1978 . 512741) (-1979 . 512688) (-1980 . 512559) (-1981 . 512499) - (-1982 . 512446) (-1983 . 512376) (-1984 . 512316) (-1985 . 512257) - (-1986 . 512197) (-1987 . 512138) (-1988 . 512078) (-1989 . 512019) - (-1990 . 511961) (-1991 . 511819) (-1992 . 511724) (-1993 . 511633) - (-1994 . 511517) (-1995 . 511423) (-1996 . 511325) (-1997 . 511231) - (-1998 . 511090) (-1999 . 510828) (-2000 . 509972) (-2001 . 509816) - (-2002 . 509447) (-2003 . 509391) (-2004 . 509340) (-2005 . 509237) - (-2006 . 509152) (-2007 . 509064) (-2008 . 508918) (-2009 . 508769) - (-2010 . 508479) (-2011 . 508401) (-2012 . 508326) (-2013 . 508273) - (-2014 . 508220) (-2015 . 508189) (-2016 . 508126) (-2017 . 508008) - (-2018 . 507919) (-2019 . 507799) (-2020 . 507504) (-2021 . 507310) - (-2022 . 507122) (-2023 . 506977) (-2024 . 506832) (-2025 . 506546) - (-2026 . 506104) (-2027 . 506070) (-2028 . 506033) (-2029 . 505996) - (-2030 . 505959) (-2031 . 505922) (-2032 . 505891) (-2033 . 505860) - (-2034 . 505829) (-2035 . 505795) (-2036 . 505761) (-2037 . 505707) - (-2038 . 505531) (-2039 . 505297) (-2040 . 505063) (-2041 . 504834) - (-2042 . 504782) (-2043 . 504727) (-2044 . 504658) (-2045 . 504570) - (-2046 . 504501) (-2047 . 504429) (-2048 . 504199) (-2049 . 504148) - (-2050 . 504094) (-2051 . 504063) (-2052 . 503957) (-2053 . 503732) - (-2054 . 503422) (-2055 . 503248) (-2056 . 503066) (-2057 . 502795) - (-2058 . 502722) (-2059 . 502657) (-2060 . 502181) (-2061 . 501619) - (-2062 . 500893) (-2063 . 500332) (-2064 . 499704) (-2065 . 499125) - (-2066 . 499051) (-2067 . 498999) (-2068 . 498947) (-2069 . 498873) - (-2070 . 498818) (-2071 . 498766) (-2072 . 498714) (-2073 . 498662) - (-2074 . 498592) (-2075 . 498144) (-2076 . 497938) (-2077 . 497689) - (-2078 . 497355) (-2079 . 497101) (-2080 . 496799) (-2081 . 496596) - (-2082 . 496307) (-2083 . 495759) (-2084 . 495622) (-2085 . 495420) - (-2086 . 495140) (-2087 . 495055) (-2088 . 494722) (-2089 . 494581) - (-2090 . 494290) (-2091 . 494070) (-2092 . 493944) (-2093 . 493819) - (-2094 . 493672) (-2095 . 493528) (-2096 . 493412) (-2097 . 493281) - (-2098 . 492909) (-2099 . 492649) (-2100 . 492379) (-2101 . 492139) - (-2102 . 491809) (-2103 . 491469) (-2104 . 491061) (-2105 . 490643) - (-2106 . 490446) (-2107 . 490171) (-2108 . 490003) (-2109 . 489807) - (-2110 . 489585) (-2111 . 489430) (-2112 . 489245) (-2113 . 489142) - (-2114 . 489114) (-2115 . 489086) (-2116 . 488912) (-2117 . 488838) - (-2118 . 488778) (-2119 . 488725) (-2120 . 488656) (-2121 . 488587) - (-2122 . 488468) (-2123 . 488290) (-2124 . 488235) (-2125 . 487989) - (-2126 . 487916) (-2127 . 487846) (-2128 . 487776) (-2129 . 487687) - (-2130 . 487497) (-2131 . 487424) (-2132 . 487355) (-2133 . 487290) - (-2134 . 487235) (-2135 . 487144) (-2136 . 486853) (-2137 . 486527) - (-2138 . 486453) (-2139 . 486131) (-2140 . 485926) (-2141 . 485841) - (-2142 . 485756) (-2143 . 485671) (-2144 . 485586) (-2145 . 485501) - (-2146 . 485416) (-2147 . 485331) (-2148 . 485246) (-2149 . 485161) - (-2150 . 485076) (-2151 . 484991) (-2152 . 484906) (-2153 . 484821) - (-2154 . 484736) (-2155 . 484651) (-2156 . 484566) (-2157 . 484481) - (-2158 . 484396) (-2159 . 484311) (-2160 . 484226) (-2161 . 484141) - (-2162 . 484056) (-2163 . 483971) (-2164 . 483886) (-2165 . 483801) - (-2166 . 483716) (-2167 . 483614) (-2168 . 483526) (-2169 . 483318) - (-2170 . 483260) (-2171 . 483205) (-2172 . 483118) (-2173 . 483007) - (-2174 . 482921) (-2175 . 482775) (-2176 . 482713) (-2177 . 482685) - (-2178 . 482657) (-2179 . 482629) (-2180 . 482601) (-2181 . 482432) - (-2182 . 482281) (-2183 . 482130) (-2184 . 481958) (-2185 . 481750) - (-2186 . 481626) (-2187 . 481418) (-2188 . 481326) (-2189 . 481234) - (-2190 . 481099) (-2191 . 481004) (-2192 . 480910) (-2193 . 480815) - (-2194 . 480691) (-2195 . 480663) (-2196 . 480635) (-2197 . 480607) - (-2198 . 480579) (-2199 . 480551) (-2200 . 480523) (-2201 . 480495) - (-2202 . 480467) (-2203 . 480439) (-2204 . 480411) (-2205 . 480383) - (-2206 . 480355) (-2207 . 480327) (-2208 . 480299) (-2209 . 480271) - (-2210 . 480243) (-2211 . 480190) (-2212 . 480162) (-2213 . 480134) - (-2214 . 480056) (-2215 . 480003) (-2216 . 479950) (-2217 . 479897) - (-2218 . 479819) (-2219 . 479729) (-2220 . 479634) (-2221 . 479540) - (-2222 . 479458) (-2223 . 479152) (-2224 . 478956) (-2225 . 478861) - (-2226 . 478753) (-2227 . 478342) (-2228 . 478314) (-2229 . 478150) - (-2230 . 478073) (-2231 . 477886) (-2232 . 477707) (-2233 . 477283) - (-2234 . 477131) (-2235 . 476951) (-2236 . 476778) (-2237 . 476518) - (-2238 . 476266) (-2239 . 475455) (-2240 . 475288) (-2241 . 475070) - (-2242 . 474246) (-2243 . 474115) (-2244 . 473984) (-2245 . 473853) - (-2246 . 473722) (-2247 . 473591) (-2248 . 473460) (-2249 . 473265) - (-2250 . 473071) (-2251 . 472928) (-2252 . 472613) (-2253 . 472498) - (-2254 . 472158) (-2255 . 471998) (-2256 . 471859) (-2257 . 471720) - (-2258 . 471591) (-2259 . 471506) (-2260 . 471454) (-2261 . 470974) - (-2262 . 469712) (-2263 . 469585) (-2264 . 469443) (-2265 . 469107) - (-2266 . 469002) (-2267 . 468753) (-2268 . 468521) (-2269 . 468416) - (-2270 . 468341) (-2271 . 468266) (-2272 . 468191) (-2273 . 468132) - (-2274 . 468062) (-2275 . 468009) (-2276 . 467947) (-2277 . 467877) - (-2278 . 467514) (-2279 . 467227) (-2280 . 467117) (-2281 . 466930) - (-2282 . 466837) (-2283 . 466744) (-2284 . 466657) (-2285 . 466437) - (-2286 . 466218) (-2287 . 465800) (-2288 . 465528) (-2289 . 465385) - (-2290 . 465292) (-2291 . 465149) (-2292 . 464997) (-2293 . 464843) - (-2294 . 464773) (-2295 . 464566) (-2296 . 464389) (-2297 . 464180) - (-2298 . 464003) (-2299 . 463969) (-2300 . 463935) (-2301 . 463904) - (-2302 . 463786) (-2303 . 463473) (-2304 . 463195) (-2305 . 463074) - (-2306 . 462947) (-2307 . 462862) (-2308 . 462789) (-2309 . 462700) - (-2310 . 462629) (-2311 . 462573) (-2312 . 462517) (-2313 . 462461) - (-2314 . 462391) (-2315 . 462321) (-2316 . 462251) (-2317 . 462153) - (-2318 . 462075) (-2319 . 461997) (-2320 . 461854) (-2321 . 461775) - (-2322 . 461703) (-2323 . 461500) (-2324 . 461444) (-2325 . 461256) - (-2326 . 461157) (-2327 . 461039) (-2328 . 460918) (-2329 . 460775) - (-2330 . 460632) (-2331 . 460492) (-2332 . 460352) (-2333 . 460209) - (-2334 . 460083) (-2335 . 459954) (-2336 . 459831) (-2337 . 459708) - (-2338 . 459603) (-2339 . 459498) (-2340 . 459396) (-2341 . 459246) - (-2342 . 459093) (-2343 . 458940) (-2344 . 458796) (-2345 . 458642) - (-2346 . 458566) (-2347 . 458487) (-2348 . 458334) (-2349 . 458255) - (-2350 . 458176) (-2351 . 458097) (-2352 . 457995) (-2353 . 457936) - (-2354 . 457874) (-2355 . 457757) (-2356 . 457631) (-2357 . 457554) - (-2358 . 457422) (-2359 . 457116) (-2360 . 456933) (-2361 . 456391) - (-2362 . 456172) (-2363 . 455999) (-2364 . 455829) (-2365 . 455756) - (-2366 . 455680) (-2367 . 455601) (-2368 . 455304) (-2369 . 455142) - (-2370 . 454908) (-2371 . 454466) (-2372 . 454336) (-2373 . 454196) - (-2374 . 453887) (-2375 . 453585) (-2376 . 453269) (-2377 . 452863) - (-2378 . 452795) (-2379 . 452727) (-2380 . 452659) (-2381 . 452565) - (-2382 . 452458) (-2383 . 452351) (-2384 . 452250) (-2385 . 452149) - (-2386 . 452048) (-2387 . 451971) (-2388 . 451648) (-2389 . 451231) - (-2390 . 450604) (-2391 . 450540) (-2392 . 450421) (-2393 . 450302) - (-2394 . 450194) (-2395 . 450086) (-2396 . 449930) (-2397 . 449330) - (-2398 . 449047) (-2399 . 448879) (-2400 . 448757) (-2401 . 448361) - (-2402 . 448125) (-2403 . 447924) (-2404 . 447716) (-2405 . 447523) - (-2406 . 447256) (-2407 . 447077) (-2408 . 447008) (-2409 . 446932) - (-2410 . 446791) (-2411 . 446588) (-2412 . 446444) (-2413 . 446194) - (-2414 . 445886) (-2415 . 445530) (-2416 . 445371) (-2417 . 445165) - (-2418 . 445005) (-2419 . 444932) (-2420 . 444898) (-2421 . 444833) - (-2422 . 444796) (-2423 . 444659) (-2424 . 444421) (-2425 . 444351) - (-2426 . 444165) (-2427 . 443916) (-2428 . 443760) (-2429 . 443237) - (-2430 . 443040) (-2431 . 442828) (-2432 . 442666) (-2433 . 442267) - (-2434 . 442100) (-2435 . 441025) (-2436 . 440902) (-2437 . 440685) - (-2438 . 440555) (-2439 . 440425) (-2440 . 440268) (-2441 . 440165) - (-2442 . 440107) (-2443 . 440049) (-2444 . 439943) (-2445 . 439837) - (-2446 . 438921) (-2447 . 436794) (-2448 . 435980) (-2449 . 434177) - (-2450 . 434109) (-2451 . 434041) (-2452 . 433973) (-2453 . 433905) - (-2454 . 433837) (-2455 . 433759) (-2456 . 433403) (-2457 . 433221) - (-2458 . 432682) (-2459 . 432506) (-2460 . 432285) (-2461 . 432064) - (-2462 . 431843) (-2463 . 431625) (-2464 . 431407) (-2465 . 431189) - (-2466 . 430971) (-2467 . 430753) (-2468 . 430535) (-2469 . 430434) - (-2470 . 429701) (-2471 . 429646) (-2472 . 429591) (-2473 . 429536) - (-2474 . 429481) (-2475 . 429331) (-2476 . 429083) (-2477 . 428922) - (-2478 . 428742) (-2479 . 428455) (-2480 . 428069) (-2481 . 427197) - (-2482 . 426857) (-2483 . 426689) (-2484 . 426467) (-2485 . 426217) - (-2486 . 425869) (-2487 . 424859) (-2488 . 424548) (-2489 . 424336) - (-2490 . 423772) (-2491 . 423259) (-2492 . 421503) (-2493 . 421031) - (-2494 . 420432) (-2495 . 420182) (-2496 . 420048) (-2497 . 419836) - (-2498 . 419760) (-2499 . 419684) (-2500 . 419577) (-2501 . 419395) - (-2502 . 419230) (-2503 . 419052) (-2504 . 418471) (-2505 . 418310) - (-2506 . 417737) (-2507 . 417667) (-2508 . 417592) (-2509 . 417520) - (-2510 . 417382) (-2511 . 417195) (-2512 . 417088) (-2513 . 416981) - (-2514 . 416866) (-2515 . 416751) (-2516 . 416636) (-2517 . 416358) - (-2518 . 416208) (-2519 . 416065) (-2520 . 415992) (-2521 . 415907) - (-2522 . 415834) (-2523 . 415761) (-2524 . 415688) (-2525 . 415545) - (-2526 . 415395) (-2527 . 415221) (-2528 . 415071) (-2529 . 414921) - (-2530 . 414795) (-2531 . 414409) (-2532 . 414125) (-2533 . 413841) - (-2534 . 413432) (-2535 . 413148) (-2536 . 413075) (-2537 . 412928) - (-2538 . 412822) (-2539 . 412748) (-2540 . 412678) (-2541 . 412599) - (-2542 . 412522) (-2543 . 412447) (-2544 . 412298) (-2545 . 412195) - (-2546 . 412137) (-2547 . 412073) (-2548 . 412009) (-2549 . 411912) - (-2550 . 411815) (-2551 . 411655) (-2552 . 411569) (-2553 . 411483) - (-2554 . 411398) (-2555 . 411339) (-2556 . 411280) (-2557 . 411221) - (-2558 . 411162) (-2559 . 410992) (-2560 . 410904) (-2561 . 410807) - (-2562 . 410773) (-2563 . 410742) (-2564 . 410658) (-2565 . 410602) - (-2566 . 410540) (-2567 . 410506) (-2568 . 410472) (-2569 . 410438) - (-2570 . 410404) (-2571 . 410370) (-2572 . 410336) (-2573 . 410302) - (-2574 . 410268) (-2575 . 410234) (-2576 . 410122) (-2577 . 410088) - (-2578 . 410037) (-2579 . 410003) (-2580 . 409906) (-2581 . 409844) - (-2582 . 409753) (-2583 . 409662) (-2584 . 409607) (-2585 . 409555) - (-2586 . 409503) (-2587 . 409451) (-2588 . 409399) (-2589 . 408976) - (-2590 . 408810) (-2591 . 408757) (-2592 . 408688) (-2593 . 408635) - (-2594 . 408405) (-2595 . 408249) (-2596 . 407728) (-2597 . 407587) - (-2598 . 407553) (-2599 . 407498) (-2600 . 406788) (-2601 . 406473) - (-2602 . 405969) (-2603 . 405891) (-2604 . 405839) (-2605 . 405787) - (-2606 . 405603) (-2607 . 405551) (-2608 . 405499) (-2609 . 405423) - (-2610 . 405361) (-2611 . 405143) (-2612 . 405076) (-2613 . 404982) - (-2614 . 404888) (-2615 . 404705) (-2616 . 404623) (-2617 . 404501) - (-2618 . 404355) (-2619 . 403704) (-2620 . 403002) (-2621 . 402898) - (-2622 . 402797) (-2623 . 402696) (-2624 . 402585) (-2625 . 402417) - (-2626 . 402213) (-2627 . 402120) (-2628 . 402043) (-2629 . 401987) - (-2630 . 401917) (-2631 . 401797) (-2632 . 401696) (-2633 . 401599) - (-2634 . 401519) (-2635 . 401439) (-2636 . 401362) (-2637 . 401292) - (-2638 . 401222) (-2639 . 401152) (-2640 . 401082) (-2641 . 401012) - (-2642 . 400942) (-2643 . 400849) (-2644 . 400721) (-2645 . 400479) - (-2646 . 400309) (-2647 . 399940) (-2648 . 399771) (-2649 . 399655) - (-2650 . 399159) (-2651 . 398778) (-2652 . 398532) (-2653 . 398440) - (-2654 . 398343) (-2655 . 397681) (-2656 . 397568) (-2657 . 397494) - (-2658 . 397402) (-2659 . 397212) (-2660 . 397022) (-2661 . 396951) - (-2662 . 396880) (-2663 . 396799) (-2664 . 396718) (-2665 . 396593) - (-2666 . 396460) (-2667 . 396379) (-2668 . 396305) (-2669 . 396140) - (-2670 . 395983) (-2671 . 395755) (-2672 . 395607) (-2673 . 395503) - (-2674 . 395399) (-2675 . 395314) (-2676 . 394946) (-2677 . 394865) - (-2678 . 394778) (-2679 . 394697) (-2680 . 394501) (-2681 . 394281) - (-2682 . 394094) (-2683 . 393772) (-2684 . 393479) (-2685 . 393186) - (-2686 . 392876) (-2687 . 392559) (-2688 . 392407) (-2689 . 392219) - (-2690 . 391746) (-2691 . 391664) (-2692 . 391448) (-2693 . 391232) - (-2694 . 390973) (-2695 . 390552) (-2696 . 390039) (-2697 . 389909) - (-2698 . 389635) (-2699 . 389456) (-2700 . 389341) (-2701 . 389237) - (-2702 . 389182) (-2703 . 389105) (-2704 . 389035) (-2705 . 388962) - (-2706 . 388907) (-2707 . 388834) (-2708 . 388779) (-2709 . 388424) - (-2710 . 388016) (-2711 . 387863) (-2712 . 387710) (-2713 . 387629) - (-2714 . 387476) (-2715 . 387323) (-2716 . 387188) (-2717 . 387053) - (-2718 . 386918) (-2719 . 386783) (-2720 . 386648) (-2721 . 386513) - (-2722 . 386457) (-2723 . 386304) (-2724 . 386193) (-2725 . 386082) - (-2726 . 385997) (-2727 . 385887) (-2728 . 385784) (-2729 . 381633) - (-2730 . 381185) (-2731 . 380758) (-2732 . 380141) (-2733 . 379540) - (-2734 . 379322) (-2735 . 379144) (-2736 . 378885) (-2737 . 378474) - (-2738 . 378180) (-2739 . 377737) (-2740 . 377559) (-2741 . 377166) - (-2742 . 376773) (-2743 . 376588) (-2744 . 376381) (-2745 . 376161) - (-2746 . 375855) (-2747 . 375656) (-2748 . 375027) (-2749 . 374870) - (-2750 . 374481) (-2751 . 374430) (-2752 . 374381) (-2753 . 374330) - (-2754 . 374282) (-2755 . 374230) (-2756 . 374084) (-2757 . 374032) - (-2758 . 373886) (-2759 . 373834) (-2760 . 373688) (-2761 . 373637) - (-2762 . 373264) (-2763 . 373213) (-2764 . 373164) (-2765 . 373113) - (-2766 . 373065) (-2767 . 373013) (-2768 . 372964) (-2769 . 372912) - (-2770 . 372863) (-2771 . 372811) (-2772 . 372762) (-2773 . 372696) - (-2774 . 372580) (-2775 . 371436) (-2776 . 371035) (-2777 . 370928) - (-2778 . 370686) (-2779 . 370536) (-2780 . 370386) (-2781 . 370225) - (-2782 . 368018) (-2783 . 367757) (-2784 . 367603) (-2785 . 367457) - (-2786 . 367311) (-2787 . 367092) (-2788 . 366960) (-2789 . 366885) - (-2790 . 366810) (-2791 . 366675) (-2792 . 366546) (-2793 . 366417) - (-2794 . 366291) (-2795 . 366165) (-2796 . 366039) (-2797 . 365913) - (-2798 . 365810) (-2799 . 365710) (-2800 . 365616) (-2801 . 365486) - (-2802 . 365335) (-2803 . 364959) (-2804 . 364845) (-2805 . 364604) - (-2806 . 364146) (-2807 . 363836) (-2808 . 363269) (-2809 . 362700) - (-2810 . 361690) (-2811 . 361148) (-2812 . 360835) (-2813 . 360497) - (-2814 . 360166) (-2815 . 359846) (-2816 . 359793) (-2817 . 359666) - (-2818 . 359166) (-2819 . 358023) (-2820 . 357968) (-2821 . 357913) - (-2822 . 357837) (-2823 . 357718) (-2824 . 357643) (-2825 . 357568) - (-2826 . 357490) (-2827 . 357267) (-2828 . 357208) (-2829 . 357149) - (-2830 . 357046) (-2831 . 356943) (-2832 . 356840) (-2833 . 356737) - (-2834 . 356656) (-2835 . 356582) (-2836 . 356367) (-2837 . 356133) - (-2838 . 356099) (-2839 . 356065) (-2840 . 356037) (-2841 . 356009) - (-2842 . 355792) (-2843 . 355514) (-2844 . 355364) (-2845 . 355234) - (-2846 . 355104) (-2847 . 355004) (-2848 . 354827) (-2849 . 354667) - (-2850 . 354567) (-2851 . 354390) (-2852 . 354230) (-2853 . 354071) - (-2854 . 353932) (-2855 . 353782) (-2856 . 353652) (-2857 . 353522) - (-2858 . 353375) (-2859 . 353248) (-2860 . 353145) (-2861 . 353038) - (-2862 . 352941) (-2863 . 352776) (-2864 . 352628) (-2865 . 352213) - (-2866 . 352113) (-2867 . 352010) (-2868 . 351922) (-2869 . 351842) - (-2870 . 351692) (-2871 . 351562) (-2872 . 351510) (-2873 . 351437) - (-2874 . 351362) (-2875 . 351086) (-2876 . 350974) (-2877 . 350662) - (-2878 . 350485) (-2879 . 348887) (-2880 . 348259) (-2881 . 348200) - (-2882 . 348084) (-2883 . 347968) (-2884 . 347824) (-2885 . 347672) - (-2886 . 347513) (-2887 . 347354) (-2888 . 347148) (-2889 . 346961) - (-2890 . 346809) (-2891 . 346654) (-2892 . 346499) (-2893 . 346347) - (-2894 . 346210) (-2895 . 345787) (-2896 . 345661) (-2897 . 345535) - (-2898 . 345409) (-2899 . 345269) (-2900 . 345128) (-2901 . 344987) - (-2902 . 344843) (-2903 . 344095) (-2904 . 343937) (-2905 . 343751) - (-2906 . 343596) (-2907 . 343358) (-2908 . 343113) (-2909 . 342868) - (-2910 . 342658) (-2911 . 342521) (-2912 . 342311) (-2913 . 342174) - (-2914 . 341964) (-2915 . 341827) (-2916 . 341617) (-2917 . 341314) - (-2918 . 341170) (-2919 . 341029) (-2920 . 340806) (-2921 . 340665) - (-2922 . 340443) (-2923 . 340246) (-2924 . 340090) (-2925 . 339763) - (-2926 . 339604) (-2927 . 339445) (-2928 . 339286) (-2929 . 339115) - (-2930 . 338944) (-2931 . 338770) (-2932 . 338418) (-2933 . 338295) - (-2934 . 338133) (-2935 . 338060) (-2936 . 337987) (-2937 . 337914) - (-2938 . 337841) (-2939 . 337768) (-2940 . 337695) (-2941 . 337572) - (-2942 . 337399) (-2943 . 337276) (-2944 . 337190) (-2945 . 337124) - (-2946 . 337058) (-2947 . 336992) (-2948 . 336926) (-2949 . 336860) - (-2950 . 336794) (-2951 . 336728) (-2952 . 336662) (-2953 . 336596) - (-2954 . 336530) (-2955 . 336464) (-2956 . 336398) (-2957 . 336332) - (-2958 . 336266) (-2959 . 336200) (-2960 . 336134) (-2961 . 336068) - (-2962 . 336002) (-2963 . 335936) (-2964 . 335870) (-2965 . 335804) - (-2966 . 335738) (-2967 . 335672) (-2968 . 335606) (-2969 . 335540) - (-2970 . 335474) (-2971 . 334827) (-2972 . 334180) (-2973 . 334052) - (-2974 . 333929) (-2975 . 333806) (-2976 . 333665) (-2977 . 333511) - (-2978 . 333367) (-2979 . 333192) (-2980 . 332582) (-2981 . 332458) - (-2982 . 332334) (-2983 . 331656) (-2984 . 330959) (-2985 . 330858) - (-2986 . 330802) (-2987 . 330746) (-2988 . 330690) (-2989 . 330634) - (-2990 . 330575) (-2991 . 330511) (-2992 . 330403) (-2993 . 330295) - (-2994 . 330187) (-2995 . 329908) (-2996 . 329834) (-2997 . 329608) - (-2998 . 329527) (-2999 . 329449) (-3000 . 329371) (-3001 . 329293) - (-3002 . 329214) (-3003 . 329136) (-3004 . 329043) (-3005 . 328944) - (-3006 . 328876) (-3007 . 328827) (-3008 . 328136) (-3009 . 327496) - (-3010 . 326705) (-3011 . 326624) (-3012 . 326520) (-3013 . 326429) - (-3014 . 326338) (-3015 . 326264) (-3016 . 326190) (-3017 . 326116) - (-3018 . 326061) (-3019 . 326006) (-3020 . 325940) (-3021 . 325874) - (-3022 . 325812) (-3023 . 325537) (-3024 . 325045) (-3025 . 324587) - (-3026 . 324334) (-3027 . 324146) (-3028 . 323805) (-3029 . 323509) - (-3030 . 323341) (-3031 . 323210) (-3032 . 323070) (-3033 . 322915) - (-3034 . 322746) (-3035 . 321360) (-3036 . 321227) (-3037 . 321086) - (-3038 . 320857) (-3039 . 320798) (-3040 . 320742) (-3041 . 320686) - (-3042 . 320421) (-3043 . 320209) (-3044 . 320070) (-3045 . 319963) - (-3046 . 319846) (-3047 . 319780) (-3048 . 319707) (-3049 . 319593) - (-3050 . 319340) (-3051 . 319240) (-3052 . 319046) (-3053 . 318738) - (-3054 . 318272) (-3055 . 318167) (-3056 . 318061) (-3057 . 317912) - (-3058 . 317772) (-3059 . 317360) (-3060 . 317116) (-3061 . 316458) - (-3062 . 316305) (-3063 . 316191) (-3064 . 316081) (-3065 . 315261) - (-3066 . 315067) (-3067 . 314041) (-3068 . 313593) (-3069 . 312204) - (-3070 . 311353) (-3071 . 311304) (-3072 . 311255) (-3073 . 311206) - (-3074 . 311139) (-3075 . 311064) (-3076 . 310874) (-3077 . 310802) - (-3078 . 310727) (-3079 . 310655) (-3080 . 310538) (-3081 . 310487) - (-3082 . 310408) (-3083 . 310329) (-3084 . 310250) (-3085 . 310199) - (-3086 . 309956) (-3087 . 309654) (-3088 . 309572) (-3089 . 309490) - (-3090 . 309429) (-3091 . 309040) (-3092 . 308168) (-3093 . 307595) - (-3094 . 306360) (-3095 . 305553) (-3096 . 305303) (-3097 . 305053) - (-3098 . 304628) (-3099 . 304384) (-3100 . 304140) (-3101 . 303896) - (-3102 . 303652) (-3103 . 303408) (-3104 . 303164) (-3105 . 302922) - (-3106 . 302680) (-3107 . 302438) (-3108 . 302196) (-3109 . 301618) - (-3110 . 301502) (-3111 . 300660) (-3112 . 300629) (-3113 . 300284) - (-3114 . 300058) (-3115 . 299959) (-3116 . 299860) (-3117 . 298094) - (-3118 . 297982) (-3119 . 296934) (-3120 . 296842) (-3121 . 295920) - (-3122 . 295587) (-3123 . 295254) (-3124 . 295151) (-3125 . 295040) - (-3126 . 294929) (-3127 . 294818) (-3128 . 294707) (-3129 . 293620) - (-3130 . 293500) (-3131 . 293365) (-3132 . 293233) (-3133 . 293101) - (-3134 . 292807) (-3135 . 292513) (-3136 . 292168) (-3137 . 291942) - (-3138 . 291716) (-3139 . 291605) (-3140 . 291494) (-3141 . 290032) - (-3142 . 288328) (-3143 . 288019) (-3144 . 287867) (-3145 . 287344) - (-3146 . 287015) (-3147 . 286822) (-3148 . 286629) (-3149 . 286436) - (-3150 . 286243) (-3151 . 286130) (-3152 . 286007) (-3153 . 285893) - (-3154 . 285779) (-3155 . 285686) (-3156 . 285593) (-3157 . 285483) - (-3158 . 285282) (-3159 . 284138) (-3160 . 284045) (-3161 . 283931) - (-3162 . 283838) (-3163 . 283591) (-3164 . 283480) (-3165 . 283266) - (-3166 . 283148) (-3167 . 282851) (-3168 . 282123) (-3169 . 281547) - (-3170 . 281069) (-3171 . 280825) (-3172 . 280581) (-3173 . 280238) - (-3174 . 279632) (-3175 . 279189) (-3176 . 279034) (-3177 . 278890) - (-3178 . 278570) (-3179 . 278415) (-3180 . 278275) (-3181 . 278135) - (-3182 . 277995) (-3183 . 277720) (-3184 . 277501) (-3185 . 276982) - (-3186 . 276770) (-3187 . 276558) (-3188 . 276178) (-3189 . 276004) - (-3190 . 275795) (-3191 . 275487) (-3192 . 275295) (-3193 . 275122) - (-3194 . 273986) (-3195 . 273621) (-3196 . 273421) (-3197 . 273221) - (-3198 . 272385) (-3199 . 272357) (-3200 . 272289) (-3201 . 272219) - (-3202 . 272055) (-3203 . 272027) (-3204 . 271999) (-3205 . 271945) - (-3206 . 271795) (-3207 . 271736) (-3208 . 271043) (-3209 . 269658) - (-3210 . 269598) (-3211 . 269276) (-3212 . 269204) (-3213 . 269147) - (-3214 . 269090) (-3215 . 269033) (-3216 . 268976) (-3217 . 268901) - (-3218 . 268311) (-3219 . 267951) (-3220 . 267877) (-3221 . 267817) - (-3222 . 267699) (-3223 . 266756) (-3224 . 266629) (-3225 . 266416) - (-3226 . 266342) (-3227 . 266288) (-3228 . 266234) (-3229 . 266125) - (-3230 . 265815) (-3231 . 265707) (-3232 . 265604) (-3233 . 265443) - (-3234 . 265342) (-3235 . 265244) (-3236 . 265106) (-3237 . 264968) - (-3238 . 264830) (-3239 . 264568) (-3240 . 264359) (-3241 . 264221) - (-3242 . 263930) (-3243 . 263778) (-3244 . 263503) (-3245 . 263283) - (-3246 . 263131) (-3247 . 262979) (-3248 . 262827) (-3249 . 262675) - (-3250 . 262523) (-3251 . 262316) (-3252 . 261929) (-3253 . 261598) - (-3254 . 261259) (-3255 . 260912) (-3256 . 260573) (-3257 . 260234) - (-3258 . 259853) (-3259 . 259472) (-3260 . 259091) (-3261 . 258726) - (-3262 . 258008) (-3263 . 257661) (-3264 . 257216) (-3265 . 256791) - (-3266 . 256180) (-3267 . 255588) (-3268 . 255201) (-3269 . 254870) - (-3270 . 254483) (-3271 . 254152) (-3272 . 253932) (-3273 . 253411) - (-3274 . 253198) (-3275 . 252985) (-3276 . 252772) (-3277 . 252594) - (-3278 . 252381) (-3279 . 252203) (-3280 . 251821) (-3281 . 251643) - (-3282 . 251433) (-3283 . 251343) (-3284 . 251253) (-3285 . 251162) - (-3286 . 251050) (-3287 . 250960) (-3288 . 250853) (-3289 . 250664) - (-3290 . 250608) (-3291 . 250527) (-3292 . 250446) (-3293 . 250365) - (-3294 . 250230) (-3295 . 250095) (-3296 . 249971) (-3297 . 249850) - (-3298 . 249732) (-3299 . 249596) (-3300 . 249463) (-3301 . 249344) - (-3302 . 249086) (-3303 . 248801) (-3304 . 248729) (-3305 . 248633) - (-3306 . 248492) (-3307 . 248435) (-3308 . 248378) (-3309 . 248318) - (-3310 . 247923) (-3311 . 247401) (-3312 . 247124) (-3313 . 246704) - (-3314 . 246592) (-3315 . 246154) (-3316 . 245924) (-3317 . 245721) - (-3318 . 245539) (-3319 . 245409) (-3320 . 245203) (-3321 . 244996) - (-3322 . 244806) (-3323 . 244241) (-3324 . 243985) (-3325 . 243694) - (-3326 . 243400) (-3327 . 243103) (-3328 . 242803) (-3329 . 242673) - (-3330 . 242540) (-3331 . 242404) (-3332 . 242265) (-3333 . 241048) - (-3334 . 240740) (-3335 . 240376) (-3336 . 240279) (-3337 . 240039) - (-3338 . 239744) (-3339 . 239449) (-3340 . 239190) (-3341 . 239016) - (-3342 . 238938) (-3343 . 238851) (-3344 . 238751) (-3345 . 238657) - (-3346 . 238576) (-3347 . 238506) (-3348 . 237715) (-3349 . 237645) - (-3350 . 237317) (-3351 . 237247) (-3352 . 236919) (-3353 . 236849) - (-3354 . 236404) (-3355 . 236334) (-3356 . 236230) (-3357 . 236156) - (-3358 . 236082) (-3359 . 236011) (-3360 . 235669) (-3361 . 235541) - (-3362 . 235464) (-3363 . 235233) (-3364 . 235090) (-3365 . 234947) - (-3366 . 234608) (-3367 . 234278) (-3368 . 234065) (-3369 . 233810) - (-3370 . 233460) (-3371 . 233235) (-3372 . 233010) (-3373 . 232785) - (-3374 . 232560) (-3375 . 232347) (-3376 . 232134) (-3377 . 231984) - (-3378 . 231803) (-3379 . 231698) (-3380 . 231576) (-3381 . 231468) - (-3382 . 231360) (-3383 . 231035) (-3384 . 230771) (-3385 . 230460) - (-3386 . 230158) (-3387 . 229849) (-3388 . 229120) (-3389 . 228531) - (-3390 . 228356) (-3391 . 228212) (-3392 . 228057) (-3393 . 227934) - (-3394 . 227829) (-3395 . 227714) (-3396 . 227619) (-3397 . 227138) - (-3398 . 227028) (-3399 . 226918) (-3400 . 226808) (-3401 . 225736) - (-3402 . 225225) (-3403 . 225158) (-3404 . 225085) (-3405 . 224212) - (-3406 . 224139) (-3407 . 224084) (-3408 . 224029) (-3409 . 223997) - (-3410 . 223911) (-3411 . 223879) (-3412 . 223793) (-3413 . 223373) - (-3414 . 222953) (-3415 . 222401) (-3416 . 221297) (-3417 . 219587) - (-3418 . 218037) (-3419 . 217245) (-3420 . 216745) (-3421 . 216259) - (-3422 . 215857) (-3423 . 215207) (-3424 . 215132) (-3425 . 215041) - (-3426 . 214970) (-3427 . 214899) (-3428 . 214843) (-3429 . 214723) - (-3430 . 214669) (-3431 . 214608) (-3432 . 214554) (-3433 . 214451) - (-3434 . 214011) (-3435 . 213571) (-3436 . 213131) (-3437 . 212609) - (-3438 . 212448) (-3439 . 212287) (-3440 . 211976) (-3441 . 211890) - (-3442 . 211800) (-3443 . 211442) (-3444 . 211325) (-3445 . 211244) - (-3446 . 211086) (-3447 . 210973) (-3448 . 210898) (-3449 . 210052) - (-3450 . 208870) (-3451 . 208771) (-3452 . 208672) (-3453 . 208343) - (-3454 . 208265) (-3455 . 208190) (-3456 . 208084) (-3457 . 207928) - (-3458 . 207821) (-3459 . 207686) (-3460 . 207551) (-3461 . 207429) - (-3462 . 207334) (-3463 . 207186) (-3464 . 207091) (-3465 . 206936) - (-3466 . 206781) (-3467 . 206229) (-3468 . 205677) (-3469 . 205062) - (-3470 . 204510) (-3471 . 203958) (-3472 . 203406) (-3473 . 202853) - (-3474 . 202300) (-3475 . 201747) (-3476 . 201194) (-3477 . 200641) - (-3478 . 200088) (-3479 . 199536) (-3480 . 198984) (-3481 . 198432) - (-3482 . 197880) (-3483 . 197328) (-3484 . 196776) (-3485 . 196672) - (-3486 . 196087) (-3487 . 195982) (-3488 . 195907) (-3489 . 195765) - (-3490 . 195673) (-3491 . 195582) (-3492 . 195490) (-3493 . 195395) - (-3494 . 195290) (-3495 . 195167) (-3496 . 195045) (-3497 . 194681) - (-3498 . 194559) (-3499 . 194461) (-3500 . 194100) (-3501 . 193571) - (-3502 . 193496) (-3503 . 193421) (-3504 . 193329) (-3505 . 193148) - (-3506 . 193053) (-3507 . 192978) (-3508 . 192887) (-3509 . 192796) - (-3510 . 192637) (-3511 . 192088) (-3512 . 191539) (-3513 . 188832) - (-3514 . 188660) (-3515 . 187254) (-3516 . 186694) (-3517 . 186579) - (-3518 . 186207) (-3519 . 186144) (-3520 . 186081) (-3521 . 186018) - (-3522 . 185740) (-3523 . 185473) (-3524 . 185421) (-3525 . 184780) - (-3526 . 184729) (-3527 . 184541) (-3528 . 184468) (-3529 . 184388) - (-3530 . 184275) (-3531 . 184085) (-3532 . 183721) (-3533 . 183449) - (-3534 . 183398) (-3535 . 183347) (-3536 . 183277) (-3537 . 183158) - (-3538 . 183129) (-3539 . 183025) (-3540 . 182903) (-3541 . 182849) - (-3542 . 182672) (-3543 . 182611) (-3544 . 182430) (-3545 . 182369) - (-3546 . 182297) (-3547 . 181822) (-3548 . 181448) (-3549 . 177917) - (-3550 . 177865) (-3551 . 177737) (-3552 . 177587) (-3553 . 177535) - (-3554 . 177394) (-3555 . 175337) (-3556 . 167694) (-3557 . 167543) - (-3558 . 167473) (-3559 . 167422) (-3560 . 167372) (-3561 . 167321) - (-3562 . 167270) (-3563 . 167074) (-3564 . 166932) (-3565 . 166818) - (-3566 . 166697) (-3567 . 166579) (-3568 . 166467) (-3569 . 166349) - (-3570 . 166244) (-3571 . 166163) (-3572 . 166059) (-3573 . 165125) - (-3574 . 164905) (-3575 . 164668) (-3576 . 164586) (-3577 . 164242) - (-3578 . 163103) (-3579 . 163029) (-3580 . 162934) (-3581 . 162860) - (-3582 . 162656) (-3583 . 162565) (-3584 . 162449) (-3585 . 162336) - (-3586 . 162245) (-3587 . 162154) (-3588 . 162065) (-3589 . 161976) - (-3590 . 161887) (-3591 . 161799) (-3592 . 161311) (-3593 . 161247) - (-3594 . 161183) (-3595 . 161119) (-3596 . 161058) (-3597 . 160318) - (-3598 . 160257) (-3599 . 160196) (-3600 . 159570) (-3601 . 159518) - (-3602 . 159390) (-3603 . 159326) (-3604 . 159272) (-3605 . 159163) - (-3606 . 157866) (-3607 . 157785) (-3608 . 157696) (-3609 . 157638) - (-3610 . 157498) (-3611 . 157413) (-3612 . 157339) (-3613 . 157254) - (-3614 . 157197) (-3615 . 156981) (-3616 . 156842) (-3617 . 156235) - (-3618 . 155681) (-3619 . 155127) (-3620 . 154573) (-3621 . 153966) - (-3622 . 153412) (-3623 . 152852) (-3624 . 152292) (-3625 . 152030) - (-3626 . 151591) (-3627 . 151258) (-3628 . 150919) (-3629 . 150614) - (-3630 . 150481) (-3631 . 150348) (-3632 . 149960) (-3633 . 149867) - (-3634 . 149774) (-3635 . 149681) (-3636 . 149588) (-3637 . 149495) - (-3638 . 149402) (-3639 . 149309) (-3640 . 149216) (-3641 . 149123) - (-3642 . 149030) (-3643 . 148937) (-3644 . 148844) (-3645 . 148751) - (-3646 . 148658) (-3647 . 148565) (-3648 . 148472) (-3649 . 148379) - (-3650 . 148286) (-3651 . 148193) (-3652 . 148100) (-3653 . 148007) - (-3654 . 147914) (-3655 . 147821) (-3656 . 147728) (-3657 . 147635) - (-3658 . 147450) (-3659 . 147140) (-3660 . 145582) (-3661 . 145428) - (-3662 . 145291) (-3663 . 145149) (-3664 . 144947) (-3665 . 143020) - (-3666 . 142893) (-3667 . 142769) (-3668 . 142642) (-3669 . 142421) - (-3670 . 142200) (-3671 . 142073) (-3672 . 141872) (-3673 . 141696) - (-3674 . 141179) (-3675 . 140662) (-3676 . 140385) (-3677 . 139976) - (-3678 . 139459) (-3679 . 139275) (-3680 . 139133) (-3681 . 138638) - (-3682 . 138007) (-3683 . 137951) (-3684 . 137857) (-3685 . 137738) - (-3686 . 137668) (-3687 . 137595) (-3688 . 137365) (-3689 . 136746) - (-3690 . 136316) (-3691 . 136234) (-3692 . 136092) (-3693 . 135618) - (-3694 . 135496) (-3695 . 135374) (-3696 . 135234) (-3697 . 135047) - (-3698 . 134931) (-3699 . 134651) (-3700 . 134583) (-3701 . 134385) - (-3702 . 134205) (-3703 . 134050) (-3704 . 133943) (-3705 . 133892) - (-3706 . 133515) (-3707 . 132988) (-3708 . 132767) (-3709 . 132546) - (-3710 . 132307) (-3711 . 132217) (-3712 . 130475) (-3713 . 129893) - (-3714 . 129815) (-3715 . 124355) (-3716 . 123565) (-3717 . 123188) - (-3718 . 123117) (-3719 . 122854) (-3720 . 122679) (-3721 . 122194) - (-3722 . 121772) (-3723 . 121332) (-3724 . 120469) (-3725 . 120345) - (-3726 . 120218) (-3727 . 120109) (-3728 . 119957) (-3729 . 119843) - (-3730 . 119704) (-3731 . 119623) (-3732 . 119542) (-3733 . 119438) - (-3734 . 119020) (-3735 . 118599) (-3736 . 118525) (-3737 . 118262) - (-3738 . 117998) (-3739 . 117619) (-3740 . 116920) (-3741 . 115877) - (-3742 . 115818) (-3743 . 115744) (-3744 . 115670) (-3745 . 115548) - (-3746 . 115298) (-3747 . 115212) (-3748 . 115137) (-3749 . 115062) - (-3750 . 114967) (-3751 . 111192) (-3752 . 110022) (-3753 . 109362) - (-3754 . 109178) (-3755 . 106973) (-3756 . 106648) (-3757 . 106166) - (-3758 . 105725) (-3759 . 105490) (-3760 . 105245) (-3761 . 105155) - (-3762 . 103720) (-3763 . 103642) (-3764 . 103537) (-3765 . 102061) - (-3766 . 101656) (-3767 . 101255) (-3768 . 101153) (-3769 . 101071) - (-3770 . 100913) (-3771 . 99679) (-3772 . 99597) (-3773 . 99518) - (-3774 . 99163) (-3775 . 99106) (-3776 . 99034) (-3777 . 98977) - (-3778 . 98920) (-3779 . 98790) (-3780 . 98588) (-3781 . 98220) - (-3782 . 97799) (-3783 . 93989) (-3784 . 93387) (-3785 . 92920) - (-3786 . 92707) (-3787 . 92494) (-3788 . 92328) (-3789 . 92115) - (-3790 . 91949) (-3791 . 91783) (-3792 . 91617) (-3793 . 91451) - (-3794 . 91181) (-3795 . 85773) (** . 82820) (-3797 . 82404) (-3798 . 82163) - (-3799 . 82107) (-3800 . 81615) (-3801 . 78807) (-3802 . 78657) - (-3803 . 78493) (-3804 . 78329) (-3805 . 78233) (-3806 . 78115) - (-3807 . 77991) (-3808 . 77848) (-3809 . 77677) (-3810 . 77551) - (-3811 . 77407) (-3812 . 77255) (-3813 . 77096) (-3814 . 76584) - (-3815 . 76495) (-3816 . 75830) (-3817 . 75638) (-3818 . 75543) - (-3819 . 75235) (-3820 . 74063) (-3821 . 73857) (-3822 . 72682) - (-3823 . 72607) (-3824 . 71426) (-3825 . 67845) (-3826 . 67481) - (-3827 . 67204) (-3828 . 67112) (-3829 . 67019) (-3830 . 66742) - (-3831 . 66649) (-3832 . 66556) (-3833 . 66463) (-3834 . 66079) - (-3835 . 66008) (-3836 . 65916) (-3837 . 65758) (-3838 . 65404) - (-3839 . 65246) (-3840 . 65138) (-3841 . 65109) (-3842 . 65042) - (-3843 . 64888) (-3844 . 64730) (-3845 . 64336) (-3846 . 64261) - (-3847 . 64155) (-3848 . 64083) (-3849 . 64005) (-3850 . 63932) - (-3851 . 63859) (-3852 . 63786) (-3853 . 63714) (-3854 . 63642) - (-3855 . 63569) (-3856 . 63328) (-3857 . 62991) (-3858 . 62843) - (-3859 . 62770) (-3860 . 62697) (-3861 . 62624) (-3862 . 62370) - (-3863 . 62226) (-3864 . 60890) (-3865 . 60696) (-3866 . 60425) - (-3867 . 60277) (-3868 . 60129) (-3869 . 59889) (-3870 . 59695) - (-3871 . 59427) (-3872 . 59231) (-3873 . 59202) (-3874 . 59101) - (-3875 . 59000) (-3876 . 58899) (-3877 . 58798) (-3878 . 58697) - (-3879 . 58596) (-3880 . 58495) (-3881 . 58394) (-3882 . 58293) - (-3883 . 58192) (-3884 . 58077) (-3885 . 57962) (-3886 . 57911) - (-3887 . 57794) (-3888 . 57736) (-3889 . 57635) (-3890 . 57534) - (-3891 . 57433) (-3892 . 57317) (-3893 . 57288) (-3894 . 56557) - (-3895 . 56432) (-3896 . 56307) (-3897 . 56167) (-3898 . 56049) - (-3899 . 55924) (-3900 . 55769) (-3901 . 54786) (-3902 . 53927) - (-3903 . 53873) (-3904 . 53819) (-3905 . 53611) (-3906 . 53239) - (-3907 . 52828) (-3908 . 52470) (-3909 . 52112) (-3910 . 51960) - (-3911 . 51658) (-3912 . 51502) (-3913 . 51176) (-3914 . 51106) - (-3915 . 51036) (-3916 . 50827) (-3917 . 50218) (-3918 . 50014) - (-3919 . 49641) (-3920 . 49132) (-3921 . 48867) (-3922 . 48386) - (-3923 . 47905) (-3924 . 47780) (-3925 . 46680) (-3926 . 45604) - (-3927 . 45033) (-3928 . 44815) (-3929 . 36492) (-3930 . 36307) - (-3931 . 34224) (-3932 . 32056) (-3933 . 31910) (-3934 . 31732) - (-3935 . 31325) (-3936 . 31030) (-3937 . 30682) (-3938 . 30516) - (-3939 . 30350) (-3940 . 29937) (-3941 . 16071) (-3942 . 14964) (* . 10917) - (-3944 . 10663) (-3945 . 10479) (-3946 . 9522) (-3947 . 9469) (-3948 . 9409) - (-3949 . 9140) (-3950 . 8513) (-3951 . 7240) (-3952 . 5996) (-3953 . 5127) - (-3954 . 3864) (-3955 . 420) (-3956 . 306) (-3957 . 173) (-3958 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) +((-1212 . 630207) (-1213 . 629905) (-1214 . 629509) (-1215 . 629388) + (-1216 . 629286) (-1217 . 629173) (-1218 . 629057) (-1219 . 629004) + (-1220 . 628867) (-1221 . 628792) (-1222 . 628636) (-1223 . 628408) + (-1224 . 627444) (-1225 . 627197) (-1226 . 626913) (-1227 . 626629) + (-1228 . 626345) (-1229 . 626026) (-1230 . 625934) (-1231 . 625842) + (-1232 . 625750) (-1233 . 625658) (-1234 . 625566) (-1235 . 625474) + (-1236 . 625379) (-1237 . 625284) (-1238 . 625192) (-1239 . 625100) + (-1240 . 625008) (-1241 . 624916) (-1242 . 624824) (-1243 . 624722) + (-1244 . 624620) (-1245 . 624518) (-1246 . 624426) (-1247 . 624375) + (-1248 . 624323) (-1249 . 624253) (-1250 . 623833) (-1251 . 623639) + (-1252 . 623612) (-1253 . 623489) (-1254 . 623366) (-1255 . 623222) + (-1256 . 623052) (-1257 . 622928) (-1258 . 622689) (-1259 . 622616) + (-1260 . 622391) (-1261 . 622145) (-1262 . 622092) (-1263 . 621914) + (-1264 . 621745) (-1265 . 621669) (-1266 . 621596) (-1267 . 621443) + (-1268 . 621290) (-1269 . 621106) (-1270 . 620925) (-1271 . 620870) + (-1272 . 620815) (-1273 . 620742) (-1274 . 620666) (-1275 . 620589) + (-1276 . 620521) (-1277 . 620378) (-1278 . 620271) (-1279 . 620203) + (-1280 . 620133) (-1281 . 620063) (-1282 . 620013) (-1283 . 619963) + (-1284 . 619913) (-1285 . 619792) (-1286 . 619476) (-1287 . 619407) + (-1288 . 619328) (-1289 . 619209) (-1290 . 619129) (-1291 . 619049) + (-1292 . 618896) (-1293 . 618747) (-1294 . 618671) (-1295 . 618614) + (-1296 . 618542) (-1297 . 618479) (-1298 . 618416) (-1299 . 618355) + (-1300 . 618283) (-1301 . 618167) (-1302 . 618115) (-1303 . 618060) + (-1304 . 618008) (-1305 . 617956) (-1306 . 617928) (-1307 . 617900) + (-1308 . 617872) (-1309 . 617828) (-1310 . 617757) (-1311 . 617706) + (-1312 . 617658) (-1313 . 617607) (-1314 . 617555) (-1315 . 617439) + (-1316 . 617323) (-1317 . 617231) (-1318 . 617139) (-1319 . 617016) + (-1320 . 616950) (-1321 . 616884) (-1322 . 616825) (-1323 . 616797) + (-1324 . 616769) (-1325 . 616741) (-1326 . 616713) (-1327 . 616603) + (-1328 . 616552) (-1329 . 616501) (-1330 . 616450) (-1331 . 616399) + (-1332 . 616348) (-1333 . 616297) (-1334 . 616269) (-1335 . 616241) + (-1336 . 616213) (-1337 . 616185) (-1338 . 616157) (-1339 . 616129) + (-1340 . 616101) (-1341 . 616073) (-1342 . 616045) (-1343 . 615942) + (-1344 . 615890) (-1345 . 615724) (-1346 . 615540) (-1347 . 615329) + (-1348 . 615214) (-1349 . 614981) (-1350 . 614882) (-1351 . 614789) + (-1352 . 614674) (-1353 . 614276) (-1354 . 614058) (-1355 . 614009) + (-1356 . 613981) (-1357 . 613905) (-1358 . 613806) (-1359 . 613707) + (-1360 . 613608) (-1361 . 613509) (-1362 . 613410) (-1363 . 613311) + (-1364 . 613153) (-1365 . 613077) (-1366 . 612910) (-1367 . 612852) + (-1368 . 612794) (-1369 . 612485) (-1370 . 612231) (-1371 . 612147) + (-1372 . 612015) (-1373 . 611957) (-1374 . 611905) (-1375 . 611823) + (-1376 . 611748) (-1377 . 611677) (-1378 . 611623) (-1379 . 611572) + (-1380 . 611498) (-1381 . 611424) (-1382 . 611343) (-1383 . 611262) + (-1384 . 611207) (-1385 . 611133) (-1386 . 611059) (-1387 . 610985) + (-1388 . 610908) (-1389 . 610854) (-1390 . 610796) (-1391 . 610697) + (-1392 . 610598) (-1393 . 610499) (-1394 . 610400) (-1395 . 610301) + (-1396 . 610202) (-1397 . 610103) (-1398 . 609989) (-1399 . 609875) + (-1400 . 609761) (-1401 . 609647) (-1402 . 609533) (-1403 . 609419) + (-1404 . 609302) (-1405 . 609226) (-1406 . 609150) (-1407 . 608763) + (-1408 . 608418) (-1409 . 608316) (-1410 . 608055) (-1411 . 607953) + (-1412 . 607748) (-1413 . 607635) (-1414 . 607533) (-1415 . 607376) + (-1416 . 607287) (-1417 . 607193) (-1418 . 607113) (-1419 . 607039) + (-1420 . 606961) (-1421 . 606902) (-1422 . 606844) (-1423 . 606742) + (-7 . 606714) (-8 . 606686) (-9 . 606658) (-1427 . 606539) (-1428 . 606457) + (-1429 . 606375) (-1430 . 606293) (-1431 . 606211) (-1432 . 606129) + (-1433 . 606035) (-1434 . 605965) (-1435 . 605895) (-1436 . 605804) + (-1437 . 605710) (-1438 . 605628) (-1439 . 605546) (-1440 . 605448) + (-1441 . 605288) (-1442 . 605090) (-1443 . 604954) (-1444 . 604854) + (-1445 . 604754) (-1446 . 604661) (-1447 . 604602) (-1448 . 604269) + (-1449 . 604169) (-1450 . 604051) (-1451 . 603839) (-1452 . 603660) + (-1453 . 603502) (-1454 . 603299) (-1455 . 602881) (-1456 . 602830) + (-1457 . 602721) (-1458 . 602606) (-1459 . 602537) (-1460 . 602468) + (-1461 . 602399) (-1462 . 602333) (-1463 . 602208) (-1464 . 601991) + (-1465 . 601913) (-1466 . 601863) (-1467 . 601792) (-1468 . 601649) + (-1469 . 601508) (-1470 . 601427) (-1471 . 601346) (-1472 . 601290) + (-1473 . 601234) (-1474 . 601161) (-1475 . 601021) (-1476 . 600968) + (-1477 . 600909) (-1478 . 600850) (-1479 . 600695) (-1480 . 600643) + (-1481 . 600526) (-1482 . 600409) (-1483 . 600292) (-1484 . 600161) + (-1485 . 599882) (-1486 . 599747) (-1487 . 599691) (-1488 . 599635) + (-1489 . 599576) (-1490 . 599517) (-1491 . 599461) (-1492 . 599405) + (-1493 . 599208) (-1494 . 596866) (-1495 . 596739) (-1496 . 596594) + (-1497 . 596466) (-1498 . 596414) (-1499 . 596362) (-1500 . 596310) + (-1501 . 592272) (-1502 . 592178) (-1503 . 592039) (-1504 . 591830) + (-1505 . 591728) (-1506 . 591626) (-1507 . 590711) (-1508 . 590635) + (-1509 . 590506) (-1510 . 590381) (-1511 . 590304) (-1512 . 590227) + (-1513 . 590100) (-1514 . 589973) (-1515 . 589807) (-1516 . 589680) + (-1517 . 589553) (-1518 . 589336) (-1519 . 588902) (-1520 . 588538) + (-1521 . 588486) (-1522 . 588427) (-1523 . 588339) (-1524 . 588251) + (-1525 . 588160) (-1526 . 588069) (-1527 . 587978) (-1528 . 587887) + (-1529 . 587796) (-1530 . 587705) (-1531 . 587614) (-1532 . 587523) + (-1533 . 587432) (-1534 . 587341) (-1535 . 587250) (-1536 . 587159) + (-1537 . 587068) (-1538 . 586977) (-1539 . 586886) (-1540 . 586795) + (-1541 . 586704) (-1542 . 586613) (-1543 . 586522) (-1544 . 586431) + (-1545 . 586340) (-1546 . 586249) (-1547 . 586158) (-1548 . 586067) + (-1549 . 585976) (-1550 . 585885) (-1551 . 585723) (-1552 . 585615) + (-1553 . 585372) (-1554 . 585085) (-1555 . 584890) (-1556 . 584734) + (-1557 . 584574) (-1558 . 584523) (-1559 . 584461) (-1560 . 584410) + (-1561 . 584347) (-1562 . 584294) (-1563 . 584242) (-1564 . 584190) + (-1565 . 584138) (-1566 . 584048) (-1567 . 583861) (-1568 . 583707) + (-1569 . 583627) (-1570 . 583547) (-1571 . 583467) (-1572 . 583337) + (-1573 . 583105) (-1574 . 583077) (-1575 . 583049) (-1576 . 583021) + (-1577 . 582941) (-1578 . 582864) (-1579 . 582787) (-1580 . 582706) + (-1581 . 582647) (-1582 . 582489) (-1583 . 582296) (-1584 . 581811) + (-1585 . 581569) (-1586 . 581307) (-1587 . 581206) (-1588 . 581125) + (-1589 . 581044) (-1590 . 580974) (-1591 . 580904) (-1592 . 580746) + (-1593 . 580442) (-1594 . 580214) (-1595 . 580092) (-1596 . 580034) + (-1597 . 579972) (-1598 . 579910) (-1599 . 579845) (-1600 . 579783) + (-1601 . 579504) (-1602 . 579436) (-1603 . 579226) (-1604 . 579174) + (-1605 . 579120) (-1606 . 579029) (-1607 . 578942) (-1608 . 577195) + (-1609 . 577116) (-1610 . 576371) (-1611 . 576254) (-1612 . 576048) + (-1613 . 575887) (-1614 . 575726) (-1615 . 575566) (-1616 . 575428) + (-1617 . 575334) (-1618 . 575236) (-1619 . 575142) (-1620 . 575028) + (-1621 . 574946) (-1622 . 574849) (-1623 . 574653) (-1624 . 574562) + (-1625 . 574468) (-1626 . 574401) (-1627 . 574332) (-1628 . 574280) + (-1629 . 574221) (-1630 . 574147) (-1631 . 574095) (-1632 . 573938) + (-1633 . 573781) (-1634 . 573629) (-1635 . 572871) (-1636 . 572560) + (-1637 . 572208) (-1638 . 571991) (-1639 . 571728) (-1640 . 571353) + (-1641 . 571169) (-1642 . 571035) (-1643 . 570869) (-1644 . 570703) + (-1645 . 570569) (-1646 . 570435) (-1647 . 570301) (-1648 . 570167) + (-1649 . 570036) (-1650 . 569905) (-1651 . 569774) (-1652 . 569394) + (-1653 . 569268) (-1654 . 569140) (-1655 . 568890) (-1656 . 568767) + (-1657 . 568517) (-1658 . 568394) (-1659 . 568144) (-1660 . 568021) + (-1661 . 567738) (-1662 . 567467) (-1663 . 567194) (-1664 . 566896) + (-1665 . 566794) (-1666 . 566649) (-1667 . 566508) (-1668 . 566357) + (-1669 . 566196) (-1670 . 566108) (-1671 . 566080) (-1672 . 565998) + (-1673 . 565901) (-1674 . 565433) (-1675 . 565082) (-1676 . 564649) + (-1677 . 564510) (-1678 . 564440) (-1679 . 564370) (-1680 . 564300) + (-1681 . 564209) (-1682 . 564118) (-1683 . 564027) (-1684 . 563936) + (-1685 . 563845) (-1686 . 563759) (-1687 . 563673) (-1688 . 563587) + (-1689 . 563501) (-1690 . 563415) (-1691 . 563341) (-1692 . 563236) + (-1693 . 563010) (-1694 . 562932) (-1695 . 562857) (-1696 . 562764) + (-1697 . 562660) (-1698 . 562564) (-1699 . 562395) (-1700 . 562318) + (-1701 . 562241) (-1702 . 562150) (-1703 . 562059) (-1704 . 561859) + (-1705 . 561706) (-1706 . 561553) (-1707 . 561400) (-1708 . 561247) + (-1709 . 561094) (-1710 . 560941) (-1711 . 560875) (-1712 . 560722) + (-1713 . 560569) (-1714 . 560416) (-1715 . 560263) (-1716 . 560110) + (-1717 . 559957) (-1718 . 559804) (-1719 . 559651) (-1720 . 559577) + (-1721 . 559503) (-1722 . 559448) (-1723 . 559393) (-1724 . 559338) + (-1725 . 559283) (-1726 . 559212) (-1727 . 559008) (-1728 . 558907) + (-1729 . 558719) (-1730 . 558626) (-1731 . 558490) (-1732 . 558354) + (-1733 . 558218) (-1734 . 558150) (-1735 . 558034) (-1736 . 557918) + (-1737 . 557802) (-1738 . 557749) (-1739 . 557664) (-1740 . 557579) + (-1741 . 557271) (-1742 . 557216) (-1743 . 556564) (-1744 . 556249) + (-1745 . 555965) (-1746 . 555847) (-1747 . 555728) (-1748 . 555669) + (-1749 . 555610) (-1750 . 555559) (-1751 . 555508) (-1752 . 555457) + (-1753 . 555404) (-1754 . 555351) (-1755 . 555292) (-1756 . 555179) + (-1757 . 555066) (-1758 . 554899) (-1759 . 554807) (-1760 . 554694) + (-1761 . 554610) (-1762 . 554495) (-1763 . 554404) (-1764 . 554313) + (-1765 . 554192) (-1766 . 554005) (-1767 . 553953) (-1768 . 553898) + (-1769 . 553711) (-1770 . 553588) (-1771 . 553515) (-1772 . 553442) + (-1773 . 553322) (-1774 . 553249) (-1775 . 553176) (-1776 . 552836) + (-1777 . 552763) (-1778 . 552543) (-1779 . 552210) (-1780 . 552027) + (-1781 . 551884) (-1782 . 551524) (-1783 . 551356) (-1784 . 551188) + (-1785 . 550932) (-1786 . 550676) (-1787 . 550481) (-1788 . 550286) + (-1789 . 549692) (-1790 . 549616) (-1791 . 549477) (-1792 . 549070) + (-1793 . 548943) (-1794 . 548786) (-1795 . 548469) (-1796 . 547989) + (-1797 . 547509) (-1798 . 547007) (-1799 . 546939) (-1800 . 546868) + (-1801 . 546797) (-1802 . 546625) (-1803 . 546506) (-1804 . 546387) + (-1805 . 546311) (-1806 . 546235) (-1807 . 545962) (-1808 . 545848) + (-1809 . 545797) (-1810 . 545746) (-1811 . 545695) (-1812 . 545644) + (-1813 . 545593) (-1814 . 545452) (-1815 . 545279) (-1816 . 545048) + (-1817 . 544862) (-1818 . 544834) (-1819 . 544806) (-1820 . 544778) + (-1821 . 544750) (-1822 . 544722) (-1823 . 544694) (-1824 . 544666) + (-1825 . 544615) (-1826 . 544549) (-1827 . 544459) (-1828 . 544088) + (-1829 . 543937) (-1830 . 543786) (-1831 . 543581) (-1832 . 543459) + (-1833 . 543385) (-1834 . 543308) (-1835 . 543234) (-1836 . 543157) + (-1837 . 543080) (-1838 . 543006) (-1839 . 542929) (-1840 . 542696) + (-1841 . 542543) (-1842 . 542248) (-1843 . 542095) (-1844 . 541773) + (-1845 . 541635) (-1846 . 541497) (-1847 . 541417) (-1848 . 541337) + (-1849 . 541073) (-1850 . 540342) (-1851 . 540206) (-1852 . 540116) + (-1853 . 539981) (-1854 . 539914) (-1855 . 539846) (-1856 . 539759) + (-1857 . 539672) (-1858 . 539505) (-1859 . 539431) (-1860 . 539287) + (-1861 . 538827) (-1862 . 538448) (-1863 . 537686) (-1864 . 537542) + (-1865 . 537398) (-1866 . 537236) (-1867 . 536999) (-1868 . 536859) + (-1869 . 536713) (-1870 . 536474) (-1871 . 536238) (-1872 . 535999) + (-1873 . 535807) (-1874 . 535684) (-1875 . 535480) (-1876 . 535257) + (-1877 . 535018) (-1878 . 534877) (-1879 . 534739) (-1880 . 534600) + (-1881 . 534347) (-1882 . 534091) (-1883 . 533934) (-1884 . 533780) + (-1885 . 533540) (-1886 . 533255) (-1887 . 533117) (-1888 . 533030) + (-1889 . 532364) (-1890 . 532188) (-1891 . 532006) (-1892 . 531830) + (-1893 . 531648) (-1894 . 531469) (-1895 . 531290) (-1896 . 531103) + (-1897 . 530721) (-1898 . 530542) (-1899 . 530363) (-1900 . 530176) + (-1901 . 529794) (-1902 . 528801) (-1903 . 528417) (-1904 . 528033) + (-1905 . 527915) (-1906 . 527758) (-1907 . 527616) (-1908 . 527499) + (-1909 . 527317) (-1910 . 527193) (-1911 . 526904) (-1912 . 526615) + (-1913 . 526332) (-1914 . 526049) (-1915 . 525771) (-1916 . 525683) + (-1917 . 525598) (-1918 . 525501) (-1919 . 525404) (-1920 . 525184) + (-1921 . 525084) (-1922 . 524981) (-1923 . 524903) (-1924 . 524578) + (-1925 . 524286) (-1926 . 524213) (-1927 . 523828) (-1928 . 523800) + (-1929 . 523601) (-1930 . 523427) (-1931 . 523186) (-1932 . 523131) + (-1933 . 523056) (-1934 . 522688) (-1935 . 522573) (-1936 . 522496) + (-1937 . 522423) (-1938 . 522342) (-1939 . 522261) (-1940 . 522180) + (-1941 . 522079) (-1942 . 522020) (-1943 . 521782) (-1944 . 521660) + (-1945 . 521538) (-1946 . 521311) (-1947 . 521258) (-1948 . 521204) + (-1949 . 520872) (-1950 . 520548) (-1951 . 520360) (-1952 . 520169) + (-1953 . 520005) (-1954 . 519670) (-1955 . 519503) (-1956 . 519262) + (-1957 . 518938) (-1958 . 518748) (-1959 . 518533) (-1960 . 518362) + (-1961 . 517940) (-1962 . 517713) (-1963 . 517442) (-1964 . 517305) + (-1965 . 517164) (-1966 . 516687) (-1967 . 516564) (-1968 . 516328) + (-1969 . 516074) (-1970 . 515824) (-1971 . 515531) (-1972 . 515391) + (-1973 . 515251) (-1974 . 515111) (-1975 . 514922) (-1976 . 514733) + (-1977 . 514558) (-1978 . 514284) (-1979 . 513849) (-1980 . 513821) + (-1981 . 513749) (-1982 . 513590) (-1983 . 513427) (-1984 . 513266) + (-1985 . 513099) (-1986 . 513046) (-1987 . 512993) (-1988 . 512864) + (-1989 . 512804) (-1990 . 512751) (-1991 . 512681) (-1992 . 512621) + (-1993 . 512562) (-1994 . 512502) (-1995 . 512443) (-1996 . 512383) + (-1997 . 512324) (-1998 . 512265) (-1999 . 512123) (-2000 . 512028) + (-2001 . 511937) (-2002 . 511821) (-2003 . 511727) (-2004 . 511629) + (-2005 . 511535) (-2006 . 511394) (-2007 . 511132) (-2008 . 510276) + (-2009 . 510120) (-2010 . 509751) (-2011 . 509695) (-2012 . 509644) + (-2013 . 509541) (-2014 . 509456) (-2015 . 509368) (-2016 . 509222) + (-2017 . 509073) (-2018 . 508783) (-2019 . 508705) (-2020 . 508630) + (-2021 . 508577) (-2022 . 508524) (-2023 . 508493) (-2024 . 508430) + (-2025 . 508312) (-2026 . 508223) (-2027 . 508103) (-2028 . 507808) + (-2029 . 507614) (-2030 . 507426) (-2031 . 507281) (-2032 . 507136) + (-2033 . 506850) (-2034 . 506408) (-2035 . 506374) (-2036 . 506337) + (-2037 . 506300) (-2038 . 506263) (-2039 . 506226) (-2040 . 506195) + (-2041 . 506164) (-2042 . 506133) (-2043 . 506099) (-2044 . 506065) + (-2045 . 506011) (-2046 . 505835) (-2047 . 505601) (-2048 . 505367) + (-2049 . 505138) (-2050 . 505086) (-2051 . 505031) (-2052 . 504962) + (-2053 . 504874) (-2054 . 504805) (-2055 . 504733) (-2056 . 504503) + (-2057 . 504452) (-2058 . 504398) (-2059 . 504367) (-2060 . 504261) + (-2061 . 504036) (-2062 . 503726) (-2063 . 503552) (-2064 . 503370) + (-2065 . 503099) (-2066 . 503026) (-2067 . 502961) (-2068 . 502485) + (-2069 . 501923) (-2070 . 501197) (-2071 . 500636) (-2072 . 500008) + (-2073 . 499429) (-2074 . 499355) (-2075 . 499303) (-2076 . 499251) + (-2077 . 499177) (-2078 . 499122) (-2079 . 499070) (-2080 . 499018) + (-2081 . 498966) (-2082 . 498896) (-2083 . 498448) (-2084 . 498242) + (-2085 . 497993) (-2086 . 497659) (-2087 . 497405) (-2088 . 497103) + (-2089 . 496900) (-2090 . 496611) (-2091 . 496063) (-2092 . 495926) + (-2093 . 495724) (-2094 . 495444) (-2095 . 495359) (-2096 . 495026) + (-2097 . 494885) (-2098 . 494594) (-2099 . 494374) (-2100 . 494248) + (-2101 . 494123) (-2102 . 493976) (-2103 . 493832) (-2104 . 493716) + (-2105 . 493585) (-2106 . 493213) (-2107 . 492953) (-2108 . 492683) + (-2109 . 492443) (-2110 . 492113) (-2111 . 491773) (-2112 . 491365) + (-2113 . 490947) (-2114 . 490750) (-2115 . 490475) (-2116 . 490307) + (-2117 . 490111) (-2118 . 489889) (-2119 . 489734) (-2120 . 489549) + (-2121 . 489446) (-2122 . 489418) (-2123 . 489390) (-2124 . 489216) + (-2125 . 489142) (-2126 . 489081) (-2127 . 489028) (-2128 . 488959) + (-2129 . 488890) (-2130 . 488771) (-2131 . 488593) (-2132 . 488538) + (-2133 . 488292) (-2134 . 488219) (-2135 . 488149) (-2136 . 488079) + (-2137 . 487990) (-2138 . 487800) (-2139 . 487727) (-2140 . 487658) + (-2141 . 487593) (-2142 . 487538) (-2143 . 487447) (-2144 . 487156) + (-2145 . 486830) (-2146 . 486756) (-2147 . 486434) (-2148 . 486229) + (-2149 . 486144) (-2150 . 486059) (-2151 . 485974) (-2152 . 485889) + (-2153 . 485804) (-2154 . 485719) (-2155 . 485634) (-2156 . 485549) + (-2157 . 485464) (-2158 . 485379) (-2159 . 485294) (-2160 . 485209) + (-2161 . 485124) (-2162 . 485039) (-2163 . 484954) (-2164 . 484869) + (-2165 . 484784) (-2166 . 484699) (-2167 . 484614) (-2168 . 484529) + (-2169 . 484444) (-2170 . 484359) (-2171 . 484274) (-2172 . 484189) + (-2173 . 484104) (-2174 . 484019) (-2175 . 483917) (-2176 . 483829) + (-2177 . 483621) (-2178 . 483563) (-2179 . 483508) (-2180 . 483421) + (-2181 . 483310) (-2182 . 483224) (-2183 . 483078) (-2184 . 483016) + (-2185 . 482988) (-2186 . 482960) (-2187 . 482932) (-2188 . 482904) + (-2189 . 482735) (-2190 . 482584) (-2191 . 482433) (-2192 . 482261) + (-2193 . 482053) (-2194 . 481929) (-2195 . 481721) (-2196 . 481629) + (-2197 . 481537) (-2198 . 481402) (-2199 . 481307) (-2200 . 481213) + (-2201 . 481118) (-2202 . 480994) (-2203 . 480966) (-2204 . 480938) + (-2205 . 480910) (-2206 . 480882) (-2207 . 480854) (-2208 . 480826) + (-2209 . 480798) (-2210 . 480770) (-2211 . 480742) (-2212 . 480714) + (-2213 . 480686) (-2214 . 480658) (-2215 . 480630) (-2216 . 480602) + (-2217 . 480574) (-2218 . 480546) (-2219 . 480493) (-2220 . 480465) + (-2221 . 480437) (-2222 . 480359) (-2223 . 480306) (-2224 . 480253) + (-2225 . 480200) (-2226 . 480122) (-2227 . 480032) (-2228 . 479937) + (-2229 . 479843) (-2230 . 479761) (-2231 . 479455) (-2232 . 479259) + (-2233 . 479164) (-2234 . 479056) (-2235 . 478645) (-2236 . 478617) + (-2237 . 478453) (-2238 . 478376) (-2239 . 478189) (-2240 . 478010) + (-2241 . 477586) (-2242 . 477434) (-2243 . 477254) (-2244 . 477081) + (-2245 . 476821) (-2246 . 476569) (-2247 . 475758) (-2248 . 475591) + (-2249 . 475373) (-2250 . 474549) (-2251 . 474418) (-2252 . 474287) + (-2253 . 474156) (-2254 . 474025) (-2255 . 473894) (-2256 . 473763) + (-2257 . 473568) (-2258 . 473374) (-2259 . 473231) (-2260 . 472916) + (-2261 . 472801) (-2262 . 472461) (-2263 . 472301) (-2264 . 472162) + (-2265 . 472023) (-2266 . 471894) (-2267 . 471809) (-2268 . 471757) + (-2269 . 471277) (-2270 . 470015) (-2271 . 469888) (-2272 . 469746) + (-2273 . 469410) (-2274 . 469305) (-2275 . 469056) (-2276 . 468824) + (-2277 . 468719) (-2278 . 468644) (-2279 . 468569) (-2280 . 468494) + (-2281 . 468435) (-2282 . 468365) (-2283 . 468312) (-2284 . 468250) + (-2285 . 468180) (-2286 . 467817) (-2287 . 467530) (-2288 . 467420) + (-2289 . 467233) (-2290 . 467140) (-2291 . 467047) (-2292 . 466960) + (-2293 . 466740) (-2294 . 466521) (-2295 . 466103) (-2296 . 465831) + (-2297 . 465688) (-2298 . 465595) (-2299 . 465452) (-2300 . 465300) + (-2301 . 465146) (-2302 . 465076) (-2303 . 464869) (-2304 . 464692) + (-2305 . 464483) (-2306 . 464306) (-2307 . 464272) (-2308 . 464238) + (-2309 . 464207) (-2310 . 464089) (-2311 . 463776) (-2312 . 463498) + (-2313 . 463377) (-2314 . 463250) (-2315 . 463165) (-2316 . 463092) + (-2317 . 463003) (-2318 . 462932) (-2319 . 462876) (-2320 . 462820) + (-2321 . 462764) (-2322 . 462694) (-2323 . 462624) (-2324 . 462554) + (-2325 . 462456) (-2326 . 462378) (-2327 . 462300) (-2328 . 462157) + (-2329 . 462078) (-2330 . 462006) (-2331 . 461803) (-2332 . 461747) + (-2333 . 461559) (-2334 . 461460) (-2335 . 461342) (-2336 . 461221) + (-2337 . 461078) (-2338 . 460935) (-2339 . 460795) (-2340 . 460655) + (-2341 . 460512) (-2342 . 460386) (-2343 . 460257) (-2344 . 460134) + (-2345 . 460011) (-2346 . 459906) (-2347 . 459801) (-2348 . 459699) + (-2349 . 459549) (-2350 . 459396) (-2351 . 459243) (-2352 . 459099) + (-2353 . 458945) (-2354 . 458869) (-2355 . 458790) (-2356 . 458637) + (-2357 . 458558) (-2358 . 458479) (-2359 . 458400) (-2360 . 458298) + (-2361 . 458239) (-2362 . 458177) (-2363 . 458060) (-2364 . 457934) + (-2365 . 457857) (-2366 . 457725) (-2367 . 457419) (-2368 . 457236) + (-2369 . 456691) (-2370 . 456471) (-2371 . 456297) (-2372 . 456127) + (-2373 . 456054) (-2374 . 455978) (-2375 . 455899) (-2376 . 455602) + (-2377 . 455440) (-2378 . 455206) (-2379 . 454764) (-2380 . 454634) + (-2381 . 454494) (-2382 . 454185) (-2383 . 453883) (-2384 . 453567) + (-2385 . 453161) (-2386 . 453093) (-2387 . 453025) (-2388 . 452957) + (-2389 . 452863) (-2390 . 452756) (-2391 . 452649) (-2392 . 452548) + (-2393 . 452447) (-2394 . 452346) (-2395 . 452269) (-2396 . 451946) + (-2397 . 451529) (-2398 . 450902) (-2399 . 450838) (-2400 . 450719) + (-2401 . 450600) (-2402 . 450492) (-2403 . 450384) (-2404 . 450228) + (-2405 . 449628) (-2406 . 449345) (-2407 . 449266) (-2408 . 449212) + (-2409 . 449044) (-2410 . 448922) (-2411 . 448526) (-2412 . 448290) + (-2413 . 448089) (-2414 . 447881) (-2415 . 447688) (-2416 . 447421) + (-2417 . 447242) (-2418 . 447173) (-2419 . 447097) (-2420 . 446956) + (-2421 . 446753) (-2422 . 446609) (-2423 . 446359) (-2424 . 446051) + (-2425 . 445695) (-2426 . 445536) (-2427 . 445330) (-2428 . 445170) + (-2429 . 445097) (-2430 . 445063) (-2431 . 444998) (-2432 . 444961) + (-2433 . 444824) (-2434 . 444586) (-2435 . 444516) (-2436 . 444330) + (-2437 . 444081) (-2438 . 443925) (-2439 . 443402) (-2440 . 443205) + (-2441 . 442993) (-2442 . 442831) (-2443 . 442432) (-2444 . 442265) + (-2445 . 441190) (-2446 . 441067) (-2447 . 440850) (-2448 . 440720) + (-2449 . 440590) (-2450 . 440433) (-2451 . 440330) (-2452 . 440272) + (-2453 . 440214) (-2454 . 440108) (-2455 . 440002) (-2456 . 439086) + (-2457 . 436959) (-2458 . 436145) (-2459 . 434342) (-2460 . 434274) + (-2461 . 434206) (-2462 . 434138) (-2463 . 434070) (-2464 . 434002) + (-2465 . 433924) (-2466 . 433568) (-2467 . 433386) (-2468 . 432847) + (-2469 . 432671) (-2470 . 432450) (-2471 . 432229) (-2472 . 432008) + (-2473 . 431790) (-2474 . 431572) (-2475 . 431354) (-2476 . 431136) + (-2477 . 430918) (-2478 . 430700) (-2479 . 430599) (-2480 . 429866) + (-2481 . 429811) (-2482 . 429756) (-2483 . 429701) (-2484 . 429646) + (-2485 . 429496) (-2486 . 429248) (-2487 . 429087) (-2488 . 428907) + (-2489 . 428620) (-2490 . 428234) (-2491 . 427362) (-2492 . 427022) + (-2493 . 426854) (-2494 . 426632) (-2495 . 426382) (-2496 . 426034) + (-2497 . 425024) (-2498 . 424713) (-2499 . 424501) (-2500 . 423937) + (-2501 . 423424) (-2502 . 421668) (-2503 . 421196) (-2504 . 420597) + (-2505 . 420347) (-2506 . 420213) (-2507 . 420001) (-2508 . 419925) + (-2509 . 419849) (-2510 . 419742) (-2511 . 419560) (-2512 . 419395) + (-2513 . 419217) (-2514 . 418636) (-2515 . 418475) (-2516 . 417902) + (-2517 . 417832) (-2518 . 417757) (-2519 . 417685) (-2520 . 417547) + (-2521 . 417360) (-2522 . 417253) (-2523 . 417146) (-2524 . 417031) + (-2525 . 416916) (-2526 . 416801) (-2527 . 416523) (-2528 . 416373) + (-2529 . 416230) (-2530 . 416157) (-2531 . 416072) (-2532 . 415999) + (-2533 . 415926) (-2534 . 415853) (-2535 . 415710) (-2536 . 415560) + (-2537 . 415386) (-2538 . 415236) (-2539 . 415086) (-2540 . 414960) + (-2541 . 414574) (-2542 . 414290) (-2543 . 414006) (-2544 . 413597) + (-2545 . 413313) (-2546 . 413240) (-2547 . 413093) (-2548 . 412987) + (-2549 . 412913) (-2550 . 412843) (-2551 . 412764) (-2552 . 412687) + (-2553 . 412610) (-2554 . 412461) (-2555 . 412358) (-2556 . 412300) + (-2557 . 412236) (-2558 . 412172) (-2559 . 412075) (-2560 . 411978) + (-2561 . 411818) (-2562 . 411732) (-2563 . 411646) (-2564 . 411561) + (-2565 . 411502) (-2566 . 411443) (-2567 . 411384) (-2568 . 411325) + (-2569 . 411155) (-2570 . 411067) (-2571 . 410970) (-2572 . 410936) + (-2573 . 410905) (-2574 . 410821) (-2575 . 410765) (-2576 . 410703) + (-2577 . 410669) (-2578 . 410635) (-2579 . 410601) (-2580 . 410567) + (-2581 . 410533) (-2582 . 410499) (-2583 . 410465) (-2584 . 410431) + (-2585 . 410397) (-2586 . 410285) (-2587 . 410251) (-2588 . 410200) + (-2589 . 410166) (-2590 . 410069) (-2591 . 410007) (-2592 . 409916) + (-2593 . 409825) (-2594 . 409770) (-2595 . 409718) (-2596 . 409666) + (-2597 . 409614) (-2598 . 409562) (-2599 . 409139) (-2600 . 408973) + (-2601 . 408920) (-2602 . 408851) (-2603 . 408798) (-2604 . 408568) + (-2605 . 408412) (-2606 . 407891) (-2607 . 407750) (-2608 . 407716) + (-2609 . 407661) (-2610 . 406951) (-2611 . 406636) (-2612 . 406132) + (-2613 . 406054) (-2614 . 406002) (-2615 . 405950) (-2616 . 405766) + (-2617 . 405714) (-2618 . 405662) (-2619 . 405586) (-2620 . 405524) + (-2621 . 405306) (-2622 . 405239) (-2623 . 405145) (-2624 . 405051) + (-2625 . 404868) (-2626 . 404786) (-2627 . 404664) (-2628 . 404518) + (-2629 . 403867) (-2630 . 403165) (-2631 . 403061) (-2632 . 402960) + (-2633 . 402859) (-2634 . 402748) (-2635 . 402580) (-2636 . 402376) + (-2637 . 402283) (-2638 . 402206) (-2639 . 402150) (-2640 . 402080) + (-2641 . 401960) (-2642 . 401859) (-2643 . 401762) (-2644 . 401682) + (-2645 . 401602) (-2646 . 401525) (-2647 . 401455) (-2648 . 401385) + (-2649 . 401315) (-2650 . 401245) (-2651 . 401175) (-2652 . 401105) + (-2653 . 401012) (-2654 . 400884) (-2655 . 400642) (-2656 . 400472) + (-2657 . 400103) (-2658 . 399934) (-2659 . 399818) (-2660 . 399322) + (-2661 . 398941) (-2662 . 398695) (-2663 . 398603) (-2664 . 398506) + (-2665 . 397844) (-2666 . 397731) (-2667 . 397657) (-2668 . 397565) + (-2669 . 397375) (-2670 . 397185) (-2671 . 397114) (-2672 . 397043) + (-2673 . 396962) (-2674 . 396881) (-2675 . 396756) (-2676 . 396623) + (-2677 . 396542) (-2678 . 396468) (-2679 . 396303) (-2680 . 396146) + (-2681 . 395918) (-2682 . 395770) (-2683 . 395666) (-2684 . 395562) + (-2685 . 395477) (-2686 . 395109) (-2687 . 395028) (-2688 . 394941) + (-2689 . 394860) (-2690 . 394664) (-2691 . 394444) (-2692 . 394257) + (-2693 . 393935) (-2694 . 393642) (-2695 . 393349) (-2696 . 393039) + (-2697 . 392722) (-2698 . 392570) (-2699 . 392382) (-2700 . 391909) + (-2701 . 391827) (-2702 . 391611) (-2703 . 391395) (-2704 . 391136) + (-2705 . 390715) (-2706 . 390202) (-2707 . 390072) (-2708 . 389798) + (-2709 . 389619) (-2710 . 389504) (-2711 . 389400) (-2712 . 389345) + (-2713 . 389268) (-2714 . 389198) (-2715 . 389125) (-2716 . 389070) + (-2717 . 388997) (-2718 . 388942) (-2719 . 388587) (-2720 . 388179) + (-2721 . 388026) (-2722 . 387873) (-2723 . 387792) (-2724 . 387639) + (-2725 . 387486) (-2726 . 387351) (-2727 . 387216) (-2728 . 387081) + (-2729 . 386946) (-2730 . 386811) (-2731 . 386676) (-2732 . 386620) + (-2733 . 386467) (-2734 . 386356) (-2735 . 386245) (-2736 . 386160) + (-2737 . 386050) (-2738 . 385947) (-2739 . 381796) (-2740 . 381348) + (-2741 . 380921) (-2742 . 380304) (-2743 . 379703) (-2744 . 379485) + (-2745 . 379307) (-2746 . 379048) (-2747 . 378637) (-2748 . 378343) + (-2749 . 377900) (-2750 . 377722) (-2751 . 377329) (-2752 . 376936) + (-2753 . 376751) (-2754 . 376544) (-2755 . 376324) (-2756 . 376018) + (-2757 . 375819) (-2758 . 375190) (-2759 . 375033) (-2760 . 374644) + (-2761 . 374593) (-2762 . 374544) (-2763 . 374493) (-2764 . 374445) + (-2765 . 374393) (-2766 . 374247) (-2767 . 374195) (-2768 . 374049) + (-2769 . 373997) (-2770 . 373851) (-2771 . 373800) (-2772 . 373425) + (-2773 . 373374) (-2774 . 373325) (-2775 . 373274) (-2776 . 373226) + (-2777 . 373174) (-2778 . 373125) (-2779 . 373073) (-2780 . 373024) + (-2781 . 372972) (-2782 . 372923) (-2783 . 372857) (-2784 . 372739) + (-2785 . 371577) (-2786 . 371160) (-2787 . 371052) (-2788 . 370810) + (-2789 . 370660) (-2790 . 370510) (-2791 . 370349) (-2792 . 368142) + (-2793 . 367881) (-2794 . 367727) (-2795 . 367581) (-2796 . 367435) + (-2797 . 367216) (-2798 . 367084) (-2799 . 367009) (-2800 . 366934) + (-2801 . 366799) (-2802 . 366670) (-2803 . 366541) (-2804 . 366415) + (-2805 . 366289) (-2806 . 366163) (-2807 . 366037) (-2808 . 365934) + (-2809 . 365834) (-2810 . 365740) (-2811 . 365610) (-2812 . 365459) + (-2813 . 365083) (-2814 . 364969) (-2815 . 364728) (-2816 . 364270) + (-2817 . 363960) (-2818 . 363393) (-2819 . 362824) (-2820 . 361814) + (-2821 . 361272) (-2822 . 360959) (-2823 . 360621) (-2824 . 360290) + (-2825 . 359970) (-2826 . 359917) (-2827 . 359790) (-2828 . 359288) + (-2829 . 358145) (-2830 . 358090) (-2831 . 358035) (-2832 . 357959) + (-2833 . 357840) (-2834 . 357765) (-2835 . 357690) (-2836 . 357612) + (-2837 . 357389) (-2838 . 357330) (-2839 . 357271) (-2840 . 357168) + (-2841 . 357065) (-2842 . 356962) (-2843 . 356859) (-2844 . 356778) + (-2845 . 356704) (-2846 . 356489) (-2847 . 356255) (-2848 . 356221) + (-2849 . 356187) (-2850 . 356159) (-2851 . 356131) (-2852 . 355914) + (-2853 . 355636) (-2854 . 355486) (-2855 . 355356) (-2856 . 355226) + (-2857 . 355126) (-2858 . 354949) (-2859 . 354789) (-2860 . 354689) + (-2861 . 354512) (-2862 . 354352) (-2863 . 354193) (-2864 . 354054) + (-2865 . 353904) (-2866 . 353774) (-2867 . 353644) (-2868 . 353497) + (-2869 . 353370) (-2870 . 353267) (-2871 . 353160) (-2872 . 353063) + (-2873 . 352898) (-2874 . 352750) (-2875 . 352335) (-2876 . 352235) + (-2877 . 352132) (-2878 . 352044) (-2879 . 351964) (-2880 . 351814) + (-2881 . 351684) (-2882 . 351632) (-2883 . 351559) (-2884 . 351484) + (-2885 . 351208) (-2886 . 351096) (-2887 . 350784) (-2888 . 350607) + (-2889 . 349009) (-2890 . 348381) (-2891 . 348321) (-2892 . 348203) + (-2893 . 348085) (-2894 . 347941) (-2895 . 347789) (-2896 . 347630) + (-2897 . 347471) (-2898 . 347265) (-2899 . 347078) (-2900 . 346926) + (-2901 . 346771) (-2902 . 346616) (-2903 . 346464) (-2904 . 346327) + (-2905 . 345904) (-2906 . 345778) (-2907 . 345652) (-2908 . 345526) + (-2909 . 345386) (-2910 . 345245) (-2911 . 345104) (-2912 . 344960) + (-2913 . 344212) (-2914 . 344054) (-2915 . 343868) (-2916 . 343713) + (-2917 . 343475) (-2918 . 343230) (-2919 . 342985) (-2920 . 342775) + (-2921 . 342638) (-2922 . 342428) (-2923 . 342291) (-2924 . 342081) + (-2925 . 341944) (-2926 . 341734) (-2927 . 341431) (-2928 . 341287) + (-2929 . 341146) (-2930 . 340923) (-2931 . 340782) (-2932 . 340560) + (-2933 . 340363) (-2934 . 340207) (-2935 . 339880) (-2936 . 339721) + (-2937 . 339562) (-2938 . 339403) (-2939 . 339232) (-2940 . 339061) + (-2941 . 338887) (-2942 . 338535) (-2943 . 338412) (-2944 . 338250) + (-2945 . 338177) (-2946 . 338104) (-2947 . 338031) (-2948 . 337958) + (-2949 . 337885) (-2950 . 337812) (-2951 . 337689) (-2952 . 337516) + (-2953 . 337393) (-2954 . 337307) (-2955 . 337241) (-2956 . 337175) + (-2957 . 337109) (-2958 . 337043) (-2959 . 336977) (-2960 . 336911) + (-2961 . 336845) (-2962 . 336779) (-2963 . 336713) (-2964 . 336647) + (-2965 . 336581) (-2966 . 336515) (-2967 . 336449) (-2968 . 336383) + (-2969 . 336317) (-2970 . 336251) (-2971 . 336185) (-2972 . 336119) + (-2973 . 336053) (-2974 . 335987) (-2975 . 335921) (-2976 . 335855) + (-2977 . 335789) (-2978 . 335723) (-2979 . 335657) (-2980 . 335591) + (-2981 . 334944) (-2982 . 334297) (-2983 . 334169) (-2984 . 334046) + (-2985 . 333923) (-2986 . 333782) (-2987 . 333628) (-2988 . 333484) + (-2989 . 333309) (-2990 . 332699) (-2991 . 332575) (-2992 . 332451) + (-2993 . 331773) (-2994 . 331076) (-2995 . 330975) (-2996 . 330919) + (-2997 . 330863) (-2998 . 330807) (-2999 . 330751) (-3000 . 330692) + (-3001 . 330628) (-3002 . 330520) (-3003 . 330412) (-3004 . 330304) + (-3005 . 330025) (-3006 . 329951) (-3007 . 329725) (-3008 . 329644) + (-3009 . 329566) (-3010 . 329488) (-3011 . 329410) (-3012 . 329331) + (-3013 . 329253) (-3014 . 329160) (-3015 . 329061) (-3016 . 328993) + (-3017 . 328944) (-3018 . 328253) (-3019 . 327613) (-3020 . 326822) + (-3021 . 326741) (-3022 . 326637) (-3023 . 326546) (-3024 . 326455) + (-3025 . 326381) (-3026 . 326307) (-3027 . 326233) (-3028 . 326178) + (-3029 . 326123) (-3030 . 326057) (-3031 . 325991) (-3032 . 325929) + (-3033 . 325654) (-3034 . 325162) (-3035 . 324704) (-3036 . 324451) + (-3037 . 324263) (-3038 . 323922) (-3039 . 323626) (-3040 . 323458) + (-3041 . 323327) (-3042 . 323187) (-3043 . 323032) (-3044 . 322863) + (-3045 . 321477) (-3046 . 321344) (-3047 . 321203) (-3048 . 320974) + (-3049 . 320915) (-3050 . 320859) (-3051 . 320803) (-3052 . 320538) + (-3053 . 320326) (-3054 . 320187) (-3055 . 320080) (-3056 . 319963) + (-3057 . 319897) (-3058 . 319824) (-3059 . 319710) (-3060 . 319457) + (-3061 . 319357) (-3062 . 319163) (-3063 . 318855) (-3064 . 318389) + (-3065 . 318284) (-3066 . 318178) (-3067 . 318029) (-3068 . 317889) + (-3069 . 317477) (-3070 . 317233) (-3071 . 316575) (-3072 . 316422) + (-3073 . 316308) (-3074 . 316198) (-3075 . 315378) (-3076 . 315184) + (-3077 . 314158) (-3078 . 313710) (-3079 . 312321) (-3080 . 311470) + (-3081 . 311421) (-3082 . 311372) (-3083 . 311323) (-3084 . 311256) + (-3085 . 311181) (-3086 . 310991) (-3087 . 310919) (-3088 . 310844) + (-3089 . 310772) (-3090 . 310655) (-3091 . 310604) (-3092 . 310525) + (-3093 . 310446) (-3094 . 310367) (-3095 . 310316) (-3096 . 310072) + (-3097 . 309770) (-3098 . 309688) (-3099 . 309606) (-3100 . 309545) + (-3101 . 309156) (-3102 . 308284) (-3103 . 307711) (-3104 . 306476) + (-3105 . 305669) (-3106 . 305419) (-3107 . 305169) (-3108 . 304744) + (-3109 . 304500) (-3110 . 304256) (-3111 . 304012) (-3112 . 303768) + (-3113 . 303524) (-3114 . 303280) (-3115 . 303038) (-3116 . 302796) + (-3117 . 302554) (-3118 . 302312) (-3119 . 301734) (-3120 . 301618) + (-3121 . 300776) (-3122 . 300745) (-3123 . 300400) (-3124 . 300174) + (-3125 . 300075) (-3126 . 299976) (-3127 . 298210) (-3128 . 298098) + (-3129 . 297048) (-3130 . 296956) (-3131 . 296034) (-3132 . 295701) + (-3133 . 295368) (-3134 . 295265) (-3135 . 295154) (-3136 . 295043) + (-3137 . 294932) (-3138 . 294821) (-3139 . 293734) (-3140 . 293614) + (-3141 . 293479) (-3142 . 293347) (-3143 . 293215) (-3144 . 292921) + (-3145 . 292627) (-3146 . 292282) (-3147 . 292056) (-3148 . 291830) + (-3149 . 291719) (-3150 . 291608) (-3151 . 290146) (-3152 . 288442) + (-3153 . 288133) (-3154 . 287981) (-3155 . 287458) (-3156 . 287129) + (-3157 . 286936) (-3158 . 286743) (-3159 . 286550) (-3160 . 286357) + (-3161 . 286244) (-3162 . 286121) (-3163 . 286007) (-3164 . 285893) + (-3165 . 285800) (-3166 . 285707) (-3167 . 285597) (-3168 . 285396) + (-3169 . 284252) (-3170 . 284159) (-3171 . 284045) (-3172 . 283952) + (-3173 . 283705) (-3174 . 283594) (-3175 . 283380) (-3176 . 283262) + (-3177 . 282965) (-3178 . 282237) (-3179 . 281661) (-3180 . 281183) + (-3181 . 280939) (-3182 . 280695) (-3183 . 280352) (-3184 . 279746) + (-3185 . 279303) (-3186 . 279148) (-3187 . 279004) (-3188 . 278684) + (-3189 . 278529) (-3190 . 278389) (-3191 . 278249) (-3192 . 278109) + (-3193 . 277834) (-3194 . 277615) (-3195 . 277096) (-3196 . 276884) + (-3197 . 276672) (-3198 . 276292) (-3199 . 276118) (-3200 . 275909) + (-3201 . 275601) (-3202 . 275409) (-3203 . 275236) (-3204 . 274100) + (-3205 . 273735) (-3206 . 273535) (-3207 . 273335) (-3208 . 272499) + (-3209 . 272471) (-3210 . 272403) (-3211 . 272333) (-3212 . 272169) + (-3213 . 272141) (-3214 . 272113) (-3215 . 272059) (-3216 . 271909) + (-3217 . 271850) (-3218 . 271157) (-3219 . 269772) (-3220 . 269711) + (-3221 . 269387) (-3222 . 269315) (-3223 . 269258) (-3224 . 269201) + (-3225 . 269144) (-3226 . 269087) (-3227 . 269012) (-3228 . 268422) + (-3229 . 268062) (-3230 . 267988) (-3231 . 267928) (-3232 . 267810) + (-3233 . 266867) (-3234 . 266740) (-3235 . 266527) (-3236 . 266453) + (-3237 . 266399) (-3238 . 266345) (-3239 . 266236) (-3240 . 265926) + (-3241 . 265818) (-3242 . 265715) (-3243 . 265554) (-3244 . 265453) + (-3245 . 265355) (-3246 . 265217) (-3247 . 265079) (-3248 . 264941) + (-3249 . 264679) (-3250 . 264470) (-3251 . 264332) (-3252 . 264041) + (-3253 . 263889) (-3254 . 263614) (-3255 . 263394) (-3256 . 263242) + (-3257 . 263090) (-3258 . 262938) (-3259 . 262786) (-3260 . 262634) + (-3261 . 262427) (-3262 . 262040) (-3263 . 261709) (-3264 . 261370) + (-3265 . 261023) (-3266 . 260684) (-3267 . 260345) (-3268 . 259964) + (-3269 . 259583) (-3270 . 259202) (-3271 . 258837) (-3272 . 258119) + (-3273 . 257772) (-3274 . 257327) (-3275 . 256902) (-3276 . 256291) + (-3277 . 255699) (-3278 . 255312) (-3279 . 254981) (-3280 . 254594) + (-3281 . 254263) (-3282 . 254043) (-3283 . 253522) (-3284 . 253309) + (-3285 . 253096) (-3286 . 252883) (-3287 . 252705) (-3288 . 252492) + (-3289 . 252314) (-3290 . 251932) (-3291 . 251754) (-3292 . 251544) + (-3293 . 251454) (-3294 . 251364) (-3295 . 251273) (-3296 . 251161) + (-3297 . 251071) (-3298 . 250964) (-3299 . 250775) (-3300 . 250719) + (-3301 . 250638) (-3302 . 250557) (-3303 . 250476) (-3304 . 250399) + (-3305 . 250264) (-3306 . 250129) (-3307 . 250005) (-3308 . 249884) + (-3309 . 249766) (-3310 . 249630) (-3311 . 249497) (-3312 . 249378) + (-3313 . 249120) (-3314 . 248835) (-3315 . 248763) (-3316 . 248667) + (-3317 . 248526) (-3318 . 248469) (-3319 . 248412) (-3320 . 248352) + (-3321 . 247957) (-3322 . 247435) (-3323 . 247158) (-3324 . 246738) + (-3325 . 246626) (-3326 . 246188) (-3327 . 245958) (-3328 . 245755) + (-3329 . 245573) (-3330 . 245443) (-3331 . 245237) (-3332 . 245030) + (-3333 . 244840) (-3334 . 244275) (-3335 . 244019) (-3336 . 243728) + (-3337 . 243434) (-3338 . 243137) (-3339 . 242837) (-3340 . 242707) + (-3341 . 242574) (-3342 . 242438) (-3343 . 242299) (-3344 . 241082) + (-3345 . 240774) (-3346 . 240410) (-3347 . 240313) (-3348 . 240073) + (-3349 . 239778) (-3350 . 239483) (-3351 . 239224) (-3352 . 239050) + (-3353 . 238972) (-3354 . 238885) (-3355 . 238785) (-3356 . 238691) + (-3357 . 238610) (-3358 . 238540) (-3359 . 237749) (-3360 . 237679) + (-3361 . 237351) (-3362 . 237281) (-3363 . 236953) (-3364 . 236883) + (-3365 . 236438) (-3366 . 236368) (-3367 . 236264) (-3368 . 236190) + (-3369 . 236116) (-3370 . 236045) (-3371 . 235703) (-3372 . 235575) + (-3373 . 235498) (-3374 . 235267) (-3375 . 235124) (-3376 . 234981) + (-3377 . 234642) (-3378 . 234312) (-3379 . 234099) (-3380 . 233844) + (-3381 . 233494) (-3382 . 233269) (-3383 . 233044) (-3384 . 232819) + (-3385 . 232594) (-3386 . 232381) (-3387 . 232168) (-3388 . 232018) + (-3389 . 231837) (-3390 . 231732) (-3391 . 231610) (-3392 . 231502) + (-3393 . 231394) (-3394 . 231069) (-3395 . 230805) (-3396 . 230494) + (-3397 . 230192) (-3398 . 229883) (-3399 . 229154) (-3400 . 228565) + (-3401 . 228390) (-3402 . 228246) (-3403 . 228091) (-3404 . 227968) + (-3405 . 227863) (-3406 . 227748) (-3407 . 227653) (-3408 . 227172) + (-3409 . 227062) (-3410 . 226952) (-3411 . 226842) (-3412 . 225770) + (-3413 . 225259) (-3414 . 225192) (-3415 . 225119) (-3416 . 224246) + (-3417 . 224173) (-3418 . 224118) (-3419 . 224063) (-3420 . 224031) + (-3421 . 223945) (-3422 . 223913) (-3423 . 223827) (-3424 . 223407) + (-3425 . 222987) (-3426 . 222435) (-3427 . 221331) (-3428 . 219621) + (-3429 . 218071) (-3430 . 217279) (-3431 . 216779) (-3432 . 216293) + (-3433 . 215891) (-3434 . 215241) (-3435 . 215166) (-3436 . 215075) + (-3437 . 215004) (-3438 . 214933) (-3439 . 214877) (-3440 . 214757) + (-3441 . 214703) (-3442 . 214642) (-3443 . 214588) (-3444 . 214485) + (-3445 . 214045) (-3446 . 213605) (-3447 . 213165) (-3448 . 212643) + (-3449 . 212482) (-3450 . 212321) (-3451 . 212010) (-3452 . 211924) + (-3453 . 211834) (-3454 . 211476) (-3455 . 211359) (-3456 . 211278) + (-3457 . 211120) (-3458 . 211007) (-3459 . 210932) (-3460 . 210086) + (-3461 . 208904) (-3462 . 208805) (-3463 . 208706) (-3464 . 208377) + (-3465 . 208299) (-3466 . 208224) (-3467 . 208118) (-3468 . 207962) + (-3469 . 207855) (-3470 . 207720) (-3471 . 207585) (-3472 . 207463) + (-3473 . 207368) (-3474 . 207220) (-3475 . 207125) (-3476 . 206970) + (-3477 . 206815) (-3478 . 206263) (-3479 . 205711) (-3480 . 205096) + (-3481 . 204544) (-3482 . 203992) (-3483 . 203440) (-3484 . 202887) + (-3485 . 202334) (-3486 . 201781) (-3487 . 201228) (-3488 . 200675) + (-3489 . 200122) (-3490 . 199570) (-3491 . 199018) (-3492 . 198466) + (-3493 . 197914) (-3494 . 197362) (-3495 . 196810) (-3496 . 196706) + (-3497 . 196121) (-3498 . 196016) (-3499 . 195941) (-3500 . 195799) + (-3501 . 195707) (-3502 . 195616) (-3503 . 195524) (-3504 . 195429) + (-3505 . 195324) (-3506 . 195201) (-3507 . 195079) (-3508 . 194715) + (-3509 . 194593) (-3510 . 194495) (-3511 . 194134) (-3512 . 193605) + (-3513 . 193530) (-3514 . 193455) (-3515 . 193363) (-3516 . 193182) + (-3517 . 193087) (-3518 . 193012) (-3519 . 192921) (-3520 . 192830) + (-3521 . 192671) (-3522 . 192122) (-3523 . 191573) (-3524 . 188866) + (-3525 . 188694) (-3526 . 187284) (-3527 . 186724) (-3528 . 186609) + (-3529 . 186237) (-3530 . 186174) (-3531 . 186111) (-3532 . 186048) + (-3533 . 185770) (-3534 . 185503) (-3535 . 185451) (-3536 . 184810) + (-3537 . 184759) (-3538 . 184571) (-3539 . 184498) (-3540 . 184418) + (-3541 . 184305) (-3542 . 184115) (-3543 . 183751) (-3544 . 183479) + (-3545 . 183428) (-3546 . 183377) (-3547 . 183307) (-3548 . 183188) + (-3549 . 183159) (-3550 . 183055) (-3551 . 182933) (-3552 . 182879) + (-3553 . 182702) (-3554 . 182641) (-3555 . 182460) (-3556 . 182399) + (-3557 . 182327) (-3558 . 181852) (-3559 . 181478) (-3560 . 177946) + (-3561 . 177894) (-3562 . 177766) (-3563 . 177616) (-3564 . 177564) + (-3565 . 177423) (-3566 . 175365) (-3567 . 167722) (-3568 . 167571) + (-3569 . 167501) (-3570 . 167450) (-3571 . 167400) (-3572 . 167349) + (-3573 . 167298) (-3574 . 167102) (-3575 . 166960) (-3576 . 166846) + (-3577 . 166725) (-3578 . 166607) (-3579 . 166495) (-3580 . 166377) + (-3581 . 166272) (-3582 . 166191) (-3583 . 166087) (-3584 . 165153) + (-3585 . 164933) (-3586 . 164696) (-3587 . 164614) (-3588 . 164270) + (-3589 . 163131) (-3590 . 163057) (-3591 . 162962) (-3592 . 162888) + (-3593 . 162684) (-3594 . 162593) (-3595 . 162477) (-3596 . 162364) + (-3597 . 162273) (-3598 . 162182) (-3599 . 162093) (-3600 . 162004) + (-3601 . 161915) (-3602 . 161827) (-3603 . 161339) (-3604 . 161275) + (-3605 . 161211) (-3606 . 161147) (-3607 . 161086) (-3608 . 160346) + (-3609 . 160285) (-3610 . 160224) (-3611 . 159598) (-3612 . 159546) + (-3613 . 159418) (-3614 . 159354) (-3615 . 159300) (-3616 . 159191) + (-3617 . 157894) (-3618 . 157813) (-3619 . 157724) (-3620 . 157666) + (-3621 . 157526) (-3622 . 157441) (-3623 . 157367) (-3624 . 157282) + (-3625 . 157225) (-3626 . 157009) (-3627 . 156870) (-3628 . 156263) + (-3629 . 155709) (-3630 . 155155) (-3631 . 154601) (-3632 . 153994) + (-3633 . 153440) (-3634 . 152880) (-3635 . 152320) (-3636 . 152058) + (-3637 . 151619) (-3638 . 151286) (-3639 . 150947) (-3640 . 150642) + (-3641 . 150509) (-3642 . 150376) (-3643 . 149988) (-3644 . 149895) + (-3645 . 149802) (-3646 . 149709) (-3647 . 149616) (-3648 . 149523) + (-3649 . 149430) (-3650 . 149337) (-3651 . 149244) (-3652 . 149151) + (-3653 . 149058) (-3654 . 148965) (-3655 . 148872) (-3656 . 148779) + (-3657 . 148686) (-3658 . 148593) (-3659 . 148500) (-3660 . 148407) + (-3661 . 148314) (-3662 . 148221) (-3663 . 148128) (-3664 . 148035) + (-3665 . 147942) (-3666 . 147849) (-3667 . 147756) (-3668 . 147663) + (-3669 . 147478) (-3670 . 147168) (-3671 . 145610) (-3672 . 145456) + (-3673 . 145319) (-3674 . 145177) (-3675 . 144975) (-3676 . 143048) + (-3677 . 142921) (-3678 . 142797) (-3679 . 142670) (-3680 . 142449) + (-3681 . 142228) (-3682 . 142101) (-3683 . 141900) (-3684 . 141724) + (-3685 . 141207) (-3686 . 140690) (-3687 . 140413) (-3688 . 140004) + (-3689 . 139487) (-3690 . 139303) (-3691 . 139161) (-3692 . 138666) + (-3693 . 138035) (-3694 . 137979) (-3695 . 137885) (-3696 . 137766) + (-3697 . 137696) (-3698 . 137623) (-3699 . 137393) (-3700 . 136774) + (-3701 . 136344) (-3702 . 136262) (-3703 . 136120) (-3704 . 135646) + (-3705 . 135524) (-3706 . 135402) (-3707 . 135262) (-3708 . 135075) + (-3709 . 134959) (-3710 . 134679) (-3711 . 134611) (-3712 . 134413) + (-3713 . 134233) (-3714 . 134078) (-3715 . 133971) (-3716 . 133920) + (-3717 . 133543) (-3718 . 133015) (-3719 . 132793) (-3720 . 132571) + (-3721 . 132332) (-3722 . 132242) (-3723 . 130500) (-3724 . 129918) + (-3725 . 129840) (-3726 . 124380) (-3727 . 123590) (-3728 . 123213) + (-3729 . 123142) (-3730 . 122877) (-3731 . 122702) (-3732 . 122217) + (-3733 . 121795) (-3734 . 121355) (-3735 . 120492) (-3736 . 120368) + (-3737 . 120241) (-3738 . 120132) (-3739 . 119980) (-3740 . 119866) + (-3741 . 119727) (-3742 . 119646) (-3743 . 119565) (-3744 . 119461) + (-3745 . 119043) (-3746 . 118622) (-3747 . 118548) (-3748 . 118285) + (-3749 . 118021) (-3750 . 117642) (-3751 . 116943) (-3752 . 115900) + (-3753 . 115841) (-3754 . 115767) (-3755 . 115693) (-3756 . 115571) + (-3757 . 115321) (-3758 . 115235) (-3759 . 115160) (-3760 . 115085) + (-3761 . 114990) (-3762 . 111215) (-3763 . 110045) (-3764 . 109385) + (-3765 . 109201) (-3766 . 106996) (-3767 . 106671) (-3768 . 106189) + (-3769 . 105748) (-3770 . 105513) (-3771 . 105268) (-3772 . 105178) + (-3773 . 103743) (-3774 . 103665) (-3775 . 103560) (-3776 . 102084) + (-3777 . 101679) (-3778 . 101278) (-3779 . 101176) (-3780 . 101094) + (-3781 . 100936) (-3782 . 99702) (-3783 . 99620) (-3784 . 99541) + (-3785 . 99186) (-3786 . 99129) (-3787 . 99057) (-3788 . 99000) + (-3789 . 98943) (-3790 . 98813) (-3791 . 98611) (-3792 . 98243) + (-3793 . 97822) (-3794 . 94012) (-3795 . 93410) (-3796 . 92943) + (-3797 . 92730) (-3798 . 92517) (-3799 . 92351) (-3800 . 92138) + (-3801 . 91972) (-3802 . 91806) (-3803 . 91640) (-3804 . 91474) + (-3805 . 91204) (-3806 . 85790) (** . 82837) (-3808 . 82421) (-3809 . 82180) + (-3810 . 82124) (-3811 . 81632) (-3812 . 78824) (-3813 . 78674) + (-3814 . 78510) (-3815 . 78346) (-3816 . 78250) (-3817 . 78132) + (-3818 . 78008) (-3819 . 77865) (-3820 . 77694) (-3821 . 77568) + (-3822 . 77424) (-3823 . 77272) (-3824 . 77113) (-3825 . 76600) + (-3826 . 76511) (-3827 . 75846) (-3828 . 75654) (-3829 . 75559) + (-3830 . 75251) (-3831 . 74079) (-3832 . 73873) (-3833 . 72698) + (-3834 . 72623) (-3835 . 71442) (-3836 . 67861) (-3837 . 67497) + (-3838 . 67220) (-3839 . 67128) (-3840 . 67035) (-3841 . 66758) + (-3842 . 66665) (-3843 . 66572) (-3844 . 66479) (-3845 . 66095) + (-3846 . 66024) (-3847 . 65932) (-3848 . 65774) (-3849 . 65420) + (-3850 . 65262) (-3851 . 65154) (-3852 . 65125) (-3853 . 65058) + (-3854 . 64904) (-3855 . 64746) (-3856 . 64352) (-3857 . 64277) + (-3858 . 64171) (-3859 . 64099) (-3860 . 64021) (-3861 . 63948) + (-3862 . 63875) (-3863 . 63802) (-3864 . 63730) (-3865 . 63658) + (-3866 . 63585) (-3867 . 63344) (-3868 . 63004) (-3869 . 62856) + (-3870 . 62783) (-3871 . 62710) (-3872 . 62637) (-3873 . 62383) + (-3874 . 62239) (-3875 . 60903) (-3876 . 60709) (-3877 . 60438) + (-3878 . 60290) (-3879 . 60142) (-3880 . 59902) (-3881 . 59708) + (-3882 . 59440) (-3883 . 59244) (-3884 . 59215) (-3885 . 59114) + (-3886 . 59013) (-3887 . 58912) (-3888 . 58811) (-3889 . 58710) + (-3890 . 58609) (-3891 . 58508) (-3892 . 58407) (-3893 . 58306) + (-3894 . 58205) (-3895 . 58090) (-3896 . 57975) (-3897 . 57924) + (-3898 . 57807) (-3899 . 57749) (-3900 . 57648) (-3901 . 57547) + (-3902 . 57446) (-3903 . 57330) (-3904 . 57301) (-3905 . 56570) + (-3906 . 56445) (-3907 . 56320) (-3908 . 56180) (-3909 . 56062) + (-3910 . 55937) (-3911 . 55782) (-3912 . 54799) (-3913 . 53940) + (-3914 . 53886) (-3915 . 53832) (-3916 . 53624) (-3917 . 53252) + (-3918 . 52841) (-3919 . 52483) (-3920 . 52125) (-3921 . 51973) + (-3922 . 51671) (-3923 . 51515) (-3924 . 51189) (-3925 . 51119) + (-3926 . 51049) (-3927 . 50840) (-3928 . 50231) (-3929 . 50027) + (-3930 . 49654) (-3931 . 49145) (-3932 . 48880) (-3933 . 48399) + (-3934 . 47918) (-3935 . 47793) (-3936 . 46693) (-3937 . 45617) + (-3938 . 45044) (-3939 . 44826) (-3940 . 36500) (-3941 . 36315) + (-3942 . 34232) (-3943 . 32064) (-3944 . 31918) (-3945 . 31740) + (-3946 . 31333) (-3947 . 31038) (-3948 . 30690) (-3949 . 30524) + (-3950 . 30358) (-3951 . 29945) (-3952 . 16071) (-3953 . 14964) (* . 10917) + (-3955 . 10663) (-3956 . 10479) (-3957 . 9522) (-3958 . 9469) (-3959 . 9409) + (-3960 . 9140) (-3961 . 8513) (-3962 . 7240) (-3963 . 5996) (-3964 . 5127) + (-3965 . 3864) (-3966 . 420) (-3967 . 306) (-3968 . 173) (-3969 . 30))
\ No newline at end of file |